
POLITECNICO DI TORINO
Master of Science in Electronic Engineering

Tesi di Laurea Magistrale

A Vector Processing Unit
implementation for RISC-V
Vector Extension: Functional
Verification and Assertions on

submodules

Supervision:
Prof. Luciano Lavagno (Politecnico di Torino)
Prof. Francesc Moll Echeto (Universitat
Politecnica de Catalunya)
Dr. Nehir Sonmez (Barcelona Supercomputing Center)

Student:
Luca Valente
matricola: s257373

Anno accademico 2019-2020

A mio nonno Costantino.

Acknowledgements

I would like to express my gratitude to Professors Luciano Lavagno and Francesc
Echeto Moll, for giving me the opportunity to conduct a work on a topic I am very
passionate about. Furthermore, I would like to thank my supervisors Nehir and
Oscar for their continuous support and guidance during the last six months.

As I see this Master’s thesis as the culmination of the last two years, I would
like to thank all my friends, that made this period much more terrific than I would
have ever imagined.

This last paragraph will be in Italian, to be understood by the people it is
addressed to. Per ultimo, vorrei ringraziare la mia famiglia per il continuo sostegno,
i consigli, e il supporto delle mie scelte. In particolare mia madre, mio padre, mia
zia Leonarda e mio nonno Costantino.

iv

Abstract

Power dissipation and Energy consumption of digital circuits have emerged as
important design parameters in the evaluation of microelectronic circuits. This has
led electronic architects to value Parallel Architectures that allow to perform many
calculations, or the execution of several processes, simultaneously: exploiting data
parallelism reduces instruction bandwidth, reduces required memory bandwidth
and lowers the power consumption. A classical example of this trend is the ‘Single
Instruction, Multiple Data (SIMD)’ Instruction Set extension which is nowadays
implemented in the majority of Instruction Set Architectures.

Developing Parallel Architectures that can deliver good performance without
the energy and design complexity of higly Out-of-Order superscalar processors is of
great interest: Data-parallel applications have had a huge impact not only in high-
performance scientific computing but in a diversity of domains such as financial
analysis, data-processing, machine learning and many others.

An elegant implementation of a Parallel Architecture are Vector Processors: the
two main features of Vector Architectures are the presence of a vector register file
(VRF), where each vector register can hold a large number of elements, and the
presence of many deeply pipelined Functional Units (FU) to directly operate on
vectors instead of individual data item.

Within the European Processor Initiative (EPI) project, at the Barcelona Super-
computing Center the work is to design a Vector Processing Unit (VPU) to work
as a co-processor of a RISC-V based CPU, to allow it to support the RISC-V base
vector extension. So far the RISC-V base vector extension is a draft of a stable
proposal. It is based on version 0.7.1 which is intended to be stable enough to begin
developing toolchains, functional simulators, and initial implementations, though
will continue to evolve with minor changes and updates.

This Master’s Thesis work has been carried out during an Internship within the
Verification Team for the VPU developing. Firstly, we explored the RTL design of
the project to understand the behaviours of the whole architecture. As a second

v

step, the goal was to develop solid specifications for some of the submodules of
the VPU, observing their desired behaviour in response to the different Vector
Instructions. In particular, the work focused on the communication system to
move data within the VPU, called Ring. Once the specifications were fixed, it
was possible to develop an Assertion-based Verification plan targeting the Ring
modules: the whole set of assertions and the assumptions formalized during this
process was binded to the Ring modules and included in the simulation tests of the
whole Architecture, to ease the research of bugs for the Design Team.

In conclusion, it was a 6 months internship that led to several results:

• the generation of the specifications for different submodules of the Architec-
ture,

• the development of different reusable UVM testbenches for these submodules,

• the implementation of Formal Verification on the submodules,

• the realization of directed binaries for the VPU to stress the Ring modules,

• the design and actualization of an Assertion-based Functional Verification Plan
able to trace the 36% of bugs (4 out of 11) relative to the Ring in its functioning
period.

vi

List of Figures

1.1 Design Cost . 6
1.2 Formal Process . 9
1.3 Possible Formal Outcomes . 10
1.4 Bugs Found Against Time . 10
1.5 How Assertions improve observability 12
1.6 Hybrid Verification Approach . 12

2.1 Vector Unit Structure . 16
2.2 Vector Processing Unit . 19
2.3 Ring Nodes System . 22
2.4 UVM Basic Structure . 24
2.5 Verification steps for the VPU . 26

3.1 Ring Interface . 31
3.2 Ring Node . 32
3.3 Address Composition . 33
3.4 Index Ring Logic Gather Waveforms 35
3.5 Data Ring Logic Slide . 36
3.6 Ring Data Unpacker . 36
3.7 Ring Data packer . 37
3.8 Work Flow . 39
3.9 Dedicated UVM Structure . 47

4.1 Ring Data Unpacker with error . 52
4.2 Data Ring Logic Gather . 54
4.3 Data Ring Logic Gather with error 55
4.4 Percentage Found Errors . 56
4.5 Verification Efficiency . 59

vii

List of Tables

1.1 Current RISC-V available extension and status 4
1.2 Possible Vector Extension sizes ([11]) 5

2.1 Vector Distribution SEW 64 . 20
2.2 Vector Distribution SEW 32 . 20
2.3 SRAM LANE 0, SEW 64 . 21
2.4 SRAM LANE 0, SEW 32 . 21

3.1 Ring Logic Assertions . 41
3.2 Data Ring Logic Assertions . 42
3.3 Index Ring Logic Assertions . 42

viii

Contents

List of Figures vii

List of Tables viii

1 Introduction 1
1.1 Vectors . 1

1.1.1 RISC - V . 3
1.1.2 RISC-V Vector Extenstion 4

1.2 Verification . 5
1.2.1 Dynamic Verification . 7
1.2.2 Static Verification (Formal-based) 7
1.2.3 Assertions and Assumptions for Functional Verification . . . 11

2 Context 15
2.1 The VPU . 15
2.2 Submodules . 21
2.3 The UVM . 23

2.3.1 UVM . 23
2.3.2 UVM Structure . 25

3 Methods 29
3.1 The Submodules and Specifications 29

3.1.1 Ring Interface . 30
3.1.2 Ring Node . 30
3.1.3 Index Ring Logic . 33
3.1.4 Data Ring Logic . 34
3.1.5 Ring Data Unpacker . 34
3.1.6 Ring Data Packer . 37

3.2 Verification Plan . 37
3.2.1 Checkers and Assertions . 38
3.2.2 Dynamic Functional Verification 43
3.2.3 Static Functional Verification 48

ix

4 Contributions and Discussion 51
4.1 Reported Bugs . 51

4.1.1 Bugs on Assumptions . 52
4.1.2 Bugs on Assertions . 53

4.2 Material Created . 57
4.3 Discussions . 58

5 Conclusions 61
5.1 Conclusions . 61
5.2 Future Directions . 62

A Checkers 63
A.1 ring_if . 63
A.2 ring_node . 68
A.3 ring_logic . 72
A.4 ring_node . 84
A.5 ring_packer . 87
A.6 ring_unpacker . 90

Bibliography 95

x

Chapter 1

Introduction

The work presented here has been carried out in the Verification Team for the
European Processor Initiative (EPI) Project which aims to develop a Vector Ar-
chitecture to work as a co-processor of a RISC-V core, to support the RISC-V
Vector Extension targeting High Perfomance Computing (HPC) applications ([9]).
The focus of the work has been to develop a verify the Submodules of the VPU
designed to move the data within the Architecture. In particular, we implemented
an Assertion-based Verification plan that, as expected, brought great advantages
in the Verification of the targeted Submodules.

In this first Chapter, the two main concepts that have shaped the work of the
last six months will be presented: Vector Processing and Functional Verification.
Then, it will be possible to progress further and extensively present the details of
the tools used and the work that has been carried out. The rest of the manuscript
is organized as follows: in Chapter 2 we are going to describe the framework where
this investigation has been carried out, with a focus on the VPU, the Submodules
and on the Verification tools. In Chapter 3 we are going to illustrate the work done,
while in Chapter 4 the obtained results and discuss them.

1.1 Vectors
Vector Processing is a particular kind of processing that performs operations

on arrays and vectors, compared to the classical General Purpose processing that
operates only on scalars. Instruction sets with these characteristics are called SIMD
(Single Instruction Multiple Data). During the 70s and the 80s, Vector Machines
coincided with Supercomputers. Indeed, implementing an instruction set containing
operations on vectors greatly improved the perfomance on the typical workloads
of Supercomputer, such as numerical simulation and similar tasks involving huge
computations on large data set.

1

1 – Introduction

The Cray-1, designed in the 1975 by Seymour Cray, was the first supercomputer
to successfully implement the vector processor design and SIMD instructions. For
this reason, Vector Architectures have been closely identified with the Cray-1. The
two main features that characterized the Cray-1, were the presence of a Vector
Register File (VRF) with 64 Element Vector Registers and many deeply Pipelined
Functional Units to simultaneoulsy operate on several elements ([14]).

Throughout the 90s, given also the scaling of price and area of microprocessors,
the SIMD Instruction Sets became more and more common and are currently im-
plemented in the broad majority of Instruction Set Architectures. Nowadays, SIMD
extensions exist of many different types and of different sizes, according to needs of
the targeted application: we can change the number and length of Vector Register,
depending if the SIMD will be for embedded market or HPC.

As we will see in the next Chapter, the VPU under development is optimized
for HPC applications and is inspired by the the traditional Vector Processing ar-
chitecture. Indeed, it features 32 Vector Registers of 16kbits each, compared to
embedded SIMD ISA which may support just 8 Vector Register of 128 bits each.

Generally speaking, the conventional Vector Programming Model presents two
main advantages with respect to the classical Scalar Processing:

• utilizes deeply pipelind ALUs to operate on multiple elements at the same
time, without data hazards.

• when it is possible, is able to exploit the data paralellism of the on-going task,
eliminating all the standard branch-control that would be massively present
otherwise.

The second advantage means that when we have code that can be executed on a
Vector Machine, that execution will be drastically more efficient with respect to
the same execution on a scalar core. Also, this implies a reduction of the number
of assembly instructions needed to perform a simple computation. For example, if
we execute the following C-code:

f o r (i =0; i <64; i++)
C[i]=A[i]+B[i] ;

we would see a huge difference between the scalar and vector code.

2

1.1 – Vectors

Scalar Code:
l i x4 , 64
loop :
f l d f1 , 0(x1)
f l d f2 , 0(x2)
fadd . d f3 , f1 , f 2
f sd f3 , 0(x3)
addi x1 , 8
addi x2 , 8
addi x3 , 8
sub i x4 , 1
bnez x4 , loop

Vector Code:
l i x4 , 64
s e t v l x4
vld v1 , x1
vld v2 , x2
vadd v3 , v1 , v2
vst v3 , x3

It is possible to notice immediately that the Vector Code needs just 6 instructions,
while the Scalar Code needs 9 instructions, repeated 64 times. Naturaly, this is
a great advantage when the code that it has to be executed can actually take ad-
vantage of the Vector Architecture. However, it is important to recall that every
machine that supports a Vector Extension, needs also to support a Scalar ISA.
This is necessary since scalar computation would be extrememly inefficient in an
Architecture that supports only Vector Operations.

1.1.1 RISC - V

The RISC-V [3] is an open-source hardware born in 2010 at the University of
California, Berkeley as an academic research project. Since that moment the con-
tribution to the project has been growing and growing, setting the RISC-V as a
common free and open standard to which software can be ported, and which al-
lows everyone to freely develop their own hardware to run the software. Anyway,
the RISC-V International does not make available any open-source RISC-V Imple-
mentation, only the standard specifications. This void has been filled with many
open-source hardware implementation [2], and many others are coming. RISC-
V and these open-source hardware implementation allow the possibility to design
RISC-V based accelerators, expanding the Instruction Set with specific Instruc-
tions, suggested directly by the algorithm that needs to be performed.

RISC-V is a modular instruction set. The base RISC-V instruction set contains
the RV32I that contains 45 instructions or RV64I, containing 57. Then different
extensions can be added. Being RISC-V open source, these extensions have been
the result of a contributive work of many people and each extension has experienced
deep revisions and changes, to eventually freeze. The list of available Instruction
Set Extension can be found updated in [10] and is summed up in Table 1.1.

3

1 – Introduction

Base Version Status Description
RV32I 2.1 Ratified 32-bit
RV32E 1.9 Draft 32-bit, 16 Registers (embedded)
RV64I 2.1 Ratified 64-bit
RV128I 1.7 Draft 128-bit
Extension Version Status Description
M 2.0 Ratified Integer Multiplication and Division
A 2.1 Ratified Atomic Intructions
F 2.2 Ratified Single-Precision Floating-Point
D 2.2 Ratified Double-Precision Floating-Point
Q 2.0 Ratified Quad-Precision Floating Point
L 0.0 Draft Decimal Floating-Point
C 2.0 Ratified Compressed Instructions
B 0.0 Draft Bit Manipulation
J 0.0 Draft Dynamically Translated Languages
T 0.2 Draft Transactional Memory
P 0.2 Draft Packed-SIMD Instructions
V 0.9 Draft Vector Operations

Table 1.1. Current RISC-V available extension and status

Naturally, among all these extentsion, our focus is on the Vector one, indicated
with V in the table. RISC-V is a great fit for Vector Processing. Indeed, RISC-V
is designed to support a large address space and has always had powerful Vector
Extension as specific goal.

1.1.2 RISC-V Vector Extenstion

The first proposal of a Vector Extension for RISC-V has seen the light in June
2015. Since then, much work has been done to reach a 0.9 version, which has been
released only in May 2020 [4]. Nevertheless, the VPU implemented here features
the version 0.7.1 of the Vector Extension specifications.

The Vector Extension supports 32 Vector Registers, each one of VLEN bits, with
Elements of maximum ELEN bits. Another important parameter is VLMAX which
is the number of elements in a Vector and is equal to VLEN/SEW (Single Element
Width). This Extension has been designed to allow the same binary code to work
across variations in VLEN. VLEN and ELEN can be changed according to the
target application. For example, Table 1.2 shows some possible implementations
that can been targeted, according to the desired application.

4

1.2 – Verification

Name Issue Policy Issue Width VLEN[bits] Datapath[bits] V LEN
Datapath

Smallest InO 1 32 32 1
Simple InO 1 512 128 2
InO-Spatial InO 4 512 512 1
OoO-Spatial OoO 2-3 128 128 1
OoO-Temporal OoO 2-3 512 128 4
OoO-Server OoO 3-6 2048 512 4
OoO-HPC OoO 3-6 16384 512 32

Table 1.2. Possible Vector Extension sizes ([11])

In order to save the 32-bit instruction encoding, the Vector Extension features
a vtype register that contains the data of vsew (8,16,32,...,1024) and vlmul, which
is the vector length multiplier. With the instruction vsetvl we can encode the
information of SEW and VLEN and pass it to the Vector Architecture ([11]).

The RISC-V Vector Extension has some differences with respect to other existing
SIMD extensions:

• MMX, SSE, AVS, NEON, Altivec: they have fixed register width in
bits. Therefore, every time there is the need to increase VLEN a new set of
instructions had to be designed and it needs to cope with edge cases.

• ARM SVE: differently from RISC-V, it is not agnostic on the value of inactive
elements (i.e. all bits of the unvalid elements have to be set 1). Also, it uses
masks instead of vlr for length.

The RISC-V Vector Extension is a really powerfool tool and even if it might
turn out to be expensive to be developed, it has gained much interest in the last
years and some implementations already exists at academic level ([12], [20], [22]).
Still, while Vector Extension can be very useful, there is still much work to do to
develop better software frameworks that can actually take advantage of the custom
hardware.

1.2 Verification

In this Section we are going to present the other main ingredient of this Thesis:
Functional Verification, Assertion-based Verification and its benefits.

5

1 – Introduction

Functional Verification is the task of verifying that the developed design respects
the given specification, before the tape-out. Nowadays, Verification is a fundamen-
tal step in the Design Process and it is even more resource demanding than Design
itself, which requires just between 30% and 40% of the project resources. This is be-
cause modern circuit’s complexity and technology’s shrinking increase the amount
of needed work and reduce the productivity of the classical design ↔ simulate ↔
debug ↔ cover loop, leading to a serious growth of the needed resources to verify
the circuit and manage the project, as illustrated in Figure 1.1 ([16]).

0 20 40 60 80 100 120 140

90

65

45

32

22

Design Cost ($M)

T
e
c
h
n
o
lo

g
y
(
n
m

)

Architecture

Physical

Validation

Verification

Software

Figure 1.1. Design Cost

It is therefore possible to address the Verification as the bottleneck of the Design
Process and every attempt to speed it up comes in useful, reducing the time-to-
market. As a matter of fact, the entire Design has to be tested to avoid the
realization of a faulty circuit that would cause incredibly high losses. This is why
the whole process has to be as much efficient as possible. As it will be discussed
later on, the typical functional errors appear due to:

6

1.2 – Verification

• unspecified functionalities,

• conflicting requirements,

• and unimplemented features.

To find and correct the present Design bugs, two possible approaches can be iden-
tified: Dynamic Verification and Static Verification.

1.2.1 Dynamic Verification
Dynamic Verification (DV) is the Simulation-based approach: it is the most

widely used approach and the only solution for complex systems verification. Surely,
the whole DV process is expensive in terms of resources and time: it is the sum of
4 steps that require a significant effort by the Verification Engineers. The 4 phases
are the following ([16]):

1. Development of the verification plan (i.e. defining what Functional Verification
is going to be performed), of the testbench and of the tests.

2. Simulation of the tests.

3. Debugging, along with the Design Engineers, the found bugs after the com-
parison of the Design Under Test (DUT) with the reference architecure.

4. Check that the Design has been tested extensively and sufficiently. To do so,
the most used metric is the Coverage that can be functional, code or System
Verilog Assertion (SVA) coverage and indicates the development stage.

To reduce the time spent in these steps, many powerful EDA tools have been
deployed, these tools allow a high level description of the problem, easing the whole
process and they will be described in the next Chapter. However, apart from the
high amount of work required to properly test a complex system, there are two other
crucial limits in the Dynamic Approach: the first one is that simulations run very
slowly (100 Hz-1kHz), while the second one is that no one can actually guarantee
that the design has been fully tested, exhausting all verification possibilities for
every given piece of logic, even with 100% coverage achieved. To cope with this
last limit, Static Verification has been introduced.

1.2.2 Static Verification (Formal-based)
Static Verification is the second possible approach to perform Functional Verifi-

cation. Static Verification tools try to check that the DUT is properly functioning
demonstrating it by mathematical proofs rather than by brute-force simulations.
Formal tools avoid any dependency on the user to find possible corner cases. When

7

1 – Introduction

combined with Simulation-based Verification they prove their power as Verification
tools.

Naturally, Static Verification is not a perfect fit for every kind of DUT. Given its
high computational cost, it is particurarly effective for small size DUT that do not
perform much arithmetic computation or that have a complex sequential nature.

Typically, the flow for Functional Static Verification is made of 3 steps ([16]):

1. Write the set of properties of the DUT that are necessary to be checked, in
System Verilog Assertion (SVA) language (or other languages).

2. Provide the Formal Tool with the set of properties. At this point, the tool
will derive a model for the RTL under test and apply all possible “stimuli” to
verify that the properties will not fail under any circumstance.

3. If a bug is found, the tool will provide the input sequence that led to error to
make the debugging possible.

Given a DUT, a property can be defined as the description of the relationships
between some signals and how it evolves through time. To do so, System Verilog
Assertions (SVA) is the most common language. For example, if we have a DUT
that when receives a signal req_i equal to 1 has to return grant_o within a clock
cycle, we can easily express it with the following property:

1 property handshake ;
2 req_i |-> ##1 grant_o ;
3 endproperty

Once a property is defined, it can be Asserted or Assumed, making up an As-
sertion or an Assumption respectively.

The idea behind static verification is that, with simulations, the DUT is repet-
itively brought in the same states and more rarely in corner cases. Therefore, it
tries to find all the possible states of the DUT and all the possible applicable input
stimuli. If all the states are bug-free then the module is bug-free, otherwise or there
are wrong assertions or bugs. This idea can be described with Figure 1.2: there is
an initial state and the the whole set of states where the DUT can be, the goal of
Static Verification is to find all of them and prove the absence of errors.

The outcomes of the Formal process on an assertion can be different (Figure 1.3):

• assertion Proven: it does not exist a legal stimulus that can cause the asser-
tion to fail.

8

1.2 – Verification

Initial state

Figure 1.2. Formal Process

• assertion Fails : a counter example exists and there is an error hidden some-
where.

• assertion Fails with warnings : a counter example exists but not with pri-
mary inputs. It may be caused by unitialized registers or floating wires.

• assertion Inconcludent: the assertion is not proven neither fails. This may
happen because the computational resources were not sufficient to give a result
on the assertion. In this case a solution could be to perform the Formal
Verification on a more powerful platform or to simplify the assertion.

• assertion Vacuously proven: the set of assumption on the signals do not al-
low the initial condition of the property to actually be triggered. For example,
if we assume that signals a and b can never be 1 simultaneously and there is
an assertion that states that when both a and b are 1 the output should be 0,
that assertion is vacuosly proven.

The Static approach does not need any complex structure but it cannot satisfy
every need: as said before, not every kind of DUT can be tested with static tools,
due to the exponential growth of the mathematical complexity to find all possible
stimuli. Nevertheless, Formal Verification comes in very handy in two phases of the
Verification process (Figure 1.4):

• Bug hunting: it is the initial phase of the Verification, when the most part of
bugs are found.

• Assurance: before tape-out, to ensure that the minimum functionalities that
have to be work in every case are actually working.

9

1 – Introduction

Vacuosly Proven

Proven

Fails

Inconcludent

Assertion’s complexity

T
im

e
R
eq
u
ir
ed

Figure 1.3. Possible Formal Outcomes

Bug-hunting Assurance

Time

B
u
gs

F
ou

n
d

Figure 1.4. Bugs Found Against Time

10

1.2 – Verification

1.2.3 Assertions and Assumptions for Functional Verifica-
tion

Assertion-Based Verification is the core topic of this work. It is enabled by the
presence of Assertions and Assumption and here we will describe what it is and
what advantages it brings. Assertions and Assumptions are needed to perform
Formal Verification and in Dynamic Verification they can significantly increase the
observability of complex DUT, shortening the time to develop and to cover. How?
The following quote of Alan Turing, reported here [17], contains the idea beyond
this method:

Checking a large routine by Dr A. Turing:

"How can one check a routine in the sense of making sure that it is right? In
order that the man who checks may not have too difficult a task the programmer
should make a number of definite assertions which can be checked individually,

and from which the correctness of the whole programme easily follows. "

Image 1.5 describes Assertion-based Verification: given a complex system, made
up of several submodules, it is possible to bind the Assertions and Assumptions on
each single submodule. When an error against the top-level scoreboard is detected,
this allows to see the error not only on the output of the DUT but also to trace it
back to the malfunctioning submodule that causes the error. Also, Assertions are
an objective measure of coverage since we will also check if and how many times
they passed or failed. Moreover, it may happen that the Submodule Under Test
(SUT) is working properly but it receives an unallowed input that may bring it to
an unknown state, in this case, the assumptions would spot this bug and trace an
error to the module that is driving the DUT.

