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Summary

The present work will present possible navigation algorithms for a fleet of UAVs
inside a known region.

After a series of consideration about the requirements necessary to achieve a
satisfactory result, like for example the complete coverage and the warranty of
covering the spots when their priority overcomes a certain value, a set of algorithms
able to satisfy the requirements will be developed. In the following will be considered
both centralized and decentralized algorithms.

The work flow starts from a centralized approach, that will base its functioning
on the search of the maximum value of the priority function at each step, in such a
way to assure the visiting of them in the minor possible time. Since in this way
the high priority spots in the vehicles neighborhood are considered only if one of
them has in absolute the highest priority inside the region, creating an unwanted
zig-zag trend and overpositions, two solutions will be proposed: the first is simply
not consider just the greater value but a set of the high values (for example the
n highest priorities) and among them choose the closest to the vehicle as next
destination of the navigation. The second solution is to change entirely approach
and to search for each step of the vehicle the position that minimizes a certain
function that would take into account both the global state of the region and the
local one, through a MPC-based algorithm.

Considering the demands of a real-life application and the impossibility to have
a constant connection, a decentralized algorithm will be developed. The region will
be divided for this purpose in sub-regions of interest and a meeting will be imposed
every period of time, in such a way to perform an update of the information. The
navigation inside the respective sub-region in the time instants between the two
meeting will be performable with the preferred navigation method, that in this
case will be the maximum search algorithm described above.
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Chapter 1

Introduction

The final purpose of the present work is to create a reliable motion planning
algorithm for a fleet of Unmanned Aerial Vehicles (UAVs) that performs the
monitoring of a known area, inside which different levels of visiting priority are
present, with the ultimate purpose to detect fires.
This goal creates a series of preliminary objectives to guarantee:

• It is strongly intuitive that a fire individuated in a early phase is easier
to extinguish, so to create an efficient and actually useful motion control
methodology it is necessary to impose a deadline on the maximum reachable
priority value of each point.

• The whole considered region has to be visited, single spots cannot be left
without visit.

• The algorithm has to be able to modify instantaneously the behaviour of the
vehicle as soon as it gets to know the change in the priority distribution inside
the region. This is the main difference between the current approach and the
already developed coverage algorithms, that refer to uniform areas for which
a predefined path is the most efficient.
This necessity raises from the inquiry [1]’s results that underlines as 85% of the
wildfires are caused by humans, so a wooden region where human presence has
been detected (for example a camping) will be more likely to have a starting
fire and it should be monitored more often. Since the presence of human,
or of other risk factors, may change over the time, it is possible to have the
necessity to modify the priority of the points.

Addressing the above goals requires to have a reliable automatic methodology to
choose the next position, whichever would be the current states of the region and
of the UAVs.
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To have a better understanding of what is happening, from a priority point of view,
in the evolution of the monitoring it is useful to make a clarification: the initial
state of the priority map is uncorrelated with the evolution in time of the priority
map future state. Once a point is monitored, in fact, it is reset too, and if the
update function of the priority is homogeneous the vehicle will tend to observe
the points at regular intervals. In this application this behaviour is unwanted and
eliminates the adaptability requirement, so a non-uniform update has to be applied.
An example of the described updated priority distribution and of an update matrix
in Matlab are represented in 1.1.

(a) Non-uniform priority up-
date (b) Update matrix generated in Matlab

Figure 1.1: Non-uniform update applied in Matlab

In this perspective, at first an algorithm that follows the policy of closest
maximum reaching has been applied. The obtained motion is not optimal since
the successive points are reached travelling along a straight line generating the
necessity to overlap a recently seen point to cover some eventual spots left unseen
before. The described tendency improves with time but, as can be observed in 1.2
also after more than 130.000 iterations (assuming that 1 iteration corresponds to 1
second it would be equivalent to more than 36 hours) the number of overlapping is
huge in the central area of the region, creating an inefficient behaviour.
To overcome this problem it is possible to extend the list of the searched point,

trying not considering only the points with absolute maximum priority but including
the k greater values and imposing the closest as next destination. This approach
limits a bit the overlapping and zig-zag problems but only in a partial way. Moreover
increasing too much the value of k the adaptability of the algorithm is reduced,
getting with the limit of k equal to the number of points of the region the behaviour
in 1.3
The proposed algorithm chooses on-line a destination to reach inside the region and

2



Introduction

(a) Closest Maximum Search after 2950
iterations

(b) Closest Maximum Search after
132950 iterations

Figure 1.2: Closest Maximum Search Behaviour

Figure 1.3: Boustrophedon path

once reached it computes the next one and so on, connecting the set of successive
destinations with a sequence of straight lines. As explained above this behaviour
often left behind unseen spots really close to the followed trajectory due to the shape
of the motion, creating the necessity to come back through an already observed
territory to check a single spot. A possible solution for this problem is not to reach
the next destination through a straight line motion but through a broken line. In
this case to be chosen are the single next steps, in such a way to create a generic
path that conduct to a high priority spot, covering at the same time the more
urgent spots that are in the neighborhood of the travelled path. A comparison
between the two path is illustrated in 1.4.
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To obtain the Broken Line path an optimization algorithm, based on a MPC, is

Figure 1.4: Possible paths to reach A from B

applied with the purpose to get closer to the higher priority points covering during
the journey as much urgent spots as possible.
The described reasoning is translated into a series of algorithms that have been
used to verify the validity of the considered solutions, which can be divided into
two parts:

1. Maxima Search Algorithm
The Maxima Search Algorithm chooses as next vehicle’s destination the closest
among the points with a greatest values of the α, the point-wise priority
function. In this way it is assured the coverage of the highest priority spots.
Once developed the basic algorithm the choice for the next destination has
been extended to the points with the k greater α values to assure not to
leave behind points with a priority high but inferior to the absolute maximum.
After the creation of a reliable algorithm for navigation it is applied to a
Decentralized case, so to a case where the vehicles have not the information
on what the other vehicles are doing at any moment, but to obtain that they
have to meet with the other UAVs. Please note that in this case the happening
of a meeting does not indicate to have all the vehicles at the same location, but
that they have a reciprocate distance minor than the communication radius,
ρc.

2. MPC-based Algorithm
The MPC-based algorithm is based on the optimization of an optimization
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function (or objective function) composed by two terms: a global one that
assures to have a complexive trajectory that brings the vehicles closer to the
maximum and a local one that makes the vehicles cover the high spots along
the path. During the implementation process an amount of different optimiza-
tion functions and optimization variables are considered and a trade-off among
accuracy, efficiency and computational cost is necessary. The development in
the present work is entirely realized inside the Matlab environment through
the use of the function fmincon.

A compact representation of the developed algorithms can be found in 1.5.
In the following it is presented an overview about the studies related to the

present one and the list of used variables, to make simpler the understanding of the
pseudocodes and the reasoning. In Chapter 2 is reported a useful set of theoretical
notions used directly or indirectly in this work. In Chapter 3 is present the de-
scription of the development procedure of the final algorithms and the algorithms
themselves. Finally in Chapter 4 the results of the simulations and a comment to
them can be found. In the Conclusion a short section about the future development
of this work is placed.

1.0.1 Related Work
The realization of the present work has required the combination of a series of
widely spread concepts, among which the main ones are coverage, communication
and vehicle routing, with a particular focus on a DTSP(Dynamic Travel Salesman
Problem) since the monitored region where vehicles are moving is modeled as a dis-
crete grid. Despite the huge amount of studies none of them can be applied exactly
at the present case, even if it is undeniable their usefulness both as background
and for an adapted solution of specifics problems.
The faced coverage methods of a give region are analyzed in a complete way in [2]
where the different methodologies are cataloged on the basis of both the region’s
structure and the information about the area to cover. Since in this case a 2-D
continuous region without obstacles is considered a particular attention has been
given to the boustrodephon path, represented in 1.3, being this the best solution
to cover a uniform region, also in case of a non-regular region, as shown in [3].
In case in the coverage are involved more than one vehicle also the exchange of
information on the already seen spots is an important element to take into account,
so in order to increase the efficiency of the algorithm the coverage methods have to
be combined with a connectivity among the sensors, the connection can be either
maintained or guaranteed over the time, so after a period when the vehicles cannot
exchange information they meet again and update their state. Works that analyze
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Figure 1.5: Development of the algorithms

the relation between coverage and connectivity in a sensor network usually refers
to a static network or to a semi-dynamic network, in the sense that the nodes that
compose the network itself have the ability to adapt to changes, in the sense that in
case of damage of a part of the network, it is able to recreate a complete coverage of
the considered area, different possibilities are in [4] and a particular application can
be found in [5]. On the other hand considering a group or fleet of mobile robots that
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have to explore an area without guaranteeing at any time instant the converage
of the whole area you can find mainly the approach to move the fleet together in
such a way to cover a greater area without losing connectivity at all, as in [6]. In
[7] the solution is still different since the exploration of an unknown area happens
imposing that two connected vehicles separate their paths to overcome an obstacle
and then meet again to exchange the gained information, this meeting concept has
been adapted and applied in the realization of the decentralized algorithm.
A vehicle routing problem is generally based on the Travel Salesman Problem
(TSP) that wants to find the more efficient way to cover a set of position, with
a different cost required to cover each of them, the first important result in an
euclidean region is the Bertsimas’ one in [8]. Starting from the Bertsimas work
an amount of specif studies have been published covering specific requirements,
as the Travel Repairman Problem (TRP), where to the reaching time for a given
position is added the time to perform a specific task in that position, and the
dynamic version of TSP and TRP, so respectively the analysis of DTSP and DTRP,
[9],[10],[11]. A complete survey on the different developed vehicles routings is [12].
Another class of problems not directly exploited in the present study is the Dubins
vehicles navigation, where the solutions for the vehicle routing and the coverage
problems are combined with the constraints on the possible motions of the sensors
(like the lower bound on the curvature radius) is such a way to have an acceptable
model of the motion of an aerial vehicle, [13] and [14].

