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Chapter 1

Introduction

Although ultrasound is widely used in biomedical imaging, acoustic manip-
ulation of �uids and particles on the micro to nanoscale is still at research
level. Acoustic streaming represents one of the very few inertial phenomena
that may play a signi�cant role in micro�uidic devices.
The goal of this Master thesis is to analyze a phoenomenon called acous-
tic streaming, which is generated by a nonlinear acoustic �eld with a �nite
amplitude propagating in a viscid1 �uid [1]. The acoustic �eld is radiated
by an InterDigitated Transducer (IDT), which creates a Surface Acoustic
Wave (SAW) propagating at the surface of a piezoelectric layer. Other ways
of exciting acoustic streaming are possible, as it is reported in the following
in this chapter.
In particular �rst it is presented a general overview of the phoenomenon
and its current applications.
In chapter 2 the fundamental mathematical models are detailed, dedicating
high focus on the analytical description of surface acoustic waves (SAW)
and how the non-linearities of acoustic streaming are taken into account.
The third chapter shows the results of numerical simulations aimed to study
how the geometrical properties of the piezoelectric substrate, and the oper-
ating frequency, a�ect the characteristics of SAW.
The outcomes of FEA (Finite Element Analysis) simulations of acoustic
streaming are discussed in chapter 4. In particular, it has been decided to
limit the study to 2D cases and brie�y describe how a 3D analysis should
be carried out.
The �nal chapter presents the general conclusions based on the previous
chapters, and make suggestions for interesting future work.

1.1 Interdigitated transducers and SAW

SAW devices are widely in MEMs applications because of the great ca-
pability they o�er in controlling and processing electrical signals[2]. First
reported by White and Voltmer in 1965 [3], an interdigitated transducer

1Referred to a �uid whose viscosity is non-zero.
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4 CHAPTER 1. INTRODUCTION

(IDT) is "a device that consists in two interlocking comb-like arrays of
metallic electrodes deposited on the surface of a piezoelectric substrate to
form a periodic alternating pattern"[4], as displayed in �g. 1.1.

Figure 1.1: Abstract scheme of three couples of electrodes. In this p is the
periodicity of the device, and A is the aperture of the electrodes[4].

Before discussing the technical aspects, it is fundamental to clarify two
terms:

• interdigitated refers to a "digit-like (or �nger-like) periodic pattern of
parallel in-plane electrodes used to build up the capacitance associated
with the electric �elds that penetrate into the material sample"[5];

• wavelength could refer to the radiation wavelength of electromagnetic
waves (equal to c

f
, with c being the speed of light and f the operating

frequency), or to the spatial wavelength of a geometrical structure (the
distance between the centerlines of the adjacent �ngers belonging to
the same electrode, indicated in �g. 1.1 as p)[5].

One of the combs is connected to ground, while the other one is used to
propagate an electrical signal: the spatially periodic electric �eld produces
a corresponding periodic mechanical strain pattern by piezoelectric e�ect
(this phenomenon will be mathematically discussed in section 2). It results
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in two surface acoustic waves radiating towards both the directions and
orthogonally to the electrodes [6].
Interdigitated transducers are proven to better operate when the wavelength
λ of the radiated SAW matches the transducer periodicity p, and so when
the working frequency is f = c

p
.

Interdigitated transducers are worth for the generation of surface acoustic
waves (SAW), which are acoustic waves travelling along the surface of an
elastic material.
It is possible to distinguish mostly four di�erent types of SAW:

• Lamb waves, displayed in �g. 1.2, travelling in elastic plates

Figure 1.2: Abstract drawing of Lamb waves: (a) simmetric mode (b) an-
tysimmetric mode[7]

• Love waves, which are "horizontally polarized shear waves guided
by a thin elastic layer set on another elastic solid substrate"[8]. They
are shown in �g. 1.3

Figure 1.3: Abstract drawing of Love waves[9]

• Stoneley waves, travelling along solid-solid interfaces;
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• Scholte waves, travelling along solid-�uid interfaces;

• Rayleigh waves, travelling along vacuum-solid interfaces

Figure 1.4: Abstract drawing of a Rayleigh wave. P indicates the particle
movement generating p-waves (transverse waves), while SV refers to the
propagation of s-waves (longitudinal waves) [10]

Moreover, also pseudo-surface waves should be considered: they appear
in certain crystals when, because of anisotropy, the Rayleigh wave velocity
is greater than that of one of the bulk transverse waves[11].
As much as concerns this Master thesis, only Rayleigh waves are taken into
account (it can be shown that a Lamb wave transforms into a Rayleigh
wave as the thickness of the substrate increases with respect to the wave
amplitude[12]).
Rayleigh waves on a solid are similar to surface waves on a liquid, in that
particle motion is elliptical[13], as pictured in �g. 1.4. This peculiarity is
proven in chapter 2, where full mathematical models are developed.
However, there are di�erences in direction and restoring forces: in solids
their nature is elastic, while in liquids it is gravitational and linked to sur-
face tension[13].
An interesting aspect of SAWs is the propagation speed across the medium,
which is lower than the counterpart BAW speed of sound, so causing the
wave and its energy to be trapped at the surface[14]. Moreover, "their
strong �uid-structural coupling allows to the presence of most of the energy
adjacent to the interface, which is responsible for extreme accelerations".
Indeed, if it considered the acoustic velocity to be 1m/s, an operating fre-
quency of 10MHz causes the accelation to be ≈ 107m/s2: "SAW-based
micro�uidics permits the delivery of a complete micro�uidics solution at
the microscale (sample preparation, analyte detection...), which is essential
for lab-on-chip devices"[14].
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Most of the IDT device generate acoustic waves towards two opposite di-
rections, perpendicularly to the upper piezoelectric surface.
When an acoustic wave propagates on the surface through an IDT's periodic
structure, it is partially re�ected at each �nger. Depending on the operating
frequency of the acoustic wave, the re�ected parts interfere constructively
or destructively. Generally these re�ections are very small and therefore,
in the following analysis the e�ect of the re�ections is discarded and it is
assumed that a surface wave propagates though each IDT only once[2].
They reveal to be fundamental when designing single-phase unidirec-
tional transducers (SPUDTs), "a class of UDTs able to overcome the
bidirectionality issue without occupying any additional substrate space and
are easily fabricated"[15]. In this case, "internal mechanical re�ections are
included in order to cancel the e�ect of the regenerated re�ections at one
of the acoustic ports (forward or backward), so that the net re�ection coef-
�cient is made null in the pass band if the device is properly matched"[9].
The associated drawbacks are a reduction in total SAW energy, and a re-
sulting lower SAW generation e�ciency[9].

1.2 Acoustic streaming working principles

As previously said, acoustic streaming is the "steady �ow of a �uid that is
caused by non-linear e�ects due to the propagation of sound through that
�uid", as shown by Rayleigh (1884)[16]. Small feature dimensions generally
do not allow �ow velocities to be high enough[17]: the reason could be
introduced by using Reynolds number

Re =
fi
fv

=
ρfU0L0

µ
(1.1)

where fi and fv are the the inertial and viscous forces respectively, ρf is
the density of the �uid, U0 the associated velocity and L0 the length scale.
Since in micro�uidics L0 is typically small (typical channel sizes range from
1 to 100 µm), with typical velocities of 0.1 µm/s�1mm/s the Reynolds num-
bers range between O(10−7) and O(1)[18]. So it is clear that viscous forces
play a signi�cant role with respect to inertial forces, thus limiting the �ow
magnitudes.
Acoustic streaming is particularly observable in two famous device: Kundt's
tube and Chladni's plate.
As pictured in �g. 1.5, Kundt's tube is a horizontal glass cylinder contain-
ing air and a small amount of lycopodium powder [19] (used to make sound
waves visible). Sound waves are stimulated in the tube of air, which then
generates nodes and antinodes of longitudinal oscillatory speed U0: the ly-
copodium particles at the bottom of the channel are moved by the streaming
phenomenon in the direction of decreasing |U0|[19].
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Figure 1.5: Physical scheme of system Kundt's tube, where A indicates the
position of the antinodes and N the position of the nodes [20]

Chladni's plate (�g. 1.6) is a horizontal metal plate clamped at its centre and
sprinkled with lycopodium powder, in which a variety of transverse stand-
ing waves may be excited [19]. "Vertical displacement of the plate's surface
drives oscillatory air currents, but it is the horizontal component of the air's
oscillatory motion which gives rise to acoustic streaming"[19].

Figure 1.6: Theoretical force patterns for an underwater Chladni's plate at
two di�erent frequencies[21]

In general, acoustic streaming can be observed in three di�erent situations,
which are detailed in the following.

1.2.1 Bulk acoustic streaming

Bulk acoustic streaming is known as Eckart streaming and manifests over
length scales greater than one sound wavelength: if the channel is small
then one wavelength, it could be prevented from appearing[1].
In the bulk of the �uid, during propagation, dissipation causes acoustic
waves to decay over an attenuation length β(ω)−1, resulting in an oscillatory
velocity �eld (according to Stokes law of sound attenuation) given by eq.
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1.2 {
u1 = U0e

−βzeiωtẑ

β(ω) =
( 4
3
µ+µb)ω

2

2ρF c
3
F

(1.2)

where ρF is the density of the �uid, cF speed on sound in the �uid, ω the
pulsation, µ and µb the dynamic and bulk viscosities of the �uid.
"The oscillation amplitude of a �uid particle decreases as it moves away
from the source, and increases as it moves towards: oscillating �uid par-
ticles thus constantly impart momentum to the �uid, driving a secondary
streaming �ow away from the acoustic source"[18].
In air this phenomenon is known as quartz wind [22], and can be exploited to
drive micro�uidic �ows through an acoustic plane wave along a microchan-
nel of length L ≥ β−1(ω).

1.2.2 Boundary acoustic streaming

Boundary acoustic streaming occurs near solid boundaries, where an os-
cillatory �ow must vanish due to the no-slip condition. In unsteady viscous
�ows, vorticity e�ects are con�ned by a layer named Stokes boundary layer
given by eq. 1.3

δV =

√
2µ

ρω
(1.3)

with irrotational �ow outside of the Stokes (viscous) layer[18]. It is necessary
to distinguish two mechanisms of streaming:

• Schlichting streaming, which is caused by viscous attenuation and con-
�ned withing the viscous layer;

• Rayleigh streaming, which is induced by the streaming in the Stokes
layer and presents a vortical pattern[14].

