
POLITECNICO DI TORINO

Master Degree Course in Electronic Engineering

Master Thesis

Hardware Acceleration of 5G LDPC
using datacenter-class FPGAs

Supervisor:
Prof. Luciano Lavagno

Candidate:
Luca Romani
255244

Internship Tutors
Telecom Italia:

Ing. Salvatore Scarpina
Ing. Roberto Quasso

Academic year 2019-2020

Acknowledgements

I have reached the end of this chapter of my life and I think that this goal could
not be possible without the people I met in this journey.
First of all, I would like to thank my parents, grandparents and my uncle Cristian
for giving me the emotional support and for having encouraged me to complete this
path.

I am thankful to Professor Luciano Lavagno who gave me the opportunity to
grow up professionally. I really appreciated to work with him and his team, all of
them have been really helpful and kind with me for the whole thesis period.
I want also to thank Mr. Roberto Quasso and Mr. Salvatore Scarpina for the
attention and feedback they gave me during my speeches.

The most important contribution to this achievements belongs to my friends.
All of them have been important for the time they spent to listen to my complains
and my endless discussions.
In particular, I am grateful to Chiara for the many lunches shared together and for
all the coffee time we had in these years. I also thank Giuseppe for the funny and
no sense moments we had, they have been essential.
Last but not surely least, Valentina has been and she still is fundamental. She
restored the confidence in my self and most of the goals I achieve are due to her
love. I will always owe you for that.
Thank you all again.

Abstract

Low density parity check codes, known also as LDPC, are error correcting codes
discovered in 1963 by Robert Gallager and they have been forgotten for many years
because of the computational requirements needed to achieve the theoretical per-
formance. LDPC codes can work with different block lengths and high rates which
are very close to the Shannon channel capacity, thus they can provide a good bit
error rate in noisy channels with a high throughput.
Recently LDPC codes have been chosen for the new wireless networks 5G by 3GPP
as error correcting codes for user data since they can satisfy the demands requested
by 5G.
Despite the technology improvement since the 60s, the LDPC decoder still rep-
resents a compute intensive task for 5G today because of the iterative algorithm
used for decoding. Therefore, the LDPC decoder has been chosen to be off-loaded
onto a field programmable gate array (FPGA) device in order to be accelerated.
Nowadays FPGA devices offer flexibility and low power consumption since they
operate at low frequency, although they handle parallel operations to improve the
throughput.

The aim of this work is to accelerate on FPGA the LDPC decoder for 5G wire-
less networks using a software solution provided by the OpenairInterface Software
Alliance consortium (OAI). The code by OAI is explored and optimized inside the
SDAccel development environment by Xilinx, then the corresponding bitstream is
generated and uploaded on a Xilinx FPGA.

The optimization work has begun from a C code for Intel processors supporting
the Advanced Vector eXtension 2 (AVX2) library. Later the AVX2 solution is dis-
carded for two reasons: the first one is that AVX2 instructions are not synthesizable
by definition because they are not written in C language. Secondly pointer casting
is not a synthesizable operation, thus the casts in the code must be converted into
synthesizable code and the time required for this action is not negligible due to the
large number of occurrences.
As an alternative option, a CUDA code for GPU has been chosen to be deployed on
FPGA. The CUDA code has been firstly imported in OpenCL language and then
optimized using the SDAccel environment exploiting the design flow of High Level
Synthesis (HLS).
HLS techniques are adopted to implement the decoder. Firstly DRAM memory,
or off-chip global memory, accesses are fully optimized by means of reading and
writing burst operations. In addition, widening of global memory ports is used.
In order to improve the data transfer during computation, the on-chip memory is
exploited instead of the off-chip one, which would have increased the latency of the
application due to the large access time.

Array reshaping is used to force the on-chip memory to have the same port width
of the off-chip memory, therefore the data transfer between off-chip and on-chip
memory is performed with the maximum memory interface width. Secondly some
loops in the code are merged in order to reduce the filling and draining of the
pipeline stages. Moreover loop unrolling and pipelining are exploited to improve
the throughput of the kernel.

Three different performance results are obtained: the first one is related to the
C code using the AVX2 library running on a 3.20GHz i7-6900K Intel CPU (Intel 14
nm). The second one is the CUDA code tested on a Nvidia Quadro P2000 (TSMC
16 nm) and the latter one is the performance of the FPGA accelerator board which
is a VirtexUltrascale+ (TSMC 16 nm) by Xilinx.
The final results show that the FPGA decoder is slower than the GPU implemen-
tation with a factor of 382x, in fact the GPU solution takes 107.589 µs, whilst
the FPGA at 300MHz spends 41.152 ms. On the other hand the AVX2 solution
takes 257.549 µs to complete. The main reason of the FPGA poor performance is
caused by the code structure that has been discovered being a worst case scenario
for FPGA applications. An optimum code to be run on an FPGA must have inner
loops with fixed loop bounds whilst the outermost ones can be variable. If inner
loops have a constant number of iterations then they can be easily unrolled and
memories can be proportionally partitioned to get the maximum parallelism. The
CUDA code, which has been ported in OpenCL, instead has the opposite scenario.
The innermost loops have variable loop bounds meanwhile the outer ones have fixed
bounds.
The synthesizer used in this work, namely Vivado HLS, is not able to partition
memories that are accessed with a non-constant index inside those loop. The logic
that is implemented to use the memory banks dynamically with the loop bound
almost triplicates the latency of the application. Moreover the size of the on-chip
memory is not suitable to partition them completely because of limited resources
on the device.
The final decoder implementation has completely unrolled inner loops and no mem-
ory partitioning, work items pipelining is applied to reduce the latency due to the
work items loop. Given the source code structure, the OpenCL decoder cannot
reach the performance of the GPU one since the combination of unrolling and
memory partitioning cannot be totally exploited to improve the parallelism of the
FPGA. To have better performance one has to write the code from the beginning
or to hardly change the code structure, otherwise it is not possible to use complete
loop unrolling and memory partitioning together.

Contents

List of Tables iii

List of Figures iv

Listings v

Abbreviations and Acronyms vii

1 Introduction 1

2 Low density parity check codes 6
2.1 Encoding . 8
2.2 Tanner Graph . 10
2.3 Decoding . 12

2.3.1 Message passing algorithm 15
2.3.2 Minimum sum algorithm . 17

3 LDPC in OpenAirInterface 20
3.1 Testbench . 20
3.2 Decoder for Intel processors . 26

3.2.1 OpenairInterface implementation of LDPC decoder for Intel
processors . 26

3.2.2 Check node processing . 30
3.2.3 Bit node processing . 33
3.2.4 From LLR to bit . 35
3.2.5 Buffer transfer . 36

3.3 Synthesizable AVX2 instructions . 37
3.3.1 Structures and vectors dimension reduction 41
3.3.2 AVX2 in C language . 42
3.3.3 Results of the adaption of the AVX2 decoder code 43

3.4 LDPC decoder for GPUs . 44
3.4.1 LDPC in CUDA language 44

i

4 Acceleration of LDPC application on Xilinx FPGA 48
4.1 SDAccel environment . 48
4.2 Porting of CUDA code in OpenCL 51

4.2.1 Software emulation build . 53
4.2.2 Hardware build results . 54

4.3 Memory architecture optimization 58
4.3.1 Local memory implementation 58
4.3.2 Burst accesses and memory ports widening 61
4.3.3 Hardware build results . 63

4.4 Improving parallelism . 67
4.4.1 Loop fusion . 67
4.4.2 Loop unrolling and array partitioning 71
4.4.3 Optimizing critical operations 72
4.4.4 Hardware build results . 74

4.5 Results summary . 78

5 Future Work 81

6 Conclusion 84

Appendices 86

A 87
A.1 Lifting sizes in 5G NR . 87
A.2 Bit nodes and check node groups 87
A.3 Perfomance of AVX2 decoder from OAI documentation 88

B 89
B.1 Gaussian noise generator . 89
B.2 Structures of the decoder for CPUs 90

C 91
C.1 AVX2 instructions in LDPC decoder 91
C.2 AVX2 functions C version . 92

Bibliography 97

ii

List of Tables

3.1 Base graphs table . 21
3.2 Command line arguments for LDPC testbench 23
3.3 Functions of LDPC decoder in the code for Intel processors support-

ing AVX2 . 27
4.1 From CUDA to OpenCL table . 51
4.2 OpenCL porting: HLS report loop section 55
4.3 OpenCL porting: kernels execution time 56
4.4 OpenCL porting: kernels data transfer 56
4.5 Improving data transfer: HLS report loop section 64
4.6 Improving data transfer: resource usage comparison 65
4.7 Improving data transfer: kernels execution time 65
4.8 Improving data transfer: nrLDPC_decoder kernel data transfer . . 65
4.9 Improving data transfer: execution time of nrLDPC_decoder kernel

functions . 67
4.10 Read_BG functions latency with and without loop fusion 70
4.11 nrLDPC_decoder kernel latency comparison for different memory

partitioning . 75
4.12 Work items pipelining: nrLDPC_decoder kernel functions latency . 76
4.13 Work items pipelining: resource usage 77
4.14 Opencl results summary tables . 78
4.15 Resource usage comparison between Xilinx IP and last OpenCL so-

lution . 80
5.1 Future work: CNs operation count 82
5.2 Future work: check node groups rearrangement 82
A.1 Lifting factor ZC table in 5G NR by 3GPP standards 87
A.2 Bit nodes and check nodes organization from OAI documentation . 88
A.3 AVX2 profiling table from OAI documentation 88
C.1 AVX2 instructions adopted for the decoder 92

iii

List of Figures

2.1 Scheme of a noisy channel with encoding and decoding modules . . 6
2.2 Tanner graph of a parity check matrix 11
2.3 Parity check set tree according to Gallager notation 13
2.4 Bit node processing in one iteration 16
2.5 Check node processing in one iteration 16
3.1 Decoder flow in the AVX2 implementation 28
3.2 Testbench diagram for data set generation 38
4.1 OpenCL porting: system estimates report 54
4.2 OpenCL porting: kernels timeline trace 57
4.3 Array reshaping for burst operations 62
4.4 Improving data transfer: system estimates report 63
4.5 Improving data transfer: timeline trace 66
4.6 Modulo operation in HLS scheduler viewer 72
4.7 HLS scheduler viewer focused on a triple multiplication 73
4.8 Work items pipelining: system estimates report. 77
5.1 Simplified structure of the interleaved decoder for two blocks pro-

cessing. 83

iv

Listings

3.1 Function for channel input quantization used in the testbench of OAI 25
3.2 Channel output sample with modulation and noise 25
3.3 LDPC decoder data strcuctures for Intel CPU 26
3.4 Check node processing of CPU decoder for BG2 30
3.5 Parity check for CPU decoder for BG2 32
3.6 LLR estimation for CPU decoder 33
3.7 Bit node processing for CPU decoder 34
3.8 Hard decision on LLRs for CPU decoder 35
3.9 Circular memory copy functions . 36
3.10 Circular LLRs memory copy example 37
3.11 Generation of decoder input . 39
3.12 Actual loop to read and write reference files 39
3.13 Generation of transport block for reference and verification purpose 40
3.14 Generation of decoder output for reference and verification purpose 40
3.15 Look up table data structures in CPU code 41
3.16 Synthesizable version of the look up table structure 42
3.17 New AVX2 data structures . 42
3.18 Syntehsizable _mm256_adds_epi8 function 42
3.19 Custom AVX2 functions verification 43
3.20 Vivado HLS synthesis errors for custom AVX2 in C language 43
3.21 GPU host code body loop . 45
4.1 OpenCL host code loop . 53
4.2 Memory improvements: new host body loop 59
4.3 Memory improvements: burst loop 61
4.4 Read_BG1 function in OpenCL without loop fusion 68
4.5 Read_BG1 function in OpenCL with loop fusion 69
4.6 Bit node loop VNP_loop in OpenCL code. 71
4.7 Vivado HLS complete array partitioning errors for kernel BRAMs . 76
4.8 Optimum nested loops structure for GPUs but worst for FPGAs . . 79
B.1 t_nrLDPC_procBuf data structure for buffers 90
B.2 t_nrLDPC_time_stats data structure for profiling 90
C.1 Synthesizable AVX2 functions . 92

v

Abbreviations and
Acronyms

3GPP Third Generation Partnership Project.

5G Fifth Generation.

AVX2 Advanced Vector Extension 2.

AWS Amazon Web Service.

AXI4 Advanced eXtensible Interface 4.

BER Bit Error Rate.

BG Base Graph.

BN Bit Node.

BRAM Block of Random Access Memory.

CN Check Node.

CRC Cyclic Redundancy Check.

CUDA Compute Unified Device Architecture.

DRAM Dynamic Random Access Memory.

eMBB Enhanced Mobile Broadband.

FPGA Field Programmable Gate Array.

GPU Graphics Processing Unit.

HDL Hardware Description Language.

vi

HLS High Level Synthesis.

i.i.d. Indipendent and Identical Distributed.

II Initiation Interval.

IoT Internet of Things.

LLR Logarithm Likelihood Ratio.

LTE Long Term Evolution.

LUT Look Up Table.

mMTC Massive Machine Type Communication.

NR New Radio.

OAI OpenAirInterface.

OpenCL Open Computing Language.

PCIe Peripheral Component Interconnect Express.

RTL Register Transfer Level.

SISO Soft-In Soft-Out.

SNR Signal to Noise Ratio.

URLLC Ultra Reliable Low Latency Communication.

VN Variable Node.

XOCC Xilinx OpenCL Compiler.

vii

Chapter 1

Introduction

The 5G NR is a new wireless system that will play an important role in our world,
since it is common nowadays to have many electronic devices that exchange infor-
mation, like a group of drones coordinating each other, or dozens of sensors in a
building that are collecting some data and sending them to a computer which elab-
orates the collected samples. This world is the widely known Internet of Things,
where several objects communicate using the internet. An example of an IoT
environment is the industry of today, where devices are strongly involved in the
production chain and each of them communicate using the internet. Given the
high amount of devices which is involved in such activities [1] and considering that
it will increase every year, very high data rates must be achieved. Also security,
effectiveness and low latency are key aspects of the Industry 4.0 [2], which is the
fourth industry revolution where artificial intelligence, automation and similar tech-
nologies will exploit the 5G network.
5G will not be used only for the IoT, or more generally in Massive Machine Type
Communication, but there are two additional use cases: Ultra Reliable Low Latency
Communication and Enhanced Mobile Broadband as reported in [3] [4]. Besides
the mMTC case, the URLLC scenario can be applied for the autonomous vehicles
or remote surgery, whilst the eMBB is the improved user experience that 5G is
supposed to provide as an evolution of the current mobile broadband service. Even
though these are the main use cases for 5G, there are also intermediate possibilities,
for instance something between the mMTC and URLLC can be a possible applica-
tion field for the new radio access technology. So mMTC URLLC and eMBB are
the main vertical use cases for NR.

3GPP is a group of seven telecommunication organizations that defines the stan-
dards for cellular telecommunications technologies, like the 5G ones. To summarize
the requirements for 5G specified by 3GPP in [4], the new wireless network must
be able to ensure low latency, high throughput, reliability and safety. Regarding
the message that one device sends to another, a variable code rate and block length
are required by the 5G. It has been found out by 3GPP that for the user data side

1

Introduction

of the channel coding, low density parity check (LDPC) codes can achieve those
demands as they can work with different length for the message to transmit and
receive. Additionally LDPC codes can support different code rate according to the
performance one wants to achieve. It is easy to imagine a typical scenario in which
a message is passed from a device to a radio station, for example consider a vehicle
or a sensor working in a factory that have to request an emergency service to a
radio station. In these scenarios a lot of noise might be present and it will affect
in an undefined manner the information from the transmitter along the path to
the receiver. If this problem is not taken into account the received message will
be wrong and the result of the operation might lead the two cars to have a crash
or the two sensors to raise the alarm in the factory because of the erroneous mea-
surements. So, from the reliability and safety point of views, LDPC , explored by
Robert Gallager [5], can also handle these common situations by providing a good
error detection and correction of the message with an high throughput.

In the LTE wireless network turbocodes were used for channel coding, since
they are able to provide a reliable communication, especially at low code rates,.
The code rate is defined as the ratio of the message length over the coded message
length. With the new requirements of 20Gb/s for downlink, 10 Gb/s for uplink
and a latency lower than 1 ms, turbocodes have been substituted by LDPC codes.
People [6] [7] [8] have compared the two code families in terms of complexity and
performance as Signal to Noise Ratio (SNR) and Bit Error Rate (BER). The two
codes have a similar iterative decoding technique based on message passing, in other
words the computational units exchange information about the received message in
order to remove the noise from it. Turbo decoder have a serial structure which is a
first possible bottleneck related to the latency constraint, secondly turbo decoder
does not have a stopping criterion. The lack of a stopping condition leads the de-
coder to run useless decoding iteration even if the correct message has been already
found. Moreover, the serial structure increases further the decoding latency unless
specific solutions are taken into account to make the structure parallel. Even in
this case, LTE turbo decoder is not capable to satisfy the demand of 5G channel
coding.
On the other hand, LDPC decoder supports a parallel execution, this feature can
be easily exploited to achieve high performances, thus improving the throughput
during the decoding. For critical situation in which a very long message is received
it would be possible to divide the processing in small chunks, each one working on
one part of the message, in order to speed up the correction phase. Therefore the
throughput is increased as the number of parallel work items increases.
It is demonstrated that LDPC codes are better than LTE turbo codes in terms of
BER and SNR. Some researchers [7] show that for different code rate LDPC codes
guarantee a better BER with respect to turbo codes. In those works it is illus-
trated that for a threshold SNR the LDPC decoder does not increase the amount
of operations required to retrieve the original message. LTE turbo decoder, instead,

2

Introduction

requires more operations when the SNR drops. Latency speaking, LTE turbo codes
alternative would not be suitable for that use case, although for lower code rates
LDPC codes converges towards the LTE turbo codes behavior.
Ranging from all the possible scenarios in which the 5G is used, it is important
to have different codes to support all the services required. LDPC is capable of
encapsulating the codes in an unique structure, which is a matrix, instead of having
a dedicated description for each code. In fact in 5G there are thousands of codes to
be supported and having a dedicated structure for each of them is not always feasi-
ble. Thus the matrix adopted in 5G LDPC codes is flexible in terms of description
of supported codes and in terms of variable code rates.

Although the solutions adopted to implement LDPC decoding exploit basic op-
erations which are simple to deploy on hardware platforms, the structure of the
algorithm for decoding has a complexity which grows as the code rate drops. To be
more precise, the check and correction performed by the decoder during one itera-
tion can slow down the application. The latency drop is because of the explosion
of the matrix itself whose dimension is proportional with the code rate. So for the
latency requirement low code rates can be an issue and LDPC must be properly
optimized, otherwise the grown complexity would affect the single decoding itera-
tion.
The optimization must aim to improve the processing of a single iteration. It is
clear that if a single decoding lap takes less time to complete, the overall latency is
reduced. If one is able to shorten the duration of one iteration, then the designer
can choose between two possible strategies: the first one is to reduce the duration
of one iteration in order to have more time to improve the BER, which means that
an higher maximum number of iterations is achievable. The second one is to spent
less time to correct the message and provide an acceptable result as fast as possible.
The choice depends on the specific scenario. If the constraints ask for low latency,
like the URLLC use case, the designer should maintain the same number of max-
imum iterations but the correction will not be effective. Instead, if the scenario
requires an hundred percent correct message regardless of the latency, the designer
should improve the decoding processing to achieve a greater number of maximum
iterations.

Given that LDPC decoder has a complexity which increases with low code rates
and given that the iterative behavior can be, by definition, a problem for latency
constraints, it must be off-loaded on platforms which exploits parallel execution.
Since LDPC decoder processing can be split in small compute units [9] [10] that
work on small block of the same message concurrently, CPU applications are not
suitable for this task. CPU execution is strictly serial and its strong feature is the
high performance data path which can achieve high frequencies to complete even
a complex operation. Nowadays a new trend in designing is explored, for compute
intensive application like the LDPC decoder, GPUs and FPGAs are used as ac-
celerator boards. FPGAs uses simple logic operations to perform computations,

3

Introduction

additionally small memory elements are present on board. Thus the capability of
connecting simple operations and small memory elements together makes FPGAs
extremely flexible. On the other hand GPUs exploit input vectorization, namely,
a single input is spread over all the available compute units in order to perform
multiple data operations.
Ffrequency is the metrics for CPUs performance, for FPGAs it is the throughput,
in other words it is the amount Bytes elaborated in a unit of time. In fact FPGAs
work with a clock frequency in the MHz range, on the other hand CPUs have clock
of the order of GHz, but exploiting concurrency allows an FPGA application to
reach good performance. Another important feature for which FPGAs are used for
acceleration purposes is also they low power consumption [11], since the lower the
operating frequency the lower is the dissipated power, in fact a MHz application
wastes less power than a GHz one.
FPGAs devices allow also resources sharing, which is useful to save free space but
it is not trivial if the design is done at RTL. HDL languages as VHDL and Ver-
ilog makes harder to use the flexibility of FPGAs, since the design is performed
at low level. On the other hand, programming languages like C or C++ work at
higher level therefore it is easier to implement complex operations and to optimize
the target application within that point of view. Hardware designers are trying a
new approach which consists in describing the application using programming lan-
guages, mainly using C or C++, and other tools convert the code program into an
HDL file for the FPGA. These tools are also known as High Level Synthesis (HLS)
tools. The tool used in this work is Vivado HLS [12]. Using HLS, the designer can
easily optimized the application using pragma directives to tell the synthesizer to
implement a pointed section of the code in a desired manner; hence the optimiza-
tion is performed directly on the source code considering the hardware aspect and
not the software one. Vivado HLS provides also a C validation and C co-simulation
to verify the correctness and the functionality of the source code.
To complete the design flow, HLS is used inside the SDAccel environment [13] by
Xilinx, which exploits a compiler to transform the RTL code into a binary bitstream
which is loaded on the FPGA. The web cloud computing service by Amazon, AWS,
is used to test the LDPC decoder on an FPGA board.
In this thesis the LDPC decoder for 5G NR is optimized using HLS techniques to
reduce the execution time of the application. The starting code is a software solu-
tion for GPUs provided by the Openairinterface consortium and has been imported
from CUDA into OpenCL, which is a C/C++ based framework used to write codes
that are executed across different platforms, like CPU and FPGA in this case. The
SDAccel environment supports OpenCL and it is used to generate the bitstream
for the target FPGA.
To reduce the execution time, global memory accesses have been improved, as
well as on-chip memory of the FPGA has been extremely used to reduce the time

4

Introduction

spent in off-chip memory acceses. To improve the throughput and degree of par-
allelism unrolling techniques, loop fusion and work items pipelining are exploited.
The achieved performance are compared with the initial porting, with the original
CUDA code and with the solution for Intel processors.

The thesis is organized as follows: the second chapter provides the theoretical
knowledge to understand the LDPC processing, the encoder is briefly covered. The
decoder is explored presenting shortly the work done by Gallagher and presenting
some algorithms generally used for decoding.
The third chapter introduces the OAI consortium which provides the open source
codes for the 5G LDPC module. The two available solutions will be analyzed, the
AVX2 for Intel CPUs and the GPU code written in CUDA language.
The fourth chapter shows the design flow used to accelerate the LDPC decoder,
firstly the porting from CUDA to OpenCL source code is analyzed. Then each
optimized solutions are shown step by step, the code is explored in detail. In the
final part of the chapter a comparison between all the solutions is presented.
A future work chapter describes additional theoretical improvements that can be
explored and the last chapter summarizes the results obtained at the end of the
thesis.

5

Chapter 2

Low density parity check
codes

Low density parity check codes where invented by Robert Gallager in 1963 [5] and
were proposed as a good solution for noisy transmission where the message going
through a symmetric binary input channel is affected by noise with an arbitrary
error probability Perr. Gallager in his work presents a decoding strategy based on
a posteriori probability on the input message. The proposed decoding method is
able to minimize the decoding error for the given length of the input message, the
final performance are closed to the channel capacity Ccap. The channel model taken
into account in [5] is a binary symmetric channel like the one depicted in figure 2.1,
which is: time-discrete, memoryless (the current channel output does not depend
on previous outputs or inputs) and it works with digit sequences of zeroes and ones.

Figure 2.1. Scheme of a noisy channel with encoding and decoding modules

The channel capacity is defined as the rate of transmitting the information per
unit of time throughout a channel within an arbitrary error probability that can
be considered small. From Shannon coding theorem [14], there exists a channel
working with an information rate Rt < Ccap in which a m-message is coded within

6

Low density parity check codes

l bits and it is decoded with an error probability Perr that is contained in the
following interval [5]:

e−m·X1(Rt) ≤ Perr < e−m·X2(Rt) (2.1)

where X1 and X2 are functions that describe the behavior of the probability ac-
cording to the channel they are applied to. As Rt grows X1 and X2 become smaller,
on the other hand if Rt gets closer to zero the two functions rise, moreover, if Rt is
high such that it is equal to Ccap, then X1 and X2 are zeroed, therefore the upper
bound of Perr would be 1 and the lower one would be a value greater than 0 that
depends on X1. So, the higher the information rate Rt the higher Perr.
Surely the error probability cannot be null for any codes but it can be reduced or
maintained low enough to have a good outcome. From the coding side Gallager
proposes a redundant solution in which n redundant bits are appended to the in-
formation to protect it from the noise, the coded message is defined as codeword.
The redundant bits are called parity bits since they represent the modulo two sum
(or the exclusive-or boolean operation) of a set of message bits, i.e. if the number
of bits is odd the result is 1 otherwise it is 0. The message bits and the parity bits
involved in this operation form a parity check set.
Regarding the complexity, the encoder has to work with a large number of bits
which is m+n, these bits are involved in the parity check equations each one con-
taining a small set of bits. Despite the operation itself is trivial to implement, the
number of sums is not that low, this can be a problem for applications in which
the amount of resources to use for computation is limited, for instance in an FPGA
application. Moreover the encoder must know which parity and message bits are
involved in which parity check equation, in other words memory is required to hold
these information and the memory cost is not low too.

Concerning the decoding of LDPC codes, Gallager explored an algorithm based
on belief propagation of a bit through the parity check equations in which the bit
is involved. In particular, the a posteriori probability for an input bit conditional
on the received symbol is used to determine the belief for that bit. Using the a
posteriori probability the decoder have more information than the hard decision
solution in which the received symbol is set to 1 or 0 and it is eventually corrected
using only the codeword set.
Instead, with a posteriori probability the decoder uses also the knowledge coming
from the transmitted message with the information coming from its parity check
equations that must be matched in order to be considered valid. The feature of the
LDPC decoder of operating at fast speed on several small parity check equations
providing a low bit error rate (BER) makes it a good candidate for application in
which high speed and high reliability are required, like the 5G wireless system.

In this chapter LDPC codes are covered from a top-level view in order to pro-
vide the information needed to understand the work done in the thesis, for sake
of clarity also the encoder is taken into account although it is not the main target

7

Low density parity check codes

of this work. Furthermore, an important tool, namely the Tanner graph, is used
to support the explanation of the decoder. In the decoder section also a brief ex-
planation of the message passing algorithm based on minimum sum approximation
is discussed and some optimized alternatives to the minimum sum algorithm are
briefly introduced.

2.1 Encoding
As mentioned in the introduction of this chapter, low density parity check codes
have two types of bits: the information or message bits and the parity bits. Both
message and parity bits are involved in the so called parity check equation, this is
one of the reason for the name parity check codes.
Parity check equations are modulo 2 sums of the bits involved, for example:

1. x2 + x3 + x4 + x5 = 0
2. x1 + x3 + x4 + x6 = 0
3. x1 + x2 + x4 + x7 = 0

(2.2)

where x1, x2, x3 and x4 are message bits, x5, x6 and x7 are the parity bits which
must be computed and appended to the message to protect it from the noise. An
erasure is a phenomenon due to the noise which corrupts a transmitted bit such
that it is not possible to determine at the receiver if the bit is 0 or 1. Since one
parity bit protects one information bit of the equation in which it is involved, the
parity bit is able to fix only one erasure. Instead, if in the linear system 2.2 two
erasures occur, for instance on bits x2 and x4, the parity check equations 1. and 3.
are not able to recover the information but the second equation has one unknown
bit, therefore it is able to restore x4. Once x4 has been recovered it is possible to
correct also x2. This situation is easy to handle because message bits are involved
in more parity check equations, otherwise if multiple erasures occur and each bit
participates in only one equation the decoding becomes impossible.
By noting the linear system in 2.2, parity bits are not protected in the same manner
of message bits, in fact in case of multiple erasure affecting also parity bits it is
not possible to fix the corruption. To solve this problem related to the erasures,
parity bits are protected in the same way of the message ones, therefore additional
equations are required to have parity bits participating in more than one equation.
Hence the linear system in 2.2 becomes:

1. x1 + x2 + x5 + x6 = 0
2. x4 + x5 + x6 = 0
3. x2 + x3 + x4 + x6 + x7 = 0
4. x1 + x2 + x5 + x7 = 0

(2.3)

8

Low density parity check codes

In this case, even if two parity bits and a message one are erased it is possible to
recover the information because all the bits are protected equally.
The example reported above is valid for a 4 bits long message, for very long messages
the complexity grows linearly because the number of equations to add increases as
the number of message and parity bits raises. The problematic part of the encoder is
related to the number of equations and to the number of parity bits to be evaluated,
in fact the more the parity and message bits the more the number of equations to
be solved. The growth behavior for this kind of codes is linear, in fact LDPC codes
belongs to the family of binary linear block codes. By definition a linear binary
block code has m message bits, they are encoded in l code bits, thus the code block
is defined as a (l,m) block code with l-m parity bits [15]; for the code in 2.3 the
code is a (7,5) linear block code.

