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Abstract

Real-time paradigms play a crucial role in our society since an increasing number of complex
systems rely on dependable computing. From those complex systems, mixed-criticality
and high availability distributed systems strongly rely on deterministic time-triggered
communication to ensure real-time behavior. In time-triggered distributed systems, a
common approach utilizes a periodically repeating communication schedule. Finding such
a schedule needs an intuitive approach due to the problem’s complexity class.

This thesis focuses on the time-triggered scheduling problem emerging within the
distributed modular power stress (MoPS) system. Here, the production as well as
consumption of messages is carried out within software tasks running on distributed
modular targets. A customized approach is presented for modeling the project specific
requirements into a concrete less complex optimization problem. The proposed approach
aims in minimizing the end-to-end latency among the distributed targets, respecting
the precedence constraints and the system parameters. As a consequence, the optimal
schedule time-line is obtained where the instants, at which information is delivered or
received, are computed in such a way that all the modeled constraints are satisfied.

In the course of this thesis the design framework was elaborated from scratch, by
which the precedence relations between the real-time tasks can be designed. Such a
framework ensures, that the flow of the design procedure is error resistant as much as
possible. Therefore, a complete tool along with its graphical user interface (GUI) has
been implemented, where all the system constraints are considered and several verification
paradigms are integrated.
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CHAPTER

1
Introduction

Today’s market challenges the semiconductors production in several demands, like de-
creasing time-to-market, increasing manufacturing robustness and quality requirements
[1]. On the other hand, the design complexity of the produced System on Chips (SoCs)
has increased. Therefore assuring dependable systems, requires improvements in the test
paradigms already available. One of those paradigms, is the so-known as Burn-in or Stress
Test. The latter is the process by which the device under test (DUT) is exercised before
launched into market. Thus trying to force certain failures to occur, under supervised
stress conditions. Burn-in aims at accelerating detection of so-called infant mortalities
[2], as well as formulating statistical performance sheets. Such a system, called MoPS
test system, is being developed at KAI. The MoPS architecture works completely in a
modularized approach from both SW and hardware (HW) point of views [3]. Figure 1.1
shows the architecture of the MoPS system. A basic review, of the architecture of the
MoPS system, is elaborated in Section 2.3.

Figure 1.1: MoPS architecture.

The MoPS holds a distributed communication network, which makes it superior in terms
of flexibility to a centralized system [3]. For further extending this flexibility, real-time
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Chapter 1 Introduction

behavior has to be an option for building the test plan of the MoPS system. There are two
major design paradigms for implementing real-time behaviors, the event-triggered and the
time-triggered approach [4]. In a time-triggered distributed system, communication takes
place according to a common periodic communication schedule. This thesis is concerned
in designing a project specific tool, for generating the schedule of a distributed real-time
communication. The name given for the tool is Time-Driven Communication Schedule
Planner (TDCS-Planner). Therefore, TDCS-Planner refers to the developed tool, within
the course of this thesis.

1.1 Motivation

The non real-time behavior of a test procedure, in the MoPS system, resembles the
finite-state machine (FSM) model [3]. The design of the test plan is done by the test
plan builder (TP-Builder), already developed [5], which aims to ease drawing of the
interactive FSM diagrams for every layer of the MoPS architecture. Until this point,
the test procedure happening on multiple targets has a non real-time behavior, and is
composed of event-triggered tasks. On the other hand a real-time extension of the MoPS
system, is being researched within a PhD thesis topic. The PhD thesis focuses on a
mixed-triggered communication approach, which provides real-time behavior under normal
conditions while it flexibly transitions to a fallback mode when temporal boundaries are
not met [6]. Therefore, there is a need for a SW containing a test plan builder for real-time
tasks, and also a scheduler for managing the distributed real-time communication.

Scheduling, in a distributed real-time system, is affected significantly by inter-task
communication and hence, a pre-runtime task allocation algorithm is needed [7], which
takes into consideration the real-time constraints. Moreover, the generated test plan
should be as error resistant as possible. This results in the implementation of several
sanity checks during the whole building procedure, and even over the generated schedule
script which describes the test plan.

1.2 Goals

The objective of this thesis can be summarized into two key goals. First, to simplify the
creation of a test plan occurring between distributed targets, and generate the optimal
schedule time-line. Second, to verify the sanity requirements of such a designed test plan.
Thus, an intuitive application along with its GUI has to be provided. The latter should
be accountable of the following:
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1.3 Problem Statement

• Fetching the data files of the available type of targets, for the MoPS system, and
represent them in a user friendly manner.

• Providing a design interface for the inter-task communications, in the form of simple
data dependency graphs.

• Verifying the correctness of the built design, and formulating it into a well structured
model.

• Generating the optimal schedule, while considering all the transmission delays which
are network dependable.

• Visualizing the generated schedule time-line in a smooth representation.

• Outputting both the test plan description and the schedule script in JavaScript
object notation (JSON) format, respecting their defined schemas. Also, providing
complete correctness check for the last-mentioned files.

The application is completely developed in Python 3 language. Thus, it is benefitted
from all the relevant available Python modules. For the GUI representations, PyQt5
libraries and modules, are used for developing the tool. Section 2.7 presents a review of
the available programming languages and alternatives that could have been chosen.

1.3 Problem Statement

This thesis emerges from the need of a real-time communication scheduling tool, for the
time-triggered extension of the MoPS test plan. Therefore, the problem statement is
divided into three areas:

• How to represent the creation process of the test plan, to provide an intuitive user
friendly interface?

– How to visualize the type of targets, with all its description?

– How to construct the dependency graph of the inter-task communications?

– What schema to follow for better non-redundant description of the test plan
file?

3
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• What scheduling algorithm should be used, for fulfilling the project specific require-
ments?

– How to integrate the communication delays in the scheduling problem?

– How to benefit of maximum Central Processing Unit (CPU) utility?

– How to visualize the resulted schedule time-line, in an intelligible way?

– What schema to follow for better non-redundant description of the schedule
script file?

• How to make sure that the test plan is as error proof as possible?

– How to prevent errors during the building process of the test plan?

– How to re-check for errors in a test plan description?

– How to re-check for errors in a schedule script file?

1.4 Thesis Outline

This section gives some reading advice, for easing the understanding of this thesis work.
The introduction is exhibited in Chapter 1, where the motivation, goals, and problems
statement are elaborated. It is highly recommended for getting a basic overview of the
direction of this thesis. A literature review is presented in Chapter 2, for emphasizing on
some concepts that are used during the course of this thesis. The latter explains:

• The different scheduling paradigm concepts, which are necessary for understanding
the need of implementing a project specific scheduling algorithm.

• The overview of the parent project MoPS, from which this thesis emerges. This
part is a must for getting a complete picture of the system model, later explained
in Chapter 3.

• SW and mathematical basic concepts, used within the modeling of the problem
statement researched by this thesis. These concepts can be skipped, if there is
already a relative background.

Chapter 3 explains the system model, and the paradigm followed behind the intuitive
scheduling algorithm. Chapter 4 exhibits the full creation of the application, from both
core and GUI aspects. Finally, an evaluation of the implementation is done in Chapter 5
and the conclusion with the outlook, follows in Chapter 6.
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CHAPTER

2
Literature Review

2.1 JavaScript Object Notation

JSON is a lightweight data-interchange format. It uses human-readable text to store and
transmit data objects consisting of attribute–value pairs and array data types1. JSON is
becoming a clear choice for mainstream data applications [8]. All the data files of the
TDCS-Planner are represented in JSON format, because of the last-mentioned advantages.
Therefore, a schema for each of the used files is written, following the JSON-schema draft
Draft 2019-09 2. Listing 2.1 shows an example of JSON format representation. Moreover,
Python includes predefined modules which allows to generate and parse JSON-format
data, this eases the coding developing.

2.2 CAN Bus

CAN is a multiplexed serial communication channel, used for data transfer among
distributed electronic modules. It emerged as the standard in-vehicle network. CAN has
several different physical layers. These physical layers classify certain aspects of the CAN
protocol, such as electrical levels, signaling schemes, cable impedance, maximum baud
rates, and more3. This section exhibits a brief explanation of the high-speed physical
layer.

The distributed communication of the targets layer, in the MoPS system, is of CAN
type. Specifically, high-speed CAN is being used. Nevertheless, for better maintainability
of TDCS-Planner, the system model deals with the communication network in an abstract
methodology, as described in Chapter 3.

1JSON data interchange: http://json.org
2Specification page: http://json-schema.org
3White papers: Controller Area Network (CAN) Overview, http://ni.com
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Chapter 2 Literature Review

High-speed CAN networks are implemented with two wires and allow communication
at transfer rates up to 1 Mbit/s. These two wires resemble two signals, CANL and CANH,
either driven to a dominant state with CANH (5V) > CANL (0V), or not driven and
pulled by passive resistors to a recessive state with CANH ≤ CANL. A 0 data bit encodes
a dominant state, while a 1 data bit encodes a recessive state, supporting a wired-AND
convention, which gives nodes with lower ID numbers priority on the bus.

Each node, of the network, requires: a CPU, CAN controller, and transceiver. The
latter converts the data stream from CAN bus levels to levels that the CAN controller
uses. Any node is able to send and receive messages, but not simultaneously.

A message or Frame consists primarily of the ID (identifier), which represents the
priority of the message, and up to eight data bytes. Other overhead are also part of the
message. Two different message formats can be used: using standard frames with 11bit
identifiers (known as CAN 2.0 A) and extended frames with 29bit identifiers (known as
CAN 2.0 B). Except for the different length of the identifiers, the messages are built up
equally. The MoPS system uses the standard frames. Figure 2.1 illustrates the CAN data
frame sections.

Figure 2.1: Standard CAN data frame.

SOF Start Of Frame - 1 bit.

IDENTIFIER A message identifier sets the priority of the data frame - 11 bits.

RTR Remote Transmission Request, defines the frame type (remote or data frame) - 1
bit.

IDE Identifier Extension - 1 bit.

R Reserved bit - 1 bit.

DLC Data Length Code, number of bytes of data - 4 bits.

6



2.3 MoPS

DATA FIELD Data to be transmitted - 0-8 bytes.

CRC SEQUENCE Cyclic Redundancy Check - 15 bits.

DEL CRC delimiter - 1 bit.

ACK Acknowledgement - 1 bit.

DEL ACK delimiter - 1 bit.

EOF End Of Frame - 7 bits.

2.3 MoPS

The MoPS test system is a distributed test system. The system architecture is shown in
Figure 1.1. MoPS design aims in providing a flexible infrastructure for customizable stress
test applications. It is capable of running different test applications with a common base
framework. The test engineers and test operators have to configure a simple comprehensive
system, instead of having to manage different test systems [9].

To handle the complex requirements, MoPS is split up into hierarchical entities. The
overall control entity, the local control entity, and the application entity.

Overall Control Entity Contains the host computer, which controls the overall test flow
and communicates with the control modules. It also manages the external periphery
and stores the measured data into the file system.

Local Control Entity Contains control nodes, which may be many (typically 8 to 24 for
one test system) and are connected to the host computer via Ethernet.

Application Entity Contains application modules, which are referred as targets within
the scope of this thesis. Each target is connected to one control module, from the
local control entity. The target executes the test, drives and monitors a DUT. All
the targets share a CAN communication.

Both the control nodes and targets are typically placed within an environmental chamber.
Only the host and the external periphery are placed outside. The essential advantage of
this test system architecture is the separation of the control and data acquisition parts
from the actual test circuit. Therefore, only the application entity has to be redesigned,
when changing the type of test performed. This saves development effort, design time
and provides a unified data acquisition and control methodology.

7
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2.3.1 Targets Configuration

The targets are tailored to individual types of tests. Thus, every target is described within
a configuration file, called Targets Configuration. Listing 2.1 shows a configuration of an
example target. The Targets Configuration states the following:

• Name of the target description.

• Both SW and HW versions of the target.

• List of the available tasks, which the target can execute.

Such files are described in JSON format. Therefore a schema respecting the description,
is developed for checking the correctness of the file.

2.4 Scheduling Paradigms

For a given set of tasks, the general scheduling problem can be understood as the problem
of finding an order, according to which the tasks are to be executed such that various
constraints are satisfied. Typically, a task is characterized by its execution time, ready
time, deadline, and resource requirements. Tasks can have a variety of interpretations,
depending on the field of study. For the scope of this thesis, task resembles a computation
that is executed by a CPU in a sequential fashion, with an access to a communication
network.