Figure 1.7: Typical laminar boundary-layer velocity pro�le[23]
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Figure 1.8: A system of inner (Schlichting) streaming within the viscous
boundary layer of thickness (gray areas) and outer (Rayleigh) streaming
vorticies in a channel with a standing wave propagating along x-direction[24]

1.2.3 Cavitation streaming

Bubbles subjected to acoustic waves expand and contract as the local
pressure varies[18]. Bubble shape and �uid oscillations are recti�ed to give
rise to the so-called cavitation microstreaming [25].

Figure 1.9: Schematic representation of horse-shoe piezo transducer setup
in a micro�uidic system to induce mixing and [26]

1.3 Acoustic-streaming pumps

The acoustic streaming e�ect has been proposed to improve mixing[27],
agitation[28] and pumping in open micro�uidic systems, which were or
chemically alterated to con�ne the liquid, or cut by lasers directly into the
substrate to guide the �uid[29].
The following section will focus on the di�erent pumping mechanisms, of
which some will be evaluated in more detatil in the following chapters.
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Micropumps represent a fundamental component to control �ow in micro�u-
idic systems. They are commonly divided into two main categories[30]:

• mechanical pumps, which "take advantage of moving parts such as
check valves, oscillating membranes, or turbines for delivering a con-
stant �uid volume in each pump cycle, resulting in a pulsating �ow";

• non-mechanical pumps, which "pump the �uid by turning a speci�c
kind of energy into kinetic, delivering a continous �ow thanks to the
direct interaction with the working �uid through electrical, magnetic
or chemical means"[31].

Acoustic-based pumps belong to the second group, and in particular SAW-
based pumps have the advantages of controlling the �uid without any
external �uid connection and high �ow rates.
In the following a device[32] is presented: it is based on the SAW-induced
counter�ow mechanism, where SAW propagation and �uid actuation are
oppositely directed[33] (as displayed in �g. 1.10).

Figure 1.10: Scheme of the device a closed chamber where the streaming is
induced by SAW[32]

The working principle of such a device could be devided into �ve steps, each
one corresponding to a speci�c number in �g. 1.10:

1. A sinusoidal voltage is applied to IDTs to generate SAW propagating
towards the channel. According to Snell's law, once the wave has
reached the channel, it is refracted as a longitudinal wave into water
with an angle equal to

θf = sin−1

(
cf

cSAW
· sin θinc

)
≈ 22◦ (1.4)

α =
1

la
=

ρFvF
ρSAWvSAWλSAW

(1.5)
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where θf is the refracted angle, α the attenuation coe�cient of the
leaky surface acoustic wave, la is the attenuation length, cf and cSAW
the speed of sound in the �uid and along the piezoelectric layer, ρf
and ρSAW are the densities of the �uid and the piezoelectric layer
respectively, λSAW the substrate wavelength and θinc the incidence
angle. It is worth to notice that even at this stage two loss sources are
relevant: -0.28dB because of IDT impedance mismatch, and -3.01dB
because of the backward SAW (not providing any contribution).

2. The longitudinal acoustic wave passes through the 150µm-thick water
layer and is subsequently refracted at the water-glass interface as a
transversal wave at a Rayleigh angle of{

θglass,trans = sin−1(
cglass,trans

cf
· sin θf ) = 55.1◦

cglass,trans = 3280m/s
(1.6)

where θglass,trans is the refracted angle of the transversal wave, and
cglass,trans is the speed of a transversal acoustic wave travelling through
glass.
The reason for such a phenomenon is related to the critical angle of the
longitudinal wave, which is lower than the incidence angle as proved
by eq. 1.7 {

θcrit,long = sin−1(
cf

cglass,long
) = 15.4◦ < 22◦

cglass,long = 5640m/s
(1.7)

where θglass,long is the refracted angle of the longitudinal acoustic wave,
and cglass,long is the speed of a longitudinal acoustic wave travelling
through glass.
The attenuation through water (dependent of frequency) is equal to
-0.53dB (with la = 1.24mm), while the transmission at water-glass
interface causes an attenuation of -3.64dB.

3. At glass-water interface, the transverse wave is refracted and both
a longitudinal and a transverse components are excited. However,
because of the critical angle, only the longitudinal one is transmitted.
The transmission at glass-water interface causes an attenuation of -
3.64dB.

4. The wave is refracted again, enters the water-�lled channel and trans-
fers momentum to the liquid, causing acoustic streaming{

u1,x = U0,x · e−x/la cos(kxx− ωt)
Fx = 1

2
ρFu1x · du1xdx

= −ρ0U2
0,x

la
e−2x/la

(1.8)

where U0,x and Fx are the amplitude of the acoustic �eld and the re-
sulting force along x-direction.
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Hagen-Poiseuille �ow equations 1.9 describe the velocity pro�le of lam-
inar �ow in rectangular channels as

u(y, z) = 4G
µW

∑∞
n=1

(−1)n+1

β3
n

[
1− cosh(βnz)

cosh(βnH/2)

]
cos(βny)

Q = 8GH
µW

∑∞
n=1

1
β4
n

[
1− 2

βnH
tanh

(
βnH

2

)]
βn = (2n− 1) π

W

(1.9)

where u is the velocity of �uid perpendicularly to the plane, Q is the
�ow rate, G is the linear pressure gradient, µ the dynamic viscosity,
W and H the width and the height of the channel.
Fig. 1.11 shows the velocity pro�le of a water channel (µ = 0.89mPa·s)
when W = H = 1mm, G = 28.5Pa/m: according to eq. 1.9, the
velocity pro�le is maximum at the centre of the channel (z = 0), and
minimum at the sides (z = ±W/2).
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Figure 1.11: Velocity pro�le of water laminar �owing

5. The acoustic waves couple into the PDMS layer on top, where it is
further dampened.



Chapter 2

Mathematical development

This chapter is the dedicated the analysis of the existent mathematical
models to describe the two most important physical phenomena involved
in the device studied in this Master thesis: piezoelectricity and acoustic
streaming. The former is investigated by following two di�erent paths,
while the latter is studied by applying the most known method to deal with
acoustophoretic phenomena.
However, it is pointed out that a comparison between these models and the
FEM (Finite Element Models) in chapters 3 and 4 results to be di�cult: it
is due to the complexity of the resulting di�erential equations, in particular
for the micro�uidics section.

2.1 Piezoelectricity

Piezoelectricity is the ability of some materials (notably crystals and certain
ceramics) to generate an electric charge in response to applied mechanical
stress. Viceversa, if the material is not short-circuited, the applied charge
induces a voltage across the material [34].
The piezoelectric e�ect is reversible, so piezoelectric materials always exhibit
both:

• the direct piezoelectric e�ect, consisting in the production of electric-
ity when the material is stressed from the external;

• the converse (or inverse) piezoelectric e�ect, that is the production
of stress and/or strain when an electric �eld is applied.

In order to describe the piezoelectric phenomenon, �rst consider two sets of
equation:

• eq. 2.1 describing the electrostatics contribution.
∇ ·D = q

E = −∇φ
D = e : S + ε ·E

(2.1)

14
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where q is the body electric charge per unit volume, φ is the ap-
plied electric potential, and e : S is the notation for a double-dot
product[35].

• eq. 2.2 describing the elastodynamics contribution.
ρü = ∇ · T + f

S = 1
2
[∇u+ (∇u)T ]

T = c : S − eT ·E
(2.2)

where f is the body force vector.

In case of sourceless mechanical and electrical systems (q = 0 and f = 0),
equations for electrostatics and elastodynamics are rewritable in Cartesian
coordinates respectively as eq. 2.3 and 2.4.

Ei = − ∂φ
∂xi

Di =
∑

j

∑
k eijkSjk +

∑
j ε

S
ijEj∑3

i=1
∂Di
∂xi

= 0

(2.3)


ρ∂

2ui
∂t2

=
∑3

j=1
∂Tij
∂xj

Sij = 1
2
( ∂ui
∂xj

+
∂uj
∂xi

)

Tij =
∑

k

∑
l c
E
ijklSkl −

∑
k ekijEk

(2.4)

If proper substitutions are applied, eq. 2.5 and 2.6 are obtainable.∑
i=1

∑
j=1

(∑
k=1

eijk
∂2uj
∂xi∂xk

− εSij
∂2φ

∂xi∂xj

)
= 0 (2.5)

ρ
∂2ui
∂t2

=
∑
j

∑
k

(
ekij

∂2φ

∂xj∂xk
+
∑
l

∂2uk
∂xj∂xl

)
(2.6)

2.2 Surface acoustic waves

In the following, two approaches to mathematically model surface acoustic
waves are proposed. The �rst one is based on the introduction of two scalar
functions and does not provide any relation between the applied voltage
and the deformation of the elastic solid. The second one is based on the
partial wave method, but it results to be di�cult to handle.
The direction of periodicity is denoted by x1, the surface normal direction
by x3, and their perpendicular direction x2 following a right-handed coordi-
nate system[36]. The dimensional extension of electrodes in x2-direction is
much larger in comparison to the periodicity. Additionally, a homogeneous
material topology is assumed in x2-direction for this analysis.
Instead of performing a full 3D analysis, a model reduction is performed
in the geometric domain and the analysis is carried out within the sagittal
plane. In order to derive an expression for the resultant electrostatic force,
the following assumptions are made of the model and the analysis, as well
as simpli�cations to both are mentioned:
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• the frequency of the induced electric �eld wave is su�ciently small
enough to reasonably assume the electromagnetic coupling e�ects to
be negligible. This means that local perturbations are felt almost in-
stantaneously through out the substrate[36];

• if l is the largest characteristic dimension of the actuator structure
(i.e. x2) and c is the speed of light, the generated electromagnetic
coupling e�ects can be safely discarded, if the operating frequency of
the device is much less than the ratio c/l[36].