The ensemble of the parity check equations of an LDPC code form the parity
check matrix H, which is a big matrix made of ones and zeroes. To be more precise,
the rows of a parity check matrix are the parity check equations, the columns of
the matrix represent the bit of the codeword. The main feature of these kind of
matrices in LDPC codes is that they are sparse matrices, since the number of ones
is low if compared to the number of entries of H.
In order to derive the matrix H the i-th column of a row is set to 1 if that bit of
the codeword is involved in that parity check equation, if it is not that entry is 0.
For instance, if we refer to the equation 2.3 the corresponding parity check matrix
is:

H =


1 1 0 0 1 1 0
0 0 0 0 1 1 1
0 1 1 1 0 1 1
1 1 0 0 1 0 1

 (2.4)

The matrix reported above is not sparse but it has been presented just as an
example, a sparse parity check matrix is similar to the following one:

H =


0 0 0 0 0 1 0 0 1 0
0 1 0 1 0 1 0 0 0 1
1 0 1 0 1 0 1 0 0 0
0 0 0 1 0 0 0 0 1 0
0 0 0 0 1 0 0 1 0 0

 (2.5)

Hence, the name of low density parity check codes derives from the low number
of ones with respect to the number of entries of the matrix H. It is important to
point out that there is not only one parity check matrix H for all LDPC codes, but
each code has its own matrix based on the use cases of that code. For instance, the
parity check matrix of LDPC codes for digital video broadcast (DVB) is different
with respect to the one used in 5G, whose matrix changes according to the block
length of the message as will be described in the next chapter.
Finally, to encode a message of m bits into a codeword of length l with l-m parity

9

Low density parity check codes

bits p, the following equation must hold:

Hc = 0 (2.6)

where 0 is a null vector and c is the codeword column vector:

c = [m1 m2 ... mm p1 p2 ... pl−m]

Since the ones in H are bits involved in a parity equation, we have that the equations
to be solved are very fast because of the few number of bits, this structure makes
LDPC encoder very fast and easy to implement, also from the decoder point of
view.
Moreover, such structure is perfectly suitable to have a parallel execution rather
than a sequential one. The main drawback of the encoder is the storage requirement
because the entire matrix, which can be very large, must be stored in a memory
(ROM or RAM) and must be read every time for the parity bits evaluation. For
instance H can have a size of 17664 rows and 26112 columns, thus the memory
requirement is high as well as the computational part, even if the operation itself
is a simple one.
Because of the discussed drawback there is a lot of research activity [16] [17] to
reduce the design complexity and resource usage.

2.2 Tanner Graph
Before proceeding with the explanation of the decoding of LDPC codes, a brief
presentation of Tanner graphs is required since it is an important tool that helps
to understand how the data set is organized and how it will be processed during
the decoding.
Tanner graphs are bipartite graphs which are made of two kinds of nodes that are
linked together through edges. It is important to point out that an edge starts
from a node of a type and it goes inside a node of the other type, there are no
edges connecting two nodes of the same family. The term bipartite comes from the
disjointedness of the nodes into two classes of nodes.
For LDPC codes the Tanner graph is derived directly from the parity check matrix
H. First of all the two class of nodes must be defined:
the first one is CN, they represent the parity check equations of H, the second one
is VN or BN class, they are the columns of H, thus they corresponds to the bit of
the codeword.
As described in the previous section, an entry corresponding to 1 in H means that
the i-th bit of the codeword is involved in the j-th parity equation of the matrix.
From the Tanner graph point of view, that entry corresponds to an edge between
the i-th BN and the j-th CN.
Another property of Tanner graphs is the degree of the nodes, it is defined as the

10

Low density parity check codes

number of edges going from/to a given node. For example, the degree of a check
node corresponds to the number of bit nodes it is connected and viceversa for the
bit node degree. The degree property of Tanner graphs distinguishes two kinds of
LDPC codes: the regular and the irregular ones.
All the check nodes of a regular code have a C-degree, whilst the variable nodes
have a V-degree, hence the Tanner graph has a regular structure that can be re-
arranged to be a tree-like one. Such codes have an advantage and a drawback:
the first one is that the processing is trivial to implement since the structure is
regular. In fact, once the processing of the bit nodes connected to a check node
is performed the computation for other BNs is done in the same manner. This
kind of processing can be implemented in software as two nested loops, the inner
one iterates over the check nodes and the outer one loops over the BNs. On the
other hand, regular structure does not provide good performances as well as the
irregular ones, moreover the designer has to choose properly the degree for both
nodes, which might be not as trivial as the implementation of the processing part.
The Tanner graph corresponding to the matrix in 2.4 is the one depicted below:

Figure 2.2. Tanner graph of a parity check matrix

The Tanner graph in figure 2.2 belongs to an irregular code since the check nodes
(the squares) have three, four or five incoming edges and variable nodes 2, 6 and
7 (the circles) have a variable number of edges as well. Node 3 has three edges
and the remain nodes have four edges, hence the code is irregular. The main
advantage of creating irregular codes is that it is simpler than the regular ones since
they are generated according to some error probability distribution. Therefore the
design complexity discussed before is no more valid when designing irregular codes
because it is enough to specify an error distribution according to the channel and
the requirements of the code. On the other hand, the weak point of irregular codes
is the processing organization which is not the same of the regular ones, since the

11

Low density parity check codes

number of edges of the Tanner graph changes from one node to another. In order
to make the processing regular, the designer can organize the nodes with the same
degree into groups, which means partitioning the nodes into small set of nodes, and
then use an additional loop, with respect to those discussed for regular codes, to
move the processing from group to group.

2.3 Decoding

According to Gallager [5] to improve the performance of decoding LDPC codes it
is better to use the a posteriori probability, namely the probability of a bit being
equal to 0 or 1 conditional on the transmitted symbols, in this way the information
that is used by the decoder is more explanatory because it takes into account also
the starting condition of a symbol, which is the received value from the channel.
Moreover, Gallager takes into account also the condition that the corresponding
parity check equation is satisfied given that value of the bit. Instead, if a pre-
defined value is applied on the input symbol then the performance would deteriorate
because only the information related to the known codeword set is used to correct
the input symbol without its history.
In his work, Gallager established the following theorem:

Theorem 1 Let Pd be the probability that the transmitted digit in position d is a
1 conditional on the received digit in position d, and let Pil be the same probability
for the lth digit in the ith parity check set in which d is involved. Let the digits be
statistically independent of each other, and let S be the event that the transmitted
digits satisfy the j parity check constraints in which d is involved. Then:

Pr[xd = 0|{y}, S]
Pr[xd = 1|{y}, S] = 1− Pd

Pd

jÙ
i=1

C
1 +rk−1

l=1 (1− 2Pil)
1−rk−1

l=1 (1− 2Pil)

D
(2.7)

where Pr[xd|{y}, S] is the probability of the digit d being equal to 1 or 0, since
the channel is a binary one, conditional on the received symbol y and on the event
S that each transmitted digit in the same parity check equation j of d satisfy the
equation itself.
The theorem is based on a notation similar to the Tanner graphs but a little bit
different:

12

Low density parity check codes

Figure 2.3. Parity check set tree according to Gallager notation

in this new notation, an edge connecting two nodes is a parity check equation in-
volving the two digits in a specific position of the tree-like structure. The root of
the tree is represented by the digit d whose probability must be computed con-
sidering the bits participating in its equations. Once the probabilities of digit d
and its bits are evaluated, they can be used to compute the probability of other
bits by re-arranging the equation 2.7. Then the theorem can be applied for each
received digit. Once all probabilities have been computed, they can be used in the
equation 2.7 again for a new iteration through the tree starting from the root. As
the number of iteration increases, the probabilities will converge either to 0 or 1.

Basically, the decoder scheme proposed by Gallager is a probability-based de-
coder, in which the information that is used to correct and decode the received
symbol is not the actual value received, known also as hard-input, but it is a belief
on the received symbol, namely soft-in, moreover the output of the decoder is not a
sequence of binary digits (hard-out) but it is a sequence of believes of the decoded
message (soft-out). In fact, to translate the believes of the soft-in soft-out (SISO)
system into actual values a hard decision must be applied on the output believes.

Conventionally, to represent the probability of a bit conditional on its received
value for LDPC decoding algorithms people use the so called log-likelihood ratio
(LLR) of the probabilities. Suppose that after the encoder in figure 2.1 a binary
phase shift keying (BPSK) modulation is applied on each bit of the codeword [15]:
binary value zero is transmitted as a +1 and the binary one is transmitted as -1.
Furthermore the noise that affects the channel is an additive white Gaussian noise
(AWGN) with variance σ2 and a vector of independent and identical distributed
variables (i.i.d.) n= [n1 n2 ... nl] applied to the codeword in the channel, such
that:

yi = xi + ni (2.8)

where xi is the i-th bit of the codeword at the output of the encoder, whilst yi is
the corresponding received bit by the decoder.
Starting from the conditional probability of a bit xi being equal to +1 for a BPSK

13

Low density parity check codes

channel given the received value yi:

Pr(xi = +1|yi) = fr(yi|x = +1) · P (xi = +1)
fr(yi)

(2.9)

where the noise of the AWGN channel has a normal distribution while yi has a
uniform distribution fr(yi). Because of a binary symmetric channel, the a priori
probability of xi P (xi = {−1,+1}) can be considered one half. For simplicity, it is
better to use the ratio of the two probabilities:

Pr(xi = +1|yi)
Pr(xi = −1|yi)

=
fr(yi|xi=+1)·P (xi=+1)

fr(yi)
fr(yi|xi=−1)·P (xi=−1)

fr(yi)

Pr(xi = +1|yi)
Pr(xi = −1|yi)

= fr(yi|xi = +1)
fr(yi|xi = −1)

(2.10)

The final result in equation 2.10 is called likelihood ratio and it is the ratio of the
probability distribution of the received codeword conditional on the transmitted
bit being +1 or -1. Thus, if yi is the transmitted codeword plus noise in a AWGN
channel with mean µ = 0, it will be either +1+N(0,σ2) or -1+N(0,σ2). Hence the
equation 2.10 becomes:

Pr(xi = +1|yi)
Pr(xi = −1|yi)

=
1√
2πσe

−(yi−1)2

2σ2

1√
2πσe

−(yi+1)2
2σ2

= e
2yi
σ2 (2.11)

If the simple likelihood ratio is used, from the implementation point of view it would
be amazingly expensive, because the decoder would have to carry big numbers,
which means floating point data, and for FPGA applications such as accelerator
this representation for the data is too complex. Hence, people use the logarithm of
the likelihood ratio, therefore the quantity in equation 2.11 is transformed into:

log

A
Pr(xi = +1|yi)
Pr(xi = −1|yi)

B
= 2yi
σ2 (2.12)

generally it is reported as:

LLR = log

A
Pr(xi = +1|yi)
Pr(xi = −1|yi)

B
(2.13)

The final formula in 2.13 has the great advantage of having a small dynamic range,
therefore it can be easily implemented using fixed point representation, which is
extremely important if the LDPC decoder must be deployed on an FPGA for ac-
celeration purpose. Finally, in the decoder algorithm that is presented in the next
subsection, uses LLRs for data representation, the two drawbacks of this represen-
tation is that a conversion of channel samples into logarithmic probabilities ratio

14

Low density parity check codes

is required, but the conversion can be simplified using the formula in 2.12. The
second drawback is the precision loss during calculation.
The algorithm adopted in LDPC codes for 5G NR is the message passing algo-
rithm, the computation of the probabilities according to Gallager’s theorem in 2.7
is basically divided into two parts, the first one is the evaluation of the event S for
the parity check equation to be satisfied for a bit xi, the latter is the evaluation of
the LLR of xi. After the new LLR evaluation for each bit of the message x, the
decoder starts a new iteration..

2.3.1 Message passing algorithm
The message passing algorithm is an iterative algorithm which exploits the Tanner
graph representation, it is based on the belief propagation and it is divided in two
steps: the check node processing and the bit node processing. At each step a
message is sent from one family node to the other one, when both steps have been
completed a new iteration can start, the type of the message that is sent back and
forth changes according to the direction of transmission. Once a node receives all
the messages from the nodes connected to it, it will compute the reply to those
messages and it will send back to its nodes the new computed message.
First of all, the message to send to a node is made of the extrinsic information only,
the intrinsic one instead is the information of the destination node, for example,
a bit node A receives the message of check nodes B C and D and it uses them
with the channel sample for the evaluation of the new message; when A sends
the reply to B C and D it will send the information derived from all the check
nodes message except the one of the destination node. The reason of omitting the
information related to the destination node is that we are interested in computing a
belief on the destination node using the believes of other nodes. If also the intrinsic
information is used, the node evaluation would be an overestimation and thus it
would be wrong. The intrinsic information can be seen as the local information of
a node, namely the channel sample for a bit node or the belief of being satisfied for
a check node, whilst the extrinsic one is the global part coming from the rest of the
graph.
Regarding the message passed from one type of node to the other it depends on
the algorithm used for the processing, the notation adopted is the one used in [18]
and the algebraic part will be covered in the next section.
In the following the notation used in this work is shown:

• qi→j is the message passed from the i-th bit node to the j-th check node, it
carries the channel output value of bit node i and the extrinsic information
which is the believes coming from all the check nodes in which the variable
node is involved except the j-th one, which is the node that will receive the
new message. Simply speaking, the message transmitted from the V-node tells
if the bit is 0 or 1 given the channel sample (which is the intrinsic information)

15

Low density parity check codes

and the received messages from its check nodes P (xi = 0,1|yi, ri→J\j), where
J is the ensemble of the check nodes connected to the bit node.

Figure 2.4. Bit node processing in one iteration

Then, the V-node Vi takes all the probabilities of the check nodes it is involved
in and given the channel sample computes the probability of being 1 or 0.
The final probability is sent through the edges to the check nodes but the
destination C-node information is omitted in the message.

• rj→i is the message from the check node j to the bit node i, it holds the
information that the corresponding check equation is satisfied knowing that
the V-node i has a certain belief and considering all the believes coming from
other V-nodes involved in that parity check equation, except the V-node i.

Figure 2.5. Check node processing in one iteration

Thus, in this part of the message passing the j-th check node computes the
probability of itself being equal to zero that is P (checkmet|qI\i→j) based on
the probabilities of its bits.

The stopping criterion can be either a maximum iteration because of latency con-
straints or the matching of all parity check equation, in this case it means that
decoder has separated the noise from the codeword and the original message has
been found.

As reported by Gallager, the decoder has to compute the a posteriori probability
for a digit xi being to 1, or 0, conditional on the received symbol y and the event Si
that the j-th parity check equation is met, which means that the modulo two sum

16

Low density parity check codes

of the parity check set must be 0, in other words the equation 2.6 must hold.
Thus the decoder has to verify that the result of each parity check equation is 0
using the conditional probability: P(xi={0,1}|y), to do so first the decoder derives
the parity check matrix for the adopted LDPC code, then it gets the corresponding
Tanner graph from the matrix H.

At the first iteration, the algorithm can start with the variable node processing
or check node processing according to the designer choice; actually at the end of the
first iteration the result will be the same, because initially the decoder has knowl-
edge only on the received value since there is no history of previous iterations,
hence the processing of the variable nodes relies only on that, thus the message
passed from variable nodes to check nodes is the received value from the channel
of each bit of the codeword. To be consistent with the design choice adopted in
this work, the message passing algorithm starts with the check node processing, so
the check nodes of the parity check matrix are fed with the received value of the
symbol y whose bits are represented as LLRs. Hence, before proceeding with the
first iteration, the hard input bits must be converted into soft input, which means
from real value into LLRs. In case of BSPK modulation and AWGN channe with
σ standard deviation, the initial LLRs are given by

LLR = 2 yi
σ2 =


2
σ2 if yi = +1
− 2
σ2 if yi = −1

(2.14)

Then the initial values of the LLRs are fed into the check nodes, like if they are part
of the qi→j message. After the initialization, the check nodes will compute their
extrinsic information to send to the bit nodes, given the LLRs, after that V-nodes
will compute the probability of being 1 or 0 according to the received value from
C-nodes. If all the parity check equations are satisfied, then the algorithm can
stop, otherwise for the new iteration the LLRs must be updated with the results of
the current iteration and a new message qi→j is sent to the CNs . By noting that
for each iteration the channel sample must be constant because it represents the
starting condition for the codeword.

2.3.2 Minimum sum algorithm
By referring to the decoder scheme of Gallager, people develop different algorithms
to compute the belief. A famous one is the sum product algorithm (SPA) inves-
tigated by Mackay and Neal [19] who provide results that demonstrate that SPA
achieves good performance, although the cost in terms of complexity is high and
from the implementation point of view it is expensive to have such operations in
hardware.
As reported in [18], the message passing algorithm using SPA has the following four
steps:

17

Low density parity check codes

1. Initialization of LLRs and check node processing

2. Each check node j computes the message rj→i using its bit node messages
according to the formula:

rj→i =
 Ù
iÍ∈I\i

sign(qiÍ→j)
 · 2 · tanh−1

 Ù
iÍ∈I\i

tanh

A
|qiÍ→j|

2

B (2.15)

With I being the ensemble of bit nodes that participate to the j-th parity
check equation, on the other hand iÍ is a bit node used to compute the ex-
trinsic information, since the i-th bit node belief must not be included in the
computation because it is the destination node.

3. Each bit node i processes the received message from the check nodes connected
to it to evaluate the new belief:

qi→j = yi +
Ø

jÍ∈J\j
rjÍ→i(xi) (2.16)

with J being the ensemble of the check nodes connected to the bit node i
whilst j is the destination node. yi is the channel sample of the xi bit whose
belief must be computed.

4. The so called decision step occurs after the bit node processing and computes
the final LLRs for that iteration. In this step a similar operation to the one
in equation 2.16 is performed:

qi→j = yi +
Ø
j∈J

rj→i(xi) (2.17)

but in this step all the messages coming from the check nodes are taken into
account because no message must be sent but the LLR for each bit of the
codeword must be evaluate considering all the information from the Tanner
graph. By referring to the equation 2.13, knowing that the LLRs are logarith-
mic functions, if the sign is negative it means that the denominator (thus the
probability of that bit being a 1) is greater than the nominator, then the belief
of xi=1 is stronger than the xi=0. Otherwise, if the LLR is positive, the hard
decision step sets xi equal to 0.

If the maximum number of iterations is reached, then the algorithm can stop,
otherwise from step 4. a new iteration can start by updating the old LLRs with the
new computed ones. In the equation 2.15 there are the two issues related to this
algorithm, although the SPA provides good performance, the complexity introduced
by the tanh and tanh−1 functions is not negligible, especially for FPGA applications
in which floating point units are absent and in which the resources are limited.

18

Low density parity check codes

Thus, people in [20] present an approximated version of sum-product algorithm,
namely the minimum sum (min-sum) algorithm, which has the same operation
structure, the only difference is related to the problematic equation 2.15. The
solution they presented exploits the addition even for the check node processing,
according to the authors the new solution is simple to implement both in software
and hardware.
Thus, the new equation to evaluate the probabilities for the check nodes becomes
2.5:

rj→i =
 Ù
iÍ∈I\i

sign(qiÍ→j)
 · min

iÍ∈I\i
(|qiÍ→j|) (2.18)

Hence, the tanh−1(r tanh()) operation is simplified with a minimum operation
which reduces amazingly the complexity but the approximations leads to a loss
of performance with respect to the SPA algorithm because of loss in computation
accuracy.

In order to reduce the loss of performance, as said in [18], researchers work on
another variant of min-sum which is the scaling min sum, where the equation 2.18
has a scalar quantity in front to compensate the loss. Since the scalar quantity
is not constant but it might change from one iteration to another, or from run
to run of decoding, it is required to recompute every time the scaling factor. In
[18] people present a simplified version of the scaling min sum called simplified
variable scaling min sum, where the scaling factor α is computed iteratively using
an heuristic equation that adapts the quantity with the current iteration. In their
paper, they show that the new algorithm has the best BER vs SNR behavior for
different code rates if it is compared with the SPA, min-sum and scaling min-sum
algorithms.
In the work presented in this thesis, the basic minimum sum algorithm is used but
the simplified variable scaling minimum sum can be considered as a possible target
for the optimization and acceleration of LDPC decoder for the 5G network.

19

Chapter 3

LDPC in OpenAirInterface

In this chapter the open source codes provided by the OpenAirInterface™ Software
Alliance1 (OSA or OAI) are described. OAI is a french non profit consortium which
offers standard compliant solutions for 5G wireless network and more. Regarding
the LDPC codes they provide a solution for Intel processors exploiting the Advanced
Vector Extension2 (AVX2) to improve the performance using single input multiple
data (SIMD) instructions. These instructions uses a vector data type made of 256
bits of integer, or 128 bits in some cases. The size of an integer is of 8 bits, therefore
there are 32 elements in a vector, each of them is aligned in the memory. One part
of the computation involves vectors whose elements are 16 bits wide, thus the total
number of item in the vector is reduced to 16.
Recently also a CUDA (Compute Unified Device Architecture) code has been added
to one branch of the OAI repository2 tested on an nVidia Quadro P2000 GPU.
Firstly a description concerning the CPU code is provided, the OAI code is explored
both for the decoder and for the testbench used to produce the input data set and
to collect the results from the decoder. Also the issue that makes the AVX2 code
not synthesizable is shortly discussed. Finally the CUDA code structure is shown
and then converted into OpenCL (Open Computing Language) to be used in the
SDAccel environment for FPGA deployment, as explored in the next chapter.

3.1 Testbench
One of the two available codes of OAI concerning LDPC is a C based simulation
environment where both encoder and decoder are implemented and tested within a
testbench. The encoder has several solution starting from the simplest one imple-
menting the modulo two sums up to the optimized solution exploiting the AVX2

1https://www.openairinterface.org
2https://gitlab.eurecom.fr/oai/openairinterface5g

20

https://www.openairinterface.org
https://gitlab.eurecom.fr/oai/openairinterface5g

LDPC in OpenAirInterface

library from Intel. On the other hand the decoder has two implementations, one
for Intel processors, the second one is for GPUs. The Intel solution is the one that
has been explored first to be deployed on FPGA.

First of all, LDPC codes in 5G NR belong to the quasi-cyclic class, i.e. the
parity check matrix H is built starting from a smaller matrix, called Base Graph
(BG). According to the base graph entries, which are not binary values but natural
numbers, and to a lifting factor ZC the final matrix is obtained. People in [21] say
that quasi-cyclic LDPC codes are used mainly for their low complexity for both
encoding and decoding, in fact instead of storing the whole parity check matrix,
which might be huge, a smaller one is stored and then it is modified according to
the parameters of the LDPC module.
The 3GPP group states in the technical report [22] that 5G supports two base
graphs, namely the base graph 1 (BG1) and the base graph 2 (BG2) are used for
different payload size and code rate R = message length

codeword length
:

Block size [bits] 3841∼8448 192∼3840
Base graph BG1 46x68 BG2 42x52
Base graph 1 2
Code rate R 1/3 2/3 8/9 1/5 1/3 2/3

Table 3.1. Block sizes and code rates supported by BG1 and BG2 in OAI
implementations

where the block size is the size of the message. Actually, in the coding theory
terminology the message to be send is called transport block. In NR the transport
block is divided into segmentation blocks which can be up to 8448 bits, then the
segment can be encoded as described in chapter two. In the table 3.1, each BG can
support different code rates and different block sizes, BG1 is used mainly for an
high payload since the length of the codeword can be close to the message length
with a code rate of 8/9, this means that most of the codeword is dedicated to
message bits. On the other hand BG2 is used for small block size but with a low
code rate down to 1/5, which means that the codeword is 5 times bigger than the
original message, thus the information is strongly protected and easily recoverable.
Also the number of rows and columns for each base graph is reported.

In order to determine the size of the parity check matrix, the lifting factor ZC ,
or lifting size, must be computed. By referring to the notation used in Fig.2.1:

ZC = min
z∈Z

5
z >

m

Nb

6
(3.1)

where Nb is the amount of bit to encode, z is a lifting factor of a set as reported
in [22], where a discrete ensemble of z is given to reduce the complexity of the
LDPC module. The list of the lifting factors available for 5G NR is reported in the

21

LDPC in OpenAirInterface

appendix A, table A.1.
After ZC is obtained, the parity check matrix size is built, since each entry of the
BG is replaced by a ZCxZC identity matrix, circularly shifted to the right by a
fixed amount. The shifting value is given by HBG[i][j] mod ZC , where HBG[i][j]
is the entry of the base graph. If HBG[i][j] is -1 then it is replaced by a ZC xZC 0
matrix, if HBG[i][j] is 0 then the entry is replaced by a non-shifted identity matrix,
otherwise it is substituted by a circular shifted identity matrix. Therefore, if BG is
MxN, the parity check matrix obtained with a ZC lifting factor has M· ZC xN· ZC
elements.
For instance let us consider the following base graph and a lifting factor ZC =2:

HBG =
A

9 117 6
81 0 −1

B
(3.2)

according to the method presented above, the corresponding parity check matrix
is:

H =


0 1 0 1 1 0
1 0 1 0 0 1
0 1 1 0 0 0
1 0 0 1 0 0

 (3.3)

thus, starting from a 2x3 matrix a new one with 4 rows and 6 columns is derived.
As a reminder, the columns of the matrix H represent the bits of a codeword, the
rows are the parity check equations in which the bits are involved and a 1 in H
tells that the corresponding bit participates to that parity check equation.
Regarding the decoder, once the parity check matrix has been generated from the
corresponding BG, the decoder knows exactly what is the relationship between the
bit nodes and the check nodes of the corresponding Tanner graph.

In 5G NR standards, before transmission, rate matching is applied to improve the
performance and to achieve high rates, these goals are obtained through puncturing
and shortening of the bits.
For instance, at the encoder side after matrix expansion and encoding, the first 2ZC
bits for BG1 are always punctured to increase the code rate, therefore they are not
transmitted but still used by the decoder. Thus the decoder has to recover the value
of those bits because it does not know which value has been sent, in fact the LLR
of punctured bits is always equal to 0 because they are treated as erasures. Further
puncturing is performed for the parity bits according to the LDPC parameters
(ZC , block length, base graph choice, code rate), also in this case their LLR at the
decoder is 0. Generally the parity bits to be punctured are the rightmost ones in
the parity check matrix.
Shortening occurs only for message bits before encoding and it consists in adding
a specific number of zeroes to the message to adapt the length. After shortening
the encoding of the message occurs. Later, the bits corresponding to the additional
zeroes are removed from the codeword and transmission takes place. This technique

22

LDPC in OpenAirInterface

is used to adapt the message length to the desired one, shortened bits are set to
high value at the decoder because they are certainly zeroes.
Puncturing ruins the performance because the decoder assumes that those bits
are erasures and hence they must be recovered during decoding but puncturing
allows to achieve higher code rates during transmission. Shortening improves the
performance because the removed bits are certainly zeroes, therefore their value
can be set to an high value by the decoder and it can be used to decode the remain
part of the information.

To simulate the LDPC module, OAI uses a testbench which receives from the
command line the parameters to set up the simulation environment and to feed
the decoder. In the following table the command line arguments are reported with
their corresponding default value:

Command Description Default value
-q set number of quantization bits 8
-r set code rate nominator 1
-d set code rate denominator 1
-l set block length 8448
-G enable CUDA flag 0
-n set number of simulation run 1
-s set SNR per simulation bit -2
-S set number of segment blocks 1
-t set SNR simulation step 0.1
-i set maximum iteration value 5
-u set SNR per coded bit 0

Table 3.2. Command line arguments for LDPC testbench

According to the command line arguments, the testbench selects the base graph
and ZC to work with. If the block length is greater than 3840 then BG1 is chosen,
otherwise BG2 is selected but the number of message bits in the base graph can
change for different values of the block length, in this case shortening is applied.

The testbench body is a big for loop where the loop variable is the SNR and it
ranges from -2(dB) up to 18 (dB), the iteration step is decided with the -t command
line option. Inside the loop the ldpctest function is called to simulate both encoder
and decoder of the LPDC module according to the function arguments. In the
following the arguments are listed:

1. maximum decoder iterations

2. code rate nominator

3. code rate denominator

23

LDPC in OpenAirInterface

4. SNR of the current loop iteration

5. quantization bits

6. block length

7. number of simulation runs

8. number of block segments (maximum supported is 16)

9. pointer to segmentation block error counter

10. pointer to bit error counter

11. pointer to uncoded bit error counter

12. number of CRC misses (not explored here)

13. pointer to a decoder structure for profiling

14. pointer to an encoder structure for profiling

15. pointer to a decoder structure for iteration statistics

16. flag to run the decoder on a GPU

The ldpctest function returns the number of blocks that have not been decoded
correctly.
Once the ldpctest function is fed, three data are of our interest:

• test_input contains the message that must be coded and decoded. It has 16
rows (the maximum number of segments supported by the testbench) and
block_length/8 columns. It is an unsigned char vector.