There exists an extensive literature on the topic of scheduling theory. This section
presents a small part of that extensive literature. Only the methodologies, which are
relevant to the research questions of this thesis, are discussed. The scheduling problem
variants can be summarized as follows:

Machine Environment Tasks can be scheduled using a mono-processor, multi-processor
or distributed approach. The tasks of the MoPS system are each linked with a single
target and the targets share a distributed communication network, therefore, the
scheduling problem contains both mono-processor and distributed approaches.

Release Time In the static case, all the tasks are given and ready to run. In the dynamic
case, new tasks may arrive at any time during the execution. The test plan, of the
MoPS system, is completely designed and planned, by the test engineers, before
runtime. Therefore, the task set of the scheduling problem is considered static.

8



2.4 Scheduling Paradigms

Listing 2.1: µMoPS_v5 configuration file snippet.
{

"name":"uMoPS_v5",
"hw":"MOPS-2h3j4h5j",
"sw":"CORE-joh345jk",
"tasks": [ {

"name":"setPwmFreq",
"wcet":12,
"in":[ {

"label":"freq_hz",
"type":"int",
"default":0,
"min":0,
"max":1e6

} ],
"out":[]

},{
"name":"getPwmFreq",
"wcet":9,
"in":[],
"out":[ {

"label":"freq_hz",
"type":"int"

} ]
},{

"name":"add",
"wcet":7,
"in":[ {

"label":"a",
"type":"int",
"default":0

},{
"label":"b",
"type":"int",
"default":0

} ],
"out":[ {

"label":"sum",
"type":"int"

} ]
} ]

}

9



Chapter 2 Literature Review

Execution Time When dealing with real-time systems, execution times of tasks have to
be known a priori, or a certain estimation has to be computed. For the scope of
this thesis, Worst Case Execution Time (WCET) is supposed as a given parameter,
fetched from the Targets Configuration files. Another project is emphasized in such
execution time estimations, for the real-time extension of MoPS [10].

Preemption The execution time, of a task, might or might not be interrupted, thus, the
terms preemptive and non-preemptive scheduling. For the MoPS system, the tasks
are not preemptive, therefore, the scheduling problem is non-preemptive.

Dependecies Over the set of tasks, there might be precedence relation which constraints
the order of execution. This is the case for the task set of the MoPS system.

Periodicity The tasks can be periodic, and therefore it is better described as a job.
Otherwise, the tasks can be aperiodic. In the MoPS system, the used tasks are
considered aperiodic.

Resources Allocation of resources over time, to perform the task set. In the MoPS
system, the shared resources are: the CPU between the tasks happening in the
same target, and the communication network between the distinct targets.

Online/Offline If release time is dynamic, then an online scheduling is required. Other-
wise, if release time is static, then an offline scheduling can be done. In the MoPS
system, all the information of the test plan is known a priori, before runtime. Thus,
the schedule is generated offline.

2.4.1 Scheduling Problem

The key parameter of any scheduling problem is time. A task should be completed before
its deadline, which in general is known a priori. Moreover, over the set of tasks, there is
precedence relation which constraints the order of execution. Real-time scheduling refers
to the case in which each task has its individual offset time (release time) and end time
(deadline time) [11].

In general, to form a scheduling problem, three sets are needed: a set of n tasks
Γ = {τ1, τ2, ..., τn}, a set of m processors P = {p1, p2, ..., pn}, and a set of k types of
resources R = {r1, r2, ..., rn}. In addition, precedence relations among the tasks can
be defined through a Directed Acyclic Graph (DAG), and the timing parameters are
associated with each task. Scheduling, thus, means assigning processors from P and
resources from R to tasks from Γ, such that all tasks are completed respecting the imposed
constraints [12]. This problem, in its general form, has been shown to be NP-complete,
and hence computationally intractable [13].
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2.4.2 Scheduling Algorithms

The scheduling problem’s variants are typically used to classify the various scheduling
algorithms. From those variants, the periodicity is the main classification, which encircles
all the other variants. Therefore, only the aperiodic scheduling algorithms are discussed.
In this context, the algorithm, fulfilling the requirements of this thesis, should consider:

• Non-preemptive

• Static

• Precedence relations

• Offline

• Optimal

A description, which serves as a basis for the classification scheme, is used from [13]. Such
a notation uses three fields (α | β | γ). Where α states the machine environment (mono-
processor, multi-processor, distributed), β describes tasks and resource characteristics
(preemptive vs. non-preemptive, independent vs. precedence constraints,...), and γ indicates
the criterion of the objective function.

Earliest Due Date
The scheme this algorithm considers is 1 | SY NC | Lmax. That is, the set of tasks
have a synchronous release time, and have to be scheduled on a single processor,
minimizing the maximum latency. This algorithm was found by Jackson in 1955,
which can be summarized as: execute the tasks in order of non-decreasing deadlines.
Earliest Due Date (EDD) is proven to be optimal with respect to minimizing the
maximum latency [13]. The complexity of EDD is O(n log n). No other constraints
are considered, by EDD, hence tasks cannot have precedence relations and cannot
share resources.

Earliest Deadline First
The problem this algorithm considers is 1 | PREEM | Lmax. Tasks in this case,
are not synchronous, and can have dynamic arrival times and preemption is allowed.
Earliest Deadline First (EDF) was found by Horn in 1974, it can be summarized
as: at any instant, execute the task with the earliest absolute deadline among the
ready tasks. EDF is proven to be optimal with respect to minimizing the maximum
latency [13]. The complexity of EDF, in this case per task, is O(n log n), if ready
queue is a heap, or O(n), if ready queue is a list. No other constraints are considered,
by EDF in this case, hence tasks cannot have precedence relations and cannot share
resources.
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Bratley’s
This algorithm considered the scheme 1 | NO_PREEM | feasible. Which is to
say, a set of non-preemptive tasks with arbitrary arrivals times, have to be scheduled
on a single processor. Bratley proposed this algorithm in 1971. Instead of the
exhaustive search, Bratley’s uses a pruning technique to determine when a current
search can be reasonably abandoned. The worst case complexity of Bratley’s is
O(n.n!). It can only be run off-line, which is the case for time-trigger systems but
it is not optimal with respect to minimizing maximum latency.

Spring
This algorithm aims in finding a feasible schedule when tasks have different types
of constraints, such as precedence relations, resource constraints, arbitrary arrivals,
non-preemptive properties, and importance levels. It was designed by Stankovic
and Ramamritham and is used in distributed computer architectures. Therefore,
Spring deals with NP-hard problems [13]. Spring is not optimal, then if there is a
feasible schedule, Spring may not find it.

Latest Deadline First
The scheme this algorithm considers is 1 | PREC, SY NC | Lmax. That is, minimiz-
ing maximum latency of a set of tasks, with precedence relations and synchronous
arrivals, scheduled over a single processor. Lawler proposed Latest Deadline First
(LDF) in 1973. LDF builds the scheduling queue from tail to head, by picking the
latest deadline leaf of the DAG, to be scheduled last. In this context, the first task
inserted in the queue is executed last. The complexity of LDF is O(n2), and it is
proven optimal with respect to minimizing maximum latency [13].

EDF Precedence Constraints
This algorithm considers the problem 1 | PREC,PREEM | Lmax. Thus, scheduling
a set of tasks with precedence relations and dynamic activations. Modified EDF
was proposed by Chetto, Silly, and Bouchentouf in 1990. The basic idea is to
transform the set of dependant tasks into another set of independent tasks, by
an adequate modifications of the timing parameters of each task (release times
and deadlines). The transformation algorithm ensures optimality with respect to
minimizing maximum latency [13].

Scheduling Time-Triggered Communication

In time-triggered distributed systems, communication takes place according to a common
periodic communication schedule [4]. Therefore, discrete time slots are assigned for each
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node, where it is allowed to send and receive messages. This provides an isolation between
different functionalities and guarantees a deterministic latency, but makes the scheduling
problem the bottleneck of the system. The MoPS system, containing a time-triggered
distributed communication, compels a project-specific scheduling algorithm. Such an
algorithm is developed within this thesis, benefiting of the concepts offered by others
algorithm, which do not completely consider the requirements.

2.5 Computational Complexity Theory

In computational complexity theory, decision problems are classified based on the hardness
of the problem. This section gives a brief explanation of the fundamental complexity
classes.

P Problems
This kind of problems refer to all the decision problems that can be solved using
a polynomial amount of computation time. Therefore, they are called Polynomial
Time Problems. P class problems are efficiently solvable by a deterministic Turing
machine.

NP Problems
This kind of problems cannot be solved in polynomial time. However, they can
be verified in polynomial time. That is to say, NP class problems are solvable in
polynomial time by a non-deterministic Turing machine [14]. P class problems are
always also NP class.

NP-Hard Problems
A decision problem is said to be NP-hard, if and only if every problem in NP is
reducible to it, in polynomial time.

NP-Complete Problems
NP-complete problems are the hardest between the NP problem class. A problem
is classified as NP-complete, if it is both NP and NP-hard.

The real-time scheduling problem that this thesis is dealing with is of type NP-complete.
As a consequence, one of the research objectives is to identify a simpler and practical
approach for finding a solution for such a problem.
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2.6 Time Utility Function

Time Utility Function (TUF) are created to quantify the utility of completing each
task at a given time. This concept aims in extending the pure deadline based real-time
specification by a generic function. The utility functions used in the scope of this thesis,
are considered to be monotonically decreasing. In this context, a TUF returns a high
value if the task is scheduled with minimum latency, and a low value if a task is scheduled
with maximum latency. TUFs help in quantifying the time parameters assigned for every
task, both the offset (release time) and end time (deadline time). Therefore, TUFs are
essential in modeling the objective function of the scheduling problem of this thesis, which
is fully described in Chapter 3.

2.7 Programming Languages

When developing software, there are multiple factors that have to be considered for
choosing the convenient programming language. This section highlights some of those
factors for different programming languages.

Java
Java is an object-oriented programming language that can be written on any device.
It is platform independent in both binary and source level. Java is well known for
its feature of safety which can disrupt corruptions or errors. Java requires high
storage capacity and uses more memory, thus, it becomes slower in performance
compared to other languages.

Ruby
Ruby is a pure object-oriented programming language, everything appears to Ruby
as an object. It is simple since it consists of easy and understandable syntax. Ruby
on Rail is quite popular for web development. However, for developing desktop
applications, Ruby is not so popular in the community. For big applications, Ruby
is said to have a slow runtime speed.

C/C++
C is one of the most difficult programming languages for software development. It
is known to be the building block of many other languages used today. C++ is an
object-oriented programming language, it offers the feature of platform independence.
Also, since C++ is closely associated to C, then it allows low-level manipulation.
However, C++ is still considered harder than other languages, it lacks the feature
of garbage collector to automatically filter out unnecessary data.
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Python
Python is an interpreted programming language used for general-purpose program-
ming. With a simple syntax, Python has automatic memory management and
dynamic features that make it suitable to be used in a variety of applications. It
offers a lot of third-party modules, which can ease in time the software development
process. For Python everything is an object. Python is easy to read and learn, and
it is one of the world’s most popular programming languages. Therefore, there is a
big community of Python developers, which is always of benefit for any software
development.

Python language is chosen for developing the TDCS-Planner. The version of Python used
is Python 3.8.2. TDCS-Planner is part of a bigger project, therefore future enhancements
and integrations are probable. The maintainability and the increasing community of
Python, makes such integrations easier.

2.7.1 Graphical User Interfaces

Python offers multiple options for developing a GUI. This section exhibits the top GUI
tool-kits with a brief overview on each.

TKinter
TKinter is an open source and standard GUI toolkit for Python. TKinter is a
wrapper around tcl/TK graphical interface. It is popular because of its simplicity and
having an old active community. TKinter is portable for Macintosh, Windows and
Linux platforms. However, it is mostly preferred for small scale GUI applications.

PyQt
PyQt toolkit is a wrapper around QT framework. PyQt is one of most popular cross
platform Python binding over C++ implementing QT-library for QT framework.
PyQT can be used for large scaled GUI application. The design can be done with
the use of QT designer and convert the .ui files to Python code. However, writing
code manually ensures better control of the code structure and representation.

PySide
Just like PyQt, PySide is also a Python binding of the cross-platform GUI toolkit
Qt. The two interfaces were comparable at first but PySide ultimately development
lagged behind PyQt.

For developing the GUI of the TDCS-Planner, PyQt is chosen. The version of PyQt used
is PyQt5.15.0.
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CHAPTER

3
System Model

This chapter proposes a system model for the scheduling problem, which is invoked by
the MoPS system. First, an overview of the general process is presented. Then, the
modeling of the raw data structure is exhibited, along with the basic concepts of the tasks
classifications. Afterwards, the system complications are fully described by analyzing
a case study, before explaining the procedure of data analysis. Later on, the time-line
model is shown, containing all the timing representations. In this context, the task
set transformation comes as a consequence of the last-mentioned sections. Finally, the
complete formulation of optimization problem is presented.