2.2.1 Method based on scalar functions

The equation of motion for an unbounded isotropic elastic solid in which
body forces are absent[13] can be written as

ρ
∂2u1

∂t2
= (λ+ µ)

∂∆

∂x1

+ µ∇2u1 (2.7)

{
∆ = ∂u1

∂x1
+ ∂u3

∂x3

Ω2 = ∂u1
∂x3
− ∂u3

∂x1

(2.8)

where is ∆ the dilatation, and Ω2 the rotation in the xz plane.
It is worth to introduce two scalar orthogonal functions Φ and Ψ so that

Φ = F (x3)ei(ωt−kx1)

Ψ = G(x3)ei(ωt−kx1)

F (z) = A1e
−γLx3 + A2e

γLx3

G(z) = B1e
−γT x3 +B2e

γT x3

(2.9)

where ω is the operating frequency, k is the wave number, γL and γT are
two attenuation coe�cients, A1, A2, B1 and B2 are the weight coe�cients.
It is clear that A2 and B2 have to be null to avoid any nonsense physical
divergence at the bottom part of the substrate, and so eq. 2.9 reduces to{

Φ = A1e
−γLx3 · ei(ωt−kx1)

Ψ = B1e
−γT x3 · ei(ωt−kx1)

(2.10)

If the following condition is assumed{
u1 = ∂Φ

∂x1
+ ∂Ψ

∂x3

u3 = ∂Φ
∂x3
− ∂Ψ

∂x1

(2.11)

equation 2.8 reduces to{
∆ = ∂2Φ

∂x21
+ ∂2Φ

∂x23
= ∇2Φ

Ω2 = ∂2Ψ
∂x21

+ ∂2Ψ
∂x23

= ∇2Ψ
(2.12)
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By substituting eq. 2.7 into eq. 2.12, it is possible to get

∂2Φ
∂t2

= c2
L∇2Φ

∂2Ψ
∂t2

= c2
T∇2Ψ

cL =
√

λ+2µ
ρ

cT =
√

µ
ρ

(2.13)

where cL and cT are the longitudinal and transverse velocities respectively.
Finally, by expliciting Φ and Ψ (eq.2.10)

∂2F (x3)
∂z2

= γ2
LF (x3)

∂2G(x3)
∂z2

= γ2
TG(x3)

γL =
√
k2 − k2

L

γT =
√
k2 − k2

T

kL = ω
cL

kT = ω
cT

(2.14)

where k > kT > kL.
Stress components T33 and T13 can be expressed as a function of Φ and Ψ
as shown in eq. 2.15.{

T33 = λ(S11 + S33) + 2µS33 = [(λ+ 2µ)γ2
L − λk2]Φ− 2µikγTΦ

T13 = µS13 = µ[(γ2
T + k2)Ψ + 2ikγLΦ]

(2.15)
In order to get an expression for k, it is necessary to impose two boundary
conditions on the plane and shear stress components at the free surface (eq.
2.16){

T33(x3 = 0) = [(λ+ 2µ)γ2
L − λk2]A1 − 2iµkγTB1 = 0

T13(x3 = 0) = µ(γ2
TB1 + k2B1 + 2ikγLA1) = 0

(2.16)

which leads to

[(λ+ 2µ)γ2
L − λk2](k2 + γ2

T ) = 4µk2γLγT (2.17)

If substitutions indicated in eq. 2.18 are applied
kL = α1kT

α1 =
√

µ
λ+2µ

s = kT
k

(2.18)

6th-order eq. 2.19 is obtained.

s6 − 8s4 + (24− 16α2
1)s2 + (16α2

1 − 16) = 0 (2.19)
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It is clear that eq.2.18 could be reduced to a 3rd-order one: however, the
correspondent analytical solution couldn't be expressed in a simple way, so
it is reported the solution proposed by Viktorov[37]

s =
0.87 + 1.12ν

1 + ν
(2.20)

where ν is the Poisson ratio of the elastic solid.
By solving eq. 2.16 it is possible to get B1 as a function of A1, and so
rewrite eq. 2.11 into{

u1 = A1k(e−γLx3 − 2 γLγT
k2+γ2T

e−γT x3) sin(ωt− kx1)

u3 = −A1γL(e−γLx3 − 2k2

k2+γ2T
e−γT x3) cos(ωt− kx1)

(2.21)

which clearly highlights the fact that particles move following elliptical
traces.
The above analysis assumes the absence of any load over the free surface
(unloaded case), for which it is valid

4k2γLγT − (k2 + γ2
T )2 = 0 (2.22)

As the impedance of the �uid rises from zero (loaded case), the wave behaves
less like a pure Rayleigh wave and transforms into a leaky one[13]: the above
equation turns into4k2γLγT − (k2 + γ2

T )2 = iρF
ρR

γLk
4
T√

k2F−k2

cF < cR → kF > k
(2.23)

where ρF is the liquid density, cF is the speed of sound in the �uid, ρR is
the density of the elastic material and cR is the Rayleigh velocity.
It can be proved that one of the solution of eq. 2.23 corresponds to a wave
radiating in the �uid with an angle given by eq. 1.6. The leaky SAW,
propagating at the solid-liquid interface, is attenuated by a coe�cient given
by

α =
ρF cF
ρRcRλR

=
ρF cFf

ρRc2
R

(2.24)

2.2.2 Method based on partial waves

It is the most precise method to solve equations for Surface Acoustic Waves
on anisotropic substrates like piezoelectric ones"[36]. It consists in express-
ing each displacement component and the electric potential as

umj (x1, x3, t) = αmj e
ikbmx3 · eik(x1−vt)

φm(x1, x3, t) = αm4 e
ikbmx3 · eik(x1−vt)

m ∈ {1, 2, 3, 4}
j ∈ {1, 2, 3}

(2.25)
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where the αmj values are linear coe�cients that depend on the decaying
constant bm, k is the wave vector and v is the phase velocity.
By substituting the expressions of eq. 2.25 into 2.5 and 2.6, it is possible to
get an homogeneous linear system in the form

M · α = 0 (2.26)

M =


m11 − ρv2 m12 m13 m14

m12 m22 − ρv2 m23 m24

m13 m23 m33 − ρv2 m34

m14 m24 m34 m44

 α =


α1

α2

α3

α4

 (2.27)

where 

m11 = cE11 + cE55b
2

m12 = (cE14 + cE56)b

m13 = (cE13 + cE55)b

m14 = (e13 + e51)b

m22 = cE66 + cE44b
2

m23 = cE56 + cE34b
2

m24 = e61 + e43b
2

m33 = cE55 + cE33b
2

m34 = e51 + e33b
2

m44 = ε11 + ε33b
2

(2.28)

In order to determine the non-trivial solution (α = 0), it is necessary to
impose

|M | = 0 (2.29)

Eq. 2.29 is reducible to an eighth-order equation in the decaying constant
b. However, the resulting roots are either purely real or complex conjugate
pairs: only the ones with positive imaginary part are accepted to be consis-
tent with the physical meaning of wave propagation in piezoelectric media.
There are four such roots for b (denoted as bm), and for each such value

{bm} ⇔ {αm} (2.30)

A general solution is the obtained as a linear combination of partial waves,
as shown in eq. 2.31

uj(x1, x3, t) =

[∑4
m=1Cm · αmj eikb

mx3

]
eik(x1−vt)

φ(x1, x3, t) =

[∑4
m=1Cm · αm4 eikb

mx3

]
eik(x1−vt)

(2.31)

where Cm are weighting coe�cients chosen to satisfy the mechanical and
electrical boundary conditions at the surface of the piezolectric substrate
speci�c to this model.
Since the mass of the IDTs is considered to be negligible for simplicity,



20 CHAPTER 2. MATHEMATICAL DEVELOPMENT

mechanical force acting on the substrate can be discarded. Hence the surface
is considered to be mechanically free, and so the boundary condition

3∑
j=1

T3j(z = 0) = 0 (2.32)

is applyable.
Partial wave method allows to clearly distinguish the contribution any in-
volved matrix elements, but at the same time it results di�cult to manuanlly
handled it: numerical tools are necessary, making a deep analysis less easy
to be achieved.

2.3 Acoustic-�uidic interface

According to Navier-Stokes equations, the mass and momentum balance
laws governing the motion of a linear viscous compressible �uid are

∂ρ

∂t
+∇ · (ρu) = 0 (2.33)

ρ
Du

Dt
= −∇p+∇ · T + f (2.34)

In particular, left-hand term is known as total derivative and has the fol-
lowing form

ρ
Du

Dt
= ρ

∂u

∂t
+ ρ(u · ∇)u (2.35)

and

∇ · T = µ∇2u+

(
µb +

1

3
µ

)
∇(∇ · u) (2.36)

where ρ is the �uid density, u the �uid velocity �eld, p the pressure, µ the
dynamic (or shear) viscosity, µb the bulk viscosity.
The terms are

• ρDu
Dt

is the inertial term. In particular ρ∂u
∂t

is the acceleration term
(null for steady-state �ows), while ρ(u·∇)u is known as advective term
and describes the transport of a �uid by bulk motion. Advection can
be visualized by the transport of ink into a river, where the water's
movement itself transports the ink [38]. If added to a lake without sig-
ni�cant bulk water �ow, the ink would simply disperse outwards from
its source in a di�usive manner, which is not advection;

• −∇p is the di�usive therm;

• ∇ ·T is the viscous term. It is worth to notice that (µb + 1
3
µ)∇(∇·u)

is strictly related to the compressibility of the �uid. In case of water,
this term is almost negligible, and so bulk viscosity results to be less
relevant the dynamic one;
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• f is an external force acting on the �uid.

Equation 2.34 is rewritable in its adimensional form by �xing
u′

2 = u2

U0

p′2 = p2
ρU2

0

∇′ = L0∇
∂
∂t′

= L0

U0
· ∂
∂t

(2.37)

where U0 is the mean velocity of the �uid in the channel and L0 is the length
scale.
If body and mass-source terms are neglected, and �uid is assumed not to
change volume (divergence equal to zero), it results that{

∂u′2
∂t′

+ ∇̃p′2 − 1
Re
· ∇′2u′2 = 0

Re = µ
ρLU

(2.38)

The viscous term is relevant for Re→ 0, thus con�rming what is introduced
in section 1.2. An analytical solution satisfying eq. 2.33 and 2.34 is not
straightforward to �nd, in particular because of the widely separated time
scales of the acoustic source and the resulting streaming[39]. In the following
it is considered only a situation at steady regime, and not transient. The
�uid response can be understood to be comprised of two components:

• a periodic component with period equal to the forcing period

• a remainder that can be viewed as being steady, generally referred
to as the streaming motion.

It has been decided to make advantage of Nyborg's perturbation technique[40],
in which p, ρ and u are assumed to have the following form

p = p0 + εp1 + ε2p2

ρ = ρ0 + ερ1 + ε2ρ2

u = εu1 + ε2u2

(2.39)

where 0th-order expansion variables provide a background contribution, 1st-
order expansion variables represent sound �eld, p2, ρ2 and u2 and 2nd-order
expansion variables represent acoustic streaming.
ε is a non-dimensional smallness parameter de�ning the order of the acoustic
response[41], and is typically equal to Mach number Ma (eq. 2.40): it is used
to understand if a �uid is describable as an incompressible one (generally
Ma<0.3).

Ma =
|u1|
c0

(2.40)

It is fundamental to notice that the �rst-order development is unsu�cient
to describe a stationary �ow since

ω

2π

∫ π
ω

− π
ω

cos(ωt) dt = 0 (2.41)
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For this reason it is fundamental to develop a second-order expansion.
It is worth to notice that background velocity is supposed to be zero, so the
�ow is generated only by acoustic streaming.