Assertion-based Verification is an indispensable approach that has to be adopted
when performing Verification: it can speed-up the Verification process up to 50%
([23]) and can find up to the 34% of bugs of a Device Under Test ([15]). In addition,
it unlocks a robust Functional Verification scheme that is a hybrid between Static
and Dynamic Verification, as illustrated in Image 1.6. In this work, we show an
Assertion-based Verification Plan and the benefits that come from it.

However, there is a key difference between the classical Functional Verification
described here and our work: we were not provided with precise and fixed specifica-
tion of the studied submodules, so, along with the bug hunting we also had to write
the specifications and, in case of false positives, correct our assertion and assump-
tion thanks to a tight communication with the Design Team. This has brought
several results:

11

1 – Introduction

DUT

SM_0

SM_1

SM_2

SM_3

Input
Vector

Bug

Assertion

Error

Figure 1.5. How Assertions improve observability

System Verilog Assertions
and Assumptions (SVA)

DUT
(Submodules/Block

Level)

DUT
(Full chip or Block

Level)

Formal Tools Simulation

Property Pass/Fail

Static Dynamic

Figure 1.6. Hybrid Verification Approach

12

1.2 – Verification

• we developed an Assertion-based Verification plan for each targeted submodule
of the VPU,

• we developed "checker" modules filled with all the Assertions relative to each
targeted submodules,

• we inserted these checkers in the tests of the whole RISC-V architecture,

• we developed specialized testbenches for the single DUTs and performed Static
Verification on them,

• we provided reliable specifications and showed the actual advantages of this
Hybrid approach for Functional Verification,

• as we will see in Chapter 4, during the time period where the Verification Plan
was stable and working, assertions found the 36% of bugs relative to the DUTs
to which they were applied.

In the next chapter we will further describe in detail the architecture, the test-
benches and the submodules.

13

14

Chapter 2

Context

This Chapter will be divided in three sections and will illustrate the framework in
which this work has been carried out. The first one (2.1) will present the structure of
the Vector Processing Unit(VPU) and will add a detailed description of its memory
organization, which is crucial to understand its working. The second Section (2.2)
will briefly illustrate the tested submodules and their role in the VPU. Finally,
Section 2.3 will show how the simulations on the VPU were performed by the
Verification Team.

2.1 The VPU
As said in Chapter 1, VPU have been closely identified with the Cray-1 Supercom-

puter which enables an extremely efficient implementation of a Vector Architecture.
The basic conceptual structure behind the classical VPU is pretty simple and can
be observed in Figure 2.1: the Vector Register File is distributed in more Vector
Lanes. So, each Vector Lane contains a portion of each Vector Register, features
the computing units and communicates with the memory subsytem. In particular,
being N_LANES the number of present Lanes:

• each Vector Lane holds, for each Vector Register, V LEN/N_LANES bits
and V LEN/(N_LANES · SEW) elements.

• each Vector Lane features one (or more) deeply pipelined Functional Unit to
process many elements at the same time.

• the Vector Lanes are equal between each other and communicate with the
same memory subsystem.

Since the VPU under development targets HPC applications, as reported in Table
1.2, it has V LEN = 16384 and N_LANES = 8 Vector Lanes with Datapath of
64 bits (that gives a total equal to Datapath = 8 · 64 = 512).

15

2 – Context

E
le

m
en

ts
0,

8,
16

,..
.

E
le

m
en

ts
1,

9,
17

,..
.

E
le

m
en

ts
3,

11
,1

9,
...

E
le

m
en

ts
4,

12
,2

0,
...

E
le

m
en

ts
7,

15
,2

3,
...

E
le

m
en

ts
6,

14
,2

2,
...

E
le

m
en

ts
2,

10
,1

8,
...

E
le

m
en

ts
5,

13
,2

1,
...

Fu
nc

tio
na

l
U

ni
t

M
em

or
y

S
ub

sy
st

em

Ve
ct

or
La

ne 0

Fu
nc

tio
na

l
U

ni
t

Ve
ct

or
La

ne 1

Fu
nc

tio
na

l
U

ni
t

Ve
ct

or
La

ne 2

Fu
nc

tio
na

l
U

ni
t

Ve
ct

or
La

ne 3

Fu
nc

tio
na

l
U

ni
t

Ve
ct

or
La

ne 4

Fu
nc

tio
na

l
U

ni
t

Ve
ct

or
La

ne 5

Fu
nc

tio
na

l
U

ni
t

Ve
ct

or
La

ne 6

Fu
nc

tio
na

l
U

ni
t

Ve
ct

or
La

ne 7

Ve
ct
or

R
eg

is
te
rs

Figure 2.1. Vector Unit Structure

16

2.1 – The VPU

Naturally, the scheme in Figure 2.1 is just a conceptual scheme and misses many
key features that we will see further in this Section: our VPU will work as a co-
processor of a RISC-V scalar Core (called Avispado) and it is thought to support
the RISC-V Vector Extension specifications, draft 0.7.1 ([4]), which requires a so-
phisticated and complex hardware. As expected, Avispado will perform the scalar
operations and will issue different instructions to the VPU at the same time with
a credit system. The instructions contained in the RISC-V Vector Extension can
be categorized as follows:

• Configuration-Setting Instructions: these instructions will set the Control
Status Register (CSR) containing the information on the Single ElementWidth
(SEW) which, for our VPU, can be equal to 8,16,32 or 64. All the executed
instructions will take into account the current SEW and operate according to
it.

• Vector Loads and Stores: vectorial loads and stores will move data from and
to the memory. The data will be sent by/to Avispado, which communicates
with the external memory, in chunks of 512-bits.

• Arithmetic Instructions: it will support operations on Integers, Floating-
Point and Fixed-Point elements.

• Masked Operations: Masked operations are a magic feature of the VPU.
Basically, every instruction can be masked: when an operation is masked, a
mask comes with it to indicate which elements of the vectors, that are being
processed, are active. With this method, one can calculate the mask before
than executing an operation and avoid a unefficient branchy execution. For
example, if we need to execute the following code:
f o r (i =0; i <64; i++)

i f (A[i]%2) C[i]=A[i]+B[i] ;

with the masked operation we can first compute the mask based on A[i] and
then execute the whole C[i] = A[i] + B[i]; knowing which are the active ele-
ments.

• Vector Reduction and Widening operations: Reduction operations per-
form an operation that computes a scalar from a whole Vector like, for example,
to find the maximum element in it. Widening instruction doubles the SEW
of the elements of a Vector. An example of a reduction instruction could be:
vredsumu.vs vd,vs2,vs1,vm which is equal to vd[0] = sum(vs1[0],vs2[*]), where
vd is the destinatio vector, vs1 and vs2 are the two source vectors and vm is
the mask vector that indicates all the vs2’s active elements (denoted by *).

• Vector Permutation operations : these operations are the ones used to
move elements around within the vector registers. We can move single elements

17

2 – Context

in a certain position of a vector (Scalar Move) and extract an element from a
vector. Also, we can move whole vectors with three different operations:

– vslideup : vd[i] = vs[i + rs1] where vd is the destination vector, vs the
source vector and rs1 is a scalar value, whether being an immediate value
or a element loaded from the memory.

– vslidedown : vd[i] = vs[i− rs1]
– vrgather : vd[i] = vs1[vs2[i]]

After this brief introduction to the RISC-V Vector Extension, it is possible to
appreciate a high level scheme of the VPU structure. The VPU is made of several
components: the work done during this thesis has been focused on the Ring modules
which are the modules in charge of the communications between the Lanes, i.e. the
components involved in Widening, Reduction and Permutation Operations.

The communication system is a circular system: every Lane can receive data
coming from the previous Lane and send it only to the next one. This approach is
not much reported in literature but was chosen to minimise the needed hardware.
From the point of view of the Lanes, each Lane sees two modules called Ring (Data
and Index) to which they send the data for the next Lane, and see other two sending
the data from the previous one. In fact, no module called Ring exists, it rather is
a heterogeneous combination of several submodules, each one with a specific task.

From Figure 2.2, it is possible to observe the structure of the VPU, with a
particular emphasys on the Ring Modules, that will be illustrated in Section 2.2.
Figure 2.2 shows how the VPU communicates just with Avispado and has no direct
access to the memory. Avispado issues the instructions that are then decoded by
the VPU, then the command signals are sent to the Vector Lanes and the Load
and Store Management Units. When an operation for the Rings is issued, the VPU
sends the data to them so they arrive to the destination Lane.

Before going further with the description of the Ring Modules, in the next Sec-
tion, we have to focus on the VRF organization since it is a key point in the VPU
understanding and it is worth to be explored.

As said before, the VPU features 8 Lanes, has V LEN = 16384 bits and SEW =
8/16/32/64 so each one of the 32 Vectors can have respectively VLMAX=2048/
1024/ 512/ 256, according to the current SEW. Each VPU has a slice of the VRF:
starting from Lane 0, each Lane takes 64 bits of the Vector. The ELEMENT_ID
is defined as the position of the element in the Vector it belongs to. So, with SEW
64 we will have Lane 0 holding elements 0,8,16,...,248, Lane 1 holding 1,9,17,...,249

18

2.1 – The VPU

Avispado
Scalar
Core

Avispado Interface

Issue Stage,
Reorder

and Renaming

Arithmetic Queue Memory Queue

LOAD
MANAGEMENT

UNIT

Load Buffer Store Buffer

VECTOR LANE 0

VRF

CONTROL UNITCSR

PIPELINE
FUNCTIONAL

UNIT

WB Buffer

STORE
MANAGEMENT

UNIT

Ring
Unpacker

NODE
NODE

NODE
NODE

NODE
NODE

NODE
NODE

Data Ring Interface
Data Ring

LogicData Ring
LogicData Ring

LogicData Ring
LogicData Ring

LogicData Ring
LogicData Ring

LogicData Ring
Logic

Data Ring

NODE
NODE

NODE
NODE

NODE
NODE

NODE
NODE

Index Ring Interface

Index Ring

FIFO

Index Ring
Logic

FIFO

Index Ring
Logic

FIFO

Index Ring
Logic

FIFO

Index Ring
Logic

FIFO

Index Ring
Logic

FIFO

Index Ring
Logic

FIFO

Index Ring
Logic

FIFO

Index Ring
Logic

Vector
Processing
Unit

Ring
Packer

Figure 2.2. Vector Processing Unit

and so on, as reported in Table 2.1, where we have the Element ID of each element
in each cell. As compared to Table 2.2 where we have the element distribution with
SEW 32.

As far as the memory organization is concerned, each Vector Lane has a SRAM
Memory of 10kB organized in 5 banks of 2kB each. Knowing the EL_ID, to address
each element in the SRAM within a Vector Lane we need to compute 4 data:

1. SubBank: When SEW /= 64 each bank can be naturally subdivided in
64/SEW subbanks, to correctly address the data.

19

2 – Context

VL0 VL1 VL2 VL3 VL4 VL5 VL6 VL7
0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39
. .
240 241 242 243 244 245 246 247
248 249 250 251 252 253 254 255

Table 2.1. Vector Distribution SEW 64

VL0 VL1 VL2 VL3 VL4 VL5 VL6 VL7
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
. .
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511

Table 2.2. Vector Distribution SEW 32

2. Bank: Each Bank has rows of 64-bit width, every 64-bits we increment the
number of the Bank by 1. Since the number of Bank is 5 we restart to count
from 0 every 320 bits.

3. Line: Each Line contains 5 Banks, so, for each 5 64-bit chunks of width we
increment the Number of the Destination Line.

4. Lane: it is the Destination Lane (0 in the examples).

Examples for an arbitrary Vector v_i can be found in Tables 2.3 and 2.4: here we
see how the elements are disposed in Lane 0, according to the SEW. In each cell we
see the corresponding element_id, the letter B indicates the bank, SB the subbank.
Computing the addresses and correctly address the data is the main task of the
Ring Modules and that is why it is so important to focus on the VRF organization
in the VPU’s internal memory. We can now go further and present these modules.

20

2.2 – Submodules

VL0
B0 B1 B2 B3 B4
0 8 16 24 32 Line 0
40 48 56 64 72 Line 1
80 88 96 104 112 Line 2
120 128 136 144 152 Line 3
160 168 176 184 192 Line 4
200 208 216 224 232 Line 5
240 248 Line 6

Table 2.3. SRAM LANE 0, SEW 64

VL0
B0 B1 B2 B3 B4

SB0 SB1 SB0 SB1 SB0 SB1 SB0 SB1 SB0 SB1
0 1 16 17 32 33 48 49 64 65 Line 0
80 81 96 97 112 113 128 129 144 145 Line 1
160 161 176 177 192 193 208 209 224 225 Line 2
240 241 256 257 272 273 288 289 304 305 Line 3
320 321 336 337 352 353 368 369 384 385 Line 4
400 401 416 417 432 433 448 449 464 465 Line 5
480 481 496 497 Line 6

Table 2.4. SRAM LANE 0, SEW 32

2.2 Submodules
In this Section we will briefly describe the modules that have been studied and

tested. The description reported here aims to locate the modules in VPU and to
show their dependecies and roles. Indeed, this Section will not work as a collection
of specifications, as it would be of difficult comprehension and would turn out to be
useless. Also, we decided to include in the next Chapter 3 more precise descriptions
of the modules.

Index Ring and Data Ring

There are two types of Ring: Index and Data. The Index Ring is used only
when performing a vrgather (vgather : vd[i] = vs1[vs2[i]]) and it computes the
destination address given the EL_ID coming from vs2[i]. For the other operations
the Index Ring is never involved. Indeed, the Data Ring is responsible for the
correct functioning of every Operation of Slide, Gather, Reduction and Widening.

21

2 – Context

It receives the data together with the destination address and sends it to the correct
lane.

ring_unpacker

The ring_unpacker receives data from the Source Buffer of the Vector Lane and
then, according to the current SEW, it unpacks it in a 64-bit data. So, for example,
it receives 64 bits in input with SEW = 16, then it sends the 4 elements in a row
to the ring_if.

ring_if

The ring_if is the module that manages the flow of data between the Lanes. Ba-
sically, is the one that receives the data and circulates them. Most importantly,
it does not perform any elaboration on the data but it just handles the timing,
controlling and communicating with all the other Ring components.

ring_node

The ring_nodes are in the ring_if. Each Lane sees 4 ring_nodes, 2 of the Index
and 2 of the Data Ring. Each node receives data both from its Lane and from the
previous node, then, if one of the two inputs is for the current lane it sets the bits
to send the data to the ring_packer. (Figure 2.3).

Ring Node 1

Ring Node 6 Ring Node 5

Ring Node 4

Ring Node 3Ring Node 2

Ring Node 7

Ring Node 0

LANE 1

LANE 0

LANE 2

LANE 3

LANE 4

LANE 5LANE 6

LANE 7

Figure 2.3. Ring Nodes System

22

2.3 – The UVM

ring_packer

The ring_packer is the last component of the ring involved in the operations. It
performs the opposite operation of the unpacker: as the WB Buffer can receive the
data for the VRF, we need to send the data already organized in 64-bit chunks.

ring_logic

The ring_logic, along with the ring_node, is the core of the Ring and it is the
most error-prone. It has the task of computing the destination address. In case of a
vgather, the index_ring_logic receives vs2[i] containing the EL_ID and computes
Destination Lane, Destination Line, Destination Bank and Destination
SubBank, then it memorizes them in a FIFO of depth 10. Then, it sends all
the computed addresses to its Vector Lane which will send to the Data Ring the
vs1[vs2[i]] along with the computed address vs2[i]. For all the other instructions,
the Data Ring will receive all data in order from the source vector, from elemnt
0 to VLMAX and then easily compute the destination address, according to the
current operation. With the computed addresses the ring_if will be able to send
the data.

2.3 The UVM
This is the last Section that will introduce previous work and concepts. It is

necessary to complete the description of the existing framework where the thesis
has been carried out: here we will describe how the Verification of the whole VPU
is being performed.

2.3.1 UVM
The Functional Verification for the VPU is carried out with the Simulation based

approach and is performed with Universal Verification Methodology (UVM) which
is a transaction-level methodology (TLM) designed to develop testbenches. It is
implemented by an Object-Oriented Programming (OOP) languages, such as Sys-
temVerilog, that provide a wide range of classes and libraries to easily develop
re-usable and powerful tests. In particular, it provides libraries and models that
enable the engineer to create any wanted structure and provides communication
interfaces to connect the modules at transaction level.

Most importantly, UVM is a standard that codifies the best practices for efficient
and exhaustive Verification. It is based on SystemVerilog Language and it provides
an already defined hierarchy to test the DUT. The most basic UVM structure is
the one in Figure 2.4. Naturally, the aim of this Section certainly is not to describe

23

2 – Context

accurately the UVM language, which is a complete coding language and it needs
books to be properly explained. Here, we would rather like to briefly present the
classical UVM structure being it a fundamental part of the study that has been
done. The components of the structure are the following:

DUT

Interface

Test

Environment

Agent

Monitor Driver

Sequencer

sequence_item

Scoreboard

Figure 2.4. UVM Basic Structure

• Test: it is the top-level UVM component that instantiates the environments
and configures it by overriding.

• Environment: it groups together all the components targeting the DUT. It
defines the reusable component topology of the UVM Tests.

• Agent: The Agent contains most of modules of the UVM structure, such as:

– the Sequencer that creates and sends the transactions to the Driver.
– theDriver that takes the sequence_items and through a Virtual Interface
sends them to the DUT.

24

2.3 – The UVM

– the Virtual Interface that sends the Input and Output data to the Cov-
erage Monitor that communicates with the Scoreboard, that naturally
will check the DUT agains a reference architecture.

The extreme power of UVM is the re-usability and the ease of use: the reusability
is unlocked by the possibility of overriding the classes of the instantianted object
while the only thing we have to take care of is thinking of tests and not coding the
structure, which is always standard and grants a high modularity. This drastically
reduces the time to verify and why it is such a common standard.

2.3.2 UVM Structure
To test the whole RISC-V structure the Verification Team has developed a con-

sistent UVM architecture, along with a huge effort for its automatizations and
tests. The basic steps to verify the VPU are illustrated in Figure 2.5 and can be
summarized as follows:

1. firstly, an assembly code has to be generated. To do so it is used a slightly mod-
ified version of riscv-dv ([7], [6]), which is a open-source constrained-random
generator of instructions targeting RISC-V Verification. It is modified by the
Verification Team to block the instructions not yet supported. Naturally, an
assembly program could also be hand-written in case we want to launch specific
directed tests.

2. Then, the assembly has to be compiled with the GCC compiler that targets
RISC-V Vector Extension [5].

3. Once we have the binary, it is possible to send it to a modified version of Spike
[8]. Spike works as a C library that can emulate a RISC-V architecture. In
our case Spike accomplishes a double function: the first one is to execute the
scalar instructions and then send the vector ones to the UVM. The second is
to act as a Scoreboard for the vector instructions.

4. Finally, the UVM receives the vector instruction from Spike and issues them to
the VPU, emulating the Avispado’s protocol. Naturally, the UVM features the
Drivers to do so, and the Monitors too to sample the VPU state and compare
it with the Spike Results, when an instruction is executed.

This flow is automatized and runs every night to perform as many tests as possible
on the VPU. Every execution is reported on the online repository and everyone can
re-run the test locally to debug the errors found during the night. It is clear that this
approach is essential to perform the functional verification of the VPU and it would
not be possible to do otherwise. Also, this approach allows the Verification Team to

25

2 – Context

G
C

C
C

O
M

P
IL

E
R

sp
ik

e_
bi

n.
S

sp
ik

e_
bi

n.
o

S
P

IK
E

R
IS

C
-V

 D
V

sp
ik

e.
so

V
P

U

M
em

or
y

M
od

el

S
co

re
B

oa
rd

U
V

M

ad
dv

 V
1,

V
2,

V
3

vl
e

V
1,

0(
x1

)
sl

id
ev

 V
1,

V
2,

3

V
P

U
 S

ta
te

S
P

IK
E

 R
es

ul
t

Figure 2.5. Verification steps for the VPU

26

2.3 – The UVM

work without any dependencies from the Design Team since the Vector Extension
Specifications are fixed and do not depend on the VPU current implementation.

On the other hand, it is a sub-optimal approach: when an execution stops due to a
mismatch between Spike and the VPU, the only clues that the Design Team has are
the waveforms of the failing test and tracing back the error is accomplished mostly
by hand, which it may result pretty hard and time consuming, given the VPU
complexity and the length of the chain of components for each single instruction
execution. That is why, along with this method, it is of crucial importance to focus
also directly on the most critical and complex submodules of the VPU, to develop
directed testbenches for them and to insert specific assertions directly within the
VPU-level testing, as discussed in Chapter 1. In this way, when the error is detected
and an assertion fails, it is much more easy to find the bug and correct it.

As said in Chapter 1, this kind of work needs to be performed by the Verification
Team along with the Design Team and it is in what consists the work presented
here. In the next Chapter, there will be illustrated more in depth the Submodules,
the Assertion-based Verification Plan and its actuation, along with the Formal
Verification that has been performed. Then, in the last Chapter we will show
the the benefits coming from the implementation of this approach and already
anticipated in Chapter 1.

27

28

Chapter 3

Methods

In this Chapter we are going to present the developed Verification Plan and its
realization. Section 3.1 will work almost as a collection of specifications: we are
going to present the Submodules that have already been introduced in Chapter 2,
with a focus on their interfaces and handshakes, along with their waveforms, to
provide the necessary description to understand the Verification Plan and to doc-
ument the method followed in this work. The written specifications are 17 pages
long and it is not necessary to attach them here to actually appreciate the work.
In Section 3.2, we are going to present the Verification Plan: the checkers with the
deployed assertions, the UVM and the directed tests.

3.1 The Submodules and Specifications
Writing the missing specification required a consistent effort of interfacing with

the Design Team. Naturally, the process it has not been flawless: many times the
assertions based on the unstable specifications gave false positive when reported to
the designers. In that case the specifications and the assertions had to be modified
while everything was working as expected. Nevertheless, writing specifications
almost from scratch was a key exercise to think of the modules and allowed us to
find reduntant signals or even bugs, without even the necessity of running tests.

