
POLITECNICO DI TORINO
Master’s Degree in Micro- and Nanotechnologies for

Integrated Systems

Master’s Degree Thesis

Design and Integration of a Debug Unit
for Heterogeneous System-on-Chip

Architectures

Supervisors

Prof. Luca CARLONI

Dr. Paolo MANTOVANI

Prof. Luciano LAVAGNO

Candidate

Gabriele TOMBESI

October 2020

Summary

The purpose of this dissertation is to provide a flexible, platform-based pre- and
post-silicon verification methodology, leveraging Design for Testability (DFT) to ad-
dress the increasing complexity of modern heterogeneous System-on-Chips (SoCs).
The proposed approach is applied for the first time in the context of an ongoing
project at Columbia University, which aims at the development of a companion
agile flow for SoC Application-specific-integrated-circuit (ASIC) implementations
targeting advanced technology nodes.

With the end of Dennard scaling, the increasing demand for power-efficient
systems faced by the semiconductor industry has promoted the transition from
homogeneous to heterogeneous architectures, which couple general-purpose pro-
cessors with a growing number of specialized hardware accelerators. Academia is
putting a significant effort in investigating architectures for several domain-specific
accelerators and providing innovative solutions addressing the integration challenges
in heterogeneous systems. In most of the cases, the instruction set architecture
(ISA) of the RISC-V1 project is leveraged for the processor cores of the proposed
platforms. Among the existing implementations, the Embedded Scalable Platform
(ESP) project developed at Columbia University plays a distinctive role. As op-
posed to other open-source RISC-V platforms, ESP promotes a system-centric view,
based on the coupling of a modular socket-based architecture with a companion
system-level methodology [2]. The goal of this approach is to relieve the designer
from the burden of the intellectual property (IP) integration process, by decoupling
the IP design from the rest of the system. At the same time, ESP promotes a shift
of the engineering effort by moving the abstraction level from register-transfer level
(RTL) specifications to a system-level viewpoint leveraging high-level-synthesis

1RISC-V is an instruction set architecture (ISA) based on reduced instruction set computer
(RISC) principles, developed at the University of California, Berkeley, in 2010. Unlike many other
ISA, it is an open source standard which does not require royalties to be used. Both Academia
and Industry have announced RISC-V hardware in the past decade, with over 65 RISC-V cores
available today [1]

ii

(HLS) flows [3].

Figure 1: Overview of ESP tile-based architecture [4].

Several ESP instances capable of booting Linux have already been prototyped
on different classes of FPGAs in the past decade [5]. Nevertheless, in the context
of chip manufacturing, pre-silicon verification and design for testability assume
a fundamental role. In this perspective, this dissertation addresses some of the
challenges related to the testing, debugging and verification of a heterogeneous
platform modules. Specifically, I developed a modular Debug Unit for the pre- and
post-silicon unit test of IP blocks integrated in each ESP tile. The approach adopted
in this work adapts well to the platform-based architecture of ESP; in fact, my
Debug Unit implements a new platform service that enables the independent test
of every tile, decoupled from the system interconnect. Throughout the dissertation,
I give a comprehensive overview of the steps involved in the design and integration
of the Debug Unit in the system. Figure 2 shows a high-level view of the tile’s
new internal arrangement after the Debug Unit integration, in normal and test
operating mode.

The work presented is organized in five chapters. Chapter 1 is an introduction
to ESP. The different design flows supported by the system-level companion
methodology are presented. Amongst those, a more accurate description is dedicated
to the design flows leveraging commercial high-level-synthesis (HLS) tools. The
tile-based architecture of the platform, summarized in Figure 1, is then discussed
showing the services offered by each type of socket for the transparent integration
of in-house and external IPs, together with the latency-insensitive communication
infrastructure connecting different tiles. Chapter 2 analyses the state-of-the-art
testing strategies adopted so far in post-manufacturing SoC structural verification:
Scan Chain insertion and Built-in self-test (BIST) . In addition, it introduces the
methodology supported in this dissertation, which leverages DFT for functional
tests of single SoC modules. Chapter 3 derives the test interface specifications,

iii

Figure 2: Proposed approach for a tile functional test.

taking the backend flow constraints largely into account. The entire stack of the
test flow is described and the FPGA-based setup used for testing is illustrated.
Finally, a particular focus on the types of test application targeted is provided.
Chapter 4 describes the design and integration of a Debug Unit which applies the
verification methodology proposed inside ESP. A high level view of the implemented
test unit integrated in the ESP tile is showed in Figure 2. After describing two
alternative RTL implementations, the test interface performances are evaluated
with RTL simulations for both of them, highlighting the improvements delivered by
the second design version. The final chapter draws the main conclusions related to
the test methodology proposed in this dissertation, which confirm the thesis that
DFT can be leveraged to provide a general testing approach, not limited to ESP,
but generally applicable to address the increasing complexity of heterogeneous SoC
designs. In addition, it introduces a BIST-oriented approach to improve the Debug
Unit test performances, which consists in integrating a private memory inside the
tile under test in order to reduce the latency of flits transfers during the test.

iv

Acknowledgements

I would first like to express my sincere gratitude to my Scientific Supervisor,
Prof. Luca P. Carloni, whose expertise was invaluable in formulating the research
questions and methodology.
In addition, I would like to thank my Scientific Co-supervisor, Dr. Paolo Mantovani,
for his consistent support and valuable guidance throughout my research activity.
His knowledge and insightful feedback pushed me to sharpen my thinking and
brought my work to a higher level.
Besides my supervisors, I also wish to thank my Thesis Advisor, Prof. Luciano
Lavagno, for his professionality and continuous availability during all this period.
Finally, I must express my very profound gratitude to my parents and my brother,
for providing me with unfailing support and continuous encouragement throughout
my years of study. This accomplishment would not have been possible without
them.

v

Table of Contents

List of Tables ix

List of Figures x

Acronyms xiii

1 Introduction to ESP 1
1.1 Raise of Heterogeneous Computing 1
1.2 ESP Methodology . 4
1.3 ESP Architecture . 7

1.3.1 NoC . 8
1.3.2 Tiles . 13

2 SoC Test trends 18
2.1 Functional Test . 19
2.2 Structural Test . 20

2.2.1 Design for testability . 21
2.3 Conclusions . 24

3 ESP Test approach 26
3.1 Backend flow constraints . 26

3.1.1 NoC bypass . 26
3.1.2 Ethernet . 27
3.1.3 Conclusions and additional remarks 31

3.2 Test interface specifications . 32
3.2.1 Insertion point and Debug Unit interface 32
3.2.2 Pin count constraints and pin sharing 37

3.3 Test flow . 41
3.4 Test programs . 44

vii

4 Debug Unit Design 48
4.1 First version - single register . 49

4.1.1 FSM . 49
4.1.2 Datapath . 51
4.1.3 Simulation . 53
4.1.4 Conclusions . 59

4.2 Second version - multiple registers 60
4.2.1 FSM . 61
4.2.2 Datapath . 63
4.2.3 Simulation . 65
4.2.4 Conclusions . 69

5 Conclusions 71
5.1 Future improvements . 71

A End of Dennard Scaling 74

B AMBA-AXI protocol 79

C CPU tile operation 82

Bibliography 85

viii

List of Tables

3.1 I/O pins partition for a 16-tiles ESP ASIC instance. 41
3.2 NoC planes purposes from the CPU tile perspective. 42

4.1 Simulation trace for the load and store instructions. 54

ix

List of Figures

1 Overview of ESP tile-based architecture [4]. iii
2 Proposed approach for a tile functional test. iv

1.1 Technology scaling trends [7]. 2
1.2 HLS-based design space exploration for a single SoC component [2]. 6
1.3 Pareto migration from compositional to system-level DSE [3]. . . . 6
1.4 Design and integration flows supported by ESP methodology [2]. . . 7
1.5 ESP modular architecture [5]. 8
1.6 ESP NoC interface [2]. 10
1.7 LID protocol and Shell encapsulation in ESP. 13
1.8 Tightly-coupled accelerator model [3]. 15
1.9 Co-processor model [3]. 15
1.10 Loosely-coupled accelerator model [3]. 15
1.11 Overview of accelerator, processor and memory sockets, together

with the related platform services [4]. 17

2.1 Rule of ten for ICs test costs [19]. 19
2.2 General Test approach [18]. 19
2.3 Relevant examples of chip defects [20]. 21
2.4 Scan chain implementation. 23
2.5 BIST implementation [19]. 23

3.1 (a)Typical Debug communication used in LEON system based on
SPARC Architecture [25]. (b) DSU default arrangement in ESP. . . 29

3.2 (a) Debug Unit placement in the preexisting Design. (b) Tile’s
operating modes. 33

3.3 Debug Unit interface. 35
3.4 Pin sharing approach for ESP Debug Unit. 39
3.5 General Chip-FPGA test plan. 40
3.6 Input flits format. 44
3.7 Test flow. 45
3.8 Startup.S : default test application stored in the bootrom. 46

x

3.9 main.c: program printing "Hello from ESP!" to the UART peripheral. 46

4.1 FSM of Design 1. 50
4.2 Datapath of Design 1. 52
4.3 Execution of store instruction in test operating mode. 55
4.4 Execution of load instruction in test operating mode. 55
4.5 Phase 1: The test logic is performing correctly but the FIFO queue

connected to NoC plane 1 is gradually filled up. 57
4.6 Phase 2: The test logic is still performing correctly, but the FIFO

queue gets full and the AXI write destination switches to channel 5.
A flit is written in this queue. 58

4.7 Phase 3: The flit from channel 5 is selected following a fixed priority
implemented by the FSM, causing the failure of the next read and
check. 59

4.8 FSM revision. 62
4.9 Datapath revision. 64
4.10 Test interface activation sequence. 66
4.11 Test: initial injection phase across multiple planes and detailed view

of the first serial injection on NoC plane 3. 67
4.12 Detailed view of the first serial injection on NoC plane 5. 67
4.13 READ & CHECK sequence on NoC plane 5. 68
4.14 READ & CHECK sequence on NoC plane 1. 68

5.1 Third operating mode for Built-in unit test. 73

A.1 Technology scaling effect on performance [33]. 74
A.2 (a)Scaling of a traditional CMOS technology. (b) Technology scaling

rules [34]. 75
A.3 (a)Power trends upon aggressive gate scaling [36].(b) MOSFET

transfer characteristics in subthreshold region [35]. 77
A.4 Fin FET technology A.4. 78
A.5 FD-SOI techonology A.5. 78

B.1 Classical AMBA-based SoC [38]. 79
B.2 (a)AXI Read transaction (b) AXI Write transaction. 80
B.3 AXI handshake examples [41]. 81

C.1 Detailed internal structure of the CPU hardware socket. 84

xi

Acronyms

SoC
System-on-Chip

ESP
Embedded Scalable Platform

HLS
High-level synthesis

DSE
Design Space Exploration

RTL
Register-transfer level

VHDL
Very High Speed Integrated Circuit Hardware Description Language

CPU
Central Processing Unit

OS
Operating System

LID
Latency-insensitive Design

NoC
Network on Chip

xiii

IP
Intellectual Property

DMA
Direct memory access

LCA
Loosely coupled accelerator

DSU
Debug Support Unit

EDCL
Ethernet Debug Communication Link

JTAG
Joint Test Action Group

UART
Universal Asynchronous Receiver-Transmitter

DUT
device under test

DFT
Design for Testability

TDI
Test Data in

TDO
Test Data out

TMS
Test Mode Select

TCLK
Test Clock

xiv

Chapter 1

Introduction to ESP

This chapter presents the open source Embedded Scalable Platform (ESP), which is
used to apply and evaluate the verification methodology proposed in this dissertation.
Section 1.1 reports a general overview of heterogeneous computing as a new
alternative to face the crisis of technology scaling affecting semiconductor industry
in the past decades. Among the ongoing open source heterogeneous platforms,
ESP is introduced with its distinguishing features. In Section 1.2, the system-level
companion methodology of the platform is described, and the different design
flows supported are presented. Amongst those, a more accurate description is
dedicated to the design flows leveraging commercial high-level-synthesis (HLS)
tools. In addition, the advantages of full-system simulation promoted by the ESP
virtual platform are stressed and supported by examples of system-level design-
space-exploration (DSE). Finally, section 1.3 offers an overview of the tile-based
architecture of the platform. A particular focus is dedicated to the description of
the platform services offered by each type of socket, as well as to the presentation
of the latency-insensitive communication infrastructure connecting different tiles.

1.1 Raise of Heterogeneous Computing
The end of Dennard scaling, discussed in detail in Appendix A, marked the
beginning of a revolution in the way of looking at computing platforms. Even if
the device geometry-scaling has confirmed Moore’s law predictions thanks to a
skyrocketing progress of lithography and fabrication processes, the power dissipation
and operating frequency of the system have stopped scaling as expected in the past
decade. As a consequence, an increasing gap between the system energy-efficiency
and integration capacity has consolidated over the years [6], as showed in Figure
1.1.

To face this challenge, there have been several studies about non-classical CMOS

1

Introduction to ESP

Figure 1.1: Technology scaling trends [7].

devices, based on innovative technology boosters and conduction mechanisms which
deliver higher performances. Nevertheless, in order to cope with the increasing
gap while respecting the market road-map, an immediate change of paradigm
was necessary at architectural level. In this perspective, the advent of multi-core
architectures from 2005, introduced the possibility to exploit higher parallelism
by running different threads on multiple cores. The base idea laying behind this
approach is that the only way to prevent damages to the circuit, due to excessive
power dissipation, is to use just a part of it at a time. In particular, depending on
the type of application workload currently run, just a part of the logic is activated
to execute while the rest, commonly referred to as dark silicon, is turned off.
In addition, by reducing the operation frequency of each core, a subset of the
cores can run parallel workloads within the system power budget [3]. Of course a
tight hardware-software collaboration is crucial to exploit the increased integration
density with this approach: it is key that the software application is developed with
the same degree of parallelism, so that multiple execution threads can be used.
With the wide range of domain-specific applications developed in recent years,
however, the increased hardware parallelism offered by multi-core processing could
not keep up with the required computational effort. A growing demand for
performances focused on specific types of applications has gradually started to
dominate the market at this stage. Aggressive hardware specialization was the only
remaining path for the architecture community to accomplish such requirements.
This is how customized hardware accelerators, capable of performing a restricted
set of tasks in an optimized way [8], started to be integrated in embedded system
together with microprocessors. Even if the cost of development and production

2

Introduction to ESP

of customized hardware was extremely difficult to support at the beginning, it
got soon overwhelmed by the benefits coming with it. In particular, customized
computational units delivered a significant performance increase when coupled with
general-purpose microprocessors. This is mainly because each accelerator comes
not only with its own optimized way of processing the target data-workload, but
also with a customized interconnect for data movement [6]. In addition, the advent
of dark silicon makes the impact on the overall power envelope negligible since each
specialized unit can be switched off when not used during the program execution.
To sum up, different ways to handle the crisis of Dennard scaling have been proposed
in the past decades. Amongst those, the integration of several components, differing
in customization level and functionality, into heterogeneous computing platforms,
has emerged as the optimal approach to satisfy the market demands.

In this perspective, several projects from the open source hardware community
(OSHC) have provided significant contribution to the progress of heterogeneous
computing platforms. Amongst those, it is worth mentioning the following initia-
tives:

• Parallel Ultra-Low Power (PULP) computing platform, a joint effort
of ETH Zurich and University of Bologna. PULP is a multi-core platform
addressing the demands of Internet Of Things (IoT) applications. It is
characterized by a parallel ultra-low-power programmable architecture which
allows to meet the computational requirements of these applications, remaining
within the power envelope of a few mW [9].

• Rocket Chip, developed at UC Berkeley, is an open-source System-on-
Chip (SoC) design generator. It is implemented in Chisel and combines
general-purpose processor cores using the open source RISC-V instruction-set-
architecture (ISA) with custom accelerators, integrated mainly in the form of
instruction set extensions or coprocessors. [10].

• ESP: an open-source SoC platform combining a modular and scalable tile-
based architecture with a flexible system-level design methodology. The
development of this research project at Columbia University was driven by
the shift of paradigm faced by the information technology industry, which
led to the spread of heterogeneous computing across a large set of domains,
from edge applications in embedded systems to data centers. On one side,
the heterogeneous architecture of ESP couples general purpose processor with
specialized hardware accelerators in the attempt of striking a balance between
regularity and specialization. On the other side, the companion methodology
raises the level of abstraction from Register-transfer-level (RTL) to higher
level descriptions, and takes care of hardware/software integration by enabling
several design flows for in-house accelerators [2].

3

Introduction to ESP

1.2 ESP Methodology
The ESP methodology is mainly driven by the necessity to continue sustaining
the progress of the semiconductor industry while facing the growing complexity
of SoC design [5]. It lays its foundation on a high degree of flexibility, necessary
to accomodate different design flow and CAD tools. As of today, ESP already
supports several design flows, making it possible for designers working at different
abstraction levels to contribute to the platform IP library. In particular, different
design flows are supported by ESP to obtain an accelerator implementation:

1. The traditional and cycle accurate RTL flow can be used starting from
standard hardware description languages such as Verilog, VHDL or Chisel.

2. Commercial high-level-synthesis tools combined with in-house ESP automation
tools can be used to create accelerators starting from loosely-time or un-timed
behavioral description of the system in C-like languages (mainly C++ and
System C). The most relevant HLS flows supported by ESP include: C/C++
with Xilinx Vivado HLS and Mentor Catapult HLS, SystemC with
Cadence Stratus HLS [2] .

3. The open source hls4ml flow can be deployed to obtain synthesizable acceler-
ators from domain-specific libraries for deep learning like Keras, Tensorflow
and Pytorch.