2.3.1 Zero-order development

0th-order expansion does not provide any signi�cative contribution to the
current analysis, since {

∂ρ0
∂t

= 0

∇p0 = 0
(2.42)

2.3.2 First-order development{
∂ρ1
∂t

+ ρ0∇u1 = 0

ρ0
∂u1

∂t
+∇p1 − µ∇2u1 − (µb + 1

3
µ)∇(∇ · u1) = 0

(2.43)

Since a linear relation between p1 and ρ1 is required, isentropic condition
2.44 is applied

p1 = c2
0ρ1 (2.44)

In the following, the contribution of bulk viscosity is neglected.
The �rst line of eq. 2.43 is derived with respect to time, and the second one
with respect to space: equation system 2.45 results.{

∂2ρ1
∂t2

= −ρ0∇ · ∂u1

∂t

ρ0∇ · ∂u1

∂t
= −c2

0∇ · (∇p1) + µ∇ · (∇2u1) + 1
3
µ∇ · [∇(∇ · u1)]

(2.45)
As soon as an acoustic soleinodal irrotational �eld is considered vectorial
identities

∇ · (∇p1) = ∇2p1 (2.46)

∇2u1 = ∇(∇ · u1)−∇×∇× u1 → ∇ · ∇2u1 = ∇2(∇ · u1) (2.47)

are valid, and so eq. 2.48 is writable.

∂2ρ1

∂t2
= c2

0∇2ρ1 −
4

3
µ∇2

(
− 1

ρ0

∂ρ1

∂t

)
(2.48)

which turns into eq. 2.49 if a harmonic dependence ∂
∂t

= −iω is assumed.

∇2ρ1 +
ω2

c2
0(1− iω 4µ

3ρ0c20
)
ρ1 = 0 (2.49)

If only physical entities are assumed to vary only along x-direction because
of the form factor of the substrate, the solution of eq. 2.49 is

k1,2 = ± ω

c0·
√

1−iω 4µ

3ρ0c
2
0

≈ ± ω
c0
·
(

1 + i 2µω
3ρ0c20

)
≈ ± ω

c0

ρ1 = Aeik1x +Beik2x
(2.50)
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By substituting eq. 2.50 into eq. 2.43, it results that

iωρ1 = ρ0∇ · u1 →
iω

ρ0c2
0

∇ρ1 = ∇2u1 (2.51)

whose solution is

ρ0ωu1 = −i∇p1 (2.52)

In order to verify the correctness of the above mathematical procedure,
proper boundary conditions are applied in a numerical simulation [42].
The objective consists in plotting the two members of eq. 2.51: if their
graphical representations coincide, it means that the written equations for
the �rst-order expansion are valid.
In particular, �g. 2.1 shows the results for a rectangular tube of water,
which is closed at its lateral and top sides, and characterized by the following
expresion for the acoustic velocity at its bottom side

u1y = u02πf sin (2π
x

W
) (2.53)

where x and y are the horizontal and vertical direction respectively. Table
2.1 reports the geometrical parameters of the channel and the operating
frequency.

Parameter Symbol Unit Value
Width W m 10−3

Height H m 10−4

Operating frequency f kHz 747.5

Table 2.1: Parameters involved in the numerical simulation aimed to verify
the correctness of equation 2.51

The results of FEA simulation (carried out by the author of this document
by using COMSOLTM 5.5) are reported in �g. 2.1 clearly con�rms the
correctness of eq. 2.51.
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Figure 2.1: Two graphs are displayed, each one corresponding to one of the
members of equation 2.51

It is interesting to notice that �g. 2.1 shows the behavior at the bulk of
the channel (along a line dividing the channel into two halfs), which does
not correspond to the one at the bottom side of the tube. As anticipated in
subsection 1.2.2, at the bottom side a viscous boundary layer forms: graph
2.2 clearly shows that u1x reaches a regime value at a distance from the wall
approximately equal to 2δV .
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Figure 2.2: In this graph, red line is located in order to highlight where
the viscous boundary layer is supposed to end
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2.3.3 Second-order development{
∂ρ2
∂t

+ ρ0∇ · u2 = −∇ · (ρ1u1)

ρ0
∂u2

∂t
+∇p2 − µ∇2u2 − (µb + 1

3
µ)∇(∇ · u2) = −[ρ1

∂u1

∂t
+ ρ0(u1 · ∇)u1]

(2.54)
Since the objective is investigating a stationary �ow, averaging over time
the terms in equations 2.54 results fundamental. Indeed, because of their
sinusoidal nature, the time derivative of p2 and u2 do not provide any
contribution (eq. 2.55) {

∂ρ2
∂t

= 0
∂u2

∂t
= 0

(2.55)

In the following equation, the second term is known asmass-source term,
while the third one as volume-force (or body) term

∇ · ρ1u1 = 1
2
Re{∇ · (ρ̃1ũ1

∗)}
ρ1 · ∂u1

∂t
= 1

2
Re{ρ̃1(∂ũ1

∂t
)∗}

ρ0u1 · ∇u1 = ρ0
2
Re{(ũ1 · ∇)ũ1

∗}
(2.56)

where {
ρ1(t) = Re{ρ̃1e

iωt}
u1(t) = Re{ũ1e

iωt}.
(2.57)

It is possible to rewrite eq. 2.54 according to the Cartesian system: the �rst
equation as

ρ0

(
∂u2x

∂x
+
∂u2y

∂y
+
∂u2z

∂z

)
= −1

2
Re{ρ̃1ũ1

∗} (2.58)

and the second one as a set of three scalar equations (eq. 2.59, 2.60 and
2.61)

∂p2

∂x
− µ

(
∂2u2x

∂x2
+
∂2u2x

∂y2
+
∂2u2x

∂z2

)
−
(
µb +

1

3
µ

)
·
(
∂2u2x

∂x2
+
∂2u2y

∂x∂y
+
∂2u2z

∂x∂z

)
=

−1

2
Re

[
iωρ1u1x + ρ0

(
u1x

∂u1x

∂x
+ u1y

∂u1x

∂y
+ u1z

∂u1x

∂z

)]
(2.59)

∂p2

∂y
− µ

(
∂2u2y

∂x2
+
∂2u2y

∂y2
+
∂2u2y

∂z2

)
−
(
µb +

1

3
µ

)
·
(
∂2u2x

∂y∂x
+
∂2u2y

∂y2
+
∂2u2z

∂y∂z

)
=

−1

2
Re

[
iωρ1u1y + ρ0

(
u1x

∂u1y

∂x
+ u1y

∂u1y

∂y
+ u1z

∂u1y

∂z

)]
(2.60)

∂p2

∂z
− µ

(
∂2u2z

∂x2
+
∂2u2z

∂y2
+
∂2u2z

∂z2

)
−
(
µb +

1

3
µ

)
·
(
∂2u2x

∂z∂x
+
∂2u2y

∂z∂y
+
∂2u2z

∂z2

)
=

−1

2
Re

[
iωρ1u1z + ρ0

(
u1x

∂u1z

∂x
+ u1y

∂u1z

∂y
+ u1z

∂u1z

∂z

)]
(2.61)



26 CHAPTER 2. MATHEMATICAL DEVELOPMENT

With respect to the �rst-order expansion, the development of the second-
order coupled equations results to be of extreme importance, because COMSOLTM

does not provide any Multiphysics to couple acoustic and laminar �ow phe-
nomena.
For this reason, �ner methods to include the mass-source and body force
terms are required, as it is described in chapter 4.



Chapter 3

Numerical model of SAW

As highlighted by Gupta[43], "it is highly important to choose a suitable
propagation mode for the SAW device especially when it is designed for
micro�uidic applications: Rayleigh SAW mode is the best suited for space-
charge related applications as most of the energy in this mode is concen-
trated within one wavelength of the substrate".
As the aspect ratio of the electrode �nger length to the spatial wavelength
increases, the numerical simulation and theoretical modeling is simpli�ed
by not considering the third dimension (depth), and so also the electro-
mechanical coupling along this direction. In this way, the 3D model is re-
duced to a 2D one. As Ramishev and Rajan[5] report that, for this reason,
sophisticated models of electrical or acoustical couplings are often developed
using 2D approximations.
As this consideration is made, all the simulations in this section are carried
out taking into account only two dimensions.
Numerical simulations have been carried out by using COMSOLTM 5.5, and
taking advantage of three interfaces:

• Solid mechanics interface, in order to describe the mechanical prop-
erties of the substrates;

• Electrostatics interface, to model the electrical behavior of the devices;

• Piezoelectric E�ect Multiphysics, aimed to implement the coupling
between the two previous interfaces.

In this chapter, no �uid is supposed to cover the piezoelectric layer: all the
simulations assume the upper surface to be free, in order not to consider any
attenuation of the resulting displacement or resonant frequency variation.
In order to isolate di�erent aspects regarding surface acoustic waves, the �rst
approach was to simulate the phenomenon starting from a simple model and
moving to a more realistic one as new details are introduced.
For this reason, �rst it has been simulated just one single pair of elec-
trodes and a periodic boundary condition has been applied at the sides, as
displayed in �g. 3.1.
Subsequently, a model including a �nite number of pairs is considered,

27
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and no periodic boundary conditions are applied: this approach allows to
better study the behaviour of SAW, as it is shown in the following sections.
Table 3.1 shows the involved parameters for the simulations regarding the
study of SAW, while table 3.2 reports the materials that have been used to
carry out such simulations.

Parameter Symbol Unit Value
Width of the electrodes wel m λ

4

Height of the electrodes hel m 1·10−7

Operating frequency f0 Hz 2π
λ

Width of the piezoelectric substrate wpiezo m 7·10−4

Height of the piezoelectric substrate hpiezo m 3·10−6

Applied voltage V0 V (not �xed)

Table 3.1: Parameters involved in FEA simulations for surface acoustic
waves. λ is the wavelength of the IDT pattern.