• channel_output_fixed is the codeword affected by noise. It is a char 2D vector,
with 16 rows and the same number of columns of the parity check matrix.

• estimated_output is the same type of variable of test_input since it is the
decoder output, i.e. the decoded message.

The message to be transmitted is a vector of block_length
8 unsigned chars and it is

generated randomly using the rand() C function by filling the vector test_input.
Then the message is encoded using one encoder solution proposed by OAI chosen
according to the parameters of a structure (encoder_implemparams_t).
The new code word must be sent through a channel, therefore a simulation model of
the channel is implemented: the code word is firstly modulated using BPSK mod-
ulation on the entire bit sequence except for the first 2ZC bits which are always
punctured. After modulation, the code word is quantized on n bits according to

24

LDPC in OpenAirInterface

the parameter pass to the testbench with the -q option. The function performing
the quantization is the one reported below3:

1 signed char quant i ze (double D, double x , unsigned char B) {
2 double qxd ;
3 short maxlev ;
4 qxd = f l o o r (x / D) ;
5 maxlev = 1 << (B − 1) ;
6 i f (qxd <= −maxlev)
7 qxd = −maxlev ;
8 else i f (qxd >= maxlev)
9 qxd = maxlev − 1 ;
10 return ((char) qxd) ;
11 }
Listing 3.1. Function for channel input quantization used in the testbench of OAI

where B is the number of digits that are used for quantization and it is set to 8 by
default when the function is called. Positive and negative saturation is applied to
the result of the floor division. D is σ = 1

2
√
SNR

, with SNR equals to the current
simulation step, this allows the user to test the decoder in different noise conditions,
namely with an high noise (low SNR) or low noise with respect to the signal power
(high SNR). In this way the quantization changes with the SNR value.
The variable x is the modulated codeword which is contaminated with Gaussian
noise with an uniform distribution, the function used to generate the Gaussian noise
is reported in appendix B. Finally, the generation of the data set for the decoder
using fixed point representation of the channel sample is 4:

channel_output_fixed [j] [i] = (char) quant i ze (sigma /4 . 0/4 . 0 ,
modulated_input [j] [i] + sigma∗ gaussdouble (0 . 0 , 1 . 0) , qb i t s) ;

Listing 3.2. Channel output sample with modulation and noise

After quantization the decoder can be tested, one can choose to run either the
implementation for Intel processors supporting AVX2 or the solution for GPUs,
the choice is taken based on the flag run_cuda set with the -G command line
argument.

3https://gitlab.eurecom.fr/oai/openairinterface5g/-/blob/develop/openair1/
SIMULATION/NR_PHY/nr_unitary_defs.h

4https://gitlab.eurecom.fr/oai/openairinterface5g/-/blob/develop/openair1/PHY/
CODING/TESTBENCH/ldpctest.c

25

https://gitlab.eurecom.fr/oai/openairinterface5g/-/blob/develop/openair1/SIMULATION/NR_PHY/nr_unitary_defs.h
https://gitlab.eurecom.fr/oai/openairinterface5g/-/blob/develop/openair1/SIMULATION/NR_PHY/nr_unitary_defs.h
https://gitlab.eurecom.fr/oai/openairinterface5g/-/blob/develop/openair1/PHY/CODING/TESTBENCH/ldpctest.c
https://gitlab.eurecom.fr/oai/openairinterface5g/-/blob/develop/openair1/PHY/CODING/TESTBENCH/ldpctest.c

LDPC in OpenAirInterface

3.2 Decoder for Intel processors
3.2.1 OpenairInterface implementation of LDPC decoder

for Intel processors
OAI provides a decoder exploiting AVX2 instruction set for Intel processor to im-
prove the throughput. The input LLRs are signed char variables and are byte
aligned, in fact the vector variable channel_output_fixed is allocated using mal-
loc16(x)s and memalign(32,x) functions (specified by a #define directive related to
the __AVX2__ flag) which align the memory blocks on 32 Bytes (256 bits).
Once the channel output sample is generated and represented using fixed point
notation, the decoder must be set up by filling the parameters of the following
structures5:

1 typedef struct nrLDPC_dec_params {
2 uint8_t BG; /∗∗< Base graph ∗/
3 uint16_t Z ; /∗∗< L i f t i n g s i z e ∗/
4 uint8_t R; /∗∗< Decoding ra t e : Format 1 5 , 1 3 , . . . f o r code r a t e s

1/5 , 1 / 3 , . . . ∗/
5 uint8_t numMaxIter ; /∗∗< Maximum number o f i t e r a t i o n s ∗/
6 e_nrLDPC_outMode outMode ; /∗∗< Output format ∗/
7 } t_nrLDPC_dec_params ;
8
9 typedef enum nrLDPC_outMode {
10 nrLDPC_outMode_BIT , /∗∗< 32 b i t s per uint32_t output ∗/
11 nrLDPC_outMode_BITINT8 , /∗∗< 1 b i t per int8_t output ∗/
12 nrLDPC_outMode_LLRINT8 /∗∗< S i n g l e LLR va lue per int8_t output

∗/
13 } e_nrLDPC_outMode ;
Listing 3.3. Data structures containing decoder parameters from AVX2 code of OAI

The t_nrLDPC_dec_params structure contains the base graph number (1 or 2),
the lifting size Z that is chosen at run time when the code rate R is established, the
maximum number of iterations, which is set by the user to stop the decoder, and
the output format. By default, the output format is set to 32 bits per 32 unsigned
output value which corresponds to the nrLDPC_outMode_BIT setting.
The top level function of the decoder receives pointers to input and output buffers
(channel_output_fixed and estimated_output) and it returns the number of iter-
ations reached by the decoder which might be either the maximum one set by the
user or a lower value if the decoder managed to decode successfully the code word.
In the following the list of all the parameters given to the decoder are shown:

5https://gitlab.eurecom.fr/oai/openairinterface5g/-/blob/develop/openair1/PHY/
CODING/nrLDPC_decoder/nrLDPC_types.h

26

https://gitlab.eurecom.fr/oai/openairinterface5g/-/blob/develop/openair1/PHY/CODING/nrLDPC_decoder/nrLDPC_types.h
https://gitlab.eurecom.fr/oai/openairinterface5g/-/blob/develop/openair1/PHY/CODING/nrLDPC_decoder/nrLDPC_types.h

LDPC in OpenAirInterface

1. t_nrLDPC_dec_params* p_decParams

2. int8_t* p_llr

3. int8_t* p_out

4. t_nrLDPC_procBuf* p_procBuf

5. t_nrLDPC_time_stats* p_profiler

where 1. is the pointer to the decoder parameters structure, 2. and 3. are the
pointers to channel_output_fixed and estimated_output vectors, 4. is a pointer
to a structure of int8_t pointers to buffers, finally 5. is a pointer to a structure of
time_stats_t variables for measuring the execution time of each decoder functions.
The code for the structures 4. and 5. is reported in appendix B.

Concerning the internal structure of the decoder, it has several functions as
shown below:

Function Operation
llr2llrProcBuf moves input LLRs into the LLR process buffer
llr2CnProcBuf moves the content of LLR process buffer into CN process buffer

cnProc performs CNs processing to evaluate the rj→i message
cnProcPc performs parity check to stop earlier the decoding

cn2bnProcBuf moves rj→is in the CNs output buffer into BNs input buffer
bnProcPc performs the processing for the computation of the qi→j

bnProc computes the new LLRs using all the qi→j

bn2cnProcBuf moves the content of BNs output buffer into CNs input buffer
llrRes2llrOut moves the content of BNs output buffer into LLRs output buffer
llr2bitPacked hard decision on the final LLRs

Table 3.3. Functions of LDPC decoder in the code for Intel processors
supporting AVX2

by noting the table 3.3, there are dedicated functions to move back and forth the
intermediate results from one process to another one, the reason for this implemen-
tation is related to the AVX2 instructions which work with aligned and properly
ordered data. Thus, from one side this solution spends some time in copying op-
erations, on the other hand the AVX2 library provides fast SIMD instructions to
speed up the computation. The speed up factor is due to the capability of those
instructions to work with 32 elements at once.
As reference, OAI provides the execution time of the decoder functions obtained

27

LDPC in OpenAirInterface

by simulating the decoder module6. The measurements are obtained with OAI
time_meas.h library, the simulation is run on a 2.9GHz processor and the values
are averaged over 10 000 message blocks. From the available measurements the
cn2bnProcBuf function is the slowest regarding the data movement, in fact it takes
38.7µs to copy the data into the bit node buffer, meanwhile the slowest computa-
tional function (cnProc) takes 89.8µs to complete its task. Thus the bottlenecks
of this implementation are certainly the buffer management and the check node
processing. For sake of completeness the duration time of each function shown in
table 3.3 from OAI documentation is reported in appendix A.
Finally, to better understand the organization of the decoder algorithm in OAI for
Intel processors, the following chart can be considered:

Figure 3.1. Decoder flow in the AVX2 implementation

6https://gitlab.eurecom.fr/oai/openairinterface5g/-/blob/develop/openair1/PHY/
CODING/nrLDPC_decoder/doc/nrLDPC/nrLDPC.pdf

28

https://gitlab.eurecom.fr/oai/openairinterface5g/-/blob/develop/openair1/PHY/CODING/nrLDPC_decoder/doc/nrLDPC/nrLDPC.pdf
https://gitlab.eurecom.fr/oai/openairinterface5g/-/blob/develop/openair1/PHY/CODING/nrLDPC_decoder/doc/nrLDPC/nrLDPC.pdf

LDPC in OpenAirInterface

First of all, the LLRs coming from the channel are stored in the llrProcBuf buffer
since they will be used by the bnProcPc and bnProc functions to compute the
new LLR believes. Then the content of llrProcBuf buffer is copied into the cn-
ProcBuf buffer using the llr2cnProcBuf function, this procedure occurs ONLY once
in the first iteration because there is no previous estimation of the believes from
the decoder. Then cnProc function is called to compute the believes of the check
nodes using the data inside the cnProcBuf buffer, the result is stored into the cn-
ProcBufRes buffer.
Later the first part of the bit node processing occurs but the content of cnProcBufRes
must be copied into the bit node buffer bnProcBuf. At this point if the iteration
counter corresponds to the maximum value, then the decoder can stop and the
results are stored into llrRes buffer. Otherwise the results (which are the sum of all
CNs believes and channel samples) are sent to the bnProc function which computes
the extrinsic information to send to the check node processing. In other words the
results of the bnProc function are cleaned by the message coming from the desti-
nation node.
The messages of the BNs must be sent to the check nodes, hence they are copied
from bnProcBufRes to the cnProcBuf buffer using the bn2cnProcBuf function to
rearrange the data. Before proceeding with the cnProc function, the new values
stored in cnProcBuf buffer are used to verify the parity check equations, if only
one parity check fails then this function is aborted and the processing can continue
with the cnProc function, in that case a new iteration starts. Instead, if the cn-
ProcPc functions returns with no parity check failure then the decoder has found
the original message and the decoder loop can stop earlier.
When one of the two stopping conditions, namely the maximum iterations or parity
checks success, are met the final LLRs are stored into llrRes buffer. From llrRes
buffer the LLRs are moved into the output vector and then they are converted back
to binary values using hard decision.

To summarize, the top level function of the decoder performs the following func-
tion calls for the first iteration only:
1a. llr2CnProcBuf_BG1 or llr2CnProcBuf_BG2 depending on the base graph used,
2a. cnProcBuf_BG1 or cnProcBuf_BG2, 3a. cn2bnProcBuf_BG1 or
cn2bnProcBuf_BG2, 4a. bnProcPc, 5a. bnProc, 6a. bn2cnProcBuf_BG1
or bn2cnProcBuf_BG2.
For successive iterations the order is the following:
1b. cnProc_BG1 or cnProc_BG2, 2b. cn2bnProcBuf_BG1 or cn2bnProcBuf_BG2,
3b. bnProcPc, 4b. bnProc, 5b. bn2cnProcBuf_BG1 or bn2cnProcBuf_BG2, 6b.
cnProcPc_BG1 or cnProcPc_BG2.
Then, if the parity check fails the decoder rolls back to the 1b function for a new
iteration, otherwise it exits from the decoding loop and invokes llrRes2llrOut and
llr2bitPacked functions to assert the message on the output buffer. To be noted
that if the base graph changes then the data ordering inside the buffer is different,

29

LDPC in OpenAirInterface

therefore some functions are duplicated to support different arrangement.

3.2.2 Check node processing
As said previously, LDPC codes in 5G are irregular, thus check nodes have different
degrees, or weights, as well as bit nodes have a different amount of connected check
nodes. For this reason both check nodes and bit nodes are organized in groups. A
bit node group is made of bit nodes with the same amount of check nodes connected.
Vice versa for check nodes. The number of groups and nodes per group is reported
in appendix A, tables A.2.
Since the nodes are organized in groups, the software implementation is almost
straightforward. Both cnProc and cnProcPc execute sequentially the processing
group by group. They start from the smallest group and by using an outer loop
they select the i-th bit node to elaborate. An inner loop is used to process each
check node of the group.

By denoting as Ij the ensemble of bit nodes connected to the j-th check node,
the cnProc function performs the computation reported in equation 2.18:

rj→i =
 Ù
iÍ∈Ij\i

sign(qiÍ→j)
 · min

iÍ∈Ij\i
(|qiÍ→j|) (3.4)

this operation is repeated for each bit node of the group of the j-th check node, in
the following a snippet of the code is reported7:

1 const uint16_t lut_idxCnProcG4 [4] [3] = {{240 ,480 ,720} , {0 ,480 ,720} , {0 ,240 ,720} ,
{ 0 , 2 4 0 , 4 8 0 } } ;

2 i f (lut_numCnInCnGroups [1] > 0)
3 {
4 // Number o f g r o u p s o f 32 CNs f o r p a r a l l e l p r o c e s s i n g
5 // C e i l f o r v a l u e s not d i v i s i b l e by 32
6 M = (lut_numCnInCnGroups [1] ∗ Z + 31)>>5;
7 b i t O f f s e t I n G r o u p = (lut_numCnInCnGroups_BG2_R15 [1] ∗NR_LDPC_ZMAX)>>5;
8 // S e t p o i n t e r s t o s t a r t o f group 4
9 p_cnProcBuf = (__m256i ∗) &cnProcBuf [lut_startAddrCnGroups [1]] ;

10 p_cnProcBufRes = (__m256i ∗) &cnProcBufRes [lut_startAddrCnGroups [1]] ;
11 // Loop o v e r e v e r y BN
12 for (j =0; j <4; j++)
13 {
14 // S e t o f r e s u l t s p o i n t e r t o c o r r e c t BN a d d r e s s
15 p_cnProcBufResBit = p_cnProcBufRes + (j ∗ b i t O f f s e t I n G r o u p) ;
16 // Loop o v e r CNs
17 for (i =0; i<M; i ++)
18 {
19 // Abs and s i g n o f 32 CNs (f i r s t BN)
20 ymm0 = p_cnProcBuf [lut_idxCnProcG4 [j] [0] + i] ;
21 sgn = _mm256_sign_epi8 (∗ p_ones , ymm0) ;
22 min = _mm256_abs_epi8 (ymm0) ;
23 // Loop o v e r BNs
24 for (k=1; k<3; k++)
25 {
26 ymm0 = p_cnProcBuf [lut_idxCnProcG4 [j] [k] + i] ;
27 min = _mm256_min_epu8(min , _mm256_abs_epi8 (ymm0)) ;
28 sgn = _mm256_sign_epi8 (sgn , ymm0) ;

7https://gitlab.eurecom.fr/oai/openairinterface5g/-/blob/develop/openair1/PHY/
CODING/nrLDPC_decoder/nrLDPC_cnProc.h

30

https://gitlab.eurecom.fr/oai/openairinterface5g/-/blob/develop/openair1/PHY/CODING/nrLDPC_decoder/nrLDPC_cnProc.h
https://gitlab.eurecom.fr/oai/openairinterface5g/-/blob/develop/openair1/PHY/CODING/nrLDPC_decoder/nrLDPC_cnProc.h

LDPC in OpenAirInterface

29 }
30 min = _mm256_min_epu8(min , ∗p_maxLLR) ;
31 ∗ p_cnProcBufResBit = _mm256_sign_epi8 (min , sgn) ;
32 p_cnProcBufResBit++;
33 }
34 }
35 }

Listing 3.4. Check node processing of CPU decoder for BG2

where the check node group involved is the fourth one which has 5 check nodes with
4 bit nodes connected to each of them for base graph 1, otherwise the CNs amount
is 20 for the base graph 2. A variable containing the address of the bit nodes in
the cnProcBuf buffer is used for each group, its name changes from group to group
and it is of the type lut_idxCnProcG <>, such variable is a 2D vector with (Ij-1)
columns and one row for each check node of the group. Each row contains the
address of all the bit nodes involved except the destination one.

In the code section, there are three loops: the outer loop ranges over the num-
ber of bit nodes of the group because each of them must receive a message from its
CNs. In addition, the loop updates the address for the result buffer using an offset
(bitOffsetInGroup) and the loop variable j.
The second loop iterates over the check nodes of the group which are taken as a
block of 32 nodes in order to exploit the byte alignment of AVX2 instructions. In
appendix C the list of all AVX2 instructions used by this solution are reported.
The inner most loop selects one bit of the I ensemble and performs the sign mul-
tiplication and finds the minimum of the LLRs. Thus the first bit node is always
elaborated outside of this loop in order to initialize the minimum variable (min in
listing 3.4) and the sign (sgn), ymm0 is the variable related to value holded by 32
bit nodes and it is a __m256i vector type.

After the completion of this group, the code moves to another group by updating
the look up table variable and by executing a new code section with same structure
discussed before, when all the groups have been processed the decoder top function
moves the data from the CNs output buffer to the BNs buffer.

The remain decoder function involving check nodes is the parity check function,
namely cnProcPc_BG1 and cnProcPc_BG2, which is an optional procedure en-
abled by the define directive #define NR_LDPC_ENABLE_PARITY_CHECK.
Since the parity check function can abort as soon as a failure is detected it does not
degrade the overall performance. Moreover the cnProcPc function can stop earlier
the decoder once the parity check is met.
The code organization is the same of the cnProc function. The code begins from
the first group of check nodes. First there is the loop iteration over all the CNs of
the group, then there is the inner loop over the bit nodes of the group. Finally,
if for the current group the parity check fails, the functions returns immediately
with the number of parity check fails, otherwise the check continues till the last
group. In the following the code fragment for the fourth group of base graph two
is shown7:

31

LDPC in OpenAirInterface

1 // P r o c e s s group w i t h 4 BNs
2 i f (lut_numCnInCnGroups [1] > 0)
3 { // R ese t r e s u l t s
4 pcResSum = 0 ;
5 M = lut_numCnInCnGroups [1] ∗ Z ;
6 // Remainder modulo 32
7 Mrem = M&31;
8 // Number o f g r o u p s o f 32 CNs f o r p a r a l l e l p r o c e s s i n g
9 // C e i l f o r v a l u e s not d i v i s i b l e by 32

10 M32 = (M + 31)>>5;
11 // S e t p o i n t e r s t o s t a r t o f group 4
12 p_cnProcBuf = (__m256i ∗) &cnProcBuf [lut_startAddrCnGroups [1]] ;
13 p_cnProcBufRes = (__m256i ∗) &cnProcBufRes [lut_startAddrCnGroups [1]] ;
14 // Loop o v e r CNs
15 for (i =0; i <(M32−1) ; i ++)
16 {
17 pcRes = 0 ;
18 // Loop o v e r e v e r y BN
19 // Compute PC f o r 32 CNs a t once
20 for (j =0; j <4; j++)
21 {
22 // BN o f f s e t i s u n i t s o f 20∗384/32 = 240
23 ymm0 = p_cnProcBuf [j ∗240 + i] ;
24 ymm1 = p_cnProcBufRes [j ∗240 + i] ;
25 // Add BN and i n p u t LLR, e x t r a c t t h e s i g n b i t
26 // and add i n GF(2) (xor)
27 pcRes ^= _mm256_movemask_epi8 (_mm256_adds_epi8 (ymm0,ymm1)) ;
28 }
29 // I f no e r r o r pcRes s h o u l d be 0
30 pcResSum |= pcRes ;
31 }
32 // L a s t 32 CNs might not be f u l l v a l i d 32 d e p e n d i n g on Z
33 pcRes = 0 ;
34 // Loop o v e r e v e r y BN
35 // Compute PC f o r 32 CNs a t once
36 for (j =0; j <4; j++)
37 {
38 // BN o f f s e t i s u n i t s o f 20∗384/32 = 240
39 ymm0 = p_cnProcBuf [j ∗240 + i] ;
40 ymm1 = p_cnProcBufRes [j ∗240 + i] ;
41 // Add BN and i n p u t LLR, e x t r a c t t h e s i g n b i t
42 // and add i n GF(2) (xor)
43 pcRes ^= _mm256_movemask_epi8 (_mm256_adds_epi8 (ymm0,ymm1)) ;
44 }
45 // I f no e r r o r pcRes s h o u l d be 0
46 // Only use v a l i d CNs
47 pcResSum |= (pcRes&(0xFFFFFFFF>>(32−Mrem))) ;
48 // I f PC f a i l e d we can s t o p h e r e
49 i f (pcResSum > 0)
50 {
51 return pcResSum ;
52 }
53 }

Listing 3.5. Parity check for CPU decoder for BG2

For the current group the number of check nodes is derived from a look up table
and stored into a local variable. Then the pointers to input and output buffers
for check node processing are updated and widen to take 256 bits using pointer
casting. The outmost loop ranges over 32 check nodes at once. The pcRes variable
is used to store the intermediate parity check of 32 check nodes and it is initialized
to zero when a new iteration starts. If the number of check nodes to elaborate
concurrently is not a multiple of 32, the remainder of modulo 32 division is used to
verify the parity check of last CNs. If the parity check is met, the pcRes variable
is zero (which means that the equation 2.6 holds) and the processing will continue
to next check node group, otherwise the function will return.

32

LDPC in OpenAirInterface

3.2.3 Bit node processing
The code structure is similar to the check node processing but the variable used
during computation is larger to improve the accuracy.
The function _m256_cvtepi8_epi16 is exploited to increase the size of a __m256i
element from 8 bits to 16. After conversion the __m256i vector will contain 16
integer of 16 bits instead of 32, therefore two __m256i variables are used to elab-
orate 32 LLRs in one loop iteration. The variables are ymmRes0 and ymmRes1 in
the code reported below.
As for the check nodes, also bit nodes are divided in groups, each one is made of bit
nodes with the same amount of check nodes connected. The difference with respect
to check node processing is that the number of groups is larger but the number of
bit nodes per group is much smaller, except for the first group which has 42·ZC
(BG1) or 38·ZC (BG2) bith nodes with only one check node.
Regarding the first bit node function, bnProcPc, a piece of its code is shown8:

1 i f (lut_numBnInBnGroups [2] > 0)
2 {
3 // I f e l e m e n t s i n group move t o n e x t a d d r e s s
4 idxBnGroup++;
5 M = (lut_numBnInBnGroups [2] ∗ Z + 31)>>5;
6 // S e t t h e o f f s e t t o each CN w i t h i n a group i n terms o f 16 Byte
7 cnOffsetInGroup = (lut_numBnInBnGroups [2] ∗NR_LDPC_ZMAX)>>4;
8 // S e t p o i n t e r s t o s t a r t o f group 3
9 p_bnProcBuf = (__m128i ∗) &bnProcBuf [lut_startAddrBnGroups [idxBnGroup]] ;

10 p_llrProcBuf = (__m128i ∗) &l l r P r o c B u f [lut_startAddrBnGroupsLlr [idxBnGroup]] ;
11 p_llrRes = (__m256i ∗) &l l r R e s [lut_startAddrBnGroupsLlr [idxBnGroup]] ;
12 // Loop o v e r BNs
13 for (i =0, j =0; i<M; i ++, j +=2)
14 {
15 // F i r s t 16 LLRs o f f i r s t CN
16 ymmRes0 = _mm256_cvtepi8_epi16 (p_bnProcBuf [j]) ;
17 ymmRes1 = _mm256_cvtepi8_epi16 (p_bnProcBuf [j +1]) ;
18 // Loop o v e r CNs
19 for (k=1; k<3; k++)
20 {
21 ymm0 = _mm256_cvtepi8_epi16 (p_bnProcBuf [k∗ cnOffsetInGroup + j]) ;
22 ymmRes0 = _mm256_adds_epi16 (ymmRes0 , ymm0) ;
23
24 ymm1 = _mm256_cvtepi8_epi16 (p_bnProcBuf [k∗ cnOffsetInGroup + j +1]) ;
25 ymmRes1 = _mm256_adds_epi16 (ymmRes1 , ymm1) ;
26 }
27 // Add LLR from r e c e i v e r i n p u t
28 ymm0 = _mm256_cvtepi8_epi16 (p_llrProcBuf [j]) ;
29 ymmRes0 = _mm256_adds_epi16 (ymmRes0 , ymm0) ;
30 ymm1 = _mm256_cvtepi8_epi16 (p_llrProcBuf [j +1]) ;
31 ymmRes1 = _mm256_adds_epi16 (ymmRes1 , ymm1) ;
32 ymm0 = _mm256_packs_epi16 (ymmRes0 , ymmRes1) ;
33 // ymm0 = [ymmRes1 [2 5 5 : 1 2 8] ymmRes0 [2 5 5 : 1 2 8] ymmRes1 [1 2 7 : 0] ymmRes0 [1 2 7 : 0]]
34 // p _ l l r R e s = [ymmRes1 [2 5 5 : 1 2 8] ymmRes1 [1 2 7 : 0] ymmRes0 [2 5 5 : 1 2 8] ymmRes0 [1 2 7 : 0]]
35 ∗ p_llrRes = _mm256_permute4x64_epi64 (ymm0, 0xD8) ;
36 // Next r e s u l t
37 p_llrRes++;
38 }
39 }

Listing 3.6. LLR estimation for CPU decoder

Also for the bit node processing the code is executed sequentially, the computation
starts from the first group and it proceeds forward till the last group of nodes.

8https://gitlab.eurecom.fr/oai/openairinterface5g/-/blob/develop/openair1/PHY/
CODING/nrLDPC_decoder/nrLDPC_bnProc.h

33

https://gitlab.eurecom.fr/oai/openairinterface5g/-/blob/develop/openair1/PHY/CODING/nrLDPC_decoder/nrLDPC_bnProc.h
https://gitlab.eurecom.fr/oai/openairinterface5g/-/blob/develop/openair1/PHY/CODING/nrLDPC_decoder/nrLDPC_bnProc.h

LDPC in OpenAirInterface

Firstly each group has fewer bit nodes, in the range of 1 to 4, hence the single
group processing is much shorter if compared to the CNs one where a group could
have even 18·ZC check nodes.
Concerning the operation performed it is the one reported in equation 2.17. For
each group there is an outer loop which select the 32 bit nodes to work with, whose
total number is read from a look up table. An inner loop accumulates one LLR
(for each bit node) per loop iteration. To be noted that from lines 21 to 25 of the
code in 3.6 two adjacent accesses to the buffer bnProcBuf are performed, this is
due to the widening of the variables. In fact the buffers bnProcBuf and llrProcBuf
are accessed with a __m128i pointer in order to convert 16 LLRs into a __m256i
vector of 16 bits per element.
As said before, for the bit node processing the variables are extended to 16 bits
instead of 8 like in the check node processing. Thus, if 32 LLRs have to be processed
in a single iteration of the innermost loop, two __mm256i variables must be used
with 16x16 bits each (ymm0 and ymm1 in the code). Then, the LLRs coming
from the check nodes are added with saturation (__mm256_adds_epi16 AVX2
function). Once the innermost loop has reached the loop bound, the 512 LLR bits
are converted back to 8 bits and stored in ymm0 (line 32 in listing 3.6).
Finally, the 256 bits are permuted in order to have the correct arrangement of the
bits in the buffer. After the permutation the out most loop counter is updated.
Basically the operation performed in this function is the following:

qi→j = yi +
Ø
j∈Ji

rjÍ→i (3.5)

The code reported above computes the final LLRs of one decoding iteration
since it uses both the channel sample and the information coming from all the
check nodes of a bit node. The second part of the bit node processing is related to
the message passing equation 2.16 which can be written as:

qi→j = yi +
Ø

jÍ∈Ji\j
rjÍ→i (3.6)

where J is the group of check nodes connected to the i-th bit node. Therefore,
in the function bnProc the results obtained in bnProcPc routine are used and the
message qi→j is computed by removing the rj→i part of the destination node j8:

1 i f (lut_numBnInBnGroups [2] > 0)
2 {
3 // I f e l e m e n t s i n group move t o n e x t a d d r e s s
4 idxBnGroup++;
5 // Number o f g r o u p s o f 32 BNs f o r p a r a l l e l p r o c e s s i n g
6 M = (lut_numBnInBnGroups [2] ∗ Z + 31)>>5;
7 // S e t t h e o f f s e t t o each CN w i t h i n a group i n terms o f 32 Byte
8 cnOffsetInGroup = (lut_numBnInBnGroups [2] ∗NR_LDPC_ZMAX)>>5;
9 // S e t p o i n t e r s t o s t a r t o f group 3

10 p_bnProcBuf = (__m256i ∗) &bnProcBuf [lut_startAddrBnGroups [idxBnGroup]] ;
11 p_bnProcBufRes = (__m256i ∗) &bnProcBufRes [lut_startAddrBnGroups [idxBnGroup]] ;
12 // Loop o v e r CNs
13 for (k=0; k<3; k++)

34

LDPC in OpenAirInterface

14 {
15 p_res = &p_bnProcBufRes [k∗ cnOffsetInGroup] ;
16 p_llrRes = (__m256i ∗) &l l r R e s [lut_startAddrBnGroupsLlr [idxBnGroup]] ;
17 // Loop o v e r BNs
18 for (i =0; i<M; i ++)
19 {
20 ∗ p_res = _mm256_subs_epi8 (∗ p_llrRes , p_bnProcBuf [k∗ cnOffsetInGroup + i]) ;
21 p_res++;
22 p_llrRes++;
23 }
24 }
25 }

Listing 3.7. Bit node processing for CPU decoder

In the code listing 3.7 the second part of the bit node processing is reported and
it is related to the group with 3 check nodes per bit node. The order of the
loops is reversed with respect to the other function, in fact the outer loop selects
the destination check node, whilst the inner loop works on 32 bit nodes in one
iteration. It is important to point out that for this function the computation is
carried on 8 bits instead of 16. In each iteration of a loop the subtraction of
the corresponding check node estimation is removed in order to transmit only the
extrinsic information.

