

POLITECNICO DI TORINO

master’s Degree in Computer Engineering

master’s Degree Thesis

Cloudifying desktop applications with
Kubernetes

Supervisor: Candidate:
Prof. Fulvio Risso Antonio Riccardo Roccaro

Academic Year 2019/2020

 i

Table of contents
Chapter 1 - Introduction .. 1

Chapter 2 - State of art ... 4

2.1. Introduction ... 4

2.2. Virtual Desktop ... 4

2.3. Desktop as a Service .. 6

2.4. Use apps from your Android device on your PC 7

Chapter 3 - Used technologies ... 9

3.1. Introduction ... 9

3.2. Docker .. 9
3.2.1. Introduction .. 9
3.2.2. Docker images .. 12
3.2.3. Dockerfiles ... 12
3.2.4. Docker containers ... 16

3.3. Kubernetes ... 18
3.3.1. Introduction .. 18
3.3.2. Pods .. 19
3.3.3. Deployments and ReplicaSets .. 22
3.3.4. Jobs ... 23
3.3.5. Services and DNS for Services and Pods ... 24
3.3.6. Secrets .. 27
3.3.7. Persistent Volumes and Persistent Volume Claims ... 28

3.3.7.1. Introduction .. 28
3.3.7.2. Persistent Volumes and Persistent Volume Claims lifecycle 29
3.3.7.3. Creating Persistent Volume ... 31
3.3.7.4. Creating Persistent Volume Claims ... 31
3.3.7.5. Consuming Persistent Volume Claims in a Pod 32

3.3.8. Assigning Pods to Nodes .. 32
3.3.8.1. Using nodeName .. 33
3.3.8.2. Using Node Affinity .. 33

Chapter 4 - KubernetesOnDesktop architecture 36

4.1. General architecture ... 36

4.2. Offloading the application execution ... 36

4.3. Containerizing the client-side .. 38

 ii

4.4. Fully cloudified architecture challenges ... 39
4.4.1. Managing the video streams ... 39
4.4.2. Managing the audio streams ... 39
4.4.3. Forcing the desktop application execution in a remote node 40
4.4.4. Forcing the viewer execution in the local node .. 40

4.5. Requirements ... 40

Chapter 5 - KubernetesOnDesktop: server-side implementation 41

5.1. Introduction ... 41
5.1.1. Tunneling and connection security protocols and tools 41
5.1.2. Video streaming protocols and tools .. 41
5.1.3. Audio streaming tools .. 42

5.2. Docker implementation .. 42
5.2.1. Introduction .. 42

5.2.1.1. The base_image Dockerfile .. 42
5.2.1.2. The app_image Dockerfile ... 43

5.2.2. Managing the tunneling and the connection security 44
5.2.3. Managing the video stream .. 45

5.2.3.1. Setting the VNC password .. 45
5.2.3.2. Cleanup the already running VNC server instances 46
5.2.3.3. Starting the VNC servers .. 46
5.2.3.4. Running the windows manager and the target desktop application 47

5.2.4. Managing the audio stream .. 48
5.2.5. Exploiting the host hardware capabilities .. 48

5.3. Kubernetes implementation ... 49
5.3.1. Introduction .. 49
5.3.2. Managing the connection security .. 50
5.3.3. Managing the video stream .. 52
5.3.4. Managing the audio stream .. 54
5.3.5. Managing the pod scheduling .. 54
5.3.6. Managing the pod reachability ... 55
5.3.7. Managing the data persistency ... 56
5.3.8. Managing the applications concurrency ... 58

Chapter 6 - KubernetesOnDesktop: client-side implementation . 60

6.1. Introduction ... 60

6.2. Native implementation .. 60
6.2.1. Introduction .. 60
6.2.2. Managing the remote pod reachability ... 60
6.2.3. Managing the video stream .. 61

6.2.3.1. Managing the video stream connection security 61

 iii

6.2.3.2. Managing the VNC protocol video stream ... 63
6.2.3.3. Managing the noVNC protocol video stream ... 65

6.2.4. Managing the audio stream .. 66

6.3. Docker implementation .. 68
6.3.1. Introduction .. 68
6.3.2. Managing the remote pod reachability ... 68
6.3.3. Managing the video stream .. 69

6.3.3.1. Managing the video stream connection security 69
6.3.3.2. Managing the VNC video stream ... 71

6.3.4. Managing the audio stream .. 73
6.3.5. Managing the applications concurrency ... 76

6.4. Kubernetes implementation ... 76
6.4.1. Introduction .. 76
6.4.2. Managing the remote pod reachability ... 77
6.4.3. Managing the video stream .. 78

6.4.3.1. Managing the video stream connection security 78
6.4.3.2. Managing the VNC video stream ... 79

6.4.4. Managing the audio stream .. 82
6.4.5. Managing the application termination .. 83

6.4.5.1. Implementing the server-side signaling system .. 84
6.4.5.2. Implementing the client-side signaling system ... 85

6.4.6. Managing the pod scheduling .. 87
6.4.7. Managing the applications concurrency ... 88

Chapter 7 - Validation .. 89

7.1. Supported applications and exploited hardware capabilities 89

7.2. Measures .. 90
7.2.1. Resource consumption: native vs containerized vs cloudified application 90

7.2.1.1. Execution context specifications .. 90
7.2.1.2. Measure specifications and used tools ... 92
7.2.1.3. Firefox native execution ... 93
7.2.1.4. Firefox execution with client-side native run mode 94
7.2.1.5. Firefox execution with client-side Docker container run mode 95
7.2.1.6. Firefox execution with client-side Kubernetes pod run mode 96

7.2.2. Start-up time consumption analysis ... 97
7.2.2.1. Firefox execution with client-side native run mode 97
7.2.2.2. Firefox execution with client-side Docker container run mode 98
7.2.2.3. Firefox execution with client-side Kubernetes pod run mode 99

7.3. KubernetesOnDesktop on Liqo ... 100

Chapter 8 - Conclusions ... 101

 iv

Bibliography .. 103

 1

Chapter 1 - Introduction

The aim of this thesis is to explain how to offload a desktop application execution to a
remote Kubernetes cluster node by maintaining its control on the local host through the
Graphical User Interface and the audio stream remotization.

Currently, it is often necessary to execute desktop applications requiring more system
resources (in terms of CPU, GPU, RAM, network et cetera) than the user’s machines may
provide. This lack of resources leads to a significant worsening of the application user
experience or the impossibility of using the application itself. In this regard, the project
described in this thesis enables to offload the desktop application execution to a remote machine
that has sufficient resources to execute it (by maintaining the application control on the local
host).

In effect, thinking about the client-server paradigm, the execution of an application on a
remote machine is not a new concept. However, that kind of application has not a desktop
Graphical User Interface, but it is provided with a web user interface at most. Therefore, in
order to implement the architecture described in this thesis, the first challenge is running a
desktop application on a remote machine and the second one is making the Graphical User
Interface available on the host from which the application will be launched.

In order to achieve these goals, considered the significant potential of the application
containerization technologies and of the container execution on clusters, it has been chosen to
containerize some sample applications by using Docker and then executing the obtained
containers on a Kubernetes cluster.

Obviously, since this project deals with desktop applications, their mere containerization
will be not sufficient as it is necessary to interact somehow with the remote application through
its own User Interface from the local host. Consequently, it has been chosen the VNC protocol
to remotize the Graphical User Interface and the PulseAudio tool to achieve the same goal for
the audio reproduction. Moreover, to reinforce the architecture from a security point of view,
the SSH protocol has been used to create encrypted tunnels wrapping the audio and the video
streams.

The base architecture might work by using the protocols and tools described above.
Nevertheless, the user experience may not result particularly good. In fact, several other
features may be implemented, such as the data persistency.

The mere containerization and on-cluster execution do not guarantee that the data
obtained from the running application will persist once the container execution ends. In fact,
for instance, if the application configuration is modified through its settings menu by the user,
once the container terminates its execution, all the changes will be lost. This is an undesirable
behavior in terms of user experience. Therefore, it has been chosen to use the Kubernetes
Persistent Volume Claims to solve this problem.

So far, the focus was put mostly on the server-side challenges but there are also other
ones to face on the client-side as well. In fact, since on the remote container VNC and
PulseAudio will be respectively employed to manage the video and audio streams, the
installation of a proper software on the local machine is required to interact with those tools.

In this case, different solutions have been found: the simplest one is natively installing
the required software on the local machine. However, as shown in the next chapters, this

 2

solution is not optimal since it causes trouble in terms of user experience. In fact, the software
installation may cause configuration and execution conflicts with the pre-existent applications.
In addition to this, further user’s efforts are necessary to install the required software consisting
in several applications and tools.

Consequently, a possible solution may be the exploitation of the container features on the
client-side as well. Thus, since the container is indeed isolated from the host executing it and
since it contains all the required applications and tools, the final user needs to install and
configure exclusively the Docker engine.

Obviously, this solution also creates some challenges. In fact, since the container is
isolated from the host, it will be necessary to find a way to bind the container’s audio and video
interfaces to those of the hosts.

The previous client-side implementation solutions carry one more challenge due to the
fact that in both cases it will be required to find a way to make the client-side interact with the
remote container in order to create the audio/video tunnels (either encrypted or clear). This
aspect as well as the Kubernetes NodePort services used for this purpose will be discussed
further.

Finally, assuming that the local host could be part of a Kubernetes cluster as well, it has
been decided to exploit some Kubernetes features to implement a fully cloudified environment.
Including in this case, there will be other problems to face. In fact, since Kubernetes
automatically schedules the pods among its nodes, it will be required to force the scheduling in
order to execute respectively the server-side on a remote node and the client-side on the local
node. In this fully cloudified implementation, as it will be explained further, unlike the native
and the containerized implementations, the container reachability will be facilitated due to some
Kubernetes features exploitation.

In the next chapter an overview about the existing projects trying to face problems similar
to that aimed to be resolved in this thesis will be presented.

Chapter three will deal with the theoretical concepts behind the two widely used
technologies, Docker and Kubernetes. Particularly, great emphasis will be placed on Docker
images, on their creation through the Dockerfiles definition and their execution as Docker
containers. Then, the Kubernetes Pods concept will be explored, as well as their creation
through the Deployments and the Jobs, and their reachability through the Services. Kubernetes
core objects (Pods, Deployments, Jobs and Services), will be investigated in detail by describing
their structure and usage. Successively, an overview of Secrets (used to share SSH keys with
the Pods), Persistent Volume Claims (used for data persistency) and Node Affinity (used for the
Pods scheduling) will be provided.

Chapter four shows the general architecture aimed to be built. This part illustrates how to
manage the audio and the video streams and how it is necessary to schedule each component.

In chapter five the server-side implementation of the architecture illustrated in the chapter
four will be discussed. Firstly, a description of the tools used to create the encrypted tunnels
wrapping the audio and the video streams will be provided. Successively, the focus will be
placed on the audio and the video management, the security issues, the pods scheduling (along
with their reachability from the inside and the outside of the cluster), the data persistency and
the application concurrency.

 3

Chapter six revolves around the client-side implementation details based on the three
execution modes (native, Docker container, Kubernetes pod) and the explanation of the client-
side aspects corresponding to those described in the server-side. In particular, the audio and
video management in native mode, as well as the remote pod reachability from the client-side,
will be discussed. The aforementioned audio/video management and pod reachability will be
explored for the Docker mode as well and it will be explained how the Docker interacts with
the host for the audio/video reproduction. Finally, the fully cloudified implementation will be
discussed. It shares some aspects with the Docker container implementation, but it has
additional features (i.e. an easier pod reachability system compared to the Docker
implementation one).

Chapter seven is about the project validation. It will be analyzed the resources
consumption during the project execution and the remote application startup timing. The results
obtained by the client-side execution in each mode (native, Docker container and Kubernetes
pod) will be compared to each other and then to those related to the execution of the offloaded
application natively installed on the host. The applications currently supported in this project
will be illustrated and it will be explained that it is possible to execute the project both in a
vanilla Kubernetes installation and in a cluster running the Liqo project, which virtualizes an
entire remote Kubernetes cluster as a local node.

Chapter eight presents the conclusions of this thesis and possible future project
improvements.

 4

Chapter 2 - State of art

2.1. Introduction

The application execution offloading on a remote host is a feature very useful in case the
local machine has not sufficient resources to execute certain application. For this reason, there
are some solutions to solve this problem, or similar ones, even if they do not precisely produce
the effect this thesis aims at. The three solutions described afterwards are: Virtual Desktop,
Desktop as a Service and Android devices apps usage from PC.

2.2. Virtual Desktop

Virtual desktops are preconfigured images of operating systems and applications in which
the desktop environment is separated from the physical device used to access it1. Users can
access their virtual desktops remotely over a network. Any endpoint device, such as a laptop,
smartphone or tablet, can be used to access a virtual desktop. The virtual desktop provider
installs client software on the endpoint device, and the user then interacts with that software on
the device.

A virtual desktop looks and feels like a physical workstation. The user experience is often
even better than a physical workstation because powerful resources, such as storage and back-
end databases, are readily available. Users may or may not be able to save changes or
permanently install applications, depending on how the virtual desktop is configured. Users
experience their desktop exactly the same way every time they log in, in spite of the device
from which they are logging into.

There are a few different types of virtual desktops and desktop virtualization
technologies:

• With host-based virtual machines, one virtual machine is allocated to each
individual user at login. With persistent desktop technology, that user connects to
the same VM each time they log in, which allows for desktop personalization. Host-
based machines can also be physical machines hosting an operating system that
remote users log into.

• A virtual machine can also be client-based, where the operating system is executed
locally on the endpoint. The advantage of this type of virtual desktop is that a
network connection is not required for the user to access the desktop.

• Virtual desktop infrastructure (VDI) refers to a type of desktop virtualization that
allows desktop workstation or server operating systems to run on virtual machines
that are hosted on a hypervisor in on-premises servers. The user experiences the
operating system and applications on an endpoint device, just as if they were
running locally.

• With desktops as a service (DaaS), a service provider hosts VDI workloads out of
the cloud and provides apps and support for enterprise users.