Part Material
Electrodes Aluminum
Substrate Silicon

Piezoelectric layer PZT-5H

Table 3.2: Materials involved in in FEA simulations for surface acoustic
waves

3.1 Single-pair approach

Figure 3.1: Conceptual drawing for a simulation with a single pair of elec-
trodes: the grey region represents the Silicon substrate, the blue one the
piezoelectric layer, and the light blue one the electrodes.
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First it is analyzed how the height of the piezoelectric layer a�ect the loca-
tion of the resonant peak in the frequency response of the device. As it can
be predicted, �g. 3.2 shows that the resonant frequency approaches to a
speci�c value (1.99MHz) as the height of the piezoelectric layers increases.
The convergence is attributable to lower and lower contribution of the re-
�ections from the bottom side. Indeed, as proved by eq. 2.21, acoustic
ways are attenuated as they approach to the bottom side of the piezoelec-
tric substrate, and so the re�ected back waves are supposed to be doubly
attenuated at the free surface.
Fig. 3.3 shows that the same trend is obtained if a di�erent working fre-
quency (di�erent λ) is chosen.
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Figure 3.2: Frequency response with λ = 10µm, hsub = 70µm, V0 = 1V
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Figure 3.3: Frequency response with λ = 3µm, hsub = 70µm, V0 = 1V
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Finally it is investigated how the role of the height of the Silicon substrate
in�uences the location of the resonant peak. From �g. 3.4, no variations
is relevant: the reason is explainable by considering that the height of the
piezoelectric layers is su�cient to avoid re�ections, and so the height of the
Silicon substrate does not result to be important.
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Figure 3.4: Frequency response with λ = 10µm, hpiezo = 12µm

3.2 Multiple-pair approach

Figure 3.5: Concept of surface acoustic waves: the grey region represents
the PML, the blue one the piezoelectric layer.

In the real world, periodic boundary conditions do not exist. For this reason,
the single-pair model is not su�cient to fully comprehend the behaviour of
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SAW travelling on a piezoelectric layer.
Moreover, the previous simulations do not take into account the damping
e�ect, which are due to the inner physical properties of the materials of the
device. A more sophisticated model is presented in the following sections,
but �rst it is necessary to introduce two distincts concepts: the perfectly
matched layer and the material dampings.

Perfectly matched layer (PML)

Figure 3.6: Concept scheme of PML[44]

As shown in the previous section, the geometrical features of the piezoelec-
tric layer and the Silicon substrate play a crucial role in this analysis, since
they a�ect both the SAW amplitude, and the location of the resonant peak.
In this section it has been decided to neglect their contribution introducing
the de�nition of a perfectly matched layer (PML): the purpose is avoiding
the re�ection of surface acoustic waves at the left and right boundaries and
from the bottom of the structure.
An acoustic wave is attenuated exponentially as it travels through an ab-
sorbing layer. At the same time, whenever it transits from one material to
another, two re�ection phenomena occur:

• three waves re�ect when propagating from the a non-absorbing to the
absorbing layer[44];

• three waves re�ect when passing from absorbing to non-absorbing
material[44].

The possibility of extending the concept of PML proposed by Berenger[45]
for electromagnetic waves to the elastodynamic case is discussed by Chew
and Liu[46].
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COMSOL provides the possibility of de�ning a PML, and the simulations in
this section have been carried out by setting a surrounding boundary layer
to avoid re�ections from the bottom and lateral parts of the substrate (�g.
3.5).

Damping in piezoelectric materials

Losses in piezoelectric materials are generally devided into three groups[47]:

• mechanical losses (caused by a combination of power absorption and
and scattering), introduced by adding an imaginary component to the
terms of the sti�ness and compliance matrices

c̃m,nE = cm,nE (1 + iηm,ncE ) (3.1)

s̃m,nE = sm,nE (1− iηm,nsE ) (3.2)

• dielectric losses (attributed to bound charge and dipole relaxation
phenomena), represented by adding an imaginary component to the
terms of the permittivity matrices

ε̃m,nrS = εm,nrS (1− iηm,nεS ) (3.3)

ε̃m,nrT = εm,nrT (1− iηm,nεT ). (3.4)

• coupling losses, represented by adding an imaginary component to
the terms of the coupling matrices.

d̃m,n = dm,n(1 + iηm,nd ) (3.5)

ẽm,n = em,n(1 + iηm,ne ) (3.6)

As regards the following simulations in this chapter, an isotropic loss factor
ηcE = 84.6339 · 10−3[48] is included.

3.2.1 Results

In this subsection, the optimal width of the PML at the sides of the substrate
is chosen by carrying out proper simulations: they result to be fundamental
to investigate how piezoelectric nonlinearities and the number of IDT pairsi
in�uence the �nal performances of the device. First it is investigated the
in�uence of wPML on the maximum vertical displacement of the piezoelec-
tric substrate.
At this purpose there are carried out three simulations characterized by a
di�erent height of the piezoelectric substrate, while keeping �xed the height
of the Silicon substrate (70µm), the applied voltage (1V) and using a single
IDT pair.
As shown in �g. 3.7, 3.8 and 3.9, the value of wPML does not a�ect dra-
matically the resulting maximum displacement for any of the chosen values
for hpiezo: indeed the relative variation between the minimum value and the
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maximum one is 0.09%, 0.11% and 0.03% respectively.
This veri�cations of course do not have any physical value, but are worth
at the aim of getting a simulation as close as possible to the reality.
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Figure 3.7: Maximum vertical displacement of the free surface by varying
the length of the lateral PML layers (normalized by λ), when hpiezo = 12µm
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Figure 3.8: Maximum vertical displacement of the free surface by varying
the length of the lateral PML layers (normalized by λ), when hpiezo = 3µm
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Figure 3.9: Maximum vertical displacement of the free surface by varying
the length of the lateral PML layers (normalized by λ), when hpiezo = 1µm

Secondly, it is discussed about the optimal number of IDTs in order to get
the heighest displacement has possible. At this aim, it has been decided to
�x wPML (3λ), the height of the piezoelectric layer (3µm) and the height of
the Silicon substrate (70µm) and V0 (1V): �g. 3.10 and 3.11 clarify that 25
pairs are su�cient to reach the convergence of the maximum displacement
independently from the operating frequency.
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Figure 3.10: Maximum vertical displacement at the free surface by varying
the number of IDT pairs
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Figure 3.11: Relative variation of the maximum vertical displacement at
the free surface by varying the number of IDT pairs

Subsequently the role of geometrical non-linearities over the maximum reach-
able displacement is investigated.
As operated for the previous analysis, it has been decided to �x wPML (3λ),
the height of the piezoelectric layer (3µm) and the height of the Silicon sub-
strate (70µm), the number of IDT pairs (35) and the operating frequency
(571.33MHz): �g. 3.12 and 3.13 prove that it is convenient to work in a
range 0-400V, when the relative di�erence between the linearized and the
non-linearized behaviours is 19.36%. However, it is very unlikely to reach
such high voltages in real life applications.
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Figure 3.12: Electro-mechanical behavior of the piezoelectric substrate
when geometrical non-linearities are considered (blue curve) and when they
are not (red curve)
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Figure 3.13: Relative discrepancy between the linear and the non-linear
electro-mechanical characteristics of the piezoelectric layer

Finally, the frequency response of the device is simulated when �xing λ
(3µm): it is observe if the position of the �rst resonant peak corresponds
is located where expected (f = cSAW

λ
, with cSAW being the wave speed of

the piezoelectric layer and λ the wavelength of the device), as previously
explained in section 1.1.
Fig. 3.14 shows how a discrepancy of 12.39% is present with respect to the
theoretical resonant frequency: this discrepancy suggests that the formula
fairly predicts the position of the peak, but it is expected that more details
should be included to get a more precise prediction.
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Figure 3.14: Frequency response of PZT-5H in the range 10MHz-10GHz
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The results discussed in this section are aimed to understand the require-
ments to maximize the amplitude of SAW when a certain sinusoidal signal
is applied.
However, the piezoelectric coupling is not involved in the simulations of
next chapter: the applied voltage a�ect the micro�uidic �ow through the
generated acoustic waves, so the electro-mechanical coupling is not directly
involved in the acoustic streaming.
So, a proper boundary condition is applied to avoid electrodes and the piezo-
electric layer to be included, so that the computational time is reduced.



Chapter 4

Numerical simulations of

acousto�uidics

In this chapter it is shown how to model di�erent acousto�uidic case studies
by applying proper boundary conditions.
In this section it is investigated the numerical modelling of the acousto-
�uidic interface: at this purpose it has been fundamental the contribution
of the previous literature [42][49], since the implementation of the necessary
�uidic boundary conditions is not straightforward.
High focus is dedicated to 2D numerical simulations: since a deep a study
on the optimal operating frequency as to be achieved, it is decided to ne-
glect the depth of the channel to reduce as much as necessary the size of
the �nite elements.
At the end of the chapter, results of 3D simulations are reported to com-
pare the performances of an acousto-�uidic pump with its electro-osmotic
counterpart.
As the case of the numerical simulations in the previous chapter, models
are implemented by COMSOLTM 5.5.
All the FEA simulations in this chapter are carried out by implement two
distinct interfaces:

• Thermoviscous Acoustics - Frequency Domain, which allows to intro-
duce the acoustic boundary conditions. It is associated to a Frequency
Domain study, that is aimed to compute the acoustic �elds by solving
1st-order equation 2.43;

• Laminar �ow, which introduces the �udic boundary condition. It is
associated to a Stationary study, which is carried out after the Fre-
quency Domain one. The reason relies on the fact that no Acousto�u-
idic Multiphysics interface is available, so the Stationary study re-
quires to postprocess the results of the previous simulation to solve
eq. 2.54.

Table 4.1 reports the geometrical parameters of channel that are �xed
throughout all the simulation.
Table 4.2 shows the names of the variables involved in acousto�uidic sim-
ulations. As previously highlighted, two terms require to be computed to

38
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Physical entity Symbol Expression Unit of measurement
Height H 10−4 m
Width W 10−4 m
Length L 10−3 m

Table 4.1: Geometrical parameters of channel for acousto�uidic simulations

Variable Symbol Unit of measurement
Acoustic velocity along x-direction u1 m · s−1

Acoustic velocity along y-direction v1 m · s−1

Acoustic velocity along z-direction w1 m · s−1

Acoustic pressure p1 Pa
Streaming velocity along x-direction u2 m · s−1

Streaming velocity along y-direction v2 m · s−1

Streaming velocity along z-direction w2 m · s−1

Streaming pressure p2 Pa

Table 4.2: Variables involved in acousto�uidic simulations

fully couple the acoustic domain with the micro�uidic one: volume force
and mass-source terms.
Since the way they are included is not considered to be straightforward, in
the following the script used for FEA simulations is reported:

• volume force term, introduced through the Laminar �ow interface,
has three components along x, y an z directions. They correspond
respectively to eq. 4.1, 4.2 and 4.3, and are reported how should be
implemented on COMSOL.

Fx = −0.5*real[ta.iomega*conj(ta.rho)*u1]-ta.rho0*0.5*(real(conj(u1)*d(u1,x))

+real(conj(v1)*d(u1,y))+real(conj(w1)*d(u1,z)))
(4.1)

Fy = −0.5*real[ta.iomega*conj(ta.rho)*v1]-ta.rho0*0.5*(real(conj(u1)*d(v1,x))

+real[conj(v1)*d(v1,y)]+real(conj(w1)*d(v1,z)))
(4.2)

Fz = −0.5*real[ta.iomega*conj(ta.rho)*w1]-ta.rho0*0.5*(real(conj(u1)*d(w1,x))

+real[conj(v1)*d(w1,y)]+real(conj(w1)*d(w1,z)))
(4.3)

• mass-source term, included as a Weak contribution through Weak
form PDE interface. Eq. 4.4 shows how it is implemented.