3.2.4 From LLR to bit
The conversion from LLRs to bit occurs when the decoder meets one of the two
stopping condition. The function presented here8 is llr2bitPacked because it is
the one chosen when the nrLDPC_outMode structure in listing 3.3 is initialized
with the value nrLPC_outMode_BIT. The function for hard decision receives the
number of LLRs to convert (numLLR) and it uses a loop to convert 32 LLRs per
iteration.

1 const uint8_t c on st Sh uf f le _2 56 _e pi 8 [3 2] __attribute__ ((a l i g n e d (3 2))) =
{ 7 , 6 , 5 , 4 , 3 , 2 , 1 , 0 , 1 5 , 1 4 , 1 3 , 1 2 , 1 1 , 1 0 , 9 , 8 ,

2 7 , 6 , 5 , 4 , 3 , 2 , 1 , 0 , 1 5 , 1 4 , 1 3 , 1 2 , 1 1 , 1 0 , 9 , 8 } ;
3 [. . .]
4 for (i =0; i<M; i ++)
5 {
6 // Move LSB t o MSB on 8 b i t s
7 inPerm = _mm256_shuffle_epi8 (∗ p_llrOut , ∗ p _ s h u f f l e) ;
8 // Hard d e c i s i o n
9 ∗ p_bits++ = _mm256_movemask_epi8 (inPerm) ;

10 p_llrOut++;
11 }
12 i f (Mr > 0)
13 {
14 // Remaining LLRs t h a t do not f i t i n m u l t i p l e s o f 32 b y t e s
15 p_llrOut8 = (int8_t ∗) p_llrOut ;
16 for (i =0; i<Mr ; i ++)
17 {
18 i f (p_llrOut8 [i] < 0)
19 {
20 bitsTmp |= (1<<((7− i) + (1 6 ∗ (i /8)))) ;
21 }
22 e l s e
23 {
24 bitsTmp |= (0<<((7− i) + (1 6 ∗ (i /8)))) ;
25 }
26 }
27 }

Listing 3.8. Hard decision on LLRs for CPU decoder

35

LDPC in OpenAirInterface

The AVX2 instruction involved in the conversion is __mm256_movemask_epi8
which creates a mask according to the inPerm variable whose value is set after
the shuffling of the input LLRs. The shuffling is specified by 3GPP technical
specification in [23] where the leftmost bit is the most significant bit and the right
one is the least significant. The bit string must be read from left to right. If the
number of LLRs is not a multiple of 32 then an additional loop is executed in order
to convert the remaining LLRs. To convert one LLR to its binary value the sign is
considered. If it is negative then the bit is 1 otherwise it is 0.

3.2.5 Buffer transfer
The data transfer from one buffer to another is extremely important for this de-
coder solution because, as it has been explained with the previous listings, the
AVX2 instructions require to have the data aligned. The data transfer takes places
when the data processing changes, namely when moving from check node to bit
node processing (and viceversa) or when moving to the hard decision function. In
these situation the variables to be elaborated are different (LLRs for bit nodes or
estimations for check nodes for example), thus they are ordered in a different man-
ner in the buffers to support AVX2 instructions properly.
To transfer data from buffer to buffer the memcpy function is exploited, moreover
the copying can be circular rather than inverse circular. The code snippet is pre-
sented below9:

1 s t a t i c i n l i n e void ∗nrLDPC_inv_circ_memcpy (int8_t ∗ s t r 1 , const int8_t ∗ s t r 2 , uint16_t Z ,
uint16_t c s h i f t)

2 {
3 uint16_t rem = Z − c s h i f t ;
4 memcpy(s t r 1+c s h i f t , s t r 2 , rem) ;
5 memcpy(s t r 1 , s t r 2+rem , c s h i f t) ;
6
7 return (s t r 1) ;
8 }
9 s t a t i c i n l i n e void ∗nrLDPC_circ_memcpy (int8_t ∗ s t r 1 , const int8_t ∗ s t r 2 , uint16_t Z ,

uint16_t c s h i f t)
10 {
11 uint16_t rem = Z − c s h i f t ;
12 memcpy(s t r 1 , s t r 2+c s h i f t , rem) ;
13 memcpy(s t r 1+rem , s t r 2 , c s h i f t) ;
14
15 return (s t r 1) ;
16 }

Listing 3.9. Circular memory copy functions

In the listing, str1 is the destination buffer, cshift is the circular coefficient, Z in-
stead is the size of data to be copied from buffer str2 and it corresponds to the
lifting size. By calling the circular amount as chunk, it is equal to Z − cshift. The
circular copy consists in replicating first the chunk of str2 and then the remainder.
Instead, the inverse operation copies the remainder and then the circular amount.

9https://gitlab.eurecom.fr/oai/openairinterface5g/-/blob/develop/openair1/PHY/
CODING/nrLDPC_decoder/nrLDPC_mPass.h

36

https://gitlab.eurecom.fr/oai/openairinterface5g/-/blob/develop/openair1/PHY/CODING/nrLDPC_decoder/nrLDPC_mPass.h
https://gitlab.eurecom.fr/oai/openairinterface5g/-/blob/develop/openair1/PHY/CODING/nrLDPC_decoder/nrLDPC_mPass.h

LDPC in OpenAirInterface

The circular coefficient cshift is determined by a set of look up tables and it de-
pends on several parameters: code rate, kind of operation (check node or bit node
processing) and base graph.
As a reference a portion of the llr2CnProcBuf_BG1 function code is reported9 to
illustrate how the data transfer is performed in these function:

1 for (j =0; j <3; j++)
2 {
3 p_cnProcBuf = &cnProcBuf [lut_startAddrCnGroups [0] + j ∗ b i t O f f s e t I n G r o u p] ;
4 idxBn = lut_posBnInCnProcBuf_CNG3 [j] [0] ∗ Z ;
5 nrLDPC_circ_memcpy (p_cnProcBuf , & l l r [idxBn] , Z , lut_circShift_CNG3 [j] [0]) ;
6 }

Listing 3.10. Circular LLRs memory copy example

This code copies the LLRs from the input buffer of the decoder into the input buffer
of the check node processing. A look up table (lut_startAddrCnGroups) is used
to point to the correct location of the check node buffer as already explored for
the processing functions, another table tells the source address of the LLR. To be
more precise, the copy operation must arrange the LLRs in a specific manner for
the group 3 of the base graph 1, the order is specified by the lut_circShift_CNG3
look up table. Since there are three bit nodes per check node in this group, the
loop bound is set to three.
The same operation is performed for other data transfer functions.

3.3 Synthesizable AVX2 instructions
AVX2 instructions are custom code by Intel company which is not written in C
language and therefore it is not synthesizable by definition. To have a synthesizable
code and to feed properly Vivado HLS the AVX2 solution of LDPC decoder code
must be first extracted from the repository in order to work as a stand alone module.

Once the LDPC decoder has been separated from the repository, some #ifdef
directives are added to the original testbench in order to produce the input and
output data sets. The test vectors are extremely important during the design phase
since they allow the designer to detect when even a small change in the code can
affect the functionality of the application.
The testbench with the #ifdef statements appears as depicted in the following
picture:

37

LDPC in OpenAirInterface

Figure 3.2. Diagram of the testbench that generates the reference data set and
the simulation output vector for encoder (golden_file) and decoder (noisy_file,
golden_res and results_new).

There are two additional defines in the testbench: GEN_TEST and FUNC_TEST.
The first one makes the testbench to work in the normal way, so the test_input
vector is initialized using the rand() function and then the codeword and decoded
message are generated as described in the previous section. The feature provided
by this define is that the content of test_input, channel_output_fixed and esti-
mated_output is stored in three different files, which are golden_file, noisy_file
and golden_res respectively. With these files one can test the code changes. An
output file for the encoder is not implemented because the encoder testing was
beyond the scope of this thesis.
On the other hand, the second define directive (FUNC_TEST) sets the testbench
to read the content of the vectors from those files. The read values are used to
run the simulation with known inputs. The content of noisy_file is used to feed
the decoder, the content of golden_file instead is used to evaluate the BER, whilst
golden_res is for comparison purpose. At the end of the simulation the decoded

38

LDPC in OpenAirInterface

message obtained with the files as input is compared with the golden_res content.
To avoid additional lines of code the comparison is performed using the bash com-
mand diff with the -y and -s option. The -y asserts the content of the two files in
two different columns. The -s option prints whether the files are identical or not.
Moreover, the purpose of the golden_file for the test_input vector is to feed the
testbench for C simulation and C co-simulation in Vivado HLS.
When both defines are not set, the testbench runs a simulation without using any
external files to write or to read data. If both are set the priority is given to
GEN_TEST define.
A brief comment regarding the generation of the values of channel_output_fixed is
required otherwise the functional verification might fail.

1 [. . .]
2
3 for (i = 2∗ Zc ; i < (Kb+nrows−no_punctured_columns) ∗ Zc−removed_bit ; i ++) {
4 #i f d e f GEN_TEST
5 channel_output_fixed [j] [i] = (char) q u a n t i z e (sigma / 4 . 0 / 4 . 0 , modulated_input [j] [i] + sigma ∗

gaussdouble (0 . 0 , 1 . 0) , q b i t s) ;
6
7 [. . .]
8 }

Listing 3.11. Generation of decoder input

The code reported above shows how the input for the decoder is generated us-
ing the GEN_TEST directive. For the j-th segment of the transport block, the i
columns are filled with the channel output. It is extremely important to point out
that the first 2·ZC columns are punctured and thus they are considered as erasures
by the decoder, moreover shortening can be applied (removed_bit in the listing).
From the code point of view the first 2·ZC columns are not initialized and thus
they assume a random value. If one simulation is run with the GEN_TEST and
another one is run with the FUNC_TEST directive the decoder output might be
different in the two scenarios. That situation occurs when the decoder does not
recover the message (BER is not zero). If the BER is zero it means that for any
values of the 2·ZC punctured columns the decoder is capable of recovering entirely
the message. Instead, if the BER is not zero, the output is different, even for few
bits, for each combination of the first 2·ZC columns. If this is not considered, the
command diff − s − y golden_res.txt results_new.txt will assert that the two
files are not identical.
To avoid this reasonable but not useful scenario, the code reported above can be
used untouched but an additional loop in the testbench is used to store all the
values, even the ones that are not transmitted:

1 [. . .]
2#i f d e f GEN_TEST
3 for (i =0; i < c o l ∗Zc ; i ++){
4 f p r i n t f (n o i s y _ f i l e , "%hhd " , channel_output_fixed [j] [i]) ;
5 }
6 f p r i n t f (n o i s y _ f i l e , " \n ") ;
7#e l i f FUNC_TEST // i f f u n c t i o n a l v e r i f i c a t i o n read i n p u t from n o i s y _ i n p u t . t x t
8 for (i = 0 ; i < c o l ∗Zc ; i ++) {
9 i f (f s c a n f (n o i s y _ f i l e , "%hhd " , &channel_output_fixed [j] [i]) !=1)

39

LDPC in OpenAirInterface

10 e x i t (1) ;
11 }
12#endif
13
14 [. . .]
15 }

Listing 3.12. Additional loops added to read an write the whole content of
channel_output_fixed vector in order to not have random values for the 2·Zc
punctured elements

The number of elements to be stored in channel_output_fixed corresponds to the
codeword length, hence it is given by ZC ·col. The value of col depends on the
chosen base graph and can be 68 or 52 if the base graph is 1 or 2 respectively. The
output format to read/write from/to noisy_file is hhd, which is the format specifier
for a signed char.
For sake of clarity, also the code sections related to test_input and estimated_output
are reported:

1 for (j =0; j<MAX_NUM_DLSCH_SEGMENTS; j++) {
2 for (i =0; i<block_length / 8 ; i ++) {
3 #i f d e f GEN_TEST
4 t e s t _ i n p u t [j] [i]=(unsigned char) rand () ; // g e n e r a t e i n p u t f i l e
5 f p r i n t f (g o l d e n _ f i l e , "%hhu " , t e s t _ i n p u t [j] [i]) ;
6 #e l i f FUNC_TEST
7 i f (f s c a n f (g o l d e n _ f i l e , "%hhu " , &t e s t _ i n p u t [j] [i]) !=1)
8 e x i t (1) ; // read i n p u t s from f i l e
9 #e l s e

10 t e s t _ i n p u t [j] [i]=(unsigned char) rand () ; // normal o p e r a t i o n
11 #endif
12 }
13 }
14 }

Listing 3.13. Generation of transport block for reference and verification purpose
1 for (j =0; j<n_segments ; j++) {
2 #i f d e f GEN_TEST
3 for (i =0; i<block_length / 8 ; i ++)
4 {
5 f p r i n t f (golden_res , "%hhu " , estimated_output [j] [i]) ;
6 }
7 f p r i n t f (golden_res , " \n ") ;
8 #e l i f FUNC_TEST
9 for (i =0; i<block_length / 8 ; i ++)

10 {
11 f p r i n t f (r e s u l t s _ f i l e , "%hhu " , estimated_output [j] [i]) ;
12 }
13 f p r i n t f (r e s u l t s _ f i l e , " \n ") ;
14 #endif
15 }

Listing 3.14. Generation of decoder output for reference and verification purpose

From the code snippets shown above, hhu is the format specifier for unsigned char,
block_length is the length of a segment of the transport block. Since the vectors
are char type, block_length/8 elements must be randomly generated.

In order to have an automatic design and verification process a make file is
created. The makefile has four rules:
1. clean to remove the executable and all .txt files (if exist) generated from

previous compilation,

2. generate to set the GEN_TEST define and generate the input data set used
for functional verification,

40

LDPC in OpenAirInterface

3. compare to set the FUNC_TEST define and run the functional verification.
This rule also execute the diff -s -y golden_res.txt results_new.txt command
to verify the functionality of the decoder.

4. all to compile only the code, regardless of the defines.

The makefile can also provide the testbench parameters by setting properly the
LDPC variable. For instance, with make generate LDPC="-r 1 -d 3 -t 5" the
testbench runs a simulation with a code rate equal to 1

3 and an increment of the
SNR of 5dB for the simulation step. The testbench is set to generate the data set.

Once the LDPC module has been separated and the testbench environment is
modified the decoder code must be changed in order to be synthesizable. There are
two steps to have the code synthesizable: the first one is to change all structures and
vectors whose dimension is greater than 2 because Vivado HLS does not support
it. The second one is to create a custom version of AVX2 functions written in C
language whose parameters are passed by value.

3.3.1 Structures and vectors dimension reduction
To have a synthesizable C code all vectors whose dimension is greater than 2 must
be reshaped, this is valid also for data structures where the access to the internal
variables is done using a pointer. For example, the nrLDPC_types.h file contains
the declaration of several structures, one of those is the look up table structure
t_nrLDPC_lut5:

1 typedef struct nrLDPC_lut {
2 const uint32_t ∗ startAddrCnGroups ; /∗∗< S t a r t a d d r e s s e s f o r CN g r o u p s i n CN p r o c e s s i n g

b u f f e r ∗/
3 const uint8_t ∗ numCnInCnGroups ; /∗∗< Number o f CNs i n e v e r y CN group ∗/
4 const uint8_t ∗ numBnInBnGroups ; /∗∗< Number o f CNs i n e v e r y BN group ∗/
5 const uint32_t ∗ startAddrBnGroups ; /∗∗< S t a r t a d d r e s s e s f o r BN g r o u p s i n BN p r o c e s s i n g

b u f f e r ∗/
6 const uint16_t ∗ startAddrBnGroupsLlr ; /∗∗< S t a r t a d d r e s s e s f o r BN g r o u p s i n LLR

p r o c e s s i n g b u f f e r ∗/
7 const uint16_t ∗∗ c i r c S h i f t [NR_LDPC_NUM_CN_GROUPS_BG1] ; /∗∗< LUT f o r c i r c u l a r s h i f t

v a l u e s f o r a l l CN g r o u p s and Zs ∗/
8 const uint32_t ∗∗ startAddrBnProcBuf [NR_LDPC_NUM_CN_GROUPS_BG1] ; /∗∗< LUT o f s t a r t

a d d r e s s e s o f CN g r o u p s i n BN proc b u f f e r ∗/
9 const uint8_t ∗∗ bnPosBnProcBuf [NR_LDPC_NUM_CN_GROUPS_BG1] ; /∗∗< LUT o f BN p o s i t i o n s i n

BG f o r CN g r o u p s ∗/
10 const uint16_t ∗ l l r 2 l l r P r o c B u f A d d r ; /∗∗< LUT f o r t r a n s f e r r i n g i n p u t LLRs t o LLR

p r o c e s s i n g b u f f e r ∗/
11 const uint8_t ∗ l l r 2 l l r P r o c B u f B n P o s ; /∗∗< LUT BN p o s i t i o n i n BG ∗/
12 const uint8_t ∗∗ posBnInCnProcBuf [NR_LDPC_NUM_CN_GROUPS_BG1] ; /∗∗< LUT f o r l l r 2 c n P r o c B u f

∗/
13 } t_nrLDPC_lut ;

Listing 3.15. Look up table structures containing the pointers for each
buffer used in the CPU code

The LUT structure contains information regarding the number of check nodes and
bit nodes in a group and other variables used for data transfer and nodes process-
ing. For instance when the code uses the circShift variable three pointers are used,
namely one to access the structure element and two to point to the element of

41

LDPC in OpenAirInterface

interest. These operations are not accepted by HLS, thus the code is not synthe-
sizable. To guarantee the synthesizability of a code like the one reported above the
following change must be applied:

1 s t a t i c const uint32_t ∗ startAddrCnGroups ;
2 s t a t i c const uint8_t ∗ numCnInCnGroups ;
3 s t a t i c const uint8_t ∗ numBnInBnGroups ;
4 s t a t i c const uint32_t ∗ startAddrBnGroups ;
5 s t a t i c const uint16_t ∗ startAddrBnGroupsLlr ;
6 s t a t i c const uint16_t ∗∗ c i r c S h i f t [NR_LDPC_NUM_CN_GROUPS_BG1] ;
7 s t a t i c const uint32_t ∗∗ startAddrBnProcBuf [NR_LDPC_NUM_CN_GROUPS_BG1] ;
8 s t a t i c const uint8_t ∗∗ bnPosBnProcBuf [NR_LDPC_NUM_CN_GROUPS_BG1] ;
9 s t a t i c const uint16_t ∗ l l r 2 l l r P r o c B u f A d d r ;

10 s t a t i c const uint8_t ∗ l l r 2 l l r P r o c B u f B n P o s ;
11 s t a t i c const uint8_t ∗∗ posBnInCnProcBuf [NR_LDPC_NUM_CN_GROUPS_BG1] ;

Listing 3.16. Synthesizable version of the look up table structure

The structure declaration has been removed and each variable is a static one to
ensure that the value of each variable is saved from one file scope to one another.
In this way there are no more triple pointers in the code.

3.3.2 AVX2 in C language
AVX2 instructions are not standard C therefore they must be converted into C
code.
When printing the content of a __m256i vector it is shown as a long int vector
with four entries. Thus to emulate the organization of the elements stored in the
vector data type by Intel a new data type is created:

typedef struct mm256i { long int data [4] __attribute__ ((a l i g n e d (3 2))) ; } m256i ;
typedef struct mm128i { long int data [2] __attribute__ ((a l i g n e d (1 6))) ; } m128i ;

Listing 3.17. New AVX2 data structures

Also a replica of the __m128i vector is created. The attribute __attribute__
((aligned())) is necessary to have the same alignment of the Intel variable.

1 m256i mm256_adds_epi8 (m256i a , m256i b) {
2 int8_t ∗ p_a = (int8_t ∗) a . data ;
3 int8_t ∗ p_b = (int8_t ∗) b . data ;
4 m256i d e s t ={{0 ,0 ,0 ,0}};
5 int8_t ∗ p_dest = (int8_t ∗) d e s t . data ;
6 int16_t adds ; // t o h a n d l e o v e r f l o w
7 int i ;
8 for (i =0; i <32; i ++){
9 adds = ∗p_a + ∗p_b ;

10 i f (adds < −128)
11 ∗ p_dest = −128;
12 e l s e i f (adds > 127)
13 ∗ p_dest = 1 2 7 ;
14 e l s e
15 ∗ p_dest = (int8_t) adds ;
16 p_a++;
17 p_b++;
18 p_dest++;
19 }
20 return d e s t ;
21 }

Listing 3.18. Synthesizable AVX2 function performing addition of
bytes with saturation

42

LDPC in OpenAirInterface

The synthesizable version of AVX2 instruction has been developed both with pa-
rameters passing by value and by reference. Above the function implementing the
addition with saturation is reported. The other functions used by the decoder are
reported in appendix C with parameters passed by value.

To verify the functionality of the new AVX2 functions, a dummy testbench is
used within the intrinsics file. In the testbench for each function there is an if state-
ment that compares the 256 bits of the original function and the C one. Inside the
statements a printf asserts a message saying whether the the new function matches
the one from Intel or not:

mm256_abs_epi8 0 MATCHED mm256_abs_epi8 1 MATCHED mm256_abs_epi8 2 MATCHED mm256_abs_epi8 3
MATCHED

Listing 3.19. Custom AVX2 functions verification

Since __m256i vector is made of 4x64 bits, the check is done by comparing 64 bits
at once. The output message reports also which element of the vector has been
verified.

3.3.3 Results of the adaption of the AVX2 decoder code
Theoretically, the code should be synthesizable and accepted by HLS. Thus a syn-
thesis is run using the version 2018.2 of Vivado HLS but the simulation aborts
providing the following output:

1 ERROR: [SYNCHK 200 −61] . / nrLDPC_bnProc . c : 2 8 0 8 : unsupported memory a c c e s s on v a r i a b l e ’ out ’
which i s (or c o n t a i n s) an array with unknown s i z e at compile time .

2 ERROR: [SYNCHK 200 −41] intrinHLS . c : 9 4 : unsupported p o i n t e r r e i n t e r p r e t a t i o n from type ’
mm256i ’ to type ’ i 8 ∗ ’ on v a r i a b l e ’ a . data ’ .

3 ERROR: [SYNCHK 200 −11] . / nrLDPC_cnProc . c : 4 6 : Argument ’ p_procBuf . cnProcBuf ’ o f f u n c t i o n ’
nrLDPC_decoder ’ (nrLDPC_decoder . c : 4 3) has an u n s y n t h e s i z a b l e type (p o s s i b l e cause (s) :
p o i n t e r to p o i n t e r or g l o b a l p o i n t e r) .

4 ERROR: [SYNCHK 200 −22] nrLDPC_decoder . c : 9 0 : memory copy i s not supported u n l e s s used on bus
i n t e r f a c e p o s s i b l e cause (s) : non−s t a t i c /non−c o n s t a n t l o c a l array with i n i t i a l i z a t i o n) .

5 ERROR: [SYNCHK 200 −43] nrLDPC_decoder . c : 3 8 6 : use or assignment o f a non−s t a t i c p o i n t e r ’
l l r O u t ’ (t h i s p o i n t e r may r e f e r to d i f f e r e n t memory l o c a t i o n s) .

6 ERROR: [SYNCHK 200 −11] . / nrLDPC_cnProc . c : 4 3 8 : V a r i a b l e ’ymm0 ’ has an u n s y n t h e s i z a b l e type ’
m256i ’ (p o s s i b l e cause (s) : s t r u c t u r e v a r i a b l e cannot be decomposed due to (1)
unsupported type c o n v e r s i o n ; (2) memory copy o p e r a t i o n ; (3) f u n c t i o n p o i n t e r used i n
struct ; (4) unsupported p o i n t e r comparison) .

Listing 3.20. Vivado HLS synthesis errors for custom AVX2 in C language

The error reported in the first line is related to the variable out which is passed
as int8_t and then it is used as an int32_t variable inside the llr2bitPacked. This
error can be solved by declaring that variable as int32_t in the testbench and then
passing it without casting.
In line 2 of the listing there is another pointer casting in the new AVX2 functions, in
this case the pointer is an 8 bit integer and the pointed element is a 32 bit integer.
To turn around the problem a mask to work only on a specific byte can do the job.
By exploring further the other errors the work on LDPC for Intel processors sup-
porting the AVX2 library has been dropped. The effort required to solve all the
pointer castings which are widely spread in the code and the adaption of the new
structure m256i is time consuming and prone to errors. A lot of time would be

43

LDPC in OpenAirInterface

spent in trying the new code and then debugging it. Therefore the code described
up to now has been quit and the focus has been moved to the GPU version of
LDPC.

3.4 LDPC decoder for GPUs
Few weeks before quitting the AVX2 code, Professor Terng-Yin Hsu and his group
of the National Chiao Tung University released a CUDA code of LDPC decoder in
a branch of OAI repository. The code has been tested on a Quadro P5000 Nvidia
GPU. This code has been immediately selected as a clever alternative to the AVX2
code since the CUDA language can be easily imported into the OpenCL language,
which is synthesizable. The code is briefly explored in the following to have an idea
of how it is organized.

3.4.1 LDPC in CUDA language
The code can be divided in two parts. The first one is run on an host machine
typically a CPU. The second has four functions that are executed on a GPU. These
functions are called kernels.

The host code is responsible for memory allocation on the GPU and for the data
transfer from the memory which is on the GPU (on-chip memory) and the one on
the host machine. The received parameters from the testbench are the following:

1. t_nrLDPC_dec_params which is the same of the AVX2 decoder.

2. int8_t p_llr which is a pointer to channel_output_fixed input vector.

3. int8_t p_out which points to estimated_output output vector.

4. int block_length.

5. structure for timing statistics.

In t_nrLDPC_dec_params the information related to the BG, the lifting factor
the output mode and the maximum number of iterations are present. From the val-
ues stored in the structure the base graph matrix is chosen. Then the parity check
matrix is derived and it is divided into two small matrices, namely h_compact1
and h_compact2. The reason of using smaller matrices instead of the big parity
check matrix is that there are some entries which are zero and therefore they are
not used in the computation. The read_BG function scan the chosen base graph
and removes those elements from the matrix in order to have only non null entries.
To detect the zero entry, the original base graph is scanned and if the highlighted
entry is -1 it is not stored in the compact matrix. It is important to remember that
a -1 entry in the base graph corresponds to a ZC · ZC null matrix. The drawback of

44

LDPC in OpenAirInterface

this solution is that the base graph must be scanned twice to fill first h_compact1
and h_compact2 later. The value stored in these matrices is not a binary one
but still a natural number, therefore for each iteration of the decoder the modulo
operation to retrieve the circular shift is performed.
The data type of h_compact1 and h_compact2 is a data structure called h_element,
which contains the x and y coordinates in the matrix (char type) and the value
stored in that entry (short type), which is used to derive the circular shift coefficient
for the identity matrix.
The first matrix is used for check node processing, it is a 1 dimension matrix with
46·19 elements, hence it has the size of the largest BG row (46 for BG1). In other
words, each rows has 19 elements, in this way the matrix has been compressed and
the processing would be improved. To know exactly how many columns one row
has, there are constant vectors called h_ele_row_bg_count with 46 or 42 elements
reporting the precise amount.
Similarly, for variable node (or bit node) processing the h_compact2 vector is used
with 68·30 elements. The number of rows for each column is reported in the con-
stant vector h_ele_col_bg_count which has 52 or 68 elements depending on the
base graph.
After the initialization of the matrices for processing, the host part of the code
allocates buffers and copy the content of h_compact1 and h_compact2 in the cor-
responding vectors on the device memory which are dev_h_compact1 and
dev_h_compact2. Also the content of the channel_output_fixed from the test-
bench is copied in two different device buffer: dev_const_llr and dev_llr. The
first one is a constant one since it will store the channel samples and it will not
be modified. The second buffer is a temporary buffer storing the intermediate
LLRs value, it is filled with the channel samples for the first iteration and it is
updated by the bit node processing kernel. The size of dev_llr and dev_const_llr
is ZC ·n_col·sizeof(char).
Regarding the size of dev_h_compact1 and dev_h_compact2 they have the same
size of h_compact1 and h_compact2 respectively.
The dev_dt is the last buffer allocated and has the size of the parity check matrix:
n_row·n_col·ZC ·sizeof(char). It is used for data transfer between check node and
bit node kernels.