It is important to recall that two Rings are present in the VPU: Data and Index.
The Index one is involved only in the gather operation, which is defined as follows:
vrgather .v vd ,vs1 ,vs2 # vd[i] = vs2[i]>VLMAX ? 0 : vs1[vs2[i]];

In this case, the Index Ring structure takes in input vs2, containing the destination
ELEMENT_IDs, and computes the destination address for the VRF. Then, vs1
is sent by the Data Ring according to the new computed addresses. For the other
Ring operations (Reduction, Widening, Permutations), the Index Ring is never
involved as compared to the Data Ring which is always active.

29

3 – Methods

3.1.1 Ring Interface

The Ring Interface is the component that handles the communications with the
Lanes:

• every Lane sends to the Ring Interface the request to send some data to another
Lane, along with the data and the destination address.

• after the request is accepted, the Ring Interface will send to the destination
Lane the data that it received.

Thus, the Ring Interface, whether the data or the index, can receive two possible
commands (Figure 3.1) from the Lanes:

1. a new request is issued: the signal enable_i is asserted, along with the infor-
mation length_i that tells how many elements will be sent through the ring.
Then, every time req_i is 1, it means that #req_cnt_i elements are sent
together with their destination address. When the number of element sent is
equal to the initially requested number, the operation ends.

2. an accumulation operation is issued: it is exactly like a normal request but
without any counter on the number of elements.

When a data valid for a lane is in output, the corresponding bit of we_o is set to 1
and the data is sent to the corresponding Lane.

3.1.2 Ring Node

The ring node is a incredibly simple component within the ring interface. It
executes just one operation, in one clock cycle: it receives data both from the
previous ring and from its lane, when a valid data is in input it sets the output
we_o to 1 in order to send it to the packer. This behaviour can be easily described
with the Control Flow Diagram in Figure 3.2.

Even if this component appears to be simple, it results to generate a great amount
of assertions and doubts. For example, what is it supposed to happen when both
data in input are valid? Or, is this even something allowed to happen? What
does it happen when a valid data is given along with a stall_i or a kill_i? As
it is possible to imagine, writing the specifications and the assertion on a module
forces you to think of corner cases from the first moment and to investigate all the
possible input combination, to avoid writing down false assumptions.

30

3.1 – The Submodules and Specifications
cl

k_
i

rs
n_

i

st
al

l_
i

re
q_

i

ac
cu

m
_e

n_
i

re
q_

cn
t_

i [
3:

0]
0x

0
0x

1
0x

0
0x

2
0x

0
0x

5
0x

0

da
ta

_i
 [R

IN
G

_I
F_

DA
TA

-1
:0

]
0x

0
m

(1
)

0x
0

p(
4)

da
ta

_i
 [2

*R
IN

G
_I

F_
DA

TA
-1

:0
]

0x
0

q(
5)

0x
0

da
ta

_i
 [3

*R
IN

G
_I

F_
DA

TA
-1

:0
]

0x
0

n(
2)

0x
0

r(6
)

da
ta

_i
 [4

*R
IN

G
_I

F_
DA

TA
-1

:0
]

0x
0

s(
7)

0x
0

da
ta

_i
 [5

*R
IN

G
_I

F_
DA

TA
-1

:0
]

0x
0

t(0
)

0x
0

da
ta

_i
 [6

*R
IN

G
_I

F_
DA

TA
-1

:0
]

0x
0

o(
7)

0x
0

da
ta

_i
 [7

*R
IN

G
_I

F_
DA

TA
-1

:0
]

0x
0

da
ta

_i
 [8

*R
IN

G
_I

F_
DA

TA
-1

:0
]

0x
0

le
ng

th
_i

 [V
L_

BI
TS

_W
ID

TH
-1

:0
]

3

en
ab

le
_i

fre
e_

o

we
_o

 [7
:0

]
0h

02
0h

04
0h

80
0h

F1

da
ta

_o
 [R

IN
G

_I
F_

DA
TA

-1
:0

]
0x

0
m

0x
0

p

da
ta

_o
 [2

*R
IN

G
_I

F_
DA

TA
-1

:0
]

0x
0

q
p

0x
0

da
ta

_o
 [3

*R
IN

G
_I

F_
DA

TA
-1

:0
]

0x
0

n
q

p
0x

0

da
ta

_o
 [4

*R
IN

G
_I

F_
DA

TA
-1

:0
]

0x
0

s
n

q
p

0x
0

da
ta

_o
 [5

*R
IN

G
_I

F_
DA

TA
-1

:0
]

0x
0

t
s

n
q

0x
0

da
ta

_o
 [6

*R
IN

G
_I

F_
DA

TA
-1

:0
]

0x
0

o
0x

0
t

s
n

0x
0

da
ta

_o
 [7

*R
IN

G
_I

F_
DA

TA
-1

:0
]

0x
0

o
0x

0
t

s
0x

0

da
ta

_o
 [8

*R
IN

G
_I

F_
DA

TA
-1

:0
]

0x
0

t
0x

0

fin
is

h_
o

ki
ll_

i

Figure 3.1. Ring Interface
31

3 – Methods

Ye
s

da
ta

_r
in

g_
i[M

S
B

]
=

'1
' ?

Ye
s

N
o

is
 it

 fo
r

m
y

la
ne

?

se
lf_

w
rit

e_
o

=
'0

'
w

e_
o

=
'1

'

se
lf_

w
rit

e_
o

=
'0

'
w

e_
o

=
'0

'

da
ta

_v
al

id
_o

=
'0

'
da

ta
_r

in
g_

o
=

X
X

X

da
ta

_v
al

id
_o

 =
'1

'
da

ta
_r

in
g_

o
=

da
ta

_r
in

g_
i(t

-1
)

Ye
s

N
o

da
ta

_l
an

e_
i[M

S
B

]
=

'1
' ?

N
o

Ye
s

is
 it

 fo
r

m
y

la
ne

?

se
lf_

w
rit

e_
o

=
'0

'
w

e_
o

=
'0

'

se
lf_

w
rit

e_
o

=
'1

'
w

e_
o

=
'1

'

(g
iv

es
 th

e
da

ta
 to

th
e

ne
xt

no
de

)

da
ta

_v
al

id
_o

 =
'1

'
da

ta
_r

in
g_

o(
t)

=
da

ta
_l

an
e_

i(t
-1

)

da
ta

_v
al

id
_o

 =
'0

'
da

ta
_r

in
g_

o(
t)

=
X

X
X

se
lf_

w
rit

e_
o

=
'0

'
w

e_
o

=
'0

'

da
ta

_v
al

id
_o

 =
'0

'
da

ta
_r

in
g_

o(
t)

=
X

X
X

@
(p

os
ed

ge
)

cl
k_

i

Ye
s

st
al

l_
i =

 '1
' ?

N
o

Ye
s

ki
ll_

i =
 '1

' ?

se
lf_

w
rit

e_
o

=
'0

'
w

e_
o

=
'0

'

da
ta

_v
al

id
_o

 =
da

ta
_v

al
id

_o
(t-

1)
da

ta
_r

in
g_

o(
t)

=
da

ta
_r

in
g_

o(
t-1

)

@
(p

os
ed

ge
)

cl
k_

i

se
lf_

w
rit

e_
o

=
X

w
e_

o
=

X
da

ta
_v

al
id

_o
 =

'0
'

da
ta

_r
in

g_
o(

t)
=

'0

rs
n=

'1
'

se
lf_

w
rit

e_
o

=
X

w
e_

o
=

X
da

ta
_v

al
id

_o
 =

'0
'

da
ta

_r
in

g_
o(

t)
=

'0

Figure 3.2. Ring Node
32

3.1 – The Submodules and Specifications

3.1.3 Index Ring Logic
The index ring logic is used only for gather instructions and it is provided with

a FIFO of depth 10 to save different destination addresses of the data, which is
organized as reported in Figure 3.3: is the concatenation of

• destination Lane, destination line, destination bank, destination sub bank.

• sending Lane, sending bank, sending sub bank.

• valid bit and zeroing bit.

[22] [20:18][21] [17:15] [14:12] [11:9] [8:6] [5:3] [2:0]

validity
bit

zeroing
bit

current
lane

current
bank

current
sub bank

destination
lane

destination
line

destination
bank

destination
sub bank

Source
Address

Destination
Address

data_o[22:0]

Figure 3.3. Address Composition

As reported in Figure 3.4, when a gather instruction is issued, enable_i and
start_i are 1. Then every time a send_i arrives, the index ring logic receives
vs2[i], containing the element_id on offset_i. When vs2[i]>VLMAX the zeroing
bit is set to 1. Given that information we can compute the destination address as
follows:

1 el_id_dest = send_fifo [0]. offset_fifo ;
2 // update fifo
3 for (j = 0; j < FIFO_SIZE - 1; j++) begin
4 send_fifo [j]. offset_fifo = send_fifo [j + 1]. offset_fifo ;
5 send_fifo [j].free = send_fifo [j + 1].free;
6 end
7

8 send_fifo [FIFO_SIZE -1]. offset_fifo = 0;
9 send_fifo [FIFO_SIZE -1].free = 1;

10

11 dest_bank_int = (el_id_dest /(sub_banks * N_LANES))% N_BANKS ;
12 dest_sub_bank_int = el_id_dest % sub_banks ;
13 dest_line_int = el_id_dest /(sub_banks * N_LANES * N_BANKS);
14 dest_lane_int = (el_id_dest / sub_banks) % N_LANES ;

33

3 – Methods

Like in the case above, when the component increases just a bit the complexity,
it is possible to develop a scoreboard with a high level of abstraction. In this way,
we avoid to create errors due to the complexity of the code and we can implement
a scoreboard that is much alike as possible as the specifications, without any bind
to the actual RTL implementation.

3.1.4 Data Ring Logic
The Data Ring Logic computes the destination addresses for the Permutation

instructions and for Widening and Reduction. These operations work on the whole
source vector vs1, from element 0 to element V L_MAX: the Data Ring Logic com-
putes the destination element_id, knowing the current element_id of the sender,
according to the current instruction. Then, the destination address is computed
with the equations showed for the Index Ring Logic. For each operation the hand-
shake is different, in this way we make the Data Ring Logic aware of the current in-
struction. At the beginning of every instruction it receives enable_i and start_i,
which works as a reset of the internal counter, and then 4 possible instructions can
be issued:

• for the slide operation type_i tells whether it is a slide down or a slide up and
it computes the destination as el_iddest = el_idsource + (−1)type_i · offset_i.

• for the widening operation the widening_i signal is 1 and simply el_iddest =
el_idsource · 2.

• for the reduction operation, accum_en_i is 1 and el_iddest = 64/SEW ∗
(LANE_ID + 1) .

• for the gather instruction, rgather_op_i is equal to 1 and the Data Ring Logic
just gives in output the address computed from the Index Ring Logic which are
passed through rgather_lane_i, rgather_bank_i and rgather_sub_bank_i.

3.1.5 Ring Data Unpacker
The Ring Data unpacker unpacks the 64-bit input data according to the cur-

rent SEW. A new unpacking is requested with new_req_i, along with elements_i
indicating the number of elements that will be given in output during the whole
operation. Then, req_i is 1 and the 64-bit data arrives. Within the completion
of a request the inputs must remain stable. Figure 3.6 shows what happens with
32-bits elements and 4 elements unpacked. It can also happen that the unpacker
receives finish_i before having unpacked all the elements, in that case it has to
forget the inflight request.

34

3.1 – The Submodules and Specifications

cl
k_

i

o
ff

se
t_

i[6
3

:0
]

1
0

2
5

0
0

0
4

4
0

9
8

0
5

6
7

0
6

5

e
n

a
b

le
_

i

st
a

rt
_

i

a
u
x_

sl
id

e
_

i

a
c
cu

m
_

e
n

_
i

w
id

e
n

in
g

_
i

r_
g
a
th

e
ro

p
_

i

rg
a
th

e
r_

la
n

e
_

d
st

_
i[2

:0
]

0

rg
a
th

e
r_

b
a

n
k_

d
st

_
i[2

:0
]

0

rg
a
th

e
r_

su
b

_
b

a
n

k_
d

s
t_

i[2
:0

]
0

ty
p

e
_

i

se
n

d
_

i

re
q

_
o

fin
is

h
_

i

se
w

_
i

0

vl
_

la
n

e
_

i
4

vl
e

n
g

th
_

i
2

5
6

d
a
ta

_
o

[2
2

](
va

lid
it
y)

d
a
ta

_
o

[2
1

](
ze

ro
in

g
)

d
a
ta

_
o

[2
0

:1
8

](
se

n
d

e
r_

la
n

e
)

d
a
ta

_
o

[1
7

:1
5

](
se

n
d

e
r_

b
a

n
k)

d
a
ta

_
o

[1
4

:1
2

](
se

n
d

e
r_

su
b

_
b

a
n

k)

d
a
ta

_
o

[1
1

:9
](

d
e
st

_
la

n
e

)
0

5
4

6
0

d
a
ta

_
o

[8
:6

](
d

e
st

_
lin

e
)

0
5

0
1

0

d
a
ta

_
o

[5
:3

](
d

e
st

_
b

a
n

k)
0

0
1

3
1

d
a
ta

_
o

[2
:0

](
d

e
st

_
su

b
_

b
a

n
k
)

1
4

2
7

1

Figure 3.4. Index Ring Logic Gather Waveforms
35

3 – Methods

clk_i

offset_i[63:0] 1

enable_i

start_i

aux_slide_i

accum_en_i

widening_i

r_gatherop_i

rgather_lane_dst_i[2:0] 0

rgather_bank_dst_i[2:0] 0

rgather_sub_bank_dst_i[2:0] 0

type_i

send_i

req_o

finish_i

free_i

fetch_o

ready_o

empty_o

sew_i 2

vl_lane_i 32

vlength_i 512

data_o[22](validity)

data_o[21](zeroing)

data_o[20:18](sender_lane) 0 0 0 0 0 0

data_o[17:15](sender_bank) 0 0 1 1 2 2

data_o[14:12](sender_sub_bank) 0 1 0 1 0 1

data_o[11:9](dest_lane) 7 0 7 0 7 0

data_o[8:6](dest_line) 0 0 0 0 0 0

data_o[5:3](dest_bank) 4 0 0 1 1 2

data_o[2:0](dest_sub_bank) 1 0 1 0 1 0

Figure 3.5. Data Ring Logic Slide

clk_i

new_instr_i

elements_i 4

finish_i

req_i

data_i [63:0] 0x0 A&B 0 C&D 0

grant_o

sew_i [1:0] X 2 X

data_o [63:0] 0x0 0&A 0&B 0x0 0&C 0&D 0x0

req_o

enable_o

enable_i

ready_o

Figure 3.6. Ring Data Unpacker

36

3.2 – Verification Plan

3.1.6 Ring Data Packer
The Ring Data Packer accomplishes the opposite result of the unpacker. As Figure
3.7 shows, there are two possible patterns, apart from the possible different SEWs:

clk_i

req_i

data_i [86:64] 0 0 1 2 3 0 16 8 0

data_i [63:0] 0x0 A B C D 0 E F 0

sew_i [1:0] X 1 X 2 3 X

data_o [86:64] 0 0 0 16 8

data_o [63:0] 0X0 A&B&C&D 0x0 0&E F

req_o

finish_i

finish_o

Figure 3.7. Ring Data packer

• 4 data of 16-bits are sent in a row to the packer, the 4 data destination are 4
adjacent position in the VRF. So, the packer will send a unique req_o=1 when
all the 4 data are received and will concatenate them in data_o.

• a 32-bit data is sent, and then a 64-bit data. The two data are neither adjacent
nor fot the same destination: in this case, the ring data packer will understand
that the arrived elements are uncorrelated and will send them both to the WB
buffer in two distinct clock cycles.

3.2 Verification Plan
In this Section, we are going to present the Verification Plan that has been devel-

oped to test the Ring modules. A Verification Plan can be defined as a document
that delineates what Functional Verification is going to be performed. As an ex-
ample, it may consist in a spreadsheet defining the features that the DUT has and
these may get translated in coverage metrics.

The implementation of our Verification Plan is described in Figure 3.8. For each
submodule, we started with studying it and writing down its specifications and
features. These features were contained in a spreadsheet and then translated and
implemented in 3 different ways:

1. direct translation in assertions. At this point, all the assertions relative to
the DUT were contained in the "checker" file.

2. the development of a dedicated UVM for the DUT.

37

3 – Methods

3. the implementation of direct binaries to test the whole VPU, targeting the
instructions that involve the Ring Module.

At this point we had to test the assertions that had been wrote down. To do this
there were 3 methods:

1. insert the checkers in the symulations of the whole VPU, as discussed in Chap-
ter 1 and 2 for the Assertion-based Verification.

2. insert the checker in the directed testbenches implemented just for the single
DUT.

3. use the checkers to perform Formal Verification.

The 3 approaches can cause an assertion to fail or to pass. In case of a failing
assertion we had to discuss it with the Design Team and in case it was a false
positive, re-write the specifications, the checker, the drivers of the testbench and
eventually re-think of the directed Tests. Naturally, writing the drivers and think-
ing of directed tests was itself an exercise to think of corner cases and to fix the
specifications.

The rest of this Section will describe in detail the elements present in Figure 3.8.
Firstly, we are going to present the Checkers and how they were inserted in the
tests. Secondly, we are going to show the methods used for Dynamic Verification:
direct bynaries and the dedicated UVM. Lastly, we are going to discuss about the
Static Verification.

3.2.1 Checkers and Assertions
Once a checker was defined, it was inserted in all the tests in a straighforward

manner: the bind method (reported in [21], [13] and [18]). Basically, to bind two
modules between each other we can use two methods:

• insert the checker as a submodule of the DUT. This means that the DUT will
contain the checker to pass all the signals to the assertions.

• the bind method.

The first one is highly unconvenient for the Verification Team as it requires it to
write code in the modules that are developed from the Designers, who may even be
reluctant to this idea. Instead, we can use the bind method that binds the checker
to the DUT at compilation time, with few lines of code:

• for QuestaSim®, add to the line that calls the file of the DUT the option -mfcu
-cuname along with the path to the checker ../src/rtl/*DUT*.sv -mfcu
-cuname ../../unit-verification/*path to the checker*

38

3.2 – Verification Plan

First study of
the

Submodule

Specifications
Writing/

Features
Definition

Spreadsheet

Assertions
Implementation

/ Update

DUT_checker.sv

Dedicated UVM
Implementation
/ Driver Update

Implementation
Directed Tests
for the whole

VPU

NO

YESAssertion
Fails ?

The assertion is correct

NO

YES

False
 Positive ?

A bug is found

Figure 3.8. Work Flow

39

3 – Methods

• include the checker too.

With this scheme, the two files are completely independent and we are able to insert
the assertions in all the tests of the VPU, in all the test of the dedicated UVM and
in the Formal tool too without any effort from the Designers and in a very elegant
and efficient way.

As previously said, each checker contains all the assertions relative to a DUT.
These assertions are directly wrote down from the spreadsheet containing all the
features of a DUT. To make an example and to show the method followed, in 3.1,
3.2 and 3.3 we can find the spreadsheet (the Verification Plan) for the Ring Logic.
Naturally, the aim of this Tables is not to describe all the assertions for the Ring
Logic but it rather is to report a developed Verification Plan for a single module,
indeed these Tables are very specific and hard to understand if the reader is not
working on the project but they can briefly give the idea of the work carried out
for each submodule.

In these Tables, two different categories of assertions and assumptions clearly
emerge:

1. the ones targeting the handshake signals, the vast majority of properties:

• Assumptions on the inputs, to check that the input signal arrive accord-
ing to the specifications: for example, the signals that last one clock cycle
have to last one clock cycle, the signals that cannot arrive if the DUT has
a busy flag must remain to 0.

• Assertions on the handshake signals, for example how the instructions
are granted or similar.

2. Assertions on the computed output: assertions from 1.0.12 to 1.0.19 and
assertion 1.2.3 check not only the communication signals but that the com-
putation of the output (in this case the calculated address) has been handled
correctly. This Scoreboard is implemented using SystemVerilog tasks, and it
is performed with high-level sequential code.

ring_logic module Name
1.0.1 all outputs to 0 at reset and 1 clk cycles

later
a_rsn_i Assertion

1.0.2 no unknowns for the inputs when start_i
is 1

a_start_i_known Assumption

1.0.3 if rgather_op_i ==1 no un-
knowns for rgather_lane_dst_i and
rgather_bank_dst_i

a_rgather_op_i
_known

Assumption

40

3.2 – Verification Plan

1.0.4 When req_o ==1, check data_o for un-
knowns – if first bit (data_enable) is 1
then no unknowns for the rest of the
bitvector

a_req_o_known Assertion

1.0.5 req_o is a single cycle operation a_req_o Assertion
1.0.6 only gather or accum or widening can be

= ’1’ at time
a_exclusive_input Assumption

1.0.7 start_i is a one operation cycle, after it
the offset_i is availble on the input

a_start_i_behav Assumption

1.0.8 send_i lasts just one clock cycle a_send_i Assumption
1.0.9 data[22] == 0 && req_o == 0 1 the cycle

after
a_kill_i Assertion

1.0.10 when kill_i, the same cycle !send_i &&
!enable_i && !start_i;

a_kill_i_data_i Assumption

1.0.11 when rsn_i , inputs to 0 a_rsn_i_data_i Assumption
1.0.12 check if data_o[14:12] corresponds to the

bank of the current sender
a_data_o_bank
_in

Assertion

1.0.13 check if data_o[17:15] corresponds to the
sub_bank of the current sender

a_data_o_sub_
bank_in

Assertion

1.0.14 check if data_o[20:18] corresponds to the
lane of the current sender

a_data_o_lane
_in

Assertion

1.0.15 check if the data_o[2:0] corresponds to the
sub_bank of the address destination

a_data_o_sub
_bank_out

Assertion

1.0.16 check if the data_o[11:9] corresponds to
the lane of the address destination

a_data_o_lane
_out

Assertion

1.0.17 check if the data_o[5:3] corresponds to the
bank of the address destination

a_data_o_bank
_out

Assertion

1.0.18 check if the data_o[8:6] corresponds to the
line of the address destination

a_data_o_line
_out

Assertion

1.0.19 check data_o[22] which has to be 1 for
the indx_ring_logic doing a gather with
vs1[i]>VL_MAX, otherwise 0

a_data_o _zero-
ing

Assertion

Table 3.1: Ring Logic Assertions

data_ring_logic module Name
1.1.1 with (gather_op=’1’ or accum_en=’1’

or widening_i=’1’) , after send_i =’1’,
data_o on the out the next cycle

a_data_after_send Assertion

1.1.2 after send_i=’1’ with ready_o = ’1’,
req_o = 1 (one req for each send prob-
ably)

a_req_after_send Assertion

1.1.3 when req_o rises fetch_o fells (in the
same cycle)

a_fetch_on_req Assertion

41

3 – Methods

1.1.4 when req_o rises ready_o fells (in the
same cycle)

a_ready_on_req Assertion

1.1.5 fetch_o =’1’ when send_i =’1’ and
ready_o = ’1’

a_fetch_on_send Assertion

1.1.6 no send_i =’1’ if fetch_o =’0’ and
ready_o = ’1’

a_send_on_fetch Assumption

1.1.7 when req_o rises, free_i fells in the same
cycle

a_free_on_req Assumption

1.1.8 when enable_i rises (for a clock cycle) the
same cycle offset_i is valid (no unkonwn)
in input

a_offset_known Assumption

1.1.9 if gather_op=’1’ and send_i=’1’, the
same cycle no unknown on rgather_*

a_data_gather Assumption

1.1.10 no enable_i=’1’ when accum_en_i=’1’ a_data_accum_en Assumption
1.1.11 no send_i when free = ’0’ a_data_send_free Assumption
1.1.12 if gather == ’0’ && accum_en == ’0’

&& widening == ’0’ && enable == ’1’
==>type_i and offset and aux_slide not
unknown

a_data_slide_i Assumption

Table 3.2: Data Ring Logic Assertions

indx_ring_logic module
1.2.1 fetch_o falls when send_i rises a_index_fetch

_send
Assertion

1.2.2 if gather_op=’1’ and send_i=’1’, the next
cycle rgather_* = ’0’

a_index_gather Assumption

1.2.3 between the rise of gather_op_i and its
fall, the number of send_i is equal to the
number of req_o (i.e. no data corruption)

a_index_send_req Assertion

Table 3.3: Index Ring Logic Assertions

All this collection of assertions and assumption extensively checks the correct
behaviour of the module and, as expected, are significately useful, especially when
inserted in the high-level VPU testing. Moreover, we can notice how we can gener-
ate up to 31 properties for the Data Ring Logic and 22 for the Index Ring Logic, 7
of which work performing arithmetic and sequential scoreboarding. It is intuitive to
see how focusing on a submodule can increase the number of control points within
the VPU and increase the controllability and observability of the whole system.