[-d(0.5*real(conj(ta.rho)*u1),x)-d(0.5*real(conj(ta.rho)*v1),y)

-d(0.5*real(conj(ta.rho)*w1),z)]*test(p2)
(4.4)

where test(p2) is a test function, whose nature is not discussed in
this document. It is su�cient to remember that its presence is linked
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to the weak formulation of di�erential equations, allowing to involve
also non-smooth functions with respect to partial di�erential equations
(PDE), and so also less strict.

4.1 2D numerical simulations

Two study cases are analyzed to determine the optimal working frequency
to reach the higher �ow rate at the outlet - in case of channels with two
open ends - or the maximum average internal velocity in case a totally close
tube is considered.
In this section all the simulations are carried out neglecting the variations
along z-component: computational time is reduced without renouncing to
the size of �nite elements to be as small as necessary.
In both the cases, it supposed the SAW to be exited from the left of the
channel, as displayed in �g. 4.1.

Figure 4.1: Conceptual drawing highlighting the source of the SAW[50]

4.1.1 Rectangular tube with two open ends

In �g. 4.2 it is pictured the device analysed in this section.
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Figure 4.2: Drawing of the tube analyzed in this section. The green line
indicates the presence of a wall boundary condition, the red line refers to
the propagation of surface acoustic waves, and blue one the inlet (left side)
and the outlet (right side) of the channel.

Boundary conditions

The following boundary conditions are applied for this study case:

• acoustic velocity[51] along the bottom side of the channel{
u1x = 1.2*u0*ta.iomega*cos(k*x)*exp(-alpha*x)

u1y = -2*u0*ta.iomega*cos(k*x)*exp(-alpha*x)
(4.5)

where u0 is the maximum displacement at the bottom side, k is equal
to 2πf

cSAW
, and alpha is the attenuation coe�cient given by eq. 2.24.

If a interval of operating frequences is considered to be 1-10MHz and
L = 1mm, the maximum attenuation ranges 6-47% at the end of the
channel. For this reason, the attenuation coe�cient is not expected
to a�ect particularly the results;

• acoustic pressure at the inlet and outlet

p1 = 0Pa (4.6)

• streaming pressure at the inlet

p2 = 0Pa (4.7)

Results

First it is investigated how the size of the �nite elements a�ects the average
velocity at the outlet of the channel.
At this purpose, it is �xed the maximum size of the elements to λ/4 and
the minimum one to λ/8, and imposed a Distribution boundary condition
for the mesh. In particular, named nel the number of elements along the
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lateral edges of the channel, the number of elements along the top and bot-
tom edges is �xed to 10nel.
Fig. 4.3 and 4.4 prove that at 1MHz nel is required to be at least 10, in
order to guarantee the precision of the simulations.
Fig. 4.5 and 4.6 prove that at 10MHz nel is required to be at least 250 in
order to guarantee an error under ±5%. At this purpose, since the results
presented in the following are carried out in the range of frequencies up to
10MHz, it has been decided to �x nel to 250.
Subsequently it is analysed how the operating frequency in�uences the aver-
age velocity detected at the outlet of the channel: �g. 4.7 clearly shows that
the resonant peaks of the average horizontal velocity are located following
the law

fres = n · cf
2L

(4.8)

where n is a natural number, L the length of the channel, and cf is the
speed of sound for a speci�c �uid.
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Figure 4.3: In�uence of the number of elements (nel) over the average �ow
velocity at the outlet when the acoustic wave frequency is 1MHz and u0

1nm
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Figure 4.4: In�uence of the number of elements (nel) over the relative varia-
tion of average �ow velocity at the outlet when the acoustic wave frequency
is 1MHz and u0 1nm
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Figure 4.5: In�uence of the number of elements (nel) over the average �ow
velocity at the outlet when the acoustic wave frequency is 10MHz and u0
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Figure 4.6: In�uence of the number of elements (nel) over the relative varia-
tion of average �ow velocity at the outlet when the acoustic wave frequency
is 10MHz and u0 1nm
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Figure 4.7: Frequency response for a rectangular channel with two open
ends, with u0 to to 1nm. The blue curve shows the absolute value of the
average horizontal velocity, the red one its phase and the green vertical lines
the expected resonant peaks (see eq. 4.8).

It is investigated how u0 (i.e. the maximum SAW displacement) in�uences
the average speed at the outlet: for the following simulations it has been
decided to �x the operating frequency at fres with n = 1.
As executed previously, �rst it is fundamental to choose a proper value for
nel: at this purpose it has been decided to carry out the simulations posing
u0 to 10nm, since it represents the maximum simulated value (as can be
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seen from �g. 4.10) and so represents the most critical case. Fig. 4.8 and
4.9 prove that nel can be �xed to 100 in order to obtain accurate results.
Fig. 4.10 shows the correlation between u0 and the average velocity at the
outlet: through Curve Fitting (extension by MATLABTM) it is proved that
this curve �ts a quadratic curve in the form

vav = a · u2
0 (4.9)

where vav is the average velocity at the outlet, a is set to 9.44·1015 to get
an R-square factor of 0.9864.
The origin of the value of the �tting parameter a is not studied, but it
is interesting to notice the same trend as highlighted by Rayleigh[16] with
di�erent boundary conditions.
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Figure 4.8: In�uence of nel over the average velocity at the outlet of the
channel
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Figure 4.9: In�uence of nel over the relative variation of the average velocity
at the outlet of the channel
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Figure 4.10: The graph shows the relation between u0 and the average
velocity at the outlet of the channel when the channel has an inlet and an
outlet

4.1.2 Rectangular tube with two closed ends

In �g. 4.11 it is pictured the device analysed in this section.
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Figure 4.11: Drawing of the tube analyzed in this section. Green lines
indicate the presence of a wall boundary condition, while the red line refers
to the propagation of surface acoust waves.

Boundary conditions

The following boundary conditions are applied for this study case:

• acoustic velocity along the bottom side of the channel{
u1x = 1.2*u0*ta.iomega*cos(k*x)*exp(-alpha*x)

u1y = -2*u0*ta.iomega*cos(k*x)*exp(-alpha*x)
(4.10)

• pointwise weak contribution[52]

aveop1(p2)*test(Im) (4.11)

where Im is an auxiliary dependant variable and aveop1 is a 4th-order
average operation.

• domain weak contribution[52]

intop1(Im)*test(p2) (4.12)

where intop1 is a 4th-order integration operation.

Results

The results obtained about the mesh, presented in section 4.1.1, are applied
for this case study: nel is �xed to 250.
As previously done, also in this case it is investigated how the operating fre-
quency in�uences the average velocity detected at the outlet of the channel:
�g. 4.12 proves that the resonant peaks of the average horizontal velocity
follow the same law as the case of a rectangular tube (eq. 4.8).
Fig. 4.14 (blue curve) shows the correlation between u0 and the average
velocity at the outlet: as done for the previous case study, it is proved that
it �ts eq. 4.9, where a is set to 4.379·1014m−1s−1 to get an R-square factor
equal to 1.
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Figure 4.12: Frequency response for a rectangular channel with two open
ends. The blue curve shows the absolute value of the average horizontal
velocity and the red vertical lines the expected resonant peaks (see eq. 4.8).

In the following it is analyzed how the presence of PDMS walls could in-
�uence the average internal velocity. Unfortunately, because of geometrical
complexities which are almost unavoidable in SAW acousto�uidics, analyt-
ical solutions are di�cult to achieve: this is the reason why it is natural for
researchers to resort to mathematical simulations[51].
Three ways of modeling PDMS are possible for acoustic simulations[53]:

• PDMS is described as linear elastic solid material through the Solid
Mechanics Interface. This approach resembles on the full model of the
phenomenon and includes the propagation of shear waves in PDMS
(unless a low-re�ecting boundary condition is set at the top of the
tube);

• PDMS is treated as a non-�owing �uid through the Pressure Acoustic
Interface, so the contribution of shear waves is not included, while
wave leakage at the substrate�PDMS interface is;

• PDMS contribution is mathematically modeled as a normal impedance

Z0 = ρmcm (4.13)

where ρm is the density of PDMS (1070 kg/m3) and cm the associated
longitudinal wave speed (1030 m/s).

Since it has been proven the three approaches to be consistent with each
other[53], the third path is chosen to minimize the computational e�ort.
Fig. 4.13 reveals that the resonant peaks - observed in �g. 4.12 - disappear
when PDMS impedance is included, and a sensitive variation of the modulus
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occurs. It is particularly evident in �g. 4.14, where the red curve follows
eq. 4.9 if a is set to 1.61·1012m−1s−1: the trend is the same, but the �tting
coe�cient is attenuated.
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Figure 4.13: The frequency response of a channel with two closed ends and
the contribution of PDMS included

10-10 10-9 10-8

u
0
(m)

10-8

10-6

10-4

10-2

100

A
v
e

ra
g

e
 v

e
lo

c
it
y
 a

t 
th

e
 o

u
tl
e

t 
(m

/s
)

Normal impedance not included

Normal impedance included

Figure 4.14: The graph shows the relation between u0 and the average
velocity at the outlet of the channel when the channel has two closed ends
and the frequency is set to the �rst resonant peak. The blue curve shows
the behaviour when PDMS normal impedance is not included, while the red
one when it is included.
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4.2 3D numerical simulations

In this section the feasibility of a 3D model of an acoustic-streaming-based
device is investigated. In particular, it is considered the case of a tube with
two open ends where the surface acoustic waves propagate perpenducarly
to the length of the tube, as displayed in �g. 4.15.

Figure 4.15: Schematic of acousto�uidic device which utilizes surface acous-
tic waves[54]

There are shown two di�erent ways of triggering acoustic streaming: the
�rst one consists in radiating surface acoustic waves perpendicularly to the
propagation direction along all the length of the channel, the second on just
along half of it.
Because of computational limits, it is not carried out an analysis as deep as
the 2D case. Indeed, the two-dimensional simulations allows are performable
for a wide frequency range thanks to the limited required RAM space and
computational time, which is not the case of the 3D ones.
Finally the performances of such a pumping mechanism are compared the
one based on electrokinetic phenomena.

4.2.1 Tube with two open ends

In �g. 4.16 it is pictured the device analysed in this section.
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Figure 4.16: Drawing of the tube analyzed in this section. Blue areas
represent the inlet (left surface) and the oulet (right surface) of the channel.