Finally, after buffer allocation the data are copied from the CPU side to the
GPU side, then the host body loop is executed10:

1 for (int i i = 0 ; i i < MAX_ITERATION; i i ++){
2 i f (i i == 0) { // f i r s t k e r n e l
3 ldpc_cnp_kernel_1st_iter
4 <<<dimGridKernel1 , dimBlockKernel1>>>
5 (dev_llr , dev_dt , BG, row , col , Zc) ;

10https://gitlab.eurecom.fr/oai/openairinterface5g/-/tree/develop/openair1/PHY/
CODING/nrLDPC_decoder_LYC/nrLDPC_decoder_LYC.cu

45

https://gitlab.eurecom.fr/oai/openairinterface5g/-/tree/develop/openair1/PHY/CODING/nrLDPC_decoder_LYC/nrLDPC_decoder_LYC.cu
https://gitlab.eurecom.fr/oai/openairinterface5g/-/tree/develop/openair1/PHY/CODING/nrLDPC_decoder_LYC/nrLDPC_decoder_LYC.cu

LDPC in OpenAirInterface

6 } e l s e { // second k e r n e l
7 ldpc_cnp_kernel
8 <<<dimGridKernel1 , dimBlockKernel1>>>
9 (dev_llr , dev_dt , BG, row , col , Zc) ;

10 }
11 ldpc_vnp_kernel_normal
12 <<<dimGridKernel2 , dimBlockKernel2>>>
13 (dev_llr , dev_dt , dev_const_llr , BG, row , col , Zc) ;
14 }
15 int pack = (block_length /128) +1;
16 dim3 pack_block (pack , MC, 1) ;
17 pack_decoded_bit<<<pack_block ,128>>>(dev_llr , dev_tmp , col , Zc) ;

Listing 3.21. GPU host body loop which launches the kernels on the device

In the loop body of the host code the four kernels are launched and executed on the
GPU. The for loop reported in listing 3.21 in each iteration launches two kernels,
the first one is one of the two check node kernels and the second one is the bit node
kernel. The choice of the check node kernel depends on the iteration counter since
in the first iteration of the loop the decoder uses the channel samples for the check
node processing. Every time the host code launches a kernel it has to set the ker-
nel arguments and has to specify the dimension of the execution units. In CUDA
environment the kernels are executed by threads. A set of thread forms one block.
Multiple blocks are grouped in a grid. More blocks can be run simultaneously in
order to improve parallelism and speed up the kernel execution. In this case, the
block dimension (i.e. the number of thread per block) is equal to the lifting factor
accepted as parameters of the decoder. The grid size (the number of block per grid)
depends on the kernel, it is equal to the number of base graph rows for the check
node kernels and it corresponds to the number of columns for the bit node kernel.
When the maximum number of iteration is reached, the last kernel is executed, it
is the packing kernel (corresponding to the llr2bitPacked of the AVX2 code). It has
128 threads per block and (block_length/128)+1 blocks. After the conversion to
bits the content of dev_llr buffer is copied from device memory to the host memory
side.

Regarding the kernels part, the check node kernels are named as ldpc_cnp_kernel
and ldpc_cnp_kernel_1st_iter. The bit node one is the ldpc_vnp_normal and
the packing kernel is called pack_decoded_bit.
The ldpc_cnp_kernel_1st_iter does not use the dev_dt buffer for computations
and use the channel samples to evaluate if the check nodes are satisfied given the
current LLRs. The results are stored in dev_dt. The algorithm used is the same
of the AVX2 code but it is splitted in two separated loop: the first one is related
to the believes evaluation whilst in the second one the results are stored in the
global memory buffer dev_dt. The ldpc_cnp_kernel kernel is identical to the one
previously mentioned, except that in the first part the dev_dt buffer is read and
used for computation.
The bit node kernel reads the believes of the check nodes from the dev_dt buffer and
computes the new LLR estimation (intrinsic and extrinsic), the results is written
in dev_llr buffer. In the next iteration ldpc_cnp_kernel will read the new believes
from the bit nodes and will remove the intrinsic information from the value read in

46

LDPC in OpenAirInterface

dev_llr.
The pack_decoded_bit kernel has only one for loop which is iterated 8 times. First
the kernel performs the hard decision on the final LLRs then, after threads synchro-
nization, the loop stores the results in the global memory buffer dev_tmp, whose
size are ZC ·n_col·sizeof(char).

Since the CUDA code is used as reference model and is converted in OpenCL in
order to be used in the SDAccel environment, the code is simulated. The simulation
is run on a P2000 Quadro GPU, and the simulation parameters are such that the
biggest amount of data set is used by the decoder. Namely, the code rate is 1

3 , the
block length is 8448 with a single segment, therefore the base graph used is the
first one and the lifting factor ZC is 384. Then the decoder has to work with 26112
bits. The maximum number of decoder iteration is 5 and the simulation step is
1dB (SNR). The execution time of the decoder to produce the final result when the
SNR is 4dB is equal to 107.589 µs.

47

Chapter 4

Acceleration of LDPC
application on Xilinx FPGA

In order to accelerate LDPC decoder the CUDA code provided by OAI is not
compatible with Vivado HLS and it cannot be directly deployed on an FPGA, thus
the code must be ported from CUDA language to C, C++ or OpenCL C. Since the
porting from CUDA to OpenCL is almost straighforward this is the chosen way.
Once the porting is completed, the critical sections of the decoder code are explored
and optimized, furthermore bad part of the code due to the porting are modified
because they affect performance of the application. In the following sections the
OpenCL code is shown and explained, as well as all the solutions are explored step
by step.

4.1 SDAccel environment
SDAccel is a development environment used for heterogeneous computing, namely
the application is divided in two parts: one runs on a CPU, the other one runs
on a secondary device. The secondary device is responsible of performing high
computing task, in this case it is an FPGA board. CPU and FPGA communicate
using a PCIe bus.
The CPU runs the so called host code. The host code set the parameters to send
to FPGA for execution, it has the input data set to feed the application on FPGA
and it reads the final results for a comparison check. Moreover, the host code has
the task of allocating buffers inside a Double Data Rate DRAM memory which is
place between CPU and the FPGA. Since access to this memory is latency limited,
it is not suggested to use it for intermediate results but just for reading and writing
the input and output data. Four DRAM banks are present with AXI4 memory
interfaces, the data width of the memory can be up to 512 bits. Since the memory
is shared between CPU and FPGA, only one of the two devices can access it while

48

Acceleration of LDPC application on Xilinx FPGA

the other one waits its turn to use the memory. In other words, the host code first
sets the execution environment for the FPGA and load into the DRAM memory
the input data, in this interval the FPGA cannot use the memory. Then the host
launches the kernels on the FPGA and loses the control of the memory, which
belongs to the FPGA until it has completed the computation. Once the FPGA
kernels return, the control is given back to the host code which can read the results
from DRAM.
The FPGA runs the kernel code which is a compute intensive application that must
be accelerated. Speaking of terminology, a kernel is a function which is executed
on the FPGA, more kernels can be executed on a single FPGA (concurrently or
not). To improve parallelism, more copy of the same kernel can be executed in
parallel, the single execution of a kernel is defined as work item, a set of work items
is named work group. The size of a work group is decided by the host code. One
work item is identified by the id of the group (group_id) and by the work item
id in the group (local_id). To identify one work items among all the work items
of the application the global_id must be used. Kernels execution are put inside a
command queue which can execute the kernels in order or out of order, the choice
is taken by the host code. More queues can be used to improve parallelism but
synchronization between them is required if kernels are sharing variables.
The command queues can be controlled by the host code with proper callback
functions, but the synchronization between work items and work groups is not
under the user control and can be done in any order. In OpenCL work items
and work groups are described in a 3 dimensional matrix called NDRange, whose
sizes are the global size (related to work items) and the local size (related to work
groups). This 3D space is used to execute the kernels according to the host code
specifications. Hence, if the number of work items specified for the kernel is greater
than one, the kernel code is inserted into a loop which is related to the NDRange.
This outmost loop will iterate through the work items of a group.

The work item and work group organization is important since it is related to
the memory hierarchy used by OpenCL. Considering the reference guide of the
API calls by the Khronos group [24], in OpenCL four memory address spaces are
available on the FPGA:

1. Global which is shared by all work items and work groups. Read and Write
memory.

2. Local which is shared by the work items of a work group. Read and Write
memory.

3. Private which is accessible by one work items only. Read and Write memory.

4. Constant memory which is shared by all work items and work groups. Read
only memory.

49

Acceleration of LDPC application on Xilinx FPGA

Regarding the off chip memory, the DRAM memory, has both a read write address
space and a read only one. The off chip memory has the biggest storage but has the
largest latency. The global (on-chip) memory is implemented as SRAM in small
blocks (BRAM), also the local memory is implemented as BRAM memory. Local
memory is smaller than on chip memory, thus the access time is much smaller,
the drawback is the accessibility by work groups. The fastest memory of all is the
private one but it is also the one with the smallest storage.

From the design point of view, SDAccel offers three build targets: the software
emulation, the hardware emulation and the system one. The designer use software
emulation to check the syntax of the kernel code and verify the functionality, it is
the fastest build and it is executed on the x86 machine.
Hardware emulation uses the generated RTL by Vivado HLS to verify that the
generated hardware works as expected. This emulation runs on a dedicated envi-
ronment which is very slow and is very time consuming, thus a small data set is
suggested to run and complete the emulation.
Finally the system target generates the bitstream that will be deployed on the
FPGA using the RTL code from Vivado HLS. This target is run directly on the
FPGA and provides the actual results of the generated hardware.
The design flow adopted for this work is the following: software emulation is used
to verify the functionality of the code after code modifications. The hardware em-
ulation of the target shows no data transfer between host and the device because
of corrupted platform file that is used to communicate with the FPGA. Hence this
emulation step is skipped. After software emulation the system target is generated
and the bitstream is deployed on the target device xcvu9p-flgb2104-2-i belonging
to the Xilinx VirtexUltrascale+ family. The FPGA has been provided by AWS,
which is a cloud computing service by Amazon.

Regarding the profiling and optimization part of the design, SDAccel provides
different tools to find the weak points of the application, also suggestions of possible
improvement are given. The tools used in this work are the timeline trace, the HLS
reports, the system estimate report and the profile summary. These reports are not
always generated since the emulation builds do not provide all the information to
SDAccel to generate completely the reports [25].
The timeline trace is a graphical reports showing the data transfer, kernel execution
and OpenCL API calls on a timeline axis. This report is generated automatically
for the hardware emulation. For hardware build the timeline trace generation must
be enabled at compile time. If proper options are given to the compiler the stalls,
execution times and data transfer from kernel to DRAM are shown.
The HLS report is generated by Vivado HLS, it is an estimation of the synthesis,
therefore the results reported are not actual results. It contains information about
the resource usage, latency of the loops in the design, the estimated clock period
and details regarding the logic implementation.
The system estimate report is generated automatically for hardware emulation and

50

Acceleration of LDPC application on Xilinx FPGA

system builds, it provides high level details of the kernels.
The profile summary contains comments and accurate details of the kernels. It is
divided in sections and provides details regarding the API calls, the data transfer
from/to host to/from the FPGA. Also a section with comments regarding possible
improvements is shown. It is generated for all the builds after kernel execution.
For software emulation data transfer is omitted.
In the design flow used in this thesis the software emulation is used for functional-
ity verification whilst the hardware reports are used for optimizations for the next
version of the code.

4.2 Porting of CUDA code in OpenCL
In order to use the GPU code inside the SDAccel environment the code is ported
from CUDA language in OpenCL C.
First of all, the part of the CUDA code related to the data transfer from host to
the device and that allocate buffers is moved into the OpenCL host code. The
porting is performed to be similar as much as possible to the original code. For the
straightforward part of the porting, the following table can be used as reference:

CUDA OpenCL
__global__ __kernel
__device__ __constant__ constant
blockIdx.[x,y,z] get_group_id([0,1,2])
threadIdx.[x,y,z] get_local_id([0,1,2])
__shared__ __local
__synchthreads() barrier(CLK_GLOBAL_MEM_FENCE)
cudaMalloc clCreateBuffer()
cudaMemCpy() clEnqueueReadBuffer/clEnqueueWriteBuffer()
dim3 size_t
kernerl_name <<<>>> clEnqueueNDRangeKernel()
cudaFree clReleaseMemObj()
Block size Local size
Thread number Work items number

Table 4.1. Code conversion table from CUDA language into OpenCL C.
Trivial code mapping is shown.

The four kernels of the CUDA code are kept as kernels also in the OpenCL code.
Namely, the kernels are called ldpc_cnp_kernel_1st_iter, ldpc_cnp_kernel,
ldpc_vnp_kernel_normal and pack_decoded_bit in the code.
Besides the modifications reported in table 4.2, other changes are applied to the

51

Acceleration of LDPC application on Xilinx FPGA

original code. First of all, two global variables h_compact1 and h_compact2 are
removed because they are redundant. In fact Read_BG function generates the
compact base graph and stores it in h_compact1 and h_compact2, which reside in
the host side part of the code, then they are copied in the device memory inside
dev_compact1 and dev_compact2 memories on the device. To remove this memory
copy operation from CPU to FPGA the base graph initialization is moved into
the kernel code where read_BG function fills dev_compact1 and dev_compact2
vectors. These two vectors are stored in the DRAM memory.
The warmup() function used to warm the GPU for time measurements is removed.

The OpenCL host code part is organized in three sections: the first one is the
environment initialization, then there is the kernel execution and finally the memory
read and comparison of the results.
One function, namely fpga_init, allocates the OpenCL objects. One command
queue is used to execute sequentially and in order the 4 kernels. The fpga_init
function creates also the context in which the FPGA platform, the command queue,
the binary bit stream are inserted. In this part of the host code the platform
connected to CPU via PCIe bus is identified.
Four buffer objects are allocated in off-chip memory:

1. dev_llr is for intermediate LLRs value. It is write only for the host and
read/write for the kernel. The size is equal to 68·384·sizeof(char)

2. dev_const_llr contains the channel samples. This buffer is read only for the
kernel and write only for the host. The size is equal to 68·384·sizeof(char)

3. dev_tmp is for the final results. This buffer is read only for the host and read
write for the kernel. The size is equal to 68·384·sizeof(unsigned char)

4. dev_dt is used for intermediate results exchanged between kernels. Read and
write buffer. Its size corresponds to the biggest supported parity check matrix
size which is 46·68·384·sizeof(char).

dev_llr and dev_const_llr are filled initially with the input data generated by
OAI testbench. The input vector is generated using the GEN_TEST define in the
testbench, whilst the output one is generated from the AVX2 decoder. Since the
testbench generates an input vector for different SNR values, only the vectors cor-
responding to the last value of SNR is taken as reference. For all the solutions the
parameters used to run the decoder are Zc=384, block_length=8448, BG1 with 5
iterations.

The host body loop of CUDA code reported in listing 3.21 is moved in the host
part of OpenCL code. In the host loop each kernel is launched in the following way:

52

Acceleration of LDPC application on Xilinx FPGA

1 c l S e t K e r n e l A r g (kernel_name , 0 , s i z e o f (v a r i a b l e _ t y p e) , arg [0])) ;
2 c l S e t K e r n e l A r g (kernel_name , 0 , s i z e o f (v a r i a b l e _ t y p e) , arg [1])) ;
3
4 [. . .]
5
6 clEnqueueNDRangeKernel (commands , kernel_name , NDRange_dimension , NULL, number_of_workitems ,

number_of_groups , 0 , NULL, 0)) ;
7 c l F i n i s h (commands)

Listing 4.1. OpenCL host body loop for kernels execution using
clEnqueueNDRangeKernel.

where the function clSetKernelArg sends the parameters for the kernel execution,
the parameters are passed by position as they are declared in the kernel code.
The clEnqueueNDRangeKernel is used to put the kernel in the command queue
commands. The NDrange dimension is specified in order to tell the scheduler how
the work items are organized in the NDRange matrix, in fact the number of work
groups and work items allocated for each kernel are specified. For the check node
kernels there are Zc work items in each group, the group number is equal to the
number of row of the chosen base graph. Similarly for bit node processing the
number of work group is equal to the number of columns of the base graph, whilst
there are Zc work items per group. The pack_decoded_bit kernel instead has 128
work items for each group and (block_length-1)/128 groups.
clFinish(commands) is an OpenCL API which stops all commands previously is-
sued until they have completed. It is a strong way to synchronize the execution of
the FPGA and the host code.

Once all the four kernels return then the CPU can read from the DRAM the re-
sults produced during the computation. If the generated results match completely
the output test vector obtained by OAI testbench then the functionality is met
and the generated RTL works as expected. The results are read using the clEn-
queueWriteBuffer.
After the comparison all the memory object of OpenCL must be release to allow
the SDAccel tools to collect all the profiling information. The object to be released
are the kernels, the binary program, the buffers, the device and context objects.

4.2.1 Software emulation build
In order to verify that the porting is correct, golden input and output vectors are
fed to the host code. Those vectors are obtained by a simulation of AVX2 decoder
inside the OAI repository environment. The testing parameters are: lifting factor
equals 384, base graph 1, block length equals 8448 bits, code rate one third and
an SNR of 4 dB, which is the last simulated SNR value of the AVX2 decoder that
provides a 0 BER. This testing condition shows what is the slowest execution time
of the decoder when the biggest amount of bits and the biggest base graph are used,
therefore also the resource utilization is maximized in this case.
The comparison of the golden results with the ones produced during the software
emulation was completely successful.

53

Acceleration of LDPC application on Xilinx FPGA

Before proceeding with the hardware build, the execution time of the software
emulation is measured in order to have a software evaluation of the application.
The software emulation is run on a 3.2GHz Intel processor, the measured execution
time of the whole decoder is: 267.653ms.

4.2.2 Hardware build results
After the bit stream building process, the report estimates is generated and it can
be analyzed to see which kernel is slowing down the application. In the following
figure the sections regarding timing and latency information are depicted:

Figure 4.1. OpenCL porting: system estimates for hardware build is
shown. Frequency and latency values are reported for all the kernels and
the functions used by the kernels

By referring to the figure above, the function read_BG is duplicated and one ded-
icated function for the two base graphs is implemented. The reason of the du-
plication is due to HLS compatibility. In the CUDA version read_BG function
initializes the compact matrices according to the base graph. The initialization is
implemented using an if statement to choose the base graph within a switch state-
ment to select the proper matrix according to ZC . This is not supported by HLS,
hence the new code has two different functions (read_BG1 and read_BG2) which
are called properly by ldpc_cnp_kernel_1st_iter kernel and a switch statement
selects the corresponding matrix of the base graph according to the lifting factor.
The body loop in the host code launches ldpc_cnp_kernel_1st_iter as the first
kernel as shown in listing 3.21, then that kernel has to initialize the decoder at the
cost of several clock cycles.
Since ldpc_cnp_kernel_1st_iter kernel has 384 workitems per workgroup, which
are 46, it means that read_BG1 or read_BG2 is executed once for each work item.

54

Acceleration of LDPC application on Xilinx FPGA

At each call one of those functions repeats the same writing operation into the off-
chip global memory, since dev_compact1 and dev_compact2 reside there. Thus
the kernel is expected to lose lot of time doing the same operation and accessing
to the off-chip memory. The performance loss is due to the bad porting, since in
CUDA the memory accesses are done in parallel, therefore there are no redundant
operations in that case.
On the other hand the pack_decoded_bit kernel is the fastest kernel with the low-
est latency and the fastest frequency.
By referring to the HLS reports, in the loop section one can detect which are the
most problematic loops:

Kernel Loop name Latency Iteration Latency
ldpc_cnp_kernel_1st_iter CNP1st_loop1 519∼3287 173
ldpc_cnp_kernel_1st_iter CNP1st_loop2 459∼2907 153
ldpc_vnp_kernel_normal VNP_loop 203∼4669 203
ldpc_cnp_kernel CNP_loop1 510∼3230 170
ldpc_cnp_kernel CNP_loop2 444∼2812 148
pack_decoded_bit PACKDECODED_loop 9344 73

Table 4.2. OpenCL porting: kernels loop section with lantecy information.

In table 4.2.2 the critical loops are reported, none of them is pipelined yet. The
table 4.2.2 shows that the iteration latency (in terms of clock cycles) and the worst
case latency are bigger for the variable node kernel with respect to the check node
ones.
Considering the memories used in the loops in table 4.2.2, check node kernels uses
dev_h_compact1, dev_llr, dev_dt. On the other hand variable node kernel uses
dev_h_compact2, dev_llr , dev_const_llr and dev_dt. Therefore, the more the
memory objects used in the kernels, the more are the DRAM accesses, thus the
latency of the loops increases. The pack_decoded_bit loop has the highest latency
because of a read and accumulate operation of DRAM which is performed inside
the loop.

After the preliminary analysis of HLS and system estimate report, the applica-
tion is run on the FPGA provided within the AWS cloud. Once the application
completes two reports are generated, namely the timeline trace and the profile sum-
mary of the application. The execution time of the kernels is taken from the profile
summary after the run on the AWS platform:

55

Acceleration of LDPC application on Xilinx FPGA

Kernel Number
of calls

Total
Time (ms)

Average
Time (ms)

Maximum
Time (ms)

ldpc_cnp_kernel_1st_iter 1 36461.900 36461.900 36461.900
ldpc_cnp_kernel 4 1131.940 282.986 282.997
ldpc_vnp_kernel_normal 5 955.080 191.016 191.027
pack_decoded_bit 1 5.935 5.935 5.935

Table 4.3. OpenCL porting: kernels execution time on AWS platform
from profile summary report.

As expected from the HLS and system estimates reports, ldpc_cnp_kernel_1st_iter
is extremely slow if compared to other kernels, it takes approximately 36 seconds
to complete because of the read_BG functions. Nevertheless ldpc_cnp_kernel is
slower but comparable with respect to ldpc_vnp_kernel_normal kernel.
Both of them are more or less one order of magnitude smaller with respect to
ldpc_cnp_kernel_1st_iter kernel. pack_decoded_bit kernel is the fastest one even
if the loop latency is the highest one. The reason is due to the number of DRAM
buffers used in the code, which is only two, also the global size of work items is
smaller with respect to the other kernels. The total execution time of the decoder
written in OpenCL is 38.554895 seconds, which is very high.
In order to determine the bottlenecks of the application one can take a look to the
data transfer section between kernels and off-chip memory of the profile summary,
whose relevant sections are shown in the following table:

Kernels Op Number Of
Transfers

Transfer
Rate

(MB/s)

Avg
Size
(KB)

Avg
Latency
(ns)

pack_decoded_bit R 8448 6.321 0.004 324.529
pack_decoded_bit W 1056 0.198 0.001 226.303
ldpc_vnp_kernel_normal R 1950720 8.204 0.004 318.812
ldpc_vnp_kernel_normal W 130560 0.137 0.001 217.169
ldpc_cnp_kernel R 2426880 8.592 0.004 331.217
ldpc_cnp_kernel W 485376 0.430 0.001 221.173
ldpc_cnp_kernel_1st_iter R 485376 1.718 0.004 329.030
ldpc_cnp_kernel_1st_iter W 125412096 221.875 0.002 104.064

Table 4.4. OpenCL porting: data transfer between kernels and off-chip memory.
The results are generated after the execution on AWS platform.

Since ldpc_cnp_kernel_1st_iter kernel is initializing dev_h_compact1 and
dev_h_compact2 matrices a lot of writing operations are needed as shown in the
table above. In fact the number of transfers for the writing operations is several

56

Acceleration of LDPC application on Xilinx FPGA

order of magnitude bigger with respect to the other kernels. It is important to
remember that off-chip memory is used also for storing and reading intermediate
results, hence an high number of transfer is expected also for the kernels which are
executed more than once, namely ldpc_vnp_kernel_normal and ldpc_cnp_kernel
kernels. From the table it is evident that the DRAM maximum width is not fully
exploited, in fact the average data size is always smaller than 1KB. Another im-
portant parameter is the transfer efficiency. Given that four banks can be used,
when they are completely used the transfer efficiency increases of 25% per bank,
instead the current transfer efficiency is less than 0.1% for all the kernels. The
transfer efficiency is defined as the ratio of the average Bytes per transfer over the
minimum of 4KB and memory bit width·256

8 . The transfer rate is defined as the total
data transfer of a kernel over the compute unit total time.
Considering the amount of off-chip memory transfers, ldpc_cnp_kernel_1st_iter
has the highest transfer rate, but it is also the kernel that spends lot of time in
memory accesses. The average latency column shows the time required to access
the off-chip memory, so given the number of transfer one can approximate the total
time spent in memory access by multiplying the number of transfer for the aver-
age time. For the worst kernel it is 13.05 seconds for writing and 0.16 seconds for
reading.

The timeline trace provides a graphical view of the kernels situation. One can
easily notice which is the performance critical kernel and it is possible to verify if
concurrency between memory operations and execution is possible. In the following
a snapshot of the timeline generated after AWS execution is shown:

Figure 4.2. OpenCL porting: timeline trace of the decoder after execution on
AWS using coarse profiling option.

By referring to the figure Fig.4.2, in the kernel enqueues row the execution of the
four kernels is depicted. The blue rectangle is ldpc_cnp_kernel_1st_iter kernel,
the purple one is the call of ldpc_vnp_kernel kernel, the teal one is ldpc_cnp_kernel
kernel. The pack_decoded_bit kernel is not visible with the shown resolution.
Only one bank is used and for each port reading and writing operations are shown.

57

Acceleration of LDPC application on Xilinx FPGA

It can be verified that during the kernels execution most of the time is spent to per-
form DRAM accesses. Regarding ldpc_cnp_kernel and ldpc_vnp_kernel kernels
they have comparable duration times as discussed before, moreover also for them
memory operations consumes most of the execution time.

In order to have a reference metrics, a simulation with the same input data set
and parameters is run on a 3.2GHz Intel i7-6900K processor with the AVX2 solu-
tion. The execution time measured for the AVX2 implementation is 257.549 µs,
which is very low. If one compares the execution of the AVX2 with the OpenCL
one the acceleration factor of AVX2 (execution of OpenCL over AVX2) is 149699x,
whilst the acceleration factor for the GPU is 358353x. Hence, the OpenCL solu-
tion for the moment is very far from the other two implementations in terms of
performance, on the other hand the acceleration of the GPU code with respect to
the AVX2 one is 2.39x.

To summarize the results obtained so far, the four kernels do not have a uni-
form time occupation, in particular one of the kernels is taking large time because
of the initialization of the matrices used for intermediate computation. Addition-
ally, most of the decoder time is spent in DRAM interactions. One of the kernels
(pack_decoded_bit) can be ignored during the optimization flow since it achieves
the best performance (if compared with other kernels).
The first optimization step is to have a uniform time occupation for the three crit-
ical kernels, especially the first one. Therefore DRAM accesses must be reduced
and repeated operations must be eliminated in order to avoid limitations due to
initialization tasks.

4.3 Memory architecture optimization
The figure Fig.4.2 shows that all the kernels exchange lot of data with the off-
chip global memory, therefore the first goal is to reduce the number of accesses to
DRAM, in order to not pay every time the latency of the DRAM controller. The
reference card of OpenCL [24] states that an on-chip global memory is available.
To reduce the off-chip memory accesses on-chip global memory is chosen as storage
block for intermediate results. Unfortunately the Xilinx OpenCL Compiler (XOCC)
compiler used by SDAccel to generate the bitstream reports that the access to
non-pipe global variable is not supported. Therefore the on-chip global memory
is not used to store intermediate results. As alternative the local memory is used.
Moreover, DRAM ports widening and bursts accesses are implemented to maximize
the transfer efficiency for the critical kernels.

