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Introduction

The study of social phenomena identifies humans as the essential entity and
attempts to describe human behaviour. Probably, the opinions an individual
holds represent the most important factors behind human behaviour. Human
beings take actions according to their beliefs therefore, the investigation of
the mechanism of opinion formation assumes great interest in the study of
social phenomena. This mechanism depends on a large number of variables and
looking for a mathematical model to describe such a complex process might
seem pretentious. However, many models have been proposed since the late 50’s
which have provided many insights into the process of opinion formation.

Opinion dynamics research originated in French in 1956 [1], in which a formal
theory has been developed to investigate to what extent "the influence process
in groups can be explained in terms of interpersonal relations". Since then
various models have been proposed such as DeGroot model [2], considered as
the classical model in opinion dynamics, and the voter model [3], which will be
studied in more detail in the remainder. These two models can be regarded as
the starting point of the models which will be discussed below. Other models
worth mentioning which will note be discussed below are the Sznajd model [4]
[5] and the majority rule model [6]. This research field gained more attention
with the advent of social media. Individuals have access to a huge amount
of information and social media allow for intense interaction. This is clearly
beneficial however, "the exchange of opinions can lead to the propagation of
counterfactual rumours and can even give rise to the formation of radicalized
groups" [7]. Examples of such groups are the Flat Earth Society or the anti-vax
movement. Investigating the process of collective opinion formation may reveal
the conditions which lead to a beneficial outcome.

To study opinion dynamics a set of agents 1, which represent the population
taken into consideration, is considered jointly with the degree of interaction
among them. Each agent holds an opinion which is subject to changes when
an interaction with the other agents occurs. Opinion formation is a complex
process function of different aspects, such as individual predisposition to change
mind, preconceived ideas, information exposure, positive and negative peer
interaction, and many others. [8]. It appears to be natural to represent the
opinion dynamics setting on a graph making the equivalence between agents
and nodes and between agents’ relationships and links. The network approach
has contributed significantly in the understanding of complex systems. There
exist many network models which are widely used to describe complex social

1Throughout this work the terms agent, individual and node are used interchangeably,
similarly also the terms network and graph.
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interactions such as the Erdos-Rényi (ER) graph, the small-world (SW) network
and the scale-free (SF) network. Initially static graphs have been considered
for the dynamic process. Lately, graphs whose structure varies dynamically are
of interest also because they model well the user’s behaviour on many social
networks, where a user follows another if their interests are similar.

Figure 1: Schematic representation of a network, nodes with higher degree are
represented with bigger circles and brighter colours.

This thesis work is organised as follows: in chapter 1 an eagle-eye view of
opinion dynamics on complex network is provided, together with some classical
models that have been studied in the literature. The voter model is introduced
and in chapter 2 a series of voter-like models is brought to attention. At the
end of the chapter the adaptive voter model proposed by Durrett et al. [9] is
discussed. Chapter 3 is devoted to the description of the simulator that has been
developed in c++ in order to study in depth the dynamics of the adaptive voter
model. Particular attention is posed on the choice of the data structures and at
the development of efficient random graph generators. A discussion of the phase
transition that the model undergoes is given in chapter 4, where it is also studied
the response of the model to random graphs different from the Erdős-Rényi, in
particular to the Stochastic Block Model (SBM). The last chapter of this work
aims at investigating the time complexity of variants of the model. In particular,
it is shown how minor changes in the update rule can lead to dramatic changes
in the behaviour of the model.

2



Chapter 1

Opinion Dynamics on
Complex Networks

This chapter is devoted to a gentle introduction to opinion dynamics on complex
networks. First, a framework [10] valid for any opinion dynamics model is
described to provide a context for the problem. There exist many ways of
differentiation between the various models however, the underlying structure
holds for all of them. Then, complex networks are presented more in detail
and their role in this context is discussed. It will be seen how a group of
individuals with acquaintance relations can be mapped onto a graph and how
this mathematical description can be exploited to gain insights of the opinion-
formation process.

Lastly, some classical models are described such as the De Groot model [2]
and the voter model [3] [11]. These models represent the foundation of this
research field and have been largely investigated. In particular, the latter is the
starting point of this work. Extensions of the voter model will be presented
and analyzed, of particular interest for this work is the adaptive voter model of
Durrett [9] examined in detail in Chapter 2.

1.1 Framework
The field of opinion dynamics attempts at gaining insights and making predictions
about the complex process of collective opinion formation. The sociological
mechanisms behind it are of various nature and strongly vary from individual to
individual. It goes without saying that these processes are also strongly influenced
by the the socio-economical context of the individuals. The modelling process in
this research field is undoubtedly challenging. However, rather simple models
are able to capture some social aspects and mechanism of opinion formation.
Homophily and heterophily are examples of such mechanisms which can be easily
translated into mathematical language and will be further discussed later in this
work.

Aside from the intrinsic complexity of the opinion-formation process, models
for opinion dynamics have some common characteristics. First of all, the main
element is of course a set of individuals, who constitute the population under
observation. Then, models are usually composed of three basic elements in the

3



1. OPINION DYNAMICS ON COMPLEX NETWORKS

more general setting: the opinion expression format (how opinion is represented),
the fusion rule (how agents interact to form their own opinion) and the opinion
dynamic environment [10]. According to the opinion formats, models can
be distinguished into continuous and discrete opinion models. The process
undertaken by an agent to form his/her new opinion is described by the fusion
rule. Each agent’s opinion emerge from the merging of the opinions of the
interacting agents. This comes in different flavours and characterize the opinion
model, different variables can be incorporated into the fusion rule and different
combinations of these variables considered. Examples of different fusion rules
will be introduced in the remainder of this work. The dynamical environment
influences the process as well, for instance some models introduce a random noise
to the agents’ opinions with the aim of describing the tendency of individuals to
spontaneously change opinion. Another example is given by the social structure
of a given community, some agents are more influential than others or are less
prone to change, such as the stubborn agents [12] introduced later. The process
may ultimately lead to a consensus among the agents (one opinions’ cluster) or
to polarization (two opinions’ clusters) or more generally to fragmentation [13].
Figure 1.1 depicts the framework that has just been described.

Set of Agents Agents'
Opinions

Fusion Rule

Results of
the Dynamic

The Final Opinions
Configuration

OPINION DYNAMICS
ENVIRONMENT

Figure 1.1: Opinion dynamics framework as presented in [10]

1.2 The Role of Complex Networks
The setting described above can be naturally translated in mathematical terms
through graph theory. A graph G(V,E) is a structure composed by a set of
vertices V which are interconnected through links of the type (i, j) | i, j ∈ V
contained in the set of edges E. The translation is straightforward as depicted
in Figure 1.2, each agent of the population is mapped onto a vertex (node) of
the set V and each edge (i, j) shows the interconnection between two individuals.
These bounds can be interpreted as acquaintance relationships when looking at
social networks. Usually, the fusion rule of the opinion dynamics model involves
nodes which are connected even though it will be seen that models (such [7])
randomly select agents from the entire network to resolve conflicts.

Complex networks are just a special type of graphs which have gained popu-
larity in the last years. These graphs exhibit non-trivial topological properties
that resemble more closely behaviours observed in real-world systems. Heavy-
tailed degree distribution is one of these characteristics, it implies that social
networks are strongly non-homogeneous, with few hubs having a remarkably high
degree resulting connected to a large number of other nodes. This behaviour is
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1.3. OPINION DYNAMIC MODELS

observed in graphs such as the Chung-Lu where it is possible to select the desired
degree distribution. Whereas, Erdős-Rényi graphs have a binomially distributed
degree distribution concentrated around the mean degree, this strongly differ-
entiate from power-law or scale-free distributions. The other "most important
universal characteristics" [14] of complex networks are the small-world struc-
ture (proposed by Watts and Strogaz [15]), preferential attachment, community
structure (Stochastic Block Model will be discussed) and remarkable robustness
against random breakdowns. There exist many generative models such as the
already mentioned Erdős-Rényi, Chung-Lu, Watts-Strogatz each of them better
captures one (or more) of the aforementioned aspects.

Acquaintance Relationship

Figure 1.2: Equivalence between a network of individuals (on the left) and a graph
(on the right).

1.3 Opinion Dynamic Models
In this section the models which are referred as the classical in opinion dynamics
are discussed, namely the DeGroot model, the bounded confidence model and
the voter model. These represent the basic building blocks of more complicated
models which are modifications or extensions of the aforementioned models [10].
More attention will be devoted to the voter model which will be studied in more
detail representing the starting point of this research.

1.3.1 DeGroot Model

The DeGroot model is regarded as the classical model in opinion dynamics.
The more general formulation of the model, as presented in [2], considers a
population of k agents which interact with each other, each agent specifies his
subjective opinion on the unknown value of some parameter θ. The opinion can
be specified as a subjective probability distribution for θ. However, the model
can also be applied when the opinion of each member of the population is a just
a point estimate of the parameter instead of the entire probability distribution.
Following [10] the DeGroot model can be stated as follows. A = {A1, A2, .., An}
is the set of agents and xi(t) represents Ai’s opinion at time t. Let wij be the
weight Ai gives to Aj representing how agent Aj is able to influence agent Ai.
The updating equation of the opinion of Ai is:

xi(t+ 1) = wi1x1(t) + wi2x2(t) + ..+ win(t), t = 0, 1, 2, .. (1.1)
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1. OPINION DYNAMICS ON COMPLEX NETWORKS

The matrix W is a stochastic matrix, namely 0 ≤ wij ≤ 1 and
∑
j wij = 1.

The DeGroot model can be classified as continuous, according to the distinction
made in Section "Framework", since the agents’ opinions are continuous. It is
generally assumed that xi(t) ∈ R. The model can be easily restated in matrix
form:

x(t+ 1) = W× x(t), t = 0, 1, 2, .. (1.2)

Even though the model has not been defined on a network its interpretation on
a graph is straightforward. The nodes of the graph represent the agents while
the weighted links represent the relationships among agents. The weight of the
links are exactly those contained in the matrix W.

Friedkin-Johnsen Model

In the above formulation the weights wij in Equation (1.1) are static. However,
the weights wij may change with time and opinion profile. An example of
such a case is the Friedkin-Johnsen model [16][17]. The model encompass two
different processes of opinion formation. In fact, unlike the DeGroot model,
individuals not only are influenced endogenously by other agents’ opinions, but
also at each step in the process are influenced exogenously by the the conditions
that have formed their initial opinions [17]. The exogenous determinants of the
opinions include attributes such as gender, age and socioeconomic status but
also ubiquitous roles (worker, father, husband) [17]. Let be y(t) be the n × 1
vector of individual’s belief at time t, X a n× k matrix containing k exogenous
variables, b is a k×1 vector of coefficients weighting the exogenous contributions.
Lastly, the matrix W is equivalent to the n× n weight’s matrix in the DeGroot
model and represent the endogenous interpersonal influences. Two equations
describe the theory, the first concerns the origins of actor’s initial opinions:

y(1) = Xb (1.3)

The second equation describes the subsequent evolution of the process, beyond
the initial opinions:

y(t) = αWy(t− 1) + (1− α)y(1) for t = 2, 3, ... (1.4)

It is interesting the role covered by the parameter α, a scalar weight of the en-
dogenous interpersonal influences 0 ≤ α ≤ 1. As observed in [17] this parameter
describes the balance-of-forces of the endogenous and exogenous influences and is
called the coefficient of social influence. The opinions that are formed following
this model reflect the competing influences of the personal circumstances of an
actor and the influences of the peers belonging to the same social network. [17]
Such a balance-of-force has also a psychological motivation in the speculation of
Festinger:

"When a person or a group attempts to influence someone, does that person or
group produce a totally new force acting on the person, one which had not been
present prior to the attempted influence? Our answer is No - an attempted in-
fluence does not produce any new motivation or force. Rather, what an influence
attempt involves is the redirection of psychological forces which already exist.1"

1Taken from the paper of Friedkin and Johnsen [17] who cited Festinger [18].
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1.3. OPINION DYNAMIC MODELS

The Friedkin-Johnsen model, presented in matrix form, can be stated condensing
the two equations in just one as in [13]:

y(t+ 1) = (1− α)y(0) + αWy(t) (1.5)

It appears clear that the DeGroot model is a special case of the Friedkin-Johnsen
model. We obtain the DeGroot model when the coefficient of social influence α
is equal to one and so the exogenous contribution is excluded.

1.3.2 Bounded Confidence Model

Bounded confidence models represent an entire class of models in which interac-
tions between pair of agents happen only if the difference in opinion between the
two individuals is smaller than a certain threshold, namely if the opinions are
sufficiently similar. These models are becoming popular due to their considera-
tion of psychological factors [10]. Such models allow to capture social behaviours
such the homophily, which is observed in real settings. However, their analysis
appears to be demanding due to the non linearity of the equations describing the
interactions. The bounded confidence model can be stated in a general form as
follows below, then we will discuss two bounded confidence models which differs
by the fusion rule employed.

As before we can introduce the set of agents A = {A1, A2, ..., An} each one
of them has opinion xi(t) ∈ [0, 1] at a discrete time t ∈ 0, 1, 2, .... In addition,
the threshold needs to be defined, for each individual we can define a εi. If this
parameter is equal for each agent (εi = εj ∀i 6= j) the bounded confidence model
is homogeneous otherwise, it is referred as heterogeneous.