Amongst those supported, the HLS-based flow is worth of a more accurate
analysis, since it represents a key element of the ESP vision. In particular, the
HLS flow shifts the engineering effort from low-level and time-consuming RTL
descriptions to system-level specifications written with high-level languages. With
the increasing complexity of modern SoCs, several features of the RTL flow lead to
suboptimal results. In fact, each point in the multi-objective design space differs
significantly from its neighbours in terms of micro-architecture, meaning that a
significant portion of the RTL code needs to be changed to target the optimal design,
with a high probability of incurring in bugs while moving across the different layers
of abstraction [3]. In contrast, HLS can be leveraged to automatically generate
many RTL implementations from a single system-level synthesizable specification,
promoting the exploration of a vast design space with many micro-architectural
alternatives [2]. Such a variety of RTL implementations can be obtained by using
a rich set of configuration knobs normally offered by state-of-the-art HLS tools.
Some of the most common HLS directives are function inlining, function sharing,
loop pipelining. In addition, timing constraints on the clock can be imposed,
thereby impacting the number of states included in the RTL code (differently from
synthesis, where a stronger timing constraints impacts on the technology to choose
[3]). Given a high-level description, different combinations of these directives passed

4

Introduction to ESP

to the HLS engine produce alternative RTL implementations, corresponding to
different points in the multi-objective design space, as showed in Figure 1.2. It
is important to remark that all these implementations are not equivalent from
an RTL viewpoint, since they do not produce exactly the same outputs, clock
by clock, for a certain sequence of input signals, but they are still valid RTL
implementations of the original SLD specification [5]. To be more precise, they all
belong to a latency-equivalent class and any of them can be integrated within an
ESP instance because its tile socket implements a latency-insensitive protocol [5].
To clarify this aspects, the concept of latency-insensitivity design will be furtherly
discussed in the dedicated Section 1.3.1. After selecting the option that reflects
the best performance trade-off, a logic synthesis step is necessary to generate the
scheduling and resources for the hardware implementation: the HLS tool uses
the estimation of the performances for each primitive operation and generates the
resources according to the initial timing constraint, using a scheduling algorithm
which is typically the List-Scheduling (LS) algorithm [11]. ESP actively contributes
to the process of obtaining a suitable IP implementation by providing accelerator
templates to simplify the design stage, as well as fully-working accelerator skeleton
obtained from a set of parameters passed by the designer (namely name ID, desired
HLS flow, configuration registers, bitwidth of data tokens and size of batches
to execute without CPU interruption [2]).The proposed HSL-based flow and the
associated application-level design space exploration is crucial for an IP designer
seeking to integrate the accelerator in a pre-existing system with certain features
and requirements. Nevertheless, when it comes to building an SoC from scratch,
the SoC architect needs to take into account a bigger set of parameters derived
from the overall operation of the system and not limited to a single computational
unit. In this case the target of the designer is not only the specific accelerator
implementation, but the optimal mix of tiles, including the number of instances per
accelerator to run a certain application. Unfortunately, this can not be targeted by
simply combining the results obtained from several single-component, application-
level DSE (also referred to as compositional DSE) [3].
This is where a second key element of ESP vision comes in: ESP offers a FPGA-
based rapid prototyping platform that both hardware and software engineers can
use to emulate and validate a component as part of the whole system. The full-
system simulation is run on top of the software stack that will be deployed in
the final system, including the Operating System (OS) [5]. The main factors
taken into account in a system-level DSE are the contention of shared-resources,
the overhead of the communication infrastructure involved in p2p communication
channels, as well as a set of non-deterministic effect of the operating system and
DRAM access [3]. It is worth noticing that, when all these factors are taken into
account by the platform simulator, a significant migration of the Pareto points

5

Introduction to ESP

curve 1 for a single component can take place. In certain cases, implementations
belonging to the Pareto curve in the ideal case turn out to be non Pareto optimal
at system level, as visible in the example highlighted in Figure 1.3 reporting the
ideal and system-level DSE for an accelerator targeting the WAMI app 2. To
conclude, on one side, full-system simulation offers the possibility to target a
certain combination of tiles for a specific application hiding the complexity of
heterogeneous integration given by the interaction of all system components. On
the other side, it encourages hardware/software co-design responding to one of the
main premises in the ESP approach: the specific target application workload must
drive the software-programming and hardware-design efforts throughout all stages
of the SoC realization [5] .

Figure 1.2: HLS-based design space
exploration for a single SoC compo-
nent [2].

Figure 1.3: Pareto migration from
compositional to system-level DSE
[3].

The ESP methodology is summed up in Figure 1.4. On the left, the accelerator
design flow for the creation of an IP library is showed. On the right side, the SoC
flow based on the in-house virtual platform shows how to automate the integration
of heterogeneous components into a complete SoC.

1In the Design Space, a point is a Pareto point if there is no other point of the design space
with all the objectives inferior or equal and at least an inferior objective. The Pareto points curve
is the interpolation of all the Pareto points for a certain design evaluation [11].

2The WAMI app is an accelerated version of the Wide-Area Motion Imagery (WAMI) applica-
tion [12]: an image processing application used for aerial surveillance [13]

6

Introduction to ESP

Figure 1.4: Design and integration flows supported by ESP methodology [2].

1.3 ESP Architecture
The ESP design methodology is effective because it was developed together with
the companion ESP architecture. The platform is characterized by a modular,
tile-based multi-core architecture that aims at striking the right balance between
heterogeneity and regularity, implementing a distributed system that is inherently
scalable [12]. An example of an ESP instance consisting in a 16-tile SoC organized
in a 6 x 6 matrix is showed in Figure 1.5. Each tile can contain a processor, an
accelerator, a memory link to off-chip memory, or some I/O peripherals necessary
for the platform services. A more detailed description of the internal components
of each of them is presented later in this paragraph.

The design environment comes with a Graphical User Interface (GUI) that
guides the designer to the interactive floor-planning of the SoC with a push button
capability for rapid prototyping of ESP on FPGA. The target combination of tiles
can be determined through the aforementioned design space exploration and it is
thus strictly driven by the application workload. The key architectural element of
ESP tiles is the modular socket interface. A socket interface is used for each tile to
interface with the Network-on-chip (NoC) and it performs a set of platform services
following the paradigm of latency-insensitive-design[14] discussed in paragraph
1.3.1. As a result, the design of the communication infrastructure of the system is
decoupled from the design of the internal component, making the integration of
heterogeneous IPs transparent to the IP designer and to the SoC architect. This
also applies to the cases where the third-party IP, which needs to be integrated in

7

Introduction to ESP

Figure 1.5: ESP modular architecture [5].

the platform, already implements some of the services offered by the ESP socket.
Thanks to the modularity of the socket, it is indeed possible to choose the set of
services to be instantiated at design time, or enable them with reconfigurability
option at run time, so to easily get a simplified version with less services [2]. As
of today, ESP enables the transparent integration of newly developed accelerators
with third-party intellectual property blocks speaking the Advanced Extensible
Interface (AXI) protocol, including the ARIANE 64-bit RISC-V processor core and
the NVIDIA Nvdla accelerator.

1.3.1 NoC
Different tiles are connected with a packet-switched, multi-plane NoC characterized
by A MESI directory-based protocol 3 and a 2D mesh topology as briefly summarized

3Cache memories are adopted to improve the performances of systems implementing the shared
memory paradigm. This is done by temporary storing frequently accessed data in the higher
levels of the memory hierarchy, i.e. those closer to the processors. The main drawback is that
data accesses targeting addresses which are residing in more than one location may incurs in
correctness problems. Cache coherence protocol are used to maintain a unified view of the memory
hierarchy. Amongst those, directory-based protocols rely on a point to point communication for
coherence requests, resulting in lower bandwidth requirements with respect to broadcast protocols
[15]. In particular, this is made possible by using a directory which keeps track of the shared

8

Introduction to ESP

in Figure 1.6. The NoC only interacts with the socket and it can distribute messages
across multiple physical planes to maximize the accelerators performance while
preventing protocol deadlock. In particular, it provides support for system level
coherency on top of three dedicated planes, avoiding any possibility to create a
deadlock condition. Two other planes of the NoC are used to handle Direct Memory
Access (DMA) requests and response between the accelerator tiles and memory
tiles, while an additional plane supports IO/IRQ channels. Those are used for
various purposes and in particular to program accelerators. A more deatailed
description of the type of messages travelling on each plane of the NoC is here
reported:

1. Coherence planes :

(a) Plane 1: Coherence requests from CPU to directory.
(b) Plane 2: Coherence forwarded messages to CPU.
(c) Plane 3: Coherence response messages from and to CPU (bidirectional).

2. DMA planes :

(a) Plane 4: DMA response to accelerators and Coherent DMA requests from
accelerators (bidirectional).

(b) Plane 6: DMA requests from accelerators and Coherent DMA response
to accelerators (bidirectional).

3. IO/IRQ plane

(a) Plane 5: Remote Advanced Peripheral Bus (APB) requests from processor
and APB response to processor for memory-mapped registers configuration.
Interrupt requests to processor and remote acknowledge from processor
for interrupt handling. Advanced High-performance (AHB) requests to
processor Debug Support Unit (DSU) and AHB responses from processor
DSU for communication with the Debug Ethernet interface. Other types
of transactions speaking the AHB protocol for communication with other
peripherals of the IO tile, such as UART 4 and a digital visual interface
(DVI) to enable video output(bidirectional).

The router architecture provides look-ahead dimensional routing. In other words,
the route computation is removed from the critical path [15] and it is performed

cache lines, and the corresponding current sharers.
4The universal asynchronous receiver-transmitter (UART) is an hardware device, usually part

of an integrated circuit, used for serial communications over a serial port [16].

9

Introduction to ESP

Figure 1.6: ESP NoC interface [2].

in parallel with arbitration [4], so that every hop takes just one clock cycle. All
the design choices for the communication infrastructure of ESP are driven by
the transaction level modeling (TLM) abstraction: a high-level approach which
decouples the details of communication among modules from the details of the
implementation of the functional units [17]. As a matter of fact, the NoC acts as a
transparent communication layer so that both the processor and accelerators work
as if any other component of the SoC was connected to the ports of the local bus
in the socket. In the specific case of ESP, this is only made possible by the use of a
couple of proxy components instantiated in the tiles for each type of inter-module
transaction, showed in gray in figure 1.6. Their task is to translate CPU and
accelerators requests into packets suitable for travelling on the NoC infrastructure,
as well as turning the messages coming from the NoC back to their original shape
when they reach the destination. Each proxy has an associated buffering queue
to respect the rules of the latency-insensitive design. This methodology plays a
fundamental role in driving some of the most important decisions in the design of
the NoC, as well as the socket interface. As a consequence, it deserves a description
of its main features that is given in the following subparagraph.

Latency-insensitive Design

The synchronous paradigms applied at RTL defines a digital system as a collection
of interacting modules, each one including combinational logic defining the module

10

Introduction to ESP

functionality and registers storing the state and output variables. At each clock
cycle, each module uses the current value of the inputs and the state variables to
update the state and output variables. The synchronous hypothesis states that
the computation phase (within the functional modules) and the communication
phase (transferring the computed values across modules) occur in sequence without
any overlap between them [14]. The crisis of this paradigm started with what
is normally referred to as the "Wire Problem". As already mentioned, with the
progress of semiconductor industry, the adoption of nanometers technology led to
the integration of a growing number of transistors on the same chip. Throughout
this trend, however, the global wires connecting different modules could not shrink
in the same way as the local wires and logic gates did. As a direct consequence,
most of the paths connecting different modules started to become critical paths
due to their consistent resistive/capacitive delays. The great amount of exceptions
to the synchronous paradigm coming with the technology scaling needed long
stages of CAD flows for being fixed, without the guarantee of an optimal result.
In this context, latency-insensitive design (LID) emerged as a candidate for a new
methodology which relaxes the timing constraints imposed by the synchronous
paradigm from the early design stages, when a correct estimation of the global
wire connections is not available yet [14]. To be more specific, this approach
states that if the modules composing an embedded system implementing the LID
methodology are functionally correct, then the system can work independently of
the inter-module channel latencies. Two key elements are necessary to reach this
goal:

1. A protocol responsible for making the communication on inter-module chan-
nels independent from latencies.

2. A shell to implement an interface between the module and the latency-
insensitive channels, flexible and adaptable to any instances of a component
picked from a design space exploration set.

In the LID theory, two signals are said to be latency-equivalent it they present
the same ordered sequence of valid data items, regardless of the exact timing of
each event on each signal. In addition, if a system functionality is only dependent
on the order of events of each signal, then it is said to be a patient system.
These definitions are made more rigorous by defining two different types of events
possibly taking place on such signals at each clock cycle: (1) an informative event,
corresponding to a valid data item. (2) a stalling event, consisting in a packet
that does not contain any valid information. In this way, the previous definition
of latency-equivalent signals can be rephrased as follows: two signals are latency
equivalent if they contain the same sequence of informative events, regardless of the
stalling events interleaving at any point in such sequence [14]. The implementation

11

Introduction to ESP

of the necessary logic for making a system patient is defined as shell encapsulation
and it mainly consists in a wrapper that instantiates a buffering stage and some
synchronization logics to interface the module core with the latency-insensitive
communication channel. A condition to apply this logic without affecting the core
functionality is that the core is stallable, i.e. it can be forced to wait for a new
valid input for any number of clock cycles without losing its internal state. Once
this key requirement is satisfied, the shell must be able to perform the following
operations [14]:

• When a valid data item is retrieved at the input port of the core, the shell
forwards it to the core that can update its state and emits a new output at
the next clock cycle.

• Instead, when an invalid data reaches one of the input ports, the core is stalled
until a new valid data item reaches that input port. At the same time, the
valid data items reaching other ports of the core need to be temporary stored
so to be used in the proper order when the core will be unstalled. This is the
origin of the need of a buffering stage in the shell logic.

Amongst several implementations of the protocol and shell-encapsulation able
to perform these operations, a particular focus on the one implemented in ESP
is here proposed and summarized in Figure 1.7. The latency-insensitive protocol
used for the communication channels, i.e. the different planes of the NoC, make
use of two signals, in addition to the one conveying the data items: a void bit,
that is used to distinguish a valid data item from a stalling one; an additional
stop bit is also present to provide a very useful service commonly referred to as
backpressure. For practical reasons, the buffering stage previously described has a
limited storage capability. In other words, after a few clock cycles that a core has
been stalled due to an invalid data on one of the input ports, the queues on the
other ports will get full. In this scenario, it is necessary to prevent the uplink shells
connecting to each of those ports from sending other valid data items that would
overwrite the content of the queues. In other words, in certain cases, the downlink
shell needs to exert backpressure on the uplink shell to keep the protocol correctly
working. The easiest way to implement this capability is through the additional
stop bit previously mentioned. When such signal is asserted, the corresponding
core stops sending out valid token even if the input signals are valid, until the
donwlink shell deasserts the stop bit. To sum up, a sequence of stalling events on
an output channel is either due to a lack of alignment of valid token across the
input ports or to backpressure from the downlink shell.

12

Introduction to ESP

Figure 1.7: LID protocol and Shell encapsulation in ESP.

1.3.2 Tiles
The different types of socket are discussed in details in the following.

Accelerator tile

As opposed to many other open source RISC-V platforms, the ESP accelerators have
their own dedicated tile and are thus given the same architectural relevance as the
processor. These types of accelerators are commonly referred to as loosely-coupled-
accelerators. Before proceeding with the description of the ESP accelerator socket,
it is worth giving a brief overview of the existing accelerators classification. The
main property driving the classification is the accelerator-processor coupling. This
is a distinguishing feature that directly determines a set of important behavioral

13

Introduction to ESP

trends for the whole SoC. Amongst those, the local storage transparency to the
processor, the type of access to external memory and the granularity at which the
data set of the target application is handled by the accelerator.

1. In processor-centric designs, the accelerators are tightly-coupled functional
unit integrated in the processor pipeline as showed in Figure 1.8 . They are
generally activated through a portion of control logic shared with the processor
pipeline, after decoding the activation instruction obtained from a dedicated
ISA extension. In addition, their location imposes several constraints on
the internal design. A major limitation is given by the low available area,
which imposes a limited amount of storage elements implemented as registers
and prevents from the use of SRAM banks due to their limiting physical
constraints.

2. With an increasing complexity of the task to perform, the accelerator design
necessitates a relaxation of the coupling with the processor. A very common
solution, adopted in several open source platforms, is given by accelerators
integrated as co-processors. In this case, the specialized hardware is inte-
grated as a separate entity still sharing many processor’s resources and tightly
connected to it through a dedicated interface. The interface is suitable for
both instruction or data transfer as showed in Figure 1.9, depending on the
specific implementation and the co-processor activity. When the co-processor
activity is too high and causes resources contention, a direct interface to the
bus system can be used leveraging either a DMA mechanism or the cache
coherency of the system itself, as proposed with the Rocket Chip Generator
[10].

3. An even more flexible solution is provided by loosely coupled accelerators
as shown in Figure 1.10. Instantiated separately from the processor, they are
not limited by any ISA or dedicated interface with the processor and can thus
deal with more complex workload thanks to a higher degree of parallelism

Even if the implementations sticking to the first two models have demonstrated
to gain significant performance improvements, when it comes to executing more
complex tasks, the loosely-coupled model makes it possible for any external cus-
tomized hardware to be completely decoupled from the processor and automatically
integrated in the socket. This is the reason why ESP naturally leverages loosely
coupled accelerators, also referred to as LCAs. In addition, the absence of particular
constraints makes the accelerator tile of ESP suitable for hosting customized private
local-memories implemented with multi-bank and multi-port structure, able to
satisfy higher bandwidth requirements . This system-centric view, as opposed to a
processor-centric view, distinguishes ESP from many other open source RISC-V

14

Introduction to ESP

Figure 1.8: Tightly-coupled accelerator model [3].

Figure 1.9: Co-processor model [3]. Figure 1.10: Loosely-coupled
accelerator model [3].

platforms. Furthermore, the adoption of LCAs is a clear example of how ESP
promotes IP reuse across different SoCs, making of flexibility and scalability two
key concepts of SoC design.

The ESP accelerator socket provides several platform services, among which:

1. A run time selection of coherency models for the accelerator. The socket
currently supports four types of coherence protocols:

(a) Fully coherent model, using the existing memory hierarchy and an
additional private L2 cache instantiated in the accelerator socket.

(b) Coherent-DMA model, without a private cache but coherent with all
the other caches of the system.

15

Introduction to ESP

(c) LLC coherent model, without a private cache and not coherent with
the rest of the system.

(d) Non-coherent DMA model, completely bypassing the cache hierarchy.

2. A DMA controller handling input read and output write requests with a
latency-insensitive protocol.

3. A set of configuration registers used to activate different services without the
processor intervention and an interrupt controller.