4.3.1 Local memory implementation
Local memory is smaller than the on-chip global memory as well as the access time.
The code changes are not many, since the processing of the decoder is such that

58

Acceleration of LDPC application on Xilinx FPGA

work groups do not interfere between them. It is important to remember the work
item and work group organization: check node kernels have 46 work groups with
384 work items each. As described in chapter 3, LDPC codes in OAI are cyclic,
hence each entry of the base graph is replaced by a shifted identity matrix which
is ZCxZC . The number of rows of the base graph is multiplied by ZC , thus in the
OpenCL implementation each work group has a number of ZC work items (384
in this case) to process the shifted identity matrix corresponding to an entry of
the base graph. Therefore each work group do not access to the variable used by
another one since each one has its own row to work on.
On the other hand bit node processing kernel has 68 work groups with ZC equals
384 work items to elaborate the parity check matrix columns. Also in this case the
groups do not use shared variables between them.
Thus local memory can be used to store the results that check nodes and bit nodes
exchange, improving the access time to use the data.

Another limitation carried by local memory is that it is not shared between ker-
nels, hence each kernel has its dedicated local memories, therefore some modifica-
tion in the host code and in the kernel code must be applied. For this reason, start-
ing from the current new solution, the ldpc_cnp_kernel_1st_iter, ldpc_cnp_kernel,
ldpc_vnp_kernel_normal kernels are transformed into functions and merged into
a single kernel called nrLDPC_decoder kernel. The pack_decoded_bit is kept as
standalone kernel.
From the host code side, the loop to launch the kernels shown in 3.21 has been
changed since now only two kernels must be executed. Check node and bit node
kernels are now merged into a single one, hence they are executed according to a
support variable, namely index, received by the host code. Thus the host loop now
has the following structure:

1 for (int i i = 0 ; i i < numMaxIter ; i i ++){
2 i f (i i ==0){
3 index =1;
4 arg =0;
5 OCL_CHECK(c l S e t K e r n e l A r g (nrLDPC_decoder , arg++, s i z e o f (int) , &index)) ;
6 OCL_CHECK(c l S e t K e r n e l A r g (nrLDPC_decoder , arg++, s i z e o f (cl_mem) , &dev_const_l lr)) ;
7 OCL_CHECK(c l S e t K e r n e l A r g (nrLDPC_decoder , arg++, s i z e o f (cl_mem) , &d e v _ l l r)) ;
8 OCL_CHECK(c l S e t K e r n e l A r g (nrLDPC_decoder , arg++, s i z e o f (int) , &BG)) ;
9 OCL_CHECK(c l S e t K e r n e l A r g (nrLDPC_decoder , arg++, s i z e o f (int) , &row)) ;

10 OCL_CHECK(c l S e t K e r n e l A r g (nrLDPC_decoder , arg++, s i z e o f (int) , &c o l)) ;
11 OCL_CHECK(c l S e t K e r n e l A r g (nrLDPC_decoder , arg++, s i z e o f (int) , &Zc)) ;
12 OCL_CHECK(clEnqueueNDRangeKernel (commands , nrLDPC_decoder , 3 , NULL, dimGridKernel2 ,

dimBlockKernel2 , 0 , NULL, 0)) ;
13 OCL_CHECK(c l F i n i s h (commands)) ;
14 }
15 e l s e {
16 index =2;
17 arg =0;
18 OCL_CHECK(c l S e t K e r n e l A r g (nrLDPC_decoder , arg++, s i z e o f (int) , &index)) ;
19 OCL_CHECK(c l S e t K e r n e l A r g (nrLDPC_decoder , arg++, s i z e o f (cl_mem) , &dev_const_l lr)) ;
20 OCL_CHECK(c l S e t K e r n e l A r g (nrLDPC_decoder , arg++, s i z e o f (cl_mem) , &d e v _ l l r)) ;
21 OCL_CHECK(c l S e t K e r n e l A r g (nrLDPC_decoder , arg++, s i z e o f (int) , &BG)) ;
22 OCL_CHECK(c l S e t K e r n e l A r g (nrLDPC_decoder , arg++, s i z e o f (int) , &row)) ;
23 OCL_CHECK(c l S e t K e r n e l A r g (nrLDPC_decoder , arg++, s i z e o f (int) , &c o l)) ;
24 OCL_CHECK(c l S e t K e r n e l A r g (nrLDPC_decoder , arg++, s i z e o f (int) , &Zc)) ;
25 OCL_CHECK(clEnqueueNDRangeKernel (commands , nrLDPC_decoder , 3 , NULL, dimGridKernel2 ,

dimBlockKernel2 , 0 , NULL, 0)) ;
26 OCL_CHECK(c l F i n i s h (commands)) ;
27 }
28 i f (i i +1 != numMaxIter) {

59

Acceleration of LDPC application on Xilinx FPGA

29 index =3;
30 arg =0;
31 OCL_CHECK(c l S e t K e r n e l A r g (nrLDPC_decoder , arg++, s i z e o f (int) , &index)) ;
32 OCL_CHECK(c l S e t K e r n e l A r g (nrLDPC_decoder , arg++, s i z e o f (cl_mem) , &dev_const_l lr)) ;
33 OCL_CHECK(c l S e t K e r n e l A r g (nrLDPC_decoder , arg++, s i z e o f (cl_mem) , &d e v _ l l r)) ;
34 OCL_CHECK(c l S e t K e r n e l A r g (nrLDPC_decoder , arg++, s i z e o f (int) , &BG)) ;
35 OCL_CHECK(c l S e t K e r n e l A r g (nrLDPC_decoder , arg++, s i z e o f (int) , &row)) ;
36 OCL_CHECK(c l S e t K e r n e l A r g (nrLDPC_decoder , arg++, s i z e o f (int) , &c o l)) ;
37 OCL_CHECK(c l S e t K e r n e l A r g (nrLDPC_decoder , arg++, s i z e o f (int) , &Zc)) ;
38 OCL_CHECK(clEnqueueNDRangeKernel (commands , nrLDPC_decoder , 3 , NULL, dimGridKernel2 ,

dimBlockKernel2 , 0 , NULL, 0)) ;
39 OCL_CHECK(c l F i n i s h (commands)) ;
40 }
41 e l s e
42 {
43 index =4;
44 arg =0;
45 OCL_CHECK(c l S e t K e r n e l A r g (nrLDPC_decoder , arg++, s i z e o f (int) , &index)) ;
46 OCL_CHECK(c l S e t K e r n e l A r g (nrLDPC_decoder , arg++, s i z e o f (cl_mem) , &dev_const_l lr)) ;
47 OCL_CHECK(c l S e t K e r n e l A r g (nrLDPC_decoder , arg++, s i z e o f (cl_mem) , &d e v _ l l r)) ;
48 OCL_CHECK(c l S e t K e r n e l A r g (nrLDPC_decoder , arg++, s i z e o f (int) , &BG)) ;
49 OCL_CHECK(c l S e t K e r n e l A r g (nrLDPC_decoder , arg++, s i z e o f (int) , &row)) ;
50 OCL_CHECK(c l S e t K e r n e l A r g (nrLDPC_decoder , arg++, s i z e o f (int) , &c o l)) ;
51 OCL_CHECK(c l S e t K e r n e l A r g (nrLDPC_decoder , arg++, s i z e o f (int) , &Zc)) ;
52 OCL_CHECK(clEnqueueNDRangeKernel (commands , nrLDPC_decoder , 3 , NULL, dimGridKernel2 ,

dimBlockKernel2 , 0 , NULL, 0)) ;
53 OCL_CHECK(c l F i n i s h (commands)) ;
54 }
55 }
56 s i z e _ t pack = (block_length /128) +1;
57 s i z e _ t pack_block [3] = { (pack −1) ∗128 , MC, 1 } ;
58 s i z e _ t pack_local [3]={128 , 1 , 1 } ;
59 arg = 0 ;
60 OCL_CHECK(c l S e t K e r n e l A r g (pack_decoded_bit , arg++, s i z e o f (cl_mem) , &d e v _ l l r)) ;
61 OCL_CHECK(c l S e t K e r n e l A r g (pack_decoded_bit , arg++, s i z e o f (cl_mem) , &dev_tmp)) ;
62 OCL_CHECK(c l S e t K e r n e l A r g (pack_decoded_bit , arg++, s i z e o f (int) , &c o l)) ;
63 OCL_CHECK(c l S e t K e r n e l A r g (pack_decoded_bit , arg++, s i z e o f (int) , &Zc)) ;
64 OCL_CHECK(clEnqueueNDRangeKernel (commands , pack_decoded_bit , 3 , NULL, pack_block ,

pack_local , 0 , NULL, 0)) ;
65 OCL_CHECK(c l F i n i s h (commands)) ;

Listing 4.2. New host code loop after kernels merge, index variable is used to
execute the proper function in the kernel code.

The new kernel, nrLDPC_decoder, receives the decoder parameters like the kernels
of the previous implementation.
The memory objects dev_h_compact1, dev_h_compact2 and dev_dt are no more
set as kernel arguments since they are implemented as local memory in the kernel
code side. The additional parameter is the index variable which tells the kernel
code which function must be invoked.
When the variable index is set to one the ldpc_cnp_kernel_1st_iter is executed.
If it is 2 ldpc_cnp_kernel is called. The values 3 and 4 are used to tell the kernel
code to invoke the ldpc_vnp_kernel_normal function, two values are set in order
to specify when to write by bursts.
In the previous solution, check node and bit node kernels had different global size
but the local size was the same. Because of the merge, the work group size of the
new kernel is still equal to ZC (384) and the global size is equal to the maximum
global size of the previous kernels, which corresponds to the number of columns
multiplied by ZC . For the given parameters the total number of work items is
26112 which corresponds to the number of bits of the codeword. Since in the pre-
vious solution ldpc_cnp_kernel_1st_iter and ldpc_cnp_kernel kernels have less
work items with respect to ldpc_vnp_kernel_normal, an if statement in the kernel
code is required to specify how many work items must be executed when those

60

Acceleration of LDPC application on Xilinx FPGA

functions are called. The pack_decoded_bit is not modified in this solution.

4.3.2 Burst accesses and memory ports widening
The kernel now stores the intermediate results in the BRAM on the chip, this means
that it must read only once the input LLRs and write the final LLRs estimation
once. From now on dev_llr is the local BRAM whilst llr is the memory object in the
DRAM, similarly dev_const_llr is the constant channel sample LLRs in BRAM
and const_llr is the data in DRAM.
In order to increase the transfer efficiency of the AXI4 interface with the DRAM,
the reading and writing ports are widened, thus, instead of reading only 8 bits
for each port (which is the size of the data), 512 bits are read or written through
the memory ports. The SDAccel guide provide some tips to avoid manual code
modifications to adapt the data to 512 bits. Thus some pragmas are suggested,
namely reqd_work_group_size and vec_type_hint. The first one specifies which is
the group size of the kernel. That pragma helps the runtime library to schedule
efficiently the work items in the NDRange space. The second one tells XOCC com-
piler which is the main data used for computation and can help the synthesis tool
to perform better optimizations.
To hide the latency due to the DRAM controller bursts are inferred, both for writing
and reading operations from the off-chip global memory. Bursts consist in repeated
memory accesses to sequential addresses, hence the latency due to the controller is
paid only once. Also in this case the SDAccel manual [13] reports a specific way to
implement burst operations:

1 __attribute__ ((xc l_pipe l ine_loop (1)))
2 read_loop : for (i =0; i<s ize_of_reading ; i++)
3 dev_l l r [i] = l l r [i] ;
Listing 4.3. Example of suggest loop structure for easily implementation of burst
memory accesses in SDAccel

To help xocc to implement the burst, reading writing and compute operations must
be separated. To be noted that the __attribute__((xcl_pipeline_loop(1))) pragma
is used for OpenCL kernels only. It asks HLS tool to pipeline the read_loop with an
Initiation Interval (II) equal to 1. The initiation interval is defined as the number
of clock cycles to wait for a new loop iteration.
Given the attributes and the rules to follow, Vivado HLS does not implement cor-
rectly the burst for dev_llr variable, instead for dev_const_llr the bursts are im-
plemented correctly. In fact the read and write operations for dev_llr local memory
are implemented using both ports of the BRAMs with a width of 64 for each port,
hence only 128 bits are read per memory access. To workaround this HLS issue,
the __attribute__((xcl_array_reshape(cyclic, 32, 1))) is used. Array reshaping

61

Acceleration of LDPC application on Xilinx FPGA

breaks the target array into small blocks, then the blocks are concatenated in order
to widen the memory ports. The reshaping type can be cyclic, block or complete.
A cyclic reshaping concatenates the memory chunks in a serial way, in other words
the memory is filled starting from the first entry of the the first chunk up to the
first entry of the last chunk, then it goes back to the second entry of the first chunk.
The memory is then filled cyclically.
Block reshaping fills the memory by blocks, so it starts to fill the first chunk of the
array and then it moves to the next one.
A complete reshaping decomposes the memory into the single entries of the mem-
ory, this results into a widening of the memory equals to the number of the elements
of the memory, which means registers.

Figure 4.3. Array reshaping in action. The top most figure shows the cyclic
reshaping. The central picture corresponds to the block reshape and the last
one is the complete reshape

After reshape is applied to the dev_llr memory the operations involving the off-
chip global memory and dev_llr are burst operations. In fact, both local memory
ports are used and both have a width of 32·8 bits, thus the width of the ports is
maximized to read and write 512 bits.

Burst read and write do not take place at each kernel call, they must be per-
formed only for the first and last call respectively. Thus an if statement is necessary
in the kernel code to execute the read and write only once. In particular, dev_llr
and dev_const_llr reading operations are performed only for the first work item
of the first work group, that has a global_id equals to (0,0,0) in the NDRange
space. Moreover, the two read operations occur when the index variable is 1 that

62

Acceleration of LDPC application on Xilinx FPGA

is when ldpc_cnp_kernel_1st_iter function is called in the kernel code. Thus first
the inputs are read and the function is later executed by all the work items of the
group.
Similarly, the write operation occurs for the last work item of the NDRange, which
has a (col-1,0,0) group_id and (ZC-1,0,0) local_id. Also in this case an if statement
is required to determine the work item that must write the results in the off-chip
memory.

As discussed in the previous section, during the first execution, the kernel has
to initialize the dev_h_compact1 and dev_h_compact2 matrices. Because of the
porting the initialization was consuming most of the time of the kernel execution
(ldpc_cnp_kernel_1st_iter kernel in the previous solution). The problem is re-
lated to the number of times that the initialization of the matrices is done. In a
GPU, the memory accesses are parallel, in an FPGA they are sequential. Therefore
in the FPGA each work item will access to these memories and the same operation
is repeated many times. In order to avoid this code redundancy, an if statement is
inserted in the ldpc_cnp_kernel_1st_iter function to initialize the matrices only
once. The reasoning is the same of the burst reading, thus only the first work item
of the NDRange space initialize the matrices.

4.3.3 Hardware build results
To verify the correctness of the code after those modifications, software emulation
is run. The results of software emulation shows that the results produced by the
kernel match the reference ones, hence the functionality is met.
With burst accesses and memory ports widening one expects to have short time
spent in exchanging data with the DRAM, namely just at the beginning and at
the last call of nrLDPC_decoder kernel. On the other hand, storing intermediate
results in local memory reduces the amount of time spent in data transfer.
By running the hardware build one can have a look to the report estimates:

Figure 4.4. Improving data transfer: system estimates report. Off-chip
memory is accessed by inferring bursts operations and on-chip BRAM is used
to store intermediate results.

63

Acceleration of LDPC application on Xilinx FPGA

With respect to the report estimates in Fig.4.1, the read_BG functions can work
with an higher frequency. The latency worst case for both functions has been re-
duced by one order of magnitude thanks to the local BRAM exploitation for the
arrays dev_h_compact1 and dev_h_compact2.
The new kernel nrLDPC_decoder works with the minimum frequency of the three
kernels that have been merged, which is the one of ldpc_cnp_kernel_1st_iter.

Regarding the loops in nrLDPC_decoder kernel, the HLS report shows the fol-
lowing values:

Loop Name Latency Iteration Latency Initiation Interval
CNP1st_loop1 66 30 2
CNP1st_loop2 58 41 1
CNP_loop1 64 28 2
CNP_loop2 58 41 1
VNP_loop 118 60 2
llr_burst_read 409 3 1
const_burst_read 409 3 1
llr_burst_write 409 3 1

Table 4.5. Improving data transfer: oop section of HLS report of
nrLDPC_decoder kernel. Kernel loops are pipelined.

Starting from this version of the code, the loop are automatically pipelined by HLS
to achieve the lowest II. The corresponding II for each loop is listed in table 4.5.
Given the HLS report in table 4.5, the next step is to have an II equals 1 for all
the loops in order to avoid additional latency due to carried loop dependencies.
Using BRAMs and pipelining the overall latency of the loop is reduced, this can be
noted if tables 4.5 and 4.2.2 are compared. In fact the latency shown in the system
estimates report of the new solution is much lower than the previous implementa-
tion. To have an idea of the latency improvement, one can sum the average latency
of the three merged kernels in figure 4.1 and compare the result with the average
case latency of nrLDPC_decoder. In the first solution the average case latency for
three kernels is 133266078, for the second one it is 1170830, thus the improvement
factor is 114x.

As mentioned before local memory is implemented as BRAM, in fact five mem-
ory objects have been moved from off-chip memory into the on-chip one, one expects
to increase the resource usage regarding the BRAMs. From HLS report, one can
compare the resources usage of the two implementations:

64

Acceleration of LDPC application on Xilinx FPGA

FF LUT DSP BRAM
Total 2364480 1182240 6840 4320
Porting 1% 3% 2.4% 3%
Memory opt 2% 6% 5% 17%

Table 4.6. Improving data transfer: resource usage comparison before and after
memory optimization. Values obtained from HLS reports.

Moving all the data transfer into on-chip memory makes the BRAM utilization
percentage to rise from 3% up to 17%. Some more logic is required to store and
compute BRAMs addresses, thus also other resources percentage increase.

After the preliminary analysis on system estimates and HLS reports, the host
code can be executed on AWS platform to gather the profile summary and the
timeline trace of the application.
The profile summary shows the following execution times:

Kernel Number
of calls

Total
Time (ms)

Average
Time (ms)

Maximum
Time (ms)

nrLDPC_decoder 10 96.432 9.643 10.472
pack_decoded_bit 1 2.417 2.417 2.417

Table 4.7. Improving data transfer: execution time from the profile summary
report of the hardware build. The average time and maximum execution time for
both kernels are reported as well as the number of calls.

The execution time is highly reduced, pack_decoded_bit kernel halved its execu-
tion thanks to the pipelining of its loop. On the other hand nrLDPC_decoder
kernel execution time is reduced by a factor of 400x. Also for the current imple-
mentation one can have a look to the data transfer section with the off-chip global
memory. Since the code regarding pack_decoded_bit kernel is not modified, only
the part related to nrLDPC_decoder kernel is reported:

Op Number of
transfers

Transfer
Rate

(MB/s)

Average Size
(KB)

Average Latency
(ns)

R 52 0.662 1.004 934.462
W 26 0.331 1.004 289.385

Table 4.8. Data transfer of nrLDPC_decoder kernel with off-chip memory when
bursts are inferred and BRAM is used for intermediate operations.

65

Acceleration of LDPC application on Xilinx FPGA

By referring to the table 4.8 the average size of data transfer is increased, this cor-
responds to a strong reduction in the number of transfer. Moreover the number of
data transfer with off-chip global memory drops because the kernel now reads the
input and write the final result only.
Profile summary also reports that the current transfer efficiency is improved up
to 24.519%, this means that DRAM ports widening and bursts are properly im-
plemented. Hence the transfer efficiency of nrLDPC_decoder kernel is maximized
because only one bank is used for data transfer and the efficiency is closed to 25%,
given that four banks are available.

The timeline trace can be used to verify the bursts and to see how the functions
ldpc_cnp_kernel, ldpc_cnp_kernel_1st_iter, ldpc_vnp_kernel_normal are now
distributed over the whole kernel execution. Also a visual comparison between the
execution time and data transfer with DRAM can be performed.

Figure 4.5. Improving data transfer: timeline trace after the execution on AWS.
Data transfer and kernels execution are depicted.

As depicted in the timeline in Fig.4.5 the pack_decoded_bit kernel is still much
faster than nrLDPC_decoder kernel, it is almost four times faster than a single
execution of the other kernel.
By looking at the reading and writing transfers line of nrLDPC_decoder kernel one
can notice that only two memory operations are performed. Namely two consecutive
readings take place (blue line) spending 4.5574µs. On the other hand only one write
operation is done at the last kernel call lasting 2.007 µs. These results demonstrate
that now the data transfer with the slowest memory has been greatly reduced,
in fact the first solution spends roughly 15 seconds to transfer data from/to the
off-chip global memory (average latency·number of transfer from the table 4.4).
The three functions executed by nrLDPC_decoder kernel have a similar execution
time, although the first execution is a bit longer than the other nine. This is due
to the readBG function which is invoked in ldpc_cnp_kernel_1st_iter function to
initialize two local memories.
To have a better idea of the execution of each nrLDPC_decoder call, one can collect
the time duration of each call from the timeline trace:

66

Acceleration of LDPC application on Xilinx FPGA

Execution # Function name Total duration (ms) Index
1 ldpc_cnp_kernel_1st_iter 10,47173 1
2 ldpc_vnp_kernel_normal 9,176440 3
3 ldpc_cnp_kernel 10,02723 2
4 ldpc_vnp_kernel_normal 9,159960 3
5 ldpc_cnp_kernel 10,00253 2
6 ldpc_vnp_kernel_normal 9,202023 3
7 ldpc_cnp_kernel 10,00830 2
8 ldpc_vnp_kernel_normal 9,184260 3
9 ldpc_cnp_kernel 10,02187 2
10 ldpc_vnp_kernel_normal 9,177640 4

Table 4.9. Improving data transfer: execution time of each call of
nrLDPC_decoder kernel. The corresponding function of a call is reported.

From the table above one can notice that around 47 µs are wasted to initialize
dev_h_compact1 and dev_h_compact2 since ldpc_cnp_kernel_1st_iter duration
is slightly longer than ldpc_cnp_kernel function. Although the operations of check
nodes and bit nodes are different, now all the functions have a similar execution
time.

One can compare the total execution time in table 4.7 with the ones belonging
to the GPU and AVX2 codes. The OpenCL LDPC decoder is still much slower
with respect to OAI solutions. In particular, AVX2 is 384 times faster, whilst the
GPU code running on the Quadro P2000 device is 919 times faster.

4.4 Improving parallelism
In this section two kinds of improvements are presented. The first one is a modifi-
cation of some parts of the code which are redundant and waste computation time.
Secondly some HLS optimization are applied to reduce the maximum and average
iteration latency of the work item loop. As done for the previous sections, software
emulation is used to verify the functionality of the code before running the kernel
on the AWS platform.

4.4.1 Loop fusion
Loop fusion is an HLS technique which consists in some transformation of the code
in order to merge two or more loops. The loops to be merged must be pipelined
and must have the following characteristics [26]:

1. same initiation interval,

67

Acceleration of LDPC application on Xilinx FPGA

2. same loop bound otherwise loop guards (i.e. if statements) are required,

3. no variable dependencies between them.

The main benefit of loop fusion is that the latency to fill and drain the pipeline
of each loop is reduced to the pipeline of a single loop. In other words, let us
call the initiation interval, the loop bound and the pipeline latency as I, N and L
respectively, also let us suppose to have two loops to merge. Then the following
equation holds:

Ctot = L1 + (I1 · (N1 − 1)) + L2 + (I2 · (N2 − 1)) (4.1)

where Ctot is the total number of clock cycles required to complete the two loops.
It is clear from that equation that if the loops are merged, then the total number
cycles becomes:

Ctot = L1 + (I1 ·max(N1, N2)) (4.2)
thus the latency of the loops is almost halved.

In the decoder code there are two sections in which there are some loops that can
be merged: one is related to the check node processing functions and the second
one is in the read_BG functions.
By analyzing the function of check nodes, one can discard the possibility of merg-
ing the loops CNP_loop1-CNP_loop2 and CNP1st_loop1-CNP1st_loop2. Those
loops cannot be fused because of variable dependency. In fact the CNP1st_loop1
and CNP_loop1 find the minimum value for the check node processing, whilst the
CNP_loop2 and CNP1st_loop2 use the found minimum value to store the final
check nodes belief in dev_dt BRAM.
Regarding the read_BG functions one can have a look to the code that initializes
dev_compact1 in read_BG1:

1 BG1_initRowH1 : for (int i = 0 ; i < 1 9 ; i ++){
2 BG1initColH1 : for (int j = 0 ; j < 4 6 ; j++){
3 h_element_temp . x = 0 ;
4 h_element_temp . y = 0 ;
5 h_element_temp . value = −1;
6 dev_h_compact1 [i ∗row+j] = h_element_temp ; column
7 }
8 }
9 BG1_scanRowH1 : for (int i = 0 ; i < 4 6 ; i ++){

10 int k = 0 ;
11 BG1scanColH1 : for (int j = 0 ; j < 6 8 ; j++){
12 i f (h [i ∗ c o l+j] != −1){
13 h_element_temp . x = i ;
14 h_element_temp . y = j ;
15 h_element_temp . value = h [i ∗ c o l+j] ;
16 dev_h_compact1 [k∗row+i] = h_element_temp ;
17 k++;
18 }
19 }
20 }

Listing 4.4. Read_BG1 function in OpenCL without loop fusion

As a reminder, dev_h_compact1 is used for check node processing to derive the
identity matrix using the modulo operation for each matrix entry. Similarly,

68

Acceleration of LDPC application on Xilinx FPGA

dev_h_compact2 is used for bit node processing.
The base graph from which the parity check matrix is generated is stored in h
which is passed as function parameter from ldpc_cnp_kernel_1st_iter function.
The first loop in listing 4.4 initialize dev_h_compact1, meanwhile the second one
copies the value in h inside dev_h_compact1 if h entry is not -1.
It is important to point out that the loop labeled as BG1scanColH1 has the same
loop bound as BG_initRowH1 and both the nested loops have the same II. Thus
loop fusion can be applied with some code modifications.
First of all, the loops BG1_scanRowH1 and BG1scanColH1 must be swapped to
have the same external loop bounds for the two nested loops. Once the external
loop bound is the same, the inner ones are different, hence a loop guard must be
inserted to determine which operation of BG1initColH1 or BG1scanColH1 must be
executed.
Before proceeding with the loop fusion one further comment can be done on the
code in listing 4.4. The two nested loops are writing inside the memory twice, hence
it might happen that some memory location are written twice when the loops are
merged. By referring to the code reported above if the address of dev_h_compact1
k*row+i is equal to i*row+j then the same location is written twice while iterating
the loops. Therefore an if statement must check whether the two addresses are the
same, if so, the assignment dev_h_compact2[k*row+i] = h_element_temp takes
place whilst the other one is discarded. Thus the final code of read_BG1 function
for dev_h_compact1 is reported in the following listing. For dev_h_compact2
initialization the same reasoning can be adopted:

1 BG1_initRowH1 : for (int i = 0 ; i < 4 6 ; i ++){
2 int k = 0 ;
3 BG1initColH1 : for (int j = 0 ; j < /∗ 19 ∗/ 6 8 ; j++){
4 i f (j < 19) {
5 i f (j==k) { // w r i t i n g t o t h e same a d d r e s s
6 i f (h [i ∗ c o l+j] != −1){
7 h_element_temp . x = i ;
8 h_element_temp . y = j ;
9 h_element_temp . value = h [i ∗ c o l+j] ;

10 dev_h_compact1 [k∗row+i] = h_element_temp ;
11 k++;}
12 e l s e
13 dev_h_compact1 [j ∗row+i] = h_element_temp ;
14 }
15 e l s e { // not w r i t i n g t o t h e same a d d r e s s
16 i f (h [i ∗ c o l+j] != −1){
17 h_element_temp . x = i ;
18 h_element_temp . y = j ;
19 h_element_temp . value = h [i ∗ c o l+j] ;
20 dev_h_compact1 [k∗row+i] = h_element_temp ;
21 k++;}
22 e l s e
23 dev_h_compact1 [j ∗row+i] = h_element_temp ;
24 }}
25 e l s e {
26 i f (h [i ∗ c o l+j] != −1){
27 h_element_temp . x = i ;
28 h_element_temp . y = j ;
29 h_element_temp . value = h [i ∗ c o l+j] ;
30 dev_h_compact1 [k∗row+i] = h_element_temp ;
31 k++;
32 }}}}

Listing 4.5. Read_BG1 function in OpenCL with merged loops. Control on the
BRAM address to avoid overwriting is performed.

69

Acceleration of LDPC application on Xilinx FPGA

The loop fusion makes the code to be hardly modified and to be a bit more complex.
Now in the loops a first check on the writing adress must be performed, after that
the choice of the two possible operations on the destination address must be taken.
That is the reason of many if-else statement in the code. Instead of running directly
the code on AWS, one can verify the latency results from HLS reports.