First it is necessary to choose an appropriate value for nel, in order for the
results of the simulations to be as close as possible to reality.
This simulation investigate the performance at the �rst resonant frequency
(744.5kHz), the pressure at the inlet and the outlet is set to 0, and surface
acoustic waves are applied perpendicularly to the propagation direction and
all along the length of the channel.
Table 4.3 shows that the value obtained by setting nel to 70 di�ers from the
one resulted from nel = 90 by 9.58%: if a tolerance of 10% is considered as
in the previous section, it is possible to choose 70 as value for nel.

Number of elements (nel) Average velocity at the oulet (m/s)
10 1.07563·10−5

30 1.23131·10−5

50 1.00982·10−5

70 1.17489·10−5

90 1.06239·10−5

110 9.9515·10−6

Table 4.3: Results of the simulation showing how the computed value of
the average velocity at the outlet of the tube changes with nel when u0 is
set to 1nm

This conclusions are taken in consideration when simulating the case of a
3D tube excited by surface acoustic waves only along the half of the bottom
side of the channel too. The average velocity at the outlet results to be
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1.01262·10−4 m/s, so almost one order of magnitude higher than the previ-
ous case.
It is fundamental to notice that the leaky behavior - modeled by the atten-
uation coe�cient of eq. 2.24 - is not included in such simulations in order
to limit the computational e�ort.
Fig. 4.17 shows how the average velocity varies with the pressure at the out-
let of the channel: the angle coe�cient is proved to be 3.3647·10−4m/Pa·s,
which is coherent with eq. 1.9 that predicts 3.9488·10−4m/Pa·s (so it results
a descrepancy of 14.79%).
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Figure 4.17: Relation between u0 and the average velocity at the outlet of
the channel when the channel has two closed ends

A detailed analysis regarding the optimal way of exciting acoustic stream-
ing is not provided in this Master thesis. However, it is clear that the
performances of the two study cases presented above di�er dramatically:

• when the entire length of the channel is stimulated, two opposite �ows
are present at the same time in the channel;

• when SAW propagate only along half of it, the �ow is uniformly di-
rected towards only one direction.

This di�erence suggests the second case to be more optimal, and it is con-
�rmed by the resulting average velocity at the outlet (as reported above).
Further studies about this aspect could be interesting to be developed in
the future.

4.3 Comparison with electrokinetic pumps

FEA simulations allow us to establish the relations between the geometrical
(i.e. sizes of the tube) and physical (i.e. �uid properties and operating)
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parameters and the resulting �ow. However, it is di�cult to evaluate the
performances of such a pumping mechanism by itself: a comparison with
another pumping system is necessary.
It is chosen a channel drivven by electrokinetics, since it is the most popular
among the non-mechanical pumping mechanisms.

4.3.1 Electro-osmotic pumps (EOP)

Electroosmosis is "the �ow of liquid that is in contact with a charged solid
surface when an electric �eld is applied, and it becomes an important con-
sideration with the increased surface area-to-volume ratio associated with
microchannels"[55]. Generally surfaces get a �nite charge density if put in
contact with a water solution: the charged surface attracts counterions1

and repels coions2, resulting in the formation of an electric double layer
(EDL)[56].
As an electric �eld is applied in parallel with the surface, cations in the
EDL region are forced to move in the direction of the electric �eld. These
charged particles drag the liquid, causing a net motion of the bulk �uid
known as electro-osmotic �ow (EOF)[57].

Figure 4.18: Abstract scheme showing the working principle of an electroos-
motic pump: (a)V is the applied voltage between the catode and the anode,
and E(x) the resulting electric �eld (b)λD is the Debye length (the distance
over which signi�cant charge separation can occur)[58]

Techniques exploiting boundary e�ects result to be quite e�ective in mi-
cro�uidics, since the distance separating opposite surfaces is extremely lim-
ited [18]: among them, electroosmosis-based pumps are the most pupular.
As reported by Squires and Quake[18], the advantages associated to this
driving mechanism are:

1An ion that has the opposite charge to that of another ion within the same solution
2An ion that has the same charge to that of another ion within the same solution
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• used to pump as well as to separate through electro-osmotic �ow
(EOF);

• perfectly uniform, straight channels has a �at velocity pro�le, implying
less convective dispersion than for pressure-driven �ow;

• no dependence on the tube sizes, in net contrast with pressure-driven
�ows (as can be seen from eq. 1.9).

Among the drawbacks, Squires and Quakes[18] highlight:

• high dependence on chemical properties of the �uid;

• high dependence on walls' charge, which varies with "solution pH,
ionic strength, and uncontrollably when solute molecules adsorb onto
the walls";

• an inhomogeneous surface charge distribution could a�ect the result-
ing �ow;

• electrochemical reactions must occur at electrodes in order to maintain
an electric �eld in solution, which give rise to "water electrolysis and
its associated bubble formation".

4.3.2 Comparison

It is considered a microchannel characterized by the parameters reported
in tab. 4.4: the value for Vapp is chosen so that u0 is 1nm (in case PZT-5H
is chosen as piezoelectric material), so the results of the previous simula-
tions are usable to establish a comparison with the electroosmotic driving
mechanism.

Physical entity Symbol Value
Relative permittivity of water εr 80.2[59]

Zeta potential of PDMS ζ0 -83mV[60]
Length of the channel L 1mm

Applied voltage Vapp 14.64mV

Table 4.4: Parameters of two microchannels actuated by di�erent mecha-
nism: the �rst one is actuated by EOF, the second one by acoustic streaming

In can proven[18] that for an electroosmotic pump the following equation
expresses the velocity along the channel

uEOF =
ε0εrζ0

µL
· Vapp (4.14)

where µ is the viscosity of the �uid (water in this case), ε0 the vacuum
permittivity, εr the relative permittivity of the �uid, L the length of the
channel, Vapp the applied voltage and uEOF the velocity along the channel.
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By substituting the values reported in tab. 4.4 in eq. 4.14, it results uEOF =
0.97µm/s. This value has to be compared with the average normal velocity
at the outlet of the channel described in section 4.2.1, with SAW generated
only along half of the length of the tube. An average velocity results to be
6.481µm/s, so 6.7 times higher than the EOF counterpart.
It is worth to notice that two contributions have been completely ignored
for the acoustic-streaming pump:

• the attenuation provided by PDMS (84.8 dBcm−1[53]) to SAW com-
ing from outside of the channel, which is dependent on the thickness
of the wall. If the thickness of the wall is considered to be 600µm[53],
the attenuation results 5.088dB. u0 is so reduced by 1.79 times, corre-
spondent to a reduction of 3.23 times for the average velocity at the
outlet;

• the leaky behaviour of the SAW propagating at the substrate-water
interface, whose e�ect depends both from the operating frequency and
the dimensions of the channel.
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Conclusions and future work

This Master thesis has highlighted that:

• a direct comparison between the analithical and FEA models is not
straightforward, both for SAW and micro�uidic phenomena;

• the height of the piezoelectric substrate (hpiezo) and the number of
IDT pairs in�uence the generated SAW. It is shown that the resonant
frequency reaches a convergent valu as long as hpiezo increases;

• the geometrical parameters of micro�uidic channels a�ect the fre-
quency response of the induced acoustic streaming, independently
from the applied boundary conditions. In particular it is proven that
the optimal working frequencies follow equation 4.8;

• acoustic-streaming-based pumps represent a valid alternative to the
traditional driving mechanisms (electroosmotic for example).

Most of the analysis has been dedicated to 2D cases to reduce the compu-
tational e�ort. At the same time it is recognized that 3D analyses cannot
be ignored: a real channel allows SAW to be generated perpendicularly to
the propagation of the streaming, which cannot be modelled when limiting
simulations to a 2D case.
The comparison with the electroosmotic actuation mechanism has clearly
signaled a concrete possibility of achieving performances of the same order
of magnitude or even higher. Moreover, even if the 3D model does not
take into account the leaky behavior of SAW at the solid-�uid interface,
the stimulation of acoustic waves from both the sides of the channel should
make it not relevant for the analysis.
Since SAW transducers are widely investigated to be integrated in lab-on-
chip devices, the author of this document is very con�dent that this driving
mechanism could represent a valid alternative to the traditional counter-
parts. As a support to previous statement, Ding and Huang[17] report that
SAW transducers could be extensevely used for lab-on-chip technology be-
cause of their high biocompatibility, fast �uidic actuation, simplicity and
cheapness, versatility and contact-free manipulation.
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However, it is clear that many topics have not been covered in this docu-
ment:

• unidirectional SAW-tranducers have not been considered, but they
are essential for micro�uidics since they improve the performances
and maintain the SAW devices at the best operating conditions[9];

• GHz-range has not been investigated for micro�uidics, because of the
high computational times required (mostly dependent on the neces-
sary size of the �nite elemets);

• PDMS in�uence requires a mathematical study in order to fully com-
prehend its role in the frequency response of the streaming;

• 3D simulations are limited by computational limits. A more realistic
model would also require the inclusion of a vertical tube to inlet water
(as displayed in �g. 5.1), but a simpler tube has been chosen to better
compare its performances with a the electroosmotic actuation;

Figure 5.1: Conceptual drawing of a realistic microchannel[61]

• a complete model, including both electro-mechanical coupling and
acoustophoretic e�ect, would be closer to a real device;

• acoustic streaming has been studied when actuated by SAW, but the
possibility of using PMUT-based transducers remains an open candi-
date for novel acoustic-streaming-based devices. It is clear that pa-
rameters like the size of the diaphragm, the number of the involved
devices and their location in the channel are only a few of the aspects
that should be taken into account when designing such a device.