1 The content of this section has been taken, with some adaptations, from: Vmware official website - Virtual

Desktop, https://www.vmware.com/topics/glossary/content/virtual-desktops, October 10th, 2020.

 5

Virtual desktop providers abstract the operating system from a computer’s hardware with
virtualization software. Instead of running on the hardware, the operating system, applications
and data run on a virtual machine. An organization may host the virtual machine on premises.
It is also common to run a virtual desktop on cloud-based virtual machines. Previously, only
one user could access a virtual desktop from a single operating system. The technology has
evolved to allow many users to share an operating system that is running multiple desktops.

IT administrators can choose to purchase virtual desktop thin clients for their VDI, or
repurpose older or even obsolete PCs by using them as virtual desktop endpoints, which can
save money. However, any money saved on physical infrastructure costs may need to be
quickly reallocated to software licensing fees for virtual desktops.

A virtual desktop infrastructure provides the option for users to bring their own device,
which can again save IT departments money. This flexibility makes virtual desktops ideal for
seasonal work or organizations that employ contractors for temporary work on big projects.
Virtual desktops also work well for salespeople who travel frequently because their desktop is
the same and they have access to all the same files and applications in spite of the location from
where they are working.

There are many advantages regarding the use of a virtual desktop environment:
• Security: One way in which virtual desktops can be superior to physical desktop

machines is security. Data is stored in the data center and not on individual endpoint
machines, which can allow for greater data security. If an endpoint device is stolen,
it does not contain any data for thieves to access.

• Flexibility: For organizations with a flexible workforce, virtual desktops have a
clear advantage. IT administrators can quickly and easily allocate virtual desktops
without the need to provision expensive physical machines to users who might only
need them for a short time.

• Cost: Because virtual desktops require less physical equipment and maintenance,
they can be more cost-effective than physical desktops.

• Easy management: An IT department can easily manage a large number of far-flung
virtual desktops from a central location. Software updates are faster and easier
because they can be done all at once instead of machine by machine.

• Computing power: Thin clients are all that are needed for virtual desktops because
the computing power for the desktops is coming from a powerful data center.

There also are downsides when using a virtual desktop environment:
• If the data center runs out of storage space, users are not able to access their

desktops.
• Large storage environments that have the capacity to store data for multiple virtual

desktops can be expensive.
• Poor network connectivity will adversely affect the user experience, and users will

also not be able to access their desktop if there is no network connection (this may
be the most significant disadvantage of using a virtual desktop).

• Depending on how an organization runs, the benefits of virtual desktops often still
exceed the potential challenges.

 6

A virtual desktop allows users to access their desktop and applications from anywhere on
any kind of endpoint device, while IT organizations can deploy and manage these desktops
from a centrally located data center. Many organizations move to a virtual desktop environment
because virtual desktops are usually centrally managed, which eliminates the need for updates
and app installations on individual machines. Also, endpoint machines can be less powerful,
since most computing happens in the data center.

Virtual desktops are as easy to use as physical desktops. Users simply log in to their
desktop from their chosen device and connect via the network to a remotely located virtual
machine that presents the desktop on the endpoint device. Users can interact with applications
on a virtual desktop in the same way that they would on a physical desktop. Users may or may
not be able to personalize or save data locally on a virtual desktop, depending on which desktop
virtualization technology they are using.

Virtual Desktop Infrastructure or VDI is the desktop virtualization environment that
deliver virtual desktops to endpoint devices from a data center located on premises or in the
cloud. The operating system for the virtual desktop lives in the data center, not the endpoint. In
most cases, these operating systems and computing resources run on virtual machines (VMs)
hosted by hypervisors rather than on physical machines.

2.3. Desktop as a Service

Desktops-as-a-Service or simply DaaS, securely delivers virtual apps and desktops from
the cloud to any device or location2. This desktop virtualization solution provisions secure SaaS
and legacy applications as well as full Windows-based virtual desktops and delivers them to
your workforce. DaaS offers a simple and predictable pay-as-a-go subscription model, making
it easy to scale up or down on-demand. This turnkey service is easy to manage, simplifying
many of the IT admin tasks of desktop solutions.

Desktops as a Service (DaaS) delivers virtual applications and desktop services via a
public or private cloud service. This service can be accessed through an internet connection via
an html-based web browser or a secure application downloaded to a device such as a laptop,
desktop, thin client or tablet.

DaaS is offered as a subscription service and is multitenant in nature. The backend virtual
desktop infrastructure (VDI) infrastructure, including the virtual machines that run desktop
operating systems, is hosted by a third-party cloud provider. The DaaS provider then streams
the virtual desktops to a customer’s end-user devices.

DaaS providers manage the VDI deployment, as well as the maintenance, security,
upgrades, data backup, and storage. And the customer manages the applications and desktop
images. DaaS is a good choice for organizations that does not want to invest in and manage
their own on-premises VDI solution.

DaaS is a form of Virtual Desktop Infrastructure (VDI), hosted in the cloud. With VDI,
an organization deploys virtual desktops from its own on-premises data centers. In-house IT

2 The content of this section has been taken, with some adaptations, from: Citrix official website - What is

Desktop as a Service (DaaS)?, https://www.citrix.com/en-gb/glossary/what-is-desktop-as-a-service-daas.html,
October 10th, 2020.

 7

teams are responsible for deploying the virtual desktops as well as purchasing, managing, and
upgrading the infrastructure.

DaaS is essentially the same thing but the infrastructure is cloud-based. Organizations
that subscribe to a DaaS solution does not need to manage their own hardware.

Desktop as a Service has several pros:
• Flexibility: Employees, seasonal workers and contractors can securely access their

applications, remote desktops, and data from anywhere on cost effective devices,
keeping them productive, no matter where they work.

• Scalability: Rapidly scale up applications and desktops when needed and then scale
down when you no longer need them, keeping IT costs inline.

• Business continuity: DaaS can be a simple way to support a disaster recovery (DR)
plan.

• Cost savings: Pay for only what you use.
• Security: DaaS provides a secure access point for users and simplifies desktop and

app management processes and procedures. With access to applications and
desktops in the cloud, data is securely stored and protected against data loss or
device theft.

2.4. Use apps from your Android device on your PC

Microsoft Windows, with Your Phone apps, offers the possibility of instantly access the
Android apps installed on the user’s mobile device right on user’s PC3. Using a Wi-Fi
connection, Apps allows user to browse, play, order, chat, and more – all while using user PC’s
larger screen and keyboard. The user can add his Android apps as favorites on his PC, pin them
to his Start menu and taskbar, and open them in separate windows to use side-by-side with apps
on his PC – helping the user stay productive.

To interact with the Android apps, user can use his PC’s mouse, trackpad, keyboard, pen
or touch-enabled screen to open, type, scroll, and interact with apps. A few tips for using user’s
mouse and keyboard:

• Single click will behave the same as any single touch/tap interaction.
• Right click anywhere on user’s phone screen to navigate to the previous page.
• Click and hold will behave the same as a tap/hold interaction.
• Click and hold and drag to select content.
• Mouse scroll to move between pages vertically or horizontally.

Some games and apps might not work with a mouse or keyboard. User will need to use a
touch-enabled PC to interact with them.

Apps the user opens on his PC will be running from his Android device. User’s Android
device needs to be on and connected to the same Wi-Fi network in order for this to work. The
Your Phone app is connecting and mirroring apps to user’s PC from user’s Android phone.

3 The content of this section has been taken, with some adaptations, from: Microsoft official website - Use apps

from your Android device on your PC, https://support.microsoft.com/en-us/help/4577326/use-apps-from-
your-android-device-on-your-pc, October 10th, 2020.

 8

User needs to connect his Android device to his PC via the Your Phone app in order to use this
experience.

Finally, user can only open one Android app at a time. The Your Phone app is mirroring
his Android device’s screen and the opened app in it. If the user opens a new app, the one
already opened will be replaced with the new app.

 9

Chapter 3 - Used technologies

3.1. Introduction

In this thesis the aim is to offload the application execution to a remote machine and to
maintain its control on the local host. Since we cannot expect to install each desired software
on the first one nor to choose by hands in which one that software has to be executed, we need
to find a way to automatically schedule the application execution without installing it on the
remote hosts.

The first challenge is avoiding a lot of software installations in the remote machines. Here
it comes the application containerization concept. «A container is a standard unit of software
that packages up code and all its dependencies so the application runs quickly and reliably from
one computing environment to another»4. Once a container has been created, it will be executed
through a container runtime engine installed in the machine. So, we just need to install it once
and then run each desired container without installing the related software natively on the host.
Moreover, this way we can also avoid execution and configuration conflicts. There are several
container engines, we decided to use Docker.

The second challenge is to automatically schedule the container execution on a remote
machine. In fact, to achieve the application offloading, containerizing is not sufficient because
we actually need to make it run on another host that belongs to a cluster. As said before, since
the aim is not choosing by hand the remote machine that will execute that software, an
orchestrator is required. There are several orchestrators, but it was chosen to use Kubernetes.

3.2. Docker

3.2.1. Introduction

Docker is an open platform for developing, shipping, and running applications5. Docker
enables you to separate your applications from your infrastructure so you can deliver software
quickly. With Docker, you can manage your infrastructure in the same ways you manage your
applications. By taking advantage of Docker’s methodologies for shipping, testing, and
deploying code quickly, you can significantly reduce the delay between writing code and
running it in production. Docker provides the ability to package and run an application in a
loosely isolated environment called a container. The isolation and security allow you to run
many containers simultaneously on a given host. Containers are lightweight because they do
not need the extra load of a hypervisor, but run directly within the host machine’s kernel. This
means you can run more containers on a given hardware combination than if you were using

4 Docker official website - What is a container, https://www.docker.com/resources/what-container, September

30th, 2020.
5 The content of this section has been taken, with some adaptations, from: Docker official website - Docker

overview, https://docs.docker.com/get-started/overview/, September 30th, 2020; Docker official website -
What is a container, https://www.docker.com/resources/what-container, September 30th, 2020; Docker official
website - Docker overview, https://docs.docker.com/get-started/overview/, September 30th, 2020.

 10

virtual machines. You can even run Docker containers within host machines that are actually
virtual machines.

Figure 1: Virtual machine model6

The picture above shows the virtual machine model. As you can see, virtual machines
(VMs) are an abstraction of physical hardware turning one server into many servers. The
hypervisor allows multiple VMs to run on a single machine. Each VM includes a full copy of
an operating system, the application, necessary binaries and libraries - taking up tens of GBs.
VMs can also be slow to boot.

Figure 2: Docker container model7

6 Docker official website - What is a container, https://www.docker.com/resources/what-container, September

30th, 2020.
7 Idem.

 11

The picture above shows the container model. As you can see, unlike the VMs, containers
are an abstraction at the app layer that packages code and dependencies together. Multiple
containers can run on the same machine and share the OS kernel with other containers, each
running as isolated processes in user space. Containers take up less space than VMs (container
images are typically tens of MBs in size), can handle more applications and require fewer VMs
and Operating systems.

As said before, containers and virtual machines can be used together to provide a great
deal of flexibility in deploying and managing app.

In the previous section we mentioned that a container will be executed by a container
runtime engine. For this purpose, Docker provides the so called “Docker Engine” that is a
client-server application with these major components:

• A server, which is a type of long-running program called a daemon process (the
dockerd command).

• A REST API, which specifies interfaces that programs can use to talk to the daemon
and instruct it what to do.

• A command line interface (CLI) client (the docker command).

Figure 3: Docker engine8

The CLI uses the Docker REST API to control or interact with the Docker daemon
through scripting or direct CLI commands. Many other Docker applications use the underlying
API and CLI.

The daemon creates and manages Docker objects, such as images, containers, networks,
and volumes.

8 Docker official website - Docker overview, https://docs.docker.com/get-started/overview/, September 30th,

2020.

 12

3.2.2. Docker images

A Docker image is a read-only template with instructions for creating a Docker
container9. Often, an image is based on another image, with some additional customization. For
example, you may build an image which is based on the ubuntu image, but installs the Apache
web server and your application, as well as the configuration details needed to make your
application run.

You might create your own images or you might only use those created by others and
published in a registry. To build your own image, you create a Dockerfile with a simple syntax
for defining the steps needed to create the image and run it. Each instruction in a Dockerfile
creates a layer in the image. When you change the Dockerfile and rebuild the image, only those
layers which have changed are rebuilt. This is part of what makes images so lightweight, small,
and fast, when compared to other virtualization technologies.

The command that creates the image starting from the Docker file is the following one:

docker build [OPTIONS] PATH | URL | -

3.2.3. Dockerfiles

Thus, a Docker image consists of read-only layers each of which represents a Dockerfile
instruction. The layers are stacked and each one is a delta of the changes from the previous
layer10. Consider the following Dockerfile example:

ARG UBUNTU_VERSION=18.04
FROM ubuntu:${UBUNTU_VERSION}

LABEL MAINTAINER=”Antonio Riccardo Roccaro”

SHELL ["/bin/bash", "-c"]

ARG APPLICATION=firefox

ENV SSH_PORT=22

RUN apt-get install -y \
 $APPLICATION \
 openssh-server

EXPOSE $SSH_PORT

ADD myapp.sh /image/destination/path/
COPY ["host_file1", "host_file2", "/image/destination/path/"]

ENTRYPOINT ["/image/destination/path/myapp.sh"]

Each instruction creates one layer:

9 The content of this section has been taken, with some adaptations, from: Docker official website - Docker

overview, https://docs.docker.com/get-started/overview/, October 1st, 2020.
10 The content of this section has been taken, with some adaptations, from: Docker official website - Best practices

for writing Dockerfiles, https://docs.docker.com/develop/develop-images/dockerfile_best-practices/, October
1st, 2020; Docker official website – Dockerfile reference, https://docs.docker.com/engine/reference/builder/,
October 2nd, 2020.

 13

• FROM creates a layer from the ubuntu:18.04 Docker image. The FROM instruction
initializes a new build stage and sets the Base Image for subsequent instructions.
As such, a valid Dockerfile must start with a FROM instruction. The image can be
any valid image – it is especially easy to start by pulling an image from the Public
Repositories. ARG is the only instruction that may precede FROM in the
Dockerfile. In the example above the UBUNTU_VERSION ARG is used to specify
which ubuntu version to use as base image. Since that value is set by default to
18.04, that one will be used if no proper different --build-arg parameter will be
specified during build time. In fact, to specify a different version, i.e. the 20.04, you
need to run the build command as follows:

docker build --build-arg UBUNTU_VERSION=20.04 .