Hegselmann-Krause model

This model can be considered as an extension of the classical DGroot model in
which the weights in the matrix W depend on the particular configuration of
opinions of the agents and has been introduced by Hegselmann and Krause in
[13]. An agent Ai in the group A takes into account the opinion of another agent
Aj only if Aj ’s opinion does not differ from his own opinion more than a certain
confidence level εi. For a given agent Ai and opinion profile x = (x1, ..., xn) the
set containing the agents satisfying this property is defined as:

I(Ai, x) = {1 ≤ j ≤ n s.t.
∣∣xi − xj∣∣ ≤ εi} (1.6)

The agents in this set are the only with which agent Ai interacts. Therefore,
considering the matrix of weights W defined above, one can state that wij(x) =
0 for j /∈ I(Ai, x) and wij(x) = 1

|I(Ai,x)| for j ∈ I(Ai, x). The model assumes

that agent Ai assigns an equal weight to all the connections to agents Aj with j ∈
I(Ai, x). The equation describing the dynamics of the opinion of agent Ai in
the Hegselmann-Krause model is:

xi(t+ 1) =
1∣∣I(Ai, x)

∣∣ ∑
j∈I(Ai,x)

xj(t) fort = 0, 1, 2, .. (1.7)
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1. OPINION DYNAMICS ON COMPLEX NETWORKS

Deffuant-Weisbuch Model

The Deffuant-Weisbuch model [19] is similar to the Hegselmann-Krause model
but simpler since it is not necessary to define the set I(Ai, x). In fact, two agents
are randomly selected from A at each time instant. The two individuals influence
each other only if

∣∣xi(t)− xj(t)∣∣ ≤ ε, the fusion rule is the following:{
xi(t+ 1) = xi(t) + µ(xj(t)− xi(t))
xj(t+ 1) = xj(t) + µ(xi(t)− xj(t))

t = 0, 1, 2, .. (1.8)

The parameter µ controls the agent’s movement towards the opinion of the other
agent when the condition of bounded confidence is satisfied.

1.3.3 The Voter Model

This model is the first among those presented having a discrete opinion space
indeed, opinions in the voter model are binary (xi ∈ {0, 1}). The model was
introduced independently by Holley and Liggett [3] and Clifford and Sudbury
[11]. The firsts, given a countable set A, defined a proximity process on the
state space {0, 1}A governed by a transition function, whose definition relies
on the identification of subsets of A for each one of the elements in that set.
Each site i ∈ A examines the subsets belonging to him and if one of the sites’
process value is one, it rearranges its own probability of assuming the value
one at the following time step. The subsets in the definition correspond to the
neighbourhood of a node in terms of graph theory. The seconds studied three
different processes (swapping, invasion and alternation process) in which the
node placed on a regular lattice interact with each other.

Voter Model on a Regular Lattice

Initially, the voter model has been studied placing the agents on regular lattices,
such as in the studies mentioned above. But, soon the model’s behaviour has
been investigated on heterogeneous networks showing that it differs dramatically
from that on regular lattices [20]. The agents change their opinions selecting
randomly the opinion of one of their neighbours Aj ∈ A = {A1, A2, ..., An} the
set of agents holding opinion xj(t) (xj ∈ {0, 1}), being t a discrete time. The 2-D
lattice L (d

√
ne× d

√
ne) represents the structure on which the agents are placed.

Excluding the nodes on the boundary, each agent has four neighbors, which are
the only agents to which he can communicate. At each discrete time instant
agent Ai selects randomly one of his neighbours, say agent Aj , and imitates his
opinion. In more mathematical terms:

xi(t+ 1) = xj(t) (1.9)

It is possible to start the process also on higher order lattices and many results
have been proven for such homogeneous graphs.

Voter Model on a Heterogeneous Graph

The study of voter model has been carried out not only on regular graphs but
also on heterogeneous graphs. This choice is imposed by the fact that real social
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1.3. OPINION DYNAMIC MODELS

networks are not regular and on the contrary, show strong imparity among nodes.
In [20] Sood and Redner presented the voter model on a graph. Each agent
corresponds to a node and can one of two opinions (spin up and spin down).
The process of evolution consists of (i) selecting randomly a node of the network,
(ii) assign to the node the opinion of a randomly chosen neighbor. These steps
are repeated until a finite system necessarily reaches consensus.

The direct and reverse Voter Model

It is possible to provide a definition of this model in more actual terms and in
particular by making use of graph theory constructs. Having the agents placed
on the nodes of a graph, and the link representing interconnections, nodes are
activated according to a Poisson process of rate one. When activated a node
looks at its neighbours and updates either its own opinion or the one of its
contacted neighbour. This difference gave rise to two different models: the direct
voter model and the reverse voter model [21].

i

i assumes j's
opinion j

xnode = 1

xnode = 0

direct voter model

i

i convinces 
node j j

reverse voter model

Figure 1.3: Schematic illustration of the voter model fusion rule.

We will now present the pseudo-code for the direct and reverse voter model
schematically depicted in Fig. 1.3). The environment is the usual one, having
the individuals of the populations paired with the nodes of a graph, each with
a binary opinion (xi ∈ {0, 1}). The initial distribution of opinions is randomly
assigned. The dynamics develops by picking up a random node (also link-based
selection are possible [7]) which selects randomly a neighbour, if any exists, and
(i) adopts its opinion (direct voter model) (ii) forces the neighbour to adopt its
opinion (reverse voter model).

These variations have minor impact when the underlying network is static
and homogeneous (e.g. regular lattice) but, "can change drastically the model’s
behaviour as soon as the topology can evolve on the same time scale as the
agents’ opinions" [21]. Adaptive voter models are of primary interest in this
work and are covered in Chapter 2 and the differences in behaviour, in particular
in the convergence time, will be discussed in the last chapter. It will be seen
how minor changes in the fusion rule can lead to remarkable changes in the time
complexity of the process.
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1. OPINION DYNAMICS ON COMPLEX NETWORKS

Input: A graph G(A,E)

Ai ∈ A with randomly assigned opinion xi(0) ∈ {0, 1}
Output: G(A,E), Ai has opinion xi(t) in absorption state

loop

. Random selection of a node Ai
if agent Ai is isolated then
. Do nothing

else
. Select a random neighbor Aj

. [d VM] Ai copies the opinion of its neighbor Aj
I [r VM] Ai convinces its neighbor Aj to change opinion

end if
end loop

Figure 1.4: Direct([dVM]) and reverse ([VM]) voter model. They differ just for one
line, with . is reported the direct voter model. Whereas, with I the reverse voter
model.

The dynamics goes on until all the agents share the same opinion, this
condition represent an absorbing state and for any finite population of agent
this state will be reached. However, the time to consensus might vary strongly
according to the version of the voter model. It has to be noted that the two
pseudo-code differ just for one line (written with a different font) but that changes
the role of the agents at play, from asking for an opinion (direct) to impose the
opinion on one of the acquaintance. Moreover, the two nodes Ai and Aj have
different probability of having large degree. In fact, the first node Ai is chosen
uniformly among all the nodes of the networks, whereas the second is chosen
in the neighborhood of the first node Ai so, it is a hub with larger probability
since hubs are connected with a large number of nodes. "The asymmetry in
the opinion update between the two interacting nodes can then couple to the
asymmetry between a randomly chosen node and its randomly chosen neighbor,
leading to different dynamical properties" [21].

The last instance to be discussed is the one which uses link selection instead
of node selection. When a link is randomly picked up it can either connect two
agreeing nodes or two in disagreement, when the latter happens one of the two
ends of the link copies the opinion of the other end. Again, the process continues
until a consensus (absorbing) state is reached.
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Chapter 2

Adaptive Voter-like Models

The voter model set the ground to the proliferation of many other voter-like
models, which build upon it, slightly changing the update rule or introducing
additional processes other than the changing-opinion one. An interesting feature
of some of the upcoming models is the adaptivity meaning that, not only agents’
opinions change in response to the network’s structure, but also the network
adapts according to the agents’ opinions placed on its vertices. This aspect will
be further discussed in Section 2.1.

Next sections are devoted to the discussion of various versions of the voter
model, each of which aims at better describing the process of opinion formation.
For example, the model in [22] accounts also for the habit of human beings
to connect not only with like-minded individuals but also, with someone who
holds a different point of view. Whereas, others have introduced agents whose
opinion cannot change during the dynamic, calling them stubborn agents [12].
We have mentioned in the previous chapter how minor modifications in the
model may lead to remarkable effects on the dynamics. This claim is in line with
the differences in behaviour found by Durrett in [9] studying two instances of
the voter model (rewire-to-same and rewire-to-random).

2.1 Towards Adaptive Models

2.1.1 The Holme and Newman Model

One of the fundamentals questions in the field of network dynamic is "whether
the dynamics taking place on a network controls the network structure or the
structure controls the dynamic" as stated in [23] by Holme and Newman. They
observed that social networks tend to separate into communities of agents holding
the same opinion. They argued this happens both because individuals tend
to aggregate when they are like-minded and because individual are able to
influence the others which are topologically close to them. Therefore, Holme
and Newman [23] proposed a model in which both processes happen namely,
links arise among nodes with the same opinion and neighbouring nodes influence
themselves triggering opinion changes. As will be used also in the remainder,
the first process is called homophily which indicates the tendency of connecting
to agents who have the same traits.
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2. ADAPTIVE VOTER-LIKE MODELS

The model leverages on the voter model which has been above described and
the setting is similar. A set of N agents is randomly assigned opinions, this time
the choice is not only in the set {0, 1} but a node’s opinion can be any in a set of
cardinality G. In the paper Holme and Newman explore the situation in which
G scales with the number of nodes N , in order to keep the ratio N

G = γ constant.
This implies that for N growing towards infinity also the number of possible
beliefs grown unboundedly. Also version with a fixed (and small) value of γ
have been studied, for example in [22] the first part of the paper is devote to the
study of this model for G = 2. It has to be mentioned that opinions can become
extinct, when none of the agents holds that particular opinion anymore. The
N agents are placed on N nodes of a network, which presents M links among
the nodes. These links are indicative of the mutual relation between individuals
and the value M remains unchanged throughout the dynamic process. The
authors justified this stating that at a given moment a human being is able to
maintain only a limited number of social bounds. The links are initially placed
according to the Erdős-Rényi generation model, that means between any pair of
nodes an edge is placed independently on the other choices and with a constant
probability. Agents’ initial opinions are assigned uniformly at random choosing
from the G possibilities. At each step of the dynamic an agent Ai is selected
and if the degree of it is different from zero it follows one of the two processes
described above. So, it either suppresses one of its connections to create a new
one with an agent Ak who has the same opinion as AI , or it changes its own
opinion in order to find agreement with one of its neighbors selected at random.
The model is described in more detail in the following pseudo-code.

Input: G(A,E) random graph with mean degree δ = 2L
N

Ai ∈ A has randomly assigned opinion xi(0) ∈ G
G set of opinions

Output: G(A,E), Ai has opinion xi(t), no "discordant" links exist

while discordant links are present do

. Random selection of a node Ai
if agent Ai is isolated then
. Do nothing

else
. Select a random neighbor Aj

(1) With probability φ
. disconnect the link (Ai, Aj)

. connect Ai to a new agent Ak such that xi = xk

(2) Otherwise, with probability 1− φ
. Ai copies the opinion of its neighbor Aj

end if
end while

Figure 2.1: Home and Newman model.
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2.2. HOMOPHILY AND HETEROPHILY

2.1.2 Study of the Model

This model is of particular interest because the adaptive voter model proposed
by Durrett [9] represents an extension of it. The latter borrows the idea of
letting the network adapt in response to opinions (links are rewired to connect
like-minded individuals) and to make opinions change in response to the network
structure (agents influence their neighbours).

Referring to a discordant link as one which connects two nodes holding
different opinions, both the processes in the pseudo-code -(1) and (2)- reduce the
number of such links. In fact, the homophilous process (1) tends to withdraw
discordant links, forming new connections only between agents in agreement.
Also the opinion-changing process (2) attempts to find an agreement among
neighbours, even though in this case the update might also increase the number
of discordant links since every time an agents change opinion all the connections
with its neighbours flip from discordant to concordant 1 and viceversa. The
process ultimately reaches a fragmented state, in which the initial graph has
separated into clusters composed by agents with the same opinion. Reached
this point, the structure of the network will not change anymore, any additional
iteration will just rewire links within the clusters (just rewiring between like-
minded nodes is allowed). Random rewiring of the clusters leads to, in the limit,
components arranged according to the Erdős–Rényi model. Holme and Newman
[23] called this state with no more discordant link the consensus state. In the
pseudo-code above we have the number of discordant nodes as stopping condition
and we deemed that to be true, since Holme and Newman were interested in the
number and size of the components arising from the dynamic.

It has been revealed a phase transition between a phase in which a giant
component forms, with an exponential distribution of small communities (for
small values of the rewiring φ) and a phase with an highly fragmented network
with clusters having mean size equal to γ. This transition in studied in more
depth in [22] in which a mathematical description is also provided (for high
values of the rewiring φ). It has to be noted that the number of components for
small values of the rewiring φ depends on the characteristic of the initial graph
G(A,E). The number of connected components depends on the average degree
δ, and if it is big enough the graph is connected and for φ = 0 all the network
reaches a consensus. In fact, only an agreement between all the nodes represent
a stable state since no rewiring is permitted when φ = 0.

2.2 Homophily and Heterophily
Building upon the Holme and Newman model (HN) presented above, Kimura
and Hayakawa developed their model in [22]. The authors argued that the HN
model captures only one social tendency namely homophily, which consists in
the formation of connections with individuals who hold the same opinion. They
introduced a process modelling heterophily which, on the contrary, makes rise
to the formation of links between agents with different opinions. Therefore, in
this model together with the changing-opinion and the rewire-to-same processes

1Concordant, as opposite of discordant represents those links which connect nodes holding
the same opinion. These links are sometimes referred as inert in the literature and on the
contrary, discordant links are also called active.
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2. ADAPTIVE VOTER-LIKE MODELS

there exist also a rewire-to-diverse process, when this latter is suppressed, the
model reduces to the Holme and Newman model [23].