1.0.2 List of variables
Here they are collected the variables used in the present work.

• n: Dimension of the region.

• E: Extension of the region in the linear direction. Since the region is assumed
to be square it is the same for all the dimensions.

• v: Number of vehicles.

• ρv: Vision radius of the vehicles. Constant.

• δ: Spatial discretization step. Constant.

• ∆t: Temporal discretization step. Constant.

• u: Velocity. Constant.

• Post,i: Position of the ith vehicle at the time t.
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• α: Pointwise priority function.

• A: Matrix of priority function in a discrete n-D region.

• Dest: Desired destination of the vehicle to reach.

• diru: Direction of the velocity.

• dt: Distance of [x,y] and Post.

• h: Prediction horizon for the MPC algorith.

• Vi: Boolean matrix with same dimension of A. Element = 1, that point belong
to the Voronoi region of the ith vehicle.

• s: Dimension of the grid gotten discretizing the region.
s = E

δ
+ 1.

• Bound−/+: Inferior/superior bound of vision interval.

• k: Number of maxima considered as next target.

• kmax: Vector containing the locations of the points with the k − th higher
priorities.

• Th: A value threshold. If maxA is greater its position is the next Dest.

• ρp: Radius of the circle containing the observable points during the prediction.

• LimDim: Limit dimension of the Voronoi region to have the correspondent
vehicle searching for the next position inside it.

• wi: Weight of the i− th region.

• Umatrix: Priority update matrix.

8



Chapter 2

Theoretical Background

In this chapter, some background concepts useful for the understanding of the
study are summarized. In particular. the topics are either used directly in the
algorithms development, such as the Lloyd algorithm, or represent a starting point
for the navigation planning with time constraints in a dynamic environment, such
as the Dynamic Travel Salesman Problem.

2.1 Lloyd’s Algorithm
One of the most spread method to organize the motion of elements inside a quantized
region is undoubtedly the Lloyd’s Algorithm, [15]. In this algorithm S.P. Lloyd
divides the considered region in n convex sub-regions. Roughly speaking if we
consider an area with n sensors the algorithm creates n regions, each one containing
a sensors, and then the sensors are sent toward the centroid of the respective region
and both, regions and centroids, are recomputed. It is demonstrated that this
algorithm leads to a convergence of the sensors’ positions.
More formally the Lloyd Algorithm con be divided into three phases:

1. Voronoi Region Computation.
The first step is the subdivision of the region in n Voronoi regions, V ∈ R, it
is based on the distance between points and sensors. In general the distance
can be computed in different ways, in the present case it is used the Euclidean
distance.
The Euclidean distance for two two-elements vectors a = [a1, a2] and b = [b1, b2]

‖a− b‖ =
√

(a1 − b1)2 + (a2 − b2)2 (2.1)
The rule to perform the division in the n regions is:

Vi = q ∈ Q : ‖q − pi‖ ≤ ‖q − pj‖,∀j /= i (2.2)

9
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Where:

• Vi: i-th region;
• q: point of the discretized region Q;
• pi: position of the i-th sensor;
• pj: position of the j-th sensor;

2. Centroid Computation.
Once the regions are formed their centroid is computed. The generalized
centroid, or center of mass, CVi

of a region Vi is defined:

CVi
= 1
MVi

∫
Vi

qρ(q)dq (2.3)

Where:

• ρ(q): mass density function;
• MV : generalized mass of the region computed as

MV =
∫
V
ρ(q)dq (2.4)

It is straightforward that in a discrete case the integrals becomes a sum, so
the previous equations (3.3 and 3.4) become respectively:

CV = 1
MV

∑
V

qρ(q)dq (2.5)

MV =
∑
V

ρ(q)dq (2.6)

3. Motion Toward Centroid.
The last step is the computation of the new position of the sensor according
to a chosen motion law. The most immediate control law is obtained but the
position-velocity kinematic equation:

pi,t+1 = pi,t + CV − pi,t
‖CV − pi,t‖

u∆t (2.7)

Where:

• pi,t: position of the i-th sensor at the time t;
• u: absolute value of the velocity of the sensor;
• ∆t: length of the time interval;

10
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This procedure is ideally repeated until pi = CVi
. In case of a real application the

condition becomes |pi − CVi
| ≤ ε, with ε a small number. In this way the motion

of the sensors is directed toward the most representative spot of the region and the
above procedure assures the convergence.

2.2 Model Predictive Control - MPC
A Model Predictive Control is a method for the control of a system. It is based
on the optimization of a function (objective function or cost function) over a
certain horizon of time h. The ultimate objective is to choose the control action
(optimization variable value) to apply at the time t+ 1, predicting the behaviour of
the system between the current time t and the instant t+ h and finding the next
value of the control variable that assures the minimum of the objective function
over the prediction horizon.
The objective function can have different characteristics, according the specific
requirements of the solver used to resolve the minimization problem, but the more
general MPC does not require a particular structure, in other words the cost
function can be either linear or non-linear. Nevertheless it is essential to guarantee
the function dependence from the temporal sequence of its values, in such a way to
be able to exploit its connection with the behaviour of the system over the chosen
prediction horizon h. Generally, to assure this relationship, the objective function
is the sum of the values assumed by a determined function of the optimization
variable at each time t or the average of the function’s values over the prediction
horizon.
More formally a MPC can be described as:

minimize
x

1
h

h−1∑
i=0

f(x(t+ i|t), y(t+ i|t))

subject to xmin ≤ x(t+ i|t) ≤ xmax

y(t+i) = g(y(t+ i− 1))

(2.8)

where:

• f indicates the optimization function (or cost function);

• g indicates the dynamical equations of the system;

• x indicates the optimization variable, in the present case also the control
variable;

• xmin and xmax indicates respectively the minimum and maximum allowed
value for the control variable;

11
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• y indicates the state of the system, that has to be updated at each time instant
following the dynamical equations of the system;

• h indicates the prediction horizon;

2.3 Connectivity, Graph Theory and Coverage
Approaching the decentralized control problem for a fleet of mobile robot the
problem to guarantee connectivity at least over a period of time. The concept of
connectivity is strongly related to the graph theory and in this case it has to be
analyzed also in the light of coverage, so it is useful to underline some key-concepts.
A graph is a deterministic and schematic method to represent uniquely any network.
Reporting the definition given in Graph Theory [16]:

A graph G is an ordered pair (V (G), E(G)) consisting of a set V (G) of
vertices and a set E(G) of edges, together with an incidence function ψG
that associates with each edge of G an unordered pair of vertices of G.
The relation between the edge e and the vertices u and v joint by it. It
is expressed as:

ψG(e) = {u, v} (2.9)

Sometimes it is possible that the complete description of the system requires addi-
tional information, as a weight w associated to each edge e. This is for example the
case when to study the motion in a network it is necessary to know the travelling
time between two nodes or the required energy to reach it. The graph gotten is
called weighted graph and it is denoted as (G,w).
Graphs are widely used in information theory because they allow to represent
information networks in a intuitive way and their properties have been deeply
analyzed and studied, so also the problem of connectivity in mobile sensors networks
has been addressed multiple times.
Trivially two vertices (in the following called also sensors or nodes) are connected if
they can communicate, so if their distance is inferior than a communication radius
ρc linked to the sensors’ characteristics. According to graph theory two vertices,
representing the sensors, are connected if they are joint from an edge e.
In a monitoring network is it essential to guarantee the exchange of information
between the node of the graph, but, to assure it, it is not necessary to have a full
connection among the vertices, or, in other words, it is not crucial to guarantee that
at each time every vertex can communicate with all the other vertices. The kind of
property to assure to guarantee connectivity, according to the path− definition is
that whichever couple of nodes Na and Nb belonging to the network there exists at
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least one path that travels along the edges and connects Na and Nb.
The assurance of connectivity can be achieved through one of the following, accord-
ing to the network structure:

• The network is connected at every moment.
This condition can be realized in static network, or in dynamic networks where
either only a limited motion of the nodes is allowed or the number of nodes is
great, with a suitable disposition of the agents inside the considered region.

• The connection of the network is guaranteed over a period of time.
It is particularly useful in the discussed case because in case of mobile agents
over a region to monitor it may not be possible to cover the whole area in any
instant. As consequence it is necessary both to assure an efficient coverage
planning to respect deadline and specific region characteristics and to assure
connectivity to guarantee the exchange of information between the agents.