42

3.2 – Verification Plan

3.2.2 Dynamic Functional Verification
Here we are going to show the different ways we had to simulate the Ring Mod-

ules. Basically, there were the tests of the whole VPU and the dedicated UVM.

FV in the whole UVM

As reported in Section 2.1, many tests are performed every day. Each test gen-
erated by riscv-dv contains hundreds of randomly generated assembly instructions
and extensively tests the VPU. In this framework, the checkers were binded to the
different DUTs. Given the nature of our Assertions and Assumptions and the un-
stability of the specifications, within the VPU none of them was marked as a $fatal
that would stop the execution. Even in the last steps of the work, when the speci-
fications were stable and fixed and no false positives happened, the assertions and
assumptions were marked as $errors which are reported in the simulation report
file. This difference means that the firing assertions had to be checked "manually"
by us and then discussed with the Design Team.

All the checkers relative to the ring contain a total of 98 assertions and assump-
tions and resulted to give a significant contribution to the debugging at a low cost
in terms of computational resources: profiling the resources used througout a whole
simulation, this value was always below 5%, meaning that they do not appreciably
slow down the execution. Simultaneously, as we will report in the next Chapter
4, from the moment the checkers were stable, they found 36% of reported bugs
concerning the Ring Modules.

Dedicated UVM

Developing the Dedicated UVM has been another core work of the last six
months. In this case it turned out to be a concrete way to fix the attention on
the modules and think of them, finding corner cases and defining the specifications,
rather than to find bugs. This process reached the peak when coding the drivers.
The classical way for doing this was the following:

• individuation of the possible different operations that the DUT can perform.

• understanding of how these operations are issued to the DUT and writing
down the waveforms.

• writing the driver in the UVM structure.

For example, we can look at the code for the driver of the ring_data_unpacker:
we know that it is a simple component that can receive just one operation (called
"req_op") but it is necessary to find how the signals actually behave. Therefore,

43

3 – Methods

we first need to write down the waveforms (that are already presented in Figure
3.6) and then we can code the driver: we randomly generate the number of ele-
ments that we want to send (elements_i) and we send it to the unpacker with
new_instr_i. At this point we randomize data_i and set req_i to 1. Finally, we
wait for enable_o to send other data to the unpacker. We repeat this operation as
many times as request by the value fixed by elements_i and sew_i. Eventually,
we set finish_i to 1 for a clock cycle.

1 task drive(ring_data_unpacker_sequence_item command);
2 int n;
3 @(posedge ru_if.clk_i);
4 // sync reset
5 if(command .op == req_op) begin
6 ru_if.op = req_op ;
7 ru_if.rsn_i = 1’b1;
8 ru_if. kill_i = 1’b0;
9 ru_if. new_instr_i = 1’b1;

10 ru_if. elements_i = command . elements_i ;
11 ru_if. finish_i = 1’b0;
12 ru_if. data_i = command . data_i ;
13 ru_if.req_i = 1’b0;
14 ru_if. enable_i = 1’b0;
15 ru_if.sew_i = command .sew_i;
16 -> ru_if. new_input ;
17 @(posedge ru_if.clk_i);
18 ru_if. new_instr_i = 1’b0;
19

20 // wait for the first enable_o = 1
21 while (! ru_if. enable_o) begin
22 @(posedge ru_if.clk_i);
23 end
24

25 // repeat the unpack sequence at most command .
elements_i /(2**(3 - command .sew_i)) times

26 n = command . elements_i /(64/(2**(3+ command .sew_i)))
;

27 repeat (n) begin // wait for enable_o to give a new
data

28 // load 64- bit chunk of data
29 randomize (command . data_i);
30 ru_if. data_i = command . data_i ;
31 ru_if.req_i = 1’b1;
32 ru_if. enable_i = 1’b1;
33 @(posedge ru_if.clk_i);
34 ru_if.req_i = 1’b0;
35 // now a grant_o has been given , we can

unpack the data
36 while (! ru_if. enable_o) begin
37 @(posedge ru_if.clk_i);
38 ru_if. enable_i = $random ;

44

3.2 – Verification Plan

39 end
40 // the unpacking ended , we can give a new

data
41 end
42

43 @(posedge ru_if.clk_i);
44 while(ru_if.req_o) begin
45 @(posedge ru_if.clk_i);

46 end
47 while (! ru_if. enable_o) begin
48 @(posedge ru_if.clk_i);

49 end
50 @(posedge ru_if.clk_i);
51 ru_if. finish_i = 1’b1;
52 @(posedge ru_if.clk_i);
53 ru_if. finish_i = 1’b0;
54 end
55

56 if(command .op == rsn_op) begin
57 ru_if.op = rsn_op ;
58 ru_if.rsn_i = 1’b0;
59 ru_if. kill_i = 1’b0;
60 ru_if. new_instr_i = 1’b0;
61 ru_if. elements_i = command . elements_i

;
62 ru_if. finish_i = 1’b0;
63 ru_if. data_i = command . data_i ;
64 ru_if.req_i = 1’b0;
65 ru_if. enable_i = 1’b0;
66 ru_if.sew_i = 0;
67 -> ru_if. new_input ;
68

69 end
70 endtask : drive

Most importantly, finding a way to correctly drive the DUT was not just a theo-
retical exercise but played a key role in the definition of the specifications and in
finding reduntant signals or missing or bad-defined features, which may be properly
classified as finding bugs.

The architecture of the UVM is illustrated in Figure 3.9. The direction chosen
was to have a unique environment for all the ring modules, to avoid redundancy
since we decided that having a complete UVM for the simplest components like the
node or the packer would have been not efficient for our purposes. Thus, in the
environment are instantiated as many Agents as the Submodules and each Agent
can be active or passive, this means when we are testing a module, its Agent is the

45

3 – Methods

only one Active, i.e. featuring a sequencer and a Driver, while all the other ones
cannot drive anything. As desired, this structure is fully re-usable and allows to
easily create new tests, insert new operations or override the Drivers. This structure
has been organized to work with a simple python3 bash command:
python3 compile_and_sim_unit . py −u r ing −D ∗name o f the

r ing submodule∗ −t ∗name o f the t e s t ∗

So far, for every unit, a constrained test has been developed that is able to
correctly stimulate all the assertions. However, we did not fill the coverage and
scoreboard modules: even in this UVM we used just the checkers to control that
the DUT was working properly. This is because we gave much more importance
to the High-Level VPU testing and also because this dedicated approach may be
optimal only on the final stages of the Architecture design, when small directed
tests have to be performed in case the testing the VPU did not complete all the
coverage on the component.

Test Plan

A part from the directed tests on the single Submodules, we decided to implement
hand-written assembly code to stimulate the whole Ring within the VPU in order
to have directed tests to check the basic functionalities of the Ring. This has been
actuated with the implementation of 11 binaries addressing corner cases for the
different types of operations that the ring performs. The tests were the following:

• vrgather (vd[i] = vs2[i]>VL_MAX ? 0 : vs1[vs2[i]]): for the gather
instruction all the corner cases are obtained by modifying the content of vs2.

1. vd[i]=vs1[VLMAX-i]; to reverse a whole vector.
2. if(i%2) vs2[i]=i; else vs2[i]>VL_MAX; to alternate zeroing (if (

i%2) vd[i] = vs1[i]; else vd[i]=0;).
3. if(i%2) vd[i]=vs1[i+1]; else vd[i]=vs1[i-1]; with SEW 64, to al-

ternate the element among the Lanes. In this case, element 0 will go to
element 1 and viceversa, 2 to 3 and 3 to 2, and so on alternating the source
and destination Lane.

4. if(i%2) vd[i]=vs1[i+1]; else vd[i]=vs1[i-1]; with SEW 32. In
this case, vs2 is equal to the case before, to alternate the elements among
the subbanks. Therefore, no element will change Lanes from the departure
to the arrival.

5. vs2[i]>VLMAX to have zeroing on all elements.
6. vs2[i]=3 to have the same element distributed to the whole destination

vector.

46

3.2 – Verification Plan

Environment

Test

top

ring_nodeInterface

Sequencer Driver

if (UVM__ACTIVE)

Input Monitor

Output MonitorCoverage

Scoreboard

Agent

ring_ifInterface

Sequencer Driver

if (UVM__ACTIVE)

Input Monitor

Output MonitorCoverage

Scoreboard

Agent

ring_packerInterface

Sequencer Driver

if (UVM__ACTIVE)

Input Monitor

Output MonitorCoverage

Scoreboard

Agent

ring_
unpackerInterface

Sequencer Driver

if (UVM__ACTIVE)

Input Monitor

Output MonitorCoverage

Scoreboard

Agent

ring_logicInterface

Sequencer Driver

if (UVM__ACTIVE)

Input Monitor

Output MonitorCoverage

Scoreboard

Agent

Figure 3.9. Dedicated UVM Structure

47

3 – Methods

• slide

1. vslideup vd,vs1,VLMAX in this case the result will be vd[VLMAX]=vs1[0]
while the other elements will not be valid.

2. vslidedown vd,vs1,VLMAX in this case the result will be vd[0]=vs1[VLMAX]
while the other elements will not be valid.

3. vslidedown vd,vs1,5 with SEW=8 it is a stressing case for the Ring and
stress much the packer and unpacker.

• reduction a standard reduction with the max operator is vredmax.vs vd,
vs2, vs1, vm which means vd[0] = max(vs1[0] , vs2[*]) given * every active
element.

1. vs2 with values in ascendent order.
2. vs2 with valus in ascendent order as they were unsigned, but the reduction

is signed.

All those tests, which are rapid tests with few instructions have been integrated in
the sanity check tests collection and are performed every night as regression tests.
Anyway, it was very interesting to go in depth and see the whole instruction’s
flow from Avispado to the ring and it required a clear view of the VPU, the VRF
management and its organization.

3.2.3 Static Functional Verification
Formal Verification is the last method we applied for the Verification of the Ring

and it turned out to be a extremely powerful tool for the Ring components. As
said in Chapter 1, the main advantages of Formal Verification is that it does not
require to think of corner cases nor a complex structure, indeed, it just needs the
DUT and the checker module. On the other hand, it is higly resource consuming
given the exponential nature of the problem.

This method was applied in the early stages of the work and turned out to be
very useful for simple components as the node, the packer and unpacker. In those
cases, it spotted many missing assumptions. Indeed, when an assertion failed it was
often because of a missing assumption that was immediately added. On the other
hand, it turned out to be not so powerful when coming to the ring_logic module,
which is the most complex studied here. This is because, the scoreboard is written
in tasks and every time the tool sees a task, it treats the module as a black-box.
Therefore the only assertions that could have been tested where the ones on the
communication signals and handshakes.

48

3.2 – Verification Plan

As said in Section 1.2, the Formal approach is not the perfect fit for the current
developing stage of the project: it is optimal for the first bug-hunting phase and
for the last assurance phase. However, it turned out to be more useful in checking
the assertions and the assumptions: we used it in the first phase of the work and
it allowed to find several missing assumptions and writing down the specifications,
thanks obviously to a confront with the Design Team. In the last part of the work,
it did not find any bug: indeed the only bugs found, as we will see in the next
Chapter, were due Assumptions failing, which it is not possible to happen in the
Formal tools (for they do not violate Assumptions), and errors on the Assertions
based on the tasks.

Nevertheless, we have created a ready-to-use Formal Structure that will be used
before the tape-out on the submodules, to check their basis functionalities and that
can be launched with a simple script command:

python3 compile_and_verify.py -u ring -D *name of the submodule*.

In this Chapter, the implemented Verification Plan has been described while in
the next one we are going to show the results that it has achieved, highlighting
some of the bug founds, the material created and the final consideration on the
work.

49

50

Chapter 4

Contributions and
Discussion

In this Chapter we are going to show the main contributions made by the work
presented and discuss them. Two main contributions can be identified by this
Assertion-based Verification: the found bugs and the material created. In the first
Section we are going to present the Reported Bugs and comment them, while in
the second Section we are going to report the Material Created. Finally, there will
be the Discussion Section.

4.1 Reported Bugs
At the very beginning of this work, the Ring Modules were almost stable mod-

ules: this means that they encountered only minor changes in the interfaces and
all the needed functionalities were already featured. Moreover, the studying of the
modules, of the VPU and of UVM took a great portion of time, along with the Ver-
ification Plan development. Nevertheless, we were able to find different functional
bugs which can be categorized in two types:

• Bugs on Assertions: bugs on assertions are bugs existing due to a error in
the submodule under test. This means that given the same input, the checker
and the DUT return a different output value.

• Bugs onAssumptions: bugs on assumptions are bugs existing due to an error
in the module driving the DUT. In this case, the input is not allowed to be as
it is and causes the DUT to fail.

In this Section we are going to show some of the found bugs, of both types. These
bugs were all found during the symulation tests of the whole VPU and the presence
of the checkers actually eased and speeded up the targeting of the bugs.

51

4 – Contributions and Discussion

4.1.1 Bugs on Assumptions
Naturally, this kind of bugs can be found only in the simulation of the whole

VPU since the dedicated UVM is written to properly drive the DUT and naturally
this is a great advantage in the Verification flow. An example of this happening
is the following: the ring_data_unpacker, as reported in Chapter 3, is issued with
an operation with the signal new_instr_i along with elements_i that tells of
how many elements will have been sent in output at the end of the operation.
So, as the ring_data_unpacker receives 64 bits at a time, every time it receives
some valid data (req_i = 1), at most 64/SEW valid elements are processed and
will eventually exit from the unpacker. This behaviour means that the number
reported from elements_i has to be greater or equal than the number of req_i
·64/SEW (not exactly equal because finish_i may arrive without caring that
all the requested elements have actually been unpacked). This means that this
property can be assumed:

1 property p_elements_i_req_i ;
2 int elements ;
3 @(posedge clk_i)
4 new_instr_i ##0 (1, elements = elements_i /(2**(3 - sew_i)) + 1) |->
5 first_match ((1, elements = elements - (req_i && enable_o)) [*0:$]

##0 finish_i) |->
6 elements >= 0;
7 endproperty : p_elements_i_req_i

What happened is that the unpacker received elements_i = 2 and then five
req_i, as showed in Figure 4.1. Having this assumption failing allowed the Design

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

clk_i

new_instr_i

elements_i 2

finish_i

req_i

data_i [63:0] 0 A B C D E 0

grant_o

sew_i [1:0] X 3 X

data_o [63:0] 0 A B C D E 0

req_o

enable_o

ready_o

assumption fails

error error error

0

1 2 3 4 5

a b c

Figure 4.1. Ring Data Unpacker with error

Team to trace back the error directly on the Source Buffer. This error appeared for
the execution of a masked reduction: in this case the reduction wrapper did not up-
date the internal register containing the mask, when the source_buffer to whom it

52

4.1 – Reported Bugs

has to send the data, was not available to read them (with source_buffer_ready_q
= 0).

Most importantly, this bug was found in a test that was not failing on a Ring
operation. This kind of bugs are called silent bugs: or the scoreboard of Spike was
giving the same results of the VPU and the tests were executing correctly, or failing
during a later executed instruction, because the bug leaves the VPU in an incorrect
state. In this case this simple assumption was able to spot a silent error that would
have come up only later and would have been much more difficult to identify, since
the source of the error is very distant from its effect.

In cases like this the power of Assertion-based Functional Verification is clear
and bright for everyone. Also, this highlights how Verification is everything but a
trivial task: even when good specs are available, performing a double check of the
DUT against different reference architectures is an optimal approach to find more
bugs that would not be found otherwise.

4.1.2 Bugs on Assertions
The developed checkers found two major bugs on the kill mechanism for the Data

Ring Logic when performing a gather and here we are going to describe them. Ba-
sically, the kill_i signal is sent by Avispado when the inflight instructions have
to be killed and works as a reset of the VPU. The correct working mechanism
of the gather in the data_ring_logic is described in Figure 4.2. The start_i,
rgather_op_i and enable_i signals tell us that a gather operation has come
to the Ring Logic. Then, the destination (rgather_lane_i, rgather_bank_i,
rgather_sub_bank_i) is sent along with the send_i signal. At this point, the
Data Ring Logic puts the data in output data_o and signals it with the signal
req_o.

As said in Chapter 3, we can observe two kind of assertions, and therefore two
kinds of errors:

• errors in the handshake,

• mismatches with the scoreboard.

and we experienced both of them for the Ring Logic. The assertion of the first type
that fails is the following:

1 // 1.2.3 vp
2 property p_index_send_req ;
3 int num_send ;
4 @(posedge clk_i)

53

4 – Contributions and Discussion

5 ($rose(rgather_op_i), num_send = 0) |->
6 first_match ((1, num_send = num_send + send_i - req_o) [*0:$] ##0

$fell(rgather_op_i)) |->
7 num_send == 0;
8 endproperty : p_index_send_req

basically, it asserts that, while r_gather_op_i=1, the number of req_o is equal to
the number of send_i. This simply means that no data corruption has occurred:
indeed, if the number of received element is different to the number of sent elements,
it means that the Ring is or losing or creating information and neither of them is
good.

clk_i

offset_i[63:0]

enable_i

start_i

aux_slide_i

accum_en_i

widening_i

r_gatherop_i

rgather_lane_dst_i[2:0] 0 2 5 5 6 2 3 4

rgather_bank_dst_i[2:0] 2 3 0 0 0 1 2 1

rgather_sub_bank_dst_i[2:0] 1 0 7 7 2 0 0 2

type_i

send_i

req_o

finish_i

free_i

fetch_o

ready_o

empty_o

sew_i 0

vl_lane_i 4

vlength_i 64

data_o[22](validity)

data_o[21](zeroing)

data_o[20:18](sender_lane) 0 0 0 0 0 0 0 0

data_o[17:15](sender_bank) 0 0 0 0 0 0 0 0

data_o[14:12](sender_sub_bank) 0 1 2 3 4 5 6 7

data_o[11:9](dest_lane) 0 2 5 5 6 2 3 4

data_o[8:6](dest_line) 0 0 0 0 0 0 1 1

data_o[5:3](dest_bank) 2 3 0 0 0 1 2 1

data_o[2:0](dest_sub_bank) 1 0 7 7 2 0 0 2

Figure 4.2. Data Ring Logic Gather

The assertions failing relative to the second type are the following two:
1 // 1.0.12 vp
2 property p_data_o_bank_in ;
3 @(posedge clk_i)
4 req_o && data_o [DATA_OUT_WIDTH -1] |->
5 data_o [17:15] == current_bank_int ;
6 endproperty : p_data_o_bank_in
7

8 // 1.0.13 vp

54

4.1 – Reported Bugs

9 property p_data_o_sub_bank_in ;
10 @(posedge clk_i)
11 req_o && data_o [DATA_OUT_WIDTH -1] |->
12 data_o [14:12] == current_sub_bank_int ;
13 endproperty : p_data_o_sub_bank_in

These 2 assertions check that the computed source bank and sub_bank are the
same for our scoreboard and for the DUT. As showed in Figure 4.2, the Data Ring
Logic sends the data starting from element number 0 to element V L_MAX, and
then it increments for each send_i that arrives. So, the source addresses have to
be correct according to the current element_id.

The 3 assertions presented above where failing basically due to the same reason:
a bad handling of the kill_i signal. Basically, after the kill signal, the reset of
the internal counters due to start_i was not executed properly. As a consequence
the Data Ring Logic started sending the elements not from element_id = 0 but
=1 and the number of req_i and send_i was not equal, as depicted in Figure 4.3,
causing the simulation to time-out.

clk_i

offset_i[63:0]

kill_i

enable_i

start_i

r_gatherop_i

rgather_lane_dst_i[2:0] 0 2 5 5 6 2 3 4

rgather_bank_dst_i[2:0] 2 3 0 0 0 1 2 1

rgather_sub_bank_dst_i[2:0] 1 0 7 7 2 0 0 2

send_i

req_o

finish_i

sew_i 2

vl_lane_i 4

vlength_i 64

data_o[22](validity)

data_o[21](zeroing)

data_o[20:18](sender_lane) 0 0 0 0 0 0 0 1

data_o[17:15](sender_bank) 0 1 1 2 2 3 3 4

data_o[14:12](sender_sub_bank) 1 0 1 0 1 0 1 0

data_o[11:9](dest_lane) 0 2 5 5 6 2 3 4

data_o[8:6](dest_line) 0 0 0 0 0 0 1 1

data_o[5:3](dest_bank) 2 3 0 0 0 1 2 1

data_o[2:0](dest_sub_bank) 1 0 7 7 2 0 0 2

p_index_send_req

p_data_o_bank_in

p_data_o_sub_bank_in

0

1 2 3 4 5 6 7

8 9

x

k

h i j

a b c d e f g

Figure 4.3. Data Ring Logic Gather with error

55

4 – Contributions and Discussion

Even in this case, it was a silent bug: the simulation report of the VPU was
correctly saying that the execution stopped due to a time-out error during a load
operation. In fact, the time-out was due to the rgather operation performed right
before than the Load: certainly the presence of the checker played a key role in
finding this bug in a straightforward way.