Processor tile

Each processor tile contains a core which can be selected among those available
in the RTL processor library (the currently available processors are the RISC-
V 64-bits Ariane processor from ETH Zurich and the SPARC 32-bit LEON3
processor from Gaisler, both coming with a private L1 cache and capable of booting
Linux). The processor tile replicates the same type of seamless encapsulation of
external IP thanks to the platform services delivered by the socket interface. The
internal communication is handled by an AHB bus in LEON3 and an AXI bus
in Ariane, while the proxies work as adapters to communicate with the memory
and the interrupt controller in the IO tile, as well as to handle memory-mapped
registers. The DMA engine is replaced by a unified write-back L2 cache while
the configurations registers remain approximately the same as those discussed
in the accelerator tile. In addition, three software layers complete the processor
socket: an ESP Linux module, which allows the operating system to recognize all
accelerators in the SoC, some ESP Linux device drivers to configure them, and an
ESP user-level library which simplifies accelerator programming [5].

Memory tile

Memory tiles work as the access points to off-chip memory [4]: each memory tile
contains one channel to the external primary memory. The number of memory tiles
can be configured at design time and this typically varies from 1 to 4 depending on
the size of NoC. Once this is configured, all the necessary hardware logic to support
the partitioning of the addressable memory space is automatically generated, again
transparently. Each memory tile contains one partition of the last-level cache (LLC)
and of the corresponding directory, in order to support the MESI coherence protocol.
Their size is also configurable, similarly to the L2. Additional logic implements the
coherency protocol and all of the mechanism necessary to support coherent DMA
transfer for the accelerators. An overview of the ESP sockets addressed so far is
visible in Figure 1.11.

16

Introduction to ESP

Figure 1.11: Overview of accelerator, processor and memory sockets, together
with the related platform services [4].

IO tile

The IO tile contains the peripherals that guarantee off-chip communication, as
well as a set of fundamental platform services. In this tile, the interrupt controller
is instantiated and interfaced to the rest of the system with an interrupt proxy
that sends and receives requests from the processors through the NoC plane 5.
The Ethernet link is used for both logging in the ESP instance via Secure Shell
(SSH) and accessing memory-mapped registers. A frame buffer is used for the
video output from the DVI, while the UART provides a console interface and the
timer enables periodic tasks [12].

17

Chapter 2

SoC Test trends

This chapter offers a brief overview of the state-of-the-art testing strategies adopted
so far in post-manufacturing verification. In particular, both functional and
structural tests are evaluated as possible candidates to address the increasing
complexity of heterogeneous SoC testing, respectively in Sections 2.1 and 2.2 .
With regard to the structural test, the main practices of Design For Testability
(DFT) are reported and illustrated. Finally, the test approach adopted in this
dissertation is introduced in Section 2.3.

The advance of nanometers technology turned into a dramatic decrease of the
feature size of gates and wires integrated in complex integrated circuits (ICs), as
well as in the increase of operating frequencies and clock speed accurately described
by the Moore’s law. The reduction of features size comes with the main drawback
of increased probability of defects, incurring in the manufacturing steps, leading to
a faulty chip [18]. A fraction of ICs is defective after the tape-out and a good test
approach is needed to minimize the number of faulty chips delivered to the client.
It is crucial to test ICs at different stages of the manufacturing flow. As a matter
of fact, there is a general agreement with the rule of ten, stating that the cost of
discovering a faulty chip increases by an order of magnitude at each successive level
of integration, from die/package to board and system level as showed in Figure 2.1.

With the scaling of heterogeneous SoC complexity, semicondutor companies
are looking for innovative and efficient ways to accelerate the time-to-market of
complex heterogeneous systems while keeping their quality and costs competitive.
Two main types of test have been adopted so far for digital systems and both of
them follow a general approach: a set of test stimuli is applied to the inputs of the
Circuit Under Test (CUT) and the output responses are analyzed, as showed in
Figure 2.2. At this point, if the output responses match those expected for all the
input stimuli, the circuit passes the test and is considered as fault-free. On the
contrary, any failure in matching the expected outputs is sufficient to define the

18

SoC Test trends

Figure 2.1: Rule of ten for ICs test costs [19].

circuit as faulty. The following two sections offer a brief overview of the tests and
an evaluation of their performances when applied to complex SoC architectures
[18].

Figure 2.2: General Test approach [18].

2.1 Functional Test
A functional test provides verification that a design will perform its designated
function. A set of test vectors is applied to the primary inputs of the device under
test (DUT) and the response is checked for functional correctness. The aim of this
procedure is to detect any mismatch between the implementation of the design and
the original project specifications. The main drawback of this approach is given by
the fact that it can become extremely time consuming under certain conditions.
Once again, this is related to the fact that new generations of semiconductor process
technology make it possible for designers to integrate more and more circuitry
in smaller dies. When the system is tested, this translates in a larger number of
test patterns drawn from larger vector sets. In other words, increased functional
capability is the main responsible for a longer test development time. As a clear
example, it is sufficient to consider a single but more complex gate to test, such
as a 10-inputs AND gate. In this case, it is straightforward to conclude that a
conventional functional test would involve a number of test vectors equal to all
the possible input patterns, i.e. 210. This is because, if we strictly stick to the
definition of functional test provided at the beginning of the section, the correct

19

SoC Test trends

functionality of the gate can only be proven by verifying that the gate itself is a
10-inputs AND gate. In order to do that, all the possible input patterns need to
be applied to the gate inputs to compare the results with the expected ones [19].

As a consequence, conventional functional test techniques have gradually turned
out to be unsuitable for verifying the complete functionality of heterogenous SoCs.
Extending this concept to much more complicated system is thus clearly impossible
for practical reasons and poses a challenge to the applicability of functional test to
SoC modules.

2.2 Structural Test
Structural test aims at detecting physical and manufacturing defects responsible for
any possible discrepancy between the implemented design and the manufactured
chip. Even though this looks like a much more modest task with respect to the one
targeted with functional test, the emergence of SoC architectures brought several
challenges in finding a suitable test approach to do that. The effort in facing these
challenges led to the development of a whole new set of test methodologies and
strategies, briefly summarized later in this section. The development of structural
testing techniques was dominated by the necessity to propose a model able to bridge
the gap between the huge variety of possible physical defects affecting a chip and
the impact of such defects at higher abstraction level. Indeed, with the increasing
complexity of heterogeneous SoCs and the evolution of the processes involved in
the manufacturing steps, the list of possible flaws incurring during fabrication has
got significantly longer. Amongst those, it is worth mentioning processing defects
(missing contact windows, parasitic transistors, oxide breakdowns, over/under
etching, defective photoresist), material defects (cracks, particle contaminations,
crystal imperfections, ion migration), time-dependent failures ,dielectric breakdown,
electromigration) as well as packaging failures (contact degradation, leaks) [19].
Figure 2.3 displays just a subset of the possible process and material-related defects
which can affect a gate integrated in the chip.
It was thus necessary to find a way to address the biggest possible subset of real
fabrication defects with a fault model, technology-independent and capable of
raising the abstraction level from the physical cause to the functional effect on the
circuit operation. The most widely accepted model in this field is provided at RTL
of description with the single stack-at fault model, which consists in representing
single defective lines as permanently tied to the logic value 0 or 1. Unlike functional
tests, structural tests shift the attention from the implemented function, which is
assumed to be correct, to the circuit structure, i.e. the gates, the interconnects
and the corresponding netlist. This type of test is strictly dependent on the fault
models mentioned before: an algorithm is derived from the fault models so that

20

SoC Test trends

Figure 2.3: Relevant examples of chip defects [20].

a dedicated testing software can derive a minimal set of test patterns to force
transitions on every net possibly affected by such faults. This step is commonly
referred to as Automatic Test Pattern Generation (ATPG).
Nonetheless, a major issue to overcome when it comes to testing complex SoCs
though, is the fact that most of the gates are deeply embedded and extremely
difficult to reach and be tested from the primary inputs of the circuits. In other
words, the circuit testability, given by the combination of controllability and
observability of each fault possibly affecting the circuit nets, is intrinsically very
low. The enhancement of testability can be achieved by adopting appropriate
logic and architectural synthesis techniques that are discussed in the following
subsection.

2.2.1 Design for testability
Design for testability (DFT) emerged as a new testing paradigm aiming at improving
the circuit testability by including in the system dedicated hardware to perform
the test. This is done while keeping the test development economically viable and
the execution time and performance overhead low enough in order to guarantee a
competitive product.

Some of the most used structural DFT methods include:

21

SoC Test trends

• Scan-chain insertion: a well known DFT practice capable of turning a
sequential test in a purely combinational one. In the proposed approach, the
Flip-Flops (FFs) of a design are turned into Scan Flip-Flops (SFFs) as showed
in Figure 2.4a so that they can be connected together into a unique, large,
distributed shift register. In this way, when the test mode is activated, a test
vector can be shifted in the scan chain as showed in Figure 2.4b. Once the input
stimula are applied to the combinational logic, the test results can be shifted
to be compared with the expected ones. The efficiency of this approach led a
group of electronic manufacturers to promote an industry standard, commonly
known as IEEE Std 1149.1 Standard Test Access Port and Boundary-Scan
Architecture. The architecture of the IEEE Std 1149.1 is showed in Figure
2.4c [21]. It consists of a set of registers used for instruction decoding, data
storage, DFT bypass and other optional services, and a boundary-scan register
composed of several boundary-scan cells. A total of four pins is used for the
test I/O:

1. A Test Data In (TDI) and a Test Data Out (TDO) pin for shifting and
extracting the test vectors.

2. A Test Mode Select (TMS) pin to drive the TAP controller state.
3. A Test Clock (TCLK) pin for driving the test logic.

• Built-In Self-Test (BIST): it consists in an elaboration of the idea of DFT
which aims at improving the chip testability by substituting the expensive
Automatic Test Equipment (ATE) with embedded hardware for test vectors
generation and response analysis. The high-level implementation details are
showed in Figure 2.5. In this way, the generation of test patterns can be
performed on-chip and the controllability of the internal nets significantly
improves. At the same time, the on-chip assessment of the test response
improves the overall observability [19]. Originally started from simple circuitry
surrounding memory blocks, the idea was extended to the logic with very
satisfying results in terms of test coverage and costs. The main drawback
coming with it is that the preexisting hardware is extensively modified [22].

While the progress of structural DFT has given a major contribution in the
development of SoC testing, many critical aspects are limiting their actual applica-
bility in complex architectures. First of all, the fault model driving the test pattern
generation is not complete since stuck-at fault model is not able to represent all
the possible flaws in a system and can only target a subset of the real world defects.
In particular, tiny bridges or necks in the interconnect, irregularities in vias and
unpredicted coupling between signal lines create high resistive/capacitive delays
which are not taken into account in fault models, but can still cause system failure.

22

SoC Test trends

(a) Scan flip-flops [19].

(b) Scan chain operating modes [19]. (c) Boundary-Scan Architecture [21].

Figure 2.4: Scan chain implementation.

Figure 2.5: BIST implementation [19].

[23]. In addition, heterogeneous SoCs are often characterized by an extensive reuse
of third-party IP. As for the case of ESP, different components coming from the
open-source hardware community or from commercial vendors may come with their
own test methodology. In particular an IP provider has most certainly already
inserted DFT in the design, either with a scan or by implementing a BIST function.

23

SoC Test trends

The SoC test designer will thus need to employ a variety of different test strategies
that need to be stitched together in a coherent system-level test methodology
[24]. In the case of several cores provided with internal scan chains, for example,
a significant engineering effort might be required to connect the scan chains to
the external environment without changing the core interfaces. While this is a
challenging task in normal conditions, it gets even harder when a third-party IP
block is encrypted to protect the supplier’s proprietary data and the netlist is not
available, since the block can not be included in an overall chip synthesis strategy.

The latter point has been one of the main problems driving the evolution of
DFT for SoC in the past decades. A viable solution which is often implemented
consists in making use of IPs with the same test methodology, i.e. coming from the
same ASICs vendor. While this approach represents an easy option to overcome the
limitations mentioned, it strongly limits the SoC architect possibility to make use of
heterogeneous third-party components coming from different sources.A more widely
applicable solution consists in adopting a standard interface capable of adapting
each core to a general SoC test methodology [23], independently of the core specific
implementation. In other words, the test access to an internal scan-chain structure
is implemented through a standard test wrapper that can be instantiated around
any core, providing transparency during normal operating mode and isolation of
the core in test mode [23]. The arrangement of the wrappers, the test access
mechanisms and the possibility to run BIST in parallel in a specific SoC instance
can then be decided by the SoC architect, according to the package pin and power
consumption constraints. All these DFT strategies require a significant engineering
effort to reach a good test coverage, and may end up to be more time-consuming
than the design stage of the SoC itself. As a consequence, it is crucial that the
synthesis of circuits with scan features is supported by an appropriate enhancement
of the synthesis tools used [11].

2.3 Conclusions
To sum up, possible DFT solutions have been proposed so far to address the
complexity of heterogeneous SoC testing by replacing time-consuming functional
tests with a structural approach derived from fault models. The most important
trends include Scan Chain Insertion and Built-in-Self-test (BIST). The former
is a well known approach to improve the circuit testability, which undergoes a
significant drop in test coverage when the system integrates several third-party
IPs. The latter is a very popular approach integrating test pattern generators
and response analyzers in the logic, with the drawback of extensive hardware
modifications. My thesis is that, in parallel with the effort to build an efficient
and flexible SoC structural test, taking advantage of the CAD tools to automate

24

SoC Test trends

the test features integration, the same amount of attention should be placed on
alternative and faster approaches to verify the correct operation of SoC modules. In
particular, this dissertation proposes a new flexible methodology to leverage DFT
for single-core functional test. As already mentioned, a functional test focuses on
verifying the function of a system rather than the faults affecting it. The approach
proposed for each tile in ESP consists in forcing the module to execute a specific
program where the test results can be checked instruction by instruction. This is
done by making use of a Debug Unit embedded in the logic surrounding the tile,
with I/O interface decoupled from the standard communication channels, i.e. the
NoC. It is worth stressing that the proposed procedure works as both a pre- and
post-silicon test. Indeed, rather than a simple test procedure, this approach aims
at providing a flexible verification methodology which can be applied at any stage
of the design flow and extended to other SoCs platforms. The following chapters
will outline the working principles of such test interface, with a particular focus on
how it implements the upload and injection of the test program instructions, as
well as the check of the results obtained from the module under test.

25

Chapter 3

ESP Test approach

In this chapter, some of the main aspects driving the implementation of the
testing logic for ESP are presented and discussed. In particular, the tasks of
some fundamentals components critical for the system operation are discussed in
more details in Section 3.1. Section 3.2 derives the high level specifications for
a test interface capable of injecting program instructions in the tile under test
and checking the response bypassing the NoC. Then, relevant considerations on
the integration of the testing logic in the pre-existing hardware environment are
proposed. Finally, the test flow and the test set-up are illustrated in detail in
section 3.3, while the main types of applications used for testing the tiles are
presented in Section 3.4.

3.1 Backend flow constraints
This section deals with some critical constraints imposed by the ASIC backend
flow on the test methodology. To be more specific, the purpose of the discussion
is to make the test strategy suitable for addressing a post-fabrication decrease of
reliance on the functionality of some parts of the system.

3.1.1 NoC bypass
A few additional remarks concerning the importance of the communication infras-
tructure of the chip and its role in the operation of the system are functional to
the testing discussion that will be presented in the following pages. The NoC used
for ESP and briefly described in the previous sections, is composed of 6 channels
connecting all the tiles of the SoC through multi-port look-ahead routers. Each
channel plays a different role and delivers different services for ESP functionality,
as reported in Section 1.3.1. In other words, each type of information exchange

26

ESP Test approach

among different tiles of the SoC is strongly relying on the correct operation of the
NoC infrastructure. These include the whole set of fundamentals procedures for
the system boot. Hence, it is of primary importance for the system operation, as
for many others system-centric SoC, that the NoC is working correctly at each
stage of the design flow, and that it is not affected by any fabrication defect after
the tape-out. Given the many physical constraints imposed by the backend flow of
the chip, however, the NoC turns out to have a significant footprint, since it needs
to reach the tiles located at opposite corners of the SoC. As a direct consequence,
the chances of having at least a defect in one of the many wires of the channels
spreading around the chip increase accordingly, leading to potential threats for the
whole system operations. Even considering the high reliability of the technology
processes used for the ASIC implementation of ESP, the minimum risk of a defective
NoC comes with a huge damage in terms of system functionality in case any fault.
This is worth of being taken into account from the early design stages of the test
logic. In particular, when a Test Access Mechanism (TAM) is proposed for the
functional test strategy, it should be decoupled from the NoC so that it can perform
correctly in case a communication channel of the NoC is not working. To conclude,
a first backend-related directive for the testing logic is a NoC-independent access
to the tile that needs to be tested.

3.1.2 Ethernet

Other components of the SoC playing a crucial role in the system boot should be
taken into account. This is crucial to avoid a huge waste of engineering effort in
designing a complex SoC with high quality platform services and transparent IP
integration, that cannot be start the system boot due to fabrication defects. As
previously mentioned, the NoC plays a key communication role since the early
stages of the system boot, because the I/O tile can only communicate with the
modules located in the rest of the SoC by using one dedicated channel of the NoC,
namely Channel 5. Nevertheless, it is the I/O tile responsibility to implement all
the main I/O channels and peripherals responsible for transmitting the relevant
off-chip information, included the ones necessary for correctly starting the system,
as well as supporting a suitable debug interface. In particular, there is a key
communication link fundamental for both debugging and booting the system: the
Ethernet Debug Communication link (EDCL). In the following, a brief description
of this component and its purpose is presented to better understand how it affects
the system functionality.

