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Introduction 
This dissertation is about the implementation of some of the plants developed by Sacmi 

Packaging & chocolate in a software powered by Siemens, called Tecnomatix 
PlantSimulation. 

 In depth, this software allows to simulate the plants, by implementing their 
characteristics and functionalities. Performing simulations is a crucial aspect that allows the 
factory to save money not necessarily testing some features on the field, but only by 
simulating them in a virtual environment, given by this kind of software. 

The software is provided with some predefined objects that are then suitably programmed 
and modified in order to make them work out their functions according to the ones that shall 
be provided by the considered plant. 

Some models of the principal components of these plants are built and stored in a library, 
in order to allow the user just to drag and drop these different models into a blank frame, 
building in this way the plant that must be considered. 

In the first chapter of this thesis the importance of the software is highlighted according 
to the possibility of performing any simulation on the considered plant and its main 
characteristics are explored. 

The second chapter concerns the configuration of the real plants, so how they work and 
how they are structured. 

The third chapter is dedicated to the objects built in the library: by suitably programming 
and modifying the standard objects already present in the software, it is possible to build 
many different plants of interest and then create a personal library with all the objects in it 
representing specific elements of the different lines considered. 

The fourth chapter concerns the different management of input and output data, in order 
to suitably set the needed data to perform the simulation and at the end of it collect all the 
data of interest. 

Finally, in the fifth chapter, an analysis of the obtained results is performed and possible 
future developments are suggested in the sixth and last chapter. 
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Chapter 1 - The importance of software 
A system is a set of elements which depend on each other. This dependence can be 

described through some variables linked one to the other by some mathematical laws that 
allow to compute the value of a variable when other variables or parameters are varying. 

When a system complexity grows, it is not easy to find the laws that allow to derive the 
values of the critical variables. In particular, a system is said to be complex when it is made 
of so many elements that make difficult the comprehension of the system itself. 

In these situations, it could be helpful using an empirical approach supported by suitable 
simulation and modelling tools. 

A model can be defined as a tool needed to rebuild a certain system. In depth, different 
kinds of models exist: 

• Mathematical models; 
• Physical models; 
• Simulation models. 

Mathematical models are made of analytical laws that regulate the considered system. 
Physical models are reconstructions of some systems aimed at studying the particular 

behaviour of the system rebuilt. 
Simulation models are a simplified representation of a system able to analyse the system 

itself in all its states. 
In this thesis, the focus is on simulation models. 

1.1 Simulation models pros and features 
Simulation models allow to study a certain system from different perspectives and reach 

more or less accurate results, according to the level of accuracy with which the model has 
been built. 

The principal advantages of making use of simulation models are the following: 

• Performing many experiments on the real system is not always possible, since it could 
be damaged; 

• The cost of a simulation on the models is much cheaper than the cost of a real experiment 
led on the real system; 

• The model helps to understand the system by putting in evidence only its essential 
aspects. 
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On the other hand, the cost to build a simulation model is not always so low and the times 
taken to build these kinds of models could be large. Moreover, a too simplified model could 
lead to errors while simulating the considered system [1]. 

In order to avoid these problems, many factories have implemented in the simulation tools 
some specific libraries appropriate for the specific industrial environment with which the 
factory deals. 

Furthermore, other classifications of the models exist. In fact, there can be also 
considered: 

• Static models; 
• Dynamic models. 
Static models are the ones that are not affected by the time variable. Dynamic models, 

instead, depend on the time and they are guided by events: when an event occurs, the 
different values of the variables change and also the state of the models changes. 

Plant simulation powered by Siemens is a dynamic simulation software, since it analyses a 
system in a certain simulation time that corresponds to a much wider effective time. 

 

Other kinds of models to be considered are: 

• Deterministic models; 
• Stochastic models. 

A stochastic model contains one or more variables coming from random distributions, 
which do not assume a single value, but a range of values. 

A deterministic model, instead, is a model with no random variables and this kind of 
model does not allow to perform an accurate analysis of the perturbations acting on the 
system; the results, in fact, are referred to mean values, not taking into consideration their 
maximum and minimum values or their standard deviations. 

Finally, there are also: 

• Continuous time models; 

Figure 1  Figure 1.1 Simulation time vs effective time [2] 
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• Discrete time models. 

In the first ones, the variables change continuously in time. In the latter, the values of the 
variables are defined at each event processed by the system. 

Discrete time simulation models are called DES (discrete event simulation) and Plant 
simulation belongs to this category. 

1.2 Insight of a simulation model 
Simulation is a technique that allows to reproduce the operations a system performs by 

building a suitable model of the system itself. 
As already said, a model is a simplification of the reality, since obtaining a too accurate 

model would be complex and too expensive. 

1.2.1 MAIN MODELLING ELEMENTS 
In a generic simulation software, these elements are always present: 

• Controller: manages the sequence of events and the evolution of the system state in 
time, by allowing the flow of the simulation time. In Plant simulation this role is played 
by the Event Controller. 

• System: set of entities and resources that constitute the objects of the system. 
• Entities: elements of the system that flow in the system itself (e.g. pieces, parts). In Plant 

simulation these are the mobile units (MU). 
• Resources: components of the system that are allocated to entities, such as machines. 

The most used in Plant simulation are the single processes, so machines that perform a 
single activity on the different entities. 

• Attributes: values associated to single entities or to resources, such as the working time, 
arrival time. In Plant simulation these could be already present in the object (standard) 
or defined by the user (user defined attribute). 

• Variables: could be parameters or support variables used in order to make the 
communication among different objects easier. 

• Events: time instant in which a change in the system state happens. Time changes 
according to the passage from an event to the subsequent one. 

• Activity: every object in the system performs an activity, which is something that takes 
place in between two different events and corresponds to the status of one or more 
entities, requires a certain amount of time to be completed and determines a modification 
to the system state. 
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• Processes: are sequences or predefined cycles of activities. In DES the running process 
is not visible in its sub-activities, but only its states can be observed: in this way, a station 
will result “blocked”, “working” or “waiting”, but it is not possible to know the 
percentage of the work done. Plant simulation gives this kind of feature in the section 
“Statistics” of each object. 

• State: specific configuration in which the system is [2].  

1.2.2 MODEL VALIDATION 
The validation of the model implies that the results given by the model correspond to the 

ones given by the real system. So, if the results of the model differ too much from the ones 
given by the real system, the model created results to be not valid and it must be suitably 
corrected. 

Moreover, in addition to the model validation that is performed only once, also the 
verification of the model must be performed. This consists in determining if the simulation 
model works as expected by who has developed it. This verification is not unique and it is 
performed according to the analyst opinion. 

Usually, these verifications are performed by making some proofs either by making use 
of known results or through the verification that all the most important elements have been 
included in the model; otherwise, simulations with deterministic values are run in order to 
obtain results easy to verify. 

Plant simulation also allows to perform a dynamic validation of the process by observing 
it during its execution. In fact, the icons of the single processes change colour according to 
the different state of the object: 

 

Table 1.1 Colours due to the different states [2] 
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1.2.3 THEORETICAL MODEL VERIFICATION 
In order to verify the theoretical validity of the model, so the fact that in absence of 

failures it works at 100% of the efficiency, it is necessary to compute the efficiency in the 
following way: 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 𝑝𝑒𝑟 ℎ𝑜𝑢𝑟 ∗ 100

3600
𝑇𝐶

                     (1.1), 𝑤ℎ𝑒𝑟𝑒 

• TC = cycle time. 
 

 The hypothesis to be considered to test the model in these conditions are the following: 
• No machine failures; 
• Single process machines at TC (cycle time); 
• Warmup time must be considered (time between the start of the simulation and the 

moment in which the statistics can start); 
• The efficiency must result to be 100% [3].  

1.3 Focus on Plant simulation 
Tecnomatix Plant simulation is a discrete time simulation tool that allows to create 

models of production plants in a virtual environment, in order to analyse and optimize their 
performances [4]. 

The different production scenarios are analysed by considering the bottle necks of the 
plant, statistics and graphs. The results achieved are useful to take decisions since the 
preliminary phases of the planning.  

In practice, Plant simulation gives a blank frame to the user in which the different 
elements that compose the production system can be arranged. Once these elements are 
dragged and dropped into the frame, they must then be connected one to the other in order 
to make them behave as expected in the real plant. 

The dynamic execution of the simulation is managed by the Event controller, which is 
the clock of the software.  

The operations that must be performed by the software are fed to it by means of the so 
called methods, which contain pages of executable code. The programming language used 
is SimTalk, similar to C language, but enriched with some elements such as the object 
oriented programming, which allows to interact with objects present in the modelling 
area [5].  

The objects that can be inserted in the frame can be found either in the class library or in 
the toolbox, as reported in figure 1.2. 
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Finally, the yellow area is the console in Plant simulation and here the actions performed 
during the execution of the simulation are printed [6]. 

Once the model is created, the simulation can be run by the play button and reset by the 
reset button: 

Once the run has started, it is possible to observe a scaled representation of the real system 
in a virtual environment, provided with a really useful animation of the latter that allows to 
identify possible problems that could arise during the simulation.  

 

1.3.1 HIERARCHY OF THE OBJECTS 
When a large number of objects must be inserted in the frame, with many of them 

presenting similar features, building some classes of objects could result a really useful 
procedure.  

The libraries, or toolbar, contain, in fact, the so called master classes, which are the 
standard objects for each type of object considered. Once this kind of object is inserted in 
the frame, it becomes an instance. In the same frame two instances with the same name 

Figure 1.2 Blank frame [2] 

Figure 1.3 Main commands to start/stop 
the simulation [4] 
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cannot coexist. The difference between a master class and an instance is that every 
modification apported to the master is automatically inherited by the instances, while if a 
modification is apported to the instances, this change only belongs to the specific instance 
and does not involve all the other instances of the same object. The inheritance can also be 
unselected, but the default setting is the one just mentioned. 

Some of the objects present in this virtual environment are a representation of physical 
entities really existing in the real plant; other objects represent the logic connection used to 
move the mobile units, defining in this way the route on which the mobile units must travel. 
Finally, also graphs and tables are present in order to manage and get useful information 
when the simulation is performed [7]. 

1.3.2 OUTPUT OF THE SIMULATION 
At the end of the simulation a report is automatically generated. In this report information 

related to the statistics of the model are contained [8].  
The information achieved for each workstation is the following: 

• Percentage of time while waiting for material; 
• Percentage of time it has been busy; 
• Percentage of time it has been blocked; 
• Percentage of time a failure has occurred; 
• Number of worked pieces; 

Similarly, for each warehouse (e.g. buffers), the following information could be retained: 

• Number of units entered and exited; 
• Initial and final number of units laying in it; 
• Maximum and minimum number of units laying in it during the simulation. 

All this information is contained in the tab Statistics of each object present in the frame. 
For each drain the software computes the following variables: 

• Cycle time: mean time taken by each entity to go through the production line (called 
mean life time). 

• Throughput per hour: number per unit of time of mobile units exiting the line, which are 
counted as final products. 

• Percentage of time the entities remain in the different objects which constitute the 
production line [9].  
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Figure 1.4 Cumulated statistics of the parts deleted by the drain [2] 
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Chapter 2 - Plants global overview 
The plants considered in this dissertation are essentially two. They are quite similar for 

what concerns the types of machines by which they are composed, but they differ for the 
buffer structure and the structure of the lines located after it. Anyway, these two plants are 
essentially composed by the same blocks of conveyors, stations and buffers, that can be 
grouped, dividing the plants in the following segments: 

• Ridge distribution; 
• Legs and “Flowpacks”; 
• Buffer and recycling. 

In particular, the global overviews of the two plants are the following: 

 

Figure 2.1 Plant with fan buffer[Credit: SACMI] 
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Figure 2.2 Plant with gondola buffer[Credit: SACMI] 
 

2.1 Ridge distribution 

 
According to the behavior of the plant, the source A produces a certain quantity of product 

constant in time, placed in rows called ranks; these ranks are essentially rows of products, 
which are located one next to the other. 

The ridge distribution (also called rank distribution) has the aim of distributing the ranks 
to the different legs, after that a quality check is performed; in this way some ranks are 

Figure 2.3 Ridge distribution global overview [10] 
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discarded, while the ones that pass the quality check flow into the legs. Then, the legs provide 
these products to the Flowpack machines, that wrap the various products. 

At the end of the ridge line, there could be a recycling system that has the functionality 
of keeping the products not given to the legs, in order to use them later in case of lack of 
products [10].  

The details of the different components of the ridge distribution are analysed in the 
following subsection. 

2.1.1 SOURCE 
The source (which is generally an oven) cooks a large portion of product which is then 

cut. The finite product is then caught by the ridge distribution and, eventually, led to the 
legs. 

 

 
 
The source could be essentially of two different types: 

• Pitch movement: moulds are treated with a regular timing, but in a discontinuous way. 
In this modality every k seconds the source provides two or more closed ranks separated 
by the next following two by a gap. 

• Continuous movement: all the system moves continuously, with no speed variations. 
In such a way the ranks are already decoupled and equalized while exiting from the 
source. 

In order to decouple and equalize the ranks coming from a source working with a pitch 
movement, a solution called Pullnose is adopted. 
  

Figure 2.4 Typical source [10] 
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2.1.2 PULLNOSE 
 
The Pullnose is a machine that is composed by two different belts plus a translator, which 

has an effect on the length of the belts connected to it. By suitably moving the translator, the 
gaps left by the source are filled. 

 

 

2.1.3 CONTROL LOGIC 
The speed is measured in hits/minute, where a hit corresponds to a rank. The speed of the 

belts, instead, is measured in meters/minute. 
The typical speed of the ridge distribution is between 40 and 90 hits/min, while the 

standard belts velocity is 24 m/min. 
 
The advancement of the distribution is controlled by a virtual phonic wheel, simulated by 

the PLC thanks to a suitable scaling of the instantaneous position value measured by an 
encoder of the motors of the belts. In the past the phonic wheels had a pitch configuration 
for which at every pulse the belt advanced of 6 mm. 

Figure 2.5 Pullnose structure [10] 

Figure 2.6 Phonic wheel [10] 
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The following correspondence has been maintained:1 phonic wheel pulse =  6 mm.  
 

2.1.4 PIVOT 
It is the mechanical element which has the task to deliver ranks at the end of the belt: if 

it remains high, the rank proceeds its route on the distribution, while if it goes down, it 
delivers the rank to the so-called chart. The pivot is used both for delivering the ranks and 
for the management of the discarded elements. The pivot extremity is called pen [11]. 
 

 
 

2.1.5 REJECT ZONE 
The main reasons that make a rank to be rejected are the following: 

• Length: products in the rank are not aligned (detected by FTC1) 
• Height: products in the rank are overlapped (detected by FTC2) 
• Metal detector: the rank is infected by some external metallic element 
• Stop at downstream: machines located downstream are stopped and legs do not accept 

additional products. Since the source can’t be stopped, the ranks are discarded (condition 

to avoid). 

Figure 2.7 Pivot 
structure [10] 

Figure 2.8 Reject zone structure [10] 
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According to the standard rules, the ranks must be discarded in different directions and 
according to different solutions. In particular: 

• The products discarded by the metal detector must be placed into a locked container; 
• The products manually discarded by the operator or for length/height reasons must be 

placed into an open bucket. 