Input: G(A,E) random graph with mean degree δ = 2L
N

Ai ∈ A has randomly assigned opinion xi(0) ∈ G
G set of opinions

Output: G(A,E), Ai has opinion xi(t), "discordant" links might
still be present

loop

. Random selection of a node Ai
if agent Ai is isolated then
. Do nothing

else
. Select a random neighbor Aj

(1) With probability φ
. disconnect the link (Ai, Aj)

. connect Ai to a new agent Ak such that xi = xk

(2) With probability ψ
. disconnect the link (Ai, Aj)

. connect Ai to a new agent Ak such that xi 6= xk

(3) Otherwise, with probability 1− φ− ψ
. Ai copies the opinion of its neighbor Aj

end if
end loop

Figure 2.2: Co-evolutionary model with homophily and heterophily

Kimura and Hayakawa argued that heterophily is a fundamental process in
social networks which otherwise would fragment into isolated groups when only
homophily is at play. This behaviour has been highlighted in the previous Section
2.1. Heterophily allows to create bridges between community-like structures
holding different opinions, since it creates connections between agents who
disagree. In [22] has been demonstrated that for the case G = 2 the stability of
the coexistence of two states. This shows that the dynamical behaviour strongly
changes compared to the behaviour of the Holme and Newman model just adding
another process which captures a different sociological aspect.

2.3 Voter Model Seeking for a Third Opinion
In [7] yet another voter-like model has been proposed, which introduces a new
parameter ρ interpreted as a "measure of social conformity". It uses the idea of
of adaptivity as presented by Holme and Newman [23] and extends their model.
As always, individuals are represented as the N nodes of a graph while K edges
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2.3. VOTER MODEL SEEKING FOR A THIRD OPINION

are the social relationship among them. The proposed model allows just for two
opinions, that would correspond to G = 2 in the HN model. When rewiring
does not take place (so, with probability 1 − α); instead of having one of the
two ends of the selected link adopting the opinion of a neighbor, the two agents
look for a third opinion. Therefore, another node is selected from the entire
graph and with probability ρ both nodes accept the opinion of this node whereas,
with probability 1− ρ they assume the opposite probability. Again we sketch
the pseudo-code describing the model, it is just slightly different from the one
presented above in Figure 2.1.

Input: G(A,E) random graph with K links
Ai ∈ A has randomly assigned opinion xi(0) ∈ G
G = {0, 1} binary set of opinions

Output: G(A,E), Ai has opinion xi(t), no discordant links exist

while discordant links are present do

. Random selection of a link (Ai, Aj)

if link (Ai, Aj) is discordant then

(1) With probability φ
. disconnect the link (Ai, Aj)

. connect Ai to a new agent Ak such that xi = xk

(2) Otherwise, with probability 1− φ
. randomly select a node Az in A
(a) With probability ρ
. Ai and Aj copy the opinion of Az

(b) Otherwise, with probability 1− ρ
. Ai and Aj assume the opposite opinion as Az

else
. Do nothing

end if
end while

Figure 2.3: Voter model accounting for social conformity.

What is interesting in the study carried out in [7] is that the time to
consensus of the adaptive voter model of Holme and Newman (linear) is the
critical case between a logarithmic and exponential complexity. This change in
behaviour can be observed varying the parameter ρ. When ρ = 1

2 the model
reduces to the HN model since the third opinion does not bias the decision, with
probability 1

2 node Ai assumes the opinion of node Aj and with probability 1
2

the opposite occurs. It has been found that for small values of rho the behaviour
is exponential whereas for larger values it is logarithmic. A dynamical phase
transition is observed when rho crosses the critical point represented by 1

2 , the
two regimes are substantially different and the results of particular interest since
they demonstrate how sensitive these models are to the underlying parameters.
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2. ADAPTIVE VOTER-LIKE MODELS

2.4 Voter Model with Stubborn Agents
Many models have been developed starting from the voter model proposed
independently by Holley and Liggett [3] and Clifford and Sudbury [11] such as
the model with stubborn agents proposed in [12] by Yildiz et al. They argued
that the fact that the voter model converges to consensus (absorbing state for
the dynamic) does not reflect what can be observed in reality. In fact, in societies
it is rare to observe an overall agreement as a result of the interaction dynamics.
On the contrary, "most societies appear to exhibit persistent disagreement" [24].
To capture this aspect the authors have introduced agents who do not change
their opinion throughout the process and because of this trait the called them
stubborn agents. The presence of such stubborn agents with opposing opinions
prevents consensus in the social network and moreover, the opinion of the single
agent does not settle into a certain value, capturing the "persistent disagreement"
that has been mentioned above.

Input: G(A,E), Ai ∈ A has randomly assigned opinion xi(0)

A0, A1 nonempty sets of stubborn agents

Output: G(A,E), where Ai has opinion xi(t)

loop

. Awakening of an agent Ai according to a Poisson process

if agent Ai is non-stubborn then

if the neighbourhood NAi NOT empty then

. Select a random neighbor Aj

. Ai assumes the opinion of Aj
end if

else

. Do nothing, stubborn agents cannot change opinion

end if

end loop

Figure 2.4: Voter model with stubborn agents.

The setting for the model is analogous to the one developed above for
the voter model, one important difference is that here the underlying graph is
directed. So, again being A = {A1, A2, ..., An} the set of agents, xi(t) the binary
opinion held by agent Ai (xi ∈ {0, 1}) and A0, A1 the nonempty disjoint sets of
stubborn agents, holding respectively opinion 0 and opinion 1. Considering a
graph G(A,E), where E is the set of directed graph which describes the bounds
between the agents (Ai, Aj). Also in this version one node can be influences
only by its neighbours NAi = Aj |(Ai, Aj) ∈ E. Each non-stubborn is awakened
according to a Poisson process with unitary rate and updates its opinion following
the same rule described for the direct voter model. Even if also every stubborn
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2.5. DURRETT ADAPTIVE VOTER MODEL

agent awakens according to a unitary-rate Poisson process, it does never change
opinion maintaining the initial opinion it has been assigned with. For the non-
stubborn agents an initial opinion xi(0) is randomly assigned before the process
starts.

2.5 Durrett Adaptive Voter Model
This model is of central interest because will be the main subject of investigation
for this thesis work. The results found in Chapter 4 and Chapter 5 strongly rely
on this model. It follows a description of the model and some results, which
have been presented by Durrett [9] [25] and confirmed thanks to the c++ based
simulator developed (see Chapter 3).

2.5.1 Model Description

The adaptive voter model is an interesting evolution of the voter model which
finds its roots in the aforementioned work of Holme and Newman [23]. Not
only the agents can change opinion according to their neighbors but also the
network structure of social interactions may change over time. Here, we will
present the two versions proposed by Durrett in [9], the rewire-to-same and the
rewire-to-random model.

Input: G(A,E) random graph with mean degree δ = 2L
N

Ai ∈ A has randomly assigned opinion xi(0) ∈ {0, 1}
Output: G(A,E), Ai has opinion xi(t), no "discordant" links exist

while discordant links are present do

. Random selection of a discordant link (Ai, Aj)

(1) With probability α
. disconnect the link (Ai, Aj)

� [RtS] connect Ai to a new agent Ak such that xi = xk

I [RtR] connect Ai to a new agent Ak such that xk /∈ NAi

(2) Otherwise, with probability 1− α
. Ai copies the opinion of its neighbor Aj

end while

Figure 2.5: Durrett adaptive voter model. RtS stands for "rewire-to-same" and RtR
for "rewire-to-random". The procedure for the two is equal except for the rewiring
policy, it is different highlighted in the pseudo-code. Implement � for the first version
and I for the second version

The first version is practically identical to the Holme and Newman model,
except for the fact that now the opinions are constrained to 2 instead of a
number proportional to the size of the graph and discordant links are picked up
instead of random nodes. This last shrewdness is intended to speed up the time
to convergence, avoiding to picking up concordant links (which would not be
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2. ADAPTIVE VOTER-LIKE MODELS

modified by the dynamics) and isolated nodes (which do not have neighbors). The
rewire-to-random version goes more in the direction of the model with homophily
and heterophily in the sense that at each rewiring step (with probability α) a
node can either connect to an individual sharing its same point of view or to
someone who is in disagreement. As Durrett proved, and as will be demonstrated
later the two models show a strongly different dynamical behaviour. In the
following the pseudo-code for the Durrett adaptive voter model is presented, the
two versions differ just in the selection of the new node to which reattach the
suppressed link.

2.5.2 Dynamical Behaviour of the Model

Observing the fraction of nodes in minority state when the process stops (no more
discordant edges) the system undergoes a phase transition. In the rewire-to-same
case, it is similar to the one firstly observed by Home and Newman [23] and
then studied by Kimura and Hayakawa [22]. It consists of a discontinuous phase
transition for a critical value of the rewiring αc which does not depend on the
initial distribution of the opinions on the graph. However, it does depend on
the mean degree of the nodes of the network as it will confirmed in Chapter 4
by simulations. Differently, the rewire-to-random version exhibits a continuous
phase transition according to a curve that Durrett called the universal curve.
The two models have a quite different behaviour however, after the critical value
the fraction of nodes in the minority opinion attests at a percentage equal to
the one of one-opinionated nodes at time zero.

Durrett et al. also noted that the number of nodes in the minority opinion
is correlated to the number of discordant nodes. This lead to conjecture that the
evolving voter model possess a one parameter of quasi-stationary distributions.
It has been shown that several statistics (as a function of the number of ones at
time t) after a transient, follow a curve: a parabola for the number of discordant
nodes, a cubic when the number of oriented triplets 0− 1− 0 is considered. To
motivate the long time survival (for α under αc) and to formalize what has just
been explained Durrett et al. used a separation of time scales argument:
"The time to converge to equilibrium is much smaller than the time needed for
the density to change, so if the time is scaled appropriately then the system is
always close to an equilibrium and the parameter follows a diffusion process".
[25]
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Chapter 3

Simulator Description

3.1 Architecture
The stochastic processes we aim to simulate are particularly demanding in
terms of time complexity. The voter model on homogeneous graphs needs O(N2)
updates in order to reach a consensus and the behaviour on heterogeneous graphs
is even richer, ranging from logarithmic to exponential complexity. Therefore,
it is important to develop a sufficiently efficient code in order to obtain results
in a reasonable time since many realizations have to be performed and many
points with different system parameters have to be collected. Initially, it has
been developed a Python code to implement the pseudo-code presented in Figure
2.5. The language itself is well suited to represent graphs, being dictionaries
one of the fundamental types of the language. Moreover, many libraries provide
easy-to-use methods which allow for fast development and implement most of
the algorithms of interest in the field (e.g. NetworkX).

However, execution times appeared to be unacceptable and Python did
not provide enough control on the data structures in order to speed up the
simulation. So, it has been decided to switch to c++ which is more low-level
but guarantees great control on the underlying data structures. This drastically
reduced the time to completion of the simulations even though it increased the
development time for the code itself. Python has been anyway employed for
plotting the results since it provides easy-to-use libraries (e.g. matplotlib) and
highly customizable plots. A block diagram is provided in Figure 3.1 the c++
simulator performs all the computations and provides the results as text files fed
then into a Python script providing the plots presented in this work.

From mathematical
representation into
data structures

Core of the simulator
(methods,classes)

Python script for
data visualization

Figure 3.1: Schematic representation of the workflow.
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3. SIMULATOR DESCRIPTION

3.2 Graph Representation
A graph G(V,E) is a construct defined by a set of nodes, e.g. {0, 1, ..., N − 1},
and a set of pairs of the type (i, j)s.t.i, j ∈ V , the links. It can be represented
in at least three ways: (i) as a list of edges (ii) with its adjacency matrix 1 (iii)
keeping an adjacency list for each node. The list of edges of the network is not
suitable in our setting. In fact, it is of primary importance for us to be ale to
access the neighbourhood of a node since when a node changes its opinion all
the connections with the neighbours flip status from active to inert or vice versa.
This update is very handy when a list of all the nodes is available and each
of them maintains its own neighbours list. Moreover, some of the algorithms
which have been previously presented select nodes instead of edges, running the
dynamics on a graph represented with a edge list would be more involved. The
adjacency matrix form is usually employed when the graph is particularly dense
and with programming languages optimized for matricial calculations, such as
Matlab.

Figure 3.2 presents a schematic representation of the data structures that
should be used to represent a graph. In the middle of the figure a container can
be seen, it holds the labels of the nodes, which allow to access the neighbouring
lists 2 of each node. These lists will be divided in concordant and discordant
according to the opinion of the neighbour. Agreeing neighbours will be added to
the concordant list, opposers in the discordant list, this division facilitates some
operations on the data structures. This procedure has been performed for node
n0 in Figure 3.2, the lists have been completed according to the portion of the
graph on the top-left corner of the image.

n0

nN-1

n1
ni

n2

n0 n1 n2 nN-1

concordant	nodes	vector

discordant	nodes	vector

The	two	vectors	together	form	an
adjacency	list	for	the	node	n0.

ni

ni nN-1

n2

Container	of	nodes	pointing
to		their	adjacency	lists.

This	represents	the	graph.

Figure 3.2: High level description of the data structures used to represent the graph.

1The adjacency matrix A of a graph G(V,E) is a |V | × |V | matrix whose elements aij are
equal to 1 if (i, j) ∈ E and 0 otherwise.

2List should not be interpreted as the "list" data structure but, as a sequence of elements.
In fact, as specified in the next section, these containers will be implemented using std::vectors.
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3.3 C++ Class Structure
In this section we give some more implementation details regarding the c++
simulator. Two classes have been written: vertex which represents a generic
node and Graph which groups nodes together to form a network.