The first 4 months of work were dedicated to the studying of the checkers, the
UVM the VPU and to the implementation of the whole Verification Plan described
in the previous chapter. Eventually, in the last two months, among the 3000 tests
run, 4 major bugs, out of the total 11 bugs concerning the Ring, were found thanks
to the checkers. This means that the 36% of bugs that were found since when the
Verification Plan’s structure was functioning, were found by the checkers. Figure
4.4 illustrates the sources of the remaining 64% of bugs: 18% of them were reported
due to a Synthesis error, which means errors due to floating wires and oversized
signals, the other 46% was spotted without the contribution of the assertions: they
were spotted from the Design Team by looking at failing simulation and tracing
back the error to the Ring from the waveforms.

Assertions

36%

High-Level 46%

Synthesis

18%

1
Figure 4.4. Percentage Found Errors

56

4.2 – Material Created

This percentage is very significative: naturally, it does not mean that these bugs
would have not been found eventually otherwise, but it indicates the power of this
approach and the actual speed-up we had thanks to the checkers. This percentage
is in line with many studies that have been carried out to support this thesis, for
example, the first paper done in this direction claimed [15] that 34% of the found
bugs in the checking of the DECchip 21164 Alpha microprocessor, were found by
assertion. Also, [23] describes how the assertion-based approach can successfully
address the Functional Verification of a chip-multi-threaded microprocessor and
reports that in that project it achieved a reduction of the debug time by more than
50%.

Many of the assertions could have been developed also from the Design team.
Indeed, the developed assertions are low-level assertions that check the base func-
tionalities of the DUT and can be easily developed by the designer within the DUT,
and may result as practical as the ones in the checkers. This is especially valid for
the assumptions, which are supposed to be crucial for the Designer. As a mat-
ter of fact, the connection with the Design Team was intense and higly profitable.
However, the Design Team was missing the time and chance to do so, therefore,
this work was carried out in order to give a proper structure and organization and
to create a applicable Verification Plan for the Ring modules that would not have
been made otherwise.

4.2 Material Created

Apart from the found bugs and the advantages showed in the previous Section,
the presented work has produced a considerable amount of material and experience
that will be able to turn out useful for the Verification Team.

First of all, it provided the creation of the 17 pages of missing technical specifica-
tions for the Ring Modules. The specification produced are low-level specifications
that freeze the functionalities of the Ring Modules to the moment they were wrote
down. Naturally, these modules can change and have actually changed throughout
the last 6 months. Though, now it is possible to say that these modules are stable
and only minor changes to improve the performances may occur, as a consequence,
the specifications result to be accurate and a solid starting point even in the case
of changes. This part of the work can be addressed as a fundamental step, in-
deed, just the process of thinking of components and writing down the functional
specifications is doing Verification itself. Also, we provided the ‘checker’ modules,
containing a total of 98 assertions and assumptions and the implementation of the
directed binaries for the whole VPU.

57

4 – Contributions and Discussion

Secondly, this project carried out the first consistent work on Formal Verification
in the Verification Team, along with the basic documentation and scripting needed
to ease further attempts (especially before the tape-out that is planned in the next
months). As said in 3, Formal Verification does not need any complex structure,
still we developed the needed basic documentation. Also, we implemented the bind
method to insert the checkers in the tests of the whole VPU and to perform the
Formal Verification: naturally, as no low-level Verification was made until that
moment, this method was never used in the whole project until then.

Lastly, the creation of a dedicated, complete and re-usable UVM for the Ring
and for each module in it. The hope is that it will come in useful in the final steps
of the Verification process: so far the coverage-driven process is only at VPU-level
and no low-level coverage exists. Hopefully, this work will be done in the next phase
of the Verification and the UVM will be needed to reach 100% of coverage.

4.3 Discussions

The work carried out brought many advantages on the Verification for the Ring
Modules and, most importantly, it highlighted the utility of Assertion-based Ver-
ification that was before missing due to lack of time, people and specifications on
the submodules. Certainly, developing from scratch a whole VPU targeting HPC
applications and generating a complete Verification structure is a complex task that
requires much time. However, this approach showed much potential and showed
its usefullness to perform a high-quality Verification. Indeed, before this work, the
only possible approach to individuate bugs was the testing of the VPU against
Spike and tracing back the error from the waveforms.

Naturally, testing the VPU against Spike is the first capital step required to ver-
ify the VPU. Also, since the specifications of the VPU are provided by RISC-V,
the Verification Team has a perfect reference to develop an error-free scoreboard.
However, this approach is not optimal from the Verification point of view: having
only a VPU-level testing makes hard the debugging for the Design Team. It is
possible to find an optimal point between VPU-level testing and low-level testing:
apparently, the complexity arises for the Verification Team when looking on the
single submodules, in fact, the whole Verification process can significatively take
advantage from it and became more and more effective and efficient. Naturally,
the low-level approach requires much effort and time and, at some point, the work
done to develop the submodules checkers and dedicated UVM may be wasted time.
Conceptually, we can plot the Verification efficiency against the low-level approach
as in figure 4.5. Here, the word efficiency indicates the potential speed-up in finding

58

4.3 – Discussions

bugs thanks to the low-level approach. Without low-level approach the Verifica-
tion is sub-optimal since the observability and controllability are not sufficient, on
the other hand, it is possible to reach over-controllability and over-observability,
saturating the efficiency, reduntantly verifying modules that are already error-free.

VPU-Level Over-observation
0

1

Low-Level Verification

E
ffi

ci
en

cy
an

d
ob

se
rv

ab
il

it
y

Figure 4.5. Verification Efficiency

Finally, it has been learned that the only activity of thinking about the DUT
is the first step of the Verification and maybe is the most important one: when
writing an assertion, it is crucial to have understood the DUT and if a specification
is missing or if there are conflicting behaviours, those can be spotted even without
Dynamic or Static Verification.

59

60

Chapter 5

Conclusions

5.1 Conclusions
This work focused on Assertion-Based Verification on the Ring Submodules of the

VPU. The first step consisted in developing a Verification Plan aiming to extensively
verify each one of the Ring components and that has led to the creation of detailed
specifications, creation of a dedicated UVM and dedicated binaries.

The studying of the modules started with the studying of Vector Processing and
the RISC-V Vector Extension Instruction Set. Then, we focused on the VPU, its
organization and on the operation stimulating the targeted submodules and finally
we fixed our attention exclusively on the Ring modules. This top-down approach
turned out to be fundamental to properly verify submodules in a complex system.

At the beginning, the Assertion-based Verification was quite a mistery to me and
I also proceeded attempt after attempt but eventually the results were in line with
the expectations, or even better. Indeed, we were able to find different bugs on the
Ring Modules, and produce experience and material, that will hopefully turn out
useful for the Verification Team.

The Assertion-Based approach has emerged throughout the work as a key factor
to obtain a reliable Verification of a complex system such as the VPU: since the
moment when the Verification plan was functioning, it was able to find the 36% of
bugs concerning the Ring Modules.

As a matter of fact, this work confirms the importance of Assertions in improving
observability and controllability of complex DUTs and it is a necessary method to
cope with complex systems that have to be verified not only at System-level but at
the same level where the code is "hand-written" by the Designers.

61

5 – Conclusions

5.2 Future Directions
The Verification Team for the VPU was born just a year ago and it has made a

huge work to create a solid Verification infrastructure from scratch.

Stemming from this work, three main tasks can be addressed as the next ones:

1. Increment the effort on the Formal Verification of the Submodules.

2. Extend the bind method to insert the coverage on the submodules, to check if
the VPU-Level testing is actually covering all the corner cases.

3. Extend the Assertion-based Verification to all the necessary VPU’s modules.

62

Appendix A

Checkers

A.1 ring_if

1 import EPI_pkg ::*;
2
3 bind ring_if ring_if_checker #(
4 . LANES (LANES),
5 . WIDTH (WIDTH),
6 .DATA(DATA)) bind_ring_if_checker (.*);
7
8 module ring_if_checker
9 #(

10 parameter LANES = 8,
11 parameter WIDTH = 672 ,
12 parameter DATA = 84
13)(
14
15 input clk_i ,
16 input rsn_i ,
17 input stall_i ,
18 input req_i ,
19 input accum_en_i ,
20 input [3:0] req_cnt_i , // THIS IS USED TO TELL HOW MANY VALID

ELEMENTS THE INTERFACE HAS RECEIVED (COUNTS THE PROCESSED ELÆŔMENTS)
21 input [WIDTH -1:0] data_i , // From quick calculations : data_enable

(1- bit), lane_id (3- bit), line_id (5- bit), bank_id (3- bit), data (64 - bit)
22 input [VLEN_WIDTH -1:0] length_i , // CHANGED TO HOLD THE MAXIMUM NUMBER OF

ELEMENTS (2048?) -> MIGHT BE CHANGED TO 12 BITS
23 input free_o ,
24 input [LANES -1:0] we_o ,
25 input [WIDTH -1:0] data_o , // Data for each lane (64 - bit per lane)

-> To be added : bits for the line offset , data enable ,
26 input finish_o , // bank_id for the position in the wb

buffer (maybe internally solved)
27 input kill_i ,
28 input enable_i ,
29 input wb_ack_i
30);
31
32 // could be useful
33 wire data_valid_o [7:0];
34 logic data_v_o ;

63

A – Checkers

35
36 assign data_valid_o = { data_o [DATA -1], data_o [2* DATA -1], data_o [3* DATA -1], data_o [

4* DATA -1], data_o [5* DATA -1], data_o [6* DATA -1], data_o [7* DATA -1], data_o [8* DATA
-1]};

37
38 assign data_v_o = data_o [DATA -1] || data_o [2* DATA -1] || data_o [3* DATA -1] || data_o

[4* DATA -1] || data_o [5* DATA -1] || data_o [6* DATA -1] || data_o [7* DATA -1] ||
data_o [8* DATA -1];

39
40
41 // //
42 // //////////////////// processes ///////////////////////
43 // //
44
45 int counter ;
46
47 always @(posedge clk_i)
48 begin
49 if ((rsn_i == 1’b0) || (kill_i == 1’b1)) begin
50 counter = 0;
51 end
52
53 else if (enable_i == 1’b1) begin
54 counter = counter + 1;
55 end
56
57 else if (finish_o == 1’b1) begin
58 counter = counter - 1;
59 end
60
61 else begin
62 counter = counter ;
63 end
64
65 end
66
67
68 // //
69 // /////////////////// properties ///////////////////////
70 // //
71
72
73 // 2.01 vp
74 property p_rsn_i ;
75 @(posedge clk_i)
76 ! rsn_i |-> data_o == ’0 && we_o == ’0 && free_o ##1 data_o == ’0 && we_o

== ’0 && free_o ;
77 endproperty : p_rsn_i
78
79 // 2.02 vp
80 property p_rsn_i_data_i ;
81 @(posedge clk_i)
82 ! rsn_i |-> ! kill_i && ! stall_i && data_i == ’0 && req_cnt_i == ’0 && !

req_i && ! enable_i && length_i == ’0 && ! accum_en_i ;
83 endproperty : p_rsn_i_data_i
84
85 // 2.03 vp
86 property p_free_o_high ;
87 @(posedge clk_i)
88 req_i |-> ##[1:$] free_o ;
89 endproperty : p_free_o_high
90
91 // 2.04 vp

64

A.1 – ring_if

92 property p_free_o_low ;
93 @(posedge clk_i)
94 req_i |-> ! free_o ;
95 endproperty : p_free_o_low
96
97 // 2.05 vp
98 property p_free_o_stable ;
99 @(posedge clk_i)

100 free_o ##1 ! req_i |-> free_o ;
101 endproperty : p_free_o_stable
102
103 // 2.06 vp
104 property p_free_o_timeout ;
105 int i = 9;
106 @(posedge clk_i)
107 (req_i , i = 9) |-> first_match ((1 , i = i - ! stall_i) [*0:$] ##0

free_o) |-> i >= 0;
108 endproperty : p_free_o_timeout
109
110 // 2.07 vp
111 property p_finish_o_enable_i ;
112 @(posedge clk_i)
113 enable_i |-> enable_i [=1] ##1 finish_o ##1 ! finish_o ;
114 endproperty : p_finish_o_enable_i
115
116 // 2.08 vp
117 property p_stall_i ;
118 logic [WIDTH -1:0] past_data_o ;
119 @(posedge clk_i)
120 (stall_i , past_data_o = data_o) |-> !we_o ##1 data_o == past_data_o ;
121 endproperty : p_stall_i
122
123 // 2.09 vp
124 property p_kill_i ;
125 @(posedge clk_i)
126 kill_i |-> ##1 data_o == ’0 && we_o == ’0 && free_o ;
127 endproperty : p_kill_i
128
129 // 2.10 vp
130 property p_data_i_known ;
131 @(posedge clk_i)
132 req_i |->
133 !((data_i [DATA -1] && $isunknown (data_i [DATA -1:0])) || (data_i [2*

DATA -1] && $isunknown (data_i [2* DATA -1:1* DATA])) ||
134 (data_i [3* DATA -1] && $isunknown (data_o [3* DATA -1:2* DATA])) || (

data_i [4* DATA -1] && $isunknown (data_i [4* DATA -1:3* DATA])) ||
135 (data_i [5* DATA -1] && $isunknown (data_i [5* DATA -1:4* DATA])) || (

data_i [6* DATA -1] && $isunknown (data_i [6* DATA -1:5* DATA])) ||
136 (data_i [7* DATA -1] && $isunknown (data_i [7* DATA -1:6* DATA])) || (

data_i [8* DATA -1] && $isunknown (data_i [8* DATA -1:7* DATA])));
137 endproperty : p_data_i_known
138
139 // 2.11 vp
140 property p_data_o_known ;
141 @(posedge clk_i)
142 data_v_o |->
143 !((data_o [DATA -1] && $isunknown (data_o [DATA -1:0])) || (data_o [2*

DATA -1] && $isunknown (data_o [2* DATA -1:1* DATA])) ||
144 (data_o [3* DATA -1] && $isunknown (data_o [3* DATA -1:2* DATA])) || (

data_o [4* DATA -1] && $isunknown (data_o [4* DATA -1:3* DATA])) ||
145 (data_o [5* DATA -1] && $isunknown (data_o [5* DATA -1:4* DATA])) || (

data_o [6* DATA -1] && $isunknown (data_o [6* DATA -1:5* DATA])) ||

65

A – Checkers

146 (data_o [7* DATA -1] && $isunknown (data_o [7* DATA -1:6* DATA])) || (
data_o [8* DATA -1] && $isunknown (data_o [8* DATA -1:7* DATA])));

147 endproperty : p_data_o_known
148
149 // 2.12 vp
150 property p_req_i_on_free_o ;
151 @(posedge clk_i)
152 ! free_o |=> ! $rose (req_i);
153 endproperty : p_req_i_on_free_o
154
155 // 2.13 vp
156 property p_req_i_one_cycle ;
157 @(posedge clk_i)
158 $rose (req_i) |-> ##1 ! req_i ;
159 endproperty : p_req_i_one_cycle
160
161 // 2.14 vp
162 property p_kill_i_data_i ;
163 @(posedge clk_i)
164 kill_i |-> ! req_i && ! enable_i ;
165 endproperty : p_kill_i_data_i
166
167 // 2.15 vp
168 property p_enable_i_no_accum ;
169 @(posedge clk_i)
170 $rose (enable_i) |-> first_match (1 [*1:$] ##0 (finish_o || ! $stable (

accum_en_i))) |-> ! accum_en_i ;
171 endproperty : p_enable_i_no_accum
172
173 // 2.16 vp
174 property p_accum_no_enable_i ;
175 @(posedge clk_i)
176 accum_en_i |-> ! enable_i ;
177 endproperty : p_accum_no_enable_i
178
179 // 2.17 vp
180 property p_accum_no_finish_o ;
181 @(posedge clk_i)
182 accum_en_i |-> ! finish_o ;
183 endproperty : p_accum_no_finish_o
184
185 // 2.18 vp
186 property p_data_i_valid_req ;
187 @(posedge clk_i)
188 (data_i [DATA -1] || data_i [2* DATA -1] || data_i [3* DATA -1] || data_i [4* DATA

-1] ||
189 data_i [5* DATA -1] || data_i [6* DATA -1] || data_i [7* DATA -1] || data_i [8* DATA

-1]) |-> req_i ;
190 endproperty : p_data_i_valid_req
191
192 // 2.19 vp
193 property p_enable_i ;
194 @(posedge clk_i)
195 enable_i |-> ##1 ! enable_i ;
196 endproperty : p_enable_i
197
198 // 2.20 vp
199 property p_enable_i_finish_o ;
200 @(posedge clk_i)
201 $fell (enable_i) |=> first_match (1 [*0:$] ##0 (enable_i || finish_o)) ##0 (

finish_o && ! enable_i);
202 endproperty : p_enable_i_finish_o
203

66

A.1 – ring_if

204 // 2.21 vp
205 property p_req_i_beh ;
206 @(posedge clk_i)
207 req_i |-> (counter == 1) or accum_en_i ;
208 endproperty : p_req_i_beh
209
210 // 2.22 vp
211 property p_accum_req_i ;
212 @(posedge clk_i)
213 $rose (accum_en_i) |-> accum_en_i && ! req_i ;
214 endproperty : p_accum_req_i
215
216 // 2.23 vp
217 property p_rsn_i_beh ;
218 @(posedge clk_i)
219 $fell (rsn_i) |-> ##1 ! rsn_i ;
220 endproperty : p_rsn_i_beh
221
222
223 // ///
224 // ///////////////// assert & assume /////////////////////
225 // ///
226
227
228 // 2.01 vp
229 a_rsn_i : assert property (p_rsn_i) else $error ("bad output for the

rsn state ");
230
231 // 2.02 vp
232 a_rsn_i_data_i : assume property (p_rsn_i_data_i) else $error ("bad input

for the rsn state ");
233
234 // 2.03 vp
235 a_free_o_high : assert property (disable iff (! rsn_i || kill_i)

p_free_o_high) else $error (" free_o doesn ’t return to 1 after (at most) 8
clock cycle from req_i = ’1’");

236
237 // 2.04 vp
238 a_free_o_low : assert property (disable iff (! rsn_i || kill_i)

p_free_o_low) else $error (" free_o doesn ’t go to 0 when req_i is 1 ");
239
240 // 2.05 vp
241 a_free_o_stable : assert property (disable iff (! rsn_i || kill_i)

p_free_o_stable) else $error (" free_o goes to 0 with no req_i asserted ");
242
243 // 2.06 vp
244 a_free_o_timeout : assert property (disable iff (! rsn_i || kill_i)

p_free_o_timeout) else $error (" free_o timeout ");
245
246 // 2.07 vp
247 a_finish_o_enable_i : assert property (disable iff (! rsn_i || kill_i)

p_finish_o_enable_i) else $error (" finish_o goes to 1 with no enable_i
asserted ");

248
249 // 2.08 vp
250 a_stall_i : assert property (disable iff (! rsn_i || kill_i) p_stall_i)

else $error ("ban handle for the stall_i ");
251
252 // 2.09 vp
253 a_kill_i : assert property (disable iff (! rsn_i) p_kill_i) else

$error ("ban handle for the kill_i ");
254
255 // 2.10 vp

67

A – Checkers

256 a_data_i_known : assume property (disable iff (! rsn_i || kill_i)
p_data_i_known) else $error (" data_i unknown when data_i valid asserted ");

257
258 // 2.11 vp
259 a_data_o_known : assert property (disable iff (! rsn_i || kill_i)

p_data_o_known) else $error (" data_o unknown when data_o valid asserted ");
260
261 // 2.12 vp
262 a_req_i_on_free_o : assume property (disable iff (! rsn_i || kill_i)

p_req_i_on_free_o) else $error (" req_i asserted without free_o = ’1’");
263
264 // 2.13 vp
265 a_req_i_one_cycle : assume property (disable iff (! rsn_i || kill_i)

p_req_i_one_cycle) else $error (" req_i asserted for more than one cycle ");
266
267 // 2.14 vp
268 a_kill_i_data_i : assume property (disable iff (! rsn_i) p_kill_i_data_i)

else $error (" invalid inputs on kill_i ");
269
270 // 2.15 vp
271 a_enable_i_no_accum : assume property (disable iff (! rsn_i || kill_i)

p_enable_i_no_accum) else $error (" accum signal during and enable op");
272
273 // 2.16 vp
274 a_accum_no_enable_i : assume property (disable iff (! rsn_i || kill_i)

p_accum_no_enable_i) else $error (" accum signal during and enable ");
275
276 // 2.17 vp
277 a_accum_no_finish_o : assume property (disable iff (! rsn_i || kill_i)

p_accum_no_finish_o) else $error (" accum signal during and enable ");
278
279 // 2.18 vp
280 a_data_i_valid_req : assume property (disable iff (! rsn_i || kill_i)

p_data_i_valid_req) else $error ("no req_i with data valid ");
281
282 // 2.19 vp
283 a_enable_i : assume property (disable iff (! rsn_i || kill_i) p_enable_i

) else $error (" enable_i lasted more than 1 clock cycle ");
284
285 // 2.20 vp
286 a_enable_i_finish_o : assume property (disable iff (! rsn_i || kill_i)

p_enable_i_finish_o) else $error (" there were 2 enable_i without a finish_o ");
287
288 // 2.21 vp
289 a_req_i_beh : assume property (disable iff (! rsn_i || kill_i) p_req_i_beh

) else $error (" there was a req_i without enable or accum_en ");
290
291 // 2.22 vp
292 a_accum_req_i : assume property (disable iff (! rsn_i) p_accum_req_i) else

$error (" req_i in the same cycle accum_en_i rose");
293
294 // 2.23 vp
295 a_rsn_i_beh : assume property (p_rsn_i_beh) else $error (" rsn_i lasted

less than 1 clock cycle ");
296
297 endmodule : ring_if_checker // ring_interface