In the current analysis the second methodology is the most convenient. In fact in
general the considered case consists of a number of vehicles with a total covered
area at each instant greatly minor than the total surface to monitor. It creates the
necessity for the vehicles to move around the area independently but exchanging
information often enough to improve the overall results.
In a centralized algorithm the nature of the algorithm itself provides that at each
moment all the sensors have all the updated information about the region, the
priority function and the positions of the other member of the fleet, while in a
decentralized algorithm this is not true. The problem can be overcome in different
ways for example choosing a number of vehicles big enough, imposing that the
vehicles during the motion maintain a distance smaller than ρc or,like in this case,
imposing a meeting where the connectivity of the whole network is restored every
∆t, in such a way to guarantee updated information.

2.4 Travel Salesman Problem and variations

2.4.1 Algorithm complexity
The complexity of an algorithm is a measure of the basic computational steps
required for its execution. Usually a low-complexity algorithm is preferred, so
when it is possible an algorithm is wanted to be optimized, or in other words the
computational time wants to be minimized.
Since the computation of the complexity of an algorithm is not always immediate,
it has been created a distinction in classes in such a way to define an upper bound
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to the required steps number. The class that contains the less complex polynomial-
time algorithm is said P-class. Its upper bound is a polynomial function and
according to the polynomial order is possible to distinguish as linear, quadratic,
cubic and so on. This class is deterministic, in the sense that being the solution
given by a sequence of polynomial computation, it will be necessarily the expected
one, if the algorithm is correct.
The other big class is the NP-class, non-deterministic polynomial time. The non-
deterministic factor is generated by a required guessing inside the algorithm. The
guessed element creates the necessity to check the correctness of the gotten solution.
It is demonstrated that is a single NP-class problem con be reconducted to a
P-class one, then all NP problems are P problems, but until now it has not been
found this correspondence. The initial passage from NP to P is wanted to be a
polynomial reduction, so the first algorithm can be converted into the second one.
If it exists then the solution for the first one can be converted into a solution for
the second algorithm.
In the context of NP-class problems, they have to be defined also the concepts
of NPC (Non-deterministic Polynomial-time Complete) and NP-hard class prob-
lems. A problem P belongs to NPC-class if it both belongs to NP-class and
∀P ′ ∈ NP ∃ polynomial reduction Pr : Pr(P ′) = P . While NP-hard problems are
by definition problems at least as hard as any problem in NP-class. One of the
most spread NP-hard problem is the TSP, Travel Salesman Problem.

2.4.2 Travel Salesman Problem definition and Variations
A widely studied problem that searches for the most efficient navigation inside a
weighted graph, with the requirement to visit each node once in the minor possible
time and then return back at the starting point, is the Travel Salesman Problem
(TSP). It is at least a NP − hard problem and its possible global optimal solution
has been investigated many times, but the dependence from the network structure
makes difficult to find a general solving.
A particular typology of TSP are the Dynamical Travel Salesman Problem (DTSP)
where the graph representing the problem changes through the time.
In case the requirement of the problem is not only to pass through a specific node
but also to perform a certain kind of task that requires a determined time, a Travel
Repairman Problem is faced, existing in both the static and Dynamic version.
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Chapter 3

Coverage Planning
Algorithm Development and
Implementation

The present chapter contains the preliminary analysis of the problem and the
work-flow in the creation of motion planning algorithms. The reasoning and the
development are described and then the pseudo-codes are reported.

3.1 Problem Definition and Issues
The final purpose of this work is to create a base to solve the problem of monitoring
a known region with a non-uniform visiting priority through an autonomous motion
planning applied to a fleet of UAVs.
Before to analyze in details the behaviour of a vehicle inside the region or the
considered algorithms it is important to understand why the update priority dis-
tribution has a greater relevance than the current region priority state and, as
consequence, than the initial priority distribution inside the region.
Trivially considering two points if the first has an update rate equal to +1 and the
other one an update rate equal to +3, it means that the second spot has to be
visited three times more often than the first one and since the value of the point is
set to zero once it is visited, this is true whichever is the initial value of the two
points. From this example the importance of the update with respect to the current
state is clear and it can be deduced considering the reset of the priority value in
a specific point once it is seen from the vehicle. After the visit the point priority
function will depend on the update rate and on the trajectory of the vehicle and
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not on its starting value.
The correctness of this deduction is then confirmed by the simulations where the
same steady behaviour is obtained.
The classical coverage problem approach in 1.3 creates the best motion in case all
the points of the region have same priority, but in case the urgency of a part of
the area is different the performance strongly degrades, as it is observable from
the comparison between 3.1 and 3.2, where the non-uniform update is the one in
Figure 1.1b.
The performance worsening shows the necessity of adaptability of the algorithm

Figure 3.1: Performance of limit algorithm with uniform update

in order to satisfy the warranty of coverage within a given deadline or equivalently
a visiting frequency proportional to update rate. The analysis of this objective
points out the necessity to define a way to describe the priority state of the region
at each instant of time. So in each instant it is necessary to know how much time
spent since when a particular spot has been visited and which is the urgency to
visit that point. In case of uniform update of the priority these two requirements
coincide, but in general it is not true, in fact if one area of the main region has a
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Figure 3.2: Performance with a non-uniform update

priority which increases in a different rate that the rest of the region’s points the
correspondence between time and priority decays. The indirect relation generated
in this case has to be taken into account not only for the description of the region
state, but also in assigning a unit of measurement to the priority values. Since it
is not possible to choose the seconds [s] the choice is to define the priority as an
dimensionless parameter.
In order to define a way to outline the visiting urgency inside the region the first
step is to discretize the considered region, in such a way to describe it as a set of
equidistant point, each describable through a set of coordinates. Then it is possible
to associate to each point specific functions to take into account the priority to
visit it again and the time spent since when it has been visited. In motion planning
greater is the priority function value, greater is the urgency to visit the point again.
The adaptability requirement makes unsuitable the classical coverage method in 1.3
nevertheless, being demonstrated that it is the best possible behavior in a uniform
update, it is a good comparison to test the ”goodness” of an algorithm in case
the simulation is properly initialized and the update of A is non-uniform over the
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region.
The development was an incremental process, so in the realized model there was a
gradual increasing of the difficulty. Initially a 1-D, 1 vehicle, model was developed
then a second vehicle was added. In this simple setting the most suitable naviga-
tion rule was searched for, starting from a Lloyd’s algorithm, that showed to be
ineffective due to the vehicles convergence. So a Maxima Search algorithm was
implemented. After that the environment was extended to a 2-D square one. Again
the first simulation was realized with a single vehicle and then other was added. In
this second environment the problem of realizing a ”good” coverage appears and
brings the discussion to the possibility to develop a different motion planning control.

3.1.1 How to judge a ”good” Coverage?
The ”goodness” of whichever algorithm depends mainly on its purpose, focusing on a
coverage path planning algorithm with guaranteed deadlines it can be decomposed
in two overlapped problems with different requirements: a spatial one and a
temporal one.
In the case of a generic coverage problem without any temporal constraint the
only goal is to cover completely the target region without leaving unseen spots
behind. The quality of the algorithm can be linked to the length of the total path
traveled or to the energy consumption. A good example of application of this kind
of problem is an automatic floor-cleaner. In this case the most important thing is
to cover the entire room with the minor possible energy consumption, the time of
usage or the total trajectory length are the only important parameters to minimize.
The temporal requirement is, for its own nature, linked to a certain kind of urgency
like a maximum time imposed to cover the whole area or like the case the coverage
has to be completed more consecutive times, as the monitoring purpose presented
in this work. In the case of a uniform updated visiting priority the best behaviour
is the boustrophedon path since it is demonstrated to minimize the navigation time
required to cover each point of the region. On the other hand in a dynamic context,
so in a case when it is necessary to visit some points more often than others, its
effectiveness decreases.
Putting together these demands the conditions to take into account to give a
definition of ”goodness” are:

— Completeness of the coverage, that consists of the avoidance to leave unseen
spots of interest behind.