27

ESP Test approach

Ethernet Debug Communication link (EDCL)

In first place, the Ethernet connection plays a crucial role for remote software
debugging of applications running on embedded hardware. This type of debugging
differs from what is normally referred to as native debugging 1 because it consists
in running a debugger software in a machine that connects to the target hardware
through a communication link [25]. Several types of connections are normally used,
ranging from the slower JTAG connection to the faster EDCL (generally 2 or 3
orders of magnitude faster than JTAG). The communication between the host
machine running the debugger software and the target hardware follows a predefined
protocol and it is based on a few routines that allow the running application to
be stopped from the debugger. In other words, a significant part of the debugger
software runs on the external machine while just a few routines necessary for
gathering information are directly handled by dedicated hardware on the SoC. In a
typical computing system based on an open source library, the core comes with
a Debug Support Unit (DSU) slave on the AHB bus, and thus accessible from
any possible AHB master at any time. In the specific case of ESP, the messages
between the processor DSU and the I/O tile travels on NoC plane 5, as reported in
Section 1.3.1. In order to be able to control the debugging remotely, the DSU is
indeed accessed from the external host through one of the communication links
previously cited. A schematic of a typical LEON-3 system based on SPARC V8
architecture is showed in Figure 3.1a.
When it comes to a system-centric SoC as ESP, the configuration previously
illustrated must adapt to the modular architecture which characterizes the platform.
In other words, the DSU of the core and the communication link to the external
host machine are located in different tiles. While the DSU resides in the CPU tile,
the link is located inside the I/O tile, which is responsible for handling the most
relevant peripherals and the off-chip communication, as illustrated in Figure 3.1.
Having said that, a secondary task performed by the Ethernet link is more relevant
to our discussion. In particular, the Ethernet is also used for the transfer of a set of
crucial information for the SoC system boot. To be more specific, three additional
fundamental tasks are carried out by the Ethernet in normal operating mode:

1. Load of the program to execute inside the bootrom 2.

2. Release the reset to boot the system.

1This expression is used to define the standard debugging approach, where the debugging
software is developed in the same environment where it is used to debug [25].

2The Bootrom is a memory chip containing a few instructions which have to be executed by
the processor to complete a successful boot.

28

ESP Test approach

(a) (b)

Figure 3.1: (a)Typical Debug communication used in LEON system based on
SPARC Architecture [25]. (b) DSU default arrangement in ESP.

3. Configuration of the memory mapped registers instantiated in the chip,
amongst which some crucial tile parameters.

All these tasks can be automatically executed via the Ethernet by sending out
to each tile interface packets containing the corresponding relevant information.
The parameters/registers configuration procedure, however, raise a further issue
related to the synthesis flow. A multi-tile instance of ESP can include tiles that
are functionally equivalent. This is done to provide higher parallelism for the
applications running on top of the platform. Before approaching the project of
developing a backend flow for chip design, the IDs of each tile, necessary for the
tiles to be recognizable from the NoC routers, where hard-coded so to be constant
at design time (generic ports at RTL). This clearly represents an issue now for
the researchers involved in the physical flow, since several instances of the same
core/accelerator, are actually differing for the tile IDs and thus necessitate separated
synthesis. In order to prevent the burden of different synthesis for the same tiles,
the following approach was adopted at RTL: all the generic ports for the tile IDs
were turned into simple ports in all the entities of the different tiles, so that they
could be configurable at run time. At this point, the next big challenge consists in
finding a smart way to configure these registers before the system boot. The most
natural way to deal with this issue is to rely on the same method previously adopted
for configuring all the other types of memory-mapped registers: use the Debug
Unit to configure the registers. Furthermore, the configuration of all the other tile
parameters could be furtherly automated by making each of them strictly dependent
on the corresponding tile ID. In such a way, once the tile ID is configured using this
procedure, all the relevant settings are transparently generated. However, a critical

29

ESP Test approach

issue incurs in the initialization sequence that the tile IO launches at time zero
before the system boot. Some of the secondary parameters automatically derived
from the tile ID contain relevant information for the packets routing around the SoC.
In particular, the coordinates of the tile are generally used from the network router
to calculate the next hop for the flit being currently transferred. Since the tile
coordinates are not known at time zero, the initialization sequence generated from
the tile IO must be tailored to send out packets proceeding with a predetermined
order. For example, a smart way to handle this particular condition, only occurring
during the system boot, may consist in proceeding in the configuration by adjacent
tiles. In other words, the routers only need to route the packet to the adjacent tile.
In this way, respecting a predetermined order, all the configuration flits can be
gradually spread out to the whole chip and reach each tile, configuring the tile ID
and the corresponding dependent parameters. Another drawback coming with the
transformation of the generic constants into configurable signals is the following:
one of the parameters which are made configurable by setting the tile ID is the
bus index. This parameter contains the information on the bus ports which is
accessed by the specific tile. If no specific modification is provided, the following
scenarios can be noticed: if the bus index is a constant, all the ports which are not
connected to any peripheral are automatically erased during logic synthesis. On
the other hand, if the bus index is a register, the logic synthesis will automatically
infer a huge multiplexer with a significant area overhead, which must be manually
avoided.

Ethernet bypass

The use of the Ethernet for the parameters configuration is viable and guarantees
that the whole physical flow is run just once for each type of accelerator or CPU.
Nevertheless, an alternative option to rely on in case of any additional issues
affecting the Ethernet operation must be provided. Each of the tasks normally
performed using the Ethernet interface basically consists in a set of instructions to
be written in the corresponding tile before the system boot. In normal conditions,
this information originates from the I/O tile, that received the information from
the outside through the Ethernet link, and reaches the the tile interface through
the channel 5 of the NoC. If the link is not working, an other type of access to
the target tiles is necessary. A valuable strategy consists in using the test pins of
the Debug Unit implemented to inject the configuration packets in the tile. To be
more specific, before the system bring up, the test mode is selected so that the
configuration packets can be injected in the tiles through the dedicated testing
logic. Once the packets have been injected and the corresponding task has been
terminated, the normal mode can be restored. At this point, the reset is released
and the system waits for the first request coming from the CPU tile.

30

ESP Test approach

The purpose of all of this is to have an alternative way to boot the system in the
worst case scenario of an Ethernet link not properly working. In this way, even if
the SSH log cannot be enabled and the other tasks undergo a significant increase
of latency when performed through the debug unit, the system functionality is
preserved.

3.1.3 Conclusions and additional remarks
To sum up, it is necessary to develop a Debug Unit to be integrated in each tile of
the SoC so that the post tape-out scenarios illustrated in this section can be faced
preserving the system operation. In particular:

1. If the NoC is not properly working, the testing logic allows to perform all the
preliminary operations (registers configuration, reset release, etc..) as well as
to send the other instructions of the target application.

2. If the Ethernet link is not working, the following approach is used: the test
mode is enabled before the system boot and the memory-mapped registers
containing the tiles parameters are configured by injecting the configuration
flits in each tile through the Debug Unit. At this point, after injecting the
instruction that releases the reset, the test mode can be disabled so that the
tile interface gets reconnected to the NoC planes and the system can run in
normal mode as usual.

In order to guarantee the correct switch from test-operating mode to normal
mode, a modification in the design turns out to be fundamental for the following
reason. During a CPU tile test, there might be a critical passage weakening the
robustness of the test in case of an Ethernet link not working. More specifically,
when all the operations that the Debug Unit is performing in place of the Ethernet
link are completed, one final instruction is sent to the CPU through the Debug
Unit in order to correctly boot the system: the instruction for releasing the reset.
Once this instruction reaches the CPU and is executed, the CPU is free to start
issuing requests. In our case, the first expected request is a read request for the
first address of the bootrom. In order to guarantee that the request reaches the
correct destination (i.e. the first address of the bootrom located in the IO tile), it
is necessary to make sure that such request can be forwarded on the NoC of the
SoC. Nevertheless, if the switch of the logic from test operating mode to normal
operating mode is not fast enough, the first CPU request may reach the interface
before the switch has actually completed, and get consequently lost, thus blocking
the execution of the rest of the program. A smart solution to avoid a situation
like this has been proposed as follows: an internal counter can be instantiated in
such a way that the Finite State Machine (FSM) regulating the switch between

31

ESP Test approach

the different states of resets takes into account the need of a certain delay during
the switch from one state to the other.

3.2 Test interface specifications
This paragraph proposes high-level specifications for the Debug Unit, addressing the
challenges derived from the constraints of the back-end flow discussed in Section 3.1.

The conclusions derived in the previous paragraphs makes it clear that an
implementation of a ESP prototype chip requires a test unit implemented as
additional platform service, capable of substituting the NoC and the Ethernet link.
In this way, in the worst case scenario of one of those components not correctly
working, the test interface will have the additional capability of manually boot the
system by injecting the configuration flits one by one or verify the functionality of
all the tiles of the chip by simply emulating the NoC behavior.

As mentioned in Section 2.3, the best approach to replace the NoC in test mode
is to include an additional customized unit directly inside each tile of the SoC, with
its own dedicated pins to communicate with the external environment. The Debug
unit must be able to perform the following tasks:

1. Accept instructions injected serially through one of the dedicated I/O pin.

2. Verify the type of instruction and act accordingly on the tile interface to
execute the test.

3. Use another pin to extract the result of the test, i.e. the messages reaching
the test interface as a result of the flits previously injected.

Before proceeding with the illustration of the test specification , it is worth
mentioning that the instructions injected from the test access point will be directly
taken from a trace obtained in a simulation of the SoC running in normal operating
mode. This will guarantee that the testing logic will act exactly as the NoC,
directing the packets to the tiles with the same order as the NoC does, and
expecting the same response from the corresponding tiles. The steps previously
cited will be illustrated and discussed in details in Section 3.3, where the proposed
test flow is presented, but are here mentioned to give an overall idea of the principle
laying behind the Debug Unit operation.

3.2.1 Insertion point and Debug Unit interface
A key requirement of the integration process is that the additional testing logic
does not affect the whole system while working in normal operating mode. In order

32

ESP Test approach

to do that, the ports connecting the tile interface with the NoC planes should be
multiplexed in such a way to switch the connections according to the current value
of the signal used for setting the operating mode. Hence, the Debug unit must be
placed at the same RTL where the standard connection of the internal hardware
socket with the router ports takes place. With respect to the previous arrangement
in the modules hierarchy, the direct connection between the hardware socket of
the tile and the router is now interrupted by the Debug unit laying in between,
as showed in the upper part of Figure 3.2. The internal logic works in such a way
that the original connection is restored in normal operation, while the NoC gets
completely disconnected in test mode, as summarised in the lower section of Figure
3.2.

(a)

(b)

Figure 3.2: (a) Debug Unit placement in the preexisting Design. (b) Tile’s
operating modes.

Listing 3.1 and Figure 3.3 give more detailed information on the proposed test
interface by providing the code of the VHDL entity implemented for the Debug
Unit and the schematic view, respectively. As discussed in Section 1.3.1, the NoC

33

ESP Test approach

supports a latency-insensitive communication protocol, which makes use of two
additional single-bit signals to handle stalling events and backpressure, respectively
a void-bit and a stop-bit. Those signals need to be passed to the testing logic in
the same way as the one simply carrying data/instruction does. Let us discuss in
detail why this is crucial for each of them:

1. nocX_stop_in: stop bit conveying backpressure from the tile to the NoC.
In normal operation, the value imposed from the tile (i.e. testX_stop_in in
Figure 3.3) is simply assigned to it. In test mode, on the contrary, it should
be set to one as soon as a valid message coming from the NoC on that port
is traced. This is a convenient way to prevent that any message gets lost
travelling on the NoC while the tile is in test mode. For example, when the
test logic is used to replace the Ethernet link, the standard connection should
be restored after the system boot. In this case, if some messages were flying
on the NoC during the test, a hold on the input ports of the tile under test is
necessary during testing not to loose them.

2. nocX_data_void_out: void bit validating the messages in the direction
NoC/Tile. This must be passed to the Debug Unit so that it is directly
forwarded to the tile in normal mode. On the other hand, when the test mode
is activated, it is not used by the testing logic.

3. nocX_stop_out: stop bit conveying backpressure from the NoC to the tile
under test. This must be passed to the Debug Unit so that it is directly
forwarded to the tile in normal mode. On the other hand, when the test mode
is activated, it is not used by the testing logic.

4. nocX_data_void_in: void bit validating the messages in the direction
Tile/NoC. In normal mode, the value imposed by the tile (i.e. testX_data_void_in
) is assigned to it. On the other hand, when the test mode is activated, it
is automatically set to 1 by the testing logic. Once again, the reason can be
traced back to one of the guidelines driving the design, namely the necessity
to completely decouple the operating modes. In fact, in this case, setting the
void bit to 1 is necessary in order to avoid that any wrong flits is forwarded
from the testing logic to the NoC during the test.

34

ESP Test approach

Figure 3.3: Debug Unit interface.

Listing 3.1: Debug Unit entity.
1 en t i t y j t ag_te s t i s
2 g ene r i c (
3 test_i f_en : i n t e g e r range 0 to 1 := 0) ;
4 port (
5 r s t : in s td_ulog ic ;
6 r e f c l k : in s td_ulog ic ;
7

8 t d i : in s td_ulog ic ;
9 tdo : out s td_ulog ic ;

10 tms : in s td_ulog ic ;
11 t c l k : in s td_ulog ic ;
12 −− NoC out to Test /TileQ in
13 noc1_output_port : in noc_f l i t_type ;
14 noc1_data_void_out : in s td_ulog ic ;
15 noc1_stop_in : out s td_ulog ic ;
16 noc2_output_port : in noc_f l i t_type ;
17 noc2_data_void_out : in s td_ulog ic ;
18 noc2_stop_in : out s td_ulog ic ;
19 noc3_output_port : in noc_f l i t_type ;
20 noc3_data_void_out : in s td_ulog ic ;
21 noc3_stop_in : out s td_ulog ic ;
22 noc4_output_port : in noc_f l i t_type ;

35

ESP Test approach

23 noc4_data_void_out : in s td_ulog ic ;
24 noc4_stop_in : out s td_ulog ic ;
25 noc5_output_port : in misc_noc_fl it_type ;
26 noc5_data_void_out : in s td_ulog ic ;
27 noc5_stop_in : out s td_ulog ic ;
28 noc6_output_port : in noc_f l i t_type ;
29 noc6_data_void_out : in s td_ulog ic ;
30 noc6_stop_in : out s td_ulog ic ;
31 −− Test/NoC out to TileQ in
32 test1_output_port : out noc_f l i t_type ;
33 test1_data_void_out : out s td_ulog i c ;
34 test1_stop_in : in s td_ulog ic ;
35 test2_output_port : out noc_f l i t_type ;
36 test2_data_void_out : out s td_ulog i c ;
37 test2_stop_in : in s td_ulog ic ;
38 test3_output_port : out noc_f l i t_type ;
39 test3_data_void_out : out s td_ulog i c ;
40 test3_stop_in : in s td_ulog ic ;
41 test4_output_port : out noc_f l i t_type ;
42 test4_data_void_out : out s td_ulog i c ;
43 test4_stop_in : in s td_ulog ic ;
44 test5_output_port : out misc_noc_fl it_type ;
45 test5_data_void_out : out s td_ulog i c ;
46 test5_stop_in : in s td_ulog ic ;
47 test6_output_port : out noc_f l i t_type ;
48 test6_data_void_out : out s td_ulog i c ;
49 test6_stop_in : in s td_ulog ic ;
50 −− TileQ out to Test /NoC in
51 test1_input_port : in noc_f l i t_type ;
52 test1_data_void_in : in s td_ulog i c ;
53 test1_stop_out : out s td_ulog i c ;
54 test2_input_port : in noc_f l i t_type ;
55 test2_data_void_in : in s td_ulog i c ;
56 test2_stop_out : out s td_ulog i c ;
57 test3_input_port : in noc_f l i t_type ;
58 test3_data_void_in : in s td_ulog i c ;
59 test3_stop_out : out s td_ulog i c ;
60 test4_input_port : in noc_f l i t_type ;
61 test4_data_void_in : in s td_ulog i c ;
62 test4_stop_out : out s td_ulog i c ;
63 test5_input_port : in misc_noc_fl it_type ;
64 test5_data_void_in : in s td_ulog i c ;
65 test5_stop_out : out s td_ulog i c ;
66 test6_input_port : in noc_f l i t_type ;
67 test6_data_void_in : in s td_ulog i c ;
68 test6_stop_out : out s td_ulog i c ;
69 −− Test/TileQ out to NoC in
70 noc1_input_port : out noc_f l i t_type ;
71 noc1_data_void_in : out s td_ulog ic ;

36

ESP Test approach

72 noc1_stop_out : in s td_ulog i c ;
73 noc2_input_port : out noc_f l i t_type ;
74 noc2_data_void_in : out s td_ulog ic ;
75 noc2_stop_out : in s td_ulog i c ;
76 noc3_input_port : out noc_f l i t_type ;
77 noc3_data_void_in : out s td_ulog ic ;
78 noc3_stop_out : in s td_ulog i c ;
79 noc4_input_port : out noc_f l i t_type ;
80 noc4_data_void_in : out s td_ulog ic ;
81 noc4_stop_out : in s td_ulog i c ;
82 noc5_input_port : out misc_noc_fl it_type ;
83 noc5_data_void_in : out s td_ulog ic ;
84 noc5_stop_out : in s td_ulog i c ;
85 noc6_input_port : out noc_f l i t_type ;
86 noc6_data_void_in : out s td_ulog ic ;
87 noc6_stop_out : in s td_ulog i c) ;
88

89 end ;

3.2.2 Pin count constraints and pin sharing
The considerations drawn above provide sufficient material to define the required
amount of pins dedicated to the debug unit off-chip communication, as well as
the exact location where such unit should be instantiated in the hierarchy of files
contained in the RTL description of the SoC. In particular, for each tile:

• A TDI pin for injecting test flits in the tile.

• A TDO pin for extracting test response from the tile.

• A TMS pin for selecting the operating mode of the system.

• A TCLK pin for distributing the test clock across the logic. This is because,
given the functional type of test targeted, all the operations involved in it
can be performed at a much lower clock frequency with respect to the one
characterizing the system operation.

However, in order to reduce the number of pins dedicated to testing and meet
the upper limit on the total pin counts imposed by the backend constraints, a
strategy of pin sharing is necessary. The original SoC test plane imposes that the
Debug Unit is instantiated in each tile of ESP, so that any of them can be tested in
a ASIC implementation. With the a 36 tiles-instance of ESP, for example, 144 pins
would indeed be required for the SoC testing (4 for each tile). Sharing the TCLK
and TMS pins among all the tiles is an immediate and feasible way to decrease the
resource usage dedicated to testing. In this way, just the TDI and TDO pins would

37

ESP Test approach

be replicated for all the tiles, while a single pair of pins for TMS and TCLK would
be used for the whole chip. This would bring the total number of test pins from 144
to 74. The reason why the TCLK pin can be shared is intrinsically related to the
type of testing executed. As mentioned, the clock frequency of a functional test is
order of magnitudes lower than the one of the system operation. As a consequence,
timing closure can be easily reached on a wider area and the same clock can thus
be distributed on the whole chip footprint. Let us now consider the consequences
of using a single TMS for all the tiles. In this case, when a specific tile is selected
for being tested, the global TMS value is set to 1 from outside. As a consequence,
in all the tiles of the SoC, the tile interface connection switch from the NoC ports
to the Debug Unit ports. Nevertheless, it can be proved that the tile targeted will
be the only one to be activated and successively involved in the test. The main
reason is that the TDI pins are distributed one for each tile, i.e. the information
for the test will be only passed to the pin accessing the tile of interest. In addition,
different tiles have different tile IDs and thus different configuration flits. In other
words, no other computational unit of the chip would be able to respond to the
initial configuration phase and the test would stop immediately. An example of the
pin sharing technique proposed applied to a 9-tiles instance of ESP is illustrated in
figure 3.4.