Note that an ARG declared before a FROM is outside of a build stage, so it can’t
be used in any instruction after a FROM;

• ARG defines a variable that users can pass at build-time to the builder with the
docker build command using the --build-arg <varname>=<value> flag. If a user
specifies a build argument that was not defined in the Dockerfile, the build outputs
a warning. A Dockerfile may include one or more ARG instructions. An ARG
instruction can optionally include a default value like in the example above in which
the UBUNTU_VERSION argument has the 18.04 default value. Note that the ARG
value is not persisted in the final image, use the ENV instruction instead;

• ENV sets the environment variable <key> to the value <value>. This value will be
in the environment for all subsequent instructions in the build stage and can be
replaced inline in many as well. The value will be interpreted for other environment
variables, so quote characters will be removed if they are not escaped. Like
command line parsing, quotes and backslashes can be used to include spaces within
values. The environment variables set using ENV will persist when a container is
run from the resulting image. You can view the values using docker inspect, and
change them using docker run --env <key>=<value>. As for the RUN instruction,
it is possible to split the env variable declaration in few lines (one for each) by using
the \ (backslash);

• RUN will execute any commands in a new layer on top of the current image and
commit the results. The resulting committed image will be used for the next step in
the Dockerfile. You can use a \ (backslash) to continue a single RUN instruction
onto the next line as shown in the example above;

• SHELL allows the default shell used for the shell form of commands to be
overridden. The default shell on Linux is ["/bin/sh", "-c"], and on Windows is
["cmd", "/S", "/C"]. The following instructions can be affected by the SHELL
instruction when the shell form of them is used in a Dockerfile: RUN, CMD and
ENTRYPOINT. Note that for shell form we refer to the one represented by
[“something”, “something”, …, “something”] like the one used in the example
above for the COPY and ENTRYPOINT instructions.

 14

• LABEL adds metadata to an image. A LABEL is a key-value pair. To include
spaces within a LABEL value, use quotes and backslashes as you would in
command-line parsing. An image can have more than one label. You can specify
multiple labels on a single line. As for the RUN instruction, it is possible to split
the label declaration in few lines (one for each) by using the \ (backslash). Labels
included in base or parent images (images in the FROM line) are inherited by your
image. If a label already exists but with a different value, the most-recently-applied
value overrides any previously-set value. To view an image’s labels, use the docker
image inspect command.

• EXPOSE informs Docker that the container listens on the specified network ports
at runtime. You can specify whether the port listens on TCP or UDP, and the default
is TCP if the protocol is not specified. The EXPOSE instruction does not actually
publish the port. It functions as a type of documentation between the person who
builds the image and the person who runs the container, about which ports are
intended to be published. To actually publish the port when running the container,
use the -p flag on docker run to publish and map one or more ports, or the -P flag
to publish all exposed ports and map them to high-order ports. Regardless of the
EXPOSE settings, you can override them at runtime by using the -p flag.

• ADD ["<src>",... "<dest>"] copies new files, directories or remote file URLs from
<src> and adds them to the filesystem of the image at the path <dest>. Multiple
<src> resources may be specified but if they are files or directories, their paths are
interpreted as relative to the source of the context of the build. ADD obeys the
following rules:
- The <src> path must be inside the context of the build; you cannot ADD

../something /something, because the first step of a docker build is to send the
context directory (and subdirectories) to the docker daemon;

- If <src> is a URL and <dest> does not end with a trailing slash, then a file is
downloaded from the URL and copied to <dest>;

- If <src> is a directory, the entire contents of the directory are copied, including
filesystem metadata. The directory itself is not copied, just its contents;

- If <src> is a local tar archive in a recognized compression format (identity, gzip,
bzip2 or xz) then it is unpacked as a directory;

- If multiple <src> resources are specified, either directly or due to the use of a
wildcard, then <dest> must be a directory, and it must end with a slash /;

- If <dest> doesn’t exist, it is created along with all missing directories in its path.
• COPY ["<src>",... "<dest>"] copies new files or directories from <src> and adds

them to the filesystem of the container at the path <dest>. Multiple <src> resources
may be specified but the paths of files and directories will be interpreted as relative
to the source of the context of the build. COPY obeys the following rules:
- The <src> path must be inside the context of the build; you cannot COPY

../something /something, because the first step of a docker build is to send the
context directory (and subdirectories) to the docker daemon;

- If <src> is a directory, the entire contents of the directory are copied, including
filesystem metadata;

 15

- If multiple <src> resources are specified, either directly or due to the use of a
wildcard, then <dest> must be a directory, and it must end with a slash /;

- If <dest> doesn’t exist, it is created along with all missing directories in its path.
Note that although ADD and COPY are functionally similar, generally speaking,
COPY is preferred. That’s because it’s more transparent than ADD. COPY only
supports the basic copying of local files into the container, while ADD has some
features (like local-only tar extraction and remote URL support) that are not
immediately obvious. Consequently, the best use for ADD is local tar file auto-
extraction into the image, as in ADD rootfs.tar.xz /;

• ENTRYPOINT ["executable", "param1", "param2"] allows you to configure a
container that will run as an executable. Command line arguments to docker run
<image> will be appended after all elements in an exec form ENTRYPOINT. This
allows arguments to be passed to the entry point, i.e. docker run <image> -d will
pass the -d argument to the entry point. You can override the ENTRYPOINT
instruction using the docker run --entrypoint flag.

A part the Dockerfile instructions shown in the example above, there are the following
others:

• CMD specifies the executable to execute when the image has been run. There can
only be one CMD instruction in a Dockerfile. If you list more than one CMD then
only the last CMD will take effect. The main purpose of a CMD is to provide
defaults for an executing container. These defaults can include an executable, or
they can omit the executable, in which case you must specify an ENTRYPOINT
instruction as well. If CMD is used to provide default arguments for the
ENTRYPOINT instruction, both the CMD and ENTRYPOINT instructions should
be specified with the JSON array format. Both CMD and ENTRYPOINT
instructions define what command gets executed when running a container. There
are few rules that describe their co-operation:

- Dockerfile should specify at least one of CMD or ENTRYPOINT commands;
- ENTRYPOINT should be defined when using the container as an executable;
- CMD should be used as a way of defining default arguments for an

ENTRYPOINT command or for executing an ad-hoc command in a container;
- CMD will be overridden when running the container with alternative

arguments;
• VOLUME creates a mount point with the specified name and marks it as holding

externally mounted volumes from native host or other containers. The value can be
a JSON array, VOLUME ["/var/log/"], or a plain string with multiple arguments,
such as VOLUME /var/log or VOLUME /var/log /var/db . The docker run command
initializes the newly created volume with any data that exists at the specified
location within the base image;

• USER <UID>[:<GID>] sets the user name (or UID) and optionally the user group
(or GID) to use when running the image and for any RUN, CMD and
ENTRYPOINT instructions that follow it in the Dockerfile;

 16

• WORKDIR sets the working directory for any RUN, CMD, ENTRYPOINT, COPY
and ADD instructions that follow it in the Dockerfile. If the WORKDIR doesn’t
exist, it will be created even if it’s not used in any subsequent Dockerfile
instruction. The WORKDIR instruction can be used multiple times in a Dockerfile.
If a relative path is provided, it will be relative to the path of the previous
WORKDIR instruction.

• ONBUILD adds to the image a trigger instruction to be executed at a later time,
when the image is used as the base for another build. The trigger will be executed
in the context of the downstream build, as if it had been inserted immediately after
the FROM instruction in the downstream Dockerfile;

• STOPSIGNAL sets the system call signal that will be sent to the container to exit.
This signal can be a valid unsigned number that matches a position in the kernel’s
syscall table, for instance 9, or a signal name in the format SIGNAME, for instance
SIGKILL;

• HEALTHCECK tells Docker how to test a container to check that it is still working.
This can detect cases such as a web server that is stuck in an infinite loop and unable
to handle new connections, even though the server process is still running.

3.2.4. Docker containers

A Docker container is a runnable instance of an image11. You can create, start, stop, move,
or delete a container using the Docker API or CLI. You can connect a container to one or more
networks, attach storage to it, or even create a new image based on its current state.

By default, a container is relatively well isolated from other containers and its host
machine. You can control how isolated a container’s network, storage, or other underlying
subsystems are from other containers or from the host machine.

A container is defined by its image as well as any configuration options you provide to it
when you create or start it. When a container is removed, any changes to its state that are not
stored in persistent storage disappear.

Once the Docker image has been created by using the docker build, you can run it through
the docker run command and then the following will happen:

• Docker creates a new container, as though you had run a docker container create
command manually;

• Docker allocates a read-write filesystem to the container, as its final layer. This
allows a running container to create or modify files and directories in its local
filesystem;

• Docker creates a network interface to connect the container to the default network,
since you did not specify any networking options. This includes assigning an IP
address to the container. By default, containers can connect to external networks
using the host machine’s network connection;

11 The content of this section has been taken, with some adaptations, from: Docker official website - Docker

overview, https://docs.docker.com/get-started/overview/, October 1st, 2020; Docker official website - Docker
run reference, https://docs.docker.com/engine/reference/run/, October 2nd, 2020.

 17

• Docker starts the container and executes the CMD/ENTRYPOINT specified
command.

Once the inner application ends its execution, the container stops but is not removed. You
can start it again or remove it.

The docker run command takes this form:

docker run [OPTIONS] IMAGE[:TAG|@DIGEST] [COMMAND] [ARG...]

Focusing on the OPTIONS, the following will be used afterwards in this thesis to
implement the desired architecture:

• -d (detached) starts a container in detached mode. By design, containers started in
detached mode exit when the root process used to run the container exits, unless
you also specify the --rm option. If you use -d with --rm, the container is removed
when it exits or when the daemon exits, whichever happens first;

• --name <name> specifies a name for the container created. You can use it to identify
the container, i.e. if you want to remove it;

• -p <port> publishes the specified port;
• -e <env_var_name=env_var_value>sets the specified environment variable inside

the container;
• -v [host-src:]container-dest[:<options>] mounts the host-src host volume on the

container-dest container path. The container-dest must always be an absolute path
such as /src/docs. The host-src can either be an absolute path or a name value. If
you supply an absolute path for the host-dir, Docker bind-mounts to the path you
specify. If you supply a name, Docker creates a named volume by that name. Note
that certain host volumes, for security reasons, cannot be mounted inside a
container. To force their mounting, the --privileged parameter must be specified.
For example, the inodes related to the host devices cannot be mounted without the
mentioned parameter. So, to mount the sound card inside the container you must
execute the following command:

docker run -v /dev/snd:/dev/snd --privileged […]

• --device allows you to run devices inside the container without the --privileged flag.

By default, Docker containers are “unprivileged” and cannot, for example, run a
Docker daemon inside a Docker container. This is because by default a container is
not allowed to access any devices, but a “privileged” container is given access to
all devices. When the operator executes docker run --privileged, Docker will enable
access to all devices on the host. So, to mount the sound card inside the container
without using the --privileged parameter seen above, you can execute the following
command:

docker run --device=/dev/snd:/dev/snd […]

 18

3.3. Kubernetes

3.3.1. Introduction

Kubernetes is a portable, extensible, open-source platform for managing containerized
workloads and services, that facilitates both declarative configuration and automation12. It has
a large, rapidly growing ecosystem. Kubernetes services, support, and tools are widely
available. As mentioned in the previous sections, in the past there was an evolution in the
execution of the server-side application. At first physical server has been used, then
virtualization through the Virtual Machines usage was introduced, followed by the
containerization as explained above.

Containers are a good way to bundle and run your applications. In a production
environment, you need to manage the containers that run the applications and ensure that there
is no downtime. For example, if a container goes down, another container needs to start.

Kubernetes provides you with a framework to run distributed systems resiliently. It takes
care of scaling and failover for your application, provides deployment patterns, and more.

Kubernetes provides you with:
• Service discovery and load balancing. Kubernetes can expose a container using the

DNS name or using their own IP address. If traffic to a container is high, Kubernetes
is able to load balance and distribute the network traffic so that the deployment is
stable;

• Storage orchestration. Kubernetes allows you to automatically mount a storage
system of your choice, such as local storages, public cloud providers, and more;

• Automated rollouts and rollbacks. You can describe the desired state for your
deployed containers using Kubernetes, and it can change the actual state to the
desired state at a controlled rate.

• Automatic bin packing. You provide Kubernetes with a cluster of nodes that it can
use to run containerized tasks. You tell Kubernetes how much CPU and memory
(RAM) each container needs. Kubernetes can fit containers onto your nodes to
make the best use of your resources.

• Self-healing. Kubernetes restarts containers that fail, replaces containers, kills
containers that does not respond to your user-defined health check, and doesn't
advertise them to clients until they are ready to serve.

• Secret and configuration management. Kubernetes lets you store and manage
sensitive information, such as passwords, OAuth tokens, and SSH keys. You can
deploy and update secrets and application configuration without rebuilding your
container images, and without exposing secrets in your stack configuration.

Kubernetes has several components and in the following sections we will examine those
used to implement the desired architecture.