                            ...

n0

Vertex

n2

n1

Graph

Vertex Object pointer pointer pointer pointer pointer...

int int intintint

n0 n1 n2 n3 nN-1

                            ...int int intint int

         ...int int int

vector	indices	are
the	nodes'	labels

n3 Graph Object

A	vertex	is	a
node	in	the	graph.

A	graph	object	represents
an	entire	graph	with	N	Vertex.

discordant nodes labels vector

vector of 1-opinionated nodes

vector of 0-opinionated nodes

This	is	the	main	structure	of	the
Graph	object.	It	is	a	std::vector	of
Vertex	objects,	each	of	them	is	a
node	of	the	network	and	maintains
its	adjacency	list	containing	con-
cordant	and	discordant	neighbours.

bool node's
opinion

int index in 0/1
opinion vector

         ...int int int

node's index in discordant vector

                   ...int int intint

discordant neighbours vector

                   ...int int intint

concordant neighbours vector

int
N

points	to

Figure 3.3: C++ representation of the two fundamental entities: node and graph.
Class members are in the boxes, the figure shows the structure of the elements.

Nodes are therefore Vertex instances, each of them has a binary opinion and
two std::vector<int> containing the labels of the concordant and discordant
neighbouring nodes. It has been decided to use std::vector because allow
for random access in constant O(1) time and due to the limited size of these
vectors (in the order of the average degree, low for sparse networks) also research
and removals are not computationally intensive. From Figure 3.3 can be seen
other two members an integer and a vector of int, these keep the index at which
the node is located in the 0 or 1 opinioned nodes container (int value) and
all the occurrence’s index of the node in the discordant vector (vector of int).
This last structure is probably the most important in the Graph class since it
contains all the unsatisfied nodes namely those who have at least one discordant
neighbour. It has been implemented again with a std::vector<int> because of
the O(1) random access, vital when a node needs to be picked up randomly in
the container. However, this time the size of the structure can be rather large, up
to the total number of nodes N . To ameliorate the performance of the deletion in
a vector (that is O(N)) each Vertex object saves the indices at which it resides
in the discordant nodes vector. When knowing the index, deletion takes only
constant O(1) time. In fact, it is possible to swap the node that needs to be
eliminated with the last element of the vector, and then pop() the last element
(in O(1)). The actual graph is represented by a vector of pointers to Vertex
objects, the indices are seen as the labels of the nodes, then the Vetex keeps all
the data of interest, most importantly the neighbouring list. In addition, the
labels of the nodes holding opinion 1 and opinion 0 are dynamically stored in
vectors, this is needed for the rewire-to-same adaptive model which draws new
nodes for the detached link only in the set of agreeing nodes.
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3. SIMULATOR DESCRIPTION

Algorithm 1: O(1) deletion from an std::vector, this procedure
is valid only if the order in the vector is not important.

1 deleteFromVector (v, i)

Input :A vector v of size N to be updated and an index i
Output :The vector v without the element at index i

2 if v is not empty then
3 swap v[i] with v[N − 1];
4 pop() the last element of v;

We will not go more into the details of the implementation. Below we provide
the list of members and methods of the two classes we use in the simulator.
The graph generators methods of Graph will be covered in great detail in the
next section. The last three methods of the Graph class are worth mentioning,
DurrettRewireToRand() and DurrettRewireToSame() simply implement the
pseudo-code for the adaptive model presented in Chapter 2. The method
findClusters() uses deep first search DFS to classify the nodes according to
the cluster they belong to, this allows also to count the number of clusters in
the network.

bool	opinion
int	gIndex
std::vector<int>	indexDiscVector
std::vector<int>	concordant
std::vector<int>	discordant

Class	Vertex

void	moveFromDtoC()
void	moveFromCtoD()
void	swapVectors()
void	getOpinion()
void	setOpinion()
int	sizeOfConcordant()
int	sizeOfDiscordant()

Class	Graph

const	int	N
std::vector<Vertex*>	g
std::vector<int>	discordantNodes
std::vector<int>	op1Nodes
std::vector<int>	op0Nodes

void	Gnp_generator()
void	Gnp_generator2()
void	EdgeSkipping()
voidSBM_generator()
void	SBM_2comm()
void	DG_generator()
void	CL_generator()
void	w_generator()
void	findClusters()
int	DurrettRewireToRand()
int	DurrettRewireToSame()

Vertex

Graph

Figure 3.4: Relations between the Vertex and Graph classes together with the list of
the members and the methods of each class.

3.4 Efficient Graph Generating Algorithms
Synthetic graphs are frequently employed to study real-world systems such as
computer networks or biological systems. This allows to simulate and to analyze
the system without the need of real data which might be difficult to obtain,
if not impossible, in most cases. We use them to recreate a social network
which represent the starting point of our simulations. It is important that these
artificial networks maintain some of the characteristics observed in real complex
networks.
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3.4. EFFICIENT GRAPH GENERATING ALGORITHMS

The first model presented is the Erdős-Rényi and is the more versatile and
analytically tractable since the probability of existence of an edge is constant
and independent from the existence of other edges in the network. However, this
generative model does not produce graphs with a power-law degree distribution
(typically observed in real-world systems) but, with a binomial distribution.
Moreover, there exists no clear community structure in a Erdős-Rényi graph.
Nevertheless, it is widely-used and it has been employed in all the studies which
have been presented in Chapter 2 as initial configuration for the evolving network.

In this chapter it will be presented a procedure to obtain a graph with a
desired degree distribution, it allows to force a scale-free degree distribution. In
[26] it is discussed how to generate large scale-free networks with the Chung-
Lu random model and how to generate a vector w = (w0, w1, ..., vN−1) which
contains the expected degree of each node in the network according to this
distribution. Then, it is presented an efficient algorithm both in terms of time
an memory occupation, which takes this vector as an input and produces a
scale-free Chung-Lu graph [27]. A slight modification of this algorithm allows to
generate a stochastic block model, which possesses a clear community structure.
This last generative model is the most used in the investigations carried out in
chapter 4.

Typical complex networks have millions of nodes and this poses a challenge to
the generative algorithms of synthetic graphs. Algorithms should be efficient both
in terms of time and memory occupation. Algorithms on graphs are regarded
as optimal when the asymptotic time complexity is O(N +m), where N is the
number of nodes in the network and m the number of links. The algorithms
that are presented below are all efficient and are implemented according to the
classes and data structures described above.

3.4.1 Erdős-Rényi

The Erdős-Rényi is a very popular random graph model, widely used in the
literature. To be precise, there exists two classes of random graphs falling under
the "Erdős-Rényi" term: G(n, p) and G(n,m). The difference is slight however,
worth mentioning. The class G(n, p) encompass all those graphs in which links
are chosen independently on the other choices and with constant probability p.
Using such a generative rule the number of links in the network is not fixed but,
it is possible to compute the expected number of links E[L] = p ·

(
N
2

)
, where

(
N
2

)
represent the number of all the possible pairs between the N node (self-loops are
excluded). This last result can be rewritten as a function of the average degree
of a node δ: E[L] = p(N − 1) · N2 = δN

2 . The other class, G(n,m), represent
the random graphs with N nodes and m links. It is possible to construct

((N2 )
m

)
different graphs distributing the m links among the N possible nodes. Each of
the possible link has equal probability to belong to a random graph of this class.
The fact that the number of edges is fixed induces a weak dependence between
the links [14]. We will refer as Erdős-Rényi graph elements belonging to the first
mentioned class G(n, p), the generator aims at generating such a network.

The most straightforward way to generate an ER graph is to take any possible
pair of nodes

(
N
2

)
= N(N−1)

2 in the graph and keep an edge with probability p
and throw it away otherwise. This procedure is immediate however inefficient.
In fact, the time complexity appears to be O(N2), not viable to generate large
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networks. Batagelj and Brandes [28] proposed an algorithm running in O(N+m)
which employs the geometric method that avoids to consider edges which would
not be added to the graph’s edge list. The main observation is that, especially for
sparse graphs (p(n) ∈ o(1)), most of the possible node pairs (links) are discarded
and only few probabilistic evaluations lead to the creation of a link. The main
idea of the method is to skip over the links which will not be created, jumping
directly to the next link which will be added to the network. The method is
thoroughly explained in the next section.

nj

ni

1,0

2,0 2,1

3,0 3,1 3,2

4,0 4,1 4,2 4,3

5,0 5,1 5,2 5,3 5,4

The	value	of	the	index	ni
represents	the	number	of
potential	edges	in	that	row

1,0 2,0 2,1 3,0 3,1 3,2 4,0 4,1 4,2 4,3 5,0 5,1 5,2 5,3 5,4

self-loops	are	not	admitted

The	quantity	on	the	arrow	indicates	how	many	potential	edges	have	to	be	skipped.
The	minimum	jump	is	of	1	edge,	when	the	floor	function	returns	0	so,	no	multiple	edges.

1+⌊log(1-r)/log(1-p)⌋	=	4

initialization

1,-1

skip	=	6

Adjacency	Matrix

Potential
edges	List

Figure 3.5: Schematic representation of the edge-skipping method and relation with
the adjacency matrix. The potential edge list represents the edges in lexicographic
order whose position is then shown in the adjacency matrix. Jumps provided by the
edge-skipping method allow to consider only links which will be created in the graph
avoiding useless evaluation.

The Geometric Method

The geometric method also called edge-skipping technique in [27] aims at skipping
the potential edges that are not created. First of all, the edges need to be
listed in lexicographic order so, each of them can be uniquely identified with
an integer value 3 (id of the link). At this point, it is sufficient to observe
that the jumps over potential edges, leading to two consecutive link creations,

3Links are represented as pairs (i, j), since the graphs are undirected (i, j) is the same
as (j, i) according to the algorithm, it is considered the superior or inferior portion of the
adjacency matrix to avoid this ambiguity. The lexicographic ordering is then unique and each
link can be associated with a integer value.
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3.4. EFFICIENT GRAPH GENERATING ALGORITHMS

are geometrically distributed namely P{jump = k} = (1 − p)k−1p. So, it is
possible to generate edges of an Erdős-Rényi graph just by extracting values of
a geometrically distributed random variable which indicates how many ordered
edges have to be skipped to pick a link to be added in the edge list. Following
[28] every possible value k for the jump is assigned a consecutive sub-interval Ik
of [0, 1) of size (1− p)k−1p. Clearly, the infinite summation of all the possible
interval’s sizes equals to 1 since those correspond to the discrete probability
distribution of a geometric random variable. These intervals are consecutive,
the k − th interval ends at

∑k
i=1(1− p)i−1p = 1− (1− p)k namely the sum of

the k − th interval’s size and all the previous ones. Therefore, the jumps can
be obtained by randomly drawing a number r in the interval [0, 1) and then
returning the integer k of the interval Ik it belongs to:

r < 1− (1− p)k ⇐⇒ k >
log(1− r)
log(1− p)

The value of the jump over the potential links is then chosen to be:

k = 1 + b log(1− r)
log(1− p)

c

this explains the increment in the pseudo-code of the generator.
Algorithm 2 exemplifies the procedure to generate a graph in G(n, p). Lines

5 and 6 are motivated by the geometric method just presented. The internal
while cycle implements the actual edge-skipping and updates the elements of the
pair representing the link (ni, nj)

4. In fact, as it can be seen from Figure 3.5,
ni indicates the number of potential edges having nj as an extreme. If nj ≥ ni
means that the element (ni, nj) is not in the lower triangular portion of the
adjacency matrix. When it holds and the while is executed, at each iteration nj
(which in line 7 has been incremented with the number of edges to be skipped)
is decremented by ni (the number of possible edges with ni as one of the ends).
The value of ni is incremented to start visiting a new row of the matrix. The
number of nj is decremented and therefore potential edges are skipped, until the
pair (ni, nj) will be in the lower triangular portion of the matrix. This procedure
follows the rational shown in the first half of Figure 3.5, where the possible edges
are presented as a list and translates this procedure onto the adjacency matrix.
The algorithm performs a row-wise traversal of the lower triangular part of the
adjacency matrix.

To what concerns time complexity it can be noted that the outer while
loop is executed as many times as the links of the network (m) (plus one, since
the last execution would not lead to the generation of an edge). And the inner
loop, is executed exactly N times, since at every iteration of it the value of ni
is incremented and when it reaches the value of N both the conditions of the
cycles become false.

4This is basically a translation from the order number in the lexicographic order and the
two end-label in the pair (ni, nj)
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Algorithm 2: Generates a G(n,p) graph in O(n+m)

1 GnpGenerator (N, p)

Input :A non-negative integer N and a real p ∈ (0, 1)

Output : graph G({0, ..., N − 1}, E) ∈ G(n, p)

2 Define ad empty set E;
3 ni ←− 1;
4 nj ←− −1;
5 while ni < N do
6 draw r uniformly from [0, 1);
7 nj ←− nj + 1 + b log(1−r)

log(1−p)c;
8 while nj ≥ ni and ni < N do
9 nj ←− nj − ni;

10 ni ←− ni + 1;

11 if ni < N then
12 E ←− E ∪ {ni, nj};

3.4.2 Stochastic Block Model

The differentiating feature of this generative model is the fact that it produces
graphs with communities. As shown in Figure 3.6 it is possible to generate a
graph with two densely connected components just weakly connected to each
other. The parameters of the model are (i) the number of nodes N (ii) a partition
of the node set into disjoint communities {C1, ..., Ck} and (iii) a symmetric k×k
matrix M containing the link probabilities. The generating procedure consists
in taking any two nodes ni ∈ Ci and nj ∈ Cj and adding a link to the edge list
E of the graph G(V,E) with probability (P )ij = pij .