Note that this section is providing a general approach for post-silicon unit
test of tile-based SoC. Specific choices can then be made to modify the proposed
methodology and adapt the pin usage strategy to the needs of a specific SoC
implementation. In order to do that with a specific ASIC target, more information
on the test infrastructure controlling the Debug Unit are necessary, together with
a general overview of the chip I/O partition.

Figure 3.5 shows a detailed overview of a possible I/O plan for a 16-tiles ASIC
instance of ESP. Each connection, labeled with the corresponding FPGA mezzanine
card (FMC) 3, is listed here in detail:

• 4 FPGA-based memory links (FMC1 and FMC2) are used to connect each
memory tile of the chip to the off-chip DDR4 4. More specifically, each memory
tile is connected via memory link to the FPGA, which in turns interfaces with
4 DDR modules (FMC6, FMC7, FMC8 and FMC9) and an Ethernet interface
to store external data in memory (FMC 10). For each memory link, a 64-bit
bidirectional bus converting LLC and DMA request into memory accesses

3FPGA Mezzanine Card (FMC) is a standard that defines I/O modules with connection to
ant device with I/O capability, FPGAs included [26].

4Double Data Rate 4 (DDR4) is a type of synchronous dynamic random-access memory
characterized by a high bandwidth interface largely used for modern SoCs memory system [27]

38

ESP Test approach

Figure 3.4: Pin sharing approach for ESP Debug Unit.

is required. The FPGA link is source-synchronous 5 and characterized by a
credit-based flow control 6.

5This means that the FPGA takes care of generating the clock for synchronising the data to
be sent to the chip, and the chip sends back the data together with the same clock.

6Credit-based flow control works with the receiver sending out credits to the sender in order
to indicate the availability of buffering elements and the sender waiting for credits to transmit
the data [28]

39

ESP Test approach

• Ethernet link (FMC 5) with a single PHY 7 and a double MAC layer 8. The
first one is the ESP debug link and the second one is the Ethernet peripheral.

• UART link via USB.

• JTAG link for the Debug Unit control (FMC4).

• Reset and Clock pins (FMC 3). The clock is internally generated by Digital
Controlled Oscillators (DCOs), but a back up external clock is used for some
tiles in case those will fail. In addition, a monitor pad to measure some clock
frequencies is used.

Figure 3.5: General Chip-FPGA test plan.

Each of the communication links mentioned involves a certain amount of pins.
Given the shortage of IO resources, it may be necessary to limit the Debug Unit
use to a meaningful subset of the SoC tile to reduce the corresponding test pins.
Table 3.1 contains a detailed summary of a possible pin partition strategy for a
16-tiles ESP instance. Adopting the sharing approach illustrated above, the total
amount of pins used to test a selected subset of 11 tiles via Debug Unit is 24.

7PHY is the physical layer implementing the communication functions in a network interface
controller [29].

8The medium access control (MAC) is the layer that controls the hardware responsible for
interaction with the wired, optical or wireless transmission medium, which propagates the signals
in a communication link [30]

40

ESP Test approach

IO function Pin
FPGA Link 280

IO tile peripherals 24
JTAG interface 24

Clock 12
Total 340

Table 3.1: I/O pins partition for a 16-tiles ESP ASIC instance.

3.3 Test flow

This section aims at providing an overview of all the steps involved in the execution
of a test with the proposed Debug Unit.

As with most of the functional test commonly executed, the functionality of
each unit under test is verified as follows: a certain stimulus is provided at the
input ports of the units under test, and the resulting output is compared with the
expected result. When it comes to a more complex system as the one implemented
by a tile of ESP, this concept remains untouched. In addition, since the tile shell
respects the latency-insensitive paradigm, it is not required to obtain the same exact
output sequence cycle by cycle. On the contrary, for the test to be successful, it is
sufficient to obtain the expected results in the given order. The most effective way
to verify that is by storing both the flits to inject and the expected output results
in a set of dedicated registers. Those registers should contain a 64 bit-instruction
and some additional bits for opcodes and info on the destination plane (further
information on these bits will be given in the following). For a given tile, in different
moments of the test, such registers can contain the input test flits to direct towards
a certain input port of the tile, as well as the expected output result to compare
with the test output sent from the tile output ports. Let us keep in mind that
the amount of registers instantiated in the testing logic plays a crucial role in the
final test performance. Considering the CPU tile, a brief reminder from Section
1.3.1 on the types of messages handled by the different NoC planes is reported in
table 3.2. For what concerns the incoming messages, plane 2 handles incoming
flits supporting the system coherency protocols while plane 3 receive memory
response.Plane 4 and plane 6 respectively receive coherent and non-coherent DMA
requests from accelerators. Plane 5 takes care of incoming interrupts requests as
well as all the information from IO peripherals (UART, Debug link, DVSI). This
include configuration flits for writing the registers, as well as all the instruction
of the application currently tested, stored in the bootrom inside the IO tile. For
what concerns the outcoming messages, plane 1 forwards CPU requests to memory
while plane 3 send coherency protocol messages. Plane 4 and plane 6 respectively

41

ESP Test approach

NoC plane Input packets Output packets
1 / CPU requests to memory
2 Coherency support /
3 Memory response Coherence support
4 Coherent DMA requests Non-coherent DMA response
5 IRQ requests / I/O info IRQ acknowledge/ I/O info
6 Non-coherent DMA requests Coherent DMA response

Table 3.2: NoC planes purposes from the CPU tile perspective.

send respectively non-coherent and coherent DMA response to accelerators. Plane
5 takes care of conveying IRQ acknowledge and other types of messages to I/O
peripherals. Having said that, two possible scenarios are possible when looking at
the content of the test registers during a CPU test:

1. The instruction is a flit that should be injected in the CPU. This type of
flit can either be a configuration flit, normally used at the beginning of the
system boot and at run time to configure accelerators registers. Alternatively,
it can be an accelerator request, or a memory response. Each of this type of
messages has its own dedicated plane for being fetched around the SoC. In
this scenario, the message should be written to the tile.

2. Alternatively, the instruction stored in the register can be an expected output
from the CPU, which is not supposed to be sent to the CPU. Such instruction
is the next expected request that the CPU is supposed to issue, as a result of
the previous operations performed.

Since the main objective of the test is to completely replace the NoC, two
possible approaches can be adopted, but just one of them is feasible and can be
put into practice.

In the first approach, the instructions to be injected from the test interface are
manually written by the test engineer, either at assembly level or machine code.
These instructions can mainly include simple arithmetic operations to be performed
on values stored in the CPU registers, or load/store instructions involving the
communication with memory. With the testing logic discussed so far, this would
translate in the following operations: an instruction is written to the CPU from the
NoC plane 5, which is the one from where the instructions of the program to test,
normally stored in the bootrom, are transferred in normal operation mode.After
that, depending on the type of instruction injected, the CPU request issued on a
certain plane is checked in order to verify that it is the same as the expected one.
For example, let us consider the case where we want to test the CPU capability
to issue a read request toward the memory. A load instruction is fed into the

42

ESP Test approach

port of the CPU tile normally connected to the NoC plane 5, in order to emulate
an instruction of the program coming from the bootrom. Being the instruction
a load, the CPU will issue a read request to a certain memory address to read
such location and load its content in one of the the internal registers. The request
would travel through NoC plane 1 in normal mode. If the test mode is activated,
however, the content of such request becomes the tile’s output that needs to be
checked. Unfortunately, performing this check requires the designer to manually
obtain the expected CPU requests for every instruction sent to the CPU. This
method clearly shows a lack of automatization which makes it unsuitable for testing
the functionality of a CPU tile talking to 6 different channels of the NoC, even if
simple test applications are used.

The second approach is based on the same sequence of steps, but takes advantage
of the possibility to extract all the information necessary for the check from a
simulation of the system running in normal mode. In particular, a simulation
trace can be generated in such a way to obtain a collection of all the transactions
executing at the tile interface on the NoC planes while the application is running.
As opposed to the previous scenario, the test engineer is thus already in possession
of all the expected requests which the CPU is expected to issue at any time of the
test execution. In the previous example, right after the packet containing the load
instruction has been injected and written to the CPU from plane 5, the testbench
proceeds by injecting the following instruction of the trace, which is, in this case,
the expected read request that the CPU will issue on plane 1 to access the memory
location indicated by the instruction.

The latter method can be reproduced for every type of program: the simulation
trace collected in normal operating mode contains all the necessary information
to perform the test. In such a way, the testing logic offers the possibility to test
even more complex applications, for which manually obtaining the expected results
would be unrealistic. This is the reason why the second approach was the one
chosen to perform the test from the early stages of the design. An overview of
the flow involved in the second approach is illustrated in figure 3.7. The first step
illustrated in the upper part of the figure consists in setting up a simulation in
normal operating mode, i.e. TMS=0. Before running the simulation, depending on
the CAD tool used for it, a list containing a specific set of signals is created. All the
signals at the tile interface, are included in the list, together with their dedicated
void and stop bit. In the proposed schematic, those signals are the one included in
the list cut inside the tile under test, i.e. those on the left-bottom corner of the
SoC instance. In this way, all the information necessary for for emulating the NoC
behavior are collected in a readable and reusable .lst file. Once the simulation of
the target application is completed, the simulation trace is passed to an editing
script that turns it into a .txt format readable from a testbench. In particular, for
each time-stamp in the simulation trace, the presence of a valid signal (i.e. void

43

ESP Test approach

bit to 0) among those added to the trace is checked, and, if present, the 64-bits
instruction is written on the stimulus file, together with some additional bits to
encode the type of instruction as well as the plane address. In particular, the format
of each line of a stimulus file is showed in figure 3.6. The first 64-bits wide slot
stores the instruction directly retrieved from the simulation list. This is followed
by a 6-bits address where the source/destination plane involved is indicated in
one-hot encoding. A void bit validates the incoming flits and an opcode indicates
whether we are dealing with an instruction to write to the tile or to expect from it.
Finally, a dirty bit is constantly set to 1 and used to inform the testing logic on the
status of the flits shift-in process. A total of 73 bits is thus required to store all the
relevant data/control information of a test instruction. In this way, the stimulus
files contain all the necessary information to conduct the test: the instruction flits
that must be written to different input ports of the CPU tiles, and the expected
CPU requests.

Figure 3.6: Input flits format.

As showed in the lower part of figure 3.7, the second step consists in the actual
test of the tile: the TMS is set to 1 in order to disconnect the NoC. All the access
points to the tile’s internal hardware socket are managed by the test interface and
the test can proceed.

3.4 Test programs
In this section, the different types of programs used for testing the SoC tiles are
presented.

When an ESP test is performed, the simulation targets cross-compile a default
C application for the target processor. Users can edit the application at will, as
long as the baremetal cross-compiler can generate the target binary. As an output,
the compilation produces memory files for the simulation to be stored in the SoC
bootrom and target binaries if the user wants to perform FPGA emulation . After
that, the simulator starts either in the terminal or with the GUI depending on the
target chosen [31].The default program for testing a CPU is a baremetal application
printing the string "Hello from ESP!" to the UART peripheral of the SoC. In
particular, the sequence of operations to be performed in this test, in addition to

44

ESP Test approach

Figure 3.7: Test flow.

the load of the device tree bulb 9, is the following:

1. Set of the stack pointer.

2. Configuration of the registers.

3. Release of the reset.

4. Initialization of the UART peripheral.

5. Print of the message "Hello from ESP" from the UART.

9The device tree bulb (DTB), also referred to as a flat device tree, device tree binary, or simply
device tree, consists in a database containing the information on the hardware components on a
given board and represents the default mechanism to pass low-level hardware information from
the bootloader to the kernel [32]

45

ESP Test approach

The Assembly-level code used for performing such operations is showed in the
program Startup.s, in the left column of Figure 3.8. Note that the management
of the UART peripheral is performed in a second program called from the main,
written in a mix of C and light Assembly, as showed in figure 3.9.

Figure 3.8: Startup.S : default test
application stored in the bootrom.

Figure 3.9: main.c: program printing
"Hello from ESP!" to the UART peripheral.

Even though the application does not require the execution of any complex
operation, it certainly involves the cross compilation of several functions written in
high level languages (in this case, in C language). As a consequence, it is much
harder for the user to keep track of the instruction currently tested while using the
test interface to inject them flit by flit. While this is not an issue in the case of a
correct operation of the system, it gets critical when the origin of a failed check
from the test interface has to be found. This is the reason why I decided to build a
simpler test to target as a first attempt to verify the tile functionality. In case of
success of the simpler application, as will be discussed in the simulations section,
the more complex test will be executed.

The customized test which I propose is performed in baremetal, i.e without
the support of an operating system, and consists in a few instructions performing
simple arithmetical operations on the internal CPU registers, as well as load/and
store request issues. The test proposed is showed in Assembly in Listing 3.2. In

46

ESP Test approach

particular it consists in:

1. Loading immediate values into the temporary registers t0 and t1.

2. Storing the content of their sum into the register a1.

3. Store the content of the a1 register at the memory address 0x80000004.

4. Load the value back to the t0 register.

5. Increment the value stored in the register a0 by 5 units. and store it back. to
the memory at the address 0x80000008.

Listing 3.2: Default test application stored in the bootrom.
1 #inc lude " uart . h "
2 # s t a r t sequence o f the boot loader
3 #
4 #
5 #inc lude <smp . h>
6 #de f i n e DRAM_BASE 0x80000000
7

8 . s e c t i o n . t ex t . i n i t
9 . opt ion norvc

10 . g l o b l _prog_start
11 _prog_start :
12 l i sp , 0 x9 f f00000
13 l i t0 , 3
14 l i t1 , 4
15 add a1 , t0 , t1
16 l i a5 , DRAM_BASE
17 sw a1 , 4 (a5)
18 lw t0 , 4 (a5)
19 addi a0 , a0 , 5
20 sw a0 , 8 (a5)

47

Chapter 4

Debug Unit Design

In this chapter, a comprehensive description of the steps involved in the RTL
implementation of the Debug Unit is proposed. The test interface performances
are evaluated for both the design versions implemented in Sections 4.1 and 4.2.
For each of the two designs, a detailed description of the FSM controlling the the
Debug Unit operation and an illustration of the datapath is provided. Then, the
simulations results are analysed in detail. The functional features differing between
the versions are highlighted, with a particular focus on the limitations of the first
one and on the performance improvement delivered by the second one. Finally,
the main conclusions related to the test methodology are outlined.As illustrated in
the previous sections, different types of tile make different use of the NoC planes.
A clear example is given by the fact that the processor tile does not make use
of plane 4 and 6 for handling direct memory access, while the accelerator and
memory tiles do. Even if implemented test unit is flexible for different types of tile,
a detailed description of the internal logic will require practical examples showing
the specific type of messages travelling through the interface ports. For the sake
of simplicity, the processor tile will be taken as a reference tile for showing such
examples, keeping in mind that the same explanation can be equally applied to
other types of tiles.

Before proceeding, let us restate what are the constraints that need to be re-
spected by the testing logic of the Debug Unit.
First of all, the logic must be able to temporary store instructions serially injected
from the test FPGA through the dedicated serial TDI interface. Afterwords, it
must verify the type of instruction stored and act accordingly on the interface of
the tile under test in order to emulate the NoC behavior. In addition, the logic
must be synchronized with a clock with its own TCLK pin. Hence, when the
system operates in test mode, two different clock domains run on the same tile.
The first domain covers all the logic performing the test at a lower frequency, while

48

Debug Unit Design

the second clock domain covers the rest of the tile. As a direct consequence, it is
necessary to instantiate dual-clock FIFO queues for each NoC plane in order to
synchronize the instruction to inject or extract from the tile with the destination
clock domain. Finally, a strict requirement to satisfy is that the logic must not
affect the system when it runs in normal mode. In other words, the ports connecting
the tile to the NoC must me multiplexed in order to enable a switch according to
the selected operating mode. When the testing mode is enabled, i.e. TMS is set to
1, the tile interface is directly communicating with the testing logic and the NoC is
disconnected from the tile. The stop bit directed to the NoC is set to 1 to stop
messages coming from the NoC. At the same time, the void bit directed to the
NoC is automatically set to 1 in order to prevent the transmission of wrong flits to
the NoC. On the other hand, in normal mode, the standard connection is restored
and the system can normally run with the tile directly communicating with the NoC.

These requirements worked as guidelines throughout all the stages of the design,
driving the modifications applied to improve the test performance and flexibility
with respect to different types of application test.

4.1 First version - single register
At this point, let us illustrate the first implemented design.
In the first version, a single SIPO-register is used for handling operations on the 6
planes. Hence, the register’s content varies in message type and destination plane
according to the specific stage of the test.