Function Name (BEFORE loop fusion) Latency
Read_BG1 18355
Read_BG2 11717
Function Name Loop name Latency Iteration Latency II
Read_BG1 BG1_initRowH1 1748 92 92
Read_BG1 BG1_scanRowH1_BG1scanColH1 6261 8 2
Read_BG1 BG1_initRowH2_BG1initColH2 4081 4 2
Read_BG1 BG1_scanRowH2 6256 93 92
Read_BG2 BG2_initRowH1 1932 84 84
Read_BG2 BG2_scanRowH1 4368 105 104
Read_BG2 BG2_initRowH2 1040 104 104
Read_BG2 BG2_scanRowH2 4368 85 84
Function Name (AFTER loop fusion) Latency
Read_BG1 12524
Read_BG2 8748
Function Name Loop name Latency Iteration Latency II
Read_BG1 BG1_initRowH1_BG1initColH1 6260 7 2
Read_BG1 BG1_initRowH2_BG1initColH2 6260 7 2
Read_BG2 BG2_initRowH1_BG2initColH1 4372 7 2
Read_BG2 BG2_initRowH2_BG2initColH2 4372 7 2

Table 4.10. Comparison between read_BG functions before and after loop
fusion. Overall latency is shown as well as the latency per loop inside the
functions and the initiation interval.

After loop fusion and address checking the overall latency of the functions is almost
halved. Instead of 8 loops like before loop fusion, only four loops are present in the
synthesis report. Regarding the initiation interval, it has been drastically reduced
to 2 and the iteration latency is constant for all the loops. It is important to point
out that Vivado HLS reports only two loops per function when four should be
shown, this is because the tool flattened the inner most loops.
One last comment is required for the matrices initialization. In the previous version
of the kernel code, readBG function and lifting index selection are performed by
the ldpc_cnp_kernel_1st_iter function, thus two work items check are required,
one for the burst accesses outside the kernel and one for the matrices initialization
inside the ldpc_cnp_kernel_1st_iter function. In order to save some clock cycles,
the matrices initialization has been moved in the same section of code of the burst
accesses. In this way, the work items checking to perform these operations occur

70

Acceleration of LDPC application on Xilinx FPGA

only once both for bursts and for read_BG functions.

4.4.2 Loop unrolling and array partitioning
The most powerful HLS technique to speed up the application and obtain a 100x
speed up is loop unrolling. This technique can strongly improve the parallelism by
performing concurrent operations. Simply speaking, while and for loops are un-
rolled by a factor which can be lower (partial unrolling) or equal to the loop bound
(full unrolling), thus instead of performing a single operation in the loop, more
operations are performed concurrently. The number of concurrent loop iterations
is equal to the unroll factor. To better understand how loop unrolling is adopted
in this design, let us consider the variable node loop:

1 int s = (BG==1)? h_ele_col_bg1_count [iBlkCol] : h_ele_col_bg2_count [iBlkCol] ;
2 VNP_loop :
3 for (int i = 0 ; i < s ; i ++)
4 {
5 h_element_t = dev_h_compact2 [i ∗ c o l+iBlkCol] ;
6 s h i f t _ t = h_element_t . value%Zc ;
7 iBlkRow = h_element_t . x ;
8 s f = iSubCol − s h i f t _ t ;
9 s f = (s f + Zc) % Zc ;

10 iRow = iBlkRow ∗ Zc + s f ;
11 APP = APP + dev_dt [o f f s e t D t + iRow] ;
12 }

Listing 4.6. Bit node loop VNP_loop in OpenCL code.

First of all, the loop bound is not costant, it depends on the value of one of the
arrays h_ele_col_bg_count. Moreover the value is chosen by the work group ID
stored in iBlkCol variable. This means that each work group iterates a different
amount of times the VNP_loop. Hence a complete unrolling should be applied to
unroll completely the loop but Vivado HLS is not able to unroll loops with variable
loop bound. To solve the tool issue the loop bound is set to the max value contained
in h_ele_col_bg_count arrays, which is 30, and if statement is inserted inside the
loop which enables the operations if the loop variable i is lower than the variable
s. It is important to note that in the loops there are two BRAMs accesses, namely
a reading operation for dev_h_compact2 and dev_dt. Thus, to successfully unroll
the loop and exploit concurrency, one should use the array partitioning pragma of
OpenCL.
Array partitioning is similar to array reshaping but from the architectural point of
view the results are different. Reshaping is used to widen the memory port, on the
other hand array partitioning splits the memory in smaller memory modules. The
selection of the partition of interest depends on the kernel. Also for array parti-
tioning there are three possible configurations: cyclic, block and complete. They
work in the same way of array reshaping.
BRAMs have two ports and the loop are fully unrolled, thus to find the optimum
partition factor one should set it equals to the loop bound divided by the number
of memory ports. Since the loop has a variable loop bound but forced to be equal

71

Acceleration of LDPC application on Xilinx FPGA

to 30, the partition factor is set to 16. The choice of 16 instead of 15 is to avoid
addresses computation because of a number of memory banks which is not a mul-
tiple of 2. Thus optimum factors are multiple of two, other choices lead to a bigger
cost of resource for address evaluation, which can also increase the latency of the
application.
Regarding the check node loops, they face the same problem of the loop reported in
listing 4.6. The loops have variable loop bound, hence they must be fully unrolled
and the optimum partition factor for dev_h_compact1 is 16, since the maximum
loop bound value is 19.
The type of array partitioning that has been chosen is the cyclic one. By iterating
the synthesis several times it has been proven that the block partitioning consumes
more resources than the cyclic one and it increases the maximum loop latency.
The complete partitioning is extremely expensive because all memory elements are
transformed into registers, thus it is suitable for small arrays. Therefore the cyclic
partitioning is a good trade-off between resource usage and performance.

4.4.3 Optimizing critical operations
One of the differences of the CUDA code with respect to the AVX2 is that the
parity check matrix is not directly stored in the decoder but the base graph is
used to derive it. Therefore three modulo operations are performed for the whole
decoder execution. One modulo operation is done for each check node work item
and two are performed for each variable node work items. The modulo operation is
extremely time consuming in fact by looking into the HLS scheduler viewer, which
shows how the operations are scheduled, one can have an idea of what is the time
cost of those operations inside the VNP_loop:

Figure 4.6. HLS scheduler viewer focused on a modulo operation of VNP_loop.

72

Acceleration of LDPC application on Xilinx FPGA

The highlighted modulo operation in Fig.4.6 takes 20 clock cycles to be completed,
moreover the result of that operation is used to perform a second modulo operation
which is spread over 30 clock cycles. Since this operation is scheduled for each
ldpc_vnp_kernel_normal function call and the the results are always the same
(because dev_h_compact2 is not written anymore after read_BG writes it), as a
possible improvement the modulo operations can be scheduled only once. Then the
results is stored in a BRAMs and in the next calls the value is simply read. In the
same way the modulo operation done in the check node processing can be schedule
in ldpc_cnp_kernel_1st_iter since it is executed only once.
In order to see what is the actual benefit of moving the modulo operation at the first
function execution, the code is directly tested on AWS. The modulo operation that
is optimized is the one at line 473 in the figure Fig.4.6, since it is the most trivial of
three operations to modify. A for loop that reads one element of dev_h_compact2
and divides it by ZC is added. This computation is performed by one work item
only.
The execution time of the ldpc_vnp_kernel_normal now drops to 7.3 ms from
9.1 ms. Thus, the gain is of 2 ms for a single kernel call and a total of 8 ms are
saved with this optimization. Since the target improvement factor should be around
100x, the other two modulo operations are not optimized for the moment because
the gain is not high enough and the difficulty is not trivial as before.

Regarding the check node processing, the problematic operation is the one de-
picted in the figure below:

Figure 4.7. HLS scheduler viewer focused on a triple multiplication

The operation in the highlighted line of the code takes several clock cycles because
three operations must be performed and also a comparison is scheduled. To reduce
the limitation coming from that line one can approximate the triple multiplication

73

Acceleration of LDPC application on Xilinx FPGA

into two multiplication. The multiplicands 0.8 is close to the value 0.75 which is
equal to A·B-(A·B)»2, which simply corresponds to 1-0.25. In this way the number
of multiplications is decreased by one improving the loop latency. The cost of
this solution is an accuracy loss of 5% and it is applied to the second loops of
ldpc_cnp_kernel and ldpc_cnp_kernel_1st_iter functions.
The execution time with this modification is reduced from 10ms to around 5 ms,
hence the check node processing execution time is halved. Also in this case the
optimization provides a gain that is not high enough to reach the goal of 100x but
it still can be used to accelerate the decoder.

4.4.4 Hardware build results
Loop fusion, loop unrolling, array partitioning and other code modifications are
tested together on AWS. First of all the HLS and system estimates reports of
nrLDPC_decoder kernel are explored and compared with the previous kernel ver-
sion. The overall kernel performance gets worse. The maximum kernel latency is
increased from 7576320 clock cycles to 20923008, which is three times bigger. On
the other hand HLS report does not show the node loops because they have been
successfully unrolled. From the profile summary generated after the execution on
AWS, the total execution time of nrLDPC_decoder kernel is 297.814 ms with an
average time of 29.7814. The pack_decoded_bit is 2.47359 ms.
The obtained performance are consistent with the HLS and system estimates report
but they are unexpected with respect to the theoretical analysis discussed in the
previous sections.

Array partitioning and loop unrolling are complementary techniques that should
improve the performance by exploiting parallel execution. Instead the execution
time is greatly increased by three times. Therefore one might think that the parti-
tioning factor is not the optimum one, the current factor is 16 knowing that the max-
imum loop bounds are 19 and 30. By analyzing the entries of h_ele_col_bg_count
and h_ele_row_bg_count vectors that contain the loop bounds value, one can see
that the maximum values occurrences is much lower with respect to the number
of elements of the array. For instance the value 30 occurs only once among the 68
elements. Therefore the analysis discussed for the loops considering the worst case
latency is not the optimum choice.
The average loop bound value is computed for all the loops. The average loop
bound for VNP_loop is 5 (the maximum is 30), meanwhile for the check node
loops the average value is 8 (with a maximum of 19). Thus, the partitioning fac-
tors chosen according to the average loop bound is 4 for all BRAMs. To verify
the theoretical choices, the HLS reports are compared with non optimum values.
Also in this case the results are unexpected. If the partitioning is 2, 4, 8 or 16 the
average and maximum latency of nrLDPC_decoder kernel are close to each other
and they are still worse with respect to the previous solution. Nevertheless, the

74

Acceleration of LDPC application on Xilinx FPGA

case of full unrolling with no partitioning is considered and it appears to provide
the best results, i.e. lower average and maximum latency. This is because of the
variable loop bound. The results provided by the HLS demonstrate that Vivado
HLS is not able to partition efficiently the memory when the loops have a variable
loop bound. In the following table nrLDPC_decoder kernel latency is reported for
different array partitioning, also the results with full unrolling and no partitioning
are reported:

Kernel version Min-Max latency Iteration latency
Memory optimized 768∼7576320 2∼19730
Unrolling no partitioning 768∼6039936 2∼15729
Unrolling and partitioning 2 768∼20868480 2∼54345
Unrolling and partitioning 4 768∼20868480 2∼54345
Unrolling and partitioning 8 768∼20875776 2∼54364
Unrolling and partitioning 16 768∼20923008 2∼54487

Table 4.11. The minimum, maximum and iteration latency of nrLDPC_decoder
kernel are reported for different solutions. The minimum and maximum latency
for the solution presented in the previous section is considered as reference.

The table above show the minimum and maximum latency of the outer most loop of
the kernel code, namely the work items loop, in which the kernel is executed. The
iteration latency corresponds to the latency of a work item to execute the kernel
code.
Array partitioning does not affect the minimum latency, although it increases both
the maximum and the iteration latency. From the table 4.11 it can be noticed that
the true optimum solution is the one with loop unrolling without array partitioning.
The only benefit of array partitioning is evident for read_BG functions whose loops
have an II that is reduced from 2 to 1. Thus the array partitioning improves the
read_BG functions but highly increase the latency of the rest of the code, hence it
is not acceptable.
Therefore the only feasible solution is fully unroll the critical loops reported in table
4.5. In order to boost as much as possible the application, the work items must be
pipelined using the xcl_pipeline_workitems attribute. In this way the work items
loop is pipelined and all the inner loops are automatically and completely unrolled
by Vivado HLS. Moreover the kernel frequency is forced at compile time to be 300
MHz instead of 250 MHz which is the default frequency set by XOCC compiler.
The following table reports the latency and II situation after work items pipelining:

75

Acceleration of LDPC application on Xilinx FPGA

Functions work item loop Min-Max latency Iteration latency II
ldpc_cnp_kernel_1st_iter 7341 65 19
ldpc_cnp_kernel 14235 65 37
ldpc_vnp_kernel_normal 5805 61 15

Table 4.12. Latency and II of the work item loops for each function of
nrLDPC_decoder with work items pipelining and loop unrolling.

First of all the loops are unrolled and are contained in a work item loop, thus they
are not explicitly reported by Vivado HLS, only the latency of the work item loops
is reported.
In order to ease the synthesis process of Vivado HLS a pipeline pragma is added
inside the functions reported above. The overall latency of the kernel is now re-
duced to 5818821 with a minimum latency of 1 as reported by the HLS report.
On the other hand, the II of the work item loops is not optimum, i.e. it is not 1,
thus the Vivado HLS log must be checked to see what is limiting the performance.
The synthesis log reports that for all dev_dt BRAM accesses load and store op-
erations cannot be scheduled in the loops with an II=1, thus the II is increased.
The only solution to solve this problem is to perform a complete array partition
of dev_dt, moreover also dev_h_compact2 and dev_h_compact1 must be par-
titioned as well since they are in the same loop of dev_dt. As said before, a
complete partitioning is extremely expensive and the register cost depends on the
content of the array. In this case dev_dt is a char array, whilst dev_h_compact1
and dev_h_compact2 are arrays of structures whose size is 32 bit (two chars and a
short). dev_dt has 1201152 elements, whilst dev_h_compact1 and dev_h_compact2
have 874 and 2040 entries. The total size is respectively 1201152, 3496 and 8460
Bytes.
When trying to partition the memories completely, Vivado HLS aborts the synthe-
sis process and reports the following lines:

WARNING: [XFORM 203 −104] Completely p a r t i t i o n i n g array ’ dev_h_compact1 . value ’ a c c e s s e d
through non−c o n s t a n t i n d i c e s on dimension 1 , which may r e s u l t i n long runtime and
suboptimal QoR due to l a r g e m u l t i p l e x e r s .

WARNING: [XFORM 203 −104] Completely p a r t i t i o n i n g array ’ dev_h_compact1 . y ’ a c c e s s e d through
non−c o n s t a n t i n d i c e s

on dimension 1 , which may r e s u l t i n long runtime and suboptimal QoR due to l a r g e
m u l t i p l e x e r s .

WARNING: [XFORM 203 −104] Completely p a r t i t i o n i n g array ’ dev_h_compact1 . x ’ a c c e s s e d through
non−c o n s t a n t i n d i c e s

on dimension 1 , which may r e s u l t i n long runtime and suboptimal QoR due to l a r g e
m u l t i p l e x e r s .

ERROR: [XFORM 203 −103] Array ’ dev_h_compact2 . x ’ : p a r t i t i o n e d elements number (2 0 4 0) has
exeeded the t h r e s h o l d (1 0 2 4) , which may cause long run−time .

ERROR: [XFORM 203 −103] Array ’ dev_dt ’ : p a r t i t i o n e d elements number (1201152) has exeeded the
t h r e s h o l d (1 0 2 4) , which may cause long run−time .

Listing 4.7. Vivado HLS complete array partitioning errors for kernel BRAMs

The output of Vivado HLS confirms that the memories used in this code have two
problems: first of all two of them are way too big, thus the tool does not allow

76

Acceleration of LDPC application on Xilinx FPGA

the user to partition them completely. In case it is possible to partition them
completely, the accesses to the arrays are not constant, hence the logic used to read
and write into the memories causes a loss in performance.

Hence, the final solution to optimize the code is to use work items pipelining
to pipeline the outer most loop and unroll completely the inner ones. No array
partitioning is used, one modulo operation is executed only once instead of five
times and two multiplications have been approximated. The system estimates
generated for the hardware build is the following one:

Figure 4.8. Work items pipelining: system estimates report.

In the system estimates report the target clock frequency is shown and it is 300MHz,
the estimated frequency is higher for all the compute units but now both kernels
can run at the same frequency.
Regarding the resource usage, one expects to have more DSPs with respect to the
previous solution because of the unrolling. Given that the work items are pipelined
also the number of flip flops (FF) should be incremented. From the HLS report the
following percentage are obtained:

FF LUT DSP BRAM
17% 11% 12% 27%

Table 4.13. Work items pipelining: resource usage. Resources usage increase with
loop unrolling and work items pipelining.

The profile summary shows that the total execution time of the two kernels is
41.152 ms which is half of the time of the previous solution. Moreover the average
execution of nrLDPC_decoder kernel drops from 9.643 ms to 3.857 ms thanks to
the modulo and multiplication optimizations.
The current acceleration factor of the FPGA version with respect to the GPU and
AVX2 solutions is 382x and 160x respectively. Thus in order to reach at least AVX2

77

Acceleration of LDPC application on Xilinx FPGA

performance, an improvement of 160 times is required. Given that partitioning
cannot be used because of the code structure itself and thus the unrolling is not
fully exploited, the current code cannot achieve those results using HLS techniques.
In other words the code structure should be hardly modified in order to be optimum
for the execution+

on an FPGA.

4.5 Results summary
So far three implementation have been presented, starting from the porting of the
CUDA code in OpenCL language to the last one which has all the optimizations
available in HLS that can minimize the execution of the application. Thus, for the
current code structure nothing can be done to greatly improve the performance.
In the following, a summary table providing the execution times of all the solution
is reported. Also the software emulation time is shown to see what is the software
acceleration of the application. The software emulation is run on the same processor
of AVX2 solution.

Hardware Execution
Time [ms]

GPU P2000 0.107589
AVX2 @3.2 GHz 0.257549
FPGA solution 1 38550
FPGA solution 2 98.849
FPGA solution 3 41.152

Software Execution
Time [ms]

Solution 1 267.653
Solution 2 72.73
Solution 3 88.2984

Table 4.14. Execution time comparison between the proposed solutions. Hard-
ware results are shown and software emulation times are reported.

Even with unrolling and pipelining the AVX2 performance, which are worse than
the GPU one, are 160x times better than the decoder for FPGA. The source code
used is optimum for the GPU whose performance are the best.
Ideally, a good code for FPGA applications should have the inner most loop with a
fixed trip count in order to unroll and eventually partition the memory. In this case
the outermost loop, which is the NDRange loop of the work items, has a fixed loop
bound, meanwhile the inner loops have a variable loop bound. As demonstrated
by the table 4.11 and by Vivado HLS log file in listing 4.7, the tool is not able to
unroll and partition the memory efficiently, because the logic introduced increases
the latency . Hence loop unrolling is performed but not 100% used.
In practice, the following loop structure:

78

Acceleration of LDPC application on Xilinx FPGA

for (i =0; i<n_work_items−1; i++){
for (j =0; j<s ; j++){

[. . .]
}

}
Listing 4.8. Optimum nested loops structure for GPUs but worst for FPGAs

is optimum for GPUs, this explains why the GPU solution is twice faster than
AVX2. For GPUs the execution of work items is parallel (single input multiple
data) according to the available number of compute units and each work group will
execute the loops with a fixed loop bound. For FPGAs instead the work items are
executed sequentially, therefore to achieve the performance of a GPU, one should
have the opposite situation, in other words the two loops should be reversed. In
this way the inner loop can be easily unrolled and the memories can be efficiently
partitioned to provide an II equals to one.
In general one can say that:

• it is difficult for the HLS tool to synthesize efficiently loops with variable
iteration count. To solve this issue one can force the loop bound to be static
and an if statement can be used to enable the execution of the loop body.

• To maximize local memory data transfer one wants to have one memory bank
per loop access, in this way the full unrolling is extremely effective. This
powerful combination is only available if the loop with the access to the mem-
ory banks has a fixed trip count, otherwise redundant logic is added and the
performance gets worse.

In this particular case, the memories cannot even be partitioned completely because
of their size. Therefore the current kernel code cannot be improved further using
HLS techniques. Also code-level optimizations like the modulo or multiplication
ones can give some gain but not in the range of 100, in fact the hard coding allows
the application to gain 6 ms roughly per iteration.

Xilinx developed an IP1 in HDL for the entire LDPC module, this IP supports
also the standards by 3GPP for the 5G network. The performance of that IP can
be taken into account in order to have a comparison between a software solution,
like the one discussed in this thesis, and an HDL one.
From the performance table of the IP document, one can derive what is the exe-
cution time of the 5G LDPC decoder by Xilinx. Given a block length of 8448 bits,
a lifting factor of 384 and a code rate of one third, the execution time of the IP is
24.63µs for 5 iterations. It is important to be noted that this value corresponds to
the initial latency as defined in the document, which is the elapsed time between
the last input block and last output block transfers. Moreover one must consider

1https://www.xilinx.com/products/intellectual-property/ef-di-ldpc-enc-dec.html

79

https://www.xilinx.com/products/intellectual-property/ef-di-ldpc-enc-dec.html

Acceleration of LDPC application on Xilinx FPGA

that the IP is able to process up to four transport blocks concurrently, therefore
there is a drawback and an advantage. The drawback is that the initial latency is
slightly larger with respect to the single block case (as reported in the document).
The advantage is that the throughput is increased by a factor which is proportional
to the number of concurrent blocks.
The IP performance are obtained with a Xilinx device that can work at 400MHz,
hence the only device that supports the IP and that frequency value is the Kintex
Ultrascale+ xcku13p. The resource usage for the device is reported for different IP
configurations. One can compare the resource usage of the OpenCL code with the
IP one:

LUT DSP FF 36kBRAM 18kBRAM
Xilinx IP @ 454MHz 49094 0 55357 109 16
OpenCL @300MHz 331342 816 300895 777 0

Table 4.15. Resource usage comparison between Xilinx IP and last OpenCL
solution using a Kintex Ultrascale+ xcku13p device.

Finally the IP solution by Xilinx are extremely better with respect tp the last
OpenCL solution, both for performance and for resource usage. Moreover the IP
can work with more blocks in parallel at cost of some lantecy loss.

80

Chapter 5

Future Work

The results reported in chapter 4 prove that the CUDA code is not a good choice
to be deployed on an FPGA, even though the AVX2 code requires a not negligible
time to become synthesizable. Also the simulation run in OAI environment shows
that the GPU solution is at least twice faster than the CPU one. It is possible that
in the future OAI1 will release a solution for Intel processor exploiting the AVX-512
whose ISA uses 512 bits per instruction instead of 256. Thus one can estimate a
rough improvement of 2x with respect to the current AVX2 code. Therefore the
only way to accelerate the decoder of LDPC codes is to work on the AVX code.

The corresponding C functions of AVX2 are already developed and can be used
for acceleration despite a pointer cast in mm256_movemask_epi8 that can be easily
solved.
As described in chapter 3, both check node and bit node processing have a similar
structure, namely two or three nested loops iterating over LUTs to point to the
desired variable. Considering one type of nodes, it is expected to have the same
II [26] for the loops that are pipelined because of the operations that are carried
inside. Thus, the loops can be merged as done for the last solution of the OpenCL
decoder. The problem of the loops in AVX2 code is that they do not have the same
loop bound, because the amount of elements to process are different for each group
of nodes, hence loop guards must be inserted to determine when an operation can
be performed or not. Loop fusion saves some latency related to the pipeline at cost
of some complexity, since the loop guards are comparison that must be performed.

If loop fusion and loop unrolling is not feasible because there are not enough
resources on the FPGA one can decide to divide the processing of the nodes in two
big groups. Each group will have some of the groups reported in the tables A.2.
For example let us consider to rearrange the loops in the check node processing

1https://gitlab.eurecom.fr/oai/openairinterface5g/-/blob/develop/openair1/PHY/
CODING/nrLDPC_decoder/doc/nrLDPC/nrLDPC.pdf

81

https://gitlab.eurecom.fr/oai/openairinterface5g/-/blob/develop/openair1/PHY/CODING/nrLDPC_decoder/doc/nrLDPC/nrLDPC.pdf
https://gitlab.eurecom.fr/oai/openairinterface5g/-/blob/develop/openair1/PHY/CODING/nrLDPC_decoder/doc/nrLDPC/nrLDPC.pdf

Future Work

functions for base graph 1, such that two major groups are created. Let us consider
the operations as the number of bit nodes multiplied by the number of check nodes
to be processed in a check node group. Moreover let us consider also the pointer
updates as one operation to perform to elaborate the check nodes. Then one can
obtain the following table:

BNs number
of a CN 3 4 5 6 7 8 9 10 19

CNs of a group 1 5 18 8 5 2 2 1 4
Total computations 3 20 90 24 12 10 11 11 76

Table 5.1. Total number of operation for check node processing in the AVX2
code. The total number of operations are related to the base graph 1 case.

Then, if the check node groups must be divided into two bigger groups, one can
organize the groups to perform the same amount of operations:

Big Groups
number

CNs groups
in a major

group

Number of
pointers
update

Total operations
performed

1 3, 4, 5, 6 4 161+4
2 7, 8, 9, 10, 19 5 155+5

Table 5.2. Total number of operation for two big groups when pointer
updates are taken into account.

With the check node groups organization presented in the two tables above, one can
unify more loops into a single one, thus saving latency and also resources. Similarly
can be done for the bit nodes and for the BG2 case.

5G wireless network has to work with a big amount of data that is exchanged
in the channel. If a big codeword, let us say 52224 bits long, has to be decoded
then LDPC decoder has to work on two different blocks since the maximum length
supported for a codework is 26112 bits. In this case the total latency to decode the
codeword corresponds to the decoding time of two blocks. One can almost halve
the latency to decode the two message blocks by implementing a sort of pipelined
or interleaved decoder.
The basic idea behind the interleaved decoder is to remember that the processing
is divided in check node processing and bit node processing. During the execution
of one of the two processes the other one is waiting for its turn to work on the new
LLRs. If the final implementation of the decoder on FPGA allows to use almost
double of the resources, one can interleave the bit node processing and check node
processing of the two blocks mentioned above:

82

Future Work

Figure 5.1. Simplified structure of the interleaved decoder for two blocks processing.

The figure Fig.5.1 shows how the processing for the interleaved decoder can be
done. To be noted that the picture gives an idea of the processing and it is not
strictly related to the CPU or GPU codes.
If the are still some resources available on the FPGA, the interleaved decoder
requires to double the amount of the arithmetical logic because both bit nodes
and check nodes are working concurrently. Additionally it requires to double the
input and output buffers to carry onto two different rails the blocks otherwise the
processing of the blocks will be mixed up and will generate wrong results. Also a
sort of control unit is required to dispatch the intermediate results to the proper
rail.
So far the interleaved decoder requires more logic and some additional complexity
but it will almost halve the processing of the two blocks thanks to concurrency.
Since the decoder starts with the check node processing, the first block can enter
in the decoder immediately. The second block has to wait for the completion of
the check node processing and it has to wait that the first block goes into the bit
node processing. Hence the latency is reduced to the processing of a block plus the
duration time of one check node and bit node processing. This solution might be
extremely powerful for large payload size that requires more time to be decoded.
On the other hand the improvement for small transport blocks is not relevant.

83

Chapter 6

Conclusion

The goal of the thesis is to accelerate the LDPC decoder for 5G application since
it is demonstrated to be a performance critical module. The work began with the
code for Intel processors supporting AVX2 library but as discussed in chapter 3
the code requires some time to be transformed into synthesizable code for Vivado
HLS. Then the targetted code became the CUDA one. This choice is due to the
trivial porting required to have a code which is supported by the HLS tool. Even
though the porting process is easy to carry out, the final results are not best ones.
In fact the CUDA code provided by OAI is perfectly suitable for a GPU but it is
discovered being a worst case scenario for FPGAs.
GPUs use concurrent compute units to speed up intensive tasks, hence a good code
structure is the one used in this thesis, namely the outermost loop with fixed trip
count whilst the inner loops can use a variable loop bound, assuming that the inner
loop bound does not change between the work items of the same work group. In
this way the single input multiple data organization of GPUs can maximize the
concurrency.
The important feature of an FPGA is to use its flexibility to improve parallelism of
the given task. The CUDA code structure limits the performance that the FPGA
can achieve, due to the nested loops. Usually to have a good code for FPGA the
nested loops should have at least the inner one with a fixed loop bound. Then the
inner loop is unrolled and the memory elements inside of it must be partitioned
properly. The actual hardware generated will consist in a computational logic for
each loop iteration and a dedicated load or store operation for each memory bank
that has been created after partitioning. This is the most powerful combination in
an FPGA to improve parallelism.
The OpenCL code that is derived from the CUDA one was extremely slow if com-
pared to the AVX2 and GPU implementation, in fact it was 358308x slower. The
first encountered bottleneck is related to the DRAM data transfer, the DRAM con-
troller introduces lot of latency when trying to access the off chip memory. For
this reason most of the data transfer has been moved on chip exploiting the local

84

Conclusion

memory. This solution provides a speed up of 390x.
Then the critical loop of the application have been unrolled and the memory have
been partitioned. To choose the optimum number of local memory banks several
cases are explored. The first one is based on the worst case latency of the loops
which corresponds to the maximum loop bound. The second one is related to the
average loop bound. Then all possible combination are explored but none of them
provides the expected result to achieve the performance of the GPU solution. In
fact the loop structure described before does not allow the HLS tool to optimize
the interconnections and the logic to have better performance. The logic intro-
duced to access the memory banks almost triplicates the latency. Neither the work
items pipelining managed to achieve good performance. The final presented solu-
tion halved the execution time of the decoder but it is still far from AVX2 and
GPU implementation. Hence the final ratio of the execution time of the GPU over
the FPGA one is 382x.
Finally one can states that for high level synthesis design that targets FPGAs the
starting code is extremely important. To fully exploit the parallelism that the
FPGA can guarantee, one must pipeline the outer loop and unroll the inner ones,
assuming a fixed inner loop bound.