Community 2

Community 1

intra edges

inter edges

intra edges

Figure 3.6: Image of a Stochastic Block Model (SBM) with 2 communities weakly
interconnected. Intra and inter edges are highlighted.
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The algorithm we use to generate a stochastic block model has been presented
by Alam et al. [27], it is a modification of a broader-scope algorithm called DG,
employed to generate graphs from a given degree distribution. The main idea is
to group the nodes according to their expected degrees and then use a method
referred to as EdgeSkipping to create intra edges, links between nodes belonging
to the same class, and inter edges, links between nodes of different classes. In
the case of the stochastic block model, the nodes are grouped according to the
community they belong to so, the concept of classes is substituted by that of
communities. The algorithm can be used to generate graphs with an arbitrary
number of communities prescribing the connections among communities as
desired. We will mainly focus on graphs with two communities having the same
intra edges probability and a fixed probability of connection between nodes of
different communities. The inputs of the algorithm are a set of N nodes, k
disjoint subset of these nodes C1, C2, ..., Ck representing the communities and
a matrix M containing the connection probabilities among the communities.
The element Mij defines the probability that a node belonging to the set Ci
is connected to a node in the set Cj . The procedure to create these links is
analogous to the one used to generate Erdős-Rényi graphs and in fact, uses the
same edge-skipping rule already explained. In this instance a slightly different
procedure is employed to identify the two ends ni and nj of a link from the
integer label assigned to each potential edge (ordered in lexicographic order).
The pseudo-code of the EdgeSkipping algorithm is shown below and is very
similar to Algorithm 2.

Algorithm 3: Generates edges (ni, nj) according to
the edge-skipping technique

1 EdgeSkipping (i, j, p, first, last)

Input : community indices i and j
first, last cardinality of potential edge list
p link probability between communities

Output : Set of edges between the communities i and j
2 e←− first− 1;
3 while ni < last do
4 draw r uniformly from [0, 1);
5 e←− e+ 1 + b log(r)

log(1−p)c;
6 if ni < last then
7 if i=j . then
8 ∆i ←− d−1+

√
1+8e

2 e;
9 ∆j ←− e−

(
∆i

2

)
− 1;

10 else
11 ∆i ←− b e−1

Nj
c;

12 ∆j ←− (e− 1) mod |Cj |;

13 add (λi + ∆i, λj + ∆j) to the edge list;
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The EdgeSkipping method aims at creating links between communities (or
more in general classes of nodes). The size N of the network is not provided to
this method because it does not have a meaning anymore since we are considering
subsets of nodes. Instead, the procedure needs first and last which together
tell the range of variability of the edge labels, from this value it would then be
possible to obtain the pair (ni, nj) to be added to the edge list of the overall
network. Two scenarios are possible as depicted in Figure 3.7. It is possible
to create edges within the same community (intra-edges) and it is equivalent
to generate an Erdős-Rényi graph. Or it is possible to create links across
communities (inter-edges). In the latter situation, the edge-skipping technique
is employed to generate a random bipartite graph between Ci and Cj . To put
it in other words, one does not only consider as potential edges those in the
lower triangular part of a matrix. Any possible entry of an Ci × Cj matrix is a
potential edge since the sets from which the nodes are drawn are disjoint.

ni

1,0

2,0 2,1

3,0 3,1 3,2

4,0 4,1 4,2 4,3

5,0 5,1 5,2 5,3 5,4

The	value	of	the	index	ni
represents	the	number	of
potential	edges	in	that	row

nj

l10

l1 l2 l3 l4 l5 l6 l7 l8 l9

l11 l12 l13 l14 l15 l16 l17 l18

l19 l20 l21 l22 l23 l24

Ci
Ci

CjCreate	edges	within	the
same	community	Ci.

Same	as	generating	a	G(n,p)

Create	edges	between
communities	Vi	and	Vj.	
Same	as	generating	a
random	bipartite	graph

the	links	li	are	of	the	type	(ni,nj)

ni	∈	Ci

Potential	link	(ni,nj)	such	that	ni	>	nj

Intra	Edges Inter	Edges

nj	∈	Cj

All	pairs	in	the	matrix	are	potential	edges,	but
here	are	links	between	nodes	of	different	classes

Edge	Skipping	technique	is	used	in	both	cases	to	select	the	links	to	be	added	to	the	final		graph	G.

Figure 3.7: The image shows the two possible scenarios for edge generation which
imply different structures. If the links have to be constructed within the same set of
nodes (same community) they are called intra edges. Whereas, when the links are
among nodes belonging to different communities then we refer to them as inter edges.

The Algorithm

Some of the parameters appearing in Algorithm 3 has not yet been explained,
such as |Cj | and λi. These belong to the calling function SBMGenerator which
is the one that generates the overall SBM graph. The nodes of the network are
identified with integers value from 0 to N − 1 and we already said that them
are organized in classes. Nodes belonging to the same class are represented
with consecutive integers (as shown in Figure 3.8). The first for cycle in the
pseudo-code aims at identifying the indices λi at which the first elements of
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each group are located. Being the size |Ci of the communities an input of the
algorithm, this procedure can be done on the flight. These λi values represent
the offsets needed to the EdgeSkipping method to output the correct edge
just knowing the group number. Algorithm 4 just iterates over the possible
combinations of the sub-classes of nodes and call the EdgeSkipping method
with the appropriate parameters.

...λ2λ1=0 λi λk

Lambda	Values,	keeping	track	of	the	index	of	the	first	element	of	each	community

all	the	nodes	of	community	1

Labels	of
all	nodes

Figure 3.8: Figure that shows how the node labels are organized.

Algorithm 4: Generate a Stochastic Block Model

1 SBMGenerator ({0, 1, ..., N − 1},M, {C1, ..Ck})
Input : a set of nodes {0, 1, ..., N − 1}

a matrix k× k M with connection probabilities
the k community sizes {|C1|, ..|Ck|}

Output : a stochastic block model with k communities
interconnected according to M

2 λ1 ←− 0;
3 for i = 2 to Λ do
4 λi ←− λi−1 + |Ci|;

5 for i = 1 to Λ do
6 for j = i to Λ do
7 if i = j then // intra edges for Ci
8 EdgeSkipping(i, i,Mii, 1,

(|Ci|
2

)
);

9 else // inter edges between Ci and Cj
10 EdgeSkipping(i, j,Mij , 1, |Ci||Cj |);

3.4.3 Chung-Lu

Chung and Lu [29] argued that the Erdős-Rényi model only produces graphs
whose nodes have the same expected degree. However, this uniformity does not
reflect real-world networks in which few nodes called hubs have much larger
degree than the other nodes. This property is a consequence of the power-law
degree distribution, also called scale-free property since the functional form of
such a distribution remains the same (except for a multiplicative factor) for
rescaling of the independent variable. So, Chung and Lu proposed a generative
model in which a vector with N elements is given as input to the generator, each
element representing the expected degree of one of the N nodes of the network.
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In case all the entries of the vector assume the same value, the Erdős-Rényi model
is obtained. Later it will be presented a method that allows to produce a vector
of expected degrees w = (w0, w1, . . . , wN−1) which leads to a scale-free network
[30]. The generated network needs also to be sparse, this is an important feature
together with the properties of the degree distribution. It has been observed
that when dealing with power-law distributions αk−γ the graph can be sparse
and at the same time have hubs only if the power exponent γ assumes values
between 2 and 3.

The class of Chung Lu graphs G(w) [29] is composed by the graphs having
w = (w0, w1, . . . , wN−1) as expected degree sequence for the N nodes in the
network. Each element of the vector is referred to as the weight of the node and
is used to calculate the link probability between nodes. In fact, the link existence
probability between nodes ni and nj , call it pij is calculated as the product of
the node’s weights divided by the sum of all the weights S. A link is added to
the edge list randomly according to pij and independently from other choices. It
has to be note that for mathematical convenience self-loops are allowed namely
pii is different from zero.

S =
∑
i

wi pij =
wiwj
S

It must be noted that in some situations the value of pij could be bigger than 1
following the definition that has been provided above. To avoid this, Chung and
Lu assumed that maxi wi

2 <
∑
i wi, in [26] vectors w are called admissible if

w0 ≥ w1 ≥ ... ≥ wN−1 ≥ 0 and

w0
2 ≤

N−1∑
i=0

wi

Fasino and Tonetto [26] provide formulas to produce a vector of expected degrees
w of a Chung-Lu scale-free network, with prescribed expected average degree
d and largest expected degree m. The weights in the vector are calculated
according to the following formula:

wi = c(i0 + i+ 1)
1

1−γ i = 0, 1, ..., N − 1

Theorem 2 in the paper (see [26] for more details) provides formulas for the
parameters c and i0 under certain hypothesis on the average expected degree
d(N) and largest expected degree M(N). These have been used to produce
the vector of weights w then fed into the generative algorithm described in the
pseudo-code.

c = c(N) = (1− 1

γ − 1
)d(N)n

1
γ−1

i0 = i0(N) = N(
(1− 1

γ−1 )d(N)

M(N)
)

γ−1

− 1

The expected average degree and maximum degree has been chosen in order to
satisfy the hypothesis of the theorem: d = 12 and M(N) = N0.45. Moreover,
we are interested in graphs which have a power-law degree distribution but, are
sparse at the same time. This is the case if 2 < γ < 3, we choose γ equal to 2.1.
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Alam et al. [27] algorithm was primarily intended to generate Chung-Lu
graphs, in Section 3.4.2 it has been modified in order to produce a stochastic
block model. By using the EdgeSkipping procedure (Algorithm 3) and the
pseudo-code below (called DG algorithm) it is possible to generate Chung-Lu
graphs efficiently in terms of both space and time. Space efficiency is attained by
grouping the edges according to their expected degree and keeping in memory
only the label of the first node of each group λi. The input of the algorithm
instead of a vector of N entries is a set D = {d1, ..., dΛ} containing only the
Λ distinct expected degrees values and a set containing the sizes ni of these
groups of same-degree nodes. Storing just the degree distribution allows to
obtain O(Λ) space complexity. The idea behind the algorithm is the same as
the one presented for the stochastic block model generator, the only difference is
that now instead of having communities we have groups of nodes with the same
expected degree. The calls to the EdgeSkipping procedure needs to be modified
as showed in the pseudo-code.

Algorithm 5: Chung-Lu graph generator using DG algorithm

1 DGGenerator ({d1, d2, ..., dΛ}, {n1, n2, ..nΛ})
Input : a set of unique expected degrees D = {d1, d2, ..., dΛ}

same-degree classes’ size {n1, n2, ..., nΛ}
Output :Chung-Lu graph with prescribed degree distribution

(D, {n1, .., nΛ})
2 λ1 ←− 0;
3 for i = 2 to Λ do
4 λi ←− λi−1 + ni;

5 S ←−
∑Λ
i=1 nidi;

6 for i = 1 to Λ do
7 for j = i to Λ do
8 if i = j then // intra edges for Vi

9 EdgeSkipping(i, i, di
2

S , 1,
(
ni
2

)
);

10 else // inter edges between Vi and Vj
11 EdgeSkipping(i, j,Mij , 1, |Ci||Cj |);

Yet, another possible generative algorithm [31] is presented by Miller and
Hagbeg, named after them MH algorithm. It accepts the vector w with the
expected degrees of each node. It is in fact less efficient in terms of memory
occupation compared to the previous DG algorithm, which takes the degree
distribution as input. Moreover, in [27] is claimed that the time complexity of
the DG algorithm is similar to that of MH algorithm but " lower overhead of
DG algorithm leads to smaller constant associated with the time complexity and
make the algorithm approximately three times faster than the MH algorithm".
However, in the c++ simulator we need to generate the expected degree sequence
w in order to generate the Cung-Lu graph. It is more immediate to simply pass
the generated sequence w to the Algorithm 8 instead of identifying the groups
of nodes having the same expected degree. This decision is justified by the fact
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that the space complexity has not been a constraint in practice and the time
complexity improvement of Algorithm 4 is not dramatic, the performance of the
MH algorithm is more than sufficient for our purpose.

Algorithm 6: Chung-Lu graph generator MH algorithm

1 CLGenerator (w0, w1, ..., wN−1)

Input : list of weights w = (w0, ..., wN−1) in decreasing order
Output : a Chung-Lu graph G with expected degrees per node

equal to w
2 Define ad empty set E;
3 S ←−

∑
i wi;

4 for ni = 0 to N − 2 do
5 nj ←− ni + 1;
6 p←− min(

wniwnj
S , 1);

7 while nj < N and p > 0 do
8 if p 6= 1 then
9 draw r uniformly at random in (0, 1);

10 nj ←− nj + b log(r)
log(1−p)c;

11 if nj < N then
12 q ←− min(

wniwnj
S , 1);

13 draw r uniformly at random in (0, 1);
14 if r < q

p then
15 E ←− E ∪ {ni, nj};

16 p←− q;
17 nj ←− nj + 1;

For the algorithm to work, the list w of weights needs to be sorted in
descending order. The generating procedure is rather similar to the one for ER
graphs, the difference resides in the fact that the link probability is not anymore
a constant p but depends on the weights wi of the end-nodes. This slightly
changes the link selection procedure that anyways relies on the edge-skipping
method to jump over the links which will not to be part of the final graph.
However, this time the links selected by the edge-skipping procedure are only
potential links because the link probability pij decreases as proceeding in the
edge list but, the probability used for the EdgeSkipping method corresponds to
the pij of the last potential node. Therefore, a binary decision needs to be taken
on these potential links to decide whether to keep or discard them according to
the actual pij of that pair of nodes.