The reject could be performed mainly in two ways: 

• Pivot, as shown figure 2.8; 
• Pullnose, which acts by means of a mechanical trap, that has a variable opening, given 

by the distance between the pens of two belts of variable length. 

 

 

2.1.6 CHART 
For each pivot, a chart is present. The complete configuration of the chart is made up of 

three motors: 

• Entry belt; 
• Translator; 
• Exit belt (or evacuation belt). 

 

Figure 2.9 Mechanical trap [10] 

Figure 2.10 Chart configuration [10] 
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The entry belt has the following tasks: 

• Receiving the rank; 
• Parking the rank; 
• Delivering it to the evacuation belt. 

The entry belt is characterized by three different velocities, according to the position the 
rank assumes on the conveyor: 

 
In particular: 

• 𝑣𝐴 is called speed of rank reception from pivot; 
• 𝑣𝐵 is called delivering working speed; 
• 𝑣𝐶 is called rank storage speed. 

The translator has the following tasks: 

• Sweetly accompanying the product in the passage from entry belt to evacuation belt; 
• Place the rank in phase with the turning products zone on the legs. 

After the opening of the chart, a recalibration procedure is performed, since it guarantees 
the redefinition of the zero of the axis after a voltage drop has occurred. The recalibration is 
automatically performed by the chart, after being reinserted in its place after a cleaning 
operation. This cleaning operation is automatically performed from the chart, after the chart 
itself has been opened. The cleaning has the aim of guaranteeing that the chart is free from 
accidentally fallen products. 

The evacuation belt, instead, has the following characteristics: 

• It takes the product out from the pivot zone, in order to free that zone to receive, then, a 
new rank; 

• It is in gearing with the TT conveyor of the leg; 

Figure 2.11 Velocities on the entry belt [10] 



 20 

• It does not perform a gap closing; 
• Its length should be as close as possible to one of the ranks. In fact, the ideal working 

condition is that the head of the rank is as much as possible close to the end of the 
conveyor, in order to avoid an additional gap given by the difference between the place 
of delivery of the rank and the end of the belt itself. 

2.1.7 CHART WITH DOUBLE PIVOT FOR RECYCLING  
With a double pivot solution, it is also possible to use the station both in forward and in 

backward direction of travel. 
The recycling is based on the usage of a storage (a long conveyor, called buffer for 

simplicity) located at the end of the line: when the ranks are not placed on any leg, for 
example because the flowpacks (wrapping machines) are stopped, and they continue on the 
line, in the end they finish on the buffer belt. Then, in a second moment, if there is a lack of 
product coming from the line, it is possible to feed the legs and the flowpacks with the 
products stored in the buffer, by acting the recycling modality. 

In this way, the last conveyors of the distribution will turn in opposite direction to the 
forward travelling direction [12]. 

 

 
In recycling modality, the belt 2 will place the ranks coming from the buffer on the chart. 

Moreover, it is important that the products are well distanced of a minimum quantity, in such 
a way that the pivot will be able to go down, deliver the rank on the chart and come back in 
its high position avoiding that the successive rank is pinched between the pens. 

 

2.1.8 MONITORING AND MANAGEMENT OF RANK POSITIONING  
In order to keep track of the ranks positioning on the conveyors of the distribution ridge 

and then  to suitably move the pivot, a technique called “bit shift” is adopted: the portion L 
of the belt in between the pivot FTC and the belt extremity is taken 500 mm long. By dividing 
L in  segments whose length is equal to 6 mm (pitch of the phonic wheel) and by associating 

Figure 2.12 Double pivot [12] 
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a bit to each segment in an array of Boolean variables: it is possible to know that at every 
pulse of the phonic wheel the conveyor moves forward of a distance equal to one step of the 
phonic wheel (6 mm). 

The absence of product on a segment is considered as a 0, while if the product is present 
on the single segment a bit value equal to 1 is considered. 

The pivot FTC sets the bit of the array logic value corresponding to the segment of the 
belt placed in front of the FTC at each time instant. 
 

 
From the software point of view, this means that a mask of bits is considered and values 

to these bits are assigned. Furthermore, the mask is shifted forward of a bit for each pulse of 
the phonic wheel.  

With this kind of logic, in ordert to determine the time at which the pivot should go down, 
the logic values of the bits of the mask located in a certain interval are checked, where this 
interval corresponds to the pivot position: if the bits have logic values equal to 1, then the 
pivot goes down. Starting from the movement the pivot has gone down, a counter is then 
activated, which considers the pulses of the phonic wheel: after a certain number of pulses, 
the pivot is placed again in its high position. 

 

2.1.9 PITCH OPERATING MODE 
Besides the continuous operating mode, the ridge distribution could also work in the pitch 

operating mode, so suitably stopping and restarting the belts. 
In figure 2.14, the conveyor B assumes the role of a buffer and three types of pitches 

could be defined: 

• Y: rank coming from upstream; 
• Z: pitch on FTC begin; 

Figure 2.13 Mask for ranks positioning [10] 
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• W: rank to downstream. 

 
 
 
The conveyor B is initially stopped. When products arrive from the conveyor A, the belt 

B starts turning and keeps moving until the rank is read by the B begin FTC (pitch y). 
B keeps moving since the desired wheelbase between two consecutive ranks is reached 

(pitch z), then it is stopped. 
When B accumulates ranks until its extremity, the conveyor B will start to move again in 

order to let ranks enter the conveyor C in the correct way (pitch w). 
All this procedure is useful both to store ranks on the buffer B, but also to avoid that the 

ranks lay in the zone located in between the pens of two consecutive belts, since laying in 
that zone could cause the shredding of the ranks themselves. 

2.2 Legs and flowpacks 
The legs have the role of receiving the ranks coming from the ridge distribution and move 

them toward the so-called flowpacks. 
In order to work properly, the speed of the legs must go along with the speed of the 

flowpacks, since if the latter asks for a certain quantity of products, then the leg must be able 
to feed this need. 

The principle adopted is the one of the communicating vessels. 
Indeed, the leg can be considered as divided into three different zones: 

• Gap closing zone (or TT zone): receives the ranks coming from the ridge distribution; 
• Orienting zone: orients the products; 
• Accumulating zone: gives the products to the flowpack. 

Figure 2.14 Pitch operating mode on the ridge 
distribution [10] 
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2.2.1 TT ZONE 
For convention, five different conveyors are taken into account for the gap closing. 

 
These belts are enumerated from 1 to 5 starting from the arriving direction of the products. 

They always move in the forward direction. 
Usually, the last conveyor of this zone is called “dosing” and it is the master for what 

concerns the number of products that are going to enter in the flowpack. 
Usually, these conveyors must not be too long: in fact, if the conveyor length is greater 

than the rank’s one, both the FTCs give a 0 level as output and so the conveyor is accelerated 
to compensate the lack of product and in this way, the conveyors continuously accelerate 
and decelerate [13]. 

The last TT, which is located next to the orienting zone, has a reduced role with respect 
to the previous TT belts. This is due to the fact that a too strong intervention could cause the 
approaching of the rank to the just distanced product, making null the action of the orienting 
conveyor. So, this last TT has a hybrid function, that makes it behave more as an orienting 
conveyor than as a TT. 

In this zone the velocity is given by the product of the width of the products and the 
number of pieces, obtaining in this way the speed in mm/min. 

In order to dynamically manage the gap saturation between a rank and another, a 
correction factor set by the user multiplies the flowpack velocity, separating in this way the 
conveyor from the wrapper. The gap closing is given by a higher speed step. If the correction 

Figure 2.15 Different zones on the leg [13] 

Figure 2.16 TT conveyors [13] 
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factor is greater than 1, the speed is proportionally increased, while if it is equal to 1, the 
speed remains unchanged. 

The acceleration/deceleration of the different motors is used in order to reach, more or 
less suddenly, the desired speed step. These acceleration/deceleration ramps will be sweet 
in the initial zone where the product is not oriented yet, while they will be stronger in the 
accumulating zone. 

In the case of more conveyors dedicated to the gap closing, the velocities are transferred 
in cascade one conveyor to the other, so that the last belt is the one that follows the wrapper 
speed, while all the others follow the speed of the preceding one. 

2.2.2 ORIENTING ZONE (EPO) 
Usually, four different belts are taken into account, even if a smaller number could be 

sufficient. 
The enumeration is progressive from 1 to 4 with respect to the direction of arrival of the 

products. The direction of motion is always forward. 
The ramps of acceleration/deceleration are smooth, since these conveyors must turn the 

products. 
In order to turn the products, two different tapes moving at different velocities are present: 

in this way, the turning of the products is reached. 

 
It is fundamental the separation of the products before the turning action is performed. 

The jump of velocity needed in order to perform this action is obtained by means of the 
correction factor, which could be equal or larger than 1: if it is equal to 1, the belts will 
follow the speed of the flowpack. 

These conveyors must not close any gap and so the only solicitations to which they are 
subject are the ones correlated to the flowpack speed variations. 

 

Figure 2.17 Two tapes structure [13] 
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In the circled zone, the metal detector is usually inserted and it is also the zone in which 
the maximum value of velocity is reached. 

The last belt orientator reduces the speed of the products, which has been useful in order 
to turn the products in the EPO zone. While getting closer to the accumulating zone, the 
products must be reassembled in order to feed the wrapper. 

Different conveyors belong to the orientating zone, in particular: 

• The curved belt belongs to the EPO zone. This is positioned close to the TT belts and 
suddenly before the EPO zone. It has only the task of orienting the products and the 
velocities could be increased while the products pass from this curve. 

• The vertical belts are needed to sweetly orientate the  products while travelling on the 
line. Usually four of these belts are needed in order to suitably accomplish this kind of 
task. The velocity of these belts are exactly equal to the ones of the horizontal conveyors 
on which these belts lay. 

Figure 2.18 EPO zone and products flow [13] 

Figure 2.19 Curve belt [13] 

Figure 2.20 Vertical belts [13] 
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• The metal detector is different from a mechanical point of view, but it always belongs 
to the EPO zone. It is usually located close at the end of the EPO zone and suddenly 
before the accumulating zone. Its task consists in distancing the products in order to 
identify the contaminated ones. In this passage, the velocities could be increased till the 
reading limit of the phonic wheel. 

 

2.2.3 ACCUMULATING ZONE 
In this zone, five belts are usually used. The larger is the number of belts inserted, the 

easier will be the ability to close the gaps among the products. 
The conveyors are enumerated starting from the zone close to the entrance in the flowpack 

and their moving direction is always the forward one. In this way, the first accumulator is 
the one next to the wrapping machine, while the last one is next to the EPO zone. 

Usually, the last belt is called “dosing” and it is the master for what concerns the number 
of products entering the flowpack. 

The aim of these belts is to make the flowpack work with no interruptions, by making the 
last conveyor before the wrapper be never empty. 

In this zone the velocity value is computed by knowing the value of the length of the 
products: the products length multiplied by the number of pieces gives the speed in mm/min. 

Also in this zone, the belts have a specific correction factor depending on the possibility 
to increase or keep constant a conveyor velocity. 

In this zone the acceleration/deceleration ramps are more abrupt, since the speeds are 
higher. 

The velocities, as for the other zones, are transferred in cascade among all the belts 
belonging to this zone. 

The different roles of the accumulator belts can be considered and a particular focus is 
dedicated to the last two belts: 

• The accumulator 2 is always paired to the accumulator 1 and it is highly solicited by 
accelerations and decelerations. 

• The accumulator 1 precedes the flowpack and so it constitutes the last possibility to 
close a still existing gap.  

Figure 2.21 Metal detector [13] 
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2.2.4 SPEED VARIATIONS 
During the normal functioning of the legs and the flowpacks a lack of product could occur 

for one of the following reasons: 

• Incomplete ranks; 
• Bad oriented products; 
• Metal detector discarded products. 

In order to manage this lack of product, the speed of every belt is increased thanks to a 
correction factor, except from the accumulator belts, having in this way more products to be 
used as a buffer before the wrapper. 

When a user defined target value is reached, the increasing of velocity is interrupted and 
the base velocity is kept. 

In this way the system results to be autoregulated, with a hysteresis that can be set 
according to the user requirements. 

The aim of the conveyors is to move at the target speed set upstream, that in absence of 
variations results to be equal to the speed of the flowpack. If the flowpack slows down, also 
the belts slow down, except from the ones of the EPO zone, since if the flowpack reduces 
its speed it is due to a lack of product and so if the belts of the EPO zone follow this variation, 
the situation would not be solved. For this reason, these kinds of conveyors have the same 
speed of the flowpack. 

2.2.5 OPTIMAL LENGTH OF THE BELTS IN ACCUMULATING ZONE 
By considering figure 2.22, it is possible to establish a minimum length of the 

accumulating belt located just before the flowpack (accumulator 1), in order to let this 
conveyor not to be empty when the flowpack stops, as: 

 

 
𝐿𝑏𝑒𝑙𝑡 = 𝐿 ∗ 𝑠 ∗ 𝑡𝑑                          (2.1) 

Where: 

Figure 2.22 Accumulator 1 length [13] 



 28 

• 𝑡𝑑 is the time needed for the flowpack to stop; 
• 𝑠 is the maximum velocity expressed in hits/min; 
• 𝐿 the product length. 

This formula constitutes a necessary condition to guarantee that the accumulator 1 is 
never empty when the flowpack stops. Anyway, equation 2.1 is an approximation of 
what really happens and it holds under the assumption that the flowpack always keeps 
wrapping products at its master speed, then passing from this value of speed to zero. So, 
an infinite deceleration is considered and this approximation overestimates the number 
of wrapped products. 

 

2.2.6 SPEED REGULATION IN THE FLOWPACK 
 

Figure 2.23 Maximum speed 
graph [13] 

Figure 2.24 Packaging system out from a 
ridge distribution [13] 
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The speed imposed to the flowpack could be defined by means of the frequency with 
which the products arrive to the distribution: this frequency is obtained by measuring the 
time in between two consecutive products thanks to a FTC located in a specific point of the 
line. This FTC is indicated as FTC_FREQ in figure 2.24. 

In order to manage the speed variations in the flowpack, two FTCs located in the 
accumulating zone are considered. These are called FTC_MIN and FTC_MAX and they 
both assume value equal to 1 if the quantity of products is equal or greater than the optimal 
value. In this situation, the flowpack speed is increased; otherwise, if they both assume value 
equal to 0, the flowpack speed is decreased since a lack of product is detected. Finally, if the 
the level of product is in between FTC_MIN and FTC_MAX, the flowpack speed is kept 
equal to the target speed. 

2.2.7 CLASSIC SPEED REGULATION 
With this kind of regulation, the various elements of the leg are put in gearing with the 

flowpack: the flowpack acts as the master and it imposes its velocity to all the belts of the 
leg except from the last accumulating conveyor. 

Anyway, this regulation has some limits due to the possible creation of some gaps in the 
flow of products: in fact, in this case, the conveyors speeds would be reduced, not letting a 
closing of the gap, since also the flowpack master speed would reduce. 

So, a logic that separates the flowpack from the various belts is needed. 

2.2.8 SPEED REGULATION WITH COMPENSATION 
A possible solution to the creation of the gaps is based on speed compensation. This 

provides two velocities: 

• Target velocity, that is the command given to the flowpack; 
• Master speed, which is the effective flowpack velocity. 