3.1 General Process

This thesis presents an approach to minimize the end-to-end latency of tasks, occurring
between nodes of the MoPS system. The approach respects the precedence constraints as
well as the communication network dependencies. The general process is based upon what
is presented in [15], but with major modification to fit the MoPS system specifications.
The main key is in the task set transformation from which an Integer Linear Programming
(ILP) optimization problem is formulated to find the feasible task set. The optimality
criteria is based on the TUF assigned for each task, specifying the task tolerance towards
latency. As a result, the optimal task set is found, rather than searching for a final optimal
schedule among all the possible search space.

The general process forming the whole approach is illustrated in Figure 3.1. The test
plan is built within the Builder View, described in Section 4.2.2. The Builder Core,
therefore, outputs a description file. This latter undergoes a complete sanity check,
described in Section 4.3.4. If the sanity check is passed, then the raw data is extracted
and structured into a parametrized task set, which is referred to as Γ. This task set is then
reformulated into another task set dictionary, that is called Γform. The reformulation
process is done by running a full data analysis, covering every aspect of the constraints
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forced over the MoPS system. Hereafter, the optimization problem is constructed by
modeling Γform into a concrete objective function with all its corresponding inequality
constraints. The optimization problem is thus given to an Optimizer, which solves ILP
problems. In this context, the search space is narrowed due to the restricted input domains
of offsets and deadlines, thus, finding the optimal values for the decision variables is
simpler. The decision variables are then processed into a static schedule time-line, which
is optimal with respect to minimizing maximum tasks’ latency.

This chapter explains the logic behind all the modules which appear after the sanity
checks block, in Figure 3.1. The blocks, appearing before sanity checks, are covered in
Chapter 4.

Figure 3.1: General process flow chart.
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3.2 Task Model

3.2.1 Raw Data Representation

The task set Γ is extracted from the description file, if the latter respects the builder
sanity requirements described in Section 4.3.4. Every task τi in Γ is represented by the
following tuple:

τi( IDtarget, IDtask, WCET, inputs, outputs ) (3.1)

Where IDtarget states the parent target of the task. Since the CAN bus ID is an unique
integer for every target, then it is used as a target identifier. IDtask states the identifier
of the task for distinguishing it between its twin siblings (tasks from same parent target).
This integer is assigned by the Builder Core, and serves as a unique identification. WCET

states the worst case execution time of the task. This value is fetched from the Targets
Configuration files. inputs is a list of tuples representing every input of the task as follows:

in( type, IDtask, name ) (3.2)

Where type states the type of the input, which can be either int, float or bool. IDtask

here states the identifier of the task that is feeding this input, notice that it is only one
integer since an input can be fed only from one source. name states the name of the
output port (or variable) from which this input is getting its value.

outputs from (3.1) is another list of tuples representing every output of the task as
follows:

out( type, IDstask ) (3.3)

Where type states the type of the output, which again can be either int, float or bool.
IDstask is a list of integers representing the tasks this output is feeding. Notice that they
can be many tasks since an output can feed several inputs at once.

Γ is called the raw data set since it has no transformations and no data analysis is
applied on it. Γ solely describes the complete built scenario of interconnected tasks,
required in the test plan. The main concern, while formulating Γ, is to have the enough
information for proceeding with the data analysis. It is why, inputs and outputs, in (3.1),
are represented differently though they both describe connection ports (or variables).
Redundancy, in this case, is completely avoided for reducing data structures. Subsequently,
it is explained how every argument, of the data tuples, serves a purpose when it comes to
data analysis.
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3.2.2 Task Types

Before describing the data analysis, it is crucial to understand the fundamental classifica-
tion of tasks. Differentiation is made between three fundamental task types: free tasks,
consumer tasks and producer tasks.

Free Tasks
These type of tasks are the tasks which are completely independent from the
communication network. However, these tasks can have a generic number of data
dependencies, either waiting some input arguments for execution, or producing
some output arguments for other task to execute. The key of this type is in having
the data dependencies coming from sibling tasks (from same parent target), thus,
not passing through the communication network.

Consumer Tasks
These type of tasks are the tasks which have input data dependencies coming from
the communication network. Thus, consumer tasks have to wait the desired input
value, for the complete transmission to finish. Only after transmission is received,
consumer tasks can start execution of their function.

Producer Tasks
These type of tasks are the most critical for the scheduling problem. Subsequently, it
is explained how producer tasks define the time slots of the schedule time-line. After
finishing execution, producer tasks produce an output which is transmitted through
the communication network. This output is consumed by the above explained
consumer asks. Therefore, both the execution time plus the transmission time
formulate an output dependency for the producer tasks.

Figure 3.2: Producer (left one), consumer & producer (middle one) and consumer (right
one) tasks.
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Note that the last two types of task, described above, can happen together, i.e. a task
can be both consumer & producer. Thus, the task is said to have both input and output
dependencies with the communication network. Figure 3.2 illustrates three types of tasks.
Going from left to right: producer task, consumer & producer task and consumer task.
Notice the difference between the parent targets, which means any connection between
tasks passes through the communication network first.

Moreover, if a task is consumer & producer, then it is necessary for it to consume
first, and then produce. Otherwise, it will introduce a contradiction in the model, when
scheduling the task for minimum delays. In case it is desired for a task to produce, and
then consume, hence, it must be split into two separate tasks. One producer and another
consumer, as it is in the case of the MoPS system.

3.3 System Complication

The scheduling problem, studied in this thesis, arises within the MoPS system. In such a
system, a CAN bus is shared between all nodes of the system, these nodes are referred
to as targets. Therefore, there is a need of managing the access to the communication
network. Each target, in the distributed system, is a micro controller (µC) directly
controlling the DUT.

Figure 3.3 illustrates the CAN bus shared between the targets of the system. Notice
that targets can be different from each others, the labels over the µCs, state the type
of the target. Every type of target has its own set of tasks that can be executed. The
functionality, of each task, varies along with its execution time WCET. The number of
inputs and outputs, of each task, vary as well. As an example, the task set of the target
type µMoPS_v5, is summarized in Table 3.1. This task set is taken from the Targets
Configuration file, described in Section 2.3.1.

The name, of each task, reflects its functionality. This functionality is defined depending
on the design of the application entity, described in Section 2.3. Therefore the number of
arguments of the task is generic. On the other hand, the origin source of the arguments
value is crucial for the model. Some tasks can be completely independent from the
network, for instance getTemp, can be used for monitoring purposes, and thus, no need
to neither read nor write on the communication network. However, some tasks can be
dependent on the network, either by reading, or writing, or even both. For instance inout,
can be used for controlling a sequence of states between all targets involved in the test
plan. Suppose a specific target has to wait a signal, from other target, before starting
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Figure 3.3: CAN bus communication network between targets.

execution, and also has to trigger the successive target whenever it finishes. When these
sequences increase in number, the problem becomes very complicated, and in its general
form has been shown to be NP-complete [16].

Moreover, any argument received or sent on the network needs a transmission time
interval. Computing this time, mainly depends on the type and number of arguments,
which are generic as previously stated. Therefore, the transmission time is generic as well
and has to be considered by the model. Also, baud rate of the network and overhead of
the protocol are considered, but outside the scope of the model, since they are abstract
parameters.

Determinism is the key concept of real-time behavior, this idea is exploited by defining
discrete time slots where tasks are allowed to execute. Another evident aspect is the CPU
utility, which adheres to scheduling within the time slot itself.

For summing it all together, a simple scenario, formed by two targets, is demonstrated
for highlighting the complication. Target 1 has four tasks to execute, two of them are
free tasks and the other two are producers. Target 2 has two tasks to execute, both being
consumers. Figure 3.4 illustrates the latter explained in a graphical way.

For simplicity, the following suppositions are made:
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Table 3.1: Task set of µMoPS_v5.

Tasks Inputs Outputs
setPwmFreq int −
getPwmFreq − int

setAO float −
getTemp − float

gpioWrite bool −
add int&int int

inint int −
outint − int

inoutint int int

inbool bool −
outbool − bool

inoutbool bool bool

andbool bool&bool bool

infloat float −
outfloat − float

inoutfloat float float

• Both targets are of the same type µMoPS_v5, thus, the used tasks are from the
task set shown in Table 3.1.

• All WCETs of the used tasks are equal.

• Transmission time of an int payload is equal to WCETs of the used tasks.

The case study gives better understanding of data dependencies between free tasks and
network dependencies between tasks of different targets. Figure 3.5 shows a timeline
demonstrating the optimal schedule solution, with respect to minimum latency period
and maximum utility of CPU.

As mentioned previously, transmission time is completely generic but in this case, it is
supposed equal to the WCET. In this context, this time interval can be used for executing
another task, knowing that transmission is done by a peripheral module and not the CPU
itself. The latter pattern is also considered by the model. Moreover, notice that inint is
pushed after outint on Target 1, though the data dependency of inint is already fulfilled.
This is due to the sequence of tasks that a producer carries ahead of it, which makes them
crucial for the model.
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Figure 3.4: Case study between two targets.

Figure 3.5: Case study schedule time-line.

Finally, the declaration of time slots adheres to the producer tasks. Note that, reading
from the network is always ongoing by all targets distributed on the network. In this
context, time slots are defined, as the time windows where tasks are allowed to write over
the network. Consequently, determinism is exploited, and thus, tasks are executed in well
defined discrete time windows.
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3.4 Data Analysis

The task set Γ, described in Section 3.2.1, is analyzed in order to get a formulated task
set Γform. First, the tasks coming from the same targets are grouped. Thus a dictionary
is obtained having the IDtarget’s as key entries. The value entries are, thus, lists of tasks
contained by the respective IDtarget, as follows:

{ IDtargeti : [ τj( IDtask, WCET, inputs, outputs ), . . . ], . . . }
1 ≤ i ≤ n

1 ≤ j ≤ mi

(3.4)

Where n is the number of used targets, and mi is the number of children tasks of the
ith target. The above obtained dictionary, helps is distinguishing between the data
dependencies. Weather, the dependency, comes from the communication network or
internally from another sibling task (from same parent target).

3.4.1 Internal Dependencies

Internal dependencies are the data dependencies originating within a target itself, that is
to say, if input arguments, of a task, come from another sibling task belonging to the same
target. For instance, in Figure 3.4, outint and inint have an internal data dependency
within Target 1.

For avoiding redundancy, internal dependencies are defined relying only on the inputs
of the task. Since it is verified, that every input, of a task, is connected to another
output, of another task, as per the sanity requirements of Section 4.3.4. Hence, the
internal dependencies of outputs are intrinsically considered as well. For every task an
interDependencies list is defined. interDependencies is built going through all inputs,
of a task, and check if the IDtask (origin source of the input) belongs to the same
tasks’ group. Algorithm 1 expresses what is formerly described. In other words, the
interDependencies, of a task, states the IDtask’s, for which this task has to wait before
being able to execute.

3.4.2 Network Dependencies

Network dependencies are data dependencies originating within distinct targets, that is
to say, if input arguments, of a task, come from another task which belong to another
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Data: Dictionary : targets’ groups

Result: interDependencies← [ ]

foreach (IDtarget, taskSet) ∈ Dictionary do
foreach task ∈ taskSet do

foreach input ∈ task → inputs do

if input→ IDtask ∈ taskSet then
interDependencies← interDependencies+ input→ IDtask

end
end
task → interDependencies← interDependencies

interDependencies← [ ]

end
end

Algorithm 1: Internal dependencies algorithm.

target. Thus, for this dependency to propagate from one target to another, it has to pass
through the communication network. For instance, in Figure 3.4 getPwmFreq and inint
have a network dependency that has to propagate between Target 1 and Target 2.

There are two types of network dependencies, consumer and producer. The main
difference is that, in the producer, transmission time is considered while, in the consumer,
transmission time is not considered.