12 The content of this section has been taken, with some adaptations, from: Kubernetes official website - What is

Kubernetes, https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/, October 2nd, 2020;

 19

3.3.2. Pods

The Pods are the smallest deployable units of computing that you can create and manage
in Kubernetes13. A Pod (as in a pod of whales or pea pod) is a group of one or more containers,
with shared storage/network resources, and a specification for how to run the containers. Each
Pod is assigned a unique IP address for each address family. Pod's contents are always co-
located and co-scheduled, and run in a shared context. A Pod models an application-specific
"logical host": it contains one or more application containers which are relatively tightly
coupled. As well as application containers, a Pod can contain init containers that run during
Pod startup. The shared context of a Pod is a set of Linux namespaces, cgroups, and potentially
other facets of isolation - the same things that isolate a Docker container. Within a Pod's context,
the individual applications may have further sub-isolations applied. In terms of Docker
concepts, a Pod is similar to a group of Docker containers with shared namespaces and shared
filesystem volumes. Usually it is not required to create Pods directly but through workloads
resources such as Deployment or Jobs. In fact, Pods are designed as relatively ephemeral,
disposable entities. When a Pod gets created (directly by you, or indirectly by a controller), the
new Pod is scheduled to run on a Node in your cluster. The Pod remains on that node until the
Pod finishes execution, the Pod object is deleted, the Pod is evicted for lack of resources, or the
node fails. We said that a Pod can be created by hands or by a controller. In the latter case, you
can use workload resources to create and manage multiple Pods for you. A controller for the
resource handles replication and rollout and automatic healing in case of Pod failure. For
example, if a Node fails, a controller notices that Pods on that Node have stopped working and
creates a replacement Pod. The scheduler places the replacement Pod onto a healthy Node. An
example of workload resource is the Deployment which will be provided in detail in the next
section.

Controllers for workload resources create Pods from a pod template and manage those
Pods on your behalf. PodTemplates are specifications for creating Pods, and are included in
workload resources such as Deployments. Each controller for a workload resource uses the
PodTemplate inside the workload object to make actual Pods. The PodTemplate is part of the
desired state of whatever workload resource you used to run your app.

apiVersion: batch/v1
kind: Job
metadata:
 name: hello-world-job
 labels:
 app: hello-world
spec:
 template:
 #Pod template begin
 metadata:
 labels:
 app: hello-world
 spec:
 nodeName: worker-01
 containers:
 - name: hello-world
 image: busybox

13 The content of this section has been taken, with some adaptations, from: Kubernetes official website - Pods,

https://kubernetes.io/docs/concepts/workloads/pods/, October 7th, 2020; Kubernetes official website - Pod
lifecycle, https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/, October 7th, 2020.

 20

 env:
 - name: ENV_MESSAGE
 value: "Hello world!"
 volumeMounts:
 - mountPath: /tmp/hostname
 name: hostname
 - mountPath: /dev/snd
 name: sound
 securityContext:
 privileged: true
 command: ['sh', '-c']
 args:
 - 'echo "hostname=$(cat /tmp/hostname)" && echo "env_message=$ENV_MESSAGE"'
 ports:
 - name: ssh-cont-port
 containerPort: 22
 volumes:
 - name: hostname
 hostPath:
 path: /etc/hostname
 - name: sound
 hostPath:
 path: /dev/snd
 restartPolicy: OnFailure
 #Pod template end

The code snippet above is an example of a simple Job with a pod template that creates

one container. The template begins with metadata specification which includes the “app” label
definition. That label will be bound to the pod itself make it retrievable through the command
below:

kubectl get pod -l app=hello-world

The template definition continues with the actual Pod definition which begins with the
nodeName specification. This is used to tell Kubernetes the cluster node name in which the pod
must be scheduled. If there is not a node having that name, the pod will not be scheduled at all.
This is a possible way to force the Kubernetes behavior once it has to schedule pods.

Then, there is the containers specification which is a list of containers each one including
the following fields:

• name, the name given to that container;
• image, the image that will be used to create the container itself;
• env, a list of name-value couples which represent each one a container environment

variable;
• volumeMounts, a list of volumes that have to be mounted inside the container. In

the simplest form, just the mountPath and the name need to be specified. The first
one represents the container path in which the volume has to be mounted, the second
one is bound to the volumes definition that will be shown afterwards;

• securityContext, allows specifying whether a privileged context need to be used to
mount the volumes listed in volumeMounts. As described in section 3.2.4., it is
required to use a privileged security context to properly mount certain host
volumes, i.e. the inodes related to host devices such as the sound card one in the
/dev/snd path. Docker provides both the -v […] --privileged and the --device
parameters of the docker run command for this purpose. Unfortunately, Kubernetes
does not have a --device correspondent thus the privileged security context might
be used;

 21

• command, specifies the command that needs to be executed inside the container
once the pod starts. This field is not always required since the Docker image has its
own CMD or ENTRYPOINT specification. If it will be specified, it will override
the mentioned Docker command or entry point;

• args, defines a list of arguments to be passed to the command specified with the
field above or to the Docker CMD/ENTRYPOINT defined command;

• ports, specifies a list of port that have to be exposed to make the pod reachable from
any node in the cluster. To expose that ports outside the cluster, Kubernetes services
should be used.

The Pod template definition continues with the shared volumes specification. Actually,
the volumes field is a list of named volumes that can be mounted (through the volumeMounts)
inside each Pod’s container. There are several kinds of volumes, those shown in the example
above are both hostPath which enable to mount the host’s paths specified through the path
fields inside the pod’s container.

Finally, there is the restartPolicy field, useful to specify the Kubernetes behavior in case
the pod fails its execution.

Note that in the case shown above the pod will have just one container, but it is possible
to obtain a multi-container pod by specifying more containers inside the containers list.
Moreover, there are several other pod’s specifications that have not been discussed above since
they will not be used in this thesis.

The pods follow a defined lifecycle, starting in the Pending phase, moving through
Running if at least one of its primary containers starts OK, and then through either the
Succeeded or Failed phases depending on whether any container in the Pod terminated in
failure. Whilst a Pod is running, the kubelet is able to restart containers to handle some kind of
faults. Within a Pod, Kubernetes tracks different container states: Waiting, Running and
Terminated. Moreover, the Pod has a PodStatus as well which has an array of PodConditions
through which the Pod has or has not passed:

• PodScheduled, the Pod has been scheduled to a node;
• ContainersReady, all containers in the Pod are ready;
• Initialized, all init containers have started successfully;
• Ready, the Pod is able to serve requests and should be added to the load balancing

pools of all matching Services.
The conditions above are ideal to check whether the pod is able to serve requests before

proceeding with the execution of something that needs that pod to work properly. This can be
done by waiting for the Ready condition through the following command:

kubectl wait --for=condition=Ready pod -l “app=hello-world”

 22

3.3.3. Deployments and ReplicaSets

A Deployment provides declarative updates for Pods ReplicaSets14 whose purpose is to
maintain a stable set of replica Pods running at any given time. As such, it is often used to
guarantee the availability of a specified number of identical Pods. A ReplicaSet is defined with
fields, including a selector that specifies how to identify Pods it can acquire, a number of
replicas indicating how many Pods it should be maintaining, and a pod template specifying the
data of new Pods it should create to meet the number of replicas criteria. A ReplicaSet then
fulfills its purpose by creating and deleting Pods as needed to reach the desired number. When
a ReplicaSet needs to create new Pods, it uses its Pod template. Deployment is a higher-level
concept that manages ReplicaSets and provides declarative updates to Pods along with a lot of
other useful features. Therefore, it is recommended using Deployments instead of directly using
ReplicaSets, unless it is required a custom update orchestration or updates are not required at
all.

It is possible to create a Deployment as shown in the code snippet below.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-deployment
 labels:
 app: nginx
spec:
 replicas: 5
 selector:
 matchLabels:
 app: nginx
 template:
 #Pod template begin
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.14.2
 ports:
 - containerPort: 80
 #Pod template end

In the example above a Deployment named nginx-deployment is created which in turn

will create a ReplicaSet to bring up five nginx pods.
The replicas field specifies that the Deployment has to create five replicated pods.
The selector shown above defines how the Deployment finds which Pods to manage. In

this case, you simply select a label that is defined in the Pod template (app: nginx). However,
more sophisticated selection rules are possible, as long as the Pod template itself satisfies the
rule.

The template defined above is actually the Pod template whose description has been
discussed deeper in the previous section.

14 The content of this section has been taken, with some adaptations, from: Kubernetes official website -

Deployments, https://kubernetes.io/docs/concepts/workloads/controllers/deployment/, October 7th, 2020;
Kubernetes official website - ReplicaSet,
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/, October 7th, 2020.

 23

Note that the template and the selector are the only required fields. The replicas field is
optional, and it defaults to one. The selector is required since it specifies a label selector for the
Pods targeted by that Deployment.

Assuming that the Deployment definition above has been stored inside the nginx-
deployment.yaml file, it can be created by running the following command:

kubectl apply -f nginx-deployment.yaml

A Deployment can be updated, i.e. by modifying the image version, through the following

command:

kubectl set image deployment/nginx-deployment nginx=nginx:1.16.1 --record

This way, all the pods related to that Deployment will be updated to the new image

version, ensuring that only a certain number of Pods are down while they are being updated.
By default, it ensures that at least 75% of the desired number of Pods are up (25% max
unavailable). Moreover, it is possible to rollback a Deployment for example, when the
Deployment is not stable, such as crash looping. By default, all of the Deployment's rollout
history is kept in the system so that you can rollback anytime you want.

Also, it is possible to scale a Deployment by using the following command:

kubectl scale deployment.v1.apps/nginx-deployment --replicas=10

This way five more pod replicas will be created to facilitate more load.

3.3.4. Jobs

A Job creates one or more Pods and ensures that a specified number of them successfully
terminate15. As pods successfully complete, the Job tracks the successful completions. When a
specified number of successful completions is reached, the task (i.e. Job) is complete. Deleting
a Job will clean up the Pods it created.

A simple case is to create one Job object in order to reliably run one Pod to completion.
The Job object will start a new Pod if the first Pod fails or is deleted (for example due to a node
hardware failure or a node reboot). You can also use a Job to run multiple Pods in parallel.

A Job definition example has been shown in section 3.3.2. talking about pods templates.
Unlike the Deployment, the selector field is optional and in almost all cases it should not

be specified.
Even in this case, a container in a Pod may fail for a number of reasons, such as because

the process in it exited with a non-zero exit code, or the container was killed for exceeding a
memory limit, etc. If this happens, and the .spec.template.spec.restartPolicy = "OnFailure", then
the Pod stays on the node, but the container is re-run. Therefore, your program needs to handle
the case when it is restarted locally, or else specify .spec.template.spec.restartPolicy = "Never".

15 The content of this section has been taken, with some adaptations, from: Kubernetes official website – Jobs,

https://kubernetes.io/docs/concepts/workloads/controllers/job/, October 7th, 2020.

 24

An entire Pod can also fail, for a number of reasons, such as when the pod is kicked off the
node (node is upgraded, rebooted, deleted, etc.), or if a container of the Pod fails and the
.spec.template.spec.restartPolicy = "Never". When a Pod fails, then the Job controller starts a
new Pod. This means that your application needs to handle the case when it is restarted in a
new pod. In particular, it needs to handle temporary files, locks, incomplete output and the like
caused by previous runs.

When a Job completes, no more Pods are created, but the Pods are not deleted either.
Keeping them around allows you to still view the logs of completed pods to check for errors,
warnings, or other diagnostic output. The job object also remains after it is completed so that
you can view its status. It is up to the user to delete old jobs after noting their status. Delete the
job with kubectl (e.g. kubectl delete jobs/pi or kubectl delete -f ./job.yaml). When you delete
the job using kubectl, all the pods it created are deleted too.

By default, a Job will run uninterrupted unless a Pod fails (restartPolicy=Never) or a
Container exits in error (restartPolicy=OnFailure).

3.3.5. Services and DNS for Services and Pods

A service is an abstract way to expose an application running on a set of Pods. With
Kubernetes it is not needed to modify your application to use an unfamiliar service discovery
mechanism since it gives Pods their own IP addresses and a single DNS name for a set of Pods.
Moreover, Kubernetes can load-balance across those Pods.

Kubernetes Pods are nonpermanent resources created and destroyed to match the state of
the cluster. If a Deployment has been used to run an application, it can create and destroy Pods
dynamically. Even if each Pod has its own IP address, the set of Pods running in one moment
in time could be different from the set of Pods running that application a moment later. This
leads to a problem: if some set of Pods (call them "backends") provides functionality to other
Pods (call them "frontends") inside your cluster, how do the frontends find out and keep track
of which IP address to connect to, so that the frontend can use the backend part of the
workload16? A Kubernetes service solve this problem since it is an abstraction which defines
a logical set of Pods and a policy by which to access them (sometimes this pattern is called a
micro-service). The set of Pods targeted by a Service is usually determined by a selector.

apiVersion: v1
kind: Service
metadata:
 name: nginx-service
spec:
 selector:
 app: nginx
 ports:
 - name: nginx-port
 protocol: TCP
 port: 80
 targetPort: 80
 type: ClusterIP

16 The content of this section has been taken, with some adaptations, from: Kubernetes official website – Service,

https://kubernetes.io/docs/concepts/services-networking/service/, October 7th, 2020; Kubernetes official
website – DNS for Services and Pods, https://kubernetes.io/docs/concepts/services-networking/dns-pod-
service, October 7th, 2020.

 25

The code snippet above shows the definition of a service named nginx-service. Assuming
that the Deployment defined in section 3.3.3. has been created, this service targets the port 80
on any Pod related to that Deployment, since each of that Pods has the app=nginx label.

Kubernetes assigns this Service an IP address (sometimes called the "cluster IP"), which
is used by the Service proxies.

The controller for the Service selector continuously scans for Pods that match its selector.
A Service can map any incoming port to a targetPort. By default and for convenience, the
targetPort is set to the same value as the port field.

Port definitions in Pods have names, and you can reference these names in the targetPort
attribute of a Service. This offers a lot of flexibility for deploying and evolving your Services.
For example, you can change the port numbers that Pods expose in the next version of your
backend software, without breaking clients.

The default protocol for Services is TCP; you can also use any other supported protocol.
As many Services need to expose more than one port, Kubernetes supports multiple port

definitions on a Service object. Each port definition can have the same protocol, or a different
one.

For some parts of the applications (for example, frontends) it might be needed to expose
a Service onto an external IP address, that is outside of your cluster. Kubernetes ServiceTypes
allow you to specify what kind of Service you want. Type values and their behaviors are:

• ClusterIP. Exposes the Service on a cluster-internal IP. Choosing this value makes
the Service only reachable from within the cluster. This is the default ServiceType.

• NodePort: Exposes the Service on each Node's IP at a static port (the NodePort). A
ClusterIP Service, to which the NodePort Service routes, is automatically created.
You'll be able to contact the NodePort Service, from outside the cluster, by
requesting <NodeIP>:<NodePort>.