The accumulating belts move at the master speed. The EPO belts and the TT ones have a 
speed regulation based on a feedback coming from the flowpack, defined in this way: 

 
𝑣𝑇𝑇 = 𝑣𝐸𝑃𝑂 = |(𝑣𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑣𝑤𝑟𝑝) + 𝑣𝑤𝑟𝑝| = |𝑣𝑑𝑖𝑓𝑓 + 𝑣𝑤𝑟𝑝|                  (2.2) 

 
Where: 

• 𝑣𝑇𝑇 is the velocity of the TT belt; 
• 𝑣𝐸𝑃𝑂 is the velocity of the EPO belt; 
• 𝑣𝑡𝑎𝑟𝑔𝑒𝑡 is the velocity to be achieved; 
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• 𝑣𝑤𝑟𝑝 is the velocity of the wrapper; 
• 𝑣𝑑𝑖𝑓𝑓 is the difference in velocities between 𝑣𝑡𝑎𝑟𝑔𝑒𝑡 and 𝑣𝑤𝑟𝑝. 

 

 

2.2.9 PASSIVE GAP CLOSING 
By considering the system in figure 2.25, if on the last TT belt a gap is detected, the 

flowpack speed is suddenly decreased, anticipating in this way the gap as much as possible. 
In this case the EPO belts do not follow the speed compensation previously described: the 
TT conveyors keep moving at the target speed; the EPO belts, instead, are put in gearing 
with the master speed and the accumulating zone. In such a way, the goal is to close the gap 
in a passive way, by slowing down the downstream belts instead of by accelerating the 
upstream ones. 

Finally, a speed reduction on the leg must be avoided, since it could cause a not complete 
products evacuation from the ridge distribution on the chart and successively on the leg. 

2.3 Buffer and recycling 
Recycling involves more than one belt and all the belts involved move in backwards 

direction. 
This procedure is useful in different contexts and for different reasons: 

• It can be activated at the end of the production in order to empty a buffer; 
• It can be activated when the rank percentage in a buffer overcomes a certain target value; 

Figure 2.25 Speed compensation [13] 
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In moving backwards the logics of the conveyors are the opposite of the ones in forward 
moving direction: when the belts move in backwards, it is fundamental that the ranks are 
well separated one from the other, since there will be surely a point in which the pivot must 
go down and if the procedure cannot be suitably performed, an operator must intervene to 
re-establish the correct functioning of the line [14].  

In backwards moving direction, a manoeuvre called approaching is used, which is shown 
in figure 2.26. 

 
The conveyor C does not have the ranks in the point 𝑧𝐶 . The points 𝑧𝐴 , 𝑧𝐵 , 𝑧𝐶 , 𝑧𝐷 

represent the end of the free space and the beginning of the successive belt, so the exact point 
where the rank is going to be stationed. When the conveyor A, which is the master for all 
the following belts B, C, D, starts recirculating and delivers its rank either to the chart or to 
the remaining upstream portion of the line, then all the other conveyors start moving with it. 
Instead, when A stops, all the other belts keep moving since the ranks reach the respective 
z_ positions. In this way it is possile to have all the ranks at the desired distance one from 
the other. 

 

2.3.1 DOUBLE RECYCLING  
Usually, when a line is provided with a recycling pivot, the last legs are used as jolly legs, 

so they are only useful to empty the buffer in the shortest time possible, in order to guarantee 
a suitable available capacity to be filled. 

The types of double recycling taken into account are essentially two: not simultaneous 
and simultaneous: 

• The not simultaneous double recycling takes place only in presence of two legs used 
for the recycling, when the last one cannot receive products because a failure has 
occureed. 

Figure 2.26 Approaching maneuver [12] 
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The aim of this not simultaneous double recycling is to move the ranks coming from the 
recycling, previously directed towards the chart 2, to the group 1. The crucial point is in 
between the belts F and E. 

It is important to not stop the products in between the belts F and E, because when the 
chart 2 restarts, an inversion of motion is needed to eliminate the rank that does not allow 
the pivot to go down, as shown in figure 2.28. 

 
The only solution consists in moving forward both E and F and so all the connected belts 

(G, C, D), since some ranks could be stuck in between these conveyors. 
In this way, the situation could lead to the rank 3 delivered to the chart 2, the rank 1 that 

has overpassed the conveyor F and the rank 2 ready to be recycled. 
The limit of this procedure is that it is really time consuming, also risking that the legs 

are not uniformly fed. 
In order to avoid this situation, the procedure shown in figure 2.29 is adopted. 

Figure 2.27 Double recycling structure [12] 

Figure 2.28 Blocked situation with the rank stuck [12] 

Figure 2.29 Solution for the not simultaneous double recycling [12] 
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By knowing the mechanical symmetry of the considered line, the rank in 𝑧𝐶 will surely 
travel more or the same distance than the rank located in 𝑧𝐹 in order to jump on the belt E. 

So F is going to move only when also C starts moving and in this way it is guaranteed 
that no rank is going to be stuck in between the conveyors F and E. 

• The simultaneous double recycling works exacly like the not simultaneous, with the 
difference that two legs are present. 

 

In this case, based on the simultaneous starting of the conveyors C and F, the two charts 
are going to be fed. 

The issue is to correctly feed the legs: in order to do this in the best way, it is important 
to maintain the ranks on G as close as possible among them, aiming at always having the 
availability of some ranks to be delivered to the legs. 

In real working conditions it could happen that a rank gets stuck in between the belts F 
and E and the adopted solution consists in keeping the conveyors moving in backwards: 

 
This techinque essentially consists in keeping moving in backwards since both the FTCs 

are overpassed. In particular, the situation of figure 2.32 is considered. 
 

Figure 2.30 Simultaneous double recycling [12] 

Figure 2.31 Alternative solution to avoid products in between two 
pens [12] 

Figure 2.32 Chained procedure to free the pens [12] 
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In order to release the initial FTC of the conveyor F and the FTC located at the end of the 
conveyor E, both E and F move in backwards. If the rank 2 located on E does not reach the 
FTC at the beginning of E, nothing happens. Instead, if the rank 2 obscures the FTC it means 
that it is going to be placed in between the pens and this gives the start to the backward 
movement of the belt D. The chain stops when the rank reaches the position 𝑧𝐶 [15].  
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Chapter 3 - The concept of Class 
This chapter is devoted to the strategies adopted in order in the software implementation 

of the models of the main objects composing the two reference distributions plants. 
 
 
 

 

Figure 3.1 Software representation of the plant with fan buffer. 
 
 

 

Figure 3.2 Software representation of the plant with gondola buffer. 
 
 

Basically, being Tecnomatix Plant Simulation a software tool based on an object oriented 
programming language, the different models have been implemented as classes. A class is a 
data structure that is composed by two important elements, called Attributes and Methods. 
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The Attributes constitute the set of variables that are needed to characterize the object 
that the class represents. Attributes can be given by either physical quantities or logical 
quantities and, depending on the particular element they represent, their values can be 
integer, real or Boolean. A typical example of a real attribute is the “speed” of a Pivot, an 
example of an integer attribute is the “capacity” of a Buffer, while an example of a Boolean 
attribute is the “empty” attribute of whatever machine in the production line. 

The Methods constitutes the a set of functions that regulates the behavior of the class; 
basically, on the bases of the sensing and the evaluations through dedicated algorithms of 
the values of specific attributes of interest, the methods provide the actuations by setting the 
values of other attributes. Being the software platform event-based, the methods are executed 
by the processor at specific instants, according to specific events that are triggered by the 
program; the main kinds of methods that have been used in order to implement the behavior 
of the different developed objects are illustrated here after. 

The “OnEntrance” method is a function that is executed each time a unit equipment enters 

the object represented by the class, the “OnExit” method is a function that is executed each 
time a unit equipment exits the object represented by the class; notice that these methods are 
usually called very often, especially in applications belonging to the food domain, in which 
the number of produced units equipment is huge, and so they need to present a low 
computational complexity, avoiding non-deterministic loops, otherwise the processor will 
become easily congested. 

The “OnBackwardEntrance” and “OnBackwardExit” methods are functions called when 
a unit equipment enters the nominal exit of the object and, vice versa, exits from the nominal 
entrance of the object respectively; these methods are mainly used in order to implement 
recirculating tasks and, hopefully, they are called with a lower frequency. 

The “OnSensor” method is a function called whenever a unit equipment reaches a specific 

point in the space of a certain object; for the addressed applications, the pieces most of the 
time present a regular shape with a well-defined length and so the sensing of the piece can 
be further divided and performed on the front or on the rear of the piece. 

The “OnObserver” method relies on an event affecting an attribute of interest; indeed, it 

is a function that is called whenever a certain variable reaches a specific value or, sometimes, 
simply when such variable changes its value. 

Finally, three methods have been defined, called “Reset”, “Init” and “EndSim”; they are 

standard methods, in the sense that they are in common to all the created classed, so each 
class presents them, and they are called at different points in time. The “Reset” and “Init” 

methods are functions called before the beginning of the actual simulation; they are mainly 
intended for initialization purposes. In particular, the “Reset” method is needed for the 

assignment of the default values to predefined variables, like the starting value of a counter. 
As will be illustrated, the “Init” method is used for handling the management of the input 

parameters, setting the parametrized variables to the values selected by the operators in order 
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to perform the simulation; an example of these variables is the simulation time, which is 
totally configurable by the operator, on the basis of his needs. On the other hand, the 
“EndSim” method is a function that is called when the simulation time is elapsed; as we will 
see, it is responsible for the evaluation of the performance of the distribution and for the 
generation of the charts representing statistics of the metrics of interest. 

Two other important concepts are inheritance and visibility. As already discussed, each 
object created through class is characterized by its own specific attributes and methods, and 
it represents a sort of reference model; then, according to the plant that has to be represented, 
different instances of that reference object are brought into the frame. According to the 
inheritance mechanism, each instance will inherit the characteristics of its reference class, 
presenting the same list of attributes and methods. Then, according to the visibility feature, 
some methods and attributes can be public and so they can be tested and utilized by other 
objects belonging to other classes, or they can be private and so they can be exploited only 
by the class to which they belong. In the developed project, most of the time the methods 
have been implemented as private, while the majority of the attributes are public, since the 
behavior of a machine is often based on the evaluation of some parameters of its succeeding 
or preceding. 

A final consideration must be done on a simplification that the software tools offers. 
Tecnomatix Plant Simulation provides three main predefined building blocks, that are the 
conveyor block, the buffer block and the station block. These blocks represent the three main 
families to which a certain machine can belong to and they are “virgin”, in the sense that 

they are equipped with their basic functionalities; then, it is up to the user to add and define 
more complex and specific functionalities through the definition of dedicated attributes and 
methods. In particular, the basic functionality of the conveyor block is to carry the product 
all over the distribution plant, the basic functionality of the buffer block is to store the 
product making it available for recycling and the main functionality of the station block is 
to machine the product performing a certain action on it. 

Notice that, according to the company’s specifications, a lot of graphical simplifications 

have not been performed; in this perspective, most of the time, the main objects have been 
created and modeled maintaining the components of their real structures. This choice is 
dictated by the will of fulfilling the needs from a client’s perspective; anyway, since each 

different component could be equipped with different methods, this solution adds 
complexity from a computational point of view. 

In the following, the classes of the main objects composing the two reference distributions 
plants will be introduced, focusing in particular on the different methods and attributes 
defined in order to perform and represent via software the actual behavior of those 
components. 
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3.1 Class “PIVOTSX” 
The PIVOTSX class represents one of the main objects composing the ridge distribution, 

through which the molds flow. According to its real structure, its implementation has been 

performed exploiting three segments, represented by three different powered conveyor 

blocks. 

 

 

Figure 3.3 PIVOTSX model in the whole distribution plant. 
 

The first conveyor has been denoted as D_P_X, that stands for 

DORSALE_PIVOTTANTE. It represents the main conveyor of the ridge distribution, the 

one that has the capability of pivoting feeding the inclined conveyor, if the leg is ready to 

receive the product, or staying up feeding the next D_P_X conveyor of its following 

PIVOTSX object.  As will be discussed in more detail, this first block is characterized by 

two methods, that are the “OnSensor” method and one “OnExit” method. 
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Figure 3.4 D_P_X conveyor of PIVOTSX model. 
 

The second conveyor has been denoted as N_I_X, that stands for 

NASTRO_INCLINATO. It represents the so-called “infeed belt”, the one that has the 

capability of receiving the rank from the pivot and delivering it to the evacuation belt. As 

will be discussed in more detail, this second block is characterized by one method, that is 

the “OnExit” method. 

 

 

Figure 3.5 N_I_X conveyor of PIVOTSX model. 
 



 40 

The third conveyor has been denoted as S_X, that stands for STRAPPATORE. It 

represents the so-called “evacuation belt”, whose task is taking the product out from the 

pivot zone and feeding its following leg. This third block is not characterized by any method; 

this means that it simply receives the product and carry it at constant nominal speed, without 

implementing any particular logic. 

 

 

Figure 3.6 S_X conveyor of PIVOTSX model. 
 

In the following, the methods of the different blocks and the attributes that they exploit 

to implement the logic will be presented and discussed. 

3.1.1 “D_P_X” METHODS 
As already said, the methods of the D_P_X conveyor are one “OnSensor” method and 

the “OnExit” method. 
The “OnSensor” method is executed every time the piece passes a virtual sensor placed 

at 100 mm from the end of the conveyor; in particular, the function is called whenever the 
front of a product passes through the sensor. The program implemented by the “OnSensor” 

method acts on a user-defined attribute, called “pivot_basso”. This is a Boolean variable, 

initialized as false, that is needed in order to identify the pivoting of the D_P_X conveyor; 
when it is true it means that the conveyor has performed the pivoting, when it is false it 
means that the conveyor didn’t perform the pivoting. For what concerns the logic of the 

“OnSensor” method, it is based on a simple if-then-else implementation. In particular, if the 
Boolean attribute “empty” of the conveyor N_I_X is sensed as true, the pivoting is 

performed by setting the graphical attribute “setCurveSegments” of the conveyor to -0.2 
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meters and the variable “pivot_basso” is set true.  On the other hand, if the N_I_X’s attribute 

“empty” is sensed as false, the variable “pivot_basso” remains false. 
The “OnExit” method evaluates the attribute “pivot_basso”, again according to an if-

then-else structure. In particular, if “pivot_basso” is sensed as true, then the piece is moved 

to the N_I_X conveyor through the command “move” and the segment of the conveyor is 

realigned to its starting horizontal position; finally, the value of “pivot_basso” is set again 

to false, ready to be eventually modified when the following piece will pass through the 
sensor. On the other hand, if “pivot_basso” is sensed as false, the piece is moved to the 

D_P_X conveyor of the following PIVOTSX composing the ridge distribution. 
Notice that the logic implemented by the “OnSensor” method is a sort of decision logic, 

on the bases of what the succeeding “OnExit” method knows about where the piece has to 
be moved; this is done in order to implement a behavior as similar as possible to the real 
one, in which the machine knows at the sensor level, through an encoder, if the pivoting 
must be performed. 