85

Appendices

86

Appendix A

Appendix A reports the tables which are complementary to what is explained in
the main chapters. Some tables come from the 3GPP reports, other from the the
OAI documentation provided with the AVX2 code1.

A.1 Lifting sizes in 5G NR
In the technical specification document [22], 3GPP reports a table of the supported
lifting factors for 5G. They are listed according to a lifting index and the table is
shown here for sake of completeness:

Lift index i_{LS} Lifting factor Z_C
0 2, 4, 8, 16, 32, 64, 128, 256
1 3, 6, 12, 24, 48, 96, 192, 384
2 5, 10, 20, 40, 80, 160, 320
3 7, 14, 28, 56, 112, 224
4 9, 18, 36, 72, 144, 288
5 11, 22, 44, 88, 176, 352
6 13, 26, 52, 104, 208
7 15, 30, 60, 120, 240

Table A.1. Lifting factor ZC table in 5G NR by 3GPP standards

A.2 Bit nodes and check node groups
In the following table the group organization for check nodes and bit nodes in the
CPU solution is reported. The values shown are related to the base graph, hence

1https://gitlab.eurecom.fr/oai/openairinterface5g/-/blob/develop/openair1/PHY/
CODING/nrLDPC_decoder/doc/nrLDPC/nrLDPC.pdf

87

https://gitlab.eurecom.fr/oai/openairinterface5g/-/blob/develop/openair1/PHY/CODING/nrLDPC_decoder/doc/nrLDPC/nrLDPC.pdf
https://gitlab.eurecom.fr/oai/openairinterface5g/-/blob/develop/openair1/PHY/CODING/nrLDPC_decoder/doc/nrLDPC/nrLDPC.pdf

the actual value used during processing is obtained by multiplying an entry of the
table for the lifting factor ZC . Each column represents a group.

BNs per CN 3 4 5 6 7 8 9 10 19
CNs in BG1 1 5 18 8 5 2 2 1 4
CNs in BG2 6 20 9 3 0 2 0 2 0

CNs per BN 1 4 5 6 7 8 9 10 11 12 13 14 15 16 22 23 28 30
BN in BG1 42 1 1 2 4 3 1 4 3 4 1 0 0 0 0 0 1 1
BN in BG2 38 0 2 1 1 1 2 1 0 1 1 1 0 1 1 1 0 0

Table A.2. Bit node and check node group organization in OAI code for
Intel processors. The first table shows the check node groups, the second one
reports the bit node groups

A.3 Perfomance of AVX2 decoder from OAI doc-
umentation

In the following, the duration time of the functions related to the decoder for intel
processors is shown. The table has been taken from the document present in the
repository of OAI1 and it is reported only as a reference for the explanation in
chapter 3.

Function Time [µs] (R=1/3) Time [µs] (R=2/3) Time [µs] (R=8/9)
llr2llrProcBuf 2.1 1.2 0.9
llr2CnProcBuf 10.6 5.4 2.9
cnProc 89.8 66.3 50.0
bnProcPc 28.1 12.4 7.1
bnProc 17.1 8.1 4.8
cn2bnProcBuf 38.7 17.1 9.3
bn2cnProcBuf 25.6 12.7 7.2
llrRes2llrOut 0.8 0.4 0.3
llr2bit 0.9 0.4 0.3
Total 214.6 124.6 83.6

Table A.3. Execution time from OAI documentation of LDPC decoder. The
execution time of each AVX2 function is reported for different code rates. ZC=384,
block length 8448, 5 iterations and BG1

88

Appendix B

Appendix B reports the source code regarding the decoder. Both CPU and GPU
codes are provided below to support the explanation of the main chapters.

B.1 Gaussian noise generator
In the following listing the code to generate the gaussian noise for the transmitted
codeword is reported1:
1 double gaussdouble (double mean , double var iance)
2 {
3 stat ic int i s e t =0;
4 stat ic double gs e t ;
5 double fac , r , v1 , v2 ;
6
7 i f (i s e t == 0) {
8 do {
9 v1 = 2.0∗ uniformrandom () −1.0;
10 v2 = 2.0∗ uniformrandom () −1.0;
11 r = v1∗v1+v2∗v2 ;
12 } while (r >= 1 . 0) ;
13 f a c = sq r t (−2.0∗ log (r) / r) ;
14 g s e t= v1∗ f a c ;
15 i s e t =1;
16 return (s q r t (var iance) ∗v2∗ f a c + mean) ;
17 } else {
18 i s e t =0;
19 return (s q r t (var iance) ∗ g s e t + mean) ;
20 }
21 }

1https://gitlab.eurecom.fr/oai/openairinterface5g/-/blob/master/openair1/
SIMULATION/TOOLS/rangen_double.c

89

https://gitlab.eurecom.fr/oai/openairinterface5g/-/blob/master/openair1/SIMULATION/TOOLS/rangen_double.c
https://gitlab.eurecom.fr/oai/openairinterface5g/-/blob/master/openair1/SIMULATION/TOOLS/rangen_double.c

B.2 Structures of the decoder for CPUs
The decoder version for Intel x86 processors exploits a structure made of pointers
to processing buffers2. Each process in the decoder has and input and an output
buffer, each of them is a vector of int8_t elements.

1 int8_t ∗ cnProcBuf ; /∗∗< CN proce s s ing b u f f e r ∗/
2 int8_t ∗ cnProcBufRes ; /∗∗< Buf fer f o r CN proce s s ing r e s u l t s ∗/
3 int8_t ∗ bnProcBuf ; /∗∗< BN proce s s ing b u f f e r ∗/
4 int8_t ∗ bnProcBufRes ; /∗∗< Buf fer f o r BN proce s s ing r e s u l t s ∗/
5 int8_t ∗ l l rR e s ; /∗∗< Buf fer f o r LLR r e s u l t s ∗/
6 int8_t ∗ l l rProcBu f ; /∗∗< LLR proce s s ing b u f f e r ∗/

Listing B.1. t_nrLDPC_procBuf data structure for buffers

For the check node processing the corresponding input and output buffers are
cnProcBuf and cnProcBufRes, regarding the bit node processing function instead
they are bnProcBuf and bnProcBufRes respectively. The llrRes buffer instead is
the output buffer, whilst llrProcBuf is used for LLRs intermediate results.

Regarding the profiling of the CPU decoder, OAI provides a structure of
time_stats_t variables, each variable referes to a function of the decoder2:

1 typedef struct nrLDPC_time_stats {
2 time_stats_t l l r 2 l l r P r o cBu f ; /∗∗< S t a t i s t i c s f o r f unc t i on

l l r 2 l l r P r o c B u f ∗/
3 time_stats_t l lr2CnProcBuf ; /∗∗< S t a t i s t i c s f o r f unc t i on

l lr2CnProcBuf ∗/
4 time_stats_t cnProc ; /∗∗< S t a t i s t i c s f o r f unc t i on cnProc ∗/
5 time_stats_t cnProcPc ; /∗∗< S t a t i s t i c s f o r f unc t i on cnProcPc ∗/
6 time_stats_t bnProcPc ; /∗∗< S t a t i s t i c s f o r f unc t i on bnProcPc ∗/
7 time_stats_t bnProc ; /∗∗< S t a t i s t i c s f o r f unc t i on bnProc ∗/
8 time_stats_t cn2bnProcBuf ; /∗∗< S t a t i s t i c s f o r f unc t i on

cn2bnProcBuf ∗/
9 time_stats_t bn2cnProcBuf ; /∗∗< S t a t i s t i c s f o r f unc t i on

bn2cnProcBuf ∗/
10 time_stats_t l l rR e s 2 l l rOu t ; /∗∗< S t a t i s t i c s f o r f unc t i on

l l r R e s 2 l l r O u t ∗/
11 time_stats_t l l r 2 b i t ; /∗∗< S t a t i s t i c s f o r f unc t i on l l r 2 b i t ∗/
12 time_stats_t t o t a l ; /∗∗< S t a t i s t i c s f o r t o t a l p roce s s ing time ∗/
13 } t_nrLDPC_time_stats ;

Listing B.2. t_nrLDPC_time_stats data structure for profiling

2https://gitlab.eurecom.fr/oai/openairinterface5g/-/blob/develop/openair1/PHY/
CODING/nrLDPC_decoder/nrLDPC_types.h

90

https://gitlab.eurecom.fr/oai/openairinterface5g/-/blob/develop/openair1/PHY/CODING/nrLDPC_decoder/nrLDPC_types.h
https://gitlab.eurecom.fr/oai/openairinterface5g/-/blob/develop/openair1/PHY/CODING/nrLDPC_decoder/nrLDPC_types.h

Appendix C

Appendix C is dedicated to AVX2 subject. This appendix shows a summary table
with all the functions used by the decoder. Also the C code of those functions is
shown.

C.1 AVX2 instructions in LDPC decoder
In the following table the AVX2 instructions used by OAI to implement the decoder
for Intel CPUs is reported, a brief explanation of each function is also provided. To
get the complete name of a function the prefix __mm256i must be added.

Instruction Input params Description Return type
min_epu8 __m256i a

__m256i b
Comparison be-
tween bytes of a
and b

__m256i

abs_epi8 __m256i a Returns the abso-
lute value of 32
bytes in a

__m256i

sign_epi8 __m256i a
__m256i b

If a byte in b is nega-
tive negate the byte
in a, if b is zero
then the result byte
is zero otherwise it is
a

__m256i

movemask_epi8 __mm256i a Extraction of each
byte sign

int

91

adds_epi8 __m256i a
__m256i b

Addition with satu-
ration of each byte

__m256i

_cvtepi8_epi16 __m128i a Each byte of a is sign
extended to 16 bits

__m256i

adds_epi16 __m256i a
__m256i b

Addition performed
on 2 Bytes with sat-
uration

__m256i

packs_epi16 __m256i a
__m256i b

Packs 16 bits of a and
b into a single 256
vector byte aligned

__m256i

permute4x64_epi64 __m256i a
const int imm8

Rearrange a accord-
ing to imm8

__m256i

subs_epi8 __m256i a
__m256i b

Subtraction of bytes
between a and b with
saturation

__m256i

shuffle_epi8 __m256i a
__m256i b

Shuffles the bytes of a
according to the ones
of b

__m256i

movemask_epi8 __m256i a Create a mask from
the bytes sign of a

int

and_si256 __m256i a
__m256i b

Bitwise logical AND
of signed vectors

__m256i

cmpgt_epi8 __m256i a
__m256i b

Performs a > b __m256i

Table C.1. AVX2 instructions adopted for the decoder

More explanations and pseudo-code can be found in Intel web page:
https://software.intel.com/sites/landingpage/IntrinsicsGuide

C.2 AVX2 functions C version
Each function in table C.1 has been re-written in C programming language to be
synthesizable, in the following list the code of each function is reported:

1 m256i mm256_abs_epi8 (m256i a) {
2 int8_t ∗ p_a ;
3 p_a=(int8_t ∗) a . data ;
4 m256i d e s t ={{0 ,0 ,0 ,0}};
5 int8_t ∗ p_dest ; ;
6 p_dest=(int8_t ∗) d e s t . data ;
7 int i ;
8 for (i =0; i <32; i ++){
9 i f (∗p_a < 0)

10 ∗ p_dest = (∗p_a ^ 0xFF) +1;
11 e l s e

92

https://software.intel.com/sites/landingpage/IntrinsicsGuide

12 ∗ p_dest = ∗p_a ;
13 p_a++;
14 p_dest++;
15 }
16 return d e s t ;
17 }
18
19 m256i mm256_and_si256 (m256i a , m256i b) {
20 int8_t ∗ p_a = (int8_t ∗) a . data ;
21 int8_t ∗ p_b = (int8_t ∗) b . data ;
22 m256i d e s t ={{0 ,0 ,0 ,0}};
23 int8_t ∗ p_dest = (int8_t ∗) d e s t . data ;
24 int i ;
25 for (i =0; i <32; i ++){
26 ∗ p_dest = ∗p_a & ∗p_b ;
27 p_a++;
28 p_b++;
29 p_dest++;
30 }
31 return d e s t ;
32 }
33
34 m256i mm256_cmpgt_epi8 (m256i a , m256i b) {
35 int8_t ∗ p_a = (int8_t ∗) a . data ;
36 int8_t ∗ p_b = (int8_t ∗) b . data ;
37 m256i d e s t ={{0 ,0 ,0 ,0}};
38 int8_t ∗ p_dest = (int8_t ∗) d e s t . data ;
39 int i ;
40 for (i =0; i <32; i ++){
41 ∗ p_dest = (∗p_a > ∗p_b) ? 0xFF : 0 ;
42 p_a++;
43 p_b++;
44 p_dest++;
45 }
46 return d e s t ;
47 }
48
49 m256i mm256_min_epu8(m256i a , m256i b) {
50 int8_t ∗ p_a = (int8_t ∗) a . data ;
51 int8_t ∗ p_b = (int8_t ∗) b . data ;
52 m256i d e s t ={{0 ,0 ,0 ,0}};
53 int8_t ∗ p_dest = (int8_t ∗) d e s t . data ;
54 int i ;
55 for (i =0; i <32; i ++){
56 i f ((uint8_t) ∗p_a > (uint8_t) ∗p_b)
57 ∗ p_dest = ∗p_b ;
58 e l s e
59 ∗ p_dest = ∗p_a ;
60 p_a++;
61 p_b++;
62 p_dest++;
63 }
64 return d e s t ;
65 }
66
67 int mm256_movemask_epi8 (m256i a) {
68 uint8_t ∗ p_a = (uint8_t ∗) a . data ;
69 int i ;
70 int MSB;
71 int mask = 0 ;
72 for (i =0; i <32; i ++){
73 // t o expand 8 b i t s t o 32 , 24 z e r o e s are padded @ msb s i d e
74 MSB = (∗p_a >> 7) & 0 x00000001 ;
75 mask = mask | (MSB << (i)) ;
76 p_a++;
77 }
78 return mask ;
79 }
80
81 m256i mm256_subs_epi8 (m256i a , m256i b) {
82 int8_t ∗ p_a = (int8_t ∗) a . data ;
83 int8_t ∗ p_b = (int8_t ∗) b . data ;
84 m256i d e s t ={{0 ,0 ,0 ,0}};
85 int8_t ∗ p_dest = (int8_t ∗) d e s t . data ;
86 int16_t subs ; // t o h a n d l e o v e r f l o w
87 int i ;
88 for (i =0; i <32; i ++){
89 subs = ∗p_a − ∗p_b ;
90 i f (subs < −128)
91 ∗ p_dest = −128;
92 e l s e i f (subs > 127)
93 ∗ p_dest = 1 2 7 ;
94 e l s e

93

95 ∗ p_dest = (int8_t) subs ;
96 p_a++;
97 p_b++;
98 p_dest++;
99 }

100 return d e s t ;
101 }
102
103 m256i mm256_sign_epi8 (m256i a , m256i b) {
104 int8_t ∗ p_a = (int8_t ∗) a . data ;
105 int8_t ∗ p_b = (int8_t ∗) b . data ;
106 m256i d e s t ={{0 ,0 ,0 ,0}};
107 int8_t ∗ p_dest = (int8_t ∗) d e s t . data ;
108 int i ;
109 for (i =0; i <32; i ++){
110 i f (∗p_b < 0)
111 ∗ p_dest = ∗p_a ∗(−1) ;
112 e l s e i f (∗p_b == 0)
113 ∗ p_dest = 0 ;
114 e l s e
115 ∗ p_dest = ∗p_a ;
116 p_a++;
117 p_b++;
118 p_dest++;
119 }
120 return d e s t ;
121 }
122
123 m256i mm256_shuffle_epi8 (m256i a , m256i b) {
124 int8_t ∗ p_a = (int8_t ∗) a . data ;
125 int8_t ∗ p_b = (int8_t ∗) b . data ;
126 m256i d e s t ={{0 ,0 ,0 ,0}};
127 int8_t ∗ p_dest = (int8_t ∗) d e s t . data ;
128 int arr_a [3 2] ;
129 int i ;
130 for (i =0; i <32; i ++){
131 arr_a [i] = ∗p_a ;
132 p_a++;
133 }
134 // msb p a r t
135 for (i =0; i <16; i ++){
136 i f (∗p_b & 0 x80)
137 ∗ p_dest = 0 ;
138 e l s e
139 ∗ p_dest = arr_a [∗ p_b & 0x0F] ;
140 p_b++;
141 p_dest++;
142 }
143 // l s b p a r t
144 for (i =0; i <16; i ++){
145 i f (∗p_b & 0 x80)
146 ∗ p_dest = 0 ;
147 e l s e
148 ∗ p_dest = arr_a [16+(∗p_b & 0x0F)] ;
149 p_b++;
150 p_dest++;
151 }
152 return d e s t ;
153 }
154
155 m256i mm256_permute4x64_epi64 (m256i a , int8_t b) {
156 m256i d e s t ;
157 switch (b & 0 x03) { // c h e c k i n g b i t s 0−1
158 case 0 :
159 d e s t . data [0] = a . data [0] ;
160 break ;
161 case 1 :
162 d e s t . data [0] = a . data [1] ;
163 break ;
164 case 2 :
165 d e s t . data [0] = a . data [2] ;
166 break ;
167 case 3 :
168 d e s t . data [0] = a . data [3] ;
169 break ;
170 default : ;
171 break ;
172 }
173 switch ((b>>2 & 0 x03)) { // c h e c k i n g b i t s 2−3
174 case 0 :
175 d e s t . data [1] = a . data [0] ;
176 break ;
177 case 1 :

94

178 d e s t . data [1] = a . data [1] ;
179 break ;
180 case 2 :
181 d e s t . data [1] = a . data [2] ;
182 break ;
183 case 3 :
184 d e s t . data [1] = a . data [3] ;
185 break ;
186 default : break ;
187 }
188 switch ((b>>4 &0x03)) { // c h e c k i n g b i t s 4−5
189 case 0 :
190 d e s t . data [2] = a . data [0] ;
191 break ;
192 case 1 :
193 d e s t . data [2] = a . data [1] ;
194 break ;
195 case 2 :
196 d e s t . data [2] = a . data [2] ;
197 break ;
198 case 3 :
199 d e s t . data [2] = a . data [3] ;
200 break ;
201 default : ;
202 break ;
203 }
204 switch ((b>>6 &0x03)) { // c h e c k i n g b i t s 6−7
205 case 0 :
206 d e s t . data [3] = a . data [0] ;
207 break ;
208 case 1 :
209 d e s t . data [3] = a . data [1] ;
210 break ;
211 case 2 :
212 d e s t . data [3] = a . data [2] ;
213 break ;
214 case 3 :
215 d e s t . data [3] = a . data [3] ;
216 break ;
217 default : ;
218 break ;
219 }
220 return d e s t ;
221 }
222
223 m256i mm256_packs_epi16 (m256i a , m256i b) {
224 int16_t ∗ p_a = (int16_t ∗) a . data ;
225 int16_t ∗ p_b = (int16_t ∗) b . data ;
226 m256i d e s t ={{0 ,0 ,0 ,0}};
227 int8_t ∗ p_dest = (int8_t ∗) d e s t . data ;
228 int i ;
229 int16_t tmp ; // f o r s a t u r a t i o n
230 for (i =0; i <8; i ++){
231 tmp = ∗p_a ;
232 i f (tmp < −128)
233 ∗ p_dest = −128;
234 e l s e i f (tmp > 127)
235 ∗ p_dest = 1 2 7 ;
236 e l s e ∗ p_dest = tmp ;
237 p_dest++;
238 p_a++;
239 }
240 for (i =0; i <8; i ++){
241 tmp = ∗p_b ;
242 i f (tmp < −128)
243 ∗ p_dest = −128;
244 e l s e i f (tmp > 127)
245 ∗ p_dest = 1 2 7 ;
246 e l s e ∗ p_dest = tmp ;
247 p_dest++;
248 p_b++;
249 }
250 for (i =0; i <8; i ++){
251 tmp = ∗p_a ;
252 i f (tmp < −128)
253 ∗ p_dest = −128;
254 e l s e i f (tmp > 127)
255 ∗ p_dest = 1 2 7 ;
256 e l s e ∗ p_dest = tmp ;
257 p_dest++;
258 p_a++;
259 }
260 for (i =0; i <8; i ++){

95

261 tmp = ∗p_b ;
262 i f (tmp < −128)
263 ∗ p_dest = −128;
264 e l s e i f (tmp > 127)
265 ∗ p_dest = 1 2 7 ;
266 e l s e ∗ p_dest = tmp ;
267 p_dest++;
268 p_b++;
269 }
270 return d e s t ;
271 }
272
273 // p o s i t i o n i o f a g i v e n d a t a has t h e MSB part , i +1 has t h e LSB p a r t o f t h e r e s u l t
274 m256i mm256_adds_epi16 (m256i a , m256i b) {
275 int16_t ∗ p_a = (int16_t ∗) a . data ;
276 int16_t ∗ p_b = (int16_t ∗) b . data ;
277 m256i d e s t ={{0 ,0 ,0 ,0}};
278 int16_t ∗ p_dest = (int16_t ∗) d e s t . data ;
279 int adds ;
280 int i ;
281 for (i =0; i <16; i ++){
282 adds = ∗p_a + ∗p_b ;
283 i f (adds < −32768)
284 ∗ p_dest = −32768;
285 e l s e i f (adds > 32767)
286 ∗ p_dest = 3 2 7 6 7 ;
287 e l s e
288 ∗ p_dest = adds ;
289 p_a++;
290 p_b++;
291 p_dest++;
292 }
293 return d e s t ;
294 }
295
296 m256i mm256_cvtepi8_epi16 (m128i a) {
297 int8_t ∗ p_a = (int8_t ∗) a . data ;
298 m256i d e s t ={{0 ,0 ,0 ,0}};
299 int16_t ∗ p_dest = (int16_t ∗) d e s t . data ;
300 int i ;
301 for (i =0; i <16; i ++){
302 ∗ p_dest = (int16_t) ∗p_a ;
303 p_a++;
304 p_dest++;
305 }
306 return d e s t ;
307 }

Listing C.1. Synthesizable AVX2 functions written in C language. Function
parameters passed by value

96

Bibliography

[1] M. B. Yassein, S. Aljawarneh, and A. Al-Sadi. “Challenges and features of IoT
communications in 5G networks”. In: 2017 International Conference on Elec-
trical and Computing Technologies and Applications (ICECTA). 2017, pp. 1–
5.

[2] J. García-Morales, M. C. Lucas-Estañ, and J. Gozalvez. “Latency-Sensitive
5G RAN Slicing for Industry 4.0”. In: IEEE Access 7 (2019), pp. 143139–
143159.

[3] J. Sköld E. Dahlman S. Parkvall. 5G NR The next generation wireless access
technology. Academic Press, 2018.

[4] 3GPP. “Study on Scenarios and Requirements for NextGeneration Access
Technologies”. In: TR 38.91 (2017).

[5] R. G. Gallager. Low-density parity-check codes. Monograph. M.I.T. Press,
1963.

[6] Ahmad Khan. “Comparison of Turbo Codes and Low Density Parity Check
Codes”. In: IOSR Journal of Electronics and Communication Engineering 6
(Jan. 2013), pp. 11–18. doi: 10.9790/2834-0661118.

[7] Tom Richardson and Shrinivas Kudekar. “Design of Low-Density Parity Check
Codes for 5G New Radio”. In: IEEE Communications Magazine 56 (Mar.
2018), pp. 28–34. doi: 10.1109/MCOM.2018.1700839.

[8] Alaa Hassan, M.I. Dessouky, Atef Abouelazm, and Mona Shokair. “Evaluation
of Complexity Versus Performance for Turbo Code and LDPC Under Different
Code Rates”. In: Jan. 2012.

[9] R. Tanner. “A recursive approach to low complexity codes”. In: IEEE Trans-
actions on Information Theory 27.5 (1981), pp. 533–547.

[10] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke. “Design of capacity-
approaching irregular low-density parity-check codes”. In: IEEE Transactions
on Information Theory 47.2 (2001), pp. 619–637.

[11] P. Possa, D. Schaillie, and C. Valderrama. “FPGA-based hardware accelera-
tion: A CPU/accelerator interface exploration”. In: 2011 18th IEEE Interna-
tional Conference on Electronics, Circuits, and Systems. 2011, pp. 374–377.

97

https://doi.org/10.9790/2834-0661118
https://doi.org/10.1109/MCOM.2018.1700839

BIBLIOGRAPHY

[12] Vivado Design Suite User Guide: High-Level Synthesis (UG902/2018.2). Xil-
inx. 2018.

[13] SDAccel Programmers Guide UG1277. Xilinx. 2018.
[14] T. Richardson and R. Urbanke.Modern Coding Theory. Cambridge University

Press, 2007.
[15] K. Sunil, P. Jayaraj, and K.P. Soman. “Message Passing Algorithm: A Tutorial

Review”. In: IOSR Journal of Computer Engineering (IOSRJCE) 2 (2012),
pp. 12–24.

[16] T. T. B. Nguyenand T. N. Tan and H. Lee. “Efficient QC-LDPC Encoder for
5G New Radio”. In: Electronics 8.668 (2019).

[17] H. Wu and H. Wang. “A High Throughput Implementation of QC-LDPC
Codes for 5G NR”. In: IEEE Access 7 (2019), pp. 185373–185384.

[18] A. A. Emran and M. Elsabrouty. “Simplified variable-scaled min sum LDPC
decoder for irregular LDPC codes”. In: 2014 IEEE 11th Consumer Commu-
nications and Networking Conference (CCNC). 2014, pp. 518–523.

[19] D. J. C. MacKay. “Good error-correcting codes based on very sparse matri-
ces”. In: IEEE Transactions on Information Theory 45.2 (1999), pp. 399–431.

[20] M. P. C. Fossorier, M. Mihaljevic, and H. Imai. “Reduced complexity iterative
decoding of low-density parity check codes based on belief propagation”. In:
IEEE Transactions on Communications 47.5 (1999), pp. 673–680.

[21] Hai Zhu, Liqun Pu, Hengzhou Xu, and Bo Zhang. “Construction of Quasi-
Cyclic LDPC Codes Based on Fundamental Theorem of Arithmetic”. In:
Wireless Communications and Mobile Computing 2018 (Apr. 2018), pp. 1–
9. doi: 10.1155/2018/5264724.

[22] 3GPP. “Multiplexing and channel coding”. In: TS 38.212 NR (2018).
[23] 3GPP. “Medium Access Control (MAC) protocol specification”. In: (2019).
[24] OpenCL API 1.2 Reference Guide. Khronos Group. 2011.
[25] SDAccel Environment Profiling and Optimization Guide UG1207 (v2018.2).

Xilinx. 2018.
[26] Johannes de Fine Licht, Maciej Besta, S. Meierhans, and Torsten Hoefler.

“Transformations of High-Level Synthesis Codes for High-Performance Com-
puting”. In: CoRR abs/1805.08288 (May 2018).

98

https://doi.org/10.1155/2018/5264724

	List of Tables
	List of Figures
	Listings
	Abbreviations and Acronyms
	Introduction
	Low density parity check codes
	Encoding
	Tanner Graph
	Decoding
	Message passing algorithm
	Minimum sum algorithm

	LDPC in OpenAirInterface
	Testbench
	Decoder for Intel processors
	OpenairInterface implementation of LDPC decoder for Intel processors
	Check node processing
	Bit node processing
	From LLR to bit
	Buffer transfer

	Synthesizable AVX2 instructions
	Structures and vectors dimension reduction
	AVX2 in C language
	Results of the adaption of the AVX2 decoder code

	LDPC decoder for GPUs
	LDPC in CUDA language

	Acceleration of LDPC application on Xilinx FPGA
	SDAccel environment
	Porting of CUDA code in OpenCL
	Software emulation build
	Hardware build results

	Memory architecture optimization
	Local memory implementation
	Burst accesses and memory ports widening
	Hardware build results

	Improving parallelism
	Loop fusion
	Loop unrolling and array partitioning
	Optimizing critical operations
	Hardware build results

	Results summary

	Future Work
	Conclusion
	Appendices
	Lifting sizes in 5G NR
	Bit nodes and check node groups
	Perfomance of AVX2 decoder from OAI documentation

	Bibliography