Consumer Dependencies

Consumer dependencies mean that, a task, is waiting for an argument to be produced on
the network in ordered to be consumed, before being able to execute. Similarly to the way
of finding interDependencies, it is relied only on the inputs of a task. For every task a
consumerDependencies list is defined. While checking for interDependencies, an else
clause, is added within Algorithm 1, and thus, obtaining the consumerDependencies.
In other words if the IDtask (origin source of the input), does not belong to the same
tasks’ group, thus, it is a consumer dependency. And therefore, a task has to wait, for
the IDtask’s listed by consumerDependencies, before being able to start execution. The
modified Algorithm 2 expresses what is formerly described.
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Data: Dictionary : targets’ groups

Result: interDependencies← [ ], consumerDependencies← [ ]

foreach (IDtarget, taskSet) ∈ Dictionary do
foreach task ∈ taskSet do

foreach input ∈ task → inputs do

if input→ IDtask ∈ taskSet then
interDependencies← interDependencies+ input→ IDtask

end
else

consumerDependencies← consumerDependencies+ input→
IDtask

end
end
task → interDependencies← interDependencies

task → consumerDependencies← consumerDependencies

interDependencies← [ ]

consumerDependencies← [ ]

end
end

Algorithm 2: Internal & consumer dependencies algorithm.

Producer Dependencies

Producer dependencies arise from data dependencies between two tasks coming from
distinct targets as mentioned before. This dependency has two concerns, the network
physical dependency which includes transmission time, and the data flow sequence. The
data flow dependency is intrinsically included within consumerDependencies. While the
network physical dependency is considered here and is called producer dependency. In
other words, when a task has an output argument to be written over the network, then,
the task should wait to get exclusive access over the communication network.

In this context, it is relied on the outputs of a task, specially because an output can be
connected to several inputs. But from a network point of view, it is still only one message
while being read from different targets. This is taken into account while computing
transmission payload, which is described forthcoming.

For every task a producerDependencies list is defined. producerDependencies is built
going through the outputs, of a task, and check the IDtask’s for each output. Those
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IDtask’s represent the tasks, which this output is connected to. If an IDtask does not
belong to the same tasks’ group, thus, it is a producer dependency. Algorithm 3 expresses
what is formerly described. In other words, producerDependencies states the IDtask’s
which have to wait for this task to finish (execution + transmission time), before start
executing.

As a consequence, the data flow sequence is considered twice, in both consumer-
Dependencies & producerDependencies. It is why only one of them is enough for
formulating the constraints of the optimization problem. The use of the first, consumer-
Dependencies, is solely for the purpose of recognizing the consumer task. More about
this issue is described in Section 3.7.

Data: Dictionary : targets’ groups

Result: producerDependencies← [ ]

foreach (IDtarget, taskSet) ∈ Dictionary do
foreach task ∈ taskSet do

foreach output ∈ task → outputs do

foreach IDtask ∈ output→ IDstask do

if IDtask /∈ taskSet then
producerDependencies← producerDependencies+ IDtask

end
end

end
task → producerDependencies← producerDependencies

producerDependencies← [ ]

end
end

Algorithm 3: Producer dependencies algorithm.

Transmission Time Computation

As previously mentioned, the producer tasks have to produce output arguments over the
communication network. These arguments, referred to as payload, need certain time to
be transmitted from one target to another through the communication network. This
time is called transmission time or Tx time. Tx time is completely dependent on the
type of the used communication network. As a consequence, the computation approach
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is split in two. First, recognizing the type of payload, which is a requisite for the model.
Second, running the time computation function, which is network specific. In this way,
the model’s tolerance is enhanced for such design changes later on if desired.

Recognizing the type of payload is done while looking for the producerDependencies.
The type of the output, which is considered to be invoking a producer dependency, is
appended to the payload. However, the payload is not duplicated, in case the output
is connected to several input arguments. Because, from the network point of view the
message is still one, even if several targets are reading it. The modified Algorithm 4
expresses what is formerly described.

Data: Dictionary : targets’ groups

Result: producerDependencies← [ ], payload← [ ]

foreach (IDtarget, taskSet) ∈ Dictionary do
foreach task ∈ taskSet do

tempIsPayload← False

foreach output ∈ task → outputs do

foreach IDtask ∈ output→ IDstask do

if IDtask /∈ taskSet then
tempIsPayload← True

producerDependencies← producerDependencies+ IDtask

end
end
if tempIsPayload then

tempIsPayload← False

payload← payload+ output→ type
end

end
task → producerDependencies← producerDependencies

task → payload← payload

producerDependencies← [ ]

payload← [ ]

end
end

Algorithm 4: Producer dependencies & payload recognizing algorithm.

The MoPS system uses high-speed CAN bus communication network, which is described
in Section 2.2. Therefore, the proposed time computation function is specific for CAN
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Type Representation
int 4 bytes

float 4 bytes

bool 1 byte

Table 3.2: Variables’ representation in bytes.

protocol. Recall that the data frame of a CAN transmission carries a significant amount
of overhead and bit stuffing. Considering the last-mentioned, and for being in the safe
side it is assumed the worst case of bit stuffing, which is all bits being 1’s. The below
formula helps in computing the size of a complete frame in bits:

8n+ 44 +

[
34 + 8n− 1

4

]
1 ≤ n ≤ 8

(3.5)

Where n is the number of bytes in the data field of the frame. One data frame can carry
up to 8 bytes of data maximum. Thus 8n + 44 represents the size of the transmission
frame before stuffing, and the remaining of the formula, estimates the maximum bit
stuffing.

The type of arguments (or variables), of a task, can be either int, float or bool. Table 3.2
shows the variables representation size in bytes. The number of data frames needed, to fit
a required transmission is computed, by simple calculations using the payload. Thus, the
total number of bits that has to be transmitted per producer task is obtained. Finally, to
get the estimated transmission time (Tx time), the obtained number of bits is divided by
the speed (or baud rate) of the high-speed CAN bus, which is 1 Mbps.

3.5 Time-Line Model

One of the objectives, of this thesis, is to find a time schedule where all the dependencies,
previously described, are respected. In such a way, that the maximum CPU utility is
exploited, for obtaining the minimum latency for each and every task, and consequently
the minimum period. In other words, it is desired to find the optimal time-line. Before
understanding how this is included in the model, some concepts are first explained: time
slots and its corresponding buffer.
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3.5.1 Time Slots

In systems with real-time behavior, determinism always comes first. In order to insure
the latter, the concept of time slots is introduced. Time slots are discrete time windows,
where writing over the communication network is granted for one and only one target. As
described in Section 3.4.2, the transmission frame size is generic, and the task WCET is
generic as well. Therefore, time slots cannot be predefined, specially that the tasks, used
within the MoPS system, are non-preemptive tasks. As a consequence, producer task are
responsible for determining the time slots. This is mainly the reason why the producer
tasks are crucial in the proposed model.

Regarding the two other type of tasks, free and consumer tasks, eventually fall in one
of the time slots, respecting their precedence constraints. However, tasks have to obey
the bounds of the time slots, this issue is discussed in more details in Section 3.7.

Slot Buffer
The parameters of a task which describe time are: WCET and Tx time. Both of
them are estimated values, WCET is estimated outside the scope of this thesis.
While Tx time, is estimated within the model, as shown in Section 3.4.2. Because
of this estimations and other uncertainties, it is desired to have some marginal time
within the time slots for staying in the safe side, and for respecting the desired fault
tolerance of the design. This concept is introduced into the proposed model by the
name of slot buffer. Slot buffer is a scheduling parameter defined uniformly to all
slots by the test engineer. It is assigned to the producer task, since they are the
ones defining time slots.

3.5.2 Task Delays

For every task τi, two time-line instants are defined: φi & Di. φi being the offset of
the task in the time-line, i.e. where the task is supposed to start execution at earliest.
Di being the deadline of the task in the time-line, i.e. where the task is supposed to
end execution by latest. These two instants are used as the decision variables of the
optimization problem. Thus the final objective, is to find the tuple (φi, Di) for each task
τi, respecting the precedence constraints and the scheduled communication. In order to
do so, the concept of TUF, described in Section 2.6, is employed. For each of φi & Di, a
distinct TUF is defined as follows:

TUFφi : [ 0, T −WCETi ]→ [ 0, 1 ] (3.6)

TUFDi : [ WCETi, T ]→ [ 0, 1 ] (3.7)
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Where T is the estimated upper bound for the schedule period. The estimation of T is
explained in Section 3.7. The input domain intervals are defined for the ideal case (i.e. no
precedence constraints) Ideally, any task should be able to start between the beginning of
the time-line (zero instant) and the end of the time-line subtracting the task’s execution
time (period T - WCET). Also, any task, ideally, should be able to end between the
WCET instant, of the task, and the end of the time-line (period T ).

Both TUFφi & TUFDi are chosen to be decreasing straight lines going from a maximum
of 1 into a limit of 0. If the latter is attained for any of φi or Di, it denotes an invalid
value for the respective instant parameter. Therefore, an invalid schedule. Whereas, if the
maximum is attained, it means minimum latency obtained for the respective parameter.
Minimum latency is the main goal, so in other words, a value of 1 is sought for all the
defined TUFs.

3.6 Task Set Transformation

Before drawing up the optimization problem’s constraints, the raw task set Γ has to be
transformed into a formulated task set Γform. That is to say, all the algorithms, explained
in Section 3.4, have to be run over Γ. Moreover, the slot buffer attribute is appended
in correspondence with what is stated in Section 3.5.1. Hence, the output, of such data
transformation, is a dictionary of task sets grouped with respect to their parent target:

{ IDtargeti : [ τformj
(. . . ), . . . ], . . . }

1 ≤ i ≤ n

1 ≤ j ≤ mi

(3.8)

Where n is the number of used targets, and mi is the number of children tasks of the ith
target. Every task τj of Γ is transformed into τformj

, as follows:

τformj
( IDtask, WCET, Tx, slotBuff, interDependencies,

consumerDependencies, producerDependencies ) (3.9)

3.7 Optimization Problem

The objective is to transform Γform into a complete structured ILP problem. For easing
the understanding, the ILP problem is uncovered step by step, explaining each by its own.
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Any optimization problem starts by recognizing the decision variables. For the proposed
model, the decision variables are the mentioned task delay in Section 3.5.2. Therefore,
for every task τformj

, two decision variables are defined, φj & Dj . Ideally, the relation
between the decision variables is as follows:

Dj ≥ φj +WCETj (3.10)

But since it is desired to find the optimal time-line (i.e. minimum latency), as described
in Section 3.5, the following equality is forced for every task τformj

:

Dj = φj +WCETj (3.11)

In this context, the idea of having two decision variables can be dropped. But it is decided
to keep them both, for easing the formulation of the constraints, and for keeping the
option of returning the inequality of (3.10) at any time.

3.7.1 Period Bound

The decision variables chosen represent time instants, thus, they can take any value
between [ 0, +∞ ]. But for giving an upper limit to the optimizer, an estimation, of
the upper bound for the schedule period T , is computed. Specifically for the case of an
unfeasible schedule. The upper bound of T is computed by accumulating the WCET plus
the Tx (if any), plus the slotBuff (if any) of all the tasks. The latter three parameters
are attributes of the formulated task τformj

described in (3.9). Algorithm 5 expresses
what is formerly described. In other words, the upper bound T supposes as if all the
tasks are happening consecutively over one target only.

Data: Γform : formulated task set dictionary

Result: periodBound← 0

foreach (IDtarget, taskSet) ∈ Γform do

foreach task ∈ taskSet do
periodBound← periodBound+ task →WCET + task → Tx+ task →
slotBuff

end
end

Algorithm 5: Period T upper bound algorithm.
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3.7.2 Objective Function

As described in Section 3.5.2, the concept of TUF is employed. The objective function
is defined as the accrual of all the TUFs designated for both φj & Dj . Recall that
each TUF can attain values between [ 0, 1 ]. 0 representing an invalid value for the
respective instant parameter. Whereas 1 denotes that the minimum latency is obtained
for the respective instants parameter. Since it is desired to find the optimal time-line (i.e.
minimum latency). Therefore, the goal is to maximize the objective function:

max
∑
j

(TUFφj + TUFDj ) (3.12)

3.7.3 Inequality Constraints

The first constraints introduced are for ensuring exclusivity of CPU on each target. Every
target can execute one task a time at most, no matter the type of the task. Hence two
tasks cannot be scheduled at the same time on the same target’s time-line. Figure 3.6
helps in understanding this concept. Suppose having two task, A & B, which have to
be scheduled on the same target. Supposing Task A is happening where it is shown
on the time-line. Then Task B can either end before Task A starts, OR Task B can
start after Task A has already ended. The same stands for scheduling Task A with

Figure 3.6: CPU exclusivity.

respect to Task B. The complication in this case, is the presence of the OR logic. This is
problematical because it cannot be translated into inequality constraints, unless auxiliary
binary variables are defined. Therefore, the constraints are constructed as follows:

Di ≤ φj + T ∗ δ(i, j) (3.13)

Dj ≤ φi + T ∗ (1− δ(i, j)) (3.14)
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Where δ is the auxiliary binary variable, defined for every (i, j) combination of tasks,
coming from the same parent target. Such that i 6= j. Notice the presence of the factor
added on the right side of the inequalities. Depending on the value of the binary variable,
this factor is present or not, to ensure that the two inequalities do not contradict each
others. Thus, the OR logic is modeled. In principle, this factor has to be a big number,
as a consequence, the upper bound of the time-line period T is chosen to be used.