3.1.2 “NI_X” METHODS AND ATTRIBUTES 
As already said, the only method of the N_I_X conveyor is the “OnExit” one. 
The “OnExit” method has the functionality of implementing the passage of the different 

ranks composing the mold from the N_I_X conveyor to the S_X conveyor. This operation 
is performed in a purely graphical way, exploiting two variables called 
“RM_NumeroRanghi” and “PR_NumeroProdotti”; they are user-defined variables, the first 
represents the number of ranks per mold, the second is the number of products per rank. 
According to this graphical approach, first the rank that is going to exit the N_I_X conveyor 
and to enter the S_X conveyor is deleted through the “deleteobject” function. Then a double 

for-cycle is performed, in order to place on the S_X conveyor the different products 
composing the previously deleted rank; the first for-cycle is performed on the variable 
“RM_NumeroRanghi” and it waits until the successive conveyor is empty, the second for-
cycle is performed on the variable “PR_NumeroProdotti” and it is responsible for the 

placement of the different single products on the successive conveyor. In particular, this is 
done exploiting the “create” function, through which it is possible to place a new part in a 
specific position of the conveyor; in this way, it has been possible to place the different 
products on the S_X conveyor in a precise manner, according to the suitable gap between 
them. 

Notice that, after this operation, the unit equipment, i.e. the basic part that travels on the 
conveyors, switches from the rank to the piece, that is the actual product. 
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3.2 Class “PIVOTDX” 
The PIVOTDX class represents one of the main objects composing the final part of the 

ridge distribution. According to its real structure, its implementation has been performed 

exploiting five segments, represented by five different powered conveyor blocks. Notice that 

three of these five conveyors are the ones composing the PIVOTDX class, with some further 

modifications on the logic implemented by the methods. 

 

 

Figure 3.7 PIVOTDX in the whole distribution plant. 
 

The first conveyor has been denoted as D_X, that stands for DORSALE. It represents an 

element of the main ridge and it has not some complex logic to implement; for this reason, 

it is not characterized by any specific method, but it simply takes the products towards the 

subsequent conveyor. 
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Figure 3.8 D_X conveyor of PIVOTDX model. 
 

As anticipated, the second, third and fourth conveyors are the ones that compose the 

PIVOTSX object. In this case, the names of the conveyors remain the same and also the kind 

of methods by which they are characterized; in this perspective, the conveyor D_P_X is 

characterized by the “OnSensor” and “OnExit” methods, while the conveyor N_I_X is 

characterized by the “OnExit” method. For what concerns the logics, the programs are 

essentially the same for the flow of the products in the nominal direction, while the methods 

of the D_P_X conveyor are characterized by some additional instructions needed in order to 

manage the flow of the products in the backward direction and so concerning the recycling 

issue. 

 

 

Figure 3.9 D_P_X, N_I_X and R_X conveyors of PIVOTDX model. 
 

The last conveyor has been denoted as D_R_X, that stands for DORSALE_RICIRCOLO. 

It is the element preceding the Fan buffer in the first distribution and it implements the actual 

logic for managing the recycling. To do that, it is equipped with two sensors, each one 
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characterized by an “OnSensor” method; moreover, it presents the “OnEntrance”, the 

“OnExit” and the “OnBackwardExit” methods. 

 

 

Figure 3.10 D_R_X conveyor of PIVOTDX model. 
 

In the following, the methods of these different blocks and the attributes that they exploit 

to implement the logic will be presented and discussed. 

3.2.1 “D_P_X”  METHODS 
The kinds of methods characterizing the D_P_X and N_I_X conveyors are essentially the 

same discussed for the implementation of the PIVOTSX class, with some additional 
elements for the methods of the D_P_X conveyor, in order to manage the recycling phase. 

In this perspective, for what concerns the “OnExit” method of the D_P_X, an additional 

set of instructions has been implemented. If the variable “pivot_basso” is sensed as false 

then some actions are performed on the succeeding D_R_X conveyor, before moving the 
part on it through the command “move”; in particular, its Boolean attribute “Backwards” is 

set to false and its attribute “Speed” is set to the nominal value of 0.4 m/s. 
Notice that these instructions are fundamental in order to avoid a mismatch between the 

directions of flow of the D_P_X and D_R_X conveyors; indeed, the D_R_X conveyor could 
have been previously used for the recycling and so travelling towards the backward 
direction. 

3.2.2 “D_R_X” METHODS 
As already mentioned, the D_R_X conveyor is equipped with different methods, needed 

to manage the operations concerning both the nominal flowing direction of products and the 
backward direction for the recycling. Let’s analyze these methods, presenting the main 
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functionalities implemented by them; notice that the order in which the methods are 
illustrated is coherent with the actual order that the product encounters while flowing on the 
conveyor. 

The “OnEntrance” method performs some basic actions in order to properly configure 
the main parameters of the D_R_X conveyor when a product is going to enter the conveyor. 
In particular, it sets its “Backwards” attribute to false and its attribute “Speed” to the nominal 

value of 0.4 m/s. These operations are needed since the D_R_X conveyor is used also for 
the recycling issue and for the step pace issue, and then the “Backwards” and “Speed” 

attributes may have been modified by other methods. Moreover, it sets the initial value of a 
Boolean user-defined attribute “pivotbasso_r” equal to false. The role of the “pivotbasso_r” 

variable is conceptually the same of the “pivot_basso” variable for the PIVOTSX class; it is 

a Boolean variable used to identify the pivoting of the D_R_X conveyor in the backward 
direction; when it is true it means that the conveyor has performed the pivoting, it is false 
otherwise. 

The first sensor is placed at 150 mm from the beginning of the conveyor and it is sensible 
to both the front and the rear of the product; its implemented “OnSensor” method performs 

some more complex actions, managing some issues related to the nominal and the backward 
directions. For what concerns the nominal direction, the main logic is the one implementing 
the step pace, which lets a product entering the D_R_X conveyor remain still at the 
beginning of the conveyor, waiting to be recycled, advancing one step forward only if 
another product enters the conveyor. In this way, the time needed to perform the recycling 
through the backward pivoting is smaller, since the product is ready to be pivoted. The step 
pace is performed by setting the “Speed” attribute of the D_R_X conveyor to 0 and its 

“Backward” attribute to true, being ready for an eventual recycling of the stopped product; 

then the logics for managing the arrival of a further product, and the advancement of one 
step, are implemented by the “OnEntrance” method, setting “Backward” to false and 

“Speed” to the nominal value. For what concerns the backward direction, the main logic 

consists in the implementation of the pivoting for the recycling: when the last entered 
product is still at the beginning of the conveyor, the sensor checks whether it can be recycled 
and so whether the backward pivoting can be performed. This operation has been 
implemented via software through a “waituntil” instruction, that simply waits until the 

preceding NI_X and D_P_X conveyors are both empty; if this condition is verified, then the 
pivoting is performed by setting the graphical attribute “setCurveSegments” of the conveyor 

to -0.2 meters and the variable “pivotbasso_r” is set true. 
The “OnBackwardExit” method evaluates the “pivotbasso_r” attribute through an if-then 

command. In particular, if “pivotbasso_r” is detected as true, then the piece is moved to the 
NI_X conveyor through the command “insert” and the segment of the conveyor is realigned 

to its starting horizontal position; finally, the value of “pivotbasso_r” is set again to false. 

Notice that the idea behind the combination of the first “OnSensor” method and the 
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“OnBackwardExit” method is actually very similar to the one implemented by the PIVOTSX 

object in order to perform the pivoting in the nominal direction; in this perspective, the 
“OnSensor” implements a sort of decision logic, on the basis of which the subsequent 
“OnBackwardExit” method moves the product for the recycling. 

The second sensor is placed at 100 mm from the end of the conveyor and it is sensible to 
the front of the product; its implemented “OnSensor” method performs some simple 

operations, needed to avoid mismatch between its flowing direction and the flowing 
direction of its subsequent element, which is a conveyor belonging to the buffer object. 
Indeed, the piece is going to be moved to the subsequent conveyor that, being used also for 
recycling, could have the “Backwards” attribute still set to true; for this reason, by exploiting 

the “Succ” attribute, the “Backwards” attribute of the succeeding conveyor is set to false and 

its “Speed” attribute is set to 0.4 m/s. 
Finally, the same operations are performed also by the “OnExit” method, before moving 

the piece to the buffer through the command “move”. 

3.3 Class “LEGX” 
The LEGX class represents the series of components through which the single ranks flow, 

after being unloaded from the single pivot of the ridge distribution. According to its real 

structure, its implementation has been performed exploiting eleven powered conveyor 

blocks, composing the three different zones of the leg distribution. 

 

 

Figure 3.11 LEGX model in the whole distribution plant. 
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The first, second and third conveyors, denoted as G_TT1_X, G_TT2_X and G_TT3_X, 

represent the Gap closing zone (or TT zone). 

 

 

Figure 3.12 G_TT1_X, G_TT2_X and G_TT3_X conveyors of LEGX model.  
 

The fourth, fifth and sixth conveyors, denoted as G_OR1_X, G_OR2_X, G_OR3_X, 

represent the initial part of the Orienting zone (or EPO zone). This part is responsible for the 

positioning of the products rotating them from a horizontal to a vertical position. 

 

 

Figure 3.13 G_OR1_X, G_OR2_X and G_OR3_X conveyors of LEGX model. 
 

The seventh conveyor, denoted as G_METAL_X, represents the final part of the Orienting 

zone (or EPO zone). This part is responsible for checking the cleanness of the products, 

revealing if some metallic residues contaminate them. 
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Figure 3.14 G_METAL_X conveyor of LEGX model. 
 

The last four conveyors, denoted as G_ACC4_X, G_ACC3_X, G_ACC2_X, and 

G_ACC1_X, represent the Accumulating zone. 

 

 

Figure 3.15 G_ACC4_X, G_ACC3_X, G_ACC2_X and G_ACC1_X conveyors of 
LEGX model. 

 

The speeds of the different elements of the leg are regulated by the processing time of the 

Flowpack that follows them, and are configured according to a specific function called 

“UpdateSpeed”, as discussed in the sub-section about the management of the input 

parameters. 

Apart from that, the methods characterizing the LEGX class are those implementing the 

rotation of the products in their passage through the Orienting zone; in particular, this is 

performed exploiting the “OnEntrance” method of the OR_1_X and OR_2_X components, 

as discussed here after. 
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3.3.1 “OR_1” AND “OR_2” METHODS 
The rotation of the products by 90° in their passage through the Orienting zone has been 

performed exploiting a graphical function called “objectangle”, that allows to rotate the 

position of the unit equipment of a certain angle about a given axis. 
The rotation has been performed gradually, as it happens in reality in order to avoid 

damaging the products. In this sense, the “OnEntrance” method of the OR_1_X conveyor 

performs a rotation of 30° of the product; then, the “OnEntrance” method of the OR_2_X 

conveyor performs a further rotation of 60°, thus obtaining a complete rotation of 90°. 

3.4 Class “FLOWPACKX”  
The FLOWPACKX class represents the object following the leg distribution, the one that 

is responsible for the machining of the product. According to its real structure, its 

implementation has been performed exploiting two different blocks. 

 

 

Figure 3.16 FLOWPACKX model in the whole distribution plant. 
 

The first block, denoted as FLOWPACK_X, belongs to the standard station component 

provided by the software, and it is the one responsible for the actual flow packing of the 

products. 
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Figure 3.17 FLOWPACK_X station of FLOWPACKX model. 
 

The second block, denoted as F_OUT_X (that stands for FLOWPACK_OUTPUT), 

represents the conveyor belt on which the final product flows after being flow packed, ready 

to be collected. 

 

 

Figure 3.18 F_OUT_X conveyor of LEGX model. 
 

The main attributes of the FLOWPACKX object to be configured are the processing time 

of the Flowpack and the speed of the F_OUT_X conveyor; again, these parameters are 

configured according to a specific function called “UpdateSpeed”, as discussed in the sub-

section about the management of the input parameters. 
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Apart from that, there are no other relevant methods characterizing the FLOWPACKX 

class. 

3.5 Class “PULLNOSEX”  
The PULLNOSEX class represents the object that has the capability of filling the gaps 

between the different products. According to its real structure, its implementation has been 
performed exploiting three different conveyor blocks. Anyway, since its real behavior is not 
representable via software, all the logic has been implemented through a method of the first 
conveyor block, while the other conveyors do not implement any kind of logic, and so they 
are not characterized by any methods. 

 

 

Figure 3.19 PULLNOSEX model in the whole distribution plant. 
 

The first conveyor, denoted as P_P1_X (that stands for PULLNOSE_PARTE1), 

represents the first belt of the Pullnose and it is characterized by the “OnExit” method. 
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Figure 3.20 P_P1_X conveyor of PULLNOSEX model. 
 

The second conveyor, denoted as P_T_X (that stands for PULLNOSE_TRASLATORE), 

represents the translator of the Pullnose and it is not characterized by any methods. 

 

 

Figure 3.21 P_T_X conveyor of PULLNOSEX model. 
 

The third conveyor, denoted as P_P2_X (that stands for PULLNOSE_PARTE2), 

represents the second belt of the Pullnose and it is not characterized by any methods. 
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Figure 3.22 P_P2_X conveyor of PULLNOSEX model. 
 

3.5.1 “P_P1” METHODS 
Since the real behavior implemented by the translator is not representable via software, a 

different solution has been adopted, exploiting the graphical functions provided by the 
platform. 

The whole behavior of the PULLNOSEX object has been implemented in the “OnExit” 

method of the P_P1_X conveyor. The logic is quite simple, and it exploits the functions 
“deleteobject” and “create”. In particular, performing a for-cycle on the total number of 
products, they can be deleted one by one while exiting from the P_P1_X conveyor and 
replaced by new products placed on the P_P2_X conveyor; in this way, exploiting the 
graphical power of the “create” function, the new products can be placed at specific positions 

on the P_P2_X conveyor, reproducing the filling of the gaps by which the deleted products 
were affected while travelling on the P_P1 conveyor. 

3.6 Class “INTERASSEBLX” 
The INTERASSEBLX class stands for INTERASSE_BUFFER_IN_LINEA and it 

represents an object that follows the Gondola buffer in the second Plant of interest. 
According to its real structure, the INTERASSEBLX object is composed by two floors, 

each of them characterized by a number of different conveyors. 
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Figure 3.23 INTERASSEBLX model in the whole distribution plant. 
 
The upper floor is composed by one single powered conveyor, called INT_SUP_X. 
 

 

Figure 3.24 INT_SUP_X conveyor of INTERASSEBLX model. 
 

The lower floor is represented as the composition of five different powered conveyors, 
INT_IN_INF_X, INT_CURVA_SX_INF_X, INT_X, INT_CURVA_DX_INF_X and 
INT_OUT_INF_X. 
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Figure 3.25 INT_IN_INF_X, INT_CURVA_SX_INF_X, INT_X, 
INT_CURVA_DX_INF_X and INT_OUT_INF_X conveyors of PULLNOSEX 

model. 
 

The INTERASSEBLX object has been created just to reproduce the real structure of the 
second distribution plant. In this perspective, it is not characterized by any method and 
software logic; according to this, the products flow on the different components of the 
INTERASSEBLX, following the path at the constant nominal speed of 0.4 m/s. 