The general remark is that a CFD (Computational Fluid Dynamics) back-
ground is necessary when dealing with this topic: the possibility of min-
imizing the computational time, without renouncing to the quality of the
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simulation, results to be fundamental to realize a FEA model as close as
possible to the reality.
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Appendix A

Notations

In chapter 2, several vector notations are introduced.
First it is necessary to specify that pedices 1, 2 and 3 indicate x, y and
z-direction respectively.
u, E and D indicate the displacement, the electric �eld and the electric
displacement �eld vectors respectively. In particular eq. A.1 show their
extended form.

u =

u1

u2

u3

 E =

E1

E2

E3

 D =

D1

D2

D3

 (A.1)

T , S and ε stand for Cauchy stress, strain and dielectric 2nd-rank tensors,
e the 3rd-rank piezoelectric-coupling tensor, c the 4th-rank elasticity tensor.
In this document, Voigt notation is used: since Cauchy stress tensor is sim-
metric, a six-dimensional vector both for stress and strain can be generated.
According to Voigt-Kelvin notation



11→ 1

22→ 2

33→ 3

23→ 4

31→ 5

12→ 6

(A.2)

T =


T1

T2

T3

T4

T5

T6

 S =


S1

S2

S3

S4

S5

S6

 (A.3)
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Physical entity Symbol Expression
1st Lame' parameter λ c12

2nd Lame' parameter µ c11−c12
2

Bulk modulus K λ+ 2
3
µ

Shear modulus G µ

Poisson ratio ν λ
3K−λ

Propagation velocity cSAW ≈
√

µ
ρ

Table A.1: Main parameters regarding piezoelectricity

cE =


cE11 cE12 cE13 cE14 0 0
cE12 cE22 cE23 cE24 0 0
cE13 cE23 cE33 cE34 0 0
cE14 cE24 cE34 cE44 0 0
0 0 0 0 cE55 0
0 0 0 0 0 cE66

 (A.4)

sE = inv(cE) (A.5)

ε =

ε11 0 0
0 ε22 0
0 0 ε33

 (A.6)

e =


0 e12 e13

0 e22 e23

0 e32 e33

0 e42 e43

e51 0 0
e61 0 0

 (A.7)

d = e · sE (A.8)

In chapter 2 it is introduced the matrix element cijkl: in order to make a
correct interpretation, it is necessary to split "ij" from and "kl", and use
associations A.2 to map each couple.
The same for matrix element eijk, which has to be read by splitting "ij"
(mapped by using Voigt notation) and "k". Table A.1 reports the main
physical parameters involved for SAW mathematical discussion.



Appendix B

Material properties

B.1 PZT-5H

ρ = 7500kg/m3 (B.1)

cE =


127.2 80.21 84.67 0 0 0
80.21 127.2 84.67 0 0 0
84.67 84.67 117.43 0 0 0

0 0 0 22.98 0 0
0 0 0 0 22.98 0
0 0 0 0 0 23.47

N/m (B.2)

ε =

1704.4 0 0
0 1704.4 0
0 0 1433.6

 (B.3)

e =


0 0 −6.62
0 0 −6.62
0 0 23.24
0 17.03 0

17.03 0 0
0 0 0

 (B.4)

B.2 Water

Physical entity Symbol Expression Unit of measurement
Density ρ0 1000 kg ·m−3

Shear viscosity µ 8.9·10−4 Pa · s
Bulk viscosity µb 2.4·10−6 Pa · s

Propagation velocity c0 1498 m · s−1

Ratio of speci�c heats γ 1.012 1
Heat capacity at constant pressure Cp 4180 J · kg−1 ·K−1

Compressibility of the �uid χ 4.45·10−10 Pa−1

Thermal conductivity k 0.61 W ·m−1 ·K−1
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Appendix C

Rayleigh solution of

Navier-Stokes equations

In his article On the Circulation of Air Observed in Kundt's Tubes, and
on some allied acoustical problems, Lord Rayleigh provided a mathematical
description of a steady-state �ow caused by a vibratory motion.

C.1 General formulation

Navier-Stokes equation for momentum is taken into account and developed
in Cartesian coordinates (eq. C.2)

∂u

∂t
= −1

ρ
∇p+ ν∇2u− (u · ∇)u (C.1)

{
∂ux
∂t

= −1
ρ
∂p
∂x

+ ν∇2ux − ux ∂ux∂x − uy
∂ux
∂y

∂uy
∂t

= −1
ρ
∂p
∂y

+ ν∇2uy − ux ∂uy∂x − uy
∂uy
∂y

(C.2)

where ν is the dynamic viscosity, ρ is the density of the �uid, u the velocity
�eld and p the pressure.
In order not to involve p in eq. C.2, both the members of the �rst equation
are derived by y, and the ones of the second equation by x

ν∇2

(
∂ux
∂y
−∂uy
∂x

)
− ∂

∂t

(
∂ux
∂y
−∂uy

x

)
=

∂

∂y

(
ux
∂ux
∂x

+uy
∂ux
∂y

)
− ∂

∂x

(
ux
∂uy
∂x

+uy
∂uy
∂y

)
(C.3)

By introducing scalar function ψ satisfying conditions C.4

ux =
∂ψ

∂y
uy = −∂ψ

∂x
(C.4)

eq. C.3 is rewritable as

∇4ψ − 1

ν

∂

∂t
∇2ψ =

ux
ν

∂∇2ψ

∂x
+
uy
ν

∂∇2ψ

∂y
(C.5)
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In a �rst approximation the right-hand term is neglected since it is of the
second order in the velocities

∇2

(
∇2 − 1

ν

∂

∂t

)
ψ = 0 (C.6)

The solution of eq. C.6 is supposed to have an harmonic behaviour - and
so to be proportional to eiωtcos(kx) - and being writeable as a linear com-
bination of two wave-functions ψ1 and ψ2 such that

∇2ψ1 =

(
∂2

∂y2
− k2

)
ψ1 = 0 (C.7)

(
∇2 − 1

ν

∂

∂t

)
ψ2 =

(
∂2

∂y2
− k2 − i

ν
ω

)
ψ2 =

(
∂2

∂y2
− k′2

)
ψ1 = 0 (C.8)

{
ψ1 = A1e

−ky + A2e
ky

ψ2 = B1e
−k′y +B2e

k′y
(C.9)

Since ω
ν
is generally very high, it is possible to make the following approxi-

mation

k′ ≈
√

ω

2ν
(1 + i) = β(1 + i) (C.10)

In order to assign proper boundary condition, in the following section a
study case is analysed: it has been chosen the one of a vessel whose hori-
zontal bottom occupies a �xed plane at y = 0 (y is measured upwards).

C.2 Vessel with a closed bottom side

Figure C.1: Maximum vertical displacement of the free surface by varying
the number of IDT pairs
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C.2.1 Boundary conditions

If no other solids are present in the neighbourhood of the bottom, it is
possible to suppose B2 = 0, and so{

ψ(0) = ψ1(0) + ψ2(0) = A1 + A2 +B1 = 0
∂ψ
∂y

(0) = ∂ψ1

∂y
(0) + ∂ψ2

∂y
(0) = −kA1 + kA2 − k′B1 = 0

(C.11)

By substituting eq. C.11 into eq. C.9, ψ is writeable as

ψ = B1

(
− cosh ky +

k′

k
sinh ky + e−k

′y

)
(C.12)

If the region close to bottom boundary is taken into account, and the imag-
inary are neglected, eq. C.12 allows to write ux and uy as{
ux = u0 cos kx[−k sinh ky

β
√

2
cos(ωt− π

4
) + cosh ky cosωt− e−βy cos(ωt− βy)]

uy = u0 sin kx[−k cosh ky

β
√

2
cos(ωt− π

4
) + sinh ky cosωt+ ke−βy

β
√

2
cos(ωt− π

4
− βy)]

(C.13)
Since the �nal goal is investigating the steady-state motion of the �uid,
it is worth to analyse what happens when a particle moves from (x,y) to
(x+ξ,y+η): if Taylor expansion is applied, eq. C.14 shows that

ux(x+ ξ, y + η) = ux(x, y) +
∂ux
∂x

ξ +
∂ux
∂y

η (C.14)

with

ξ =

∫ ∆t

0

ux dt η =

∫ ∆t

0

uy dt (C.15)

Being u(x,y) periodic and
∫

∂ux
∂x
ξ dt = 0, only the second term of eq. C.14

is not negligible and consists of two parts: the �rst independent of t, and
the second harmonic functions of 2ωt.
Only the former is considered, since it is non-zero if averaged over time.

ux =
u2

0 sin 2kxe−βy

4ω

[
k cosh ky cos βy+

√
2β sinh ky sin

(
βy− π

4

)
−ke−βy

]
(C.16)

Near the bottom boundary the mean velocity results to be

ux =
u2

0 sin 2kxe−βy

4v
[cos βy + βy(sin βy − cos βy)− e−βy] (C.17)

where v = ω
k
is the phase velocity.

According to eq. C.7 and C.8

∇2ψ = ∇2(ψ1 + ψ2) = ∇2ψ2 =
1

ν

∂ψ2

∂t
(C.18)
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Since eq. C.13 provides the expressions for ψ, ux and uy, an expression for
the right-hand member of eq. C.5 can be calculated as

ux
ν

∂∇2ψ

∂x
+
uy
ν

∂∇2ψ

∂y

=
ωku2

0 sin 2kxe−βy

4ν2β
√

2

[(
k

β
√

2
− β
√

2

k

)
sinh ky sin βy −

√
2 cosh ky cos βy +

√
2e−βy

]
(C.19)

where the terms in 2ωt are not taken into account.
In close proximity of the bottom boundary

ux
ν

∂∇2ψ

∂x
+
uy
ν

∂∇2ψ

∂y
≈ ωku2

0 sin 2kxe−βy

4ν2β
[−βy sin βy − cos βy + e−βy]

(C.20)
Since k << β, it is possible to approximate

∇4ψ ≈ d4

dy4
ψ =

ux
ν

∂∇2ψ

∂x
+
uy
ν

∂∇2ψ

∂y
(C.21)

The solution of the equation resulting from substituting eq. C.20 into eq.
C.21 is

ψ =
ωku2

0 sin 2kxe−βy

4ν2β5

[
3

4
cos βy+

1

2
sin βy+

1

4
βy sin βy+

1

16
e−βy

]
(C.22)

The complementary function of eq. C.21 may be rewritten as

ωku2
0 sin 2kx

4ν2β5
[(C +Dy)e−2ky + (C ′ +D′y)e2ky] =

u2
0 sin 2kx

βV
(C +Dy)e−2ky

(C.23)
So ux results to be

ux =
u2
o sin 2kx

v

{
e−βy

[
− sin βy − 1

4
cos βy +

1

4
βy cos βy − 1

4
βy sin βy − 1

8
e−βy

]
+

β−1e−2ky[D − 2k(D + Cy)]

}
(C.24)

Because of ux(y = 0) and uy(y = 0), it is possible to get

C = −13

16
D =

3

8
β (C.25)

Thus

ux =
u2
o sin 2kx

V

{
e−βy

[
− sin βy − 1

4
cos βy +

1

4
βy cos βy − 1

4
βy sin βy − 1

8
e−βy

]
+

3

8
e−2ky[1− 2ky]

}
(C.26)
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Finally it is necessary to sum up the term in eq. C.17

u′x =
u2

0 sin 2kx

V

[
e−βy

(
− sin βy − 3

8
e−βy

)
+

3

8
e−2ky(1− 2ky)

]
(C.27)

At the short distance the �rst term in the brackets becomes negligible, so
it is results simply in

u′x =
3

8

u2
0 sin 2kx

V
e−2ky(1− 2ky) (C.28)