The exclusivity of the communication network is formulated as inequality constraints
as well. For defining such constraints, the producer tasks are the intended parameters,
thus, the slots shaping. Following the same logic for constructing (3.13) & (3.14). The
constraints are defined as follows:

Di + Txi + slotBuffi ≤ φj + T ∗ α(i, j) (3.15)

Dj + Txj + slotBuffj ≤ φi + T ∗ (1− α(i, j)) (3.16)

Where α is another auxiliary binary variable, defined for every (i, j) combination of
producer tasks. Such that i 6= j. Notice the presence of Tx time and the slotBuff , which
have values solely for producer tasks.

It is necessary to make sure that both consumer & free tasks, fall completely under the
margins of a certain slot. In other words, any task cannot be surpassing a slot boundary.
Therefore, following the same above logic once more, the constraints are constructed as
follows:

Di ≤ Dj + Txj + slotBuffj + T ∗ β(i, j) (3.17)

Dj + Txj + slotBuffj ≤ φi + T ∗ (1− β(i, j)) (3.18)

Where β is the last auxiliary binary variable used. Defined for every (i, j) product between
a producer task j and a non-producer task i (consumer or free task). Notice that, only
the end boundary of the slot is considered, because intrinsically the start boundary of
the consecutive one will be considered and so on.

Finally, constructing the data dependencies constraints is simpler due to their suitable
modeling described in Section 3.4. The interDependencies attribute, of every task τformj

,
aids in defining such constraints. As previously stated, interDependencies lists all the
IDtask’s for which τformj

has to wait before starting execution. Hence the constraints
are formulated as follows:

Dk ≤ φj
∀ k ∈ interDependenciesj

(3.19)
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For the other data dependencies between producers & consumers, the constraints are
formulated by using the corresponding defined attributes. The producerDependencies, of
every task τformj

, is only used instead of using both defined attributes, since in this context,
the consumer dependencies are inherently considered. Recall that producerDependencies
lists the IDtask’s which have to wait for τformj

to finish execution plus its transmission
time, before being able to start. The constraints are thus as follows:

Dj + Txj + slotBuffj ≤ φk
∀ k ∈ producerDependenciesj

(3.20)
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CHAPTER

4
Implementation

This chapter exhibits a full explanation of the complete SW implementation of the TDCS-
Planner proposed by this thesis. The system model integration, discussed in Chapter 3, is
included as well. Also, the builder and all its complementarities are presented. Moreover,
all the data base interfaces, of the TDCS-Planner, are described within this chapter. The
whole process of generating a schedule plan is error-prone, starting from the data fetching
going to the targets’ instantiation plus defining their tasks’ interconnections. Specifically,
since at the last-mentioned steps, human interaction is required to build the test plan.
Hence, this chapter shows how several approaches are taken, from within the design phase,
to avoid human mistakes as much as possible. Several sanity checks are implemented as
well, to make sure the output of the TDCS-Planner is completely infallible.

The flow of this chapter goes by describing roughly the SW architecture from a higher
abstract level point of view. Then, the details of all the modules are exhibited going from
a high to low level of abstraction. Thus, beginning from the user interfaces, which are
listed in a hierarchical order. Moving on to a deeper abstract level, where the core modules
are presented. The core modules emphasizes the approaches which this thesis brings up
to research. Finally the complete data base of the TDCS-Planner is demonstrated, from
every aspect of data interface that the tool brings in need.

4.1 Software Architecture

The SW architecture describes the paradigm followed in order to achieve the required
functionality. Thus, the architecture states what modules are created, how are they
connected together, what hierarchies are they following. These questions are answered
within this section. Recall that the programming language used, for developing the
TDCS-Planner, is Python 3 language. The choice of using the latter language is argued
in Section 2.7. For developing the graphical user interface aspect of the TDCS-Planner,
PyQt5 libraries are used, this is also argued in Section 2.7.1.
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Figure 4.1 shows a hierarchical chart of the modules composing the SW architecture.
The Main Window module represents the highest hierarchical level of the TDCS-Planner.
It is the parent class for all the other classes defining the rest of the modules. The Menu
Bar, Tool Bar & Status Bar represent the highest level graphical user interface, by which
the user can directly interact with the Main Window module. Either in an input direction,
by triggering desired actions through both the Menu Bar & Tool Bar, or in an output
direction, by getting the messages prompted over the Status Bar. The Main Actions
portrays, solely, a core aspect, where all the main actions, of the TDCS-Planner, are
defined. Except the specific actions, of the children modules, which are defined within
the respective module itself. Having the Main Actions module defined over the highest
hierarchical level, gives a flexibility advantage. For instance, the latter module can be
accessed from any other child module, thus, dealing with dependency injections is not
necessary.

The Targets module describes the targets instantiations of the desired targets, used
while building the test plan. This module is, also, responsible for fetching the configuration
files of the predefined targets. Hence, both of the core and user interface aspects are
necessary for the Targets module. The Builder module is where the test plan is designed,
with the desired requirements. The Builder provides a very interactive and friendly
user interface, where all the precedence relations are drawn up by means of connections
between the tasks. Simultaneously, this module stores the test plan data in the backend,
and is able to run the sanity checks over the data, before passing it over, for the Scheduler
when needed. This last-mentioned actions stand as the core aspect of the Builder module.
The Scheduler module runs the scheduling algorithm based on what is described in
Chapter 3. In addition, it allows the illustration of the resulted schedule time-line, in
a very comprehensive way, emerging a smooth user interface experience. Finally, the
Prompt module shows one of the logging streams. The main logging stream, where the
user can get all sorts of feedback depending on the interactions performed.

In the next sections, each module is explained comprehensively. Talking first about the
user interface aspect, of the modules, and what features are chosen to be included for
better enhancing the user experience. Then, the core aspect is described, stating what
methods are followed in order to prevent errors as much as possible. Also, all the sanity
checks developments are elaborated, where data cross-checks are issued. The explanation
is thus concluded by exhibiting all the data interfaces of the TDCS-Planner with the
memory data base.
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Figure 4.1: SW architecture modules.

4.2 User Interface

When developing graphical user interfaces, the main aim comes in achieving the best
user experience possible. Before describing how the last-mentioned aim is attained, the
requirements from the TDCS-Planner are recalled. From a solely interface point of view,
the TDCS-Planner should allow the user to do the following main tasks:

• Create target instances based on the available configuration files, assigning for each
their specific parameters (Labeltarget, CAN ID,...).

• Create task instances with reference to the parent target, assigning as well their
corresponding parameters (Default Inputs, Labeltask,...).

• Create the desired precedence relations between the instantiated tasks.

• Generate the optimal schedule time-line for the designed test plan.

Having these points clear, the user experience can be further argued. Forthcoming, the
user interface, of every module, is discussed by its own.

4.2.1 Targets Tree

This part of the TDCS-Planner is where the user is able to create target instances. Recall
that targets refer to specific µC. There are certain parameters that configure a target,
forming a targets configuration, as described in Section 2.3.1. In this section, the focus is
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only on the parameters of interest for the user interface. The rest of the configuration
parameters are dealt with in Section 4.4.2. From the targets configuration, for instance
the one shown in Listing 2.1, the only two entries which are relevant for the user are the
name and the tasks. This is why it is chosen to represent the information, given by the
last-mentioned entries, in the form of a hierarchical tree. Specially that it is convenient
to emphasize the parent-child relation between every used task with its corresponding
target. These children tasks are then used as dragging items for visualizing tasks over the
Builder View.

Figure 4.2 illustrates the targets tree window of the TDCS-Planner. As depicted, three
columns are used for visualizing the data of every target instance. The first column lists
the Name of each target and task. The other two columns list the Inputs and Outputs for
each task. Moreover, for every entry in either of the last-mentioned columns, the name
and the type of the argument (or variable) are both stated. Notice as well, that beside
the name of the instantiated target, there are two other parameters. The Labeltarget and

Figure 4.2: Targets tree window.
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the assigned CAN ID. Both of the last-mentioned parameters are determined by the user.
One last thing, is the color box shown beside each target. This is automatically assigned
by the targets core, as described in Section 4.3.1. The color helps the user distinguish
between the parent target of each used task, while building the test plan. Thus, enhancing
the parent-child relation in a user friendly manner. This amount of information about
every target instance is enough for the user to be able to proceed building the desired test
plan. If a target is already instantiated, the user has the option to remove it at any time.
To perform that, the user has to hoover over the desired target instance, and trigger the
Remove Target action from its corresponding context menu. Hereafter, the parameters
reserved by the removed target instance are freed by the targets core, and can be used
again, as described in Section 4.3.1. Once a target instance is removed, all its linked tasks,
used in the test plan, are automatically removed as well.

New Target Dialog

This dialog is prompted whenever the New Target action is triggered. The latter action is
defined within the Main Actions module, and thus, can be triggered in a global scope,
as described in Section 4.3.5. The dialog is chosen to be of modal type, considering
the importance of the action. Also, since there is no logic operation that can happen
simultaneously with creating a new target. Therefore, the dialog blocks the user interface,
until the dialog is either accepted or rejected.

Figure 4.3: New target dialog.

Figure 4.3 demonstrates the dialog. The entries of the dialog determine all the necessary
parameters which are assigned by the user for creating a target instance. Target label
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should be a non-empty unique string. Target type gives the possibility to choose a target
type from the combo box, which are dependent on the fetched targets configuration files.
CAN ID is either automatically assigned by the TDCS-Planner, or by the user, it should
be an unique positive integer. The last entry, is the Number of targets which determines
how many instances are desired. All of the entries’ data undergo certain logic for either
checking the correctness of the inputs, or for prompting the correct options, in the case
of the Target Type for instance. These last-mentioned data checks are performed by the
targets core, which is addressed in Section 4.3.1.

Modify Target Dialog

This dialog is directly linked with a certain target instance, already created by the user
in the targets tree. In this context, the action that triggers the dialog is not of global
scope, thus it is not part of the Main Actions module. In order to trigger the action, the
user has to hoover over an existing target instance, and trigger the Modify Target action
from its corresponding context menu. Hereafter, the dialog prompts as demonstrated by
Figure 4.4. The dialog is chosen to be of modal type. Hence, it blocks the user interface
until the dialog is either accepted or rejected.

Figure 4.4: Modify target dialog.

The aim of this dialog is to give the user the possibility to modify the basic target
parameters, after the instance has already been created. Target label, CAN ID and
Painting color are the modifiable parameters. The Painting color is just in case the user
desires to visualize the tasks of this specific target in a different color. The user has to
choose between a list of available predefined colors. First, for ensuring the uniqueness of
colors used and second, since some colors are saved for specific use by the TDCS-Planner.
For instance, the colors of the connections, described in Section 4.2.2. Moreover, data
entries are re-checked to be consistent with the logic of TDCS-Planner, and ensure
correctness, as exhibited in Section 4.3.1.

42



4.2 User Interface

4.2.2 Builder View

This is the most sophisticated part of the the graphical interface of the TDCS-Planner,
since it is where the whole test plan gets designed. Therefore, the user spends most of
the time, while using the TDCS-Planner, within the Builder View. Thus, the aim is to
make the Builder View as user friendly as possible to enhance the user experience. A
graphical scene is used, as the main component of the builder, where the user is able to
graphically visualize each task with all the precedence relations. Figure 4.5 illustrates
the Builder View. Notice the task items along with their connection items determining
the data dependencies (precedence relations). Forthcoming, each of the last-mentioned
items is discussed. Moreover, for better enhancing the user experience certain features
are offered by the Builder View. For instance, pan & select tools are available for panning
and selecting through the tasks items and connection items. The arrow keys can also be
used for navigating, or moving items through the Builder View. Zooming feature is also
available by either using the mouse wheel, or triggering the actions defined in the Main
Actions module, as described in Section 4.3.5.

Figure 4.5: Builder view window.