3.7 Class “BUFFERGX” 
The BUFFERGX class represents the gondola buffer composing the ridge distribution of 

the second distribution plant. According to its real structure, its implementation has been 
performed exploiting five different powered conveyor blocks, one buffer block and one drain 
block. 
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Figure 3.26 BUFFERGX model in the whole distribution plant. 
 

The first block, denoted as D_BUFFER (that stands for DORSALE_BUFFER), 

represents the conveyor belt on which the product flows before being stored into the actual 

buffer or, unfortunately, before being discarded. Notice that this component is followed by 

two successors: one is the actual buffer component, the other one is a drain component. 

This block is characterized by the “OnExit” method.  

 



 57 

 

Figure 3.27 D_BUFFER conveyor of BUFFERGX model. 
 

The second block, denoted as BUFFER, belongs to the standard buffer component 

provided by the software, and it is the one responsible for storing the products and for their 

distribution. 

This block is characterized by the “OnExit” method. 
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Figure 3.28 BUFFER buffer of BUFFERGX model. 
 

The third and fourth blocks, denoted as ESTRA_SUP and ESTRA_INF (that stand for 

ESTRATTORE_SUPERIORE and ESTRATTORE_INFERIORE), represent the two 

conveyor belts on which the products flow after being stored. 

Both these blocks are characterized by the “OnExit” method. 
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Figure 3.29 ESTRA_SUP and ESTRA_INF conveyors of BUFFERGX model. 
 

The last two conveyors, denoted as CONVEYOR_SUP and CONVEYOR_INF, 

represent the two conveyor belts that follow the ESTRA_SUP and ESTRA_INF 

components. They are not characterized by any methods, so the products flow on them at a 

constant nominal speed. 
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Figure 3.30 CONVEYOR_SUP and CONVEYOR_INF conveyors of BUFFERGX 
model. 

3.7.1 “D_BUFFER” METHODS 
The D_BUFFER conveyor is equipped with the “OnExit” method. This method 

implements the logic through which the products flowing on this conveyor are moved into 
the actual buffer or discarded flowing into the drain. To do that, a global Boolean variable 
“scarto” has been defined and initialized to false; it becomes true when the buffer is full and 
hence it cannot store any products more. Moreover, two additional user-defined attributes of 
the successive BUFFER component have been exploited; the “nummu” attribute represents 
the actual number of objects present inside the buffer, the “capacity” attribute represents the 

maximum number of objects that the buffer is able to store. The value of “scarto” is set 

through an “if-then-else” logic, according to the following pseudocode: 
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var scarto : boolean 

if buffer.nummu > 0.99 * buffer.capacity 

   scarto := true 

elseif buffer.nummu < 0.99 * buffer.capacity 

  scarto := false 

end 

 

if scarto = false 

?.mu.move(?.succ(1)) 

else 

?.mu.move(?.succ(2)) 

end 

3.7.2 “BUFFER” METHODS 
The BUFFER component is equipped with the “OnExit” method. This method 

implements a controlling function on the operational speed of the Flowpack machines; the 
logic is based on an “if-elseif” structure, according to the following pseudocode: 

 

if ?.nummu > ?.capacity*0.5 

root.controls.velocità_flowpack := V_max 

elseif ?.nummu < ?.capacity*0.1 

root.controls.velocità_flowpack := V_nom 

end 

 
Notice that the user-defined attribute “velocità_flowpack” of the object FLOWPACK 

represents the speed in products/min at which the Flowpack works. 
Notice that the real mechanism through which the products are alternately moved to the 

upper and the lower successive conveyors comes for free; indeed, the standard logic of the 
command “move”, in case of two successors, moves the pieces alternating between the two 
destinations. 
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3.7.3 “ESTRA_SUP” AND “ESTRA_INF” METHODS 
The methods characterizing the ESTRA_SUP and ESTRA_INF conveyors are specular, 

in the sense that they are based on the same logic and they perform basically the same 
actions. 

These “OnExit” methods are very similar to the one implemented by the NI_X conveyor 

of the PIVOTSX object; indeed, also in this case, the unloading of the products is performed 
in a purely graphical way. According to this graphical approach, first the rank that is going 
to exit the ESTRA_SUP and ESTRA_INF conveyors is deleted through the function 
“deleteobject”; then, according to a double for-cycle performed on “RM_NumeroRanghi” 

and “PR_NumeroProdotti” variables, the previously deleted products are placed on the 

successive conveyors through the command “create”. 

3.8 Class “BUFFERVX” 
The BUFFERVX class represents the fan buffer composing the final part of the ridge of 

the first distribution plant. In this case, two different solutions have been adopted. The first 
one tries to represent the real structure of the object; then, because of a lack of time, this 
solution is still incomplete in the recycling behavior and so it can’t be used in the 

implementation of the whole distribution plant. For this reason, a second solution has been 
implemented; this solution is simplified, in the sense that it focuses on the functionality of 
the buffer without taking care of the real structure of the object. 

In the following, the first solution will be briefly sketched, while the second one will be 
fully illustrated and discussed. 

• FIRST SOLUTION  

Figure 3.31 BUFFERVX model in the whole distribution plant. 
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The first solution aimed at representing the fan buffer according to its real structure; to 
do that, its implementation has been performed exploiting a number of powered conveyor 
blocks. In particular, the buffer is composed by a first conveyor followed by a number of 
different conveyors representing the floors of the fan buffer; the number of the floors is 
parametrizable by the user, in the figure 3.32 it is assumed equal to four. 

The first conveyor represents the final segment of the ridge distribution preceding the 
different floors. For what concerns the nominal direction, this conveyor has the capability of 
pivoting in order to unload the products on the different floors; for what concerns the 
backwards direction, it must be able to perform the recycling according to a certain logic. 
To do these operations, the conveyor must be equipped with two sensors, besides the 
“OnEntrance”, “OnExit” and “OnBackwardExit” methods. 

Also the floors are represented by powered conveyors, equipped with a sensor, besides 
the “OnEntrance” and “OnBackwardExit” methods. The main functionality that the floors 

have to implement are the step pace for the nominal direction and the recycling for the 
backwards direction. 

As previously announced, due to a malfunctioning in the recycling behavior of the object, 
the company decided to temporarily abandon this implementation, focusing on a simpler 
object able to guarantee the simulation of the whole distribution plant and so providing some 
useful results in terms of performance analysis. In the following, this simplified 
implementation will be presented and discussed.  

 

 

Figure 3.32 First solution of BUFFERVX model. 
 
 
 
 

• SECOND SOLUTION  
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The second solution focuses on the functionalities of the fan buffer, without taking care 
of its real structure. In this perspective, its implementation has been performed exploiting 
two powered conveyor blocks, one buffer block and one drain block. 

The first block, denoted as BUFFER, belongs to the standard buffer component provided 

by the software and it is the one responsible for storing the products and for their distribution. 

This block is characterized by the “OnObserver” method. 

 

 

Figure 3.33 BUFFER buffer of BUFFERVX model. 
 

The first conveyor, denoted as USCITABUFFER_X, represents the path that the product 

follows when it is going to be recycled. 

This block is characterized by the “OnExit” method. 
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Figure 3.34 USCITABUFFER_X conveyor of BUFFERVX model. 
 

The second conveyor, denoted as USCITASCARTO_X, represents the path that the 

product follows when it is going to be discarded. 

This block is not characterized by any methods, so the products flow on it at the nominal 

speed towards the drain. 

   Figure 3.35 USCITASCARTO_X conveyor of BUFFERVX model. 
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3.8.1 “BUFFER” METHODS 
The BUFFER component is equipped with an “OnObserver” method. This method is 

called whenever the value of the attribute “nummu” of BUFFER changes and it performs 
the moving of the products according to a simple if-elseif logic. 

In particular, if “nummu” is greater than or equal to the capacity of the buffer, then the 
Boolean attribute “entrancelocked” of USCITASCARTO_X is set to true; in this way, until 

it is not full, the buffer has only the possibility of moving the pieces to USCITABUFFER, 
performing the recycle. Then, elseif “nummu” is greater than the capacity of the buffer, the 
Boolean attribute “entrancelocked” of USCITASCARTO_X is set to false, the attribute 

“Speed” of USCITASCARTO_X is set to the nominal speed and the product is moved to 
that conveyor through the command “move”, ready to be discarded towards the drain.  

3.8.2  “USCITABUFFER_X” METHODS 
The USICTABUFFER_X component is equipped with the “OnExit” method and it 

implements the recycle mechanism moving the product on the PIVOTDX. To do that, it 
waits until the number of products, represented by the attribute “nummu” of the conveyor 
D_CR of the PIVOTDX object, is less than or equal to 3 and then it moves the product on it 
through the command “insert”. The value 3 represents the maximum capacity that allows the 
DDD conveyor of PIVOTDX to have the space for receiving the product according to its 
length and its speed. 
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Chapter 4 - Input and output 

management 
In both the considered plants, a frame called “controls” is inserted as instance. This frame 

is built in the class library, in the same modality it has been adopted for all the other objects. 
This frame contains all the methods and the tables and variables that are used for the input 

and output data management. In particular, in figure 4.1 the instance of this frame and its 
content are shown, where the instance of the frame is indicated by a red arrow: 

 
 
 

 
Figure 4.1 Instance of the frame "controls" 
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4.1 Input management 
First of all, it can be seen that in the principal frame, which is called root frame, there is 

a display showing the so called “TEMPO TRASCORSO”, which is a display that keeps track 

of the simulation time and six buttons located on the upper right corner. These buttons can 
switch to red or green depending on the opening or closure of the charts related to each single 
and double pivot. In particular, the green colour means that the chart is able to receive 
products and deliver them to the following leg; the red colour means that the chart cannot 
receive any product and so the flowpack of that portion of the line, depending on that chart, 
cannot wrap any product. 

4.1.1 FRAME CONTROLS CONTENT 
In this frame many methods, tables, charts and variables are contained that are used for 

every plant distribution considered. The way to make it functioning is to create an instance 
of this frame in the considered root frame and then introduce any desired modification to the 
tables and variables contained in it. By taking into account only the elements belonging to 
this frame and related to the inputs, the following classification can be performed: 

 

Figure 4.2 Content of the frame controls 
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• The table PAR_GEN. 
• The table DataTable. 
• The method “Update speeds”. 
• The variables Tempo_smodellaggio_ore, Tempo_sim_ore and Produzione_minuto. 

The table PAR_GEN contains only the information related to the products, i.e, how many 
products compose a rank, how many ranks compose a mould, the products length, width and 
height and so on. 

 
 
 
 

 
Table 4.1, as all the others built in the software, contains 64 variables of interest, but only 

some of them have been initialized and used. All the others labelled with the name 
“RISERVA_NUM” can be initialized in the future for further developments. 

Table 4.1 Table PAR_GEN content 
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The link to this table is inserted in the source of each considered root frame; in this way, 
the products coming out from the source itself has all the attributes defined in the PAR_GEN 
table as user defined attribute. 

Furthermore, another display is located immediately below the source, which is identified 
as “PRODOTTI SMODELLATI” and it indicates the number of products which are emitted 

by the source in real time. 
The data defined in the table PAR_GEN are then recalled in the “reset” method, in order 

to automatically assign certain dimensions to the mobile units coming from the source when 
the simulation starts, taking into account the gaps, the number of products per rank and the 
number of ranks per mould. This is done by considering the following formulas and 
variables: 

Figure 4.3 Path to PAR_GEN in the 
source 
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𝑀𝑜𝑏𝑖𝑙𝑒𝑈𝑛𝑖𝑡𝑊𝑖𝑑𝑡ℎ = 𝑃𝑅 ∗ 𝑊 + (𝑃𝑅 − 1) ∗ 𝑃       (4.1) 
𝑀𝑜𝑏𝑖𝑙𝑒𝑈𝑛𝑖𝑡𝐿𝑒𝑛𝑔𝑡ℎ = 𝑅𝑀 ∗ 𝐿 + (𝑅𝑀 − 1) ∗ 𝑅      (4.2) 

Where: 

• PR: products per row; 
• RM: rows per mould; 
• P: distance between products in a row; 
• R: distance between rows; 
• W: product width; 
• L: products length. 

In table 4.2 it is shown how the data inserted in the PAR_GEN table automatically 
determine a change in the mobile unit coming out from the source: 

Figure 4.4 Variables of interest 
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Table 4.2 Mobile unit as a rank 

Figure 4.5 Rank exiting from the source 
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Table 4.3 Mobile unit as a mould 

Figure 4.6 Mould exiting from the source 
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In the table DataTable all the instances of the objects inserted in the root frame are 
automatically written time by time. By considering the frame with the simple buffer in it, 
the DataTable is constructed as in table 4.4. 
 

This table is automatically built by means of the method called “Compila tabella”, which 

allows to create exactly the format of the table shown in Table 4.4: in particular, it writes in 
the first column the name of the instance present in the root frame; in the second column, 
the object itself is written, characterized by its path; finally, in the third column, a nested list 
of the attributes associated to the instance is created. This nested list can be shown by double 
clicking on the name “Lista Attributi”, which opens a new window in which all the attributes 
given to the single class of the considered object appear. 

These attributes are the ones defined in the table “attributi” present in each class of 

objects, so they are user-defined. An example related to the PIVOTS is showed in table 4.5. 
 

Table 4.4 DataTable content 
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Once the table DataTable has been compiled, thanks to its structure, it is possible to define 
new attributes with a certain value assigned to them, which are only defined for a specific 
instance of the class. In this way, the original class is not affected by the apported 
modification, as well as all the other instances of the same class of objects. 

Table 4.5 Part of the attributes of the instance PIVOTS1 

Figure 4.7 Table "attributi" present in the class PIVOTSX 
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This is done in order to have the possibility to differentiate the various instances of the 
same object class inserted in the frame, in order to be able to assign them different 
characteristics, by enriching in this way the table “attributi” belonging to the instance subject 

to the apported modifications performed by the DataTable modification. 
These modifications are introduced by means of the “ADTIO” method, which is run every 

time the table DataTable is closed after the modifications have been apported, as it can be 
seen by the linking between the name of the method and the location in which it is recalled 
in Figure 4.8. 

 

The “Update speeds” is a method that has the specific task to call every other existing 
method called “Update speed” existing in the different objects inserted in the frame, in order 

to have the update of the speeds of the various elements of the frame that need a change in 
their speed, such as the legs and the flowpacks. Along with this method, the variable 
“Velocità_flowpack” is defined, which is related to the speed of the flowpack and it is used 
in the methods that are present in the flowpack object in order to suitably assign a velocity 
to the flowpack itself. 

The variables Tempo_smodellaggio_ore, Tempo_sim_ore and Produzione_minuto 
are related to the time to stop the source in the products emission (expressed in hours), the 
time to stop the simulation (expressed in hours) and the pieces (intended as mobile units) 
emitted minute by minute by the source, respectiely. In particular, the variables 
Tempo_smodellaggio_ore and Tempo_sim_ore have been created in order to let the 
simulation stop after that the source has stopped producing mobile units, allowing the plant 

Figure 4.8 Linking between the closing event of DataTable and the method 
ADTIO 
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to absorb all the remaining pieces laying on the line, while the variable Produzione_minuto 
is used in order to correctly feed all the legs and flowpacks. 