— Warranty of the presence of a limit on the maximum time spent between two
successive visits in a specific point, hence the respect of a deadline.
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To efficiently respect the above requirements an intuitive condition can be made
out: to get a trajectory that guaranteeing the complete monitoring of the region
avoiding as much as possible the overlaps. The last characteristic arises from the
fact that an overlapping enlarges the time required to visit the current maximum
since part of the time elapsed between two successive visits is spent to cover again
a spot recently seen.
The first and most important mathematical parameter to consider to evaluate the
performances of the planning algorithm with temporal constraints is the maximum
value of the priority function over the region, max(α), in such a way to check
the presence of an upper bound, indicating the limit among two successive visits.
A deadline can be either imposed explicitly or included implicitly in the used
algorithm, but whichever choice is made it has to take into account the eventual
modifications of the update rate in some subareas and the topography of the region,
modifying its value accordingly.
Together with the maximum it is necessary to have some information about the
general state of the region and to obtain this information it is useful to look at
the average and at the median of the priority function over the points of the
region, respectively α and α̃. They have generally an oscillating trend, with peaks
correspondent to the overlapping.
The combination of them gives a good information on the behaviour of the sensors
inside the region, but it corresponds unequivocally to the temporal trend only if
the update is uniform, so if after 1 s the priority of all the points of the region
increases of the same value. Otherwise it is necessary to create a variable to keep
track of the time elapsed between two successive visits. It would not correspond
anymore to the max(α) and to find the maximum time elapsed starting from the
maximum value of priority would not be trivial, hence it is useful to add an index
of the time spent from the visit of at each point of the region in every instant and
keep track of its maximum.
In case α and α̃ are close to the maximum it means that the path presents an
amount of overlaps or that cover only a small part of the whole area, on the contrary
if there are a big distance between the values at least one point in the region is
visited fewer than the others. If the values to be distant are α and α̃ it means
that there are two regions with values deeply different and it can be assumed that
a part of the region is extensively visited while the other is almost not seen at
all. So they are a good source of information on the level of coverage of the area;
basically they answer to the questions: are all the points covered? Is the coverage
completed in the required time for all the points? Is given to the whole region the
same importance (in case of uniform update of α) or an importance proportional
to its own priority (otherwise)?
The previous questions are the ones implicitly asked through the requirements
enlisted above. These three elements give a pretty complete overview about the
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planning behaviour, in case of some unexpected problems or strange trend in the
α’s performances can be useful to have a representation of the coverage process
with a movie showing the successive state of the vehicles, with appearence similar
to the frames represented in 1.2. Outside a debugging context the four described
parameters give a complete idea about the algorithm performances, its respectful-
ness of the deadlines and the quality of the path automatically generated by the
algorithm, and consequently representing a good yardstick of the quality of the
algorithm.

3.2 1-D Implementation
In the 1-D implementation the validity of the Lloyd’s algorithm and of the Max-
ima Search algorithm is tested. The Optimization algorithm is not considered in
this phase because at each step the vehicle can choose only between two possible
directions and necessarily covers all the points placed between its current position
and its destination. In the case of 1-D implementation the considered A matrix
update is only the uniform one.

3.2.1 Lloyd’s Algorithm
The procedure repeated at each iteration in the realization of the Lloyd’s-based
algorithm, represented in the Algorithm 1, is the following: at the beginning of
each iteration the priority matrix is updated as A = A+ 1,then, given the current
position of the vehicles, the points covered by them are computed considering the
interval [Post,i− ρv, Post,i + ρv] and then setting to 0 the α of the points belonging
to the interval.
Once updated the configuration the classical Lloyd’s algorithm is applied, comput-
ing Voronoi regions, finding the centroid and then updating the positions. With
the current initialization this is not necessary to consider the motion of the vehicle
in updating A since ρv is greater than the maximum step travelled in each iteration.
In other words no spot is left unseen, considering only the sequence of positions
without the motion between them. In case u > ρv the second condition of line 7
of Algorithm 1 has to be added. It considers the path traveled among the two
positions and resets all the points in the middle of them.

The results of the simulation, in 3.3 it refers to 50 iterations, show that after some
iterations the vehicles, both in case v = 1 and v = 2, get stuck at a intermediate
position, making the algorithm useless for our purposes.
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Algorithm 1: 1D Lloyd’s Algorithm
1 while True do
2 t = t+ 1
3 At+1 = At + update
4 for i = 1 : v do
5 Bound− = Post,i − ρv
6 Bound+ = Post,i + ρv
7 if x ∈ [Bound−, Bound+] ∧ x ∈ [Post−1,i, Post, i] then
8 A(x) = 0
9 end

10 end
11 Computation of V oronoi Regions Vi
12 Computation of the centroids ci
13 Post+1,i = Post,i + ci−Post,i

‖ci−Post,i‖u∆t
14 end

Figure 3.3: Lloyd-based navigation

3.2.2 Maximum Search Algorithm

The necessity to cover with greatest urgency the points with greater priority func-
tion brings up an alternative algorithm that follows the maximum among A values.
Following this rule the only change is the choice of the destination for the vehicle to
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reach. In case of a single vehicle it simply travels to reach that point, while in case
of v = 2 at each time Voronoi regions are computed and the maxima destinations
inside the respective subregions are reached.
This algorithm gives the hoped results with the vehicles that oscillate in the region

Algorithm 2: 1D Maxima Search Algorithm
1 while True do
2 t = t+ 1
3 At+1 = At + update
4 for i = 1 : v do
5 Bound− = Post,i − ρv
6 Bound+ = Post,i + ρv
7 if x ∈ [Bound−, Bound+] ∧ x ∈ [Post−1,i, Post, i] then
8 A(x) = 0
9 end

10 end
11 Computation of V oronoi Regions Vi
12 xi = x ∈ Vi|A(xi) = max

x∈Vi

A(x)
13 ci = xi
14 Post+1,i = Post,i + ci−Post,i

‖ci−Post,i‖u∆t
15 end

and cover it uniformly.

3.3 Main Obstacles to Straightforward Implemen-
tation

Even though the basic idea of the Maxima Search Algorithm developed in the
1-D case is applicable in the 2-D case the addition of the second dimension takes
some issues to deal with to adapt the motion planning. In particular they are
linked to the distribution of the value of A, that it is now a matrix, and its update.
Considering that the coverage is performed by aerial vehicles, the area covered from
a single vehicle at a given instant is a circle around the projection of the position
of the vehicle on the soil. As consequence in a 2-D environment is not sufficient
to consider only a bounded interval to update A but it has to be considered the
circle centered in the vehicle with radius ρv and also the motion of the vehicle from
Post−1 to Post that creates a stripe of reset points. So considering K = Post and
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L = Post+1, the area covered at each motion is represented in 3.4.

Figure 3.4: 2-D Alpha coverage during the motion

To correctly update α a geometrical relation to describe the set of points [x, y]seen
inside the stripe is required. To simplify the description the points seen can be
split in two groups:

• Points seen at the beginning or at the end of the step.
They are representable as the ones inside the circles of radius ρv and center
the position of the vehicle, in the figure represented from points K and L.
They can be described simply with the disequations extrapolated from the
equation of a circle in the 2-D plane:

(x− xK)2 + (y − yK)2 ≤ ρv

(x− xL)2 + (y − yL)2 ≤ ρv
(3.1)

• Points covered during the motion of the sensor.
Again the geometry of the system has to be exploited, even if the extrapolation
of the condition is less straightforward. It can be noticed that for all the points
J covered in the path from K to L the projections onto the direction KL of KJ
and LJ have sum equal to KL itself. Moreover since ∀[x, y] ∈ stripe JH ≤ ρv
a belonging condition can be found in the following way:

KH +HL = KL (3.2)
From Pythagoras’ theorem:

JH =
√
KJ2 −KH2 (3.3)
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JH =
√
JL2 − LH2 (3.4)

Rearraging 3.3 and 3.4, since JH ≤ ρv

ρv ≤
√
KJ2 −KH2 → KH ≤

√
KJ2 − ρ2

v (3.5)

ρv ≤
√
LJ2 − LH2 → LH ≤

√
LJ2 − ρ2

v (3.6)
At this point summing 3.5 and 3.6 the 3.2 is obtained and a condition with
no unknowns:

KL = KH +HL =
√
KJ2 − ρv +

√
LJ2 − ρv (3.7)

3.7 is the second condition we need to identify the points seen during the
motion.

At this point the update of A at each step can be performed verifying the validity
of the disequations 3.1 and 3.7 for the points of the region.

3.4 2-D Implementation
Although in the 2-D motion control of vehicles inside the target region T =
[0, E]x[0, E] different algorithms are applied, there are some common functions
used in all the developed algorithms.

• An action necessary in each algorithm is for sure the A update. According to
the relations found above the algorithm to update it after the motion of the
sensor is the following one.
The Umatrix is the update matrix to add to A. It can be a uniform unitary
matrix or a non-uniform one according to the specific application considered.
In the present implementation at first it is considered a uniform update to
test and compare the results with the boustredopheon motion and then a
non-uniform one, to create a situation closer to the one considered in the
study, so to an environment with different priority areas.

• Another process present in the algorithms is the division in Voronoi Regions.
In fact for both algorithms the next position is searched inside the vehicle’s
closest points. Starting from a set of v binary matrices V ∈ Rs,s, with the ’1’
positions that represent the points closest to the i− th vehicle. The region
associated to the i− th UAVs is defined as:

24



Coverage Planning Algorithm Development and Implementation

Algorithm 3: A Update
1 A = A+ Umatrix
2 for [x, y] ∈ T do
3 dt = ||Post − [x, y]||
4 dt+1 = ||Post+1 − [x, y]||
5 path = ||Post+1 − Post||
6 if dt ≤ ρv ∧ dt+1 ≤ ρv then
7 A(x, y) = 0
8 end
9 if

√
d2
t − ρ2

v +
√
d2
t+1 − ρ2

v ≤ path then
10 A(x, y) = 0
11 end
12 end

Algorithm 4: Vi Region Computation
1 while True do
2 A = A+ update;
3 for [x, y] ∈ Rs,s do
4 for i = 1 : v do
5 for j = 1 : v do
6 if ‖[x, y]− Posi‖ ≤ ‖[x, y]− Posj‖ then
7 Vi(x, y) = 1
8 else
9 Vi(x, y) = 0

10 end
11 end
12 end
13 end
14 end

3.4.1 Maxima Search Algorithm

The Maxima Search algorithm is a straightforward extension of the method applied
in the 1-D case. It is developed in two versions: the first one that addresses as
next target the absolute maximum of the Voronoi region Vi associated to the i− th
vehicles and the second one that chooses the next position among the k maxima
values of the region, collected in the vector kmax, computing for each one the
distance between it and the current position and moving toward the closest one.
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Absolute Maximum Search

This is nothing more than the extension in the 2-D case of the Algorithm 2 with
the only difference that in case of more spots with the same α the closest one is
chosen as Dest . The only exception is the case when the points belonging to Vi
are less that a certain value LimDim. This additional condition allows to avoid to
have a vehicle oscillating in a really small area, decreasing the overall efficiency of
the monitoring. It is important to underline that in case searching for the positions
of the maximum sometimes there are more points with the same value, x and y
are two vectors and not two single values.