Task Item

First thing that has to be considered, is the direction of the data flow. It is chosen to
take the general convention of data flow, which is from left to right. Thus, any task
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must take its inputs at the left side and provide its outputs at the right side. The
inputs and outputs are represented in terms of ports. The number of ports, of every task
item, reflects the number of inputs/outputs defined in the Targets Configuration file, as
described in Section 2.3.1. The Builder module, automatically, computes the best size of
representation of the task item, for giving a symmetric aligned shape containing all the
necessary predefined ports. Each port has a predefined labelport and type as it is seen in
the inputs/outputs configuration. The input port configuration contains the default value
as an entry, and in some cases MIN and MAX are included entries as well. MIN and
MAX are shown for the user while accessing the modify parameters dialog, described in
Section 4.2.2. On the other hand, labelport, type, and default value are visualized, for the
user, as a tool tip whenever a port gets hoovered over, as it can be seen in Figure 4.5.

The referencing of a task with its parent target is depicted by two things. First, the
assigned color of the target, which is used for painting the body of the task item. Second,
the Labeltarget of the target is written above the name of the task. The second link helps
making the TDCS-Planner user friendly for color-blindness cases as well. Finally, the
user can also insert a Labeltask for a specific task. The Labeltask, by default, is none but
it can be modified by the user, as it is shown in Section 4.2.2. As a consequence, it is
visualized above the task item, as also can be seen in Figure 4.5.

Modify Parameters Dialog

Similarly to the modify target dialog, described in Section 4.2.1, this dialog is also linked
to a specific task item already instantiated in the Builder View. Thus, the action to
prompt the dialog is not part of the Main Actions module. To prompt the dialog, the
user has to either double click the desired task item, or use its respective context menu
to trigger the corresponding action. The dialog is chosen to be of modal type. Hence,
it blocks the user interface until the dialog is either accepted or rejected. Figure 4.6
illustrates the parameters dialog corresponding to the task item defined by addint (from
the task set of µMoPS_v5 ). Task label is an absolute entry of this dialog, i.e., it is shown
for all parameters dialogs of any task item. This latter entry has no restrictions, it can be
also left empty. When a non-empty string is entered, it is visualized above the task item.
The group box Inputs Default Values is relative to every task item. It shows the available
input arguments of the corresponding task, allowing the user to choose the desired default
values for each, depending on their types. If the port type is either int or float, then,
a tool tip is shown when hoovering over the argument’s entry, demonstrating the MIN
and MAX limits, as it can be seen in Figure 4.6. The MIN and MAX attributes are not
always predefined for each task in the Targets Configuration. If they are not predefined,
then, the TDCS-Planner forces the default MIN and MAX limits for the respective types.
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Attaining these limits is ensured by the entry spin boxes, thus, this whole procedure is
completely error-proof.

Figure 4.6: Modify parameters dialog.

Connection Item

This item allows the user to establish the desired data dependencies (precedence relations),
by simply drawing it between two ports. To draw a Connection, the user has to click the
desired port and then latch it, by clicking again the second port. For respecting the logic
of variables, the input port is allowed to have only one connection, while the output port
can have many. Moreover, the color of the connection reflects the type of the variables,
where this connection is being established, in the case of matching types. In this context,
blue, orange, and green are respectively used for int, float, and bool. These last-mentioned
colors are saved for the use of the TDCS-Planner only and cannot be chosen as a target’s
color. However, if the connection is established between two distinct variable types, then
it is considered to be a broken connection. This latter connection is visualized as a red
dashed line to emphasize its invalidity.

4.2.3 Scheduler View

The aim of this view is to allow the user visualize the results of the generated schedule.
The Scheduler View contains two main windows: schedule table & schedule time-line.
The schedule table allows the user to read the values of all the fundamental parameters,
computed by the scheduler, for each task. The schedule time-line, provides the user a very
smooth expressive time-line carrying all the time instants of the tasks. In this way, the
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user can get a full picture of the generated schedule in both quantitative and graphical
perspectives. Figure 4.7 demonstrates the default Scheduler View, i.e., before any schedule
has been generated.

Figure 4.7: Schedule default view window.

Schedule Table

The schedule table represents the values of the fundamental parameters determined by
the Scheduler. Each row of the table characterizes a task item, used in the designed test
plan. The columns display the data entries of each item. The Slot column represents the
slot ID, where this task item is scheduled, showing positive integers. The Target column
lists the name of the parent target of the respective task item. The complete name is
shown, i.e., Labeltarget, type and the assigned CAN ID. The Task column represents the
name of the task item. The rest of the entries represent all the absolute time-line instants.
Thus, the columns’ unit follows the time unit determined in the preference settings, which
is described in Section 4.2.5. The Slot Start represents the time instant where that task’s
slot is starting. The Overlap Bound states the instant until which the respective slot
provides overlapping. The Buffer Start lists the starting instant of the respective slot
buffer. The Slot End represents the ending instant of the respective task’s slot. The
Task Start portrays the instant where the task is supposed to start. The WCET lists the
worst case execution time of each task. Finally, the Tx Time states the transmission time
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required by the task. This has non-zero values only if the task is a producer, as described
in Section 3.2.2.

Schedule Time-line

After a schedule is generated, it is directly visualized in the graphical time-line. The time
axis resolution can be chosen by the user within the Display Settings Dialog, described
in Section 4.2.5. This view also provides the zooming feature which can be accessed
either by the mouse wheel or through the respective actions defined in the Main Actions
module. Figure 4.8 illustrates an example of the schedule time-line after a schedule
has been generated. The y-axis, of the time-line, represents the different targets, used
in the designed test plan. Each target, named T < IDtarget >, can have several rows
for its illustration. The first row portrays two type of tasks. The free tasks which are
distinguished by being drawn with a dashed-line contour, and the consumer tasks with a
solid-line contour. These task types have no transmission time, as described in Section 3.2.
Thus, their representation on the time-line is solely based on their corresponding WCETs.
Every producer task occupies a distinct unique row for itself. This allows the clean
representation of the overlapped time intervals between distinct tasks. The producer task
has two time intervals to be depicted over the time-line. The WCET and Tx Time are
separately shown over the time-line as portrayed by Figure 4.8. Moreover, the colors
of the targets, determined during the building phase, are preserved for emphasizing the
relation between the Builder View and the Scheduler View. Finally, the legend of the
time-line shows the resulted period along with the Baud Rate (BR).

Figure 4.8: Schedule view window.
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4.2.4 Prompt View

The Prompt View is where the user is able to see the logging information of the TDCS-
Planner. This view shows one of the logging streams of the TDCS-Planner, which are
described in Section 4.4.4. Figure 4.9 illustrated the Prompt View of the tool.

Figure 4.9: Prompt view window.

4.2.5 Main Window

The Main Window user interface is the collection of the above described user interfaces.
In addition to them, the Menu Bar, Tool Bar, and Status Bar are, also, included. The
former two mentioned is where the user can access the actions defined in the Main Actions
module, while the latter is just an output interface for the user. Figure 4.10 illustrated
the main window of the tool.

The Targets Tree and the Prompt View are implemented as docked widgets. This gives
the user the option to float these windows, which enhances the user experience. The
central window, of the Main Window, displays a tabbified widget, which contains both
the Builder View and Scheduler View. Having both views in form of tabs grants better
presentation of the TDCS-Planner, and endorses the logic of the applications as well.
Since, the Builder View and the Scheduler View are not meant to be simultaneously used.

The Menu Bar represents all the actions defined by the Main Actions module. Al-
ternatively, the Tool Bar shows a group of the Main Actions, which the user uses more
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Figure 4.10: Main window.

frequently. Moreover, the user is able to manipulate the zooming feature, within the
Tool Bar, for both the Builder View and Scheduler View, while getting a percentage
representation of the respective zooming scale. Forthcoming, all the actions defined in
Main Actions module are described in Section 4.3.5. Ultimately, the Status Bar shows all
the temporary messages with respect to the user interactions. Also, over the right side,
the latter bar displays permanently the version of the TDCS-Planner.

Preference Settings Dialog

This dialog helps the user determine the preference settings for the application instance.
It is prompt whenever the Preference Settings action is triggered. The latter action is
defined in the Main Actions module, and thus, can be triggered in a global scope as
described in Section 4.3.5. The dialog is chosen to be of modal type, considering the
importance of the action. Hence, it blocks the user interface until the dialog is either
accepted or rejected. Moreover, this dialog offers the reset option, which permits the user
to get back to the default preference settings, at any time during the application instance.

Figure 4.11 demonstrates the dialog. The entries of the dialog list the necessary settings
that the user has to specify for the work flow of the TDCS-Planner instance. The
Scheduler Parameters group box lists the data entries which are required by the Scheduler,
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Figure 4.11: Preference settings dialog.

i.e., they take part in the schedule computation. Baud rate determines the BR of the
used communication bus. Recall that the MoPS system uses CAN bus. Thus, the listed
options for the Baud rate entry are the default CAN bus speeds. The Time unit specifies
the time unit for all the scheduler computations, including the fetched time parameters,
from the Targets Configuration. The Slot routine is a feature offered by the Scheduler
which gives the user the choice between Fixed and Variable slot width. More about this
scheduling feature is presented in Section 4.3.3. The Slot buffer determines the amount
of buffer desired for the scheduling slots, which is uniquely considered for all slots.

The Schedule Script Parameters group box lists the data entries which are part of the
Schedule Script, as described in Section 4.4.6. The Slot overlap bound determines the
allowed overlap limit in each slot, which is uniquely considered for all slots. The Round
buffer specifies the desired buffer for the complete period or round. All of the above
mentioned data entries have a data consistency with the allowed data type, for each
respectively. Therefore, the procedure of inputting these entries is completely error-proof.

Display Settings Dialog

This dialog helps the user determine the display settings for the application instance.
It is prompt whenever the Display Settings action is triggered. The latter is defined in
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the Main Actions module, and thus can be triggered in a global scope as described in
Section 4.3.5. The dialog is chosen to be of modal type. Hence, it blocks the user interface
until the dialog is either accepted or rejected.

Figure 4.12: Display settings dialog.

Figure 4.12 demonstrates the dialog. It contains only one entry, which is Axis resolution.
The user can select between the list of available resolutions, which depends on the chosen
time unit. By default, the axis resolution is a unit vector. Once a schedule time-line
is generated, the user can switch between the resolutions, which redraws the time-line
instantaneously.

Help Browser

Help Browser is the only non-modal dialog used in the TDCS-Planner. It allows the
user to navigate through the help pages while using the tool simultaneously. Figure 4.13
demonstrates the help browser dialog. On the left side, there is a tabbified window from
which the user can switch between Contents and Index. The former displays the full help
tree of the content. The latter lists certain keywords from the most probable questions.
Using these last-mentioned tab window, the user can choose what to display on the right
window of the dialog, which is a web browser. All the entries of the tree of content have
a linked Hyper Text Markup Language (HTML) file which describes verbosely what to
do in that respective case.

4.3 Core Modules

The SW architecture of the TDCS-Planner, described in Section 4.1, is composed of
several modules. In the previous section, the user interface aspect is fully presented.
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Figure 4.13: Help browser dialog.

In this section, the core developed functionalities of each module, composing the SW
architecture, is exhibited. Moreover, the core functionalities which are managed by the
Main Window module, are presented separately. The latter module stands at the highest
hierarchical level of the SW architecture, and hence, its provided functionalities carry a
big part of what this thesis brings to research. For instance, the sanity checks which are
run to ensure infallibility during the scheduling process. Also, the actions offered by the
Main Actions module, which are described within a separate sub-section.

4.3.1 Targets Core

The Targets Core is where the Targets Configuration files are fetched. The fetching
process is described in Section 4.4.2. For this section it has to be noted, that the fetched
data is stored as an attribute of the Targets Core module. Whenever the new target dialog,
described in Section 4.2.1, is requested, the fetched data is used to display the available
target types within the dialog. In this context, it is ensured that the target options
displayed have already passed the fetching sanity checks, described in Section 4.4.2.

Any target instance has both representable and non-representable parameters. The
latter is referred to as Targetdata. The Labeltarget of any target instance has to be a
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unique non-empty string. Therefore, before acknowledging the data input of the user,
the Targets Core checks the correctness of the latter mentioned entry. In other words,
the core first ensures that the Target label entry is not an empty string. In addition, it
compares the user entry with the already reserved Labeltarget’s (labels of other created
target instances). If the last-mentioned requirement is not attained, the Targets Core
sends a customized warning message to the Main Window module, which is prompted
over the Status Bar.

The CAN ID of any target instance must be a positive unique integer. The entry spin
box of the latter already assures the correctness of the entry’s type. In addition, the
uniqueness of the CAN ID is checked by the Targets Core, similarly to the paradigm
stated above. If the check is not successful, a customized warning message is sent to the
Main Window as well. For this entry, the TDCS-Planner offers the option of an automatic
CAN ID assignment. If this option is chosen by the user, the Targets Core assigns the
smallest CAN ID available for the respective target instance.