4.1.2 INSIGHT IN THE OBJECTS CLASSES: RESET METHOD 
All the classes of the different objects have been provided with a predefined set of 

methods and tables and enriched with other methods specifically designed for the considered 
object. 

Every class has the methods Reset and Init and, obviously, the table attributi. 
By taking into consideration the frame of the double pivot PIVOTDX, the resulting 

structure is the one recalled in figure 4.9. 
 

In the Reset method of each object the following operations are performed: 

• Dimensioning of the different conveyors by pointing to the right cells of the table 
attributi: in particular, the belts considered in the pivots, both PIVOTSX  and PIVOTDX 
are made up of three different segments for each belt. In the reset code only the central 
segment is modified by taking into account the length value indicated in the table attributi 
and then also the width is correctly pointed in the specific cell of the same table. In this 
way, the conveyors are automatically dimensioned only by putting values in the table 
DataTable in the frame Controls and, when the closing of this table happens, the value 
automatically appears in the table attribute of the considered instance and with the reset 
method assume the dimensions indicated in the table are automatically assigned to the 
conveyor. In figure 4.10, this modification apported to the firs PIVOTS are shown in 
sequence. 

Figure 4.9 Structure of the frame PIVOTDX 
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• Definition of the origin position: when the conveyors change dimensions, all the 
following conveyors belonging to the same object must be suitably shifted forward or 
backward in order to keep the right distances among the different elements that compose 
the global object. In order to reach this goal, a code that regulates the starting point of 
each conveyor is implemented. The resulting effect is visible in figure 4.11, where even 
if the length of one belt diminishes, the following conveyors are suitably moved by 
keeping all the elements compact. 

Figure 4.10 Plant with PIVOTS1 first belt dimensions not modified (value of length in the 
table: 4200 mm) 

Figure 4.11 PIVOTS1 first belt length after modification in DataTable (new length: 200 mm) 
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• Definition of the left or right exit: the last portion of the reset is dedicated to a suitable 
turning of the different elements of the plant, if the moving direction of the product is on 
the right side or on the left side. Figures 4.12 and 4.13 represent such a situation. 

 

 

 
 

Figure 4.12 Test distribution with exit on the left 

Figure 4.13 Test distribution with exit on the right 
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For what concerns the PIVOTSX and the PIVOTDX, the reset method also contains a 
section in which the initial position of the forward and backward pivots is initialized as high, 
in order to let any simulation start with the pivots ready to make the movement down to 
deliver the first product to the chart. 

4.1.3 INSIGHT IN THE OBJECTS CLASSES: INIT METHOD 
The init method has, generally, the following goals: 

• Initializing the product dimensions flowing on the considered set of conveyors; 
• Initializing the relevant variables of the considered object, by pointing into the specific 

cells of the usual table “attributi”; 
• Updating the speed of the belts belonging to the considered object, in such a way that 

the various components of the plant are suitably fed and the wrapper can exploit its task 
in the best way possible. 

Along with the classification just mentioned, it is possible to group the different objects 
according to the functions fulfilled by their init method. In depth: 

• Both the PIVOTS and the PIVOTD identify the class of the predecessor of the belt 
belonging to the ridge: if this conveyor belongs to the class PIVOTS, then the variable 
called “connected_station” is exactly the inclined belt belonging to the chart of the single 
pivot. This method is performed in order to suitably carry out the recycling action when 
needed. 

• In the models LEGX, INTERASSEBL, FLOWPACKX and PULLNOSE the method 
UpdateSpeed is called. In this method a suitable velocity to the different belts is assigned; 
in particular, for what concerns the legs, the following equations are considered to 
transfer the correct velocities to every element composing the whole leg: 

𝑇𝑇3𝑠𝑝𝑒𝑒𝑑 =
𝑓𝑙𝑜𝑤𝑝𝑎𝑐𝑘 𝑠𝑝𝑒𝑒𝑑[

𝑝𝑧
𝑚𝑖𝑛] ∗ 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑙𝑒𝑛𝑔𝑡ℎ

60
∗ 𝑘𝑇𝑇3         (4.3) 

 
𝑇𝑇𝑝𝑟𝑒𝑐𝑠𝑝𝑒𝑒𝑑 = 𝑇𝑇𝑠𝑢𝑐𝑐𝑠𝑝𝑒𝑒𝑑 ∗ 𝑘𝑇𝑇𝑝𝑟𝑒𝑐                                                      (4.4) 

 
𝑂𝑅1𝑠𝑝𝑒𝑒𝑑 = 𝑇𝑇3𝑠𝑝𝑒𝑒𝑑 ∗ 𝑘𝑂𝑅1                                                                        (4.5) 

 
𝑂𝑅𝑠𝑢𝑐𝑐𝑠𝑝𝑒𝑒𝑑 = 𝑂𝑅𝑝𝑟𝑒𝑐𝑠𝑝𝑒𝑒𝑑 ∗ 𝑘𝑂𝑅𝑠𝑢𝑐𝑐                                                      (4.6) 

 

𝐴𝐶𝐶1𝑠𝑝𝑒𝑒𝑑 =
𝑓𝑙𝑜𝑤𝑝𝑎𝑐𝑘 𝑠𝑝𝑒𝑒𝑑[

𝑝𝑧
𝑚𝑖𝑛

] ∗ 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑙𝑒𝑛𝑔𝑡ℎ

60
∗ 𝑘𝐴𝐶𝐶1        (4.7) 
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Where: 

• 𝑇𝑇3𝑠𝑝𝑒𝑒𝑑 is the speed of TT3 conveyor; 
• 𝑘𝑇𝑇3 is the corrective factor related to TT3 conveyor; 
• 𝑇𝑇𝑝𝑟𝑒𝑐𝑠𝑝𝑒𝑒𝑑 is the speed of the conveyor preceding TT3 conveyor; 
• 𝑘𝑇𝑇𝑝𝑟𝑒𝑐 is the corrective factor related to the conveyor preceding TT3 conveyor; 
• 𝑇𝑇𝑠𝑢𝑐𝑐𝑠𝑝𝑒𝑒𝑑 is the speed of the conveyor succeeding TT3 conveyor; 
• 𝑂𝑅1𝑠𝑝𝑒𝑒𝑑 is the speed of OR1 conveyor; 
• 𝑘𝑂𝑅1 is the corrective factor related to OR1 conveyor; 
• 𝑂𝑅𝑠𝑢𝑐𝑐𝑠𝑝𝑒𝑒𝑑 is the speed of the conveyor succeeding OR1 conveyor; 
• 𝑘𝑂𝑅𝑠𝑢𝑐𝑐 is the corrective factor related to the conveyor succeeding OR1 conveyor; 
• 𝑂𝑅𝑝𝑟𝑒𝑐𝑠𝑝𝑒𝑒𝑑 is the speed of the conveyor preceding OR1 conveyor; 
• 𝐴𝐶𝐶1𝑠𝑝𝑒𝑒𝑑 is the speed of ACC1 conveyor; 
• 𝑘𝐴𝐶𝐶1 is the corrective factor related to ACC1 conveyor. 

By considering the ACC1 as the closest to the flowpack and the ACC4 as the closest to 
the EPO zone, the following formulas can be derived: 

 
𝐴𝐶𝐶𝑝𝑟𝑒𝑐𝑠𝑝𝑒𝑒𝑑 = 𝐴𝐶𝐶𝑠𝑢𝑐𝑐𝑠𝑝𝑒𝑒𝑑 ∗ 𝑘𝐴𝐶𝐶𝑝𝑟𝑒𝑐                                     (4.8) 

𝑀𝐸𝑇𝐴𝐿𝑠𝑝𝑒𝑒𝑑 = 𝐴𝐶𝐶4𝑠𝑝𝑒𝑒𝑑 ∗ 𝑘𝑚𝑒𝑡𝑎𝑙                                                   (4.9)  
Where: 

• 𝐴𝐶𝐶𝑝𝑟𝑒𝑐𝑠𝑝𝑒𝑒𝑑 is the speed of the conveyor preceding ACC1 conveyor; 
• 𝐴𝐶𝐶𝑠𝑢𝑐𝑐𝑠𝑝𝑒𝑒𝑑 is the speed of the conveyor succeeding ACC1 conveyor; 
• 𝑘𝐴𝐶𝐶𝑝𝑟𝑒𝑐 is the corrective factor related to the conveyor preceding ACC1 conveyor; 
• 𝑀𝐸𝑇𝐴𝐿𝑠𝑝𝑒𝑒𝑑 is the speed of conveyor METAL; 
• 𝐴𝐶𝐶4𝑠𝑝𝑒𝑒𝑑 is the speed of conveyor ACC4; 
• 𝑘𝑚𝑒𝑡𝑎𝑙 is the corrective factor of conveyor METAL. 

Besides this speed assignment, also the initialization of the product dimensions is 
performed in the leg models, by assigning the correct values in the specific cells of the table 
“attributi”. 

The same reasonings are performed for what concerns the objects INTERASSEBL, 
through the following formulas: 

𝑆𝑢𝑝𝑒𝑟𝑖𝑜𝑟𝐵𝑒𝑙𝑡𝑠𝑝𝑒𝑒𝑑 =
𝑓𝑙𝑜𝑤𝑝𝑎𝑐𝑘 𝑠𝑝𝑒𝑒𝑑[

𝑝𝑧
𝑚𝑖𝑛] ∗ 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑤𝑖𝑑𝑡ℎ

60
∗ 𝑘𝑠𝑢𝑝          (4.10) 

𝐿𝑎𝑠𝑡𝐼𝑛𝑓𝑒𝑟𝑖𝑜𝑟𝐵𝑒𝑙𝑡𝑠𝑝𝑒𝑒𝑑 =
𝑓𝑙𝑜𝑤𝑝𝑎𝑐𝑘 𝑠𝑝𝑒𝑒𝑑[

𝑝𝑧
𝑚𝑖𝑛] ∗ 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑤𝑖𝑑𝑡ℎ

60
∗ 𝑘𝑖𝑛𝑓   (4.11) 
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𝐵𝑒𝑙𝑡𝑝𝑟𝑒𝑐𝑠𝑝𝑒𝑒𝑑 = 𝐵𝑒𝑙𝑡𝑠𝑢𝑐𝑐𝑠𝑝𝑒𝑒𝑑 ∗ 𝑘𝑏𝑒𝑙𝑡𝑝𝑟𝑒𝑐                                                              (4.12) 
 
Where: 

• 𝑆𝑢𝑝𝑒𝑟𝑖𝑜𝑟𝐵𝑒𝑙𝑡𝑠𝑝𝑒𝑒𝑑 is the speed of the superior conveyor; 
• 𝑘𝑠𝑢𝑝 is the corrective factor related to the superior conveyor; 
• 𝐿𝑎𝑠𝑡𝐼𝑛𝑓𝑒𝑟𝑖𝑜𝑟𝐵𝑒𝑙𝑡𝑠𝑝𝑒𝑒𝑑 is the speed of the last inferior conveyor; 
• 𝑘𝑖𝑛𝑓 is the corrective factor related to the last inferior conveyor; 
• 𝐵𝑒𝑙𝑡𝑝𝑟𝑒𝑐𝑠𝑝𝑒𝑒𝑑 is the speed of the preceding conveyor; 
• 𝐵𝑒𝑙𝑡𝑠𝑢𝑐𝑐𝑠𝑝𝑒𝑒𝑑 is the speed of the succeeding conveyor; 
• 𝑘𝑏𝑒𝑙𝑡𝑝𝑟𝑒𝑐 is the corrective factor related to the preceding conveyor. 

Finally, both in the FLOWPACKX and in the PULLNOSE, a simple assignment of the 
values to the speeds of the belts is performed by pointing into the right cells of the table 
“attributi”. In addition, for what concerns the FLOWPACKX, the processing time of the 
wrapper and the speed of the conveyor located at the exit of the machine itself is given in 
the following way: 

 

𝑃𝑟𝑜𝑐𝑇𝑖𝑚𝑒 =
60

𝑓𝑙𝑜𝑤𝑝𝑎𝑐𝑘 𝑠𝑝𝑒𝑒𝑑[
𝑝𝑧

𝑚𝑖𝑛]
                                                                        (4.13) 

 

𝐸𝑥𝑖𝑡𝐵𝑒𝑙𝑡 =
 𝑓𝑙𝑜𝑤𝑝𝑎𝑐𝑘 𝑠𝑝𝑒𝑒𝑑 [

𝑝𝑧
𝑚𝑖𝑛

] ∗ 𝐿𝑒𝑛𝑔𝑡ℎ𝐹𝑙𝑜𝑤𝑝𝑎𝑐𝑘 ∗ 𝑘𝑒𝑥𝑖𝑡𝑏𝑒𝑙𝑡

60
               (4.14) 

 
Where: 

• 𝑃𝑟𝑜𝑐𝑇𝑖𝑚𝑒 is the time of processing of the flowpack; 
• 𝐸𝑥𝑖𝑡𝐵𝑒𝑙𝑡 is the speed of the exit conveyor; 
• 𝐿𝑒𝑛𝑔𝑡ℎ𝐹𝑙𝑜𝑤𝑝𝑎𝑐𝑘 is the length of the exit conveyor; 
• 𝑘𝑒𝑥𝑖𝑡𝑏𝑒𝑙𝑡 is the corrective factor related to the exit conveyor.  

 
In the end, in the models related to the various buffers, a simple initialization of the relevant 

variables used is performed. 
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4.2 Output management 
A test distribution made up of two PIVOTS, one PIVOTD, three legs and flowpacks and 

a simple buffer, all with exit on the left, is considered: 
 

By looking at the frame represented in figure 4.14, it can be noticed that there are some 
displays along with the instances of the flowpacks and with the instances of the simple fan 
buffer, called BUFFERVSEMPLICE. 

By starting to consider the flowpack, the display shows a value called PRODOTTI 
INCARTATI, that indicates the number of wrapped products. This value is obtained by 

Figure 4.14 Test distribution 

Figure 4.15  Display along with the 
flowpack 
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pointing to the drain attribute “statnumin”, which stands for the number of simple parts of 

product that flow into the drain itself and so that have been wrapped by the flowpack. 
 
For what concerns the simple fan buffer BUFFERVSEMPLICE, the displays show three 

different quantities: 

• PRODOTTI IN SCARTO: the number of products discarded, so the ones that flow into 
the drain when the maximum capacity of the buffer is reached and the recycling cannot 
be performed; 

• RANGHI_POLMONATURA: the number of ranks contained in the buffer; 
• PRODOTTI_POLMONATURA: the number of products contained in the buffer, 

obtained by multiplying the number of ranks by the number of products for each rank. 

In this regard, the reset methods of all the considered buffers are enriched with the 
definition of the variable “prod_rango”, that points to the cell of the table PAR_GEN in 

controls frame, in which PR (number of products per rank) is defined. 

4.2.1 CONTROLS FRAME: OUTPUT PORTION 
By coming back into the frame “controls”, it is possible to identify some methods and 

tables related to the output management. Its internal structure is now recalled in figure 4.17. 