Algorithm 5: 2-D Single Maximum Search
1 while True do
2 Apply Algorithm 3
3 Apply Algorithm 4
4 for i = 1 : v do
5 if ∑

(x,y)∈T
Vi(x, y) ≤ LimDim then

6 At,i = A
7 else
8 At,i = A ∗ Vi
9 end

10 [x, y]max : A(x, y) = maxA
11 if length(x) > 1 then
12 for j = 1 : length(x) do
13 dist(j) = |[x(j), y(j)]− Post|
14 end
15 J : dist(J) = min dist
16 Dest = [x(J), y(J)]
17 else
18 Dest = [x, y]
19 end
20 end
21 end
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List of Maxima

Despite the acceptable performances of the first version of the Maximum Search
some spots are left unseen reducing the overall efficiency of the algorithm and
requiring a longer time to reach a steady navigation condition. This issue can be
overcame replacing the search for the absolute maximum of the Vi with the closest
one among the k maxima, collected in the vector kmax ∈ Rk,1. This expedient
creates a more compact monitoring of the region.
The algorithm has the same structure of Algorithm 5, but for the creation of [x, y]
lists that refer to the positions of the k − th maxima values. To make more linear
the pseudocode, Algorithm 6, is introduced the notation maxk to indicate one of
the k maxima of A.
Obviously even if the Algorithm 6 reduces the unseen spots it does not eliminate
them completely.

3.4.2 MPC-Optimization Algorithm
The previously described algorithms assure the covering of the α maxima inside a
temporal window, but to get a stable motion they require a long iteration time
since their purpose is not to choose the best next step but to reach as fast as
possible the closest maximum. Following this procedure the neighborhood of the
vehicle is not consider at all and so the eventual points around it are left behind
creating the necessity to come back in a second moment.
To overcome this phenomenon an optimization problem is created in such a way to
optimize a global term, that considers the maximum inside the sub-region associated
to the vehicle, and a local term, that considers the neighborhood values. This
composite objective function is inserted inside a MPC-based algorithm in such a
way to choose the single next step that allow you to minimize the objective function
value over a chosen prediction horizon, h. To optimize the objective function it is
used the Matlab function fmincon that finds the local minimum of the function
itself through a gradient-based method.
After defining the neighborhood of the vehicle as the circle with radius equal to
the maximum distance that the UAV can monitor during the prediction phase,
ρp = ρv + h, and centered in the initial position of the vehicle, the optimization
variable has to be chosen. The initial decision about it was computing directly the
next position of the vehicle inside the region.
Then the composition of the objective function was faced. Being the choose of the
objective function crucial for the correct functioning of the motion planning an
amount of tries was done, considering simpler expressions or more complex ones.
The considered functions are a combination of all or part of the following elements,
each one representing a temporal or spatial characteristic of the area:
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Algorithm 6: 2-D List Maxima Search
1 while True do
2 Apply Algorithm 3
3 Apply Algorithm 4
4 for i = 1 : v do
5 kmax ∈ Rk,1 = maxk A
6 [x, y]k : A(x, y) = maxk A
7 if (length(x) ≥ k) ∧ ((x(1), y(1)) ≥ Th) then
8 for j = 1 : length(x) do
9 dist(j) = |[x(j), y(j)]− Post|

10 positions(j) = [x(j), y(j)]
11 end
12 else
13 while r = 1 : k do
14 [xr, yr] = [x, y] ∈ Rs,s : A(xr, yr) = kmax(r)
15 for j = 1 : length(xr) do
16 dist(r) = |Post − [xr(j), yr(j)]|
17 positions(r) = [xr(j), yr(j)]
18 r = r + 1
19 end
20 end
21 end
22 end
23 J = {J ∈ R : dist(J) = min dist}
24 Dest = positions(J)
25 end

• α: average of the priority function.
It was considered a local element to minimize and pushes the vehicle to cover
with the next steps the greater values inside the neighborhood. The drawback
is that in a situation of symmetry priority distribution with respect to the
position of the vehicle it begins to oscillate since it is surrounded from equally
convenient directions and in successive steps may two opposite directions are
chosen in such a way to have the UAV stuck there. This undesirable behaviour
it is possible also because even if the priority of the neighbor unseen points
increase, there is small region just observed from the vehicle, where it is always
0 or 1 and that as consequence takes down the value of α.

• α̃: median of the priority function.

28



Coverage Planning Algorithm Development and Implementation

It was considered as both local and global element and it pushes the vehicle
to cover points that have priority greater at least than half of the values. The
problem in this case is that it does not take into account directly the values
of the covered points, for example considering a region with (̃α) = 50 to pass
across a point with priority 60 or across one with priority 90 is equivalent in
minimizing the median.

• ∑
kmax(α): sum of the k maxima value of α.

It was considered both as a local and a global term. It makes UAV to follow
the highest values without considering the distance between that points and
the current position of the vehicle, so in case of a global function if the greater
priority points are further ρp all the directions are equivalent. In case of local
function the effect is similar to the median.

• ∑(A− Aupdate): sum of the priorities of the points observed in the following
step.
The effect is similar to the α in fact, it tends to maximize the total sum of the
seen spots’ priority, that creates automatically a decreasing of the average of
the local area, eliminating the oscillatory behaviour. Since this is a quantity
to maximize and not to minimize in the final objective function has to be
considered with negative sign.

• d: distance of the vehicle from the sub-region maximum.
It is a global term to minimize.

• e
d√
2E : coefficient whose maximum value is e, it is used as weight coefficient to

increase the importance of one of the term to minimize.
In case it is used as coefficient for a term to maximize the exponential is
replaced with a logarithm and the coefficient becomes log

√
2E
d

.

All these terms are at the beginning recomputed inside the optimization function
and in the projection of the behaviour of the system in the MPC, then only the local
terms are recomputed at each projected step while the global ones are estimated
only at the beginning of the projection to decrease the computation time.
The initial tries are based on the minimization of the variables considered in the
evaluation of the performance, so α, α̃ and d, with median as global and mean as
local variable, in the following shape:

f(α) = α̃ ∗ α + d (3.8)

This initial formulation generates some oscillations so the exponential term is added
as coefficient of the d term to push the vehicle toward the further maximum, but
also this action still did not solve the oscillations problem. So the ∑(A− Aupdate)
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is added to the previous equation and the de
d√
2E term is changed in log

√
2E
d

, in
such a way to have anyway a measure of the distance of the current position and
the maximum point. The new objective function is:

f(α) = α̃ ∗ α−
∑

(A− Aupdate) ∗ log(
√

2E
d

) (3.9)

With the adding of the new element the swinging is eliminated, the performances
are quickly comparable with the boustredopheon path for a uniform update and
the problem of the spots left behind is overcome.
The drawback of the yet described settings is the computational cost of the imple-
mentation, in fact its entity makes the iteration time in a complex setting too long
to be acceptable, hence the necessity to simplify the expression is created.
The first step was to change the optimization variable, that becomes the velocity
direction. In fact it has a value contained in a smaller interval, [−1,−1]x[1,1], that
makes faster its choice. Then the computation of the global terms was performed
only once and not at each step of the MPC projection. Last action was the sim-
plification of the optimization function itself from whom they are eliminated part
of the elements composing it, in particular the average and the median. These
modifications decreases the performances of the motion planning, increasing the
presence of fluctuations in the maximum values of α, but reducing dramatically
the time of computation for a complex initialization.
The fluctuations of α depends on some unseen spots that explode with the spend-
ing of iterations and since the straight trajectory is not the more convenient in
minimizing the (3.9) the vehicle has to be in the neighborhood of the point to cover
for sure it.
This issues is also linked to the fact that the path found with the optimization
method is a track that the vehicles tend to follow, but for external modifications in
the priority distribution. 3.5, represents the performance of a 10 prediction horizon
MPC with a single vehicle in a 20x20 region, used to perform preliminary tests
on the behaviour of this algorithm due to the huge time required to simulate it
in the bigger region. Referring to it, it is clear how the tendency to follow the
track worsen the performance, in fact without the overlappings circled in red the
covering time would be reduced reaching the ideal trajectory for a uniform region
with a uniform update. The final algorithm, Algorithm 7, has a similar structure
of Algorithm 5 with the difference that in this case the next position is explicitly
computed solving the nMPC problem instead of selecting the step with length that
takes the vehicle closer to the final destination.

minimize
u

f(α)t+1

subject to |u| = 1,
Post+1,i = Post,i + u∆t

(3.10)