• LoadBalancer: Exposes the Service externally using a cloud provider's load
balancer. NodePort and ClusterIP Services, to which the external load balancer
routes, are automatically created.

• ExternalName: Maps the Service to the contents of the externalName field (e.g.
foo.bar.example.com), by returning a CNAME record with its value. No proxying
of any kind is set up.

If you set the type field to NodePort, the Kubernetes control plane allocates a port from
a range specified by --service-node-port-range flag (default: 30000-32767). Each node proxies
that port (the same port number on every Node) into your Service. If you want a specific port
number, you can specify a value in the nodePort field. The control plane will either allocate
you that port or report that the API transaction failed. This means that you need to take care of
possible port collisions yourself. You also have to use a valid port number, one that is inside
the range configured for NodePort use. The following code snippet shows a NodePort type
Service example in which a specific port number has been declared through the nodePort field.

 26

apiVersion: v1
kind: Service
metadata:
 name: nginx-service
spec:
 selector:
 app: nginx
 ports:
 - name: nginx-port
 protocol: TCP
 port: 80
 targetPort: 80
 nodePort: 30007
 type: NodePort

Services are very useful for the pod reachability, but we still need to deal with the Service

IP addresses to interact with the application. To overcome this problem, you can (and almost
always should) set up a DNS service for your Kubernetes cluster using an add-on.

A cluster-aware DNS server, such as CoreDNS, watches the Kubernetes API for new
Services and creates a set of DNS records for each one. If DNS has been enabled throughout
your cluster then all Pods should automatically be able to resolve Services by their DNS name.

For example, if you have a Service called my-service in a Kubernetes namespace my-ns,
the control plane and the DNS Service acting together create a DNS record for my-service.my-
ns. Pods in the my-ns namespace should be able to find it by simply doing a name lookup for
my-service (my-service.my-ns would also work).

Pods in other namespaces must qualify the name as my-service.my-ns. These names will
resolve to the cluster IP assigned for the Service.

Kubernetes also supports DNS SRV (Service) records for named ports. If the my-
service.my-ns Service has a port named http with the protocol set to TCP, you can do a DNS
SRV query for _http._tcp.my-service.my-ns to discover the port number for http, as well as the
IP address.

Note that the full DNS record for a Service has the form:

my-svc.my-namespace.svc.cluster-domain.example

and for a named port has the form:

_my-port-name._my-port-protocol.my-svc.my-namespace.svc.cluster-domain.example

Moreover, even each Pod has a DNS resolution which has the form:

pod-ip-address.my-namespace.pod.cluster-domain.example.

For example, if a pod in the default namespace has the IP address 172.17.0.3, and the
domain name for your cluster is cluster.local, then the Pod has a DNS name:

172-17-0-3.default.pod.cluster.local

 27

Any pods created by a Deployment or DaemonSet exposed by a Service have the
following DNS resolution available:

pod-ip-address.deployment-name.my-namespace.svc.cluster-domain.example

3.3.6. Secrets

Kubernetes Secret is an object that let you store and manage sensitive information, such
as passwords, OAuth tokens, and SSH keys. Storing confidential information in a Secret is safer
and more flexible than putting it verbatim in a Pod definition or in a container image17. Both
users and the system itself can create secrets.

A possible use case involving Secret is storing user credentials required by Pods to access
a database. For example, a database connection string consists of a username and password.
You can store the username in a file ./username.txt and the password in a file ./password.txt on
your local machine.

So, you can create the Secret by executing the following command:

kubectl create secret generic db-user-pass
 --from-file=./username.txt \
 --from-file=./password.txt

The default key name is the filename. You may optionally set the key name using --from-

file=[key=]source.
Once a secret has been created through the command above, it can be used with a Pod in

three ways:
• as files in a volume mounted on one or more of its containers. The code snippet

below shows how a secret can be mounted inside a Pod.

apiVersion: v1
kind: Pod
metadata:
 name: mypod
spec:
 containers:
 - name: mypod
 image: redis
 volumeMounts:
 - name: foo
 mountPath: "/etc/foo"
 readOnly: true
 volumes:
 - name: foo
 secret:
 secretName: db-user-pass

As you can see, a volume named foo of type secret has been declared. That volume
is bound to the secret itself through its name, “mysecret”, which is specified in the

17 The content of this section has been taken, with some adaptations, from: Kubernetes official website – Secrets,

https://kubernetes.io/docs/concepts/configuration/secret, October 7th, 2020; Kubernetes official website –
Managing Secret using kubectl, https://kubernetes.io/docs/tasks/configmap-secret/managing-secret-using-
kubectl, October 7th, 2020.

 28

secretName field and is equal to name of the secret to be mounted. Then, that
volume will be mounted in the /etc/foo path inside the container thanks to the
volumeMounts entry named foo. Note that the secret has to be mounted as a read-
only volume and when a secret currently consumed in a volume is updated,
projected keys are eventually updated as well. This way the secret content will be
available in the username.txt and password.txt files under the /etc/foo/ path inside
the container;

• as container environment variable. The code snippet below shows how a secret can
be exposed in a container as an environment variable.

apiVersion: v1
kind: Pod
metadata:
 name: secret-env-pod
spec:
 containers:
 - name: mycontainer
 image: redis
 env:
 - name: SECRET_USERNAME
 valueFrom:
 secretKeyRef:
 name: db-user-pass
 key: username.txt
 - name: SECRET_PASSWORD
 valueFrom:
 secretKeyRef:
 name: db-user-pass
 key: password.txt
 restartPolicy: Never

As you can see, two environment variables, SECRET_USERNAME and
SECRET_PASSWORD, have been defined. They have been bound with the Secret
keys through the secretKeyRef field in which the Secret name and the key name
have been specified;

• by the kubelet when pulling images for the Pod. The imagePullSecrets field is a list
of references to secrets in the same namespace. You can use an imagePullSecrets
to pass a secret that contains a Docker (or other) image registry password to the
kubelet. The kubelet uses this information to pull a private image on behalf of your
Pod.

Finally, note that more Pods can share the same Secret.

3.3.7. Persistent Volumes and Persistent Volume Claims

3.3.7.1. Introduction

So far it has been discussed how Kubernetes manages the part related to the pods, as well
as their creation through the other core objects and their execution. Nevertheless, this is not the
only required feature as often it is necessary to store some data obtained from the application
execution. The PersistentVolume subsystem provides an API for users and administrators that

 29

abstracts details of how storage is provided from how it is consumed. To do this, it has been
introduced two new API resources: PersistentVolume and PersistentVolumeClaim18.

A PersistentVolume (PV) is a piece of storage in the cluster that has been provisioned by
an administrator or dynamically provisioned using Storage Classes. It is a resource in the cluster
just like a node is a cluster resource. PVs are volume plugins like Volumes but have a lifecycle
independent of any individual Pod that uses the PV. This API object captures the details of the
implementation of the storage, be that NFS, iSCSI, or a cloud-provider-specific storage system.

A PersistentVolumeClaim (PVC) is a request for storage by a user. It is similar to a Pod.
Pods consume node resources and PVCs consume PV resources. Pods can request specific
levels of resources (CPU and Memory). Claims can request specific size and access modes
(e.g., they can be mounted ReadWriteOnce, ReadOnlyMany or ReadWriteMany).

3.3.7.2. Persistent Volumes and Persistent Volume Claims lifecycle

PVs are resources in the cluster. PVCs are requests for those resources and also act as
claim checks to the resource. The interaction between PVs and PVCs follows this lifecycle19:

1. Provisioning.
There are two ways PVs may be provisioned: statically or dynamically.
• In the static way, a cluster administrator creates a number of PVs. They carry

the details of the real storage, which is available for the use by cluster users.
They exist in the Kubernetes API and are available for consumption.

• The dynamic way is used when none of the static PVs the administrator created
match a user's PersistentVolumeClaim so, the cluster may try to dynamically
provision a volume specially for the PVC. This provisioning is based on
StorageClasses: the PVC requests a storage class and the administrator must
have created and configured that class for dynamic provisioning to occur. Claims
that request the class "" effectively disable dynamic provisioning for themselves.

2. Binding.
A user creates, or in the case of dynamic provisioning, has already created, a
PersistentVolumeClaim with a specific amount of storage requested and with
certain access modes. A control loop in the master watches for new PVCs, finds a
matching PV (if possible), and binds them together. If a PV was dynamically
provisioned for a new PVC, the loop will always bind that PV to the PVC.
Otherwise, the user will always get at least what it was asked for, but the volume
may be in excess of what was requested. Once bound, PersistentVolumeClaim
binds are exclusive, regardless of how they were bound. A PVC to PV binding is a
one-to-one mapping, using a ClaimRef which is a bi-directional binding between
the PersistentVolume and the PersistentVolumeClaim.
Claims will remain unbound indefinitely if a matching volume does not exist.
Claims will be bound as matching volumes become available. For example, a

18 The content of this section has been taken, with some adaptations, from: Kubernetes official website –

Persistent Volumes, https://kubernetes.io/docs/concepts/storage/persistent-volumes, October 9th, 2020.
19 The content of this section has been taken, with some adaptations, from: Kubernetes official website –

Persistent Volumes, https://kubernetes.io/docs/concepts/storage/persistent-volumes, October 9th, 2020.

 30

cluster provisioned with many 50Gi PVs would not match a PVC requesting 100Gi.
The PVC can be bound when a 100Gi PV is added to the cluster.

3. Using.
Pods use claims as volumes. The cluster inspects the claim to find the bound volume
and mounts that volume for a Pod. For volumes that support multiple access modes,
the user specifies which mode is desired when using their claim as a volume in a
Pod. Once a user has a claim and that claim is bound, the bound PV belongs to the
user for as long as they need it. Users schedule Pods and access their claimed PVs
by including a persistentVolumeClaim section in a Pod's volumes block.

4. Reclaiming.
When a user is done with their volume, they can delete the PVC objects from the
API that allows reclamation of the resource. The reclaim policy for a
PersistentVolume tells the cluster what to do with the volume after it has been
released of its claim. Currently, volumes can either be Retained, Deleted, or
Recycled.
• The Retain reclaim policy allows manual reclamation of the resource. When the

PersistentVolumeClaim is deleted, the PersistentVolume still exists and the
volume is considered "released". But it is not available yet for another claim
because the previous claimant's data remains on the volume. An administrator
can manually reclaim the volume with the following steps: deleting the
PersistentVolume (the associated storage asset in external infrastructure, such as
an AWS EBS, GCE PD, Azure Disk, or Cinder volume, still exists after the PV
is deleted); manually cleaning up the data on the associated storage asset
accordingly; manually deleting the associated storage asset, or if you want to
reuse the same storage asset, creating a new PersistentVolume with the storage
asset definition.

• For volume plugins that support the Delete reclaim policy, deletion removes
both the PersistentVolume object from Kubernetes, as well as the associated
storage asset in the external infrastructure, such as an AWS EBS, GCE PD,
Azure Disk, or Cinder volume. Volumes that were dynamically provisioned
inherit the reclaim policy of their StorageClass, which defaults to Delete. The
administrator should configure the StorageClass according to
users'expectations; otherwise, the PV must be edited or patched after it is
created.

• If supported by the underlying volume plugin, the Recycle reclaim policy
performs a basic scrub (rm -rf /thevolume/*) on the volume and makes it
available again for a new claim. Note that the Recycle reclaim policy is
deprecated. Instead, the recommended approach is using dynamic provisioning.

 31

3.3.7.3. Creating Persistent Volume

The simplest PersistentVolume that can be created is the hostpath. Kubernetes supports
hostPath for development and testing on a single-node cluster20. A hostPath PersistentVolume
uses a file or directory on the Node to emulate network-attached storage.

In a production cluster, it is not advisable to use hostPath. Instead a cluster administrator
would provision a network resource like a Google Compute Engine persistent disk, an NFS
share, or an Amazon Elastic Block Store volume.

apiVersion: v1
kind: PersistentVolume
metadata:
 name: task-pv-volume
 labels:
 type: local
spec:
 storageClassName: manual
 capacity:
 storage: 10Gi
 accessModes:
 - ReadWriteOnce
 hostPath:
 path: "/mnt/data"

The configuration file above specifies that the volume is at /mnt/data on the cluster's

Node. The configuration also specifies a size of 10 gibibytes and an access mode of
ReadWriteOnce, which means the volume can be mounted as read-write by a single Node. It
defines the StorageClass name manual for the PersistentVolume, which will be used to bind
PersistentVolumeClaim requests to this PersistentVolume.

3.3.7.4. Creating Persistent Volume Claims

The next step is to create a PersistentVolumeClaim. Pods use PersistentVolumeClaims to
request physical storage21.

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: task-pv-claim
spec:
 storageClassName: manual
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 3Gi

20 The content of this section has been taken, with some adaptations, from: Kubernetes official website –

Configure a Pod to Use a PersistentVolume for Storage, https://kubernetes.io/docs/tasks/configure-pod-
container/configure-persistent-volume-storage, October 9th, 2020.

21 The content of this section has been taken, with some adaptations, from: Kubernetes official website –
Configure a Pod to Use a PersistentVolume for Storage, https://kubernetes.io/docs/tasks/configure-pod-
container/configure-persistent-volume-storage, October 9th, 2020.

 32

In the configuration file above, it has been declared a PersistentVolumeClaim that
requests a volume of at least three gibibytes that can provide read-write access for at least one
Node. After the PersistentVolumeClaim has been created, the Kubernetes control plane looks
for a PersistentVolume that satisfies the claim's requirements. If the control plane finds a
suitable PersistentVolume with the same StorageClass, it binds the claim to the volume.

3.3.7.5. Consuming Persistent Volume Claims in a Pod

The next step is to create a Pod that uses the a PersistentVolumeClaim as a volume22.

apiVersion: v1
kind: Pod
metadata:
 name: task-pv-pod
spec:
 volumes:
 - name: task-pv-storage
 persistentVolumeClaim:
 claimName: task-pv-claim
 containers:
 - name: task-pv-container
 image: nginx
 ports:
 - containerPort: 80
 name: "http-server"
 volumeMounts:
 - mountPath: "/usr/share/nginx/html"
 name: task-pv-storage

Notice that the Pod's configuration file specifies a PersistentVolumeClaim, but it does not

specify a PersistentVolume. From the Pod's point of view, the claim is a volume.