Figure 4.16 Displays in the 
BUFFERVSEMPLICE 

Figure 4.17 Content frame controls 
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As shown in figure 4.17, charts, tables and methods are present; they are related to the 

output management: 
 

• The Init method contains instructions about the filling of a chart related to a specific 
variable of interest. In this case, the variable of interest taken into consideration is 
called “prod_pezziora”, it is defined in the method denominated “stat” and launched in 

the init method if every object is inserted in the frame, so composing the considered 
plant. This variable is defined as: 

𝑝𝑟𝑜𝑑𝑝𝑒𝑧𝑧𝑖𝑜𝑟𝑎 =
𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑛𝑔 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠

𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒
∗ 3600                                               (4.15) 

 
Where: 

• 𝑝𝑟𝑜𝑑𝑝𝑒𝑧𝑧𝑖𝑜𝑟𝑎 is the number of products produced per hour; 

This variable is significant since it indicates the number of products flowing in some 
specific points of interest in order to identify the number of wrapped or emitted products in 
one hour. In fact, this variable points to different attributes according to the object 
considered: for what concerns the flowpacks, the variable “prod_pezziora” points to the 

number of products entered in the drain, in order to have a precise knowledge of the wrapped 
products, to make then a comparison with respect to the ones emitted by the source, and 
understand if everything worked as expected. In the case of the buffers, this variable points 
to the products entered in the buffer and finally, for what regards the single and double pivots 
and the legs, the variable considers the products flowing on a belt arbitrarily chosen, just to 
know how many products are flowing on the belts of the considered object. 

 

Figure 4.18 Input channels structure in chart 
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Figure 4.18 shows the structure of the tab input channels related to the object “chart” 

inserted in the frame “controls”. It can be noticed that the init method recognizes to which 

class every object (called node) inserted in the root frame belongs and then its path is written 
next to its name in the root frame. In this way, the object chart is able to plot the time history 
of the variable of interest. 

Moreover, the object chart is inserted in every object frame, always with the aim of 
plotting the time history of the variable “prod_pezziora”, and while in the frame controls the 
init method is the main actor that plays the role of automatically filling the input channels 
table located in the chart, in the objects frame the variable is manually written, resulting in 
the layout reported in figure 4.19: 

 

 
Therefore, the main difference between the object chart located in the frame controls and 

the ones placed in each object is that the first allows to make a comparison among the values 
assumed by the variable in each object of the root frame, while the objects chart located in 
each object only shows the variable of interest of the object itself, not allowing any 
comparison with the values of the same variable in all the other instances of different objects. 

• The method EndSim is useful in order to create another interesting plot, denominated 
“Chart_stat”. In fact, this method allows to automatically fill the content of the table 

“Statistiche”, by compiling it as shown in table 4.6: 

 

Figure 4.19 Input channels related to a PIVOTS instance 
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In this table the names of the elements belonging to the classes of FLOWPACKX, 
BUFFERVSEMPLICE, SOURCE and BUFFERGX are inserted in the first column, while 
the values of the products wrapped and flowing by them is reported in the second one. This 
table is given as input in the chart called “Chart_stat”, giving as output a histogram showing 
the total number of products wrapped and transited among the different objects located in 
the root frame. Figure 4.2 shows the way in which the table Statistiche feeds the specific tab 
of “Chart_stat” (highlighted in blue): 

Table 4.6 Table Statistiche content 

Figure 4.20 Table Statistiche as input of Chart_stat 
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4.3 Failures management 
The output data and statistics cannot be considered reliable if no failures in the machines 

are taken into account. In particular, the failures are considered in the flowpacks activities, 
therefore in the wrapping machines and also in the buffers, by taking into consideration how 
many products are discarded if the flowpacks are not working as expected or if the plant is 
oversized.  

In these regards, both the frames of the objects FLOWPACKX, BUFFERVSEMPLICE 
(and also BUFFERGX) are deeply anlaysed. 

4.3.1 INSIGHT IN THE FLOWPACKX 
The FLOWPACKX frame results to be rich of methods, charts and tables, as shown in 

figure 4.21; thay are going to be analysed one by one in order to clarify their utility. 
 

It must be noticed that in the frame are still present some methods and tables that have 
been used in the past as temporary solution, but now are discarded since further 
improvements have been introduced. For these reasons, the methods “onfailurechange”, 

“FillDescriptions” and the table “FAILURES” will not be illustrated in the upcoming 
section. 

• In the method “prog_Failures”, the table denoted as “flowpack_failures” belonging to 

the frame “controls” is called. This table contains the definition of five different failures 
belonging to the flowpacks and the definition of the MTBF (mean time before failure), 
which is the time passed before a failure occurs (expressed in hours) and the MTTR 

Figure 4.21 FLOWPACKX frame structure 
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(mean time to repair), which is the time needed to repair the failure. Moreover, another 
column related to the activation or not of the considered failure is present. In figure 4.7 
the just described structure is shown: 

The range of values that can be assigned as MTBF goes from 1h to 24h, while the range 
of values for the MTTR goes from 1min to 60min; these numbers can be selected by means 
of a drop-down menu. 

Then, all these failures are inserted as possible options in the tab present in the flowpack 
object related to the failures, resulting in the structure shown in figure 4.22: 

 

 

Table 4.7 Flowpack_failures content 

Figure 4.22 Tab failures in the flowpack 
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The method “prog_Failures” fulfils the following task: it checks in the table 
“flowpack_failures” if the failure considered is active or not; then it activates or not the 
corresponding failure in the tab failures belonging to the considered flowpack and sets the 
corresponding MTBF as interval and MTTR as duration times expressed in seconds. All 
these failures set in the method “prog_Failures” and consequently in the tab failures of the 
flowpacks are stochastic failures, modelled by means of a negative exponential distribution, 
which is specified in the method. 

• Once these failures have been suitably programmed and assigned to the different 
machines, the method “getstatistics” is used in order to have a precise knowledge of the 
percentage of usage of the different wrappers. With this code, in fact, the table 
“statestatistics” is filled with the percentage of working condition, fail and waiting 
condition is reported table 4.8: 

 

 

Table 4.8 Table "statestatistics" 
content 
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Then, this table is given as input to a chart called “Machine_stat”, in which a graph related 

to the percentages of usage, failure and waiting is built. Figure 4.23 shows the tab of the 
chart “Machine_stat” in which the table “statestatistics” is fed in input. 

 

 

• Finally, three different methods are created in order to deal with deterministic failures, 
i.e, failures that occur at precise instants, for a precise duration. The three methods are: 
“evento_cambioink”, “evento_pulizia” and “evento_cambiofilm”. The first one is 
related to the change of the ink cartridge to write on the shell; the second one is related 
to the cleaning of the belts and the last one is related to the change of the paper web that 
wraps the products. 
The method “evento_cambioink” is based on the usage of the variable 

“pezzi_target_inchiostro”. In particular, this variable is incremented every time a product 
enters the drain, in order to keep track of the products wrapped; the method points to 
specific data in the table “attribute” where a certain number of pieces after which the 
change of the ink cartridge must be performed is defined, along with a time indicating 
the duration of this procedure. So when the value of the variable 
“pezzi_target_inchiostro” is equal to the value inserted in the table, the machine stops 

for the duration of the change operation and when it restarts, the variable is reset to 0. 
The second method “evento_pulizia”, instead, works by performing a cleaning operation 

at every interval established as a variable in the table “attributi” and for a duration always 

defined in the same table, therefore blocking the flowpack functioning for such a period. 
Once the cleaning is performed, it is carried out again exactly after the same quantity of 

Figure 4.23 "Statestatistics" as input to "Machine_stat" 
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time provided by the value of the interval, not starting the count after the duration time 
needed to finish the operarion. 
Finally, the method “evento_cambiofilm” exploits the usage of the variable 

“pezzi_finefilm” and works in the very same way of the first method, by blocking the 
normal functioning of the flowpack when the target number of products is reached and 
then resetting to zero this variable once the change has been performed for the duration 
provided by the specified value in the table “attributi”. 
All the methods illustrated, either the ones related to the stochastic failures and the ones 
related to the deterministic events, are called in the init method of the FLOWPACKX 
frame, in order to let them execute at the beginning of the simulation. Then, each of them 
recalls itself after a predefined amount of time, in order to always refresh the incoming 
and outcoming values. 
 

 

4.3.2 INSIGHT IN THE BUFFERS 
Both the BUFFERVSEMPLICE and the BUFFERGX frames are structured in the same 

way, for this reason, only the BUFFERVSEMPLICE is considered its structure is reported 
in figure 4.25: 

Figure 4.24 Flowpack tower 
colour when a failure occurs 
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The failures are handled by the “getstatistics” method. The difference between this 
method and the other denominated in the same way stands in the attributes to which this 
method points. 

In particular, the attributes of interest in this method are: 

• StatRelativeEmptyPortion: returns in percentage the relative portion of the statistics 
collection period during which the object was empty with respect to the time during 
which the object was available; 

• Statnumin: returns the number of entries in the buffer; 
• Statrelativeoccupation: returns in percentage the relative occupancy without any 

interruption of the buffer [16]. 

These values are automatically written in the table “stateStatistics”, which is filled by the 
described method. Finally, this table is fed as input to the chart called “Machine_stat” that 

returns a graph representing the variables previously illustrated. 

Figure 4.25 BUFFERVSEMPLICE frame structure 

mk:@MSITStore:C:/Program%20Files/Siemens/Tecnomatix%20Plant%20Simulation%2015.1/Help/PlantSimulationENU.chm::/id43296.html
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Chapter 5 - Tests and analytical results 
Different tests are performed on the two kinds of plants taken into consideration in order 

to evaluate how they should work in the real environment. Successively, further 
considerations are performed on the accuracy of the models developed in the virtual 
environment. 

5.1 Test on the first distribution 
The first test is performed on a distribution composed of two PIVOTS, one PIVOTD, 

three legs and flowpacks and a simple buffer, all with exit on the left, as reported in figure 
5.1: 

 

 
The input parameters are set as reported in Tables 5.1 and 5.2. 

Figure 5.1 First test distribution 

Table 5.1 Input data in controls frame 
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With the assigned data, the source will stop emitting products after 4 hours, while the 
simulation is going to stop after 4h 06’. Moreover, the variable “Produzione_minuto” is 

computed as: 
 

𝑃𝑟𝑜𝑑𝑢𝑧𝑖𝑜𝑛𝑒 𝑚𝑖𝑛𝑢𝑡𝑜 =
𝑉𝑒𝑙𝑜𝑐𝑖𝑡à 𝑓𝑙𝑜𝑤𝑝𝑎𝑐𝑘 ∗ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑙𝑜𝑤𝑝𝑎𝑐𝑘 𝑡𝑜 𝑏𝑒 𝑓𝑒𝑑

𝑃𝑅 ∗ 𝑅𝑀

=
400 ∗ 2

20 ∗ 1
= 40[

𝑚𝑜𝑏𝑖𝑙𝑒 𝑢𝑛𝑖𝑡𝑠

𝑚𝑖𝑛
] 

 
This value is obtained in order to saturate two out of three flowpacks and use the third 

one as a jolly flowpack. 
The flowpack velocity, as already shown in the previous formula, is fixed: 
 

𝑉𝑒𝑙𝑜𝑐𝑖𝑡à 𝑓𝑙𝑜𝑤𝑝𝑎𝑐𝑘 = 400 [
𝑝𝑧

𝑚𝑖𝑛
] 

Table 5.2 PAR_GEN input data for mobile units 
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At the end of the simulation, the displays located on the root frame show the following 
values: 

• PRODOTTI SMODELLATI: 192000 
• PRODOTTI INCARTATI FLOWPACK1: 62700 
• PRODOTTI INCARTATI FLOWPACK2: 72780 
• PRODOTTI INCARTATI FLOWPACK3: 51968 
• RANGHI_POLMONATURA: 213 
• PRODOTTI_POLMONATURA: 4260 
• PRODOTTI IN SCARTO: 0 

These results are obtained by considering the failures profile in tables 5.3, 5.4, 5.5, 5.6: 

 
 

Table 5.3 Stochastic failures profile 
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Table 5.4 Flowpack1 deterministic failures 

Table 5.5 Flowpack2 deterministic failures 
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It can be noticed that the two different deterministic failures related to the change of the 
ink and to the change of the film are set in order to happen in different moments on the 
different flowpacks, considering that: 

𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑓𝑙𝑜𝑤𝑝𝑎𝑐𝑘𝑒𝑑 𝑝𝑟𝑜𝑑 = 𝑉𝑒𝑙𝑜𝑐𝑖𝑡à_𝑓𝑙𝑜𝑤𝑝𝑎𝑐𝑘 [
𝑝𝑧

𝑚𝑖𝑛
] ∗ 60[𝑚𝑖𝑛] = 400 ∗ 60

= 24000[
𝑝𝑧

ℎ
] 

For this reason, the numbers set in the previous tables are chosen according to this value, 
in order to let the failures suitably appear in a specific moment and then periodically occur 
again. 

Moreover, for what concerns the cleaning, it is set to be equal for all the different 
machines and it should be performed after 8 hours, so this kind of deterministic event is not 
considered in the following test. 

The number of emitted products from the source is coherent, since it is given by the 
following relationship: 

 
𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑 𝑝𝑟𝑜𝑑 = 𝑃𝑅 ∗ 𝑅𝑀 ∗ 𝑃𝑟𝑜𝑑𝑢𝑧𝑖𝑜𝑛𝑒 𝑚𝑖𝑛𝑢𝑡𝑜 ∗ 60 ∗ 𝑇𝑒𝑚𝑝𝑜 𝑠𝑚𝑜𝑑𝑒𝑙𝑙𝑎𝑔𝑔𝑖𝑜 𝑜𝑟𝑒

= 20 ∗ 1 ∗ 40 ∗ 60 ∗ 4 = 192000 [𝑝𝑧] 
 
Furthermore, it can be noticed that the wrapped products by the first two flowpacks are 

more than the ones wrapped by the third: this is due to the fact that the plant is sized in order 
to make only two flowpacks work and use the third one as a jolly, so the latter is used only 

Table 5.6 Flowpack3 deterministic failures 
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when the failures affecting the first two flowpacks do not make them properly fulfil their 
task. 

In addition, the drain contains no product, because the buffer discards products in the 
drain connected to it only when the line is oversized and the flowpacks are not able to wrap 
all the incoming products.  

The chart related to the variable “prod_pezziora” referred to any object present in the root 
frame is reported in figure 5.2, 5.3: 

 
 
 

 

Figure 5.2 prod_pezziora plot for the first three hours 
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Figure 5.3 Plot of prod_pezziora till the end of simulation 
 
The behaviour of these lines indicates the production per hour and it is coherent with the 

numbers reported in the displays, since it can be easily seen that the flowpack 1 has a value 
that lays around 15500 [pz/h] and in fact: 

𝑝𝑟𝑜𝑑 𝑝𝑒𝑧𝑧𝑖𝑜𝑟𝑎 𝑓𝑙𝑜𝑤𝑝1 =
62700

4
= 15675[

𝑝𝑧

ℎ
] 

 
The same reasonings hold for the other 2 flowpacks. Moreover, it can be noticed that the 

lines related to each flowpack are overlapped on the ones related to each leg: this is due to 
the fact that the products that are flowing in a specific leg are then flowing in the connected 
flowpack.  