4.1.1 FSM
The FSM implementation is showed in Figure 4.1 and discussed in detail below.
At the beginning of the test, the FSM is in the IDLE state, waiting for the user to
activate the test mode when necessary. Once the test mode is activated by setting
the TMS value to 1, the first flit of the stimulus file is read from the testbench and
serially injected throughout the TDI pin during the INJECT state. After that, it is
temporary stored in a serial-in-parallel-out (SIPO) register (from now on,referred
to as "SIPO-register") waiting for the testing logic to verify the instruction type
and proceed accordingly. At this point the void bit is read by the logic. If the
void bit is set to 1, it indicates that the flit is invalid because it is the last one in
the stimulus file. In other words, the test is terminated and the FSM shifts to the
state DONE. On the contrary, if the void bit is 0, the opcode determining the type
of instruction is read by the logic: if the instruction is an expected CPU request,
(OP=0), the FSM shifts to the state WAIT. Conversely, if the instruction is a flit

49

Debug Unit Design

Figure 4.1: FSM of Design 1.

to be written to the CPU (OP=1), the system shifts to the WRITE state. Let us
have a closer look at those scenarios:

• In the former case, the system waits for a message coming from one of the
output ports of the tile. In particular, a valid message reaching the tile
interface can be detected by looking at the value of the associated void bit.
The latency insensitive design principle regulating the NoC operation imposes
that the true value of the void bit can only be observed by removing the
stop on the same signal. At RTL level, this is to say that the valid bit
has a combinatorial dependence on the stop bit given from the external, as
indicated in the signals description of Figure 1.7. Hence, the void bit and the
corresponding valid signal can only be observed if the external environment is
not applying backpressure on that port, i.e. if the input stop bit is set to 0.
In normal operation, the NoC router takes care of removing the input stop bit
to accept incoming flits. The test interface substitutes the NoC in test mode
in carrying out this task. The flit stored in the SIPO-register also contains
the plane address. As a consequence, the testing logic can act accordingly by
removing the input stop bit on the addressed port. For example, if the next
expected request issued by the CPU is a write-request travelling on NoC plane
1, such information is encoded in the flits stored in the SIPO-register. The test
logic can thus reset the stop signal (noc1_stop_out in this case) on NoC plane
1 in order to retrieve the incoming flit on that channel. A selective removal
of the stop bt is crucial in order to avoid loosing others flits reaching the tile
interface in the same moment. By keeping all the others stops, the content of
the FIFO queues remains stored until the respective queue is actually read.The

50

Debug Unit Design

output valid signal is temporary stored in a parallel-in-serial-out register (from
now on referred to as "PISO-register") and the system shifts to the READ
AND CHECK state. At this point, the content of the SIPO-register (i.e.
expected CPU request) and the one of the PISO-register (i.e. actual CPU
request) can be compared. In case of a match, the TDO value is set high
for a cycle to inform the testbench of the successful instruction test. After
that, the FSM shifts to the EXTRACT state (Ex), where the content of the
PISO-register is serially shifted out through the TDO pin and written to an
output trace. Once the extraction is completed, the system goes back to the
INJECT state, waiting for the next injection.

• On the other hand, if the injected instruction is a message to inject toward
one of the input ports of the tile, it is only necessary to direct it to the specific
port, while setting the corresponding void bit to 0 in order for the message
to be accepted by the core as a valid flit. Once again, the specific port to
access is indicated by the address encoded in the stimulus file flits, and thus
stored in the SIPO-register. Once the write operation has been performed,
the system goes back to the INJECT state waiting for the next instruction to
be injected from the stimulus file.

4.1.2 Datapath
The Datapath of the first design version is showed in Figure 4.2 and commented
below.
As mentioned, the registers storing the instructions play a crucial role in the Debug
Unit operation. In fact, most of the control and status signals of the logic depend
on such registers. This is because the control unit operation is mainly driven by
the Address and Opcode information encoded in the stimulus files rows.
Let us first look at the logic of the path going from the test interface to the tile. A
demultiplexer is used for directing the content of the SIPO-register to the correct
port when the instruction that it stores is a flit to write. Depending on the address
stored in the SIPO-register, the write-flit is directed to the appropriate dual-clock
FIFO queue connected to the buffering stage.
A dual clock FIFO queue, showed in green, is instantiated for each NoC plane
to synchronize the signals with the tile’s clock frequency domain. Being the
synchronization of the flits across two different clock domains the only purpose
here, its depth is set to 2, which is the minimum accepted by the control logic
regulating the read and write operations.
Successively, a 2-to-1 multiplexer is used for each NoC plane to switch between
different operating modes. As previously mentioned, the selector is a signal directly
obtained from the synchronized value of the input pin TMS. In normal mode
(TMS=0), the standard connection of the tile ports with the NoC channels is

51

Debug Unit Design

Figure 4.2: Datapath of Design 1.

52

Debug Unit Design

restored. In test mode (TMS=1), the tile ports are connected to the output ports of
the dual clock FIFO queues previously mentioned, so to enable the communication
with the test interface.
Once the flits are injected through the multiplexers, the standard path to reach the
CPU core is followed starting from the FIFO queues instantiated in the cpu_tile_q
component. This works as an intermediate buffering stage functional to the latency-
insensitive paradigm governing the system.

For what concerns the opposite direction, from the tile to the test interface, the
same type of logic is used in a specular way. The 2-to-1 multiplexers are replaced
by 2-to-1 demultiplexers but the connection’s purpose remains untouched. In test
mode, the tile output coming from the cpu_tile_q component is directed to the
test interface, while the output ports are disconnected from the NoC, with the
corresponding void bit of the channel set to 1 to prevent any wrong message from
being transferred to the NoC. Conversely, in normal mode, the standard connection
with the NoC is restored. The dual clock FIFO queues are now read and written
in a reversed order: the input port is now on the tile side to accept incoming CPU
requests, which are then sent to the test interface through the output port on the
opposite side. Finally, a multiplexer is used to decide from which NoC plane to
extract the next expected request, and stored into the PISO-register.

4.1.3 Simulation
In the following paragraph, a critical analysis of the testing logic simulation results
is presented. For both types of tests mentioned in Section 3.4, an evaluation of the
test interface performance is provided. In particular, for what concerns the second
type of test, a particular emphasis is placed on the critical features of the testing
logic that led me to revise the design for a more efficient testing procedure.

First of all, the simpler test application, amongst those mentioned in Section
3.4, was executed to verify the functionality of the CPU tile. In this case, after
completing the debug of the code, the test interface succeeded in perfectly emu-
lating the NoC. A straightforward method to verify graphically this fact with the
simulation waveform window of Modelsim is to check that the TDO value is set
high during the READ AND CHECK state. This indicates that the content of the
corresponding registers is the same.
In order to give a complete view of the test-interface behavior during the execution
of simple operations, the most relevant waveforms observed during simulation are
reported below for the following two instructions extracted from the test program
of Section 3.4:

1. sw a1,4(a5): after receiving the packet containing this instruction, labeled
with the letter A in Figure 4.3, the CPU is supposed to issue a write requests

53

Debug Unit Design

Time test5_output_port test1_input_port test3_input_port
1 A – –
2 – B –
3 C – –
4 – D –
5 – – E

Table 4.1: Simulation trace for the load and store instructions.

directed to memory through channel 1, labeled as B.

2. lw t0,4(a5): after receiving the packet containing this instruction, labeled
with C in Figure 4.4, the CPU is supposed to issue a read requests directed
to memory through channel 1, labeled with D. After that, the content of the
memory location addressed, labeled with E, reaches the tile through channel
3.

The content of the stimulus file obtained from the execution of these two
instructions in normal mode is summarized, merging the packets into a single flit
for simplicity, in Table 4.1.

It was more convenient, for practical reasons, to reproduce what was observed
form the simulation in a dedicated waveform drawer instead of directly reporting
sanpshots of Modelsim simulation window. The main reason is that each of the
two tested instructions corresponds to three flits stored in the stimulus file (header,
body and tail, as imposed by the NoC routing protocol). The representation
provided in Figures 4.3 and 4.4 simplifies the simulation results by merging three
flits content into one, as if they were contained in a single flit. The waveforms
here reported, however, are strictly reflecting the results of the simulation. Sev-
eral attempts performed with programs of similar complexity confirmed that the
proposed implementation of the test interface is suitable for supporting baremetal
tests belonging to this category.

Even if the purpose of the test interface is to prove the correct functionality
of the tile by testing simple operations, it was worth, at this point of the work,
performing the default baremetal test illustrated in Section 3.4. The increase of the
test complexity is mainly due to the routines involved in the cross-compilation of
programs written in high level languages. These leads to several burst transactions
on the internal buses and on the NoC channels, i.e. long sequences of memory
accesses to adjacent locations. While this is not a problem in normal mode, it is
considered to be one of the main reasons for the failure of the test with the second

54

Debug Unit Design

Figure 4.3: Execution of store instruction in test operating mode.

Figure 4.4: Execution of load instruction in test operating mode.

application. As a matter of fact, when the test mode was enabled, the simulation
started correctly, performing the expected sequence of injection, read and checks
and extractions. At a certain point of the test, however, it can be noticed that
the test gets stuck when an expected write request from NoC Plane 1 does not
pass the read and check. In other words, the expected value was stored in the
SIPO-register did not match the flit forwarded by the CPU tile and stored in the
PISO-register. Having a closer look at the content of the latter one, it was possible
to determine that it was not coming from the expected channel, i.e. Channel 1,
but from Channel 5 instead.

Backpressure effect

In order to explain such a behavior, further investigations on the internal compo-
nents of the CPU tile helped to detect the origin of the test failure. To explain that,
a closer look at the internal organization of the tile is provided in the following.
In addition, a graphical illustration of the example discussed below is provided in

55

Debug Unit Design

Figures 4.5,4.6 and 4.7.
The internal communication between different components of the CPU tile is

handled through a bus system following the AMBA-AXI protocol, whose working
principle is illustrated in more detail in Appendix B. The messages coming from
the Ariane core are redirected toward the dedicated plane of the NoC based on
their type, which is encoded in the header flit. Before reaching the tile interface,
however, an intermediate buffering stage to temporary store the incoming flits is
necessary, so that the messages can be sent to the router while respecting the NoC
backpressure mechanism. As mentioned in the previous sections, such buffering
elements are instantiated in a dedicated VHDL entity, named cpu_tile_q. More
details on the internal operation of the processor tile are reported in a schematic
view in Appendix C. Having said that, when the router is not ready to receive any
other flits from one of these buffers, it applies backpressure on the tile to block any
additional incoming flit. More specifically, it sets the stop bit (nocX_stop_out
in Figure 3.3) high in order to block the output ports of the FIFO queues in the
direction tile/NoC, so that no further message can be forwarded from the tile.
Generally speaking, for not intensive workloads of this type, the NoC congestion is
limited and so is the backpressure applied from the NoC on the tile interface. As a
consequence, the stop bit is not kept high for more than a few consecutive clock
cycles. Hence, the FIFO queues of the buffering stage, in the direction tile/NoC,
tend to have available cells at any time without running out of free storage. This
is the main reason why the size chosen for the queues is limited to a few cells.

When the test mode is activated, however, the backpressure normally imposed
from the router state, i.e. from the NoC, is directly handled from the test interface
as explained in the previous paragraphs. In this case, the stop bit directed to
the tile is supposed to remain high during all the states of the FSM illustrated
in Section 4.1.1, expect for the WAIT state. In this state, the content of one the
FIFO queues is retrieved, but not before removing the stop on the corresponding
queue output, i.e. setting the relative stop bit low. After that, the flit stored in
the FIFO queue is loaded to the PISO-register to be compared with the expected
CPU request. During the rest of the states involved in an instruction test, the
stop bit remains high. As a consequence, the tile interface is exposed to a much
higher level of backpressure than in normal mode, and the probability of congestion
in the FIFO queues increases accordingly. This is because, for each FIFO queue,
the output port is stopped from the external hold imposed by the test interface
during the long injection and extraction phases (each one taking 73 test clock
cycles, equal to the number of bits stored in the registers). At the same time the
FIFO input ports on the tile side are connected to the AXI interface, and will keep
receiving messages from the core until filling up. At this point, the AXI bus can
not write on it until a new cell of the FIFO is available, which will only occur at
the next successful read and check, when a flit will be extracted from the FIFO

56

Debug Unit Design

leaving an empty available cell. While this should not be a problem if a unique
communication channel was to be used for the NoC, it turns out to be critical
when a multi-plane NoC is used. There are several cases, where a long sequence of
CPU requests on a certain NoC plane, is followed by a CPU request on another
NoC plane. This translates, at the buffering stage, in a flit directed from the AXI
interface to another FIFO queue.
In order to better understand this process, an example is illustrated in Figures
4.5, 4.6 and 4.7.In the specific case illustrated, in normal mode, a long sequence of
CPU requests to the plane 1 is transferred to the corresponding FIFO queue and
then to the dedicated NoC channel. Thanks to the low workload characterizing the
target test application, the overall SoC activity is very low. As a consequence, the
transmission can happen without the intervention of any significant backpressure
action from the NoC. The whole set of packets directed to the plane 1 is thus
transferred within a few clock cycles and the AXI interface can terminate the
sequence. Conversely, in test mode, the transmission of the first sequence temporary
stops when the corresponding FIFO queue gets full due to the high level of
backpressure imposed from the test interface. Figure 4.5 shows how the FIFO
queue is gradually filled during the first phase of the test: during the injection of
the first flit from the testbench stimulus file, the actual CPU request is already
in place and ready for being accessed from the testing logic and stored in the
PISO-register. Meanwhile, other messages directed to NoC 1 begin to stack in the
available buffering elements. This is the first key difference with respect to the
behavior in normal execution, where a significantly lower backpressure imposed
from the NoC guarantees that the queues are always not congested.

Figure 4.5: Phase 1: The test logic is performing correctly but the FIFO queue
connected to NoC plane 1 is gradually filled up.

57

Debug Unit Design

After a few test-instruction cycles, the FIFO queue gets full as showed in Figure
4.6. At this point, since the AXI bus in unable to write to the input port of that
queue, it stalls waiting for the next available cell. Let us now consider that another
flit sequence, independent from the one currently handled, is ready to be transferred
to its destination NoC channel. In this case, the AXI interface may prioritize this
transaction and initialize it. In figure, this can be observed by looking at the FIFO
queue connecting to NoC plane 5, which receives the first flit from the CPU.

Figure 4.6: Phase 2: The test logic is still performing correctly, but the FIFO
queue gets full and the AXI write destination switches to channel 5. A flit is written
in this queue.

At the next WAIT state, the test interface finds two FIFO queues with a valid
content, i.e. with the void bit set low, as showed in Figure 4.7. The choice of the
flit to select for the next read and check is based on a fixed priority implemented
by the finite state FSM. This is a weak feature of this test design version, which
is intrinsically related to the fact that a single couple of registers is being used
to handle operations that can happen simultaneously on 6 different channels.
Depending on the priority, one of the two valid flits is forwarded to the testing logic
and stored in the PISO-register. In this specific case, the most recently written
flit, labeled as flit n21, has priority on the one coming from channel 1, even if
it was the last one sent from the CPU, and is forwarded to the PISO-register.
Unfortunately, the order of the expected CPU requests stored in the stimulus file
is the one imposed by the environment features in normal operating mode. As
already mentioned, the lower backpressure level in normal mode makes it possible
for the flits sequence directed to NoC plane 1 to be transferred directly in normal
mode. The next expected requests written in the stimulus file (flit n8) is thus still
coming from NoC plane 1. In test mode, after successfully checking the content of

58

Debug Unit Design

flit n7 as showed in 4.6, the test interface injects the following expected requests
from the stimulus file, i.e. flit n8, and stores it in the SIPO-register. As clearly
visible, the expected CPU request (n8) is different from the actual one coming
from the tile (n21). This leads to the failure of the comparison operation in the
read and check state and, in turns, to the test failure.

Figure 4.7: Phase 3: The flit from channel 5 is selected following a fixed priority
implemented by the FSM, causing the failure of the next read and check.

4.1.4 Conclusions
The simulation of the first implemented design leads to the following conclusions:

• The test interface is suitable for executing test applications composed of a
few instructions manually specified at assembly level. In this case, the correct
functionality of the tile in performing such instructions can be fully verified.

• When it comes to more complex tests as the one mentioned, the testing logic
does not perform correctly because the messages extracted from the test
interface can have different order with respect to the simulation stimulus files.

• The adoption of a single register to handle different communication channels
comes with the drawback of a significant variation of the backpressure level
exerted on the tile interface from the external environment.

• The different level of backpressure raises a variation in the order characterizing
the flits sequences reaching the tile interface from the internal AXI bus. This
discrepancy, combined with the need to fix a selection priority when more

59

Debug Unit Design

than one channel is currently storing valid flits coming from the tile in its
buffering components, can lead to the failure of a read and check, and in turns,
to the test failure.

A smart way to cope with the problems illustrated consists in modifying the
test interface so that it can handle different NoC planes independently. This is
the starting point for the revision of the design leading the the second version,
discussed in detail in the following section.

4.2 Second version - multiple registers

As mentioned, the revision for the final design is driven by the necessity to create
additional states for handling each NoC plane independently from the others. This
clearly enable a more accurate emulation of the NoC capability to manage several
independent communication channels at the same time. The idea laying behind
this approach is to minimize the backpressure exerted on the tile from the test
interface and get as much closer as possible to the level characterizing the normal
operating mode. In this way, it is possible to avoid the issues concerning the order
of the requests coming to the interface in situations similar to the one illustrated
in the previous section.

In order to accomplish the individual NoC plane management, a duplication
of the implemented logic is necessary. As opposed to the previous design, where
a single register is used to store flits exchanged across multiple NoC planes, the
current version implements dedicated logic for each NoC plane in order to decouple
the relative operations.
A first crucial point to consider before diving into the modification of the test
control unit and datapath, is the change required for the input stimulus used to
transmit the simulation lists to the testbench in test mode. In the previous version,
a single stimulus file containing the expected order of transactions across all the
NoC planes was used. With the new implemented version, however, each channel
is handled independently from the others. As a consequence, a different stimulus
file is needed for each NoC plane. Each of those files contains the expected order
of transactions happening on a certain plane. In practical terms, this is done by
simply modifying the script used for editing the simulation lists into a format
readable from the testbench. Compared to the previous flow, six .txt files are now
obtained, one for each NoC plane.