A.2 ring_node

1 import EPI_pkg ::*;
2

68

A.2 – ring_node

3 bind ring_node ring_node_checker #(
4 . LANES (LANES),
5 . WIDTH (WIDTH),
6 . LANE_ID (LANE_ID)) bind_ring_node_checker (.*);
7
8 module ring_node_checker
9 #(

10 parameter LANES = 8,
11 parameter WIDTH = 84,
12 parameter LANE_ID = 3’b000
13)(
14
15 input clk_i ,
16 input rsn_i ,
17 input stall_i ,
18 input kill_i ,
19 input start_i ,
20 input [WIDTH -1:0] data_lane_i ,
21 input [WIDTH -1:0] data_ring_i ,
22 input data_valid_o ,
23 input [WIDTH -1:0] data_ring_o ,
24 input we_o ,
25 input self_write_o
26);
27
28 wire [2:0] curr_lane ;
29 assign curr_lane = LANE_ID ;
30
31
32
33 // //
34 // /////////////////// properties ///////////////////////
35 // //
36
37
38
39
40 // 3.01 vp
41 property p_rsn_i_outputs ;
42 @(posedge clk_i)
43 ! rsn_i |-> ! data_valid_o && data_ring_o == ’0 ##1 ! data_valid_o &&

data_ring_o == ’0;
44 endproperty : p_rsn_i_outputs
45
46 // 3.02 vp
47 property p_self_write_o ;
48 @(posedge clk_i)
49 $rose (start_i) && data_lane_i [WIDTH -1] && (curr_lane == data_lane_i [WIDTH

-12:WIDTH -14]) && ! stall_i |->
50 (self_write_o && we_o) ;
51 endproperty : p_self_write_o
52
53 // 3.03 vp
54 property p_we_o ;
55 @(posedge clk_i)
56 data_ring_i [WIDTH -1] && (curr_lane == data_ring_i [WIDTH -12:WIDTH -14]) &&

! stall_i |-> we_o ;
57 endproperty : p_we_o
58
59 // 3.04 vp
60 property p_data_lane_propagation ();
61 logic [WIDTH -1:0] local_var ;
62 @(posedge clk_i)

69

A – Checkers

63 (start_i && !stall_i , local_var = data_lane_i) ##0 data_lane_i [WIDTH -1] && (
curr_lane != data_lane_i [WIDTH -12:WIDTH -14]) |-> !we_o && !
self_write_o ##1 (data_ring_o == local_var) && data_valid_o ;

64 endproperty : p_data_lane_propagation
65
66 // 3.05 vp
67 property p_data_ring_propagation ;
68 logic [WIDTH -1:0] local_var ;
69 @(posedge clk_i)
70 (data_ring_i [WIDTH -1] && !stall_i , local_var = data_ring_i) ##0 (curr_lane

!= data_ring_i [WIDTH -12:WIDTH -14])
71 |-> !we_o && ! self_write_o ##1 data_valid_o && data_ring_o == local_var ;
72 endproperty : p_data_ring_propagation
73
74 // 3.06 vp
75 property p_invalid_data ;
76 @(posedge clk_i)
77 ! data_ring_i [WIDTH -1] && ! data_lane_i [WIDTH -1] && ! stall_i |-> !we_o && !

self_write_o ##1 ! data_valid_o ;
78 endproperty : p_invalid_data
79
80 // 3.07 vp
81 property p_stall_i ; // data ring
82 logic [WIDTH -1:0] local_data_ring_o ;
83 logic local_data_valid_o ;
84
85 @(posedge clk_i)
86 (stall_i , local_data_ring_o = data_ring_o , local_data_valid_o =

data_valid_o) |->
87 !we_o && ! self_write_o |-> first_match (1 [*1:$] ##0 ! stall_i) |->

data_valid_o == local_data_valid_o && data_ring_o == local_data_ring_o
;

88 endproperty : p_stall_i
89
90 // 3.08 vp
91 property p_kill_i ;
92 @(posedge clk_i)
93 kill_i |-> ##1 ! data_valid_o && data_ring_o == ’0;
94 endproperty : p_kill_i
95
96 // 3.09 vp
97 property p_rsn_data_i ;
98 @(posedge clk_i)
99 ! rsn_i |-> ! stall_i && ! kill_i && ! start_i && ! data_lane_i [WIDTH -1] && !

data_ring_i [WIDTH -1];
100 endproperty : p_rsn_data_i
101
102 // 3.10 vp
103 property p_kill_data_i ;
104 @(posedge clk_i)
105 kill_i |-> ! stall_i && ! start_i && ! data_lane_i [WIDTH -1] && ! data_ring_i [

WIDTH -1];
106 endproperty : p_kill_data_i
107
108 // 3.11 vp
109 property p_start_data_lane_i ;
110 @(posedge clk_i)
111 start_i |-> ! data_ring_i [WIDTH -1];
112 endproperty : p_start_data_lane_i
113
114
115 // 3.12 vp
116 property p_rsn_i_beh ;

70

A.2 – ring_node

117 @(posedge clk_i)
118 $fell (rsn_i) |-> ##1 ! rsn_i ;
119 endproperty : p_rsn_i_beh
120
121 // ///
122 // ///////////////// assert & assume /////////////////////
123 // ///
124
125
126
127
128 // 3.01 vp
129 a_rsn_i_outputs : assert property (p_rsn_i_outputs) else $error ("

bad handle for the rsn signal ");
130
131 // 3.02 vp
132 a_self_write_o : assert property (disable iff (! rsn_i || kill_i)

p_self_write_o) else $error ("didn ’t self_write_o when supposed to");
133
134 // 3.03 vp
135 a_we_o : assert property (disable iff (! rsn_i || kill_i)

p_we_o) else $error ("no write enable when supposed ");
136
137 // 3.04 vp
138 a_data_lane_propagation : assert property (disable iff (! rsn_i || kill_i) (

p_data_lane_propagation or p_stall_i)) else $error (" after a start and a valid
data_lane_i , with the data for another lane , data_lane_i was not propagated

to the output the following clock cicle ");
139
140 // 3.05 vp
141 a_data_ring_propagation : assert property (disable iff (! rsn_i || kill_i) (

p_data_ring_propagation or p_stall_i)) else $error (" wrong data_ring_o when
valid data_ring_i the previous clock ");

142
143 // 3.06 vp
144 a_invalid_data : assert property (disable iff (! rsn_i || kill_i) (

p_invalid_data or p_stall_i)) else $error ("bad handle for invalid data");
145
146 // 3.07 vp
147 a_stall_i : assert property (disable iff (! rsn_i || kill_i)

p_stall_i) else $error ("bad handle for the stall signal ");
148
149 // 3.08 vp
150 a_kill_i : assert property (disable iff (! rsn_i) p_kill_i)

else $error ("bad handle for the kill signal ");
151
152 // 3.09 vp
153 a_rsn_data_i : assume property (p_rsn_data_i) else $error ("no

reset of inputs data when reset ");
154
155 // 3.10 vp
156 a_kill_data_i : assume property (disable iff (! rsn_i) p_kill_data_i

) else $error ("no reset of inputs data when kill");
157
158 // 3.11 vp
159 a_start_data_lane_i : assume property (disable iff (! rsn_i || kill_i)

p_start_data_lane_i) else $error ("no valid data lane on start ");
160
161 // 3.12 vp
162 a_rsn_i_beh : assume property (p_rsn_i_beh) else $error (" rsn_i

lasted less than 1 clock cycle ");
163
164 endmodule : ring_node_checker // ring_node

71

A – Checkers

A.3 ring_logic

1 import EPI_pkg ::*;
2
3 localparam FIFO_SIZE = 10;
4
5 bind ring_logic ring_logic_checker #(
6 . LANE_ID (LANE_ID),
7 . SLIDE_WIDTH (SLIDE_WIDTH),
8 . DATA_OUT_WIDTH (DATA_OUT_WIDTH),
9 . IS_INDEX_RING (IS_INDEX_RING),

10 . N_LANES (N_LANES),
11 . N_BANKS (N_BANKS),
12 .SIZE(SIZE),
13 . MAX_VLEN (MAX_VLEN)) bind_ring_logic_checker (.*);
14
15 module ring_logic_checker
16 #(
17 parameter LANE_ID = 3’d0 ,
18 parameter SLIDE_WIDTH = 64, // Scalar value from the core
19 parameter DATA_OUT_WIDTH = 20,
20 parameter IS_INDEX_RING = 0, // this is used to distinguish between the

data and index rings (may be updated in future versions)
21 parameter N_LANES = 8,
22 parameter N_BANKS = 5,
23 parameter SIZE = 10,
24 parameter MAX_VLEN = 256 // CHANGE THIS PARAMETER FOR OTHER LENGHTS (maybe

needed only for grouping ??)
25)(
26 input clk_i ,
27 input rsn_i ,
28 input [SLIDE_WIDTH -1:0] offset_i ,
29 input enable_i , // USED TO SAVE ALL THE SETTINGS AND AVOIDING THE STRANGE

THINGS WITH OP INFLIGHT AND SO ON
30 input start_i ,
31 input aux_slide_i ,
32 input widening_i , // USED FOR THE SPECIAL CASE OF SLIDE FOR WIDENING , IN

ORDER TO CORRECTLY CREATE THE SOURCES
33 input rgather_op_i ,
34 input [2:0] rgather_lane_dst_i ,
35 input [2:0] rgather_bank_dst_i ,
36 input [2:0] rgather_sub_bank_dst_i ,
37 input type_i , // USED TO CHECK WHETHER IS A SLIDE UP OR DOWN (IF 0 SLIDE

UP , IF 1 SLIDE DOWN)
38 input send_i ,
39 input finish_i ,
40 input free_i ,
41 input accum_en_i ,
42 input [DATA_OUT_WIDTH -1:0] data_o ,
43 input fetch_o ,
44 input req_o ,
45 input empty_o ,
46 input ready_o ,
47 input kill_i ,
48 input [VLEN_WIDTH -1:0] vlength_i , // TOTAL VECTOR LENGTH
49 input [VLEN_WIDTH -1:0] vl_lane_i , // ELEMENTS PER LANE
50 input [1:0] sew_i // STANDARD ELEMENT WIDTH
51);
52
53
54

72

A.3 – ring_logic

55 typedef struct {
56 int offset_fifo ;
57 bit free;
58 bit zeroing ;
59 } send_fifo_t ;
60
61 send_fifo_t send_fifo [FIFO_SIZE -1:0];
62 bit is_index_ring ;
63 int current_bank_int ;
64 int current_sub_bank_int ;
65 int sub_banks ;
66 bit op_inflight ;
67 bit op_started ;
68 bit slide_ud ;
69 int dest_bank_int ;
70 int dest_sub_bank_int ;
71 int dest_line_int ;
72 int dest_lane_int ;
73 int el_id_int ;
74 int signed offset_int ;
75 int unsigned el_id_dest ;
76 int sew_int ;
77 int i;
78 int rgather_lane_dst_int ;
79 int rgather_bank_dst_int ;
80 int rgather_sub_bank_dst_int ;
81 int data_zeroing ;
82
83 assign is_index_ring = IS_INDEX_RING ;
84
85 initial begin
86 current_sub_bank_int = 0;
87 current_bank_int = 0;
88 op_inflight = 0;
89 op_started = 0;
90 dest_bank_int = 0;
91 dest_sub_bank_int = 0;
92 dest_line_int = 0;
93 dest_lane_int = 0;
94 el_id_int = 0;
95 offset_int = 0;
96 el_id_dest = 0;
97 sew_int = 0;
98 data_zeroing = 0;
99 end

100
101 // FIFO ON SEND_I
102 always @(negedge clk_i or negedge rsn_i) begin
103 if (~ rsn_i) begin
104 foreach (send_fifo [i]) begin
105 send_fifo [i]. offset_fifo = ’0;
106 send_fifo [i].free = 1;
107 send_fifo [i]. zeroing = 0;
108 end
109 end
110 else if (kill_i) begin
111 foreach (send_fifo [i]) begin
112 send_fifo [i]. offset_fifo = ’0;
113 send_fifo [i].free = 1;
114 send_fifo [i]. zeroing = 0;
115 end
116 end
117 // fills the fifo searching for the first free space in the fifo

73

A – Checkers

118 else if (send_i) begin
119 for (i = 0; i < FIFO_SIZE ; i++) begin
120 if (send_fifo [i].free) begin
121 send_fifo [i]. offset_fifo = (offset_i > (

MAX_VLEN * sub_banks)) ? LANE_ID *
sub_banks : offset_i ;// offset_i [11:0]

- vlength_i : offset_i [11:0];
122 send_fifo [i].free = 0;
123 send_fifo [i]. zeroing = (offset_i > (

MAX_VLEN * sub_banks)) ? 1 : 0;
124 break ;
125 end
126 end
127
128
129 end
130
131 end
132
133
134
135
136 always @(posedge clk_i or negedge rsn_i) begin
137 if (~ rsn_i) begin
138 current_sub_bank_int = 0;
139 current_bank_int = 0;
140 op_inflight = 0;
141 op_started = 0;
142 dest_bank_int = 0;
143 dest_sub_bank_int = 0;
144 dest_line_int = 0;
145 dest_lane_int = 0;
146 end
147 else if (kill_i) begin
148 current_sub_bank_int = 0;
149 current_bank_int = 0;
150 op_inflight = 0;
151 op_started = 0;
152 dest_bank_int = 0;
153 dest_sub_bank_int = 0;
154 dest_line_int = 0;
155 dest_lane_int = 0;
156 end
157 else if (accum_en_i || rgather_op_i || widening_i) begin
158 op_inflight = 1;
159 op_started = 1;
160 if (widening_i & enable_i) begin
161 current_sub_bank_int = 0;
162 current_bank_int = 0;
163 dest_sub_bank_int = 0;
164 dest_line_int = 0;
165 dest_lane_int = (LANE_ID *2) % N_LANES ;
166 dest_bank_int = (LANE_ID *2) / N_LANES ;
167 end
168 if (accum_en_i & start_i) begin
169 current_sub_bank_int = 0;
170 current_bank_int = 0;
171 dest_sub_bank_int = 0;
172 dest_bank_int = 0;
173 dest_line_int = 0;
174 dest_lane_int = (LANE_ID + 1) % N_LANES ;
175 end
176 if(rgather_op_i && enable_i) begin

74

A.3 – ring_logic

177 current_sub_bank_int = 0;
178 current_bank_int = 0;
179 end
180 /* if(start_i) begin
181 current_sub_bank_int = 0;
182 current_bank_int = 0;
183 end */
184 end
185
186 else if (start_i) begin
187 op_inflight = 1;
188 op_started = 1;
189 dest_bank_int = (el_id_dest /(sub_banks * N_LANES))% N_BANKS ;
190 dest_sub_bank_int = el_id_dest % sub_banks ;
191 dest_line_int = el_id_dest /(sub_banks * N_LANES * N_BANKS);
192 dest_lane_int = (el_id_dest / sub_banks) % N_LANES ;
193 if(enable_i) begin
194 current_sub_bank_int = 0;
195 current_bank_int = 0;
196 end
197 end
198
199
200 if ((op_started && finish_i) || ! op_started) begin
201 op_inflight = 0;
202 if (! accum_en_i && ! rgather_op_i && ! widening_i) begin
203 current_sub_bank_int = 0;
204 current_bank_int = 0;
205 dest_bank_int = 0;
206 dest_sub_bank_int = 0;
207 dest_line_int = 0;
208 dest_lane_int = 0;
209 end
210 end
211 if (op_inflight) begin
212 if(req_o) begin
213 current_sub_bank_int = current_sub_bank_int + 1;
214 if(current_sub_bank_int == (sub_banks)) begin
215 current_bank_int = current_bank_int + 1;
216 current_bank_int = current_bank_int % N_BANKS ;
217 current_sub_bank_int = 0;
218 end
219
220 if (widening_i) begin
221 widening_op ();
222 end
223
224 else if (rgather_op_i) begin
225
226 end
227
228 else if (accum_en_i) begin
229 reduction_op ();
230 end
231 else begin
232 slide_op ();
233 end
234
235
236
237
238
239 end

75

A – Checkers

240 end
241 end
242
243
244
245 always @(negedge clk_i) begin
246 if(enable_i) begin
247 sub_banks = 2**(3 - sew_i);
248 slide_ud = ! type_i ;
249 el_id_int = LANE_ID * sub_banks ; // set to the first valid element

of the lane
250 offset_int = type_i ? (- offset_i) : offset_i ;
251 el_id_dest = el_id_int + offset_int ;
252 if (el_id_dest >= ’1) el_id_dest = vlength_i - (2**32 - el_id_dest

);
253 sew_int = sew_i ;
254 end
255
256 if(rgather_op_i && op_inflight) begin
257 if (! is_index_ring && start_i) rgather_op_data ();
258 if (is_index_ring && req_o) rgather_op_index ();
259
260 end
261 end
262
263 // //
264 // /////////////////// properties ///////////////////////
265 // //
266
267
268 // 1.0.1 vp
269 property p_rsn_i ;
270 @(posedge clk_i)
271 ! rsn_i |-> data_o == ’0 && ! ready_o && ! fetch_o && ! req_o && empty_o ##1

data_o == ’0 && ! ready_o && ! fetch_o && ! req_o && empty_o ;
272 endproperty : p_rsn_i
273
274 // 1.0.2 vp
275 property p_start_i_known ;
276 @(posedge clk_i)
277 start_i |-> ! $isunknown (offset_i) && ! $isunknown (enable_i) && !

$isunknown (start_i) && ! $isunknown (aux_slide_i) && ! $isunknown (
widening_i) &&

278 ! $isunknown (rgather_op_i) && ! $isunknown (type_i) && !
$isunknown (send_i) && ! $isunknown (finish_i) && !
$isunknown (free_i) &&

279 ! $isunknown (accum_en_i) && ! $isunknown (vlength_i) && !
$isunknown (vl_lane_i) && ! $isunknown (sew_i);

280 endproperty : p_start_i_known
281
282 // 1.0.3 vp
283 property p_rgather_op_i_known ;
284 @(posedge clk_i)
285 rgather_op_i |-> ! $isunknown (rgather_lane_dst_i) && ! $isunknown (

rgather_bank_dst_i) && ! $isunknown (rgather_sub_bank_dst_i);
286 endproperty : p_rgather_op_i_known
287
288 // 1.0.4 vp
289 property p_req_o_known ;
290 @(posedge clk_i)
291 req_o && data_o [DATA_OUT_WIDTH -1] |-> ! $isunknown (data_o);
292 endproperty : p_req_o_known
293

76

A.3 – ring_logic

294 // 1.0.5 vp
295 property p_req_o ;
296 @(posedge clk_i)
297 $rose (req_o) |-> ##1 $fell (req_o);
298 endproperty : p_req_o
299
300 // 1.0.6 vp
301 property p_exclusive_input ;
302 @(posedge clk_i)
303 ($rose (rgather_op_i) or $rose (widening_i) or $rose (accum_en_i)) |-> (

rgather_op_i ^ widening_i ^ accum_en_i) && !(rgather_op_i &&
accum_en_i && widening_i); // (! rgather_op_i || widening_i ||
accum_en_i) && (rgather_op_i || ! widening_i || accum_en_i) && (
rgather_op_i || widening_i || ! accum_en_i);

304 endproperty : p_exclusive_input
305
306 // 1.0.7 vp
307 property p_start_i ;
308 @(posedge clk_i)
309 $rose (start_i) |-> ##1 $fell (start_i);
310 endproperty : p_start_i
311
312 // 1.0.8 vp
313 property p_send_i ;
314 @(posedge clk_i)
315 send_i |-> ##1 ! send_i ;
316 endproperty : p_send_i
317
318 // 1.0.9 vp
319 property p_kill_i ;
320 @(posedge clk_i)
321 kill_i |-> ##1 ! data_o [22] && ! req_o ;
322 endproperty : p_kill_i
323
324 // 1.0.10 vp
325 property p_kill_i_data_i ;
326 @(posedge clk_i)
327 kill_i |-> ! enable_i && ! start_i ;
328 endproperty : p_kill_i_data_i
329
330 // 1.0.11 vp
331 property p_rsn_i_data_i ;
332 @(posedge clk_i)
333 ! rsn_i |-> offset_i == ’0 && vlength_i == ’0 && vl_lane_i == ’0 && !

widening_i && ! send_i && ! rgather_op_i && ! aux_slide_i && ! accum_en_i
&& ! start_i ;

334 endproperty : p_rsn_i_data_i
335
336 // 1.0.12 vp
337 property p_data_o_bank_in ;
338 @(posedge clk_i)
339 req_o && data_o [DATA_OUT_WIDTH -1] |-> data_o [17:15] == current_bank_int ;
340 endproperty : p_data_o_bank_in
341
342 // 1.0.13 vp
343 property p_data_o_sub_bank_in ;
344 @(posedge clk_i)
345 req_o && data_o [DATA_OUT_WIDTH -1] |-> data_o [14:12] ==

current_sub_bank_int ;
346 endproperty : p_data_o_sub_bank_in
347
348 // 1.0.14 vp
349 property p_data_o_lane_in ;

77

A – Checkers

350 @(posedge clk_i)
351 req_o && data_o [DATA_OUT_WIDTH -1] |-> data_o [20:18] == LANE_ID ;
352 endproperty : p_data_o_lane_in
353
354 // 1.0.15 vp
355 property p_data_o_sub_bank_out ;
356 @(posedge clk_i)
357 req_o && data_o [DATA_OUT_WIDTH -1] |-> data_o [2:0] == dest_sub_bank_int ;
358 endproperty : p_data_o_sub_bank_out
359
360 // 1.0.16 vp
361 property p_data_o_lane_out ;
362 @(posedge clk_i)
363 req_o && data_o [DATA_OUT_WIDTH -1] |-> data_o [11:9] == dest_lane_int ;
364 endproperty : p_data_o_lane_out
365
366 // 1.0.17 vp
367 property p_data_o_bank_out ;
368 @(posedge clk_i)
369 req_o && data_o [DATA_OUT_WIDTH -1] |-> data_o [5:3] == dest_bank_int ;
370 endproperty : p_data_o_bank_out
371
372 // 1.0.18 vp
373 property p_data_o_line_out ;
374 @(posedge clk_i)
375 req_o && data_o [DATA_OUT_WIDTH -1] |-> data_o [8:6] == dest_line_int ;
376 endproperty : p_data_o_line_out
377
378 // 1.0.19 vp
379 property p_data_o_zeroing ;
380 @(posedge clk_i)
381 req_o && data_o [DATA_OUT_WIDTH -1] |-> data_o [21] == data_zeroing ;
382 endproperty : p_data_o_zeroing
383
384 // 1.1.1 vp
385 property p_data_after_send ;
386 @(posedge clk_i)
387 (rgather_op_i or widening_i or accum_en_i) and send_i |-> ##1 ! $isunknown (

data_o);
388 endproperty : p_data_after_send
389
390 // MOD (ADDED READY_O)
391 // 1.1.2 vp
392 property p_req_after_send ;
393 @(posedge clk_i)
394 send_i && ready_o && ! kill_i |-> ##1 req_o ;
395 endproperty : p_req_after_send
396
397 // 1.1.3 vp
398 property p_fetch_on_req ;
399 @(posedge clk_i)
400 $rose (req_o) |-> ! fetch_o ;
401 endproperty : p_fetch_on_req
402
403 // 1.1.4 vp
404 property p_ready_on_req ;
405 @(posedge clk_i)
406 $rose (req_o) && ! accum_en_i |-> $fell (ready_o);
407 endproperty : p_ready_on_req
408
409 // MOD (ADDED READY_O)
410 // 1.1.5 vp
411 property p_fetch_on_send ;

78

A.3 – ring_logic

412 @(posedge clk_i)
413 send_i && ! accum_en_i && ready_o |-> fetch_o ;
414 endproperty : p_fetch_on_send
415
416 // MOD (ADDED READY_O)
417 // 1.1.6 vp
418 property p_send_on_fetch ;
419 @(posedge clk_i)
420 ! fetch_o && ! accum_en_i && ready_o |-> ! send_i ;
421 endproperty : p_send_on_fetch
422
423 // 1.1.7 vp
424 property p_free_on_req ;
425 @(posedge clk_i)
426 $rose (req_o) |-> $fell (free_i);
427 endproperty : p_free_on_req
428
429 // 1.1.8 vp
430 property p_offset_known ;
431 @(posedge clk_i)
432 $rose (enable_i) |-> ! $isunknown (offset_i);
433 endproperty : p_offset_known
434
435 // 1.1.9 vp
436 property p_data_gather ;
437 @(posedge clk_i)
438 rgather_op_i && $rose (send_i) |-> (! $isunknown (rgather_lane_dst_i) && !