30



Coverage Planning Algorithm Development and Implementation

Figure 3.5: MPC-optimization behaviour

Algorithm 7: MPC algorithm
1 while True do
2 Apply Algorithm 3
3 Apply Algorithm 4
4 for i = 1 : v do
5 Solve 3.10
6 Post+1,i = Post,i + uopt∆t
7 end
8 end

3.4.3 Decentralized Implementation
After the development of suitable navigation laws in a centralized control context it
is relevant from a practical point of view to implement a version of the algorithms
where the control is applied in a decentralized way.
The reason behind this choice is that in a real-life scenario it is likely to have
a limited communication radius ρc, both for technical limitations and energy
consumption needs, and as consequence not to have a complete connection of the
network at any instant. Despite this, to guarantee the exchange of information
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between vehicles over a finite time interval is crucial to the correct functioning of
the monitoring fleet and then for the adaptivity of its motion. A complete lack
of communication may lead to neglect some areas and overmonitoring others or,
in a limit case, to the overposition of the UAVs’ trajectories that, if during the
simulation is an unwanted behaviour since it affects the efficiency of the coverage
planning, in real-life applications it can cause the clash of the vehicles. To avoid
this dangerous behaviour without sacrificing the adaptability of the algorithm a
Voronoi division of the region is combined with scheduled meeting of the sensors,
created specifically to exchange information.
The time interval T value between two meetings is a crucial factor and it is imposed
at the beginning of the simulation. Initially it was computed as:

T = c
√

2E (3.11)

with
√

2E length of the diagonal of the square region and c a factor that is changed
to analyze heuristically its best value. Since the velocity absolute value is equal to
1m
s

and the time step at each iteration is supposed to be 1s the time T between
two successive meetings represents also the length of the path travelled by the
vehicle among two meetings, in m.
Then this definition is replaced with:

T = nodes

vN
(3.12)

with nodes equal to the total nodes in the grid representing the region to visit, v
the number of vehicles and N a coefficient to choose, the modification is performed
in such a way to extend the navigation time between two meetings.
Also the selection of the next meeting location was modified along the implementa-
tion. Initially it was chosen as the further position from the current one, among
the points with a α ≥ max(A) − T (Umatrix), in such a way that at the time of
the next information exchange the destination point will have at least a priority
value equal to max(A). To assure each vehicle arrives at a position PosM − ρc a
check is added before to update the position, so if |Post,i − PosM | ≥ T the new
Desti is PosM until either |Post,i−PosM | ≤ ρv or the whole network is connected.
The check on the network connectivity is left but the meeting position choice is
modified because selecting it among the further points it was always placed in one
of the corner, creating the necessity to travel a long, useless path to reach it. The
new meeting point is selected as the centroid of the centers of mass of the regions
of interest recomputed for the next navigation period.
In the period between two successive meetings each vehicle moves inside its own
region of interest, computed at the moment of the reunion through the Lloyd
algorithm. The generators of the regions are v virtual sensors with initial position
coincident with the UAVs’ ones.
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The happening of a meeting is checked through a vector counter, count ∈ Rv,1,
whose components are associated to the vehicles. At each iteration, if two vehicles
met, so if their distance is less than ρc, the correspondent components are incre-
mented of 1. The vector is initialized to zero and reset at each iteration, when the
following condition is verified, the network is connected and a meeting has taken
place. ∑

i=1:v
count(i) ≥ 2(v − 1) (3.13)

On the other hand is the sum value is greater than zero it means that some vehicles
met but the whole network is not connected and if the sum is equal to 0 there is
no contact at all during the current iteration.
Once arrived at the meeting point the exchange of information is performed through
a Consensus Algorithm, Algorithm 8, consisting in comparing the Ai of each UAV
and then, for each point of the region, in choosing the minimum among the
correspondent values prensent in the single matrices. In this manner the priority of
each point is updated in such a way to take into account the last visit of whichever
vehicle.
The single next position of the vehicles is chosen following one of the previous
centralized implementation methods, in particular the List Maxima Algorithm.
As it appears clear from the above explanation in implementing the decentralized
control an amount of functions are introduced, in the following they are explained
one by one and their pseudocode is provided.

• Consensus Algorithm
A consensus algorithm is typically used in a context where a number of entities
have to communicate to update their information. The final single information
of each sensor is established by a general rule linked to the nature of the
problem. In this case the relevant data is the priority of each point that is
strictly linked to when that point was seen the last time, so the wanted value
each UAV has to consider is the one that indicates the last visit in each point,
hence the component-wise minimum of the v Ai.

Algorithm 8: Consensus Algorithm
1 for [x, y] ∈ Rs,s do
2 Areal(x, y) = min(Ai(x, y))
3 end
4 for i = 1 : v do
5 Ai = Areal
6 end
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Algorithm 9: Next Meeting Point Selection. First method
1 count = 0
2 Amap = A− T
3 for [x, y] ∈ Rs,s do
4 if Amap(x, y) ≥ 0 then
5 Amap = 1
6 count = count+ 1
7 [x, y]Amap(x,y)>0(count) = list
8 dist(count) = |PosM − [x, y]|
9 end

10 end
11 index = i : dist(i) = max(dist)
12 PosM = [x(i), y(i)]

• Meeting Point
The search for the next meeting point is a crucial choice. Initially its com-
putation was performed in a similar way with respect to the Maxima Search.
In this case the searched positions are the one with values greater than a
threshold, imposed at max(A)−T , and then the further among them is chosen.
This last decision depends on the nature of the motion planning algorithms, in
fact both of them search for the closest maximum or however choose the next
position in a limited radius, imposing the meeting point far enough makes the
possibility to cover it during the intermediate navigation less likely.
This method of choosing has two main flaws: since the chosen maximum is
the further one the meeting point is probably in one of the corner creating
the necessity to travel a long path to reach the it. Moreover since the region
of interest of the vehicles is computed with a simple Voronoi division it is
frequent the overlap of two UAVs for an amount of iterations, since they may
be in the same position at the moment of the sub-regions computation.
To overcome this problems both the centroid computation and the regions one
were modified in such a way to avoid the additional useless path and to have
a division of the region that takes into account the current state of the area.

• Region Lloyd Division
The second described problem, so the overposition of the subregions associated
to the vehicles, is solved through a different process for the computation of
the regions of interest.
To apply this method the regions are computed applying the Lloyd algorithm
until convergence with generators of the regions v virtual vehicles, whose
initial positions coincide with the real vehicles ones.

34



Coverage Planning Algorithm Development and Implementation

Algorithm 10: Next Meeting Point Selection. Second and definitive
method.

1 New Vis already computed.
2 wi = ∑

i Vi
3 wtot = ∑

iwi
4 xM = ∑

iwixi
5 yM = ∑

iwiyi

6 PosM = [xM ,yM ]
wtot
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The final implementation of the decentralized algorithm has the structure repre-
sented in 3.6.

Figure 3.6: Decentralized algorithm
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Chapter 4

Simulation results

The developed algorithms are simulated entirely in Matlab, without the usage of
any external solver. To test their effectiveness, their behaviour is compared in
different update cases. To simplify the reading of the data the comparisons are
made between two methods at time. The initialization of the priority function over
the region is realized both uniformly and randomly, but not always both results
are reported. This choice is due to the little importance of the region initialization
in the behaviour of the algorithm, as anticipated in Chapter 3 and as it is shown
in the simulation results. The considered updates are a uniform update and two
non-uniform ones, in Figure 4.1a and Figure 4.1b.
The time of iteration depends on the time of convergence of the specific considered

(a) First non-uniform update (b) Second non-uniform update

Figure 4.1: Non-uniform updates applied in Matlab simulations

algorithm, in fact after a initial length equal to 133.500 iterations for the uniform
update the centralized algorithm shows a convergence after 20.000 iterations and

37



Simulation results

so a number of total iterations of 80.000 produces reliable results.
In the following sections they are reported the initializations used for the specific
simulation and comparison.

4.1 Centralized Maxima Search Algorithm
For the test of the Centralized Maxima Search Algorithm the variables are initialized
as follows:

• n = 2;

• E = 100;

• v = 3;

• ρv = 2;

• δ = 1;

• ∆t = 1;

• u = 1;

• k = 20;

• g = 10;

• Post,i randomly initialized in the region;

• A = 0ExE (uniform case);

• A uniformly random distribution between 0 and 100 (non-uniform case);

4.1.1 Single Maximum Search vs Limit Algorithm
The time of iteration is different: the Limit algorithm immediately converges
after a single exploration of the region, 1143 iterations, so a time of iteration of
10.000 is enough while the time of iteration of the Single Maxima Algorithm is
133.500 for the uniform update, in such a way to have a measure of the required
time to converge and then in the cases of non-uniform updates it is reduced to 80.000.
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• Uniform update
The case of uniform update with a uniform initialization priority in the region
is the one present in the Figure 3.1 used in the introduction as example, so in
the following the reported simulation will be a random initialization in such a
way to have the occasion to show the lack of differences in the steady state
behaviour.