3.3.8. Assigning Pods to Nodes

Once a pod has to be scheduled, it is possible to constrain a Pod to only be able to run on
particular Node(s), or to prefer to run on particular nodes23. There are several ways to do this,
and the recommended approaches all use label selectors to make the selection. Generally such
constraints are unnecessary, as the scheduler will automatically do a reasonable placement (e.g.
spread your pods across nodes, not place the pod on a node with insufficient free resources,
etc.) but there are some circumstances where you may want more control on a node where a
pod lands, for example to ensure that a pod ends up on a machine with an SSD attached to it,
or to co-locate pods from two different services that communicate a lot into the same
availability zone.

22 The content of this section has been taken, with some adaptations, from: Kubernetes official website –

Configure a Pod to Use a PersistentVolume for Storage, https://kubernetes.io/docs/tasks/configure-pod-
container/configure-persistent-volume-storage, October 9th, 2020.

23 The content of this section has been taken, with some adaptations, from: Kubernetes official website –
Assigning Pods to Nodes, https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node, October
7th, 2020.

 33

The simplest way is using the nodeName constraint, but it has some limitation. A more
flexible way is using the Node Affinity. In the following sections both of those will be discussed
in detail.

3.3.8.1. Using nodeName

nodeName is the simplest form of node selection constraint, but due to its limitations it is
typically not used24. nodeName is a field of PodSpec. If it is non-empty, the scheduler ignores
the pod and the kubelet running on the named node tries to run the pod. Thus, if nodeName is
provided in the PodSpec, it takes precedence over nodeSelector, Node isolation/restriction and
Affinity and anti-affinity.

Some limitations bound to the use of nodeName are:
• If the named node does not exist, the pod will not be run, and in some cases may be

automatically deleted.
• If the named node does not have the resources to accommodate the pod, the pod

will fail and its reason will indicate why, for example OutOfmemory or OutOfcpu.
• Node names in cloud environments are not always predictable or stable.

The following code snippet shows an example of nodeName field usage.

apiVersion: v1
kind: Pod
metadata:
 name: nginx
spec:
 containers:
 - name: nginx
 image: nginx
 nodeName: kube-01

This way the pod will be scheduled only in a node named kube-01.

3.3.8.2. Using Node Affinity

Node affinity is conceptually similar to another form of node selector constraint, the
nodeSelector. This one specifies a map of key-value pairs25. For the pod to be eligible to run on
a node, the node must have each of the indicated key-value pairs as labels (it can have additional
labels as well). The most common usage is one key-value pair.

The affinity/anti-affinity feature, greatly expands the types of constraints you can express.
The key enhancements are:

• The affinity/anti-affinity language is more expressive. The language offers more
matching rules besides exact matches created with a logical AND operation;

24 The content of this section has been taken, with some adaptations, from: Kubernetes official website –

Assigning Pods to Nodes, https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node, October
7th, 2020.

25 The content of this section has been taken, with some adaptations, from: Kubernetes official website –
Assigning Pods to Nodes, https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node, October
7th, 2020.

 34

• you can indicate that the rule is "soft"/"preference" rather than a hard requirement,
so if the scheduler can't satisfy it, the pod will still be scheduled;

• you can constrain against labels on other pods running on the node (or other
topological domain), rather than against labels on the node itself, which allows rules
about which pods can and cannot be co-located.

The affinity feature consists of two types of affinity, "node affinity" and "inter-pod
affinity/anti-affinity". Node affinity is like the existing nodeSelector (but with the first two
benefits listed above), while inter-pod affinity/anti-affinity constrains against pod labels rather
than node labels, as described in the third item listed above, in addition to having the first and
second properties listed above.

There are currently two types of node affinity, called:
1. requiredDuringSchedulingIgnoredDuringExecution
2. preferredDuringSchedulingIgnoredDuringExecution

The former specifies rules that must be met for a pod to be scheduled onto a node, while
the latter specifies preferences that the scheduler will try to enforce but will not guarantee. The
"IgnoredDuringExecution" part of the names means that if labels on a node change at runtime
such that the affinity rules on a pod are no longer met, the pod will still continue to run on the
node. Node affinity is specified as field nodeAffinity of field affinity in the PodSpec. The code
snippet below shows how the Node Affinity can be used to force a pod to be scheduled on a
node

apiVersion: v1
kind: Pod
metadata:
 name: with-node-affinity
spec:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/e2e-az-name
 operator: In
 values:
 - e2e-az1
 - e2e-az2
 preferredDuringSchedulingIgnoredDuringExecution:
 - weight: 1
 preference:
 matchExpressions:
 - key: another-node-label-key
 operator: In
 values:
 - another-node-label-value
 containers:
 - name: with-node-affinity
 image: k8s.gcr.io/pause:2.0

The node affinity rule above says the pod can only be placed on a node with a label whose

key is kubernetes.io/e2e-az-name and whose value is either e2e-az1 or e2e-az2. In addition,
among nodes that meet that criteria, nodes with a label whose key is another-node-label-key
and whose value is another-node-label-value should be preferred.

 35

You can see the operator In being used in the example. The new node affinity syntax
supports the following operators: In, NotIn, Exists, DoesNotExist, Gt, Lt. You can use NotIn
and DoesNotExist to achieve node anti-affinity behavior.

 36

Chapter 4 - KubernetesOnDesktop architecture

4.1. General architecture

As explained before, the aim The aim of this project is to develop an architecture in which
it is possible to offload the execution of a desktop application to a remote cluster. The problem
is that, unlike the applications that usually run on a remote server (regardless of whether we
refer to a single server or a cluster), a desktop application usually has a Graphical User Interface
and can produce sounds. For this reason, running the application in a remote machine is not
sufficient because we want to interact with that from the local machine by using its own
Graphical User Interface and by reproducing the application sounds without affecting the user
experience.

To realize this kind of architecture, we decided to split the general scenario in two sides:
the server-side and the client-side.

The server-side is the one in charge of executing the target application and the client-side
is the one in charge of showing the application Graphical User Interface and reproducing the
application sound. The picture below will depict how it should look like.

Figure 4: general architecture

Focusing on this picture, we can see that:
• the server-side consists in a block containing the desktop application, a VNC server

(that will transmit the application Graphical User Interface video stream) and an
audio client (which will forward the application sound);

• the client-side has a VNC client (that will receive the remote application Graphical
User Interface video stream) and an audio server (that will receive the remote
application audio stream).

4.2. Offloading the application execution

To realize the architecture above, the simplest solution may be to install natively in a
remote machine a VNC server and all the target applications required by the user, and in the
local machine a VNC viewer. Obviously, even if it is the simplest choice, this one has a lot of
disadvantages:

1. it is required to install a huge amount of software in the remote machine (at least
one for each target application, and the VNC server), and this might weigh the
system and cause execution and configuration conflicts;

 37

2. it is not possible to control how many remote machine resources will be assigned
to each process, and this might cause crashes, unexpected behaviors and security
issues;

3. this solution is not scalable, in fact to use a cluster instead of a single server, as we
aim to, we need to schedule each process by hand. Also, we need to install in each
machine all the required software, and this will cause undesired redundancy and a
huge installation and maintenance overhead.

Much of those problems might be solved by just using Docker. In fact, as described in
the previous chapters, Docker enables you to containerize your application and all its
dependencies in a docker image. So, we can create a docker image that contains the target
application and the VNC server, this way it is not required to install in each remote machine all
the software but just the Docker Engine and it is possible to control the hosts accessible
resources for each docker container.

Figure 5: server-side containerization

The only unsolved problem is that if we want to schedule different processes in different
remote machines, or even better in a cluster, we have to do it by hand, and this is not what we
aim at. We can solve this just by using Kubernetes that, as described in the previous chapters,
is a portable, extensible, open-source platform for managing containerized workloads and
services. This way we can just create a pod, running the desktop application docker container,
which will be automatically scheduled by Kubernetes in a machine inside the cluster.

Figure 6: server-side cloudification

 38

4.3. Containerizing the client-side

To complete the architecture described above we could think to fully containerize it by
taking care of the client-side too. Actually, we can think of realizing the client-side with three
different approaches:

1. installing natively the VNC viewer and the audio server;
2. creating a docker image containing the VNC viewer and the audio server, and run

it on the local machine in its isolated environment;
3. running the VNC viewer and the audio server into a Kubernetes pod inside the

cluster.
The first approach is the simplest one, even if we run the risk of falling in some of the

problem seen for the server-side. In fact, including in this case, there may be some execution
and configuration conflicts, and the loss of the assigned resource control which might cause
crashes, unexpected behaviors and security issues. The Figure 6: server-side cloudification seen
in the previous section depicts how it may appear.

The second approach, the one that realize a fully containerized architecture, is more
difficult but resolves all the problems above. In this case, in fact, we’ll have a docker image
that contains both the VNC client and the audio server. This way the communication flows will
happen between two containers, the one on the client-side and the one on the server-side
(regardless of whether the latter is just a docker container or a Kubernetes pod). The picture
below will depict how it might appear.

Figure 7: client-side containerization

The last approach, the one that realize a fully cloudified architecture, is a sort of evolution
of the previous one because the client-side is already containerized but, in this case, the host
that will receive the audio/video streams and will reproduce them is a Kubernetes cluster node
itself. Obviously, this node must be equipped with a graphic card and a sound card in order to
reproduce the audio/video streams and also with all the I/O peripherals (i.e. monitor, mouse,
keyboard, speakers) in order to interact with the remote desktop application. The picture below
will show how it might appear.

 39

Figure 8: client-side cloudification

4.4. Fully cloudified architecture challenges

Since the fully cloudified architecture is completely based on Kubernetes pods, there are
some challenges to face for its realization. In fact, to make it work properly, we need to take
care of how the containers manage the audio/video streams (both in the server-side and in the
client-side), and how the pod will be scheduled.

4.4.1. Managing the video streams

The first challenge is managing the video streams. To be more specific:
• in the server-side we need to use a windowing system to create the desktop

application windows, and a VNC server that catches the video stream and redirects
it to the VNC client;

• in the client-side we need to receive the video stream with a VNC viewer and to
redirect it to the host graphic card.

Unlike the server-side, in which the host video interface is not involved since the
container is headless and a containerized windowing system that doesn’t require to be shown
in that host will be used, in the client-side we need to show the Graphical User Interface and
this means that we must interact someway with the host video interface.

Note that this challenge concerns not only the fully cloudified architecture but also the
fully containerized architecture, that does not necessarily involve Kubernetes.

4.4.2. Managing the audio streams

A similar reasoning could be done for the audio streams. In fact:
• in the server-side we have a headless container which will not interact with the host

sound interface. The only requirement is to forward the sound to the audio server
inside the client-side;

• in the client-side, unlike the server-side, we need both to receive the sound from the
remote desktop application through an audio server and to reproduce it in the host
machine. So, in this case, we must interact someway with the host audio interface.

Note that, as for the video streams, this challenge concerns not only the fully cloudified
architecture but also the fully containerized architecture.

 40

4.4.3. Forcing the desktop application execution in a remote node

Since the pod scheduling is automatically carried out by Kubernetes and in the fully
cloudified architecture the local machine is actually a Kubernetes cluster node, we run the risk
of executing the desktop application pod inside the local machine. This condition, of course,
should be avoided because it clashes with the aim of the project. In fact, what we want to realize
is actually the application offload and it makes no sense to execute it in the local machine, even
if containerized.

So, what we need to do is to find a way to force the desktop application pod scheduling
and execution to another Kubernetes node.

4.4.4. Forcing the viewer execution in the local node

In the client-side we have similar situation, in fact, since the pod scheduling is
automatically carried out by Kubernetes, we run the risk of executing the VNC viewer pod in
a node that is not the local one. This is an undesirable event because even if we want to offload
the desktop application execution, we still want to interact with it from the local machine.

So, this time, what we need to do is to find a way to force the VNC viewer pod scheduling
and execution to the local Kubernetes node.

4.5. Requirements

The project implementing this architecture should meet some requirements in terms of
start-up/execution times and of features to be supported as follows:

1. there should be the audio/video remotization;
2. the communications between components should be secured (for instance by using

encryption) to avoid security issues;
3. the remote cluster response time should be less than 2 sec., which is at most 10

times the time required from an Operating System to schedule a process;
4. the remote desktop application pod should be up and running in less than 60 sec.,

which is at most 10 times the time required for a process to start;
5. the video stream should have a tunable image quality level;
6. the video stream should have a tunable compression level;
7. there should be configuration and data persistency for the remote application;
8. there should be scalability in terms of supported desktop application;
9. there should be the possibility to exploit some specific Kubernetes node hardware

capabilities (i.e. use a NVIDIA graphic card) from the pod.

 41

Chapter 5 - KubernetesOnDesktop: server-side implementation

5.1. Introduction

This section will talk about the server-side aspects. Then, in the next chapter, we will
focus on the client-side implementation.

Before presenting an in-depth study of the implementation, an analysis of the protocols
and tools chosen to realize the architecture above will be provided.

Note that this implementation, as well as the client-side one, is based on a previous proof
of concept developed at Politecnico of Turin26.

5.1.1. Tunneling and connection security protocols and tools

To make the connection secure we chose to use the SSH protocol and, in particular, we
selected the software OpenSSH that «encrypts all traffic to eliminate eavesdropping, connection
hijacking, and other attacks. In addition, OpenSSH provides a large suite of secure tunneling
capabilities, several authentication methods, and sophisticated configuration options»27 which
are very useful for our purposes as we will see afterwards.

5.1.2. Video streaming protocols and tools

For the video streaming we choose to use the VNC protocol and, in particular, we selected
two different implementations:

1. TigerVNC, which is a «high-performance, platform-neutral implementation of
VNC (Virtual Network Computing), a client/server application that allows users to
launch and interact with graphical applications on remote machines. TigerVNC
provides the levels of performance necessary to run 3D and video applications, and
it attempts to maintain a common look and feel and re-use components, where
possible, across the various platforms that it supports»28. Moreover, TigherVNC
provides a Xvnc server which is «based on a standard X server, but it has a "virtual"
screen rather than a physical one. X applications display themselves on it as if it
were a normal X display, but they can only be accessed via a VNC viewer»29.