$isunknown (rgather_bank_dst_i) && ! $isunknown (rgather_sub_bank_dst_i)
);

439 endproperty : p_data_gather
440
441 // 1.1.10 vp
442 property p_data_accum_en ;
443 @(posedge clk_i)
444 $rose (enable_i) |-> accum_en_i == 1’b0;
445 endproperty : p_data_accum_en
446
447 // 1.1.11 vp
448 property p_data_send_free ;
449 @(posedge clk_i)
450 $rose (send_i) |-> free_i == 1’b1;
451 endproperty : p_data_send_free
452
453 // 1.1.12 vp
454 property p_data_slide_i ;
455 @(posedge clk_i)
456 ! rgather_op_i && ! accum_en_i && ! widening_i && $rose (enable_i) |-> (!

$isunknown (offset_i) && ! $isunknown (type_i) && ! $isunknown (aux_slide_i
));

457 endproperty : p_data_slide_i
458
459 // 1.2.1 vp
460 property p_index_fetch_send ;
461 @(posedge clk_i)
462 $rose (send_i) |-> $fell (fetch_o);
463 endproperty : p_index_fetch_send
464
465 // 1.2.2 vp
466 property p_index_gather ;
467 @(posedge clk_i)
468 rgather_op_i && $rose (send_i) |-> (rgather_lane_dst_i == ’0 &&

rgather_bank_dst_i == ’0 && rgather_sub_bank_dst_i == ’0) ;
469 endproperty : p_index_gather

79

A – Checkers

470
471 // 1.2.3 vp
472 property p_index_send_req ;
473 int num_send ;
474 @(posedge clk_i)
475 ($rose (rgather_op_i), num_send = 0) |-> first_match ((1, num_send =

num_send + send_i - req_o) [*0:$] ##0 $fell (rgather_op_i)) |->
num_send == 0;

476 endproperty : p_index_send_req
477
478 // ///
479 // ///////////////// assert & assume /////////////////////
480 // ///
481
482
483 // 1.0.1 vp
484 a_rsn_i : assert property (p_rsn_i) else $error ("bad output for the

rsn state ");
485
486 // 1.0.2 vp
487 a_start_i_known : assume property (disable iff (! rsn_i || kill_i)

p_start_i_known) else $error (" unknown inputs on start_i asserted ");
488
489 // 1.0.3 vp
490 a_rgather_op_i_known : assume property (disable iff (! rsn_i || kill_i || !

is_index_ring) p_rgather_op_i_known) else $error (" unknown rgather inputs on
rgather_op_i asserted ");

491
492 // 1.0.4 vp
493 a_req_o_known : assert property (disable iff (! rsn_i || kill_i)

p_req_o_known) else $error (" unknown data_o on req_o asserted with data_o
valid ");

494
495 // 1.0.5 vp
496 a_req_o : assert property (disable iff (! rsn_i || kill_i) p_req_o)

else $error (" req_o lasted more than 1 clock cycle ");
497
498 // 1.0.6 vp
499 a_exclusive_input : assume property (disable iff (! rsn_i || kill_i)

p_exclusive_input) else $error ("more operation at once");
500
501 // 1.0.7 vp
502 a_start_i : assume property (disable iff (! rsn_i || kill_i) p_start_i)

else $error (" start_i asserted for more than one cycle ");
503
504 // 1.0.8 vp
505 a_send_i : assume property (disable iff (! rsn_i || kill_i) p_send_i)

else $error (" send_i asserted for more than one cycle ");
506
507 // 1.0.9 vp
508 a_kill_i : assert property (disable iff (! rsn_i) p_kill_i) else

$error (" wrong output when kill_i ");
509
510 // 1.0.10 vp
511 a_kill_i_data_i : assume property (disable iff (! rsn_i) p_kill_i_data_i)

else $error (" input not zero when kill_i ");
512
513 // 1.0.11 vp
514 a_rsn_i_data_i : assume property (disable iff (! rsn_i) p_rsn_i_data_i) else

$error (" input not zero when rsn_i ");
515
516 // 1.0.12 vp

80

A.3 – ring_logic

517 a_data_o_bank_in : assert property (disable iff (! rsn_i || kill_i || (
rgather_op_i && ! is_index_ring) || ! op_inflight) p_data_o_bank_in) else
$error (" wrong current_bank on data_o ");

518
519 // 1.1.13 vp
520 a_data_o_sub_bank_in : assert property (disable iff (! rsn_i || kill_i || (

rgather_op_i && ! is_index_ring) || ! op_inflight) p_data_o_sub_bank_in) else
$error (" wrong current_sub_bank on data_o ");

521
522 // 1.0.14 vp
523 a_data_o_lane_in : assert property (disable iff (! rsn_i || kill_i || (

rgather_op_i && ! is_index_ring) || ! op_inflight) p_data_o_lane_in) else
$error (" wrong current_lane on data_o ");

524
525 // 1.0.15 vp
526 a_data_o_sub_bank_out : assert property (disable iff (! rsn_i || kill_i || !

op_inflight) p_data_o_sub_bank_out) else $error (" wrong dest_sub_bank on
data_o ");

527
528 // 1.0.16 vp
529 a_data_o_lane_out : assert property (disable iff (! rsn_i || kill_i || !

op_inflight) p_data_o_lane_out) else $error (" wrong dest_lane on data_o ");
530
531 // 1.0.17 vp
532 a_data_o_bank_out : assert property (disable iff (! rsn_i || kill_i || !

op_inflight) p_data_o_bank_out) else $error (" wrong dest_bank on data_o ");
533
534 // 1.0.18 vp
535 a_data_o_line_out : assert property (disable iff (! rsn_i || kill_i || (

rgather_op_i && ! is_index_ring) || ! op_inflight) p_data_o_line_out) else
$error (" wrong dest_line on data_o ");

536
537 // 1.0.19 vp
538 a_data_o_zeroing : assert property (disable iff (! rsn_i || kill_i)

p_data_o_zeroing) else $error (" wrong zeroing bit on data_o ");
539
540 // 1.1.1 vp
541 a_data_after_send : assert property (disable iff (! rsn_i || kill_i ||

is_index_ring) p_data_after_send) else $error ("no data_o after a send_i on a
op request ");

542
543 // 1.1.2 vp
544 a_req_after_send : assert property (disable iff (! rsn_i || kill_i ||

is_index_ring) p_req_after_send) else $error ("no req_o after a send_i on a op
request ");

545
546 // 1.1.3 vp
547 a_fetch_on_req : assert property (disable iff (! rsn_i || kill_i ||

is_index_ring) p_fetch_on_req) else $error (" fetch_o is not falling when req_o
is rising ");

548
549 // 1.1.4 vp
550 a_ready_on_req : assert property (disable iff (! rsn_i || kill_i ||

is_index_ring) p_ready_on_req) else $error (" ready_o is not falling when req_o
is rising ");

551
552 // 1.1.5 vp
553 a_fetch_on_send : assert property (disable iff (! rsn_i || kill_i ||

is_index_ring) p_fetch_on_send) else $error ("when send_i is ’1’ fetch_o is
not ’1’");

554
555 // 1.1.6 vp

81

A – Checkers

556 a_send_on_fetch : assume property (disable iff (! rsn_i || kill_i ||
is_index_ring) p_send_on_fetch) else $error ("when fetch_o is ’0’ send_i is
not ’0’");

557
558 // 1.1.7 vp
559 a_free_on_req : assume property (disable iff (! rsn_i || kill_i ||

is_index_ring) p_free_on_req) else $error ("when req rose free didn ’t fall");
560
561 // 1.1.8 vp
562 a_offset_known : assume property (disable iff (! rsn_i || kill_i ||

is_index_ring) p_offset_known) else $error (" offset was not known when enable
was = ’1’");

563
564 // 1.1.9 vp
565 a_data_gather : assume property (disable iff (! rsn_i || kill_i ||

is_index_ring) p_data_gather) else $error (" unknown input to data ring logic
for rgather ");

566
567 // 1.1.10 vp
568 a_data_accum_en : assume property (disable iff (! rsn_i || kill_i ||

is_index_ring) p_data_accum_en) else $error (" accum_en and enable_i =’1’
contemporary ");

569
570 // 1.1.11 vp
571 a_data_send_free : assume property (disable iff (! rsn_i || kill_i ||

is_index_ring) p_data_send_free) else $error (" send_i when the data ring logic
was not free");

572
573 // 1.1.12 vp
574 a_data_slide_i : assume property (disable iff (! rsn_i || kill_i ||

is_index_ring) p_data_slide_i) else $error (" unknown instruction for slide ");
575
576 // 1.2.1 vp
577 a_index_fetch_send : assert property (disable iff (! rsn_i || kill_i || !

is_index_ring) p_index_fetch_send) else $error (" fetch_o didn ’t fall when
send_i to index ");

578
579 // 1.2.2 vp
580 a_index_gather : assume property (disable iff (! rsn_i || kill_i || !

is_index_ring) p_index_gather) else $error (" rgather_ * != ’0 when sending
gather request to index ");

581
582 // 1.2.3 vp
583 a_index_send_req : assert property (disable iff (! rsn_i || kill_i || !

is_index_ring) p_index_send_req) else $error ("data corruption in rgather
indx_ring_logic ");

584
585 // ///
586 // ////////////////////// tasks //////////////////////////
587 // ///
588
589
590
591 task widening_op ();
592 dest_sub_bank_int = dest_sub_bank_int + 1;
593 if (dest_sub_bank_int == sub_banks /2) begin
594 dest_lane_int = (dest_lane_int + 1) % N_LANES ;
595 if (dest_lane_int == ((LANE_ID *2 + 2) % N_LANES)) begin
596 dest_bank_int = (dest_bank_int + 2);
597 dest_lane_int = (LANE_ID *2) % N_LANES ;
598 if (dest_bank_int >= N_BANKS) begin
599 dest_bank_int = dest_bank_int % N_BANKS ;

82

A.3 – ring_logic

600 dest_line_int = (dest_line_int +1) % (MAX_VLEN *
sub_banks /(N_BANKS * N_LANES));

601 end
602
603 end
604
605 dest_sub_bank_int = 0;
606 end
607
608
609
610 endtask : widening_op
611
612
613
614 task rgather_op_index ();
615 int j;
616 el_id_dest = send_fifo [0]. offset_fifo ;
617 data_zeroing = send_fifo [0]. zeroing ;
618
619 // update fifo
620 for (j = 0; j < FIFO_SIZE - 1; j++) begin
621 send_fifo [j]. offset_fifo = send_fifo [j + 1]. offset_fifo ;
622 send_fifo [j].free = send_fifo [j + 1].free;
623 send_fifo [j]. zeroing = send_fifo [j + 1]. zeroing ;
624 end
625
626 send_fifo [FIFO_SIZE -1]. offset_fifo = 0;
627 send_fifo [FIFO_SIZE -1].free = 1;
628 send_fifo [FIFO_SIZE -1]. zeroing = 0;
629
630 dest_bank_int = (el_id_dest /(sub_banks * N_LANES))% N_BANKS ;
631 dest_sub_bank_int = el_id_dest % sub_banks ;
632 dest_line_int = el_id_dest /(sub_banks * N_LANES * N_BANKS);
633 dest_lane_int = (el_id_dest / sub_banks) % N_LANES ;
634
635 endtask : rgather_op_index
636
637
638 task rgather_op_data ();
639 dest_bank_int = rgather_bank_dst_i ;
640 dest_sub_bank_int = rgather_sub_bank_dst_i ;
641 dest_lane_int = rgather_lane_dst_i ;
642 dest_line_int = 0;
643 endtask : rgather_op_data
644
645 task reduction_op ();
646 current_sub_bank_int = 0;
647 current_bank_int = 0;
648 dest_sub_bank_int = 0;
649 dest_bank_int = 0;
650 dest_line_int = 0;
651 dest_lane_int = (LANE_ID + 1)% N_LANES ;
652 endtask : reduction_op
653
654
655 task slide_op ();
656 el_id_int = el_id_int + 1;
657
658 if ((el_id_int %(2**(3 - sew_int))) == 0) el_id_int = el_id_int - sub_banks +

(sub_banks * N_LANES);
659

83

A – Checkers

660 el_id_dest = el_id_int + offset_int ;
661
662 if (el_id_dest >= vlength_i) el_id_dest = vlength_i - (2**32 - el_id_dest)

;
663
664 dest_bank_int = (el_id_dest /(sub_banks * N_LANES))% N_BANKS ;
665 dest_sub_bank_int = el_id_dest % sub_banks ;
666 dest_line_int = el_id_dest /(sub_banks * N_LANES * N_BANKS);
667 dest_lane_int = (el_id_dest / sub_banks) % N_LANES ;
668 endtask : slide_op
669
670
671 endmodule : ring_logic_checker // ring_logic

A.4 ring_node

1 import EPI_pkg ::*;
2
3 bind ring_node ring_node_checker #(
4 . LANES (LANES),
5 . WIDTH (WIDTH),
6 . LANE_ID (LANE_ID)) bind_ring_node_checker (.*);
7
8 module ring_node_checker
9 #(

10 parameter LANES = 8,
11 parameter WIDTH = 84,
12 parameter LANE_ID = 3’b000
13)(
14
15 input clk_i ,
16 input rsn_i ,
17 input stall_i ,
18 input kill_i ,
19 input start_i ,
20 input [WIDTH -1:0] data_lane_i ,
21 input [WIDTH -1:0] data_ring_i ,
22 input data_valid_o ,
23 input [WIDTH -1:0] data_ring_o ,
24 input we_o ,
25 input self_write_o
26);
27
28 wire [2:0] curr_lane ;
29 assign curr_lane = LANE_ID ;
30
31
32
33 // //
34 // /////////////////// properties ///////////////////////
35 // //
36
37
38
39
40 // 3.01 vp
41 property p_rsn_i_outputs ;
42 @(posedge clk_i)
43 ! rsn_i |-> ! data_valid_o && data_ring_o == ’0 ##1 ! data_valid_o &&

data_ring_o == ’0;
44 endproperty : p_rsn_i_outputs

84

A.4 – ring_node

45
46 // 3.02 vp
47 property p_self_write_o ;
48 @(posedge clk_i)
49 $rose (start_i) && data_lane_i [WIDTH -1] && (curr_lane == data_lane_i [WIDTH

-12:WIDTH -14]) && ! stall_i |->
50 (self_write_o && we_o) ;
51 endproperty : p_self_write_o
52
53 // 3.03 vp
54 property p_we_o ;
55 @(posedge clk_i)
56 data_ring_i [WIDTH -1] && (curr_lane == data_ring_i [WIDTH -12:WIDTH -14]) &&

! stall_i |-> we_o ;
57 endproperty : p_we_o
58
59 // 3.04 vp
60 property p_data_lane_propagation ();
61 logic [WIDTH -1:0] local_var ;
62 @(posedge clk_i)
63 (start_i && !stall_i , local_var = data_lane_i) ##0 data_lane_i [WIDTH -1] && (

curr_lane != data_lane_i [WIDTH -12:WIDTH -14]) |-> !we_o && !
self_write_o ##1 (data_ring_o == local_var) && data_valid_o ;

64 endproperty : p_data_lane_propagation
65
66 // 3.05 vp
67 property p_data_ring_propagation ;
68 logic [WIDTH -1:0] local_var ;
69 @(posedge clk_i)
70 (data_ring_i [WIDTH -1] && !stall_i , local_var = data_ring_i) ##0 (curr_lane

!= data_ring_i [WIDTH -12:WIDTH -14])
71 |-> !we_o && ! self_write_o ##1 data_valid_o && data_ring_o == local_var ;
72 endproperty : p_data_ring_propagation
73
74 // 3.06 vp
75 property p_invalid_data ;
76 @(posedge clk_i)
77 ! data_ring_i [WIDTH -1] && ! data_lane_i [WIDTH -1] && ! stall_i |-> !we_o && !

self_write_o ##1 ! data_valid_o ;
78 endproperty : p_invalid_data
79
80 // 3.07 vp
81 property p_stall_i ; // data ring
82 logic [WIDTH -1:0] local_data_ring_o ;
83 logic local_data_valid_o ;
84
85 @(posedge clk_i)
86 (stall_i , local_data_ring_o = data_ring_o , local_data_valid_o =

data_valid_o) |->
87 !we_o && ! self_write_o |-> first_match (1 [*1:$] ##0 ! stall_i) |->

data_valid_o == local_data_valid_o && data_ring_o == local_data_ring_o
;

88 endproperty : p_stall_i
89
90 // 3.08 vp
91 property p_kill_i ;
92 @(posedge clk_i)
93 kill_i |-> ##1 ! data_valid_o && data_ring_o == ’0;
94 endproperty : p_kill_i
95
96 // 3.09 vp
97 property p_rsn_data_i ;
98 @(posedge clk_i)

85

A – Checkers

99 ! rsn_i |-> ! stall_i && ! kill_i && ! start_i && ! data_lane_i [WIDTH -1] && !
data_ring_i [WIDTH -1];

100 endproperty : p_rsn_data_i
101
102 // 3.10 vp
103 property p_kill_data_i ;
104 @(posedge clk_i)
105 kill_i |-> ! stall_i && ! start_i && ! data_lane_i [WIDTH -1] && ! data_ring_i [

WIDTH -1];
106 endproperty : p_kill_data_i
107
108 // 3.11 vp
109 property p_start_data_lane_i ;
110 @(posedge clk_i)
111 start_i |-> ! data_ring_i [WIDTH -1];
112 endproperty : p_start_data_lane_i
113
114
115 // 3.12 vp
116 property p_rsn_i_beh ;
117 @(posedge clk_i)
118 $fell (rsn_i) |-> ##1 ! rsn_i ;
119 endproperty : p_rsn_i_beh
120
121 // ///
122 // ///////////////// assert & assume /////////////////////
123 // ///
124
125
126
127
128 // 3.01 vp
129 a_rsn_i_outputs : assert property (p_rsn_i_outputs) else $error ("

bad handle for the rsn signal ");
130
131 // 3.02 vp
132 a_self_write_o : assert property (disable iff (! rsn_i || kill_i)

p_self_write_o) else $error ("didn ’t self_write_o when supposed to");
133
134 // 3.03 vp
135 a_we_o : assert property (disable iff (! rsn_i || kill_i)

p_we_o) else $error ("no write enable when supposed ");
136
137 // 3.04 vp
138 a_data_lane_propagation : assert property (disable iff (! rsn_i || kill_i) (

p_data_lane_propagation or p_stall_i)) else $error (" after a start and a valid
data_lane_i , with the data for another lane , data_lane_i was not propagated

to the output the following clock cicle ");
139
140 // 3.05 vp
141 a_data_ring_propagation : assert property (disable iff (! rsn_i || kill_i) (

p_data_ring_propagation or p_stall_i)) else $error (" wrong data_ring_o when
valid data_ring_i the previous clock ");

142
143 // 3.06 vp
144 a_invalid_data : assert property (disable iff (! rsn_i || kill_i) (

p_invalid_data or p_stall_i)) else $error ("bad handle for invalid data");
145
146 // 3.07 vp
147 a_stall_i : assert property (disable iff (! rsn_i || kill_i)

p_stall_i) else $error ("bad handle for the stall signal ");
148
149 // 3.08 vp

86

A.5 – ring_packer

150 a_kill_i : assert property (disable iff (! rsn_i) p_kill_i)
else $error ("bad handle for the kill signal ");

151
152 // 3.09 vp
153 a_rsn_data_i : assume property (p_rsn_data_i) else $error ("no

reset of inputs data when reset ");
154
155 // 3.10 vp
156 a_kill_data_i : assume property (disable iff (! rsn_i) p_kill_data_i

) else $error ("no reset of inputs data when kill");
157
158 // 3.11 vp
159 a_start_data_lane_i : assume property (disable iff (! rsn_i || kill_i)

p_start_data_lane_i) else $error ("no valid data lane on start ");
160
161 // 3.12 vp
162 a_rsn_i_beh : assume property (p_rsn_i_beh) else $error (" rsn_i

lasted less than 1 clock cycle ");
163
164 endmodule : ring_node_checker // ring_node

A.5 ring_packer

1 import EPI_pkg ::*;
2
3 bind ring_data_packer ring_data_packer_checker #(
4 . RING_LOGIC_DATA (RING_LOGIC_DATA),
5 . DATA_WIDTH (DATA_WIDTH),
6 . DATA_IN_WIDTH (DATA_IN_WIDTH),
7 . MAX_N_SUB_BANKS (MAX_N_SUB_BANKS),
8 . DATA_CTRL_WIDTH (DATA_CTRL_WIDTH)) bind_ring_data_packer (.*);
9