The Number of targets entry is not checked itself, but if the user inputs it greater
than one, then the Labeltarget gets automatically indexed by the respective number.
Also, the CAN ID of each target instance, gets automatically assigned the consecutive
integer. Therefore, the checking procedure mentioned above are again run by the Targets
Core. Hereafter, the data input by the user is acknowledged by Targets Core, which
automatically assigns a color for the target instance. The color is randomly picked from
a list of predefined colors, such that every pick gets exclusively reserved for the target
instance. In this way, the Targets Core ensures that no color is used twice for distinct
instances.

A target instance is characterized by its Labeltarget, CAN ID, Color, and the non-
representable Targetdata. Recall that a target instance is illustrated into a tree item, as
described in Section 4.2.1. The children of the tree item, are the target’s tasks. The
Targets Core grants the possibility to originate a Multipurpose Internet Mail Extensions
(MIME) data type out of the latter mentioned children items. Consequently, a child task
item can be dragged and dropped, over the Builder View, while indexed to its respective
target instance, through the originated MIME data type.

The Targets module provides the possibility to modify or remove a target instance at
any time. Whenever a target instance gets modified, the Targets Core runs the same
checking procedure, described above, over the data entries. Moreover, if a target instance
gets removed by the user, then all its reserved parameters get freed, and can be again
used by new target instances. Also, the Targets Core notifies the Builder Core to remove
all the respective tasks of the removed target instance.
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4.3.2 Builder Core

The Builder Core is responsible for structuring the data of the test plan, which is built
by the user. The Builder View accepts drop items resembled by a MIME data type,
originated from the Targets Core. Whenever one of the latter gets dropped over the
Builder View, the Builder Core automatically unpacks the data and transforms it into a
task instance. This task instance is what the Builder View illustrates as a graphical task
item, as described in Section 4.2.2. The Builder Core keeps track of all the instantiated
tasks, and stores them in the backend along with their respective links to the Targets
Tree. Therefore, any modification performed on a target instance is directly reflected on
the respective task instance.

Apart from the target’s instance reference, a task instance is characterized by its Name,
Labeltask, IDtask, Inputs, and Outputs. The Name of the task is fetched from the task
data passed through the MIME object. IDtask is a positive unique integer assigned
automatically by the Builder Core. The Labeltask parameter is assigned by the user
and has no restrictions, the Builder Core considers it none by default. The Builder
Core is responsible of creating port instances for each Input and Output of the task
instance. Hence, the task instance attributes, Inputs and Outputs, are lists of the latter
port instances. Every port instance is characterized by its Labelport, Type, Default, MIN,
MAX and Direction. The latter parameters are also fetched from the task data passed
through the MIME object. The Default attribute is modifiable by the user through the
modify parameters dialog, as described in Section 4.2.2.

Builder Core offers two modes of functioning: Modedefault and Modeconnecting. The
former is where the user creates task instances, while the latter is where the user
establishes the data dependencies through connection instances. A connection instance is
characterized by its Out, In parameters, and a Valid flag. The former two parameters,
represent the port instances where this connection is established, while the latter flag
asserts the validity of the connection. It is to say, if the connection instance is established
between two distinct types of port instances, then the connection is set invalid by the
Builder Core, and vice versa. Moreover, the Builder Core monitors all the connection
instances and stores them in the backend as well. Both, the connection and task instances
are selectable, thus, they can be removed by triggering the remove selected action,
described in Section 4.3.5. If a task instance is removed, the Builder Core automatically
removes all its respective established connection instances as well.

Finally, Builder Core provides a data check method, which is accessible by the Main
Window module when running the sanity checks, as described in Section 4.3.4. In addition,
another data extraction method is provided, from which the raw data set Γ originates.
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This latter set is described verbosely in Section 3.2.1. The extraction method is invoked
by the Main Window module within the scheduling procedure. The whole procedure is
presented in the Generate Schedule action described in Section 4.3.5.

4.3.3 Scheduler Core

The modeling process, described in Chapter 3, occurs within the Scheduler Core. The
preference settings parameters are stored in the backend of the Scheduler Core. These
parameters aid the Scheduler Core in modeling the ILP optimization problem. The PuLP1

modeler is used to formulate the optimization problem. The problem is thus passed to a
COIN-OR Branch and Cut (CBC)2 solver. Whenever a scheduling process is requested
by the user, the Scheduler Core receives the raw data set from the Main Window module.
The raw data set is only delivered if the sanity checks have been successfully completed.

The modeling and solving process for the optimization problem are time consuming.
Therefore, if the latter processes are executed within the main thread of the TDCS-Planner
instance, the user interface freezes for a significant time. To overcome this issue, the
Scheduler Core creates another exclusive thread to execute the modeling and solving
processes of the ILP problem.

To ensure thread safety, all the attributes necessary for the scheduling procedure, are
passed as arguments to the thread constructor. Once the solver is finished, the results are
communicated back to the main thread for illustration, using the signal-slot mechanism.
The signal-slot mechanism provided by PyQt, ensures thread safety as well. The Scheduler
Core reformulates the last-mentioned results, and thus delivers them to the Scheduler
View for the demonstration of both the schedule table and scheduler time-line.

Moreover, the Scheduler Core extracts the Schedule Description and Schedule Script,
whenever a successful schedule is generated. These are both stored in the backend of
the core and are accessible for the Main Window module for exporting, as exhibited in
Section 4.4.

1PuLP is an LP modeler written in Python: https://pypi.org/project/PuLP/
2CBC is an open-source mixed integer linear programming solver written in C++:
https://github.com/coin-or/Cbc/blob/master/
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4.3.4 Sanity Checks

The test plan is designed by the testing engineer, therefore it is very error-prone. The
TDCS-Planner provides intermediate verifications all along the generation process of the
test plan. Whenever the user requests the generation of the test plan schedule, the stored
structured data within the Builder Core undergoes an all-inclusive sanity check. This
check, makes ensures that:

• All the port instances, of all the task instances, have at least an established
connection. Thus, there is no produced argument which is not consumed by a task,
and vice versa.

• All the established connections are valid. Therefore, all the data dependencies have
identical argument types.

Once the above points are fulfilled, the Builder Core can proceed extracting the raw data
set.

The TDCS-Planner also provides a complete sanity check for the project description file.
Though the latter file is originated by the TDCS-Planner, but it is intended to be used
by a future tool instance and not specifically the instance of origin. The fetched data,
from the Targets Configuration files, changes from one instance to another. Therefore,
the correctness of the description has to be reviewed from every aspect:

• The used target instances are checked for: matching the configuration parameters
with the fetched files, and uniqueness of target parameters (Label, Color, and CAN
ID).

• The used task instances are checked for: correct referencing with their parent target,
matching the configuration parameters including the default values assignment, and
uniqueness of the IDtask.

• The used connection instances are checked for: correct referencing with their
respective tasks, matching of the input/output ports, and uniqueness of connection
in case of an input port.

Only when all sanity checks successfully pass, the TDCS-Planner proceeds by loading the
description file.

Moreover, the TDCS-Planner ensures a complete sanity check for the schedule script.
The latter script is originated by the tool itself, and it is provided to the MoPS system.
Therefore, it is necessary to re-check again the generated script from every aspect:
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• The used target instances are checked for: matching the configuration parameters
with the fetched files, and uniqueness of targets CAN IDs.

• The used variables are checked for: correct referencing in the task instances, and
matching of types.

• The task instances are checked for: correct referencing with the targets’ instances,
configuration parameters, and correct referencing of variables.

• The slots are checked for: correct assignment of target/task instances, and for
matching round period with last slot end.

The TDCS-Planner provides the command line execution of the last-mentioned sanity
check. The command that has to be run is as follows:

tdcs --complete-check <path of script>

When running this command, the tool fetches the Targets Configuration files, and runs
both, the schema and sanity check over the passed script.

4.3.5 Main Actions

Main Actions module is defined over the highest hierarchical level. Its interface is managed
by the Main Window module, which ensures a global scope access for all the other modules.
For the user to access the Main Actions, the Main Window represents them in the Menu
Bar and Tool Bar. The former is split with respect to the actions categories and represents
all the available actions, while the latter only shows the most used actions for easing the
user experience. Forthcoming, all the action categories are presented, exhibiting all the
actions in each category. Figure 4.14 illustrates the category menus represented by the
Menu Bar.

File Menu

New Project action creates a new blank project. If there is a project going on within the
tool instance, the user is asked to save/discard it before proceeding. Whenever a new
project is created, the tool re-fetches the Targets Configuration files. This action can be
accessed from both, Menu and Tool bars, along with the action shortcut Ctrl+N.
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Figure 4.14: Main actions distributed over the category menus.

Open Project action prompts the file explorer dialog, where the user can choose an
existing project to load into the tool instance. If there is an open project within the tool
instance, the user is asked to save/discard it before proceeding. The project description file
chosen undergoes a schema verification and the sanity check, described in Section 4.3.4.
This action can be accessed from both, Menu and Tool bars, along with the action
shortcut Ctrl+O.

Save and Save As actions save the project description file of the ongoing project,
respecting the corresponding schema. Save action can be accessed from both, Menu and
Tool bars, along with the action shortcut Ctrl+S. Save As action can be accessed from
both, Menu and Tool bars, along with the action shortcut as Ctrl+Shift+S.

Log/Debugging is a checkable action, which enables the DEBUG level of logging within
the file stream. More about the logging streams is shown in Section 4.4.4. This action
can be accessed from both, Menu and Tool bars. Export/Schedule Description and
Export/Schedule Script actions, export the Schedule Description and Schedule Script
respecting the schemas accordingly. Both of the latter actions are only activated, if a
schedule has been generated by the user. Export/Schedule Script action can be accessed
from both, Menu and Tool bars, along with the action shortcut Ctrl+E. Export/Sched-
ule Description action can be accessed from the Menu bar, and the action shortcut,
Ctrl+Shift+E.

Quit action invokes the close method of the application. If there is an open project
within the tool instance, the user is asked to save/discard it before proceeding. Quit
action can be accessed from the Menu bar, and the action shortcut, Ctrl+Q.
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Edit Menu

Remove Selected action deletes all the selected items from the Builder View. This action
is only activated, if the user selects at least one item. The item can be either of both
connection or task item. Any removed Task Item, automatically removes its corresponding
Connection Items. Remove Selected action can be accessed from both, Menu and Tool
bars, the Builder View ’s context menu, and the action shortcut Del.

Display Settings and Preference Settings actions prompt the display settings dialog
and preference settings dialog, described in Section 4.2.5. Display Settings action can be
accessed from the Menu bar, and the action shortcut, Ctrl+D. Preference Settings action
can be accessed from the Menu bar, and the action shortcut, Ctrl+T.

View Menu

Zoom In, Zoom Out and Reset Zoom actions work on the active view between either
of the Builder View or the Scheduler View. The active view is the selected tab of the
tabbified widget in the central window. Zoom In and Zoom Out actions can be accessed
from both, Menu & Tool bars, along with the scroll wheel of the mouse, scroll up and
down respectively. Reset Zoom action can be accessed from both, Menu and Tool bars
(by pressing over the scale ratio percentage).

Insert Menu

New Target action prompts the new target dialog, described in Section 4.2.1. New Target
action can be accessed from both, Menu and Tool bars, the Targets Tree’s context menu,
and the action shortcut Ctrl+I.

Help Menu

On Item action activates the Whats This mode of the application. The latter is when the
user can click on any desired component of the tool, and gets a customized help message.
On Item action can be accessed from the Menu bar, and the action shortcut Shift+F1.
Help Contents prompts the help browser, described in Section 4.2.5. Help Contents action
can be accessed from the Menu bar, and the action shortcut F1. About action prompt
an about dialog, describing the application licenses along with version of the tool. Help
Contents action can be accessed from the Menu bar.
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4.4 Data Base

The data interface of the tool contains both input and output channels. The first is
through which the tool fetches the Targets Configuration files, the Configuration Files for
the tool, and the pictures used within the GUI. The input channels are necessary for an
application instance to be functional. The output channels are features provided by the
TDCS-Planner, categorized by two formats, one for the logging messages and another for
the descriptive files. All the descriptive data interfaces of the tool are chosen to be JSON
format. Section 2.1 argues the choice of JSON format.

4.4.1 Configuration Files

On the startup of a TDCS-Planner instance, the application searches within the predefined
configuration directory for three folders containing:

• The logging configuration file, which configures the application logger.