2. noVNC, that is «both a VNC client JavaScript library as well as an application built
on top of that library. noVNC runs well in any modern browser including mobile
browsers (iOS and Android)»30. This way it will be possible to interact with the
remote application even from a browser.

26 See: https://github.com/netgroup-polito/KubernetesOnDesktop.
27 OpenSSH official website, https://www.openssh.com, September 9th, 2020.
28 TigerVNC official website, https://tigervnc.org, September 9th, 2020.
29 Tristan Richardson - RealVNC Ltd. and others, Xvnc − the X VNC server, https://tigervnc.org/doc/Xvnc.html,

September 10th, 2020.
30 noVNC official website, https://novnc.com/info.html, September 9th, 2020.

 42

5.1.3. Audio streaming tools

For the audio streaming we choose to use PulseAudio which is a «sound system for
POSIX OSes, meaning that it is a proxy for your sound applications. It allows you to do
advanced operations on your sound data as it passes between your application and your
hardware».31 It is also able to do «things like transferring the audio to a different machine»32.
This way it will be possible to catch the sound stream and forward it from the remote container
to the local machine.

5.2. Docker implementation

5.2.1. Introduction

The server-side consists in two Dockerfiles that have been used to build, respectively,
two docker images: the base_image and the app_image.

5.2.1.1. The base_image Dockerfile

The base_image Dockerfile installs inside the docker image the software required for the
application remotization (but not the target application itself) and sets some environment
variables.

To be more specific it will install the following software:
• Openbox, which is a free, lightweight and high configurable windows manager, that

also requires the python-numpy library;
• x11-xkb-utils, which is a package containing graphical utilities, required to make

the Graphical User Interface work properly;
• TigerVNC;
• noVNC, which also requires websockify that «just translates WebSockets traffic to

normal socket traffic. Websockify accepts the WebSockets handshake, parses it,
and then begins forwarding traffic between the client and the target in both
directions»33;

• PulseAudio;
• openssh-server, which is the OpenSSH server-side application.

Moreover, it will set the following environment variables related to the audio/video, the
connection tunneling and connection security management:

• DISPLAY, which contains the display name. «From the user's perspective, every
X server has a display name of the form: hostname:displaynumber.screennumber.
This information is used by the application to determine how it should connect to
the server and which screen it should use by default (on displays with multiple
monitors). […] On POSIX systems, the default display name is stored in your
DISPLAY environment variable»34. This variable will be used from the VNC server

31 PulseAudio official website, https://www.freedesktop.org/wiki/Software/PulseAudio/, September 9th, 2020.
32 Idem.
33 Websockify official GitHub repository, https://github.com/novnc/websockify, September 9th, 2020.
34 x(7) - Linux man page, https://linux.die.net/man/7/x, September 9th, 2020.

 43

to specify which display it has to be linked to. In our case it has the :0 value which
is the default one;

• VNC_PORT, which is the TCP port the VNC server will listen to;
• NO_VNC_PORT, which is the TCP port the noVNC server will listen to;
• VNC_COL_DEPTH, which is the color depth of the visual to provide, in bits per

pixel;
• DISPLAY_WIDTH, which is the desktop width;
• DISPLAY_HEIGHT, which is the desktop height;
• SSH_PORT, which is the TCP port the SSH server will listen to;
• VNC_PASSWORD, which is the VNC server password.

The following Dockerfile code snippet shows that variables declaration and their default
values.

ENV DISPLAY=:0 \
 VNC_PORT=5900 \
 NO_VNC_PORT=5800 \
 SSH_PORT=22

[…]

ENV USER=vncuser \
 HOME=/home/vncuser \
 ROOT_WORKDIR=/opt/config \
 NO_VNC_HOME=/ \
 DEBIAN_FRONTEND=noninteractive \
 VNC_COL_DEPTH=24 \
 DISPLAY_WIDTH=1280 \
 DISPLAY_HEIGHT=1024 \
 VNC_PASSWORD=vncpassword \
 VNC_VIEW_ONLY=false \
 SECURE_CONNECTION=0

Note that those values could be overwritten, i.e. by the Kubernetes environment variable

declaration.

5.2.1.2. The app_image Dockerfile

The app_image Dockerfile installs inside the docker image, created by using the
base_image as parent image, the target desktop application and all its dependencies. Moreover,
it installs the scripts which will be executed inside the container to run the server-side
application, and all their related resources. To be more specific, the following files will be
copied inside the container:

• docker-entrypoint.sh which, as its name suggests, is the docker entry point. It deals
with the SSH service startup and launches the user-startup.sh script as a no
privileged user;

• user-startup.sh which is the script that initializes and runs the VNC server, the
openbox application and the target application;

• the openbox configuration files.
Since it is created by using the base_image as parent image, it will inherit from that all

the previously installed software and the environment variables.

 44

The app_image Dockerfile has been realized to be used as a sort of template to install the
required target application inside the docker image. In fact, as you can see in the code snippet
below, the apt-get package manager will be used to install the application specified in the
APPLICATION build argument.

ARG APPLICATION=unknown
ARG REPO_TO_ADD=unknown
ENV APPLICATION=$APPLICATION

[...]

RUN if [[${REPO_TO_ADD} != "unknown"]]; then \
 apt-get update && \
 apt-get install -y software-properties-common && \
 add-apt-repository ${REPO_TO_ADD}; \
 fi

RUN apt-get update
RUN apt-get install -y $APPLICATION

Moreover, since it could be possible that the target application package has its own

repository and it is not available in the Linux Distribution official repositories, the
REPO_TO_ADD build argument can be used to add the required repository. So, if no third-
party repository is required, it is possible to build the app_image by running the command
below (i.e. to install firefox):

docker build –build-arg APPLICATION=firefox -t firefox-headless-vnc

otherwise you can use the following command (i.e. to install blender):

docker build –-build-arg APPLICATION=blender \
 --build-arg REPO_TO_ADD=”ppa:thomas-schiex/blender” \
 -t firefox-headless-vnc

Finally, the APPLICATION build argument will be exported as a container environment

variable to let the user-startup.sh script know which target application to execute (you’ll see
that afterwards).

5.2.2. Managing the tunneling and the connection security

Once the docker container starts, the docker-entripoint.sh script will be executed. Its main
purpose, as previously mentioned, is to start the SSH server. This server, actually, has two
functions:

1. encrypting the connections between the server-side and the client-side;
2. creating tunnels between the server-side and the client-side.

As we can see afterwards, the first purpose is optional (i.e. to encrypt the VNC streams)
and the second one is required in some cases (i.e. to forward the audio streams).

OpenSSH has some different authentication methods (i.e. password authentication, public
key authentication, host-based authentication, ecc.). We chose to use the public key

 45

authentication one so that, on each execution, will be created a key pair (private and public
keys) and then: the public one will be mounted someway inside the container running the target
application; the private one will be used by the client-side to establish authenticated connections
with the server-side.

chmod go-w $HOME
mkdir -p $HOME/.ssh
chmod 755 $HOME/.ssh
cp $HOME/ssh_secret/authorized_keys $HOME/.ssh
chmod 600 $HOME/.ssh/authorized_keys
chown $USER $HOME/.ssh/authorized_keys

service ssh start

As you can see in the docker-entrypoint.sh script code snippet above, first of all the SSH

public key, which has been mounted inside the file $HOME/ssh_secret/authorized_keys, will
be copied inside the directory $HOME/.ssh, that is the one in which the VNC server will look
for the accredited public keys. Also, some files and folders owner and privileges must be
changed to make the SSH server run properly. Then, the SSH server will be started, listening
to the 22 TCP port (the SSH default one) for incoming connections.

5.2.3. Managing the video stream

As previously mentioned, the video stream managing has been realized through a
combination of the Openbox windows manager, the VNC server and optionally the OpenSSH
server. In the following sections we will see how they work and interoperate with each other.

5.2.3.1. Setting the VNC password

The first thing to do is to set a VNC password. This way, even though user chooses not
to encrypt the connection, the VNC session, that in this case could be sniffed with a MITM
attack, is still password protected. As you can see afterwards, the password is a One Time
Token, generated before applying the Kubernetes `deploy` remotely, and exposed inside the
container with the VNC_PASSWORD environment variable by overwriting the already
declared one inside the base_image Dockerfile. This password will be used to connect to the
container with both the protocols, VNC and noVNC.

mkdir -p "$HOME/.vnc"
PASSWD_PATH="$HOME/.vnc/passwd"

if [[-f $PASSWD_PATH]]; then
 rm -f $PASSWD_PATH
fi

[...]

echo "$VNC_PASSWORD" | vncpasswd -f >> $PASSWD_PATH
chmod 600 $PASSWD_PATH

As you can see in the user-startup.sh script code snippet above, at first all the default

password values will be cleaned up to let the VNC server use the password specified with the

 46

new VNC_PASSWORD environment variable. Then, it will be encrypted with the vncpasswd
command and then stored in the $HOME/.vnc/passwd file, which is the one from whom the
VNC server will retrieve the password during its startup.

5.2.3.2. Cleanup the already running VNC server instances

Before starting the VNC server with the new password and with our own configuration
parameters, we need to kill every VNC server instance that involve the display Unix socket we
want to use. In fact, as described in section 5.2.1.1., the VNC server instance is always linked
to a Unix socket specified inside the DISPLAY environment variable.

vncserver -kill $DISPLAY || rm -rfv /tmp/.X*-lock /tmp/.X11-unix

As you can see in the user-startup.sh script code snippet above, if already exists a VNC

server instance linked to the display we want to use, it will be killed. If an error occurs (i.e.
because some resources are locked or there is no VNC server running), all the temporary files
related to the X service will be removed.

5.2.3.3. Starting the VNC servers

Before starting the VNC servers, the script checks if it is required to secure the connection
through encryption. In this case, as we will see afterwards, from the client-side it will be created
an SSH encrypted tunnel that maps a client-side port with the server-side one. This way the
incoming connection acts as if it comes from the localhost itself and not from a remote host as
actually it is. So, as you can see in the user-startup.sh script code snippet below, the vncserver
command will be executed by specifing the “-localhost” parameter (through the
IS_VNC_LOCALHOST variable) that forces it to accept localhost connection only.

if [[$SECURE_CONNECTION -eq 1]]; then
 IS_VNC_LOCALHOST="-localhost"
fi
vncserver $DISPLAY $IS_VNC_LOCALHOST \
 -depth $VNC_COL_DEPTH -geometry ${DISPLAY_WIDTH}x${DISPLAY_HEIGHT} -noxstartup \
 -MaxDisconnectionTime=60

$NO_VNC_HOME/utils/launch.sh --vnc localhost:$VNC_PORT --listen $NO_VNC_PORT &

As you can see from the script above, both the VNC servers will be started as described

below:
1. TigerVNC, through the command vncserver which is used to start both a Xvnc

server, that virtualize a display reachable only through a VNC viewer, and then the
VNC server itself. This command requires the following parameters:
• DISPLAY, which specifies the Unix display socket the VNC server have to be

linked to, in our case the virtual display which has “:0” value;
• -localhost, added though the IS_VNC_LOCALHOST variable only if it is

required to secure the connection, as described above;

 47

• -depth, which specifies the color depth of the visual to provide, in bits per pixel;
• -geometry, which is a composition of display width and height and sets the image

resolution;
• -noxstartup, which specifies not to automatically start a window manager in the

TigerVNC session. This is required because, as we will see afterwards, we want
to use Openbox as windows manager and we will run it by hands later;

• -MaxDisconnectionTime, which stops the server if no client has been connected
(in our case, for 60 seconds);

2. noVNC, through its launch.sh script that requires the following parameters:
• --vnc, which specifies the URL of an already running instance of a VNC server.

In our case it will be specified the TigerVNC instance created before which is
reachable through the localhost:$VNC_PORT URL;

• --listen, which specifies the TCP port the noVNC server will listen to.

5.2.3.4. Running the windows manager and the target desktop application

Once the virtual display and the VNC servers are up and running, we are ready to execute
the windows manager just by running the command in the following code snippet.

openbox-session &

This command first of all will read its configuration files then will run the windows

manager. Actually, during the app_image building, the Openbox default configuration has been
overwritten with an application-specific one (see the app_image Dockerfile code snippet
below).

RUN rm -rf /etc/xdg/openbox && \
 cp -R openbox /etc/xdg/openbox && \
 mv /etc/xdg/openbox/${APPLICATION}.xml /etc/xdg/openbox/rc.xml

Once the Openbox windows manager is up and running, the target desktop application

will be executed as you can see in the code snippet below.

if [[! -z "$APPLICATION"]]; then
 exec $APPLICATION &
else
 pkill -P $$
fi

Note that the APPLICATION environment variable has been set in the app_image

Dockerfile, according to the specified APPLICATION build argument, and that if the
application doesn’t exist (and this is an unexpected behavior since the application name should
be the same of the installed one) each process will be killed and the script ends.

 48

Once the target application is up and running, the script will wait for the first background
process to terminate and then will kill all the remaining running processes, so it terminates its
execution.

5.2.4. Managing the audio stream

As discussed above, the audio stream will be managed through the PulseAudio tool. It
uses an environment variable named PULSE_SERVER that defines where the audio server is.
It takes a protocol prefix like unix: or tcp: followed by the path or IP address of the server.

This is a very useful feature because we can set a remote server and use the TCP protocol.
This way, we can install a PulseAudio server in the client-side and forward the sound, through
a TCP connection, from the server-side to the client-side. So, the latter will be enabled to
reproduce it on the local machine.

This could be a good solution but has two limitations:
1. we need to know in advance which the client-side IP address is;
2. the client-side machine should be reachable from the server-side. This is a problem,

i.e. if the client-side machine is behind a NAT.
These limitations have been overcome by using an SSH tunnel. Actually, as we will see

afterwards, the client-side will create an SSH tunnel and will map a remote TCP port (the one
on the server-side) with a local TCP port (the one on the client-side). This way, each server-
side connection to localhost:ssh_server-side_port_mapped, will be forwarded to the client-
side. So, we can just set the PULSE_SERVER variable as tcp:localhost:<port> and the audio
stream will be forwarded to the client-side.