10 module ring_data_packer_checker
11 #(
12 parameter RING_LOGIC_DATA = 20,
13 parameter DATA_WIDTH = 64,
14 parameter DATA_IN_WIDTH = RING_LOGIC_DATA + DATA_WIDTH ,
15 parameter MAX_N_SUB_BANKS = MIN_SEW ,
16 parameter DATA_CTRL_WIDTH = DATA_WIDTH / MAX_N_SUB_BANKS
17)(
18 input clk_i ,
19 input rsn_i ,
20 input kill_i ,
21 input [DATA_IN_WIDTH -1:0] data_i ,
22 input req_i ,
23 input free_i ,
24 input finish_i ,
25 input [DATA_IN_WIDTH -1:0] data_o ,
26 input req_o ,
27 input finish_o ,
28 input [1:0] sew_i ,
29 input widening_i ,
30 input [MAX_N_SUB_BANKS -1:0] valid_sub_banks_o
31);
32
33 // //
34 // /////////////////// sequences ////////////////////////
35 // //
36
37 // auxiliary seq to 6.0.8
38 sequence s_req_o_1 ;

87

A – Checkers

39 ##1 ! req_o ;
40 endsequence : s_req_o_1
41
42 // auxiliary seq to 6.0.8
43 sequence s_req_o_2 ;
44 ##1 req_o ##1 ! req_o ;
45 endsequence : s_req_o_2
46
47
48 // //
49 // /////////////////// properties ///////////////////////
50 // //
51
52
53 // 6.0.1 vp
54 property p_data_i_known ;
55 @(posedge clk_i)
56 req_i |-> ! $isunknown (data_i);
57 endproperty : p_data_i_known
58
59 // 6.0.2 vp
60 property p_sew_i_known ;
61 @(posedge clk_i)
62 req_i |-> ! $isunknown (sew_i);
63 endproperty : p_sew_i_known
64
65 // 6.0.3 vp
66 property p_sew_i_stable ;
67 int n_req_i ;
68 @(posedge clk_i)
69 ($rose (req_i) && !kill_i , n_req_i = 2**(3 - sew_i)) |=> first_match ((1 ,

n_req_i = n_req_i - req_i) [*0:$] ##0 ! $stable (sew_i) || $rose (req_o)
) |-> $stable (sew_i);

70 endproperty : p_sew_i_stable
71
72 // 6.0.4 vp
73 property p_finish_o ;
74 @(posedge clk_i)
75 finish_i |-> finish_i [=1] ##1 finish_o ;
76 endproperty : p_finish_o
77
78 // 6.0.5 vp
79 property p_req_i_max ;
80 int n_req_i ;
81 @(posedge clk_i)
82 ($rose (req_i), n_req_i = 2**(2 - sew_i)) |=> first_match ((1 , n_req_i =

n_req_i - req_i) [*0:$] ##0 n_req_i <= 0 || $rose (req_o)) |->
n_req_i >= 0;

83 endproperty : p_req_i_max
84
85 // 6.0.6 vp
86 property p_data_o_known ;
87 @(posedge clk_i)
88 req_o |-> ! $isunknown (data_o);
89 endproperty : p_data_o_known
90
91 // 6.0.7 vp
92 property p_req_i ;
93 @(posedge clk_i)
94 req_i |-> ##1 ! req_i ;
95 endproperty : p_req_i
96
97 // 6.0.8 vp

88

A.5 – ring_packer

98 property p_req_o ;
99 @(posedge clk_i)

100 $rose (req_o) |-> s_req_o_1 or s_req_o_2 ;
101 endproperty : p_req_o
102
103 // 6.0.9 vp
104 property p_finish_i ;
105 @(posedge clk_i)
106 finish_i |-> ##1 ! finish_i ;
107 endproperty : p_finish_i
108
109 // 6.0.10 vp
110 property p_finish_i_finish_o ;
111 @(posedge clk_i)
112 $fell (finish_i) |-> first_match (1 [*0:$] ##0 (finish_i || finish_o))

##0 (finish_o && ! finish_i) ;
113 endproperty : p_finish_i_finish_o
114
115 // 6.0.11 vp
116 property p_req_i_on_free ;
117 @(posedge clk_i)
118 free_i |-> ! req_i ;
119 endproperty : p_req_i_on_free
120
121
122 // ///
123 // ///////////////// assert & assume /////////////////////
124 // ///
125
126
127 // 6.0.1 vp
128 a_data_i_known : assume property (disable iff (! rsn_i || kill_i)

p_data_i_known) else $error (" unknown data_i on req_i ");
129
130 // 6.0.2 vp
131 a_sew_i_known : assume property (disable iff (! rsn_i || kill_i)

p_sew_i_known) else $error (" unknown sew_i on req_i ");
132
133 // 6.0.3 vp
134 a_sew_i_stable : assume property (disable iff (! rsn_i || kill_i)

p_sew_i_stable) else $error (" unstable sew_i during a req");
135
136 // 6.0.4 vp
137 a_finish_o : assert property (disable iff (! rsn_i || kill_i)

p_finish_o) else $error (" after a finish_i there wasn ’t a finish_o ");
138
139 // 6.0.5 vp
140 a_req_i_max : assume property (disable iff (! rsn_i || kill_i)

p_req_i_max) else $error ("more req_i than expected ");
141
142 // 6.0.6 vp
143 a_data_o_known : assert property (disable iff (! rsn_i || kill_i)

p_data_o_known) else $error (" unknown data_o on req_o ");
144
145 // 6.0.7 vp
146 a_req_i : assume property (disable iff (! rsn_i || kill_i)

p_req_i) else $error (" req_i lasted more than 1 clock cycle ");
147
148 // 6.0.8 vp
149 a_req_o : assert property (disable iff (! rsn_i || kill_i)

p_req_o) else $error (" req_o lasted more than 2 clock cycle ");
150
151 // 6.0.9 vp

89

A – Checkers

152 a_finish_i : assume property (disable iff (! rsn_i || kill_i)
p_finish_i) else $error (" finish_i lasted more than 1 clock cycle ");

153
154 // 6.0.10 vp
155 a_finish_i_finish_o : assume property (disable iff (! rsn_i || kill_i)

p_finish_i_finish_o) else $error ("two finish_i without a finish_o between
them");

156
157 // 6.0.11 vp
158 a_req_i_on_free : assume property (disable iff (! rsn_i || kill_i)

p_req_i_on_free) else $error (" req_i when free_i was = 1");
159
160 endmodule : ring_data_packer_checker

A.6 ring_unpacker

1 import EPI_pkg ::*;
2
3 bind ring_data_unpacker ring_data_unpacker_checker #(
4 . DATA_WIDTH (DATA_WIDTH),
5 . IS_INDEX_RING (IS_INDEX_RING),
6 . MAX_N_SUB_BANKS (MAX_N_SUB_BANKS),
7 . DATA_CTRL_WIDTH (DATA_CTRL_WIDTH)) bind_ring_data_unpacker (.*);
8
9 module ring_data_unpacker_checker

10 #(
11 parameter DATA_WIDTH = 64,
12 parameter IS_INDEX_RING = 0, // this is used to distinguish between the data

and index rings (may be updated in future versions)
13 parameter MAX_N_SUB_BANKS = 8,
14 parameter DATA_CTRL_WIDTH = DATA_WIDTH / MAX_N_SUB_BANKS
15)(
16 input clk_i ,
17 input rsn_i ,
18 input kill_i ,
19 input new_instr_i ,
20 input [ELEMENTS_WIDTH_LANE -1:0] elements_i ,
21 input [DATA_WIDTH -1:0] data_i ,
22 input req_i ,
23 input grant_o ,
24 input [DATA_WIDTH -1:0] data_o ,
25 input req_o ,
26 input enable_o ,
27 input enable_i ,
28 input [1:0] sew_i ,
29 input ready_o ,
30 input finish_i
31);
32
33
34
35 // //
36 // /////////////////// properties ///////////////////////
37 // //
38
39
40 // 5.0.1 vp
41 property p_data_i_known ;
42 @(posedge clk_i)
43 req_i && enable_o |-> ! $isunknown (data_i);
44 endproperty : p_data_i_known

90

A.6 – ring_unpacker

45
46 // 5.0.2 vp
47 property p_sew_i_known ;
48 @(posedge clk_i)
49 req_i && enable_o |-> ! $isunknown (sew_i);
50 endproperty : p_sew_i_known
51
52 // 5.0.3 vp
53 property p_data_i_stable ;
54 @(posedge clk_i)
55 $rose (grant_o) |=> first_match ((1) [*0:$] ##0 $rose (enable_o) || ! $stable (

data_i)) |-> $stable (data_i);
56 endproperty : p_data_i_stable
57
58 // 5.0.4 vp
59 property p_req_i_grant_o ;
60 @(posedge clk_i)
61 req_i |-> ##[1:$] grant_o ;
62 endproperty : p_req_i_grant_o
63
64 // 5.0.5 vp
65 property p_req_o_num ;
66 int n_req_o ;
67 @(posedge clk_i)
68 $rose (grant_o) ##0 (1, n_req_o = 2**(3 - sew_i)) |=> first_match ((1 , n_req_o

= n_req_o - $fell (req_o)) [*0:$] ##0 $rose (grant_o)) |-> n_req_o >=
0;

69 endproperty : p_req_o_num
70
71 // 5.0.6 vp
72 property p_enable_i_ready_o ;
73 @(posedge clk_i)
74 ! enable_i |-> ! ready_o ;
75 endproperty : p_enable_i_ready_o
76
77 // 5.0.7 vp
78 property p_grant_o_req_i_num ;
79 int n_req_i ;
80 @(posedge clk_i)
81 $rose (new_instr_i) ##0 (1, n_req_i = elements_i /(2**(3 - sew_i)) + 1) |=>

first_match ((1, n_req_i = n_req_i - (req_i && grant_o)) [*0:$] ##0
finish_i) |-> n_req_i >= 0;

82 endproperty : p_grant_o_req_i_num
83
84 // 5.0.8 vp
85 property p_req_o_ready_o ;
86 @(posedge clk_i)
87 ready_o |-> ready_o [=1] ##1 req_o ;
88 endproperty : p_req_o_ready_o
89
90 // 5.0.9 vp
91 property p_req_o ;
92 @(posedge clk_i)
93 req_o |-> ##1 ! req_o ;
94 endproperty : p_req_o
95
96 // 5.0.10 vp
97 property p_ready_o ;
98 @(posedge clk_i)
99 ready_o |-> ##1 ! ready_o ;

100 endproperty : p_ready_o
101
102 // 5.0.11 vp

91

A – Checkers

103 property p_data_o_known ;
104 @(posedge clk_i)
105 req_o || ready_o |-> ! $isunknown (data_o);
106 endproperty : p_data_o_known
107
108 // 5.0.12 vp
109 property p_sew_i_stable ;
110 @(posedge clk_i)
111 $rose (new_instr_i) |=> first_match ((1) [*0:$] ##0 $rose (finish_i) || !

$stable (sew_i)) |-> $stable (sew_i);
112 endproperty : p_sew_i_stable
113
114 // 5.0.13 vp
115 property p_valid_data_o ;
116 @(posedge clk_i)
117 req_o |-> (sew_i == 0 && data_o [DATA_WIDTH -1:8]== ’0) || (sew_i == 1 &&

data_o [DATA_WIDTH -1:16]== ’0) || (sew_i == 2 && data_o [DATA_WIDTH -1:32]
== ’0) || sew_i ==3;

118 endproperty : p_valid_data_o
119
120 // 5.0.14 vp
121 property p_elements_i_known ;
122 @(posedge clk_i)
123 new_instr_i |-> ! $isunknown (elements_i);
124 endproperty : p_elements_i_known
125
126 // 5.0.15 vp
127 property p_elements_i_req_o ;
128 int elements ;
129 @(posedge clk_i)
130 new_instr_i ##0 (1, elements = elements_i) |-> first_match ((1 , elements =

elements - $fell (req_o)) [*0:$] ##0 finish_i) |-> elements >= 0;
131 endproperty : p_elements_i_req_o
132
133 // 5.0.16 vp
134 property p_finish_after_instr ;
135 int elements ;
136 @(posedge clk_i)
137 new_instr_i |-> new_instr_i [=1] ##1 finish_i ;
138 endproperty : p_finish_after_instr
139
140 // 5.0.17 vp
141 property p_grant_o ;
142 int elements ;
143 @(posedge clk_i)
144 req_i && enable_o |-> grant_o ;
145 endproperty : p_grant_o
146
147 // 5.0.18 vp
148 property p_elements_i_req_i ;
149 int elements ;
150 @(posedge clk_i)
151 new_instr_i ##0 (1, elements = elements_i /(2**(3 - sew_i)) + 1) |->

first_match ((1 , elements = elements - (req_i && enable_o)) [*0:$] ##0
finish_i) |-> elements >= 0;

152 endproperty : p_elements_i_req_i
153
154
155 // ///
156 // ///////////////// assert & assume /////////////////////
157 // ///
158
159

92

A.6 – ring_unpacker

160 // 5.0.1 vp
161 a_data_i_known : assume property (disable iff (! rsn_i || kill_i)

p_data_i_known) else $error (" unknown data_i on enable_i and req_i ");
162
163 // 5.0.2 vp
164 a_sew_i_known : assume property (disable iff (! rsn_i || kill_i)

p_sew_i_known) else $error (" unknown sew_i on enable_i and req_i ");
165
166 // 5.0.3 vp
167 a_data_i_stable : assume property (disable iff (! rsn_i || kill_i)

p_data_i_known) else $error (" unstable data_i on enable_o = 0");
168
169 // 5.0.4 vp
170 a_req_i_grant_o : assert property (disable iff (! rsn_i || kill_i)

p_req_i_grant_o) else $error ("no grant_o for a req_i ");
171
172 // 5.0.5 vp
173 a_req_o_num : assert property (disable iff (! rsn_i || kill_i)

p_req_o_num) else $error (" wrong number of valid req_o (s)");
174
175 // 5.0.6 vp
176 a_enable_i_ready_o : assert property (disable iff (! rsn_i || kill_i)

p_enable_i_ready_o) else $error (" ready_o = 1 with enable_i = 0");
177
178 // 5.0.7 vp
179 a_grant_o_req_i_num : assert property (disable iff (! rsn_i || kill_i)

p_grant_o_req_i_num) else $error (" wrong number of valid req_i (s)");
180
181 // 5.0.8 vp
182 a_req_o_ready_o : assert property (disable iff (! rsn_i || kill_i)

p_req_o_ready_o) else $error (" req_o was not = 1 after a ready_o ");
183
184 // 5.0.9 vp
185 a_req_o : assert property (disable iff (! rsn_i || kill_i)

p_req_o) else $error (" req_o didn ’t last 1 clock cycle ");
186
187 // 5.0.10 vp
188 a_ready_o : assert property (disable iff (! rsn_i || kill_i)

p_ready_o) else $error (" ready_o didn ’t last 1 clock cycle ");
189
190 // 5.0.11 vp
191 a_data_o_known : assert property (disable iff (! rsn_i || kill_i)

p_data_o_known) else $error (" unknown data_o on req_o or ready_o ");
192
193 // 5.0.12 vp
194 a_sew_i_stable : assume property (disable iff (! rsn_i || kill_i)

p_sew_i_stable) else $error (" sew_i unstable during the same req_i ");
195
196 // 5.0.13 vp
197 a_valid_data_o : assert property (disable iff (! rsn_i || kill_i)

p_valid_data_o) else $error (" misplacement in data_o ");
198
199 // 5.0.14 vp
200 a_elements_i_known : assume property (disable iff (! rsn_i || kill_i)

p_elements_i_known) else $error (" unknonw elements_i when new_instr_i was
asserted ");

201
202 // 5.0.15 vp
203 a_elements_i_req_o : assume property (disable iff (! rsn_i || kill_i)

p_elements_i_req_o) else $error (" wrong number of req_o ");
204
205 // 5.0.16 vp

93

A – Checkers

206 a_finish_after_instr : assume property (disable iff (! rsn_i || kill_i)
p_finish_after_instr) else $error ("no finish_i after new_instr_i ");

207
208 // 5.0.17 vp
209 a_grant_o : assert property (disable iff (! rsn_i || kill_i)

p_grant_o) else $error (" grant_o didn ’t raise when req_i and enable_o were
asserted ");

210
211 // 5.0.18 vp
212 a_elements_i_req_i : assert property (disable iff (! rsn_i || kill_i)

p_elements_i_req_i) else $error ("too many req_i for the given elements_i ");
213
214
215 endmodule : ring_data_unpacker_checker

94

Bibliography

[1] Mentor verification academy. (accessed on august 2020). https://
verificationacademy.com/.

[2] Risc-v cores and soc overview. (accessed on august 2020). https://github.
com/riscv/riscv-cores-list.

[3] Risc-v history. (accessed on august 2020). https://riscv.org/
risc-v-history/.

[4] Risc-v specifications. (accessed on august 2020). https://github.com/
riscv/riscv-v-spec.

[5] Risc-v vector extension gcc binutils v0.7.x. (accessed on august 2020). https:
//github.com/riscv/riscv-binutils-gdb/tree/rvv-0.7.x.

[6] Riscv-dv presentation. (accessed on august 2020). https:
//content.riscv.org/wp-content/uploads/2019/12/12.10-16.
10b-Open-Source-Verification-Platform-for-RISC-V-Processors.pdf.

[7] Riscv-dv repository. (accessed on august 2020). https://github.com/
google/riscv-dv.

[8] Spike risc-v isa simulator. (accessed on august 2020). https://github.com/
riscv/riscv-isa-sim.

[9] V for vector: software exploration of the vector extension of risc-v. (accessed
on august 2020). https://www.european-processor-initiative.eu/
v-for-vector-software-exploration-of-the-vector-extension-of-risc-v/.

[10] K Asanovic A. Waterman. The RISC-V Instruction Set Manual Volume I:
Unprivileged ISA. 2019.

[11] K Asanovic. International conference on supercomputing, workshop on risc-v
and openpower. (session 4, accessed on august 2020). https://www.youtube.
com/watch?v=6mXxNbKM3Qs&feature=youtu.be.

[12] C. Chen, X. Xiang, C. Liu, Y. Shang, R. Guo, D. Liu, Y. Lu, Z. Hao, J. Luo,
Z. Chen, C. Li, Y. Pu, J. Meng, X. Yan, Y. Xie, and X. Qi. Xuantie-910:
A commercial multi-core 12-stage pipeline out-of-order 64-bit high perfor-
mance risc-v processor with vector extension : Industrial product. In 2020
ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA), pages 52–64, 2020.

95

https://verificationacademy.com/
https://verificationacademy.com/
https://github.com/riscv/riscv-cores-list
https://github.com/riscv/riscv-cores-list
https://riscv.org/risc-v-history/
https://riscv.org/risc-v-history/
https://github.com/riscv/riscv-v-spec
https://github.com/riscv/riscv-v-spec
https://github.com/riscv/riscv-binutils-gdb/tree/rvv-0.7.x
https://github.com/riscv/riscv-binutils-gdb/tree/rvv-0.7.x
https://content.riscv.org/wp-content/uploads/2019/12/12.10-16.10b-Open-Source-Verification-Platform-for-RISC-V-Processors.pdf
https://content.riscv.org/wp-content/uploads/2019/12/12.10-16.10b-Open-Source-Verification-Platform-for-RISC-V-Processors.pdf
https://content.riscv.org/wp-content/uploads/2019/12/12.10-16.10b-Open-Source-Verification-Platform-for-RISC-V-Processors.pdf
https://github.com/google/riscv-dv
https://github.com/google/riscv-dv
https://github.com/riscv/riscv-isa-sim
https://github.com/riscv/riscv-isa-sim
https://www.european-processor-initiative.eu/v-for-vector-software-exploration-of-the-vector-extension-of-risc-v/
https://www.european-processor-initiative.eu/v-for-vector-software-exploration-of-the-vector-extension-of-risc-v/
https://www.youtube.com/watch?v=6mXxNbKM3Qs&feature=youtu.be
https://www.youtube.com/watch?v=6mXxNbKM3Qs&feature=youtu.be

Bibliography

[13] Clifford E Cummings. Systemverilog assertions-bindfiles & best known prac-
tices for simple sva usage. SNUG, 2016.

[14] Roger Espasa, Mateo Valero, and James E. Smith. Vector architectures: Past,
present and future, 1998.

[15] M. Kantrowitz and L. M. Noack. I’m done simulating; now what? verification
coverage analysis and correctness checking of the decchip 21164 alpha micro-
processor. In 33rd Design Automation Conference Proceedings, 1996, pages
325–330, 1996.

[16] Ashok B. Mehta. ASIC/SoC Functional Design Verification. Springer, Cham,
2018.

[17] F. L. Morris and C. B. Jones. An early program proof by alan turing. Annals
of the History of Computing, 6(2):139–143, 1984.

[18] David Rich. The missing link: the testbench to dut connection. Fremont, CA:
Design and Verification Technologies Mentor Graphics, 9, 2013.

[19] Ray Salemi. The UVM Primer: An Introduction to the Universal Verification
Methodology. Boston Light Press, 2013.

[20] Fabian Schuiki, Florian Zaruba, Torsten Hoefler, and Luca Benini. Stream
semantic registers: A lightweight risc-v isa extension achieving full compute
utilization in single-issue cores. IEEE Transactions on Computers, 2020.

[21] Doug Smith. Using bind for class-based testbench reuse with mixedlanguage
designs. 2009.

[22] Ryo Taketani and Yoshinori Takeuchi. Configurable processor hardware devel-
oping environment for risc-v with vector extension.

[23] Babu Turumella and Mukesh Sharma. Assertion-based verification of a 32
thread sparcâĎć cmt microprocessor. In Proceedings of the 45th Annual Design
Automation Conference, DAC âĂŹ08, page 256âĂŞ261, New York, NY, USA,
2008. Association for Computing Machinery.

96

	List of Figures
	List of Tables
	Introduction
	Vectors
	RISC - V
	RISC-V Vector Extenstion

	Verification
	Dynamic Verification
	Static Verification (Formal-based)
	Assertions and Assumptions for Functional Verification

	Context
	The VPU
	Submodules
	The UVM
	UVM
	UVM Structure

	Methods
	The Submodules and Specifications
	Ring Interface
	Ring Node
	Index Ring Logic
	Data Ring Logic
	Ring Data Unpacker
	Ring Data Packer

	Verification Plan
	Checkers and Assertions
	Dynamic Functional Verification
	Static Functional Verification

	Contributions and Discussion
	Reported Bugs
	Bugs on Assumptions
	Bugs on Assertions

	Material Created
	Discussions

	Conclusions
	Conclusions
	Future Directions

	Checkers
	ring_if
	ring_node
	ring_logic
	ring_node (1)
	ring_packer
	ring_unpacker

	Bibliography