Let us see it in more concrete terms. The algorithm begins by fixing one of the
end-nodes of the link, starting from ni = 0 and looping over the admissible values
of nj = 1, 2, ..., N − 1. Given the decreasing ordering of the weights in the vector
w the probability pninj =

wiwj∑
k wk

is monotonically decreasing with respect to nj .
This observation allows us to avoid to calculate pninj for every value of nj in
advance. At the beginning of each iteration of the for loop the input probability
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for the edge-skipping procedure (inside the while) is set to p = pni,ni+1
5.

Lines 9 and 10 implement the edge-skipping method identifying a potential link.
However, since using p = pni,ni+1

in the edge-skipping method corresponds to use
an upper bound for the links probabilities due to the monotonically decreasing
nature of these values, the link has to be rejected with probability q

p where q is
the actual link (ni, nj) probability computed from the weights q =

wniwnj
S . This

rejection sampling procedure is illustrated in Figure 3.9.

0,2 0,3 0,4 0,5 0,6 0,70,1

1,2 1,3 1,4 1,5 1,6 1,7

2,3 2,4 2,5

(ni,nj)

Decreasing	link	probability	pij

p01 p02 p03 p04 p05 p06 p07

p←p01 p←p05 The	value	of	the	skip	that	led	to	this	edge
has	been	calculated	using	p=p01	which
upperbounds	the	actual	link	probability.
Therefore,	edges	are	created	with	a	lower
probability	and	this	link	is	just	a	potential
link.	In	fact,	a	Bernoulli	choice	with	pro-
bability	q/p	is	performed	to	decide	whether
to	keep	or	reject	the	potential	edge.	Green
represents	accepted	edges	whereas,	red	is

for	the	rejected	ones.

rejected	edge
p←p12

The	link	probability	changes	accord-
ing	to	the	end-nodes	being	pij=wiwj/S

p12 p13 p14 p15 p16 p17

p23 p24 p25

p←p05
Every	time	a	potential	node	is	identified,
the	edge-skipping	probability	p	is	updated.

Figure 3.9: Rejection sampling procedure employed in the HM algorithm.

Then, p is updated p = q and the algorithm keeps jumping to the next
potential neighbour nj . When the neighbours are finished, the outer for loop
allows to consider another ni value and the same procedure is performed, in
order to define the edge list E of the Chung-Lu graph. The time complexity is
O(N +M), where N is the number of nodes and M the number of links, optimal
for this class of problems.

5The fact we are not considering pu,u guarantees to avoid self-loops in the network, which
is an undesirable property.
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Chapter 4

Phase Transition in the
Minority Opinion Fraction

This chapter continues from the end of Chapter 2 in which some initial results
on the adaptive voter model proposed by Durrett et al. have been discussed.
The metric of interest is the fraction of nodes holding the minority opinion at
the end of the dynamical process (when an absorbing state is hit). Holme and
Newman [23] were the firsts who observed a phase transition as a function of
the rewiring, from a state with a giant component of like-minded agents to one
with a highly fragmented network whose clusters hold a different opinion. It
needs to be reminded that Holme and Newman studied a model in which the
number of opinions G grows with the size of the network whereas, Durrett et al.
[9] [25] considered just two possible opinions. As a preamble of our results, we
will show the phase transitions of the two version of Durrett’s adaptive model:
rewire-to-same and rewire-to-random starting on an Erdős-Rényi graph.

4.1 Discrete and Continuous Phase Transition
The dynamic process under study is exemplified in Figure 4.1 and is the adaptive
voter model of Durrett et al. presented in Chapter 2. To understand the model’s
behaviour, it needs to be understood in all of its parts. The adaptive voter
model arises from the interplay of two different processes alternatively selected
during the dynamics. Which process is going to be executed is decided through
a Bernoulli choice having parameter α, also referred as the rewiring probability.
In fact, with probability α the network modifies its own structure. The model
dictates to detach one end of a discordant link and to reconnect the other end
in one of two possible ways, according to the version of the model. In the
rewire-to-same it is attached to an agent of the network sharing the same opinion
whereas, in the rewire-to-random to a random agent out of the N − 1 possible.
The first version incorporates only the idea of homophily, the second includes
to some extent also the idea of heterophily even though it is not controlled by
a parameter as it as been done in [22] but stochastically depends on the state
of the nodes of the network. If the vast majority of the nodes hold the same
opinion then, with high probability, a node will be rewired to one with the same
opinion also in this rewire-to-random case. The other stochastic process involved
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in the dynamics is an opinion-changing process and corresponds to the one in
the classical voter model presented in Chapter 1. An agent can update its own
opinion consulting one of its neighbours nj ∈ Nnj .

Input: G(A,E) random graph with mean degree δ = 2L
N

Ai ∈ A has randomly assigned opinion xi(0) ∈ {0, 1}
Output: G(A,E), Ai has opinion xi(t), no "discordant" links exist

while discordant links are present do

. Random selection of a discordant link (Ai, Aj)

(1) With probability α
. disconnect the link (Ai, Aj)

� [RtS] connect Ai to a new agent Ak such that xi = xk

I [RtR] connect Ai to a new agent Ak such that xk /∈ NAi
(2) Otherwise, with probability 1− α

. Ai copies the opinion of its neighbor Aj
end while

Figure 4.1: Adaptive voter model as proposed by Durrett et al. [9]

To qualitatively understand what to expect from the process one can observe
what happens for the extreme values of the rewiring parameter α ∈ [0, 1]. For
α = 0 the rewiring process is suppressed and therefore, only opinion-changes can
occur. This case reduces to the classical voter model on a static graph that has
usually been considered as being an Erdős-Rényi. It is know that, for N large
enough, if the average degree δ of graph belonging to this class is greater than 1
there exist a giant component with high probability containing a fraction c of
all the nodes of the graph. Moreover, the other clusters have sizes of the order
of O(logN) being N the total number of nodes. Since for α = 0 the network
cannot change, the dynamics stops when each of the clusters in the network
reach an internal consensus. The giant component has size cN , a fraction of the
nodes so, the number of iterations needed to reach consensus for the voter model
is quadratic with the size of the network therefore O(N2). On the other hand,
for pure rewiring (α = 1) none of the nodes can change opinion. Therefore, the
absorbing state is reached only when the network rearranges its links in such
a way that only like-minded agents belong to the same cluster. These clusters
clearly depend on the initial distribution of the opinions in the network. In this
case, it has been observed that the number of updates needed for consensus is
of order O(N logN) [9]. This results is easy to explain for the rewire-to-same
case. In fact, if no opinion change can occur and links are rewired just towards
agents who share opinion then, the disconnection into agreeing clusters can be
attained when all links have been rewired. This is equivalent to the coupon
collectors problem which requires O(M logM) where M is the number of edges
of the graph. We are dealing with sparse networks in which the average degree
δ = O(1). The number of edges of an Erdős-Rényi graph isM = N(N−1)

2 ·p = Nδ
2 ,

being the average degree δ = (N − 1)p due to independence of link existence.
This demonstrates why the complexity is O(N logN) in case of sparse graphs.
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Figure 4.2: Phase transitions of the equilibrium fraction of nodes holding the minority
opinion in function of the probability of rewiring α as observed in [9]. The data have
been obtained by averaging over 10 realizations of the process over as many different
Erdős-Rényi graph instances with N = 10000 nodes and average degree δ = 4. The
initial configuration of the opinions is random, each node is assigned its opinion from a
Bernoulli random variable with parameter ρ. (a) refers to the rewire-to-same version
and in (b) to the rewire-to-random.
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4. PHASE TRANSITION IN THE MINORITY OPINION FRACTION

The behaviour of the system between the extreme values of α strongly differs
from the rewire-to-same case to the rewire-to-random. In the first instance, a
discrete phase transition is observed from a state in which the fraction of nodes
in minority opinion is close to zero to a state in which this value attests around
the initial assigned value for the minority fraction ρ. The value of the threshold
αc is the same irrespective of the initial distribution ρ as can be easily seen in
Figure 4.6a. Instead, for the rewire-to-random it can be observed a continuous
phase transition which joints the two extreme situations. What is interesting
in this case is that for values of the rewiring α below the critical threshold αc
the chart follows a curve that Durrett et al. have called universal curve. It
is also worth noting that the value αc 1 depends on the initial distribution ρ.
These observations have been made from the results in Figure 4.6a and Figure
4.9b, obtained from simulations carried out with the c++ simulator described in
Chapter 3.

Erdős-Rényi
Graph

Giant	Component

2nd	Biggest	Cluster

Parameters:
-	N,	number	of	nodes
-	δ,	average	degree
-	ρ,	probability	of	as-
signing	opinion	1

node	with	opinion	1

node	with	opinion	0

Figure 4.3: Erdős-Rényi random graph with its giant component highlighted. The
degrees of freedom for the simulations are listed.

The obvious parameter of the system is the amount of rewiring α but, the
others degrees of freedom of the system come from the initial configuration of
the network. First of all, in most of the literature and also in the work of Durrett
et al. the Erdős-Rényi generative model has been employed. The first graph’s
parameter is the number of agents N , it mainly impacts the time to convergence.
Then, there is the average degree δ, equal for all nodes in Erdős-Rényi graphs.
It will be seen in the next section that the average degree affects the value of the
threshold αc. δ is related to the edge probability p as follows: p = δ

N−1 . The
last system’s parameter is the probability ρ of assigning opinion 1 to a node,
this also influences the behaviour of the system, in fact the fraction of nodes in
the minority opinion for values of α above the threshold αc attests to this value.

4.2 Threshold Dependence on the Mean Degree
It is very important to understand which are the metrics which influence the
dynamics because it will be seen later that the configuration of the initial network
unsurprisingly does not affect the dynamics in a meaningful way. However,
variations in the mean degree of the initial graph greatly affect the behaviour of
the process.

1The value after which the fraction of nodes holding the minority opinion attests around ρ.
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Figure 4.4: Fraction of nodes in the minority state as a function of the rewiring α
starting from an Erdős-Rényi graph with N=4000 nodes and varying average degree δ.
Each point is obtained by averaging over 10 different realizations of the process and the
initial graph. The colored area around the points represents a confidence interval of
±3σ around the mean value. (a) Rewire-to-same adaptive voter model. As the degree
increases, the threshold αc also increases. (b) Rewire-to-random adaptive voter model.
In this case the system exhibits a continuous phase transition and we can observe a
shift towards right of the curves as the degree increases.
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4. PHASE TRANSITION IN THE MINORITY OPINION FRACTION

This behaviour is confirmed by results for example of Kimura and Hayakawa
[22]. Studying the phase transition of the Home and Newman [23] model they
found by means of pairwise approximation that the critical value can be estimated
as αc = 1− 1

δ where δ is the average degree of the network. Then, by performing
calculations including higher-order structures rather than simply the pairwise
approximation, they obtained a more precise bound (better fitting the data from
simulations) αc = 1−

√
3
δ . The Holme and Newman model comprises G different

opinions, the results of Kimura and Hayakawa have been derived for G = 2 that
coincide with the binary opinion space of the adaptive voter model. The model
is in fact equivalent to the rewire-to-same of Durrett et al. so, these results
support the observed relation between the average degree δ and the critical value
of rewiring αc. It has to be noted that this estimate does not closely fit the data
from simulations and comparing it to the results we have obtained, it is more an
upper bound of the threshold value αc.

Also Durrett et al. [9] discussed the dependence of the threshold αc on the
mean degree δ however, in this case it regarded the rewire-to-random version of
the model. By using pair approximation they found that:

αc(ρ) =
δ − 1

δ − 1 + ρ2 + (1− ρ2)

We have already observed that the value of the threshold depends on the initial
distribution of opinions ρ in the rewire-to-random model. And without a surprise
the formula just presented depends on ρ. Durrett et a. argued that this method
"drastically overestimates the value αc [9] and by applying another framework,
the AME (approximated master equation), it is possible to obtain much better
results. However, the AME appears to be more complicated and requires to
solve numerically differential equations to obtain predictions.

4.3 Threshold Dependence on the Starting Net-
work

The results presented in the previous sections have been obtained staring from
an Erdős–Rényi (ER) graph with a given average degree δ. It is of interest to
explore the dynamics of the adaptive voter model starting from other initial
graph configurations so, employing diverse generative models.

4.3.1 Stochastic Block Model

We decided to start by investigating the dynamics of the process on the stochastic
block model (SBM) [32]. This model has already been presented in Chapter 3.
The main property to be recalled is that SBM random graphs present a community
structure. Each community can be considered as being an Erdős–Rényi graph.
The nodes of each community are then connected with each other according to
a matrix M which contains the probabilities of connection among the various
communities. We limit ourselves to the study of stochastic block models with two
communities weakly interconnected and with the same density of links within
each community.
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Figure 4.5: Fraction of nodes in the minority state as a function of the rewiring α
and the initial bias x, starting from a stochastic block model (SBM) with N=2000
nodes, 2 communities with intra-edge probability equal to p and inter-edge probability
to q and average degree δ = 12.0. Each point is obtained by averaging over 10 different
realizations of the process and the initial graph. The colored area around the points
represents a confidence interval of ±3σ around the mean value. The results of the
SBM (in red) are compared to those of an Erdős–Rényi graph (in black) with the same
number of nodes N and average degree δ. (a) Rewire-to-same and (b) rewire-to-random
model.
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Figure 4.6: In the exactly same setting as for Figure 4.5 it is shown the dependence
with respect to the ratio of inter and intra edge probabilities q

p
. Fluctuations around

the mean appear to be slightly higher however, no meaningful influence on the system’s
dynamic is noticed by varying the parameter q

p
. (a) Rewire-to-same and (b) rewire-to-

random model.
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Stochastic	Block
Model

Parameters:
-	N,	number	of	nodes
-	δ,	average	degree
-	k,	#	of	communities
-	x,	probability	of	opinion
						1	within	community
-	p,	intra-edges	probability
-	q,	inter-edges	probability

node	with	opinion	1

node	with	opinion	0

Legend

intra-edges

intra-edges

Figure 4.7: Stochastic Block Model. The parameters of the graph have been listed.