In condition of uniform update the limit behaviour is clearly superior in

Figure 4.2: Limit behaviour with a random initialization and uniform update

performance to the Absolute Maximum Search algorithm, in fact its steady
maximum value is 1143 while for the developed algorithm is about 2000, the
time required to see each point is almost twice. Also the median and the
mean in case of the comparison algorithm are lower, both around 500, while
Figure 4.3 and Figure 4.4 shows respectevely a median of about 650 and a
mean of about 800, with not meaningful differences but for a slight delay in
convergence in case of a uniform initialization of the priority in the region.

• First non-uniform update
Since it is demonstrated that a different initialization does not create substan-
tial modification in the motion and performances of the vehicles monitoring, in
the following only one of the considered initialization will be used in analyzing
the results, in particular in the present case the reported results are referred
to a uniform initialization.
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Figure 4.3: Absolute Maximum Search algorithm with random initialization and
uniform update

Figure 4.4: Absolute Maximum Search algorithm with uniform initialization and
uniform update

The length of the limit algorithm simulation is still 10.000 iterations while
for the Absolute Maximum Search algorithm it is shorten to 83.500. In this
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case a the non-uniform initialization of Figure 4.1a is applied for the whole
considered time.
Immediately after a consideration about the general worsening of the perfor-

Figure 4.5: Limit algorithm with uniform initialization and first non-uniform update

mance, translated in the increasing of all the tracked variable, it appears clear
that the priority is better taken under control in the case of the Maximum
Search algorithm. Indeed despite the greater values of average and median of
α the maximum value at each instant becomes about of 3700 in the case of
AMS algorithm while for the limit algorithm it reaches almost the 6000.

• Second non-uniform update
The last test performed consists of modifying the priority update throughout
the simulation, passing from the update described by Figure 4.1a to the one
in Figure 4.1b. The duration of the simulation is the same of the previous
case and the change is done about at half of the test, at 5000 for the limit
algorithm and at 40.000 for the AMS algorithm.

The results in this case are similar to the previous one. In fact after the
modification the performances degrade in both cases, but while the AMS is
able to contain the modification and to adapt to it, reaching a maximum
oscillating around 5000 with a pretty quick response, in the case of the limit
algorithm its uncapability to model its behaviour on the modifications of the
region makes the maximum explode to almost 10.000.
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Figure 4.6: Absolute Maximum Search algorithm with uniform initialization and
first non-uniform update

Figure 4.7: Limit algorithm with uniform initialization and changing non-uniform
update

A clear point in this discussion is that despite the undeniable superiority of the
boustrodopheon path in a uniform setting as soon as the update is not uniform
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Figure 4.8: Absolute Maximum Search algorithm with uniform initialization and
changing non-uniform update

anymore its performances, in particular the maximum priority inside the region,
degrade dramatically. The same tendency can be observed also in the Absolute
Maximum Search algorithm but in a relevantly minor measure.

4.1.2 Absolute Maximum Search vs List Maxima algorithm
The iteration time in the two cases is the same of the AMS in the previous com-
parison. In the following the reported results referred to the uniform initialization
of the region.

• Uniform update
Figure 4.9 shows than in this case the convergence time is longer than the
AMS algorithm with a final maximum α smaller, from about 2100 to about
1900. Looking at α the values trend in the LM algorithm has a steady-state
lower, about 700, value and minor amplitude in the oscillations and the same
modification is observable also in α̃.
The median and the mean have a similar behaviour in the steady-state but
the initial peak is relevantly minor. Instead the maximum values are almost
the same, with again a smaller amplitude in this second case, that does not
represent a meaningful improvement strictly from a priority point of view. So
this first test shows a slight improvement in the performance.
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Figure 4.9: List Maxima algorithm with uniform initialization and uniform update

• First non-uniform update
Also in this case the priority region initialization is uniform, but here the
differences from a temporal point of view arise. In fact there is not a direct
correlation between the time elapsed between two successive visits in the same
point and the α value in that point. To observe the motion from a temporal
perspective it is useful to map the time elapsed since the last visit for each of
the grid nodes and observe the trend of the maximum one.

Comparing it for the two algorithms through Figure 4.11 and Figure 4.12
the behaviour is also in this case very similar but for the initial peak that in
case of the List Algorithm is limited.

• Changing non-uniform update
Same initialization than the previous case.
The way α changes has not particular modification with the implementation

of the List Maxima algorithm but for the limitation of the initial peak and a
steadier trend, in particular for the mean and the median. On the other hands
considering the changings in the maximum time elapsed at each instant in the
graphs in Figure 4.14 and Figure 4.15, they describes as the region with this
second algorithm is monitored in a more homogeneous way since its values
oscillate around a smaller steady-state range with a minor variance.

The improvement in using a List Maxima algorithm is, in particular, in the initial
phases since this method allows to avoid useless back and forth motions, covering
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Figure 4.10: List Maxima algorithm with uniform initialization and non-uniform
update

Figure 4.11: Time elapsed in Absolute Maximum Search algorithm with uniform
initialization and non-uniform update

from the beginning the close high priority spots, creating in a strongly non-uniform
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Figure 4.12: Time elapsed in List Maxima algorithm with uniform initialization
and non-uniform update

Figure 4.13: List Maxima algorithm with uniform initialization and changing
non-uniform update
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Figure 4.14: Time elapsed in Absolute Maximum Search algorithm with uniform
initialization and changing non-uniform update

Figure 4.15: Time elapsed in List Maxima algorithm with uniform initialization
and changing non-uniform update
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update a more homogeneous monitoring without sacrificing the priority perfor-
mances.

4.2 MPC Algorithm
The Model Predictive Control algorithm is tested in a smaller region both for
the necessity to test in a simpler environment the algorithm and for being by its
own nature more complex than a Maximum Search algorithm. The computational
complexity creates also a longer time required to perform a single iteration. For
this reason the duration of the simulation in this case is 3500 iterations.
The prediction horizon h = 3 is chosen for two main reasons: first of all increasing
the prediction horizon extend the iteration time and also this value it gives good
results. The second reason is linked to the way the algorithm is designed, the next
position is not predicted with the same problem for the whole fleet, but singularly
for each vehicle. So extending too much the prediction horizon the motion of the
remaining vehicles is less taken into account in the optimization, creating worse
results.

• n = 2;

• E = 20;

• v = 2;

• ρv = 2;

• δ = 1;

• h = 3;

• ∆t = 1;

• u = 1;

• g = 10;

• Post,i randomly initialized in the region;

• A uniformly random distribution between 0 and 100 (non-uniform case);
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4.2.1 MPC algorithm vs List Maxima algorithm
Firstly, to understand if this ulterior step is meaningful it is useful to compare the
behaviour of the MPC with the one of the List Maxima with the same initialization
and duration.
It is observable from Figure 4.16 and Figure 4.17 that even if the mean and the
median oscillate between the same values, despite the fluctuations of the MPC are
more regular, from the point of view of the trend of max(α) the superiority of the
predective algorithm is undeniable. It becomes steadier and maintains an almost
constant behaviour from the iteration 500, while the Maxima List does not present
any convergence in the considered interval. As consequence, it clearly appears that
from a simulation point of view the MPC takes with it a relevant improvement in
terms of both performance and speed of convergence.

Figure 4.16: Maxima List with random initialization, 3500 iterations

4.2.2 First MPC algorithm vs Simplified MPC algorithm
Unluckily the iteration time required for the simulation of the first algorithm is
not sustainable, in fact it is equal to more than 2 minutes for iteration in case of
the region with E = 100 and v = 2 on a PC with 20x Intel Core i9-9900X CPU @
3.50GHz, so it has to be simplified in such a way to obtain a faster optimization
algorithm.
The simulation results for the simplified algorithm are acceptable even if it is
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Figure 4.17: MPC with random initialization, 3500 iterations

present a slight degradation of the performance, consisting of a bigger variance and
a longer phase required for the convergence.
Seen the interesting and still acceptable results, in Figure 4.18, the simplified
algorithm is implemented in a larger region, E = 100 with v = 3, the time required
to perform a single iteration becomes equal to 8 seconds in average, more acceptable
than the previous time of more than a minute, but the performance in applying
it worsen terribly, as shown in Figure 4.19 for a simulation long 59.000 iterations,
where, despite the average and the median present a trend similar to the one of
the Maxima Search algorithm, the maximum oscillates constantly among 2000 and
4000.
The explanation for this unwanted behaviour is that during the navigation some
spots are left unseen and until one of the vehicle travel again in the neighborhood
of that spot or the priority increases a lot and, as consequence, it is convenient
from the objective function point of view to cover it, the point remains unseen and
its priority function explodes making the algorithm unsuitable.

4.3 Decentralized Maxima Search Algorithm
For the tests of the Decentralized Maxima Search algorithm the variables are
initialized as follows:
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Figure 4.18: MPC simplified with random initialization, 3500 iterations

Figure 4.19: MPC simplified with random initialization, 100x100 region with 3
vehicles, 59000 iterations

• n = 2;

• E = 100;
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• v = 3;

• ρv = 2;

• δ = 1;

• ∆t = 1;

• u = 1;

• k = 20;

• g = 10;

• ρc = 10;

• Post,i randomly initialized in the region;

• A = 0ExE (uniform case);

• A uniformly random distribution between 0 and 100 (non-uniform case);

• T = 850 or 1500, specified in the simulations;

4.3.1 Period 850 vs Period 1500
The values of the period is a crucial decision in this algorithm since it establishes the
time between two meetings. The used values are chosen heuristically considering
the total number of nodes to visit present in the grid and dividing them first for
the number of vehicles and then for 2, in case of T = 1500, and for 4, T = 850.
In this case the time of iteration is always equal to 133.500 iterations for both
uniform and non-uniform update and some considerations about the difference
between a uniform and random priority initialization are pointed out.