• The schema files, for the descriptive data interfaces which are JSON format. There
is a schema for the Targets Configuration, the Project Description File, the Schedule
Description and the Schedule Script.

• The compressed HTML files describing the help contents, in a binary Qt Help
Collection (QHC) format. This allows shrinking the data size requirement of the
tool, instead of having all the HTML files.

4.4.2 Target Description

Whenever a new project is started within an application instance, the tool fetches the
Targets Configuration files, described in Section 2.3.1. The TDCS-Planner searches for
the last-mentioned files in a predefined directory, and filters them to read only the JSON
files among the available ones. The obtained files undergo a schema check to verify the
correctness of the expected data structure. Once this check is passed, the tool proceeds
by fetching the data from the Targets Configuration. The latter data is utilized, by the
TDCS-Planner, for describing any target instantiated within the ongoing project.
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4.4.3 Project Description File

The Project Description File is originated by the tool, it describes completely the project
while avoiding redundancy. The project description is generated respecting the predefined
JSON schema. Thus the new file extension is created (.tdcs), of format Time-Driven
Communication Schedule (TDCS). This last-mentioned format contains:

• The preference settings chosen for the project.

• All the targets’ instantiated in the Targets Tree, along with all the compiled
parameters, and the state of the tree items (expanded/collapsed).

• All the items instantiated in the Builder View, along with all the necessary inter-
connections between the items.

This file is generated by the TDCS-Planner, whenever the user saves an ongoing project.

4.4.4 Logging

The application defines one logger, which contains two handlers. The first is a file handler,
directed to log.tdcs.log. The location of the latter is the working directory of the tool
instance. The detailed formatter of the file handler is as follows:

Date & Time−Module Name (line #)−Function Name−Level Name−Messages

The second is a stream handler, directed to the Prompt View. The formatter of the second
handler, is a simple formatter as follows:

Date & Time− Level Name−Messages

By default, the log level is set to INFO level, which means that the DEBUG logs are not
handled by any handler. Once the DEBUG level is checked by the user, the file handler
starts handling the DEBUG logs.

61



Chapter 4 Implementation

4.4.5 Schedule Description

Once a successful schedule is generated, the Schedule Description is formulated. The
latter describes all the schedule parameters, along with the timing assignments. The
Schedule Description is generated respecting the predefined JSON schema. Thus the
new file extension is created (.sd), of format SD (Schedule Description). The description
exhibits the following:

• The scheduler parameters, declared by the user within the preference settings, for
producing the schedule.

• The computed period of the schedule.

• The slots timing description: start, overlap bound, buffer and end.

• The tasks assigned within each slot, stating all its attributes: name, parent target,
WCET, type and default inputs (if any). Also the computed start time-instant, and
the transmission time (if any).

4.4.6 Schedule Script

The Schedule Script is a JSON format file, which serves as an input for the MoPS system.
Therefore, it does not explain all the schedule parameters neither all the tasks used within
the project generating the schedule. The script contains all the necessary information for
managing the communication network Thus, Free Tasks are not mentioned in the script,
even if they are part of the project of origin. The Schedule Script is generated respecting
the predefined JSON schema. Thus, the new file extension is created (.ss), of format SS
(Schedule Script). The script exhibits the following:

• From the used targets, only the parents of producer or consumer tasks used within
the project.

• The communication network links, which are the variables of the producer or
consumer tasks used within the project.

• The producer or consumer tasks used within the project.

• The slots time-instants, describing the time-line assignment of the targets and tasks,
above mentioned.
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5
Evaluations

This chapter covers the evaluation of the implementation of the TDCS-Planner. First, a
complete test plan is demonstrated in the Results section. In addition, a discussion is
made on the efficiency of the test plan design along with the scheduling approach. Finally,
the proposed improvements are presented, which are integrated into the TDCS-Planner.

5.1 Results

The problem statement of this thesis is divided into three areas, as described in Section 1.3.
This section presents how the research questions are answered. The answers are exhibited
in coherence with the division of the problem statement.

5.1.1 Test Plan Builder

The implementation of the test plan builder, resulted with an intuitive user interface.
Figure 5.1 shows the GUI of the builder. On the left side, the targets window is depicted.
Within this window, the user is able to visualize all the instantiated targets, in the form
of a hierarchical tree. In this way, the user can easily understand the parent-child relation
between the tasks and the targets.

On the left side, there is a wide scene area, for designing the precedence relations,
required for the test plan. Therefore, the user can easily drag and drop the tasks over the
scene, and define the DAG by simple clicks between the ports of the tasks. The test plan
design, can become very complex, thus, the more space, the better it is for the user. The
builder scene can be zoomed in/out, for easing the design process. Moreover, the builder
window can be made the only window of the TDCS-Planner, i.e., all the other windows
can be hidden, as shown in Figure 5.2. Hence, more space is offered for drawing the DAG
of the test plan.

On the bottom side, the prompt window is depicted. Within this window the user can
see the log messages, while progressing with the design procedure.
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Figure 5.1: Test plan builder.

Figure 5.2: Extended builder scene.

5.1.2 Test Plan Schedule

The scheduling approach elaborated within this thesis, provided a convenient model for
the real-time test plan. The optimal schedule time-line is achievable within negligible
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execution time, for the simple test plan designs. Figure 5.3 demonstrates the output
schedule time-line, for the test plan shown in Figure 5.1. The displayed schedule time-line
is optimal with respect to minimizing maximum latency. Notice that the resolution is
narrowed for showing the complete time-line at once without the need to scroll.

Figure 5.3: Test plan schedule.

After generating a successful schedule, the scheduler window replaces the builder scene
in the main window automatically. In the scheduler window, the schedule is described,
both quantitatively and graphically. In this context, the user gets a full understanding
of the generated schedule. The schedule time-line is visualized, in the schedule scene, in
an intuitive representation. Within the schedule scene, the user can navigate, and zoom
in/out through the time-line. Also, the user can distinguish the type of tasks, from their
respective drawing on the time-line, as stated in Section 4.2.3. Moreover, the scheduler
window can be made the only window of the TDCS-Planner, similarly to the builder
window. As a consequence, the approach for representing the schedule time-line resulted
in a very smooth user experience.

The main complication of the research question relative to this section, is how to solve
an NP-complete problem. This thesis was able to provide a very convenient model for
formulating the project specific problem. The methodology followed narrows the search
space as much as possible, while respecting the precedence relations. However, for complex
test plans, the resulted optimization problem is still time consuming. Therefore, more
improvements have to be done within the solver scope, which is not part of this thesis
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work. In this thesis, the solver used is the CBC solver, since it is the only free solver
available.

5.1.3 Error Proof

The test plan design process, proposed by this thesis, is completely error-proof. The
possible errors are avoided, all along the building process, by directing the user during
the test plan procedure. The sanity checks performed over the DAG, designed within the
builder, ensure design correctness before generating any schedule.

The implementation of the TDCS-Planner provides complete sanity checks for: targets
configuration, description file, and schedule script. Therefore, the data files can be re-
checked again, and detect any possible malware. Listing 5.1 shows a simple example of
the output message from the TDCS-Planner, in the erroneous case. Notice how the user
is directed for easily fixing the error found, within the checked file.

Listing 5.1: Erroneous case example.

14:45:25 ,163 - WARNING : Target config C:\ _work\Coding\TDCS\
data\targets\uMoPS_v5.json doesn 't meet schema
requirements!

'intt ' is not one of ['int ', 'float ', 'bool '].

On instance['tasks '][0][ 'in '][0][ 'type ']:
"intt"

14:45:25 ,165 - ERROR : Could NOT fetch target 's config file C
:\_work\Coding\TDCS\data\targets\uMoPS_v5.json!

5.2 Improvements

During developing, the implementation of TDCS-Planner got very intuitive after several
reviews and productive usages from a small user group. The improvements done can be
summarized as follows:
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• The objective function, of the optimization problem, is defined as the accrual of the
TUFs, of each task. The TUFs of the producer tasks is multiplied by a weight factor,
for emphasizing the importance of the producer tasks. Therefore, the latency of any
producer task is more significant with respect to the objective function. This helps,
in getting the optimal scheduler faster.

• The automatic CAN ID assignment for a target instance, eases the creation of a
target instance, and directs the user towards occupying the smallest integers first.

• Zooming feature was added for both of the views of the TDCS-Planner, in a sense
that the user can visualize the percentage zoom ratio.

• Keyboard shortcuts were added to almost all actions of the TDCS-Planner, also,
the key arrows can be used for navigating through the builder view.

• Resolution feature was added for the schedule time-line, to better visualize the
tricky time-lines (too small/long).
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CHAPTER

6
Conclusion & Outlook

This chapter presents the work summary of this thesis, by which the problem state-
ment questions are answered. In addition, an outlook is exhibited where some possible
improvements and additional implementation ideas are covered.

6.1 Thesis Contributions

A desktop application has been developed within this thesis. The application covers
the three division areas which emerged from the problem statement (see Section 1.3).
The divisions can be recalled roughly: the design framework (builder), the scheduling
technique (scheduler), and the error resistance and verifications. The first two, builder
and scheduler, are the main structures of the developed tool. While the last one, error
resistance, enfolds both of the latter structures, thus, all the logical operations of the
application have been manipulated to be error resistant as much as possible.

The implemented builder solves the design complications, it provides a very user friendly
methodology for drawing the DAG defining the precedence relations between the tasks.
Moreover, the designed framework translates the distributed system architecture into a
hierarchical tree with colorful representations of the tasks. In this context, the design of
the test plan gets very simple (drag and drop, and connect), even if the architecture of a
distributed system is known to be very complicated.

The developed scheduling approach aimed in modeling the scheduling problem into a
less complex optimization problem. The proposed system model succeeded in narrowing
the search space which eases the optimization process. The model exploited the time utility
concept within the objective function of the problem, therefore, the obtained schedule
is optimal with respect to minimizing maximum latency. In addition, the time slots are
formulated within the developed scheduling approach, which ensures the exclusivity of
the communication network while respecting the precedence constraints. The formulated
time slots can be both, fixed or flexible. The implementation provides, also, the concept
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of buffering which serves in obtaining a more dependable schedule time-line. Thus, it can
be concluded that the generated schedule time-line succeeded in exploiting determinism
and dependability. However, the execution time required for obtaining such a schedule,
for a complex test plan, is still not negligible, which opens a window for improvements.

Ultimately, the developed application provides several sanity checks all along the test
plan generation procedure. The sanity checks are made accessible from the console, which
makes the application accessible to the SW application programming interface (API) of
the parent project MoPS system. As a consequence, the verification and validation, of
the generated test plan description and schedule, is achieved within this thesis.

6.2 Future Works

The implementation of the proposed tool works pretty well, however there is always place
for improvements. The main improvements concern the speeding of execution of the
optimization problem. Within this thesis, the CBC solver is used, since it is the only
free solver available. The CBC solver spends too much time finding the best solution
when the problem is too symmetrical. On the other hand, there are several commercial
solvers that can be used which already surpass the symmetry issue. Recall that for
modeling the optimization problem, the PuLP modeler is used. The PuLP modeler has
an already available API for several commercial solvers and not only for CBC. Some of
the commercial solvers which are worth trying are stated below:

Gurobi
The Gurobi Optimizer is a commercial optimization solver for several type of
problems. Gurobi offers an academical license, which can be obtained compiling
the license form.

CPLEX
The CPLEX Optimizer is provided by IBM. It is a commercial solver for several
mathematical problems. The academic license can be obtained as well, through the
Academic Initiative program offered by IBM.

Moreover, improvements can be done regarding the user interface. A command line
is quasi-developed already within the course of this thesis, but its integration into the
TDCS-Planner is yet to be done. This command line can be easily integrated within the
prompt window of the application.
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Acronyms

µC micro controller

API Application Programming Interface

BR Baud Rate

CAN Controller Area Network

CBC COIN-OR Branch and Cut

CPU Central Processing Unit

DAG Directed Acyclic Graph

DUT device under test

EDD Earliest Due Date

EDF Earliest Deadline First

FSM finite-state machine

GUI graphical user interface

HTML Hyper Text Markup Language

HW hardware
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Acronyms

ILP Integer Linear Programming

JSON JavaScript object notation

KAI Kompetenzzentrum Automobil- und Industrie-Elektronik

LDF Latest Deadline First

MIME Multipurpose Internet Mail Extensions

MoPS modular power stress

QHC Qt Help Collection

SoC System on Chip

SW Software

TDCS Time-Driven Communication Schedule

TDCS-Planner Time-Driven Communication Schedule Planner

TP-Builder test plan builder

TUF Time Utility Function

WCET Worst Case Execution Time
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