60

Debug Unit Design

4.2.1 FSM
The modifications affecting the control unit are discussed below and summarized
in Figure 4.8. In addition, the RTL code section reporting the state which manage
a single NoC Plane is reported in Listing 4.1.
First of all, once the test mode is activated, the FSM shifts to the state HANDLE1.
This state is dedicated to the management of the Plane 1. Once in this state, the
first operation to perform is to check the content of the first SIPO-register, i.e. a
register entirely dedicated to NoC Plane 1. Then, three possible scenarios taking
place during the execution of a test are the following:

a. The register is still empty because the test has just started and no flit has
been injected yet. In this case, the FSM shifts to the state INJECT 1. The
instruction in the first line of the first stimulus file (stim1.txt) is injected
through the TDI pin and stored in the SIPO-register. At this point, the FSM
goes back to the state HANDLE1.

b. The register contains a flit that needs to be sent to the CPU (OP=1). In this
case, a further check is necessary to verify whether the FIFO queue directing
the flits from NoC plane 1 to the CPU is full (FF=1) or not. In the first case,
no further operation can be done on this plane until the FIFO queue has a
new available cell to store the flit. Hence this plane is no longer manageable
for the moment and the FSM shifts to the state HANDLE2 for channel 2. On
the contrary, if the FIFO queue can be written, the flit is written to its input
port and the FSM shifts to the state INJECT1 to update the register content
with the next flit from the trace. Once the injection of the next instruction is
completed, the FSM goes back to the state HANDLE1.

c. The register contains a flit that is an expected request issued from the CPU,
to be compared with the one actually sent out from the CPU (OP=0). In this
case, a further check is necessary to verify whether the FIFO queue directing
the flits from the CPU to NoC plane 1 is empty or not. In the former case
(FE=1), there is not any request issued by the CPU on that plane. Once
again, this means that no further operation can be done on that plane, i.e.
the plane is not manageable and the FSM shifts to the state HANDLE2. In
the latter case (FE=0), the test interface sets to 0 the stop bit controlling the
output of the FIFO queue in order to extract the CPU requests and store it
in the PISO-register. The FSM then shifts to the state READ & CHECK
(R&C), the comparison between the content of the two registers is performed
and the TDO is driven accordingly with the same rule established in Section
4.1.1. Finally, the system goes back to the INJECT1 state to update the
content of the register with the next instruction from the corresponding trace.

61

Debug Unit Design

The previous description applies in the same way to the other plans. When the
plane 6 is reached and it is not manageable, the FSM shifts to the IDLE state.
From here, the cycle restarts from the first plane and the test is completed when
all the stimulus files have been read, with the FSM remaining in the IDLE state.
To be more precise, an additional state is crucial for the system operation, but
not reported in Figure 4.8 for simplicity. Unlike the previous design, the testbench
now interacts with six different files, each one containing the information of a NoC
plane. Then, the testing logic must include an additional feature to communicate
to the testbench the plane of interest before any injection. This can be simply
done by adding a state, named REQUEST_INSTR, which precedes any INJECTX
state in the FSM displayed in Figure 4.8 and performs the following operations:

• Extract the content of an additional register (named plane_reg in the datapath
in Figure 4.9), that is used to keep track of the plane currently handled by
the testing logic. Such register is thus updated every time that the FSM shifts
from one plane to another, i.e. every time there is a state transition of the
type HANDLEX => HANDLEY.

• Based on the address stored in plane_reg, it redirects the FSM to the proper
INJECTION state so that the flit passed from the TDI pin is stored in the
correct SIPO-register.

Figure 4.8: FSM revision.

62

Debug Unit Design

Listing 4.1: Individual plane management.
1 . . .
2

3 when handle2 =>
4 i f SIPO_done_i (2) = ’1 ’ then
5 i f op_i (2) = ’0 ’ then −− i n s t r i s an exp req .
6 i f test2_cpu_data_void_in = ’0 ’ then −− check queue
7 v . compare := " 010000 " ;
8 v . s t a t e := read_and_check ;
9 e l s e −−plane not manageable

10 v . s t a t e := handle3 ;
11 end i f ;
12 e l s e −− i n s t r to wr i t e to CPU
13 i f fwd_wr_full_o (2) = ’0 ’ then −− check queue
14 v . compare := " 010000 " ;
15

16 we_in (2) <= ’ 1 ’ ;
17 v . PISO_load0 := ’ 1 ’ ;
18 v . PISO_clear0 := ’ 0 ’ ;
19 v . s t a t e := reque s t_ in s t r ;
20 e l s e −−plane not manageable
21 v . s t a t e := handle3 ;
22 end i f ;
23 end i f ;
24 e l s e −− r e g i s t e r s t i l l empty
25

26 v . s t a t e := reque s t_ in s t r ;
27 v . compare := " 010000 " ;
28 v . PISO_load0 := ’ 1 ’ ;
29 end i f ;

4.2.2 Datapath
In order to implement the functionality illustrated in the previous section, it was
necessary to duplicate the existing logic for each NoC plane. The result obtained
with this modifications is showed in Figure 4.9

Looking at the upper part of the figure, which shows the logic instantiated in the
direction test interface/tile, one register for each NoC plane is now instantiated, as
opposed to the previous design where just one register was used. The demultiplexer,
previously used to redirect the content of single SIPO-register to the correct NoC
plane, has now changed its purpose: it is now used for directing the TDI serial input
information to the correct SIPO-register. As mentioned, the additional register
plane_reg, visible on the bottom-left corner of the image, is used to store the value
of the current plane being handled from the NoC. Before any injection, its content
is serially shifted out through the TDO pin to inform the testbench on the specific

63

Debug Unit Design

Figure 4.9: Datapath revision.

stimulus file to access in order to retrieve the next flit to inject in the logic. At
this point, it is also used by the demultiplexer to direct the input flits injected
from the TDI pin to the proper SIPO-register. On the other hand, the rest of the

64

Debug Unit Design

logic instantiated on the path going from the CPU to the test interface remains
untouched.

4.2.3 Simulation
The simulation framework illustrated in the previous section for the first design is
adopted in the same way here.

As expected, the Debug Unit completes the test successfully with simple pro-
grams composed of a few instructions manually written in Assembly. This design,
however, is characterized by a decrease of performance in terms of test speed, due
to the independent, plane-by-plane management of the interface. In fact, differently
from the previous design, when a new CPU requests reaches one of the ports at the
tile interface, it might take several transitions across HANDLE_X states to reach
the plane of interest. Nevertheless the speed performance overhead is negligible
and not relevant in a functional test of this type. In the same way, it is convenient
to specify that the area overhead coming with the logic duplication does not have
any impact on the test performance, since the unit footprint remains extremely
small and thus not affected by the constraints of the physical design flow.

The waveforms in Figure 4.10 show the test interface activation phases during
the execution of the default test application illustrated in Section 3.4. In this
specific case, the TMS bit value is set high before the reset is released, as showed in
Figure 4.10a. Hence, the tile interface is disconnected from the NoC and connected
to the test interface from the beginning of the simulation, in order to verify the
execution of all the stages of the system boot, together with the target application
program. Nevertheless, as mentioned in the previous sections, the logic is built in
such a way to be used even in the middle of a normal execution.

As soon as the test is activated, the interface shifts to the state HANDLE1. At
this point, since the SIPO-register of plane 1 is still empty, the FSM shifts to the
state REQUEST_INSTR to request the first flit of the stimulus file dedicated to
plane 1. This is done, as showed in figure 4.10b, by shifting out the content of
the plane_reg register through TDO, in this case equal to "11000001". The tag
composed of the first two bits ("11") is used as an opcode in order for the plane vector
to be distinguished from a flit by the testbench, while the remaining bits ("000001")
indicate the plane address 1-hot encoding (i.e. plane 1). Once the extraction is
completed, the FSM shifts to the INJECT1 state and the testbench starts to inject
the flit. As visible in Figure 4.10c, the content of the first SIPO-register changes
accordingly

A similar procedure is repeated for all the planes, since none of them has a
valid content at the beginning of the test. However, when Plane 3 is reached,
a different behavior is noticed and a set of consecutive injection phases takes
place, as visible in Figure 4.11. As a reminder, NoC plane 3 is generally used for

65

Debug Unit Design

(a) (b)

(c)

Figure 4.10: Test interface activation sequence.

both sending and receiving information from the tile. Nonetheless, in this type
of test, it turns out to be a mono-directional plane only used to send memory
response to the CPU tile. As a consequence, the flits stored in the corresponding
stimulus file are write-flits that must be written to the tile, and no CPU requests
are present. When the first write-flit is injected in the SIPO-register 3, it is then
directly forwarded to the buffering logic, passing for the asynchronous dual-clock
FIFO queue for the synchronization, and another flit from the stimulus file is
requested by the testing logic. This is repeated as long as there is enough storage
in the dedicated buffers. When those queue get full, the backpressure signals in
the direction tile/test-interface is activated and the FSM shifts to the HANDLE4
state, since no further operation can be carried out on plane 3. The same process
happens for plane 5, as visible in Figure 4.12.

Figure ?? shows the transactions involved in a successful READ AND CHECK
operation, performed on plane 5 and 1, respectively. In the first case, the FSM
gets to the state HANDLE5 after having verified that none of the previous planes

66

Debug Unit Design

Figure 4.11: Test: initial injection phase across multiple planes and detailed view
of the first serial injection on NoC plane 3.

Figure 4.12: Detailed view of the first serial injection on NoC plane 5.

are manageable. In fact, for each of those planes, the corresponding input buffers
have been previously checked to see if they contain enough storage to write an

67

Debug Unit Design

other flit or, in alternative, if the output buffers contain flits coming from the
tile to be checked. Since none of these scenarios were found to be consistent, the
FSM keeps changing state reaching NoC plane 5. At this point, the content of
the register is checked: the flit is an expected CPU request. Then, the content of
the corresponding output FIFO queue is checked and a flit is retrieved in it and
stored in the PISO-register to be compared with the expected value. At this point
the FSM shifts to the state READ AND CHECK. As visible from the waveform
in figure 4.13, the content of the SIPO-register and the one of the PISO-register
match (in this particular case, the 66-bits flit content is expressed in hexadecimal
notation and equal to "00000000200421502") and the TDO is raised accordingly
to communicate the test success to the testbench, that is now ready to extract
the content of the PISO-register. A similar condition takes place in the second
case reported, with the difference that the incoming CPU request is now travelling
on channel 1. The value "0000000009FEFFFF8" is checked with success since the
content of the corresponding registers match, as visible from the figure 4.14.

Figure 4.13: READ & CHECK sequence on NoC plane 5.

Figure 4.14: READ & CHECK sequence on NoC plane 1.

68

Debug Unit Design

Overall, the test simulations proceeds for a much higher number of test instruc-
tions, going far beyond the point of test failure detected in the first design. This is
a clear indication that the approach adopted for decoupling the planes management
goes in the right direction. Despite a performance increase, however, the simulation
of the default program application does not complete successfully due to a RC
failure.
A significant amount of time has been spent to find out possible reasons for this
behavior, but a unique response was not reached. The most reasonable hypothesis
is that the design under study shares the same intrinsic problem of the first version,
but in a less pervasive way. In other words, the use of multiple registers is simply
not sufficient to correctly reproduce the system backpressure existing in normal
operating mode. Even if the NoC planes are now handled independently, the FIFO
queues conveying data from the tile to the test interface remain blocked during
the time-consuming injection and extraction phases. In addition, this whole set
of operations is performed by a logic synchronous with the test clock, which is
characterized by a much lower frequency than the reference clock of the system. As
a consequence, the data congestion in the queues increases accordingly, and so does
the probability of having full queues blocking the access from the AXI interface.
This type of mechanism may change, at a certain point during the execution of
burst transactions, the order of of collected requests with respect to the expected
one.

4.2.4 Conclusions
The simulations clearly show the performance improvement delivered by the revised
design. In particular, the following aspects can be outlined:

1. The final version of Debug Unit can be used for the execution of simple
programs as that exemplified in Section 3.4, with a minimal performance
overhead not relevant for the purposes of a functional test.

2. The adoption of dedicated logic for decoupling the operations on different
NoC planes helps reducing the test interface backpressure, thus getting closer
to the conditions of normal operation. This allows us to overcome some of the
critical sections of the simulation trace leading to RC failure in the previous
design.

3. The modifications proposed are not sufficient to extinguish the backpressure
gap between different operating modes and the test is thus not able to complete.
The intrinsic concurrency of the multi-plane NoC, combined with the service
queues in the tile that decouple message types from each other, introduces
a partial non determinism in the simulation. Specifically, the order in which

69

Debug Unit Design

different message types are interleaved may change based on the speed of the
interface. The latter changes dramatically when switching from the 64-bit
parallel NoC plane to the serial test interface.

70

Chapter 5

Conclusions

This dissertation has proposed a new flexible approach to leverage the thesis that
design for testability (DFT) in single-core functional verification of heterogeneous
SoCs. The methodology proposed is based on the operation of a Debug Unit that
can be leveraged to perform a unit test at every stage of the design, from RTL
verification down to post-fabrication testing of physical implementations targeting
advanced technology nodes.The development of the verification flow and the design
implementation have been conducted following some major drivers. On one side, a
great effort was put in adapting the test integration process to the platform-based
approach of ESP, making the test-unit a new platform service offered by each tile
hardware socket. On the other side, the constraints imposed by the physical de-
sign flow determined the type of test access mechanism and the I/O porting strategy.

The experimental results that were obtained from running simulations at RTL
show that the Debug Unit is capable of running tests on the ESP processor tile.
The flexibility of the test methodology makes it possible to replicate the results for
the other tiles, and at different stages of the design, supporting DFT can be used
to provide a general verification methodology. In fact, while the effectiveness of the
proposed methodology has been demonstrated on the Embedded Scalable Platform
(ESP) developed at Columbia University, it is generally applicable to address the
increasing complexity of heterogeneous SoC designs.

5.1 Future improvements
In order to improve the performances delivered by the test interface with more
complex test applications, a strategy to decrease further the backpressure gap
between normal operating mode and testing mode is necessary. The main factors

71

Conclusions

feeding this gap are the long extraction and injection phases interleaving between
two consecutive accesses to the FIFO queues regulating the tile interface. A possible
strategy to overcome these limitations consists in executing the test in a different
way from the one proposed in section 3.3.

More specifically, a different approach for the flits transfer mechanism is pro-
posed in order to avoid the time-consuming serial injection and extraction of the
instructions into the Debug Unit logic. A possible way to do that consists in
implementing a local on-chip memory to instantiate inside the tile, where the entire
stimulus files would be stored. In such a way, the Debug Unit could retrieve the
next flit to store in the corresponding register by simply accessing adjacent locations
of the memory. At the same time, the memory should also include enough free
space to store the simulation result flits and avoid the extraction cycles. Amongst
the DFT trends highlighted in Section 2.2, the proposed solution clearly embraces
BIST methodology. In particular, two possible memory implementations could be
adopted:

• Using a Read-only memory (ROM), with a fixed test application stored in it.

• Using a Random Access Memory (RAM). In this case, the test application
can be modified by loading a new program through the serial TDI interface.
After that, the test can be run.

The adoption of this alternative approach may deliver a significant performance
improvement of the test interface during the execution of burst transactions which
were found to be critical in the studies conducted.
On the other hand, it comes with some critical drawbacks. First of all, despite a
minimal storage required for a simple test program, instantiating private memory
blocks in each tile leads to a significant area overhead. Hence, it is necessary
to check that this implementation choices are compatible with the backend flow
constraints. In addition, the use of a serial test interface to load a single instruction
at a time comes with a potential advantage which has not been stressed so far.
In fact, in case of a mismatch or deadlock condition during the test execution,
the simulation trace could be interactively modified with a dedicated application
which controls the FPGA used for testing. The content of the trace could therefore
be adjusted to prevent false mismatches of instructions that are misplaced when
running in test mode. In contrast, this is not possible when the Debug Unit retrieves
the test flits from a local memory, because its content can not be interactively
modified during the test execution.

To conclude, a practical and flexible solution to study in the future could include
both proposed types of test. A third operating mode could be added to the existing
ones (i.e. normal mode and serial test mode) and used to access the content of a

72

Conclusions

Figure 5.1: Third operating mode for Built-in unit test.

private local memory instantiated in the tile. A schematic view of the new proposed
arrangement is showed in Figure 5.1.

73

Appendix A

End of Dennard Scaling

As commonly accepted, Moore’s law has driven the semiconductor industry progress
by predicting a grow in the number of transistor fitting in the unit of area of a
factor of 2 every eighteen months. In first place, this was made possible by the
technological progress which allowed for a gradual and constant decrease of the
transistors’ feature size. Together with the density increase, this made it possible
to have a similar progress in the operating speed of the devices, and thus the
final operating frequency of the system. Figure A.1 reports the experimental data
summarising the most relevant effects of technology scaling on the IC performaces.

Figure A.1: Technology scaling effect on performance [33].

74

End of Dennard Scaling

In order to better understand the origin of this trends, together with the reason
for their recent breakdown, it is necessary to have a closer look at the physical
phenomena regulating the operation of the transistor. A guide for MOSFET scale-
down is given by Dennard observation, which start from the equation of dynamic
power consumption for a CMOS logic gate showed below, to make predictions on
the effects of scaling on the a CMOS-based system performance.

Pdyn = α ∗ C ∗ F ∗ V 2
dd (A.1)

If a generic parameter α is used for scaling down a standard geometry such as
the one in figure, the consequent scaling relations are summarized in table B.2b.

(a)

(b)

Figure A.2: (a)Scaling of a traditional CMOS technology. (b) Technology scaling
rules [34].

75

End of Dennard Scaling

The first column of the table shows what happens in what is commonly referred
to as constant field scaling (condition obtained by coupling the scaling of voltages
with an equal increase of doping intensity [34]). Combining the results in the table
with the Equation A.1, it is clear that a constant field scaling results in a circuit
speedup of factor α and a density increase of factor α2. In figure A.1, however, it
can be noticed that the average power consumption has increased as well, even if
with lower intensity. This means that the industry took advantage of performance
scaling even beyond constant power-scaling [3].

In the past decade, however, the aggressive scaling of geometrical features was
not accompanied by an equal progress in frequency and power scaling as expected
from Dennard Model. This was mainly because at this scale, certain collateral
phenomena that were previously causing negligible effects on the final figures of the
system, come in with a significant impact on the final performance. A clear example
is showed in Figure A.3a: the static power consumption has always been present
but became non-negligible upon aggressive gate dimensions scaling. A first major
constraint on the voltage scaling comes from the fixed subthreshold slope (S) of the
metal–oxide–semiconductor FET (MOSFET) characteristic. In a MOSFET, the
current switching process involves the temperature-dependent injection of electrons
over an energy barrier [35]. In other words, the initial current flowing in the device
channel, for low values of applied gate voltages, is a purely diffusive process. This
turns into an exponential dependence of the current intensity on the applied gate
voltage, as showed in the following equation A.2:

Id = q
W

L
(ni

NA

)2 (kB

q
)2

Es

µeffe
(qVGS

mkbT
)A

m = 1 + CD

COX

(A.2)

This type of phenomenon sets a fundamental limit to the steepness of the
transition slope from OFF to ON state. From the previous equation, the voltage
sweep required to increase the current value by an order of magnitude in the
subthreshold region can be obtained as showed in equation A.3:

S = dVg

dψs

dψs

d(log10Id) Ä (1 + Cd

Cox

)ln10kT
q

→ kT

q
ln10 Ä 60mV decade−1 | T = 300K

(A.3)

where Cd and Cox are the Depletion and the Oxide capacitances, and ψs is the
surface potential in the channel.