• Uniform update
Before to analyze in particular the differences among the graphs it is interesting
notice that fixing the region for a interval of time longer than 1 second creates
a trend of the mean and of the average closer to the limit algorithm than to
the Maxima Search, although the choice of the next position is based on that
algorithm.
Observing at first the differences in performance between a uniform and a
random initialization it can been observed that in both cases performances of
a random and uniform initialization are pretty similar, with uniform case that
presents slightly lower peaks. In the following the uniform initialization will
be used.
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Figure 4.20: Priority with Decentralized algorithm, T = 850, random initialization
and uniform update

Figure 4.21: Priority with Decentralized algorithm, T = 850, uniform initialization
and uniform update

Instead, comparing a longer and a shorter period, the spikes for a greater
period are both less frequent and lower. This behaviour was expected because
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Figure 4.22: Priority with Decentralized algorithm, T = 1500, random initialization
and uniform update

Figure 4.23: Priority with Decentralized algorithm, T = 1500, uniform initialization
and uniform update

in this case the vehicles have more time to navigate inside the region with a
minor waste of time to go toward the meeting point.
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• First non-uniform update
Observing the images about both the α and the time elapsed, Figure 4.24,
Figure 4.25 and Figure 4.26, Figure 4.27, the performances are the expected
ones. The longer period takes steadier trends.

Figure 4.24: Priority with Decentralized algorithm, T = 850, uniform initialization
and non-uniform update

• Changing non-uniform update
Even if in this case the T = 1500 case becomes less regular the observations
of the last point are still valid and it presents better results with respect to a
shorter period.

4.3.2 Period 1500 vs Fixed Regions
The superiority of the behaviour of the longer period originates a question: would
the performance be better preassigning regions to the vehicles, without performing
any communication?
To answer to it the same comparisons of the previous cases in performed.

• Uniform update
From the uniform update case the decentralized algorithm with meetings
demonstrates to have a better behaviour. Even if in the non-communicant
case the mean and the median of α are steadier, the maximum values presents
higher peaks.
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Figure 4.25: Priority with Decentralized algorithm, T = 1500, uniform initialization
and non-uniform update

Figure 4.26: Time elapsed with Decentralized algorithm, T = 850, uniform initial-
ization and non-uniform update
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Figure 4.27: Time elapsed with Decentralized algorithm, T = 1500, uniform
initialization and non-uniform update

Figure 4.28: Priority with Decentralized algorithm, T = 850, uniform initialization
and changing non-uniform update

• Non-uniform update
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Figure 4.29: Priority with Decentralized algorithm, T = 1500, unform initialization
and changing non-uniform update

Figure 4.30: Time elapsed with Decentralized algorithm, T = 850, uniform initial-
ization and changing non-uniform update
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Figure 4.31: Time elapsed with Decentralized algorithm, T = 1500, uniform
initialization and changing non-uniform update

Figure 4.32: Priority with fixed regions, uniform initialization and uniform update

With a non-uniform update the performance of the two navigation methods
get closer, with a still more regular trend in case of fixed region. In this case
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it is valid also for max(α), but even though the variance of T = 1500 case is
greater, it oscillates around a smaller value with respect to the fixed regions
case.
The time behaviour shows similar characteristics, with the changing region
case that has greater variance and values that fluctuates around a smaller
time, that presents less oscillations than the fixed regions case.

Figure 4.33: Priority with fixed regions, uniform initialization and non-uniform
update

• Changing non-uniform update
Increasing the non-homogeneity in the middle of the simulation gives infor-
mation about the ability to adapt in the middle of the navigation. While
the behaviour of the median is very similar, both maximum and mean have
different reactions.
After the update modification in the fixed region case α presents a clear step,
increasing the values assumed, in the case of allowed communication it does
not happen and the consequence of the modification is the growth of the
variance and the slight increase of the mean value.
About the maximum of α in case of fixed regions the trend is oscillating
between 8000 and 6000, while in case of T = 1500 the maximum oscillates
around 6000 with some peaks that reaches 8000 in correspondence of the
meetings.
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Figure 4.34: Time elapsed with fixed regions, uniform initialization and non-uniform
update

Considering then the maximum value of time spent from the previous visit,
the variance of the fixed regions case is greater than the changing regions one.
In fact in the first case the time between two successive visits can vary from
5000 and 9000 while in the second case it spans from 4000 to 6500.

The comparison between the simulations results shows clearly as also in this last
case the adaptability allows to reach a better result. In particular the changing
update case demonstrates the fundamental importance of the ability to modify the
navigation behaviour as the non-uniformity inside the region increases. It is true
not only for the α update, but also for the time spent between two visits that, being
inferior without sacrificing the α performance, guarantees a better monitoring of
the region.
It is interesting to observe that from the time point of view also the case with
T = 850 produces a nicer result.
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Figure 4.35: Priority with fixed regions, uniform initialization and changing non-
uniform update

Figure 4.36: Time elapsed with fixed regions, uniform initialization and changing
non-uniform update
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Chapter 5

Conclusion and Future
Work

The present work describes the process of developing a series of algorithms for the
autonomous navigation of a fleet of UAVs inside a known region with non-uniform
visiting urgency. At first a set of requirements to take into account is written down
and then the different algorithms are tested in order to both check the respectfulness
of the needs and compare their performance.
Initially to proof the usefulness of the adaptability of the algorithm to a non-
homogeneous priority setting the Absolute Maximum Search algorithm perfor-
mances are compared with the Limit algorithm ones.
Once this test is passed some considerations about the generated trajectory takes
to make some modifications on the choice of the next position. In fact trying
simply to catch the maximum creates a zig-zag path that worsens the efficiency of
the monitoring, since with this navigation method a vehicle that sees two points,
one, called A, of priority 80 at distance 5 m and one, called B, of priority 90 at
distance 40 m, will cover the points following the sequence B → A and not, as it is
more logical, A→ B. To avoid this phenomenum the List Maxima algorithm is
developed, according to it the next destination to reach is chosen as the closest of
the k maximum priority spots inside the region.
Even if in this way the behaviour is improved the tendency to left unsees spots
persists, so a method to choose the single next step, and not the next destination,
is searched. Due to the necessity to have a compact coverage that would be at
the same time adaptable at the changes and would take into account the future
steps a Model Predictive Control based algorithm is developed. It shows to behave
properly in a small region but, due to the complexity of the objective function, its
simulation time in a more complex environment was too long. To try to overcome
this problem a simplified version of the MPC algorithm is developed, but in this
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way the performance degrades since in the covering process some spots are left
non-visited.
Thinking about a real-life implementation a decentralized motion planning control
has been developed. It is based on the subdivision of the region with a Lloyd
algorithm each period T of time, each sub-region is associated to a vehicle that
will visit it in the time between two meetings. During the meetings, the vehicles
update their information and, based on it, they will reorganize the navigation as
explained above. The influence of the value of T is shown and also the importance
that the meetings have in getting a better performance. In the present work the
motion inside the sub-regions is performed with a LM algorithm but any other
method can be used.

Starting from the navigation methods presented, there are some possible im-
provements, in particular about the MPC algorithm that is the least effective but
the one with the greater potential. Since all the simulations are realized in Matlab it
is possible to adapt the proposed optimization problem to an external solver in such
a way to create better performances from a computational point of view. Moreover
at the moment, the next positions of the vehicles is found applying the MPC to
the v vehicles singularly and this creates a deterioration of the performance as the
prediction horizon increases, so it would be an interesting development to compute
with the same optimization problem all the v next positions. Wanting to remain
in the Matlab environment it is possible to try to tune the terms of the objective
function in the simplified algorithm in such a way to have variable importance of
the local and global terms according to the value of the maximum priority in the
region. A similar approach has been tried, imposing the complete elimination of
the term regarding the local values of α in case the maximum increases more than
an established threshold but this has not taken relevant improvements.
Also the decentralized control method can be improved, in particular about the
choice of T , a crucial variable in its functioning. In fact at the moment T is chosen
in a heuristic way but to find a mathematical way to find the optimal one or to
make it variable and adaptable at the state of the region at the meeting instant
would create for sure a better functioning of the algorithm. A similar improvement
may be reached also through the allowance of the communication among vehicles
also in the interval of time between two meetings and the recomputation of the
respective sub-regions of interest.
Moreover, some improvements can be performed from the setting point of view. In
the present case the specific constraints required for the motion of a winged vehicle,
such as the limit on the minimum curvature radius, are not applied, but to create
a control motion directly suitable on a fleet of UAVs are necessary.
A prospect on the algorithms and on the possible future improvements can be
found in 5.1.
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This work represents a starting point for the navigation inside a non-homogeneous
priority region, respecting the deadlines included explicitly or implicitly in the
algorithms.
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Figure 5.1: Developed algorithms and possible improvements
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