We simulated the adaptive voter dynamics on SBM graphs with N nodes
and k = 2 equally-sized communities. Some of the degrees of freedom for the
simulations are the same as the ER case namely, the average degree δ of the
network, the percentage of rewiring α and the initial distribution of the opinions.
Regarding the latter, we now have two distinct communities each one could be
assigned with a different opinion distribution. It has been decided to maintain
an overall balance of the opinions in the network, namely half of the N nodes
will have opinion 1 and the other half opinion 0 initially. What will be changed
is the internal bias of opinions within the community. A parameter x has been
defined as the probability that a node of the first community has opinion equal to
1. The second community will have the converse bias, therefore the probability
of a node of having opinion equal to 1 is 1 − x. The other parameters which
have to be discussed are the connection probabilities. We are considering graphs
with two communities and we suppose that the communities interchangeable
so, equally-size and equally-dense. So, the number of probabilities from the
matrix M to be considered the values reduces to two. The intra-edge probability
p, probability of existence of an edge within a community, and the inter-edge
probability q, for links connecting the two communities. To keep the number
of simulation parameters reasonable we considered the ratio between these two
values q

p and since we are interested in networks in which the communities are
internally densely connected and only loosely connected with others, this ratio
will always be smaller than 1. It is clear that, in the case of q

p = 1 there is
no more distinction between the communities and a link in the network has
probability of existence equal to p (it is p towards its own community and q = p
towards the other community so, overall it is p). Such a choice of the parameters
would lead to an Erdős–Rényi graph.

In Figure 4.5 and 4.6 are presented the results for the fraction of nodes in
the minority opinion for different values of initial bias x and probabilities ratio
q
p . Surprisingly, the community structure of the initial network does not affect
the fraction of nodes in the minority state. Before running the simulations, we
expected that loosely coupled communities would have speed up fragmentation
into two separate clusters however, this does not happen. The reason behind
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4. PHASE TRANSITION IN THE MINORITY OPINION FRACTION

this behaviour might be found in the random choices taken during the rewiring
phase. In fact, in both instances of the model, when a link needs to be rewired
it then is connected to a random nodes that can be either belonging to the same
community or to the other one. This helps to destroy the community structure
and make the system behave as if the initial configuration was an ER graph.

4.3.2 Scale-free Chung-Lu Graphs

The results presented in the previous section show an insensitivity of the adaptive
voter model with respect to the initial graph structure. This needs to be further
investigated also because the stochastic block model and the Erdős–Rényi model
produce very similar networks, all nodes have the same mean degree and the only
difference is brought by the community structure of the SBM. Therefore, it has
been decided to run the dynamics starting from a Chung-Lu random graph with
scale-free degree distribution. This is a feature commonly observed in real-world
complex networks. One of the consequences of it is the emergence of some nodes
with very large degree, called hubs as shown in Figure 4.8.

Chung-Lu	scale-free
Graph

Network's	Hub

Another	Network's	Hub

Parameters:
-	N,	number	of	nodes
-	ρ,	probability	of	giving	opinion	1
-	w,	vector	of	expected	degrees

node	with	opinion	1

node	with	opinion	0

0 N-1

The	vector	w	is	particularly	important:
by	properly	choosing	the	values	of	the
elements	it	is	possible	to	generate	scale-
free	networks.	Having	hubs	as	in	figure.

w

Legend

Figure 4.8: Chung-Lu graph together with its parameters. Hubs are highlighted in
the network.

To generate the graph we used the procedure described in Chapter 3. It
is of particular importance the method to generate the sequence of expected
degrees w in order to obtain a scale-free distribution. First of all, the method
[26] allows us to produce a sequence w which leads to a graph with a prescribed
expected degree d and an expected maximum degree M = nc (degree of the
largest hub). The method produces better results for γ (parameter of the scale-
free distribution) greater than 3. However, we want to keep the exponent γ
between 2 and 3 so, the parameter is chosen to be γ = 2.9. Then, choosing
c = 0.8 we prescribe that the network will have a large hub. For a network
of N = 2000 nodes, the prescribed maximum degree would be N0.8 = 437.34
and it can be empirically observed that the maximum degree of the generated
Chung-Lu is Msim = 437. The mean degree d is instead only approached from
below, calculating it empirically it can be obtained a value around dsim = 11.8,
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Figure 4.9: Fraction of nodes in the minority state as a function of the rewiring α
starting from a Chung-Lu (CL) scale-free graph with N=2000 nodes, γ = 2.9 as the
degree distribution exponent, average degree δ = 12.0 and maximum expected degree
equal to N0.8. Each point is obtained by averaging over 10 different realizations of
the process and the initial graph. The colored area around the points represents a
confidence interval of ±3σ around the mean value. The results of the CL (in red) are
compared to those of an Erdős–Rényi graph (in black) with the same number of nodes
N and average degree δ. (a) Rewire-to-same and (b) rewire-to-random model.
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acceptable for our purpose. It is important to keep the average degree d close
to the one of the ER and SBM case in order to make a comparison between
them, since the threshold αc is strongly influenced by the mean degree. What
has been found comes again as a surprise. In fact, as can be seen from Figure
4.9 the behaviour of the system with a Chung-Lu graph is the same as the one
with an Erdős–Rényi graph.

Algorithm 7: DFS

1 findClusters (G(V,E))

Input : graph G(V,E)

V = {0, 1, ..., N − 1}
E = {(i, j)}i,j∈V

2 Define ad empty set IDvector;
3 id←− −1;
4 for ni = 0 to N − 1 do
5 if ni is not visited then
6 id←− id+ 1;
7 DFS-Visit(ni, Nni);

Algorithm 8: DFS-Visit

1 DFS-Visit (ni, Nni)

Input : node ni
neighborhood Nni

2 IDvector[ni]←− id;
3 for nj in Nni do
4 if nj is not visited then
5 DFS-Visit(nj , Nnj );

4.4 Fragmentation in Function of the Rewiring
The c++ simulator collects various metrics of the process, not only the fraction
of nodes in the minority opinion. For instance, the number of network’s clusters
when the absorbing state is reached. To do so, the graphs is explored using
depth-first search and each time a connected component is identified it is assigned
an integer label, the pseudo-code is provided above.
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Figure 4.10: Number of clusters at the end of the dynamics in function of the
rewiring α for an Erdős–Rényi graph with N = 2000 nodes. Data points averaged
over 10 realizations. (a) rewire-to-same version, the trend is as one might expect (b)
rewire-to-random case, it can be seen a consistent spike in the number of clusters and
for values of the rewiring close to α = 1 the network results to be rather fragmented,
with many isolated nodes.
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On the one hand, for the rewire-to-same model the number of clusters is
in line with what one would expect, with one cluster 2 for small values of the
rewiring α and two clusters while approaching the pure rewiring α = 1 as
reported in Figure 4.10a. On the other hand, for the rewire-to-random model, a
remarkable spike in the number of clusters (and isolate nodes) can be observed
from Figure 4.10b. This means that the process profoundly changes the nature
of the network. In fact, looking at social networks it is not customary to observe
networks with an high fraction of isolate clusters (or nodes).

In Figure 4.11 are shown the curves regarding the number of clusters for
all the generative graph models considered. In all the instances it is possible to
observe a spike associated with a fragmentation of the underlying network. Again,
also this result seems not to be influenced by the initial graph configuration.
Therefore, it brings further evidence to the claim that the adaptive voter model
is insensitive to the initial graph model.
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Figure 4.11: Number of clusters in function of the rewiring α for different initial
graph configurations. All the graphs have N = 2000 nodes and average degree δ = 12.0.
On the graph it is superimposed the scaled version of the minority opinion fraction, to
observe at which point happen the fragmentation. The figure is only concerned with
the rewire-to-random version of the adaptive voter model.

2With our choice of the mean degree δ = 12.0 we generate with high probability graphs
that are connected.
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Chapter 5

Convergence Time

When addressing the time to convergence of voter-like models on complex graphs
it is important to carefully specify the fusion rule. In fact, minor variations
which have no impact on regular graphs can have a dramatic impact on the
time complexity of the process. In this chapter will be presented some literature
results of the classic voter model at first. Then, the usual adaptive voter model
is considered, showing the dependence of the consensus time as a function of the
size of the network N and the rewiring probability α.

5.1 Complexity of the classic Voter Model
The voter model has been largely studied in the literature, firstly on regular
lattices and then on heterogeneous graphs. Some results will be presented
regarding both situations. These are in line with what we have found for the
adaptive voter model and can be used to validate our findings.

5.1.1 Voter model on regular lattices

The classic voter model dictates to randomly select an agent Ai at each time
step and then pick up one of its neighbours Aj , if any exists. Agent Aj influences
agent Ai so that xi ←− xj . When starting from a disordered initial condition, as
in usual coarsening process the dynamics tends to increase the order of the system
[33]. Since no bulk noise is considered in the model, the states in which all agents
hold the same opinion are absorbing for the process. Initially, the model has been
investigated on regular lattices in order to understand whether full consensus
can be reached on an infinite-sized system. The process on the one-dimensional
lattice coincide with the zero-temperature Glauber dynamics. For the solution in
any dimension d we report the results shown in the review done by Castellano et
al. [33] who refer to the work of Frachebourg and Krapivsky [34]. The behaviour
of the process is determined by the number of active interfaces namely, the
number of links between agents who hold different opinions. If this number goes
down to zero, it means that full consensus has been achieved in the network.
Therefore, the temporal behaviour of this quantity na(t) is of primary interest.

The asymptotic behaviour of the density of active interfaces na(t) has been
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found to be described by the following by the equations:

na(t) ∼


t−

2−d
2 d < 2

1
ln(t) d = 2

a− bt− d2 d > 2

(5.1)

These equations demonstrate that for d ≤ 2 the model undergoes a coarsening
process which leads to consensus in the graph. Whereas, for d > 2, there is
a finite density of interfaces asymptotically meaning that an infinite system
does not reach a consensus state. This is to what concerns infinite systems, in
finite systems the voter model always reaches asymptotically a consensus since it
represents an absorbing state for the dynamical process. Cox [35] demonstrated
that the time to consensus depends on the system size N , the number of nodes
in the network. He showed that:

tcons ∼


N2 d = 1

N logN d = 2

N d > 2

(5.2)

In the previous chapters the time has been measured as the number of
iterations (or updates) in the dynamical process. However, in the literature of
the voter model, one time unit is considered as being the interval of time in
which N agents (N being the size of the graph) have been updated. Pass from
one formulation to the other it rather straightforward: for instance, considering
the time complexities above, it is sufficient to multiply the values presented by N
to have the values in terms of number of iterations. The results that have been
stated just hold for static networks and more importantly, for regular networks.
The voter model has been largely studied also on heterogeneous networks. This
is crucial since real-world networks are far from being regular, the next section
is devoted to the discussion of the voter model on these graphs.

5.1.2 Voter Model on Heterogeneous Networks

Complex networks, are better suited to describe social networks since they
capture some key characteristics observed in populations of individuals. In such
networks the nodes are profoundly different from one another. For instance,
whereas in regular graphs all the node in the network have the same degree,
in scale-free networks the degree distribution follows a power-law and there
exist some large-degree nodes called hubs, which differentiate from the rest of
the nodes in the network. This disparity in the degree of the nodes make the
voter model behave differently on heterogeneous graphs compared to regular
graphs. Moreover, slight modifications in the fusion rule, which have no effect
on homogeneous graphs, have major effects on the dynamics on complex graphs.
Therefore, it is important to distinguish between at least two classes update
rules: node-update and link-update, summarized in Figure 5.1. Regarding the
first class, we have already presented the two possible instances: the direct voter
model and the reverse (also called invasion process) voter model. The adaptive
model of Durrett et al. falls in the class of link-update voter models since at each
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time step a discordant link is picked up. In the classical formulation a random
edge is chosen from the edge list E and only if the end nodes posses opposite
opinions one of the two is forced to adopt the opinion of the other. Selecting
discordant edges increases efficiency and leaves the stochastic process unchanged.

A motivation for the difference between the two mentioned categories can be
found in Suchecki et al. [36]. It must be observed that now we are considering
the dynamics on finite graphs, this implies that the system will always reach one
of the absorbing states of the process (consensus), the time to reach consensus
can also be referred to as survival time. Suchecki et al. argued that the survival
time "scales linearly with the system size only when the updating rule respects
the conservation law of the average magnetization", this conservation refers to
an ensemble average and is not a elementary step conservation in the sense of the
Kawasaki dynamics. For the voter model on regular lattices of general dimension-
ality the global magnetization (average spin) is conserved in the thermodynamic
limit of large systems. However, on networks (e.g. scale-free graphs) in which
nodes have strong heterogeneity in the degree distribution only link-selection
voter models guarantee the conservation of the average magnetization whereas,
with node-selection models this does not happen [36]. They reference [37] in
which it has been studied the voter model on small-world graphs, finding a
linear behaviour of the time to consensus as a function of the system size N and
therefore agreeing with the behaviour on regular lattices.