76

End of Dennard Scaling

(a) (b)

Figure A.3: (a)Power trends upon aggressive gate scaling [36].(b) MOSFET
transfer characteristics in subthreshold region [35].

A key factor ignored by the Dennard model is the diffusive nature of the current
in the subtreshold region. As showed by Equation A.3, the slope in this region
is directly dependent on the physical unit regulating the injection of electrons
during diffusion: the temperature.Figure A.3b highlights the direct impact of the
subthreshold behavior on the MOSFET performance.

As mentioned, the geometry scaling has allowed for a gradual reduction of the
supply voltage VDD, which in turns, guarantees an improvement of the device perfor-
mance.Nevertheless, it is crucial that the supply voltage reduction is accompanied
by the threshold voltage scaling, in order to keep the overdrive factor VDD − VT

and the ON current high. Taking into account the incompressible value of the
subtreshold slope, however, a tenfold increase of the OFF current is impossible to
avoid as showed in the Figure A.3b. The only way to obtain a lower, sub-thermal
value for S is to design a device capable of exploiting a different physical mechanism
to perform the electrons injection at this stage of the conduction.

Along with the subtreshold slope and the associated increase of leakage power,
several post-Dennardian nano-meter scaling challenges started to affect IC perfor-
mances. Amongst those, short-channel effects, drain-induced barrier lowering and
velocity saturation are worth being mentioned.

The semiconductor industry has reacted to the inevitable failure of Dennard
scaling by proposing a shift from the classical bulk planar transistors to non-classical
CMOS device architectures. In this perspective, the most important technologies
developed to overcome the aforementioned limitations are Fin FET annd FD
SOI, showed respectively in figure A.4 and A.5. Both of them share the need to

77

End of Dennard Scaling

improve the channel electrostatic to have a higher control on the depletion zone and
avoid additional substreshold swing deterioration. In order to do that, both these
solutions were based on different ways to make the conductive channels thinner
and better controllable from the gate.

Figure A.4: Fin FET technology A.4. Figure A.5: FD-SOI
techonology A.5.

Despite recent efforts in pushing the envelope beyond the limits of thermionic
injection with additional technology boosters (negative capacitance transistors)
or alternative conductive mechanisms (Tunnel field effect transistors) focused on
delivered performance, semiconductor producers encountered increasing difficulties
in further reducing the supply voltage. To conclude, the present trends indicate
that the scaling of the conventional MOSFETs is fast approaching the end of its
useful life time [37].

78

Appendix B

AMBA-AXI protocol

The Advanced extensible Interface (AXI) is part of the ARM Advanced Micro-
controller Bus Architecture (AMBA) specifications. A typical AMBA-based SoC
consists of a high-performance system bus (AHB) and a peripheral bus (APB),
connected via a dedicated bridge as showed in figure B.1.

Figure B.1: Classical AMBA-based SoC [38].

The APB is normally used for connecting low-bandwidth peripherals. It doesn’t
support pipeline operation and burst-data transfers.

In the AHB protocol, the bus master initiates read or write operations by
providing address and control information and the bus slave responds within a
given address-space range [39].This protocol supports multiple bus masters and
slaves, as showed in the example in Figure B.1. In addition, it enables pipelined

79

AMBA-AXI protocol

address-phase operation and split transfer and several types of burst accesses, useful
to improve the delivered performance during cache line fill [40].

Despite the improvements offered by multi-layer AHB and AHB-lite, extensions
of the standard AHB, the architecture implementing the protocol has turned out
to be unsuitable for facing the challenges of modern SoCs. The main reason is that
AHB is transfer-oriented. Being a shared bus protocol, a single flit can be written
to or read from the slave in each transaction. In addition, when a slave is not in
the condition of responding to a master request, the master will remain stalled.

(a)

(b)

Figure B.2: (a)AXI Read transaction (b) AXI Write transaction.

AXI protocol, on the contrary, is strongly transaction-oriented. It consists in
a high-performance, multi-master and multi-slave communication interface and
it is one of the protocol mostly used for on-chip communication. First of all, it
has separate address and data phases. Separate channels are provided for write
and read transactions, as showed in Figures B.3a and B.3b. In addition, each
transaction is composed of address, data and response transfers, each of them
on separated channels. Similarly to AHB, it supports burst-based operations.

80

AMBA-AXI protocol

The great advantage coming with this architecture is the support for out-of-order
transaction completion thanks to the specific ID tag carried by each data-item
involved in a transfer [40].

The handshake mechanism proposed by AXI is based on the two signals VALID
and READY. In a transaction, the master sets the VALID signals high to indicate
that the address/data information is available. At the same time, the destination
slave raises the READY value to indicate that it is in the condition of accepting
the incoming information. The transaction can take place when both the VALID
and READY signal are high [41].

Based on the protocol specifications, certain simple rules are imposed, as reflected
in the examples of Figure B.3.

1. A master source doesn’t have to wait for a high READY value to assert the
VALID signal.

2. In contrast, a destination slave can wait for the VALID signal to be high to
assert the READY signal.

3. Finally, in order for the handshake to complete successfully, the READY and
VALID signal must remain contemporary at high value for at least a clock
cycle.

(a) (b)

Figure B.3: AXI handshake examples [41].

81

Appendix C

CPU tile operation

In this appendix, a more detailed insight of the internal operations of the CPU
socket are presented, based on the schematic view showed in figure C.1. To simplify
the representation and focus on the tile functionality, the optional and configurable
L2 cache is not discussed, neither reported in the schematic representation.
As visible from the schematic, the CPU tile instantiated at the top level of the
RTL hierarchy, together with the system interconnect implemented with the multi-
plane NoC described in Paragraph 1.3.1. For each NoC plane, given a direction
(indicated in figure with the letters n,s,e,w) defining the source/destination of the
transaction with respect to the tile location, two buses are dedicated to transfer data
from/toward such direction. Those are labeled in Figure 1.7 as nocX_data_in_Y
/ nocX_data_out_Y, where X stands for the NoC plane and Y indicates the
direction. For the sake of simplicity, the buses are grouped in batch of 4 signals
according the plane of interest. A peculiar feature of the implementation showed
is that the router is not instantiated at the same level as the interconnect wires,
but inside the tile’s component sync_noc_set. The reason for this design choice is
strictly driven by the necessity to facilitate the synthesis step and does not involve
any particular advantage in terms of functionality. A single-plane router instance
is used for each NoC plane, but the whole component is equivalent to a multi-plane
NoC router. Each router instance has 4 couples of I/O ports, one for each direction,
and an additional port to communicate with the tile. In this case, however, a couple
of dual-clock asynchronous fifo queues are instantiated to handle flit synchronization
across the two different clock domains of the NoC and the Tile. On the tile side,
such queues are directly connected to the multiplexers/demultiplexers of the test
interface showed in green in the schematic. The operation of the test interface is
the one described in the dissertation, regulated from the four I/O pins (namely
TDI,TDO,TMS,TCLK). At the same level, the component cpu_tile_q implements
the buffering stage often mentioned in the explanations of the LID theory. In figure
C.1, just a few fifo queues are showed to simplify the representation, but a total

82

CPU tile operation

amount of 21 queues is actually utilized in this component.
On the processor side, the access to the FIFO queues is managed by the 64-

bits AXI interface implemented in the component cpu_axi2noc. In the schematic
proposed, just two of the many paths provided to communicate with the NoC
are illustrated in order to keep the representation simple enough for the reader
understanding. In particular, juts the paths issuing memory requests through NoC
Plane 1 and the path delivering memory response through NoC 3 are highlighted.
The AXI controller plays a double role: it takes care of extracting/injecting flits
from/to the queues and at the same time provides respectively the read and
write enable signals to do that with the appropriate priority. For what concerns
the data exchange, the AXI just acts as an intermediate component forwarding
requests/response using the dedicated somi and mosi vectors showed in picture to
interface with the core. On the other side, the controller plays a more active role
in determining the order of operations to perform. This task is performed by the
FSM showed in picture, implementing the AXI protocol.

The core comes with separate ports to handle communications with different
components of the SoC. Amongst those, the most relevant one are reported in
figure. In particular, the ports romi/romo are used to communicated with the
chip bootroom. As a consequence, they are connected to the fifo queues of NoC
Plane 5. The same applies for the ports clinti/clinto , which enable the communi-
cation between the processor and the interrupt controller in the IO tile (CLINT
stands for Core-local Interrupt Controller). The ports drami/dramo are used for
communicating with memory, and are thus the one involved in the example paths
reported in figure. In addition messages directed to memory-mapped I/O registers
are forwarded by the socket to the NoC Plane 5 through the APB adapter [2].

83

CPU tile operation

Figure C.1: Detailed internal structure of the CPU hardware socket.

84

Bibliography

[1] Andrew Waterman, Yunsup Lee, David A. Patterson, and Krste Asanović.
«The RISC-V Instruction Set Manual-Volume I:Base User-Level ISA». In:
Electrical Engineering and Computer Science (EECS) (2011) (cit. on p. ii).

[2] Paolo Mantovani, Davide Giri, Giuseppe Di Guglielmo, Luca Piccolboni,
Joseph Zuckerman, Emilio G. Cota, Michele Petracca, Christian Pilato, and
Luca P. Carloni. «Agile SoC Development with Open ESP». In: IEEE/ACM
International Conference On Computer Aided Design (ICCAD) (2020) (cit. on
pp. ii, 3–8, 10, 83).

[3] Paolo Mantovani. «Scalable System-on-Chip Design». PhD thesis. Columbia
University, 2017 (cit. on pp. iii, 2, 4–6, 15, 76).

[4] Davide Giri, Paolo Mantovani, and Luca P. Carloni. «NoC-Based Support of
Heterogeneous Cache-Coherence Models for Accelerators». In: IEEE/ACM
International Symposium on Networks-on-Chip (NOCS) (2018) (cit. on pp. iii,
10, 16, 17).

[5] Luca P. Carloni. «The Case for Embedded Scalable Platforms». In: Design
Automation Conference (DAC) (2016) (cit. on pp. iii, 4–6, 8, 16).

[6] S. Borkar and A. A. Chien. «The future of microprocessors.» In: Communi-
cation of the ACM (May 2011) (cit. on pp. 1, 3).

[7] Anand Haridass (IBM Cognitive Systems). «Heterogeneous Computing The
Future of Systems.» In: NITK-IBM Computer Systems Research Group (NC-
SRG) (2017) (cit. on p. 2).

[8] John Hennessy. The End of Moore’s Law Faster General Purpose Computing,
and a Road Forward. Stanford University. 2019 (cit. on p. 2).

[9] https://www.pulp-platform.org/projectinfo.html (cit. on p. 3).
[10] K. Asanovic’ et al. «The rocket chip generator». In: SemanticScholar (2016)

(cit. on pp. 3, 14).
[11] Giovanni De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-

Hill Higher Education, 1994 (cit. on pp. 5, 6, 24).

85

https://www.pulp-platform.org/projectinfo.html

BIBLIOGRAPHY

[12] Paolo Mantovani, Giuseppe Di Guglielmo, and Luca P. Carloni. «High-Level
Synthesis of Accelerators in Embedded Scalable Platforms». In: Asia and
South Pacific Design Automation Conference (ASPDAC) (2016) (cit. on pp. 6,
7, 17).

[13] R. Porter, A. M. Fraser, and D. Hush. «Wide-area motion imagery». In: IEEE
Signal Processing Magazine (2010) (cit. on p. 6).

[14] Luca P. Carloni. «From Latency-Insensitive Design to Communication-Based
System-Level Design». In: The Proceedings of the IEEE,Vol. 103, No. 11
(2015) (cit. on pp. 7, 11, 12).

[15] Natalie Enright Jerger, Tushar Krishna, and Li-Shiuan Peh. On-Chip Networks.
Morgan Claypool, 2017 (cit. on pp. 8, 9).

[16] https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-
transmitter (cit. on p. 9).

[17] http://www.asic-world.com/systemc/tlm1.html (cit. on p. 10).
[18] Laung-Terng Wang, Cheng-Wen Wu, and Xiaoqing Wen. Vlsi Test Principles

and Architectures Design for Testability. Morgan Kaufmann, 2006 (cit. on
pp. 18, 19).

[19] Schmid Alexandre. Test of VLSI systems. École polytechnique fédérale de
Lausanne (EPFL) (cit. on pp. 19, 20, 22, 23).

[20] Yield Enhancement Working Group. In: International Technical Rescue Sym-
posium. Tokyo, 2007 (cit. on p. 21).

[21] Semiconductor Group Texas Instruments. «IEEE Std 1149.1 (JTAG) Testa-
bility Primer». In: (1997) (cit. on pp. 22, 23).

[22] Matteo Sonza Reorda. «New Methods for efficient functional testinf of SoCs».
Politecnico di Torino (cit. on p. 22).

[23] https://www.eetimes.com/soc-testing-becomes-a-challenge/ (cit. on
pp. 23, 24).

[24] https://www.evaluationengineering.com/home/article/13001959/
dft-strategies-for-soc-designs (cit. on p. 24).

[25] Marko Isomäki. «Processor Debugging Through Ethernet». MA thesis. Chalmers
University of Technology, 2004 (cit. on pp. 28, 29).

[26] https://en.wikipedia.org/wiki/FPGA_Mezzanine_Card (cit. on p. 38).
[27] https://en.wikipedia.org/wiki/DDR4_SDRAM (cit. on p. 38).
[28] J. a. Heat M. El-Taha. «Queueing Network Models of Credit-Based Flow

Control». In: Department of Mathematics and Statistics,University of Southern
Maine and Sun Microsystems (2005) (cit. on p. 39).

86

https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter
https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter
http://www.asic-world.com/systemc/tlm1.html
https://www.eetimes.com/soc-testing-becomes-a-challenge/
https://www.evaluationengineering.com/home/article/13001959/dft-strategies-for-soc-designs
https://www.evaluationengineering.com/home/article/13001959/dft-strategies-for-soc-designs
https://en.wikipedia.org/wiki/FPGA_Mezzanine_Card
https://en.wikipedia.org/wiki/DDR4_SDRAM

BIBLIOGRAPHY

[29] https://en.wikipedia.org/wiki/PHY (cit. on p. 40).
[30] https://en.wikipedia.org/wiki/Medium_access_control (cit. on p. 40).
[31] https://www.esp.cs.columbia.edu/docs/singlecore/singlecore-

guide/ (cit. on p. 44).
[32] https : / / www . informit . com / articles / article . aspx ? p = 1647051 &

seqNum=5 (cit. on p. 45).
[33] https://www.economist.com/technology- quarterly/2016- 03- 12/

after-moores-law/ (cit. on p. 74).
[34] D.J Frank, R.H Dennard, E Nowak, P.M Solomon, Y Taur, and Hon-Sum

Philip Wong. «Device Scaling Limits of Si MOSFETs and Their Application
Dependencies». In: Proceedings of the IEEE, March 2001, Vol.89(3), pp.259-
288 (March 2001) (cit. on pp. 75, 76).

[35] AM Ionescu and H Riel. «Tunnel field-effect transistors as energy-efficient
electronic switches». In: Nature 479 (7373), 329-337 (2011) (cit. on pp. 76,
77).

[36] B. Meyerson (IBM). In: Semico Conf. (January 2004) (cit. on p. 77).
[37] http://userweb.eng.gla.ac.uk/fikru.adamu-lema/Chapter_02.pdf

(cit. on p. 78).
[38] Massimo Bocchi. «Architetture di bus per Architetture di bus per System-On-

Chip». University of Bologna - Corso di Architettura dei Sistemi Integrati.
2002/2003 (cit. on p. 79).

[39] http://utenti.dieei.unict.it/users/gascia/COURSES/sist_emb_14_
15/download/SE08_buses_amba.pdf (cit. on p. 79).

[40] https://www.doulos.com/knowhow/arm-embedded/migrating-from-ahb-
to-axi-based-soc-designs/ (cit. on pp. 80, 81).

[41] ARM. «AMBA® AXI and ACE Protocol Specification». 2011 (cit. on p. 81).

87

https://en.wikipedia.org/wiki/PHY
https://en.wikipedia.org/wiki/Medium_access_control
https://www.esp.cs.columbia.edu/docs/singlecore/singlecore-guide/
https://www.esp.cs.columbia.edu/docs/singlecore/singlecore-guide/
https://www.informit.com/articles/article.aspx?p=1647051&seqNum=5
https://www.informit.com/articles/article.aspx?p=1647051&seqNum=5
https://www.economist.com/technology-quarterly/2016-03-12/after-moores-law/
https://www.economist.com/technology-quarterly/2016-03-12/after-moores-law/
http://userweb.eng.gla.ac.uk/fikru.adamu-lema/Chapter_02.pdf
http://utenti.dieei.unict.it/users/gascia/COURSES/sist_emb_14_15/download/SE08_buses_amba.pdf
http://utenti.dieei.unict.it/users/gascia/COURSES/sist_emb_14_15/download/SE08_buses_amba.pdf
https://www.doulos.com/knowhow/arm-embedded/migrating-from-ahb-to-axi-based-soc-designs/
https://www.doulos.com/knowhow/arm-embedded/migrating-from-ahb-to-axi-based-soc-designs/

	List of Tables
	List of Figures
	Acronyms
	Introduction to ESP
	Raise of Heterogeneous Computing
	ESP Methodology
	ESP Architecture
	NoC
	Tiles

	SoC Test trends
	Functional Test
	Structural Test
	Design for testability

	Conclusions

	ESP Test approach
	Backend flow constraints
	NoC bypass
	Ethernet
	Conclusions and additional remarks

	Test interface specifications
	Insertion point and Debug Unit interface
	Pin count constraints and pin sharing

	Test flow
	Test programs

	Debug Unit Design
	First version - single register
	FSM
	Datapath
	Simulation
	Conclusions

	Second version - multiple registers
	FSM
	Datapath
	Simulation
	Conclusions

	Conclusions
	Future improvements

	End of Dennard Scaling
	AMBA-AXI protocol
	CPU tile operation
	Bibliography