For what concerns the graph “Chart_stat”, the obtained histogram is the one reported in 
figure 5.4: 
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Also in this case, the histogram realistically represents the situation, since the height of 

the different columns exactly coincide with the values assumed by the displays located in 
the root frame, either for the flowpacks and for the simple fan buffer. 

Finally, the three graphs related to the percentage of usage of the three flowpacks are 
reported in figure 5.5, 5.6, 5.7. 

 

 

Figure 5.4 Chart_stat histogram 

Figure 5.5 Flowpack1 percentage of usage 
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Figure 5.6  Flowpack2 percentage of usage 

Figure 5.7 Flowpack3 percentage of usage 
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It is evident that the third wrapper works less in percentage than the first two, for the 
reasons already explained. In addition, the flowpack 3 is the one that lays more than any 
other flowpack in waiting, since the products seldom arrive to this wrapper for the sizing of 
the plant. The flowpack 1, instead, is the one with the highest percentage of failure, since 
the data set for the deterministic failures are the lowest, causing a higher occurrence of these 
kind of failures in addition to the stochastic ones. 

It must be also underlined that the deterministic events are not plotted as the stochastic 
failures, but they are considered by means of the final value of the variable shown by the 
display “PRODOTTI INCARTATI”, because when the events take place, the entrance of 
the affected flowpack is locked, its tower assumes the red colour as for the stochastic failures 
and so the display stops increasing its value till the end of the deterministic event. 

In the end, the graphs related to the simple fan buffer result are the one reported in figure 
5.8: 

 

 
This statistic shows that for almost the 55% of the simulation time, the buffer results to 

be empty and this is coherent with the plant dimensioning. The relative occupation with no 
interruptions is almost 19%, putting in evidence that many failures affecting the wrappers 
often occur interrupting the filling of the buffer. The entries are not reported in terms of 
percentage but in terms of absolute number and they are exactly 857: so the buffer has been 
crucial in order to keep some products in it when also the flowpack 3 has been affected by 
some failures; then, the products stored in it have been recirculated on the flowpack 3 in the 
first proper moment. 

Figure 5.8 Simple fan buffer statistics 
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Finally, the efficiency related to the different wrappers and to the whole plant is so 
computed as: 

𝐹𝑙𝑜𝑤𝑝𝑎𝑐𝑘1 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑡𝑖𝑚𝑒

𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 + 𝑓𝑎𝑖𝑙𝑒𝑑 𝑡𝑖𝑚𝑒
=

63.98

63.98 + 34.04
= 0.65 

𝐹𝑙𝑜𝑤𝑝𝑎𝑐𝑘2 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑡𝑖𝑚𝑒

𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 + 𝑓𝑎𝑖𝑙𝑒𝑑 𝑡𝑖𝑚𝑒
=

74.27

74.27 + 23.73
= 0.76 

𝐹𝑙𝑜𝑤𝑝𝑎𝑐𝑘3 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑡𝑖𝑚𝑒

𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 + 𝑓𝑎𝑖𝑙𝑒𝑑 𝑡𝑖𝑚𝑒
=

52.7

52.7 + 15.79
= 0.77 

 

𝑃𝑙𝑎𝑛𝑡 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
∑𝑝𝑟𝑜𝑑𝑜𝑡𝑡𝑖 𝑖𝑛𝑐𝑎𝑟𝑡𝑎𝑡𝑖

𝑝𝑟𝑜𝑑𝑜𝑡𝑡𝑖 𝑠𝑚𝑜𝑑𝑒𝑙𝑙𝑎𝑡𝑖
=

62700 + 72780 + 51968

192000
= 0.98 

 
For the sake of simplicity, these computations are made by neglecting the products still 

laying on the line when the simulation stops, given by in the products that the buffer is 
recirculating on the third leg and flowpack. 

5.2 Test on the second distribution 
 
The second test is performed on a distribution composed of a PIVOTSX, a PULLNOSE, 

a BUFFERG, a INTERASSEBL and three LEGX connected to three different 
FLOWPACKX, as shown in figure 5.9: 

 
 
  



 105 

 
 

 
 
The input parameters are set as shown in tables 5.7, 5.8. 

 

Figure 5.9 Second test distribution 

Table 5.7 Input data in controls frame 
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With the assigned data, the source will stop emitting products after 2 hours, while the 

simulation is going to stop after 2h 12’. Moreover, the variable “Produzione_minuto” is 

computed as: 
 

𝑃𝑟𝑜𝑑𝑢𝑧𝑖𝑜𝑛𝑒 𝑚𝑖𝑛𝑢𝑡𝑜 =
𝑉𝑒𝑙𝑜𝑐𝑖𝑡à 𝑓𝑙𝑜𝑤𝑝𝑎𝑐𝑘 ∗ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑙𝑜𝑤𝑝𝑎𝑐𝑘 𝑡𝑜 𝑏𝑒 𝑓𝑒𝑑

𝑃𝑅 ∗ 𝑅𝑀

=
600 ∗ 2

20 ∗ 4
= 15[

𝑚𝑜𝑏𝑖𝑙𝑒 𝑢𝑛𝑖𝑡𝑠

𝑚𝑖𝑛
] 

 
This variable is chosen equal to 20 instead, in order to let the third flowpack and the drain 

of the buffer work. 
The flowpack velocity is fixed: 

𝑉𝑒𝑙𝑜𝑐𝑖𝑡à 𝑓𝑙𝑜𝑤𝑝𝑎𝑐𝑘 = 600 [
𝑝𝑧

𝑚𝑖𝑛
] 

At the end of the simulation, the displays located on the root frame show the following 
values: 

• PRODOTTI SMODELLATI: 192000 
• PRODOTTI INCARTATI FLOWPACK1: 42960 
• PRODOTTI INCARTATI FLOWPACK2: 47421 
• PRODOTTI INCARTATI FLOWPACK3: 52809 
• RANGHI_POLMONATURA: 65 
• PRODOTTI_POLMONATURA: 1300 
• PRODOTTI IN SCARTO: 46860 

Table 5.8 Input data in PAR_GEN 
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These results are obtained by the failures profile shown in tables 5.9, 5.10, 5.11, 5.12: 

 

 
 

Table 5.9 Stochastic failures profile 

Table 5.10 Flowpack1 determinisic failures 
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Table 5.11 Flowpack2 determinisic failures 
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It can be noticed that the two different deterministic failures related to the change of the 

ink and to the change of the film are set in order to happen in different moments on the 
different flowpack, considering that: 

𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑓𝑙𝑜𝑤𝑝𝑎𝑐𝑘𝑒𝑑 𝑝𝑟𝑜𝑑 = 𝑉𝑒𝑙𝑜𝑐𝑖𝑡à
𝑓𝑙𝑜𝑤𝑝𝑎𝑐𝑘[

𝑝𝑧
𝑚𝑖𝑛

]
∗ 60[𝑚𝑖𝑛] = 600 ∗ 60

= 36000[
𝑝𝑧

ℎ
] 

For this reason, the numbers set in the previous tables are all below this value (except the 
value related to the change of film in the last flowpack, which is slightly higher in order to 
make the failure occur a bit after one hour of simulation), letting these failures all happen in 
the course of a single hour. 

Moreover, for what concerns the cleaning, it is set to be equal for all the different 
machines and it should be performed after 2 days, so this kind of deterministic event is not 
considered in the following test. 

The number of emitted products from the source is coherent, since it is given by the 
following relationship: 

 
𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑 𝑝𝑟𝑜𝑑 = 𝑃𝑅 ∗ 𝑅𝑀 ∗ 𝑃𝑟𝑜𝑑𝑢𝑧𝑖𝑜𝑛𝑒 𝑚𝑖𝑛𝑢𝑡𝑜 ∗ 60 ∗ 𝑇𝑒𝑚𝑝𝑜 𝑠𝑚𝑜𝑑𝑒𝑙𝑙𝑎𝑔𝑔𝑖𝑜 𝑜𝑟𝑒

= 20 ∗ 4 ∗ 20 ∗ 60 ∗ 2 = 192000 [𝑝𝑧] 
 
In this case, it can be noticed that all the three flowpacks have a comparable number of 

flowpacked products, since the production number of mobile units per minute 
“produzione_minuto” is greater than 15, so the third flowpack is not used as jolly in the 
plant. 

Table 5.12 Flowpack3 determinisic failures 
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In addition, the buffer and the drain contain products for the same reason, since the plant 
is oversized.  

The chart related to the variable “prod_pezziora” referred to any object present in the root 

frame is in figure 5.10: 
 
 

 
The behaviour of these lines indicates the production per hour and it is coherent with the 

numbers reported in the displays, since it can be easily seen that the flowpack 1 has a value 
that lays around 21000 [pz/h] and in fact: 

𝑝𝑟𝑜𝑑 𝑝𝑒𝑧𝑧𝑖𝑜𝑟𝑎 𝑓𝑙𝑜𝑤𝑝1 =
42960

2
= 21480[

𝑝𝑧

ℎ
] 

 
The same reasonings hold for the other 2 flowpacks. Moreover, it can be noticed that also 

in this case the lines related to each flowpack are overlapped on the ones related to each leg: 
this is due to the fact that the products that are flowing in a specific leg are then flowing in 
the connected flowpack.  

For what concerns the graph “Chart_stat”, the obtained histogram is shown in figure 5.11: 
 

Figure 5.10 prod_pezziora plot 
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Also in this case, the histogram realistically represents the situation, since the height of 

the different columns exactly coincide with the values assumed by the displays located in 
the root frame, either for the flowpacks and for the simple fan buffer. 

 
Finally, the three graphs related to the percentage of usage of the three flowpacks are 

reported in figures 5.12, 5.13, 5.14: 
  

Figure 5.11 Chart_stat histogram 
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Figure 5.12 Flowpack1 percentage of usage 

Figure 5.13 Flowpack2 percentage of usage 
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Figure 5.14 Flowpack3 percentage of usage 
It is evident that the flowpack 3 is the one that lays more than any other flowpack in 

waiting, since this wrapper is the last one to be reached by the products. The flowpack 1, 
instead, is the one with the highest percentage of failure, while the simulation ends in the 
exact moment when the deterministic failure related to the change of the film, which occurs 
every 15000 products, is affecting the second flowpack, since its tower has the red colour. 
Moreover, some products are still present on the leg 2, since the entrance of the flowpack 2 
is temporarily locked for the failure occurring. 

It must be also underlined that, in this test too, the deterministic events are not plotted as 
the stochastic failures, but they are considered by means of the final value of the variable 
shown by the display “PRODOTTI INCARTATI”, because when the events take place, the 

entrance of the affected flowpack is locked and so the display stops increasing its value till 
the end of the deterministic event. In addition, the red colour of the tower belonging to a 
specific flowpack is associated to the deterministic event as well as to a stochastic failure. 

In the end, the graphs related to the gondola buffer result the one shown in figure 5.15: 
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This statistics shows that for almost the 0% of the simulation time, the buffer results to 

be empty and this is coherent with the plant dimensioning, since the line is oversized in order 
to make the buffer work and store products in itself. The relative occupation with no 
interruptions is around 85%, showing a high usage of the buffer; the entries are not reported 
in terms of percentage but in terms of absolute number and they are almost 5050, 
highlighting again the high work performed by the buffer. Successively, as already explained 
for the simple fan buffer, also in the gondola buffer the products stored have been 
recirculated on the flowpack 3 in the first proper moment. 

Finally, the efficiency related to the different wrappers and to the whole plant is computed 
as: 

𝐹𝑙𝑜𝑤𝑝𝑎𝑐𝑘1 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑡𝑖𝑚𝑒

𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 + 𝑓𝑎𝑖𝑙𝑒𝑑 𝑡𝑖𝑚𝑒
=

56.2

56.2 + 32.92
= 0.63 

𝐹𝑙𝑜𝑤𝑝𝑎𝑐𝑘2 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑡𝑖𝑚𝑒

𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 + 𝑓𝑎𝑖𝑙𝑒𝑑 𝑡𝑖𝑚𝑒
=

61.5

61.5 + 20.22
= 0.75 

𝐹𝑙𝑜𝑤𝑝𝑎𝑐𝑘3 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑡𝑖𝑚𝑒

𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 + 𝑓𝑎𝑖𝑙𝑒𝑑 𝑡𝑖𝑚𝑒
=

67.5

67.5 + 11.36
= 0.86 

 

𝑃𝑙𝑎𝑛𝑡 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
∑𝑝𝑟𝑜𝑑𝑜𝑡𝑡𝑖 𝑖𝑛𝑐𝑎𝑟𝑡𝑎𝑡𝑖

𝑝𝑟𝑜𝑑𝑜𝑡𝑡𝑖 𝑠𝑚𝑜𝑑𝑒𝑙𝑙𝑎𝑡𝑖
=

42960 + 47421 + 52809

192000
= 0.75 

 

Figure 5.15 Simple fan buffer statistics 
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For the sake of simplicity, these computations are made by neglecting the products still 
laying on the line when the simulation stops. Furthermore, it can be noticed that the 
efficiency is significantly lower than the one obtained in the first test, but this is due to the 
fact that the line is oversized in order to make some products be discarded in the drain of the 
buffer and so this lets the efficiency diminish. 
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Chapter 6 - Conclusions and future 

developments 
Different tests are performed on the two kinds of plants taken into consideration in order 

to evaluate how they should work in the real environment. Successively, further 
considerations are performed on the accuracy of the models developed in the virtual 
environment. 

From the analysis performed on the models built in the virtual environment, the expected 
functioning of the lines is achieved, at least in theoretical and graphical terms. In fact, the 
lines are suitably set by the data inserted in the frame controls and also the products are 
suitably sized when emitted from the source. Moreover, the results in terms of modelled 
products and wrapped products are correct, since the sum of the wrapped products, the 
eventual buffered products and the discarded ones exactly corresponds to the modelled ones. 
Moreover, a good level of parametrization of the model has been reached, since no direct 
mentioning of a specific object in the frames is present, so everything is parametric and 
suitable for any further and different plant that should be implemented in the virtual 
environment.  

Furthermore, a further step towards the real implementation of these lines has been made 
by importing also the presence of the different failures that could affect the various 
machines, also distinguishing them between stochastic and deterministic. 

However, a validation of the data and results obtained by means of these simulations 
should be performed in the real plants, in order to have an estimate of the level of accuracy 
of the developed models and library.  

In addition, further developments tending to the real structure of the different elements 
can be developed, for instance for what concerns the fan buffer, for which a simple approach 
has been adopted in order to simplify its structure in the simulator from a graphical point of 
view, but letting it work in the same way a real fan buffer does. 

According to the goal of having test distributions as much as possible similar to the real 
ones, additional developments of other elements belonging to different plants can be led, 
such as the building of the BUFFERGLX object, which is a gondola buffer with the products 
exiting in line and not transversally with respect to the ridge or the REPITCHING object, 
that is an element whose task consists in equalizing the space laying among the different 
ranks traveling on the ridge. 

Finally, aiming at the maximum level of parametrization that can be reached while 
developing this library, a reference to the speed related cells of the table of the instances of 
the models PIVOTSX and PIVOTDX must be added in the reset methods, in order to let the 
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user just insert the right value in the table DataTable located in frame controls, so 
automatically assigning the desired speed to the conveyors of the single and double pivot, 
as done for the other models belonging to the created library. 
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