However, Suchecki et al. found that the survival time of a node-selection
voter model on Barabasi-Albert graphs (which are the simpler graphs exhibiting
a power-law degree distribution) scales as N0.88. To sum up, if the global
magnetization is conserved, the voter model on an heterogeneous graph behaves
as the voter model on a lattice whose dimension d > 2 and the survival time
scales with N as can also be seen in the system of equations 5.4. In a later work
[38], Suchecki et al. further analyzed the voter model on different classes of
complex networks finding that the effective dimensionality, the network disorder
and the degree heterogeneity determine if the voter model orders the system.
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direct	Voter	Model reverse	Voter	Model
or	Invasion	Process

node-update	Voter	Model link-update	Vote	Model

j

i

j

i

selected
edge	(i,j)

agent	i	is	influenced
by	its	neighbour

agent	i	"invades"
its	neighbour

(i)			pick	a	random	agent	i
(ii)		randomly	select	a	neighbour	j
(iii)	agent	i	adopts	the	opinion	of	j

(i)			pick	a	random	agent	i
(ii)		randomly	select	a	neighbour	j
(iii)	agent	i	forces	j	to	change	opinion

(i)			pick	a	random	link	(i,j)
(ii)		one	of	the	ends	of	the	link	adopts
							the	opinion	of	the	other	end	node

selected
agent

selected
agent

the	agents	are	forced	to
hold	the	same	opinion

discordant
link

concordant
link

Figure 5.1: Representation of the three different update rules, one can differentiate
between node-update and link-update rules. In red are shown the discordant links
whereas, in grey the concordant one. An opinion change happens only when a discordant
link is selected.
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Sood et al. following the above work found conservation laws for all the
three instances of the model, together with the exit probability (see [20] for
the details). In addition, it has been provided a formula for the asymptotic
behaviour of the time to consensus of the direct voter model on a graph with
power-law degree distribution (nk ∼ k−ν):

tcons ∼



N ν > 3
N

lnN ν = 3

N
2(ν−2)
ν−1 2 < ν < 3

(lnN)
2

ν = 2

O(1) ν < 2

(5.3)

And also for the asymptotic behaviour for the reverse voter model on
heterogeneous graphs:

tcons ∼


N ν > 2

N lnN ν = 2

N3−ν ν < 2

(5.4)

It is interesting to observe how for ν > 3 (direct voter model) and for
ν > 2 (reverse voter model) the voter model on a scale-free network behaves
asymptotically as a lattice whose dimension d > 2.

5.2 Effect of the Adaptivity on the Complexity
In this chapter we consider the adaptive voter model as presented by Durrett
et al. and we demonstrate how the time complexity of the process changes in
function of the rewiring α. Of course for α = 0 we obtain the classic voter model
with a link-update rule.

We start off by showing a temporal 1 plot of the fraction of nodes in minority
opinion. The graph has been obtained by fixing the rewiring probability α and
is in accordance with what has been found by Durrett et al. [9]. After an initial
phase in which the values remains around 0.5 the value start fluctuating until it
reaches a value close to 0 (here we are considering the rewire-to-same adaptive
voter model under the critical threshold αc). Durrett et al. demonstrated that
the fraction of nodes in the minority state are correlated to the number of active
links in the network. The shape of the curves is in agreement with the results
regarding the classic voter model presented in [38]. As for the classic voter
model a rapid transient occurs which leads the system to a meta-stable partially
ordered state and then the curve oscillates around an average value until a finite
size fluctuation takes the process in one of the two absorbing states [38]. From
the figure it can be already seen that the time to equilibrium is highly variable
and that realizations can strongly differ one from each other.

1From now on when talking about time we mean an elementary step of the voter dynamics
in Figure 5.6. This corresponds to 1

N
times unit as intended in the previous sections.
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Figure 5.2: Time evolution of the fraction of nodes holding the minority opinion as
a function of the time (a time unit is considered to be an elementary step, either a
rewiring or an opinion-change). The initial graphs are Erdős-Rényi with N = 2000
nodes, average degree δ = 12.0 and opinion density ρ = 0.5. These results belong to the
rewire-to-same version of the model however, the rewire-to-random shows an analogous
behaviour. Note: every time unit corresponds to 500 elementary steps, the process has
been sampled every 500 iterations.
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Figure 5.3: Number of iterations to reach an absorbing state in function of the
network size N . Every point has been obtained averaging over 100 realizations. Curves
for different values of the rewiring α are displayed, it can be seen that these follow the
trend showed above: the complexity gradually increase with the α and then drops for
values of the rewiring exceeding the critical value αc. Both versions of the adaptive voter
model have been investigated (a) rewire-to-same and (b) rewire-to-random, leading to
similar results.

In Figure 5.3 the number of iterations to consensus is plotted in function of
the size N of the network for different values of α. As it can be seen, the difference
in complexity is substantial, from tcons ∼ N2 for α = 0 to tcons ∼ N logN for
alpha approaching α = 1. To support this claim, in Figure ?? we have provided
a fit to a quadratic function for the case α = 0 and to a N logN function for
α = 1. This agrees to what has been discussed in Chapter 4 regarding the
behaviour of the model. Moreover, the results obtained for α = 0 agree to what
has been stated above for the classic voter model indeed, the quadratic scaling
in the number of iterations coincides with the linear increase in the time as seen
in the classic model.

The two versions of the adaptive model namely, the rewire-to-same and the
rewire-to-random have a rather similar behaviour in terms of the time to reach
consensus. Contrary to what we have seen regarding the phase transition in
the fraction of nodes in the minority state, in this case the difference in the
models does not play a crucial role. For this reason, we have reported curves
interpolations only for the rewire-to-same case, for the rewire-to-random the
results are completely analogous.
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Figure 5.4: Curve interpolations for the time complexity of the rewire-to-same
adaptive voter model for the two extreme cases α = 0 and α = 1. In (a) the data have
been interpolated with a N2 function and in (b) with a N logN function. The data
are those presented in Figure 5.3

It is interesting to observe the dependence of the time to consensus from
the probability of rewiring α. Figure 5.5b shows data obtained from simulations
averaging over 100 realizations. The number of iterations is rather consistent
until a certain value around α = 0.8 and then drops (abruptly in the rewire-to-
same case) by a couple of order of magnitude. This graph needs to be compared
to that of the fraction in minority state in Figure 4.5 looking at the Erdős-Rényi
results. It is clear that the number of iterations drops in correspondence of the
phase transition. An explanation to this phenomena can be provided. When the
rewiring α exceeds the threshold value αc then, the rewiring process is stronger
than the opinion-changing process. As already discussed, the rewiring process
can be seen as a coupon collector’s problem which has complexity O(N logN)
and this motivates the behaviour above the threshold. On the other hand, when
α is below αc the pure voter process rules, it has already been observed several
times that this process runs inherently in O(N2).
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Figure 5.5: Number of iterations to consensus as a function of the rewiring probability
α. Results obtained starting from an Erdős-Rényi graph with N = 2000 nodes, average
degree δ = 12.0 and variable initial opinion density ρ. Every point in the graph has
been obtained averaging over 100 realizations of the process. (a) Rewire-to-same and
(b) rewire-to-random model.
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5.3 Uniform Discordant Node Selection
In the previous section it has been shown how does the survival time of the
process change as a function of the rewiring α. This dependence has already
been observed for node-selection models in [21] by Nardini et al, who studied
the direct and reverse voter model. We have investigated the link-update case
by studying the adaptive voter model of Durrett et al. In their work, Nardini et
al. found even a stronger change in the scaling as the one we observed, from
N2 for small values of α to N logN for large values of the parameter. In fact,
for the reverse voter model the complexity grows exponentially with the system
size increasing the value of α. Instead, the time convergence of the direct voter
model is favored by the rewiring. Indeed, the scaling behaviour is analogous
to the one we have observed for the model of Durrett et al., going from N2 to
N logN 2. One of the main points made in [21] is that slight modifications in
the fusion rule might lead to remarkable changes in the process’ behaviour. And
this is motivated by the fact that the effect of the rewiring on the direct and the
reverse voter model is opposite. In the first case convergence is favoured instead,
in the second case it is hindered. Also the studies [20] [36] of the classic voter
model on heterogeneous graphs evidenced the sensitiveness to formulation of the
updating rule.

xnode	=	1

xnode	=	0

i i

dVM							Probability	to	pick	up	the	discordant	node	=	0.2
newVM			Probability	to	pick	up	the	discordant	node	=	1

dVM							Probability	to	pick	up	a	discordant	node	=	0.8
newVM			Probability	to	pick	up	a	discordant	node	=	1

active	edge

inert	edge

the	only
discordant	node

the	only
concordant	node

Figure 5.6: The difference between the proposed model and the classic voter model
is explained through an example.

We have studied a modification of the direct voter model and further con-
firmed this characteristic. The proposed model shares the same setting as the
direct voter model and just the neighbour’s selection is modified. At each el-
ementary step the process randomly selects a discordant node (a node with
at least a disagreeing neighbour). Then, a neighbour is chosen between those
who hold a different opinion, instead of any random neighbour as in the classic
formulation of the model. The difference with respect to the dVM is that in the
new model an opinion change will occur surely, irrespectively of the number of
agreeing neighbours. Whereas, in the classic formulation, if a node has many
agreeing neighbours and only a disagreeing one, the probability that the agent
is forced to change its opinion is low. On the contrary, in our model it happens

2We refer to the number of iterations, whereas in [21] one unit time consists of N updates so
tcons ∼ N for α = 0 and tcons ∼ logN for α = 1. As already mentioned, the two formulations
are equivalent.
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with probability one. Intuitively, this affects the time to convergence. In the
classic model nodes which have many inert connections have low probability
of changing opinion whereas, nodes with many active links will change opinion
with high probability. This favours the convergence towards a consensus since
the fusion rule tends to an overall agreement. In the new model a discordant
node is chosen uniformly and it will with probability one change its opinion at
every time step.

Table 5.1: Comparison: Iterations needed to consensus.

Time to Consensus
N direct voter model new voter model

30 121.4 19813.4
40 155.2 189268.2
50 155.8 7742601.4
60 157.8 25157428.0

The growth of the survival time is so high that convergence cannot be seen if
not in trivial cases, for networks with N < 80. One realization of the process on a
network of eighty nodes takes up to several days of simulation making unfeasible
the investigation on such networks. Obtaining data for this new version is far
more difficult than for the classic model and to make a comparison between
the two we could just run the dynamics on graphs of few nodes. In Table 5.1
the difference in the number of iterations to consensus is shown. As already
mentioned the number of nodes is trivial and data have been obtained averaging
over 10 realizations but, these numbers give a clear idea of the difference in
convergence of the two processes.

Time	in	Number	of	Iterations
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f	7
5

Figure 5.7: Only a portion of the behaviour in time is shown, an entire realization
appears to be unreadable due to the extremely high number of data points. This
sample has been produced running the modified version of the direct voter model on
an Erdős-Rényi with N = 75 nodes.

As it can be seen from the plot showing the fraction of nodes in the minority
state as a function of the number of iterations (Figure 5.7) the process keeps
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fluctuating around a mean value for an extremely long time. Since the stochastic
process has two absorbing states (consensus) it will eventually reach one of them
but, the fact that an update can take place also for nodes whose majority of
connections are inert, hinders convergence. The model might be unrealistic
because it does not take into consideration the bias of the neighborhood of a
node towards a certain opinion and just triggers an update whenever there is a
disagreement. However, it shows how model’s modification which might seem
minor can have a drastic effect on the system’s behaviour.
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Conclusions

In this work the main characteristics of opinion dynamics models have been
presented providing a general framework valid for any model. In addition, the
importance of complex networks in the field of social modelling has been many
times underlined. We have discussed several generative models from the Erdős-
Rényi to the Chung-Lu model, highlighting the aspects of real-world networks
that each model is able to capture. Efficient generative algorithms have been
presented together with the architecture of the c++ simulator which has been
developed. Since the processes we have considered are particularly demanding
in terms of computational resources especially when considering large networks,
the simulator needs to be thoughtfully designed, in order to be scalable. The
main focus of this work has been the study of an adaptive voter model proposed
by Durrett et al. in which the opinions of the agents of the network change
together with the underlying graph. This phenomenon is referred to as adaptivity
and leads to a rich dynamical behaviour. We have shown the phase transitions
that the system undergoes in the two versions of the model: rewire-to-same and
rewire-to-random. It is important to observe that the critical threshold of these
phase transitions is strongly influenced by the average degree of the underlying
graph. However, surprisingly it appears not to depend on the structure of the
initial graph. Running the process on the stochastic block model (SBM) and on
the Chung-Lu graph (CL) the results obtained are similar to the ones on the
Erdős-Rényi graph. It has to be noted that these initial configurations strongly
vary from one another, the Erdős-Rényi model produces graphs whose nodes
have the same expected degree. On the contrary, the Chung-Lu model generates
networks with a power-law degree distribution in which few nodes (hubs) have a
very large degree.

In the last chapter we have discussed the behaviour of the time needed
to reach consensus. The literature for the classic voter model is vast and has
been shortly reviewed. While on homogeneous lattices, many interesting results
have been formally proven, the investigation of opinion dynamics processes on
heterogeneous graphs is still ongoing. Considering the adaptive voter model of
Durrett et al. we have shown how the time complexity drastically changes for
different values of the rewiring α, from N2 for small values of the parameter,
to N logN for values approaching 1. To demonstrate how minor changes in
the module formulation greatly affect the behaviour of the dynamics, we have
presented a variation of the classic voter model which does not reach consensus
in a reasonable time, the update rule hinders the convergence and just random
fluctuations lead the system to one of the absorbing states.
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There is yet a conspicuous amount of work to be done in this field in order
to get a better grip on the mechanisms behind one of the most important human
processes: the opinion-formation. To start with, it would be of interest to carry
out a mathematical explanation of the phenomena which have been observed
in this work. Moreover, it can be investigated the effect of a different initial
configuration on the time needed to reach consensus, since in Chapter 5 we have
only considered Erdős-Rényi graphs as initial graphs.
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