Figure 9: server-side to client-side PulseAudio port forwarding

The PULSE_SERVER environment variable, as we will see afterwards, will be set
through the Kubernetes environment variable declaration.

5.2.5. Exploiting the host hardware capabilities

One of the main reasons of the application offloading is that the target application could
require hardware resources which the user machine does not have. For example, to make a
video rendering it should be desirable to use a powerful graphic card to reduce the execution
time. So, a good feature to implement is to exploit the server-side hardware capabilities to
obtain these results.

 49

ARG FROM_IMAGE="ubuntu:18.04"
FROM ${FROM_IMAGE}

As you can see in the base_image Dockerfile code snippet above, it is possible to use a

build argument named FROM_IMAGE to specify which Parent Image to use during the
base_image building process. This way it is possible to use as Parent Image a docker image
that contains specific drivers to exploit the remote hardware capabilities.

For example, if the remote node has a NVIDIA graphic card, it will be possible to use the
NVIDIA provided “nvidia/cuda:10.2-runtime-ubuntu18.04” image as Parent Image instead of
“ubuntu:18.04” which, as you can see in the code snippet above, is the default one.

Since we can obtain different base_images depending on which Parent Image has been
used during its building, also in the app_image Dockerfile there is a FROM_IMAGE build
argument to specify which base_image to use as app_image’s Parent Image. See the
app_image Dockerfile code snippet below.

ARG FROM_IMAGE="base-headless-vnc"
FROM ${FROM_IMAGE}

So, if you want to use a customized base_image you can build the app_image by

executing the following command (i.e. to install blender and use a base_image that has the
NVIDIA provided image as Parent Image):

docker build –-build-arg APPLICATION=blender \
 --build-arg REPO_TO_ADD=”ppa:thomas-schiex/blender” \
 --build-arg FROM_IMAGE=nvidia-base-headless-vnc \
 -t firefox-headless-vnc

5.3. Kubernetes implementation

5.3.1. Introduction

So far, we have analyzed the Docker server-side implementation. As we said in the
previous chapter, that resolves almost all the issues we would have had if we had installed the
target application natively on the server-side. The only unsolved problem is that if we want to
schedule different processes in a cluster, we have to do it by hand. This has been solved by
using Kubernetes.

The Kubernetes server-side implementation consists in:
1. a deployment, that will create a pod, which will run the app_image container

described above, whose definition is contained in the deployment.yaml file;
2. a service, that makes the pod reachable both from the inside and the outside of the

Kubernetes cluster, whose definition is contained in the deployment.yaml file too;
3. a PersistentVolumeClaim, to obtain the remote application configuration data

persistency, whose definition is contained in the volume.yaml file.

 50

Moreover, the application lifecycle (both for the server-side and the client-side) is
managed through a bash script named cloudify which will create all the Kubernetes resources,
will wait for their completion and then will clean up the cluster.

In the following sections we will see how the features above have been implemented by
using Kubernetes and how have been managed through the cloudify script.

5.3.2. Managing the connection security

As described in the previous sections, we have to deal with two security levels:
1. the VNC password, which will be used even if there is not an encrypted connection

between client and server;
2. the SSH key pair, which will be used if the user chooses to use an encrypted

connection.
Talking about the first security level, as anticipated in section 5.2.3.1., the VNC password

is a One Time Token generated from the cloudify script each execution.

function adjust_token {
 line=`grep -n 'VNC_PASSWORD' ${targetDeploy} | cut -d : -f -1`
 ((line=line+1))

 sed -i "${line}s/\".*\"/\"$token\"/" ${targetDeploy}
}

function start_deploy {

 [...]

 echo -n "Generating token..."
 token=$(cat /dev/urandom | tr -dc 'a-zA-Z0-9' | fold -w 32 | head -n 1)
 echo "OK"
 adjust_token

 [...]

}

As you can see in the cloudify code snippet above, the start-deploy function will generate

a brand-new token by retrieving a 32 alpha-numeric chars string from the /dev/urandom Unix
inode, then it will be set inside the deployment.yaml file by using the adjust_token function.

apiVersion: apps/v1
kind: Deployment
[...]
spec:
 [...]
 template:
 [...]
 spec:
 [...]
 containers:
 - name: RAR_001_APP_NAME_PID-kubernetes
 image: RAR_002_APP_NAME-headless-vnc
 [...]
 env:
 [...]
 - name: "VNC_PASSWORD"
 value: "ECk01SFjMag8ENwDveZRwYrUnnLU1a3e"

 51

The code snippet above shows that inside the deployment declaration there is the
VNC_PASSWORD environment variable with the new generated token (set, as seen before,
with the cloudify script adjust_token function) that will overwrite the one declared inside the
container.

For the second security level, as anticipated in section 5.2.2., we chose to use the SSH
protocol with the public key authentication. So, a key pair (private key and public key) will be
created for each execution. Consequently, the public key will be mounted someway inside the
container running the target application and the private one will be used by the client-side to
establish authenticated connections with the server-side. Now we will explain how the key pair
will be created and then how the public key will be mounted inside the container.

echo -n "Generating ssh key pair..."
ssh-keygen -t rsa -b 4096 -C "${USER}@kubernetes.io" \
 -f "${working_dir}/id_rsa" -N "" &>/dev/null
echo "OK"

[...]

echo -n "Creating ssh secret..."
kubectl create secret generic $ssh_secret_name \
 --from-file=authorized_keys="${working_dir}/id_rsa.pub" \
 -n $k8s_namespace &>/dev/null && ((state++))

As you can see in the cloudify code snippet above, first of all we have to create the SSH

key pair by executing the ssh-keygen command and specifying the following parameters:
• -t rsa, which means that the RSA algorithm has to be used;
• -b 4096, which specifies the number of bits the key to create must have;
• -C, which just provides a comment;
• -f “…”, which specifies the file name of the key file;
• -N “”, which specifies an empty passphrase. This is required because we want to

login to the remote container automatically by using the private key without any
passphrase.

Then, a Kubernetes secret containing the public key will be created with the kubectl
create secret generic command by specifying the following parameters:

• the secret name, which is stored inside the $ssh_secret_name variable and, as we
will see afterwards, its name is parametrized to consent the applications
concurrency management;

• --from-file, that specifies which is the file containing the public key created before;
• -n, which specifies which is the Kubernetes namespace we want to use.

This way we have a brand-new key pair and a secret containing the public key. Now the
only thig left is let the pod running the target application to access it. This will be done, as you
can see in the deployment.yaml code snippet below, by mounting the secret inside the container
as a volume:

apiVersion: apps/v1
kind: Deployment
[...]
spec:
 [...]

 52

 template:
 [...]
 spec:
 [...]
 volumes:
 [...]
 - name: ssh-secret
 secret:
 secretName: RAR_003_SSH_SECRET
 [...]
 containers:
 - name: RAR_001_APP_NAME_PID-kubernetes
 image: RAR_002_APP_NAME-headless-vnc
 [...]
 env:
 [...]

 - name: "SECURE_CONNECTION"
 value: "1"
 [...]
 volumeMounts:
 [...]
 - name: ssh-secret
 mountPath: /home/vncuser/ssh_secret
 readOnly: true

This way, the public key will be mounted inside the container in the

/home/vncuser/ssh_secret path, which is the one from whom the user-startup.sh script inside
the container will copy that key inside the local $HOME/.ssh folder. Moreover, to let the user-
startup.sh script know whether the user chose to use an encrypted connection or not, as shown
above, the SECURE_CONNECTION environment variable inside the container will be
overwritten by a deployment environment variable declaration. This value will be set, according
to the user choice, though the adjust_encryption function inside the cloudify script as shown in
the code snippet below.

function adjust_encription {
 line=`grep -n 'SECURE_CONNECTION' ${targetDeploy} | cut -d : -f -1`
 ((line=line+1))

 sed -i "${line}s/[0-1]/${enc}/" ${targetDeploy}
}

Actually, there is also another last thing left: we need to expose the TCP 22 SSH port to

make the pod reachable. This will be done by declaring it in the pod spec inside the
deployment.yaml file. Anyway, since the ports declarations are managed all together by the
same cloudify function used for the video stream port exposition, the adjust_protocol function,
this will be shown in the following section.

5.3.3. Managing the video stream

The video stream managing is mainly done inside the docker container as we saw in
section 5.2.3.. From the Kubernetes point of view, we just need to specify inside the deployment
which port to expose depending on which protocol the user wants to use: VNC or noVNC. To
be more specific, the deployment.yaml file, by acting as a template, contains all the ports to be
exposed as shown in the code snippet below:

 53

apiVersion: apps/v1
kind: Deployment
[...]
spec:
 [...]
 template:
 [...]
 spec:
 [...]
 containers:
 - name: RAR_001_APP_NAME_PID-kubernetes
 image: RAR_002_APP_NAME-headless-vnc
 [...]
 ports:
 - name: novnc-cont-port
 containerPort: 5800
 - name: vnc-cont-port
 containerPort: 5900
 - name: ssh-cont-port
 containerPort: 22

so, the cloudify script adjust_protocol function will remove the unused ones as shown

below:

function adjust_protocol {
 from_novnc_service=`grep -w -n 'novnc-svc-port' ${targetDeploy} | cut -d : -f -1`
 ((till_novnc_service=from_novnc_service+3))
 from_vnc_service=`grep -w -n 'vnc-svc-port' ${targetDeploy} | cut -d : -f -1`
 ((till_vnc_service=from_vnc_service+3))
 from_novnc_container=`grep -w -n 'novnc-cont-port' ${targetDeploy} | cut -d : -f -1`
 ((till_novnc_container=from_novnc_container+1))
 from_vnc_container=`grep -w -n 'vnc-cont-port' ${targetDeploy} | cut -d : -f -1`
 ((till_vnc_container=from_vnc_container+1))

 if [[$enc -eq 1]]; then
 sed -i "\
 ${from_novnc_container},${till_novnc_container}d;\
 ${from_novnc_service},${till_novnc_service}d;\
 ${from_vnc_container},${till_vnc_container}d;\
 ${from_vnc_service},${till_vnc_service}d" ${targetDeploy}
 elif ["$protocol" = "vnc"]; then
 sed -i "\
 ${from_novnc_container},${till_novnc_container}d;\
 ${from_novnc_service},${till_novnc_service}d" ${targetDeploy}
 else
 sed -i "\
 ${from_vnc_container},${till_vnc_container}d;\
 ${from_vnc_service},${till_vnc_service}d" ${targetDeploy}
 fi
}

To be more specific, as mentioned in the previous section, inside the ports declaration in

the deployment.yaml file there is also the TCP 22 port used by the SSH protocol. So, depending
on the user choice, the function will act as follows:

• if the encryption is enabled, all the ports will be removed except for the TCP 22
one;

• if the encryption is not enabled:
- the TCP 22 port will be removed;
- if the used protocol is VNC the noVNC port will be removed;
- if the used protocol is noVNC the VNC port will be removed.

 54

5.3.4. Managing the audio stream

The audio stream management is mainly done inside the docker container and from the
architecture’s client-side, as we have seen in section 5.2.4.. From the Kubernetes point of view,
as mentioned in that section, we just need to specify the PULSE_SERVER environment
variable to set right PulseAudio server URL, as shown in the following deployment.yaml code
snippet.

apiVersion: apps/v1
kind: Deployment
[...]
spec:
 [...]
 template:
 [...]
 spec:
 [...]
 containers:
 - name: RAR_001_APP_NAME_PID-kubernetes
 image: RAR_002_APP_NAME-headless-vnc
 [...]
 env:
 - name: "PULSE_SERVER"
 value: "tcp:localhost:34567"

5.3.5. Managing the pod scheduling

Since the client-side machine, as it is for the server-side, could be a Kubernetes cluster
node too, we need to force the server-side pod scheduling to a foreign node. To achieve this
goal, the Kubernetes node affinity has been used.

apiVersion: apps/v1
kind: Deployment
[...]
spec:
 replicas: 1
 [...]
 template:
 [...]
 spec:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: RAR_004_NS_LABEL
 operator: DoesNotExist

As you can see in the deployment.yaml code snippet above, through the combination of

the matchExpression, the label key and the DoesNotExists operator inside the nodeAffinity, it
has been specified that the pod mustn’t be scheduled in a node that has a certain label. This
label, as we will see afterwards, has been parametrized to consent the applications concurrency
management.

Thus, if the machine is part of the Kubernetes cluster, the cloudify script will add this
label to the local node, as shown in the following code snippet.

 55

function retrieve_curr_k8s_node_info {
 [...]
 IFS='#' read -r -a current_node_info <<< $(kubectl get nodes \
 -l kubernetes.io/hostname=`cat /etc/hostname` \
 -o 'jsonpath={range .items[0].status.addresses[*]}{.type}={.address}#{end}')
 for ((i=0; i<${#current_node_info[@]}; i++)); do
 if [[$(echo ${current_node_info[$i]} | cut -d '=' -f 1) == "Hostname"]];then
 current_node_name=$(echo ${current_node_info[$i]} | cut -d '=' -f 2)
 fi
 [...]
 done
 [...]
}

function prepare_cluster {
 [...]
 if [[$run_mode -eq 2]]; then
 retrieve_curr_k8s_node_info
 [...]
 kubectl label no $current_node_name "$viewer_ns_label=true" --overwrite &>/dev/null
 [...]
 fi
}

As you can see above, first of all the node name of the local machine will be retrieved by

using the /etc/hostname file content. Actually, this will work properly with the default
Kubernetes configuration, if the cluster administrator uses a node name that does not match the
machine hostname there could be some issues.

Once the current node name has been retrieved, the node will be labeled with the kubectl
label no command. Obviously, the deployment key must match the node label key so that
Kubernetes will schedule the pod properly.

Finally, since the pod will be created from a deployment, it has been specified that we
want just one replica of it as shown in the deployment.yaml code snippet above.

5.3.6. Managing the pod reachability

Once the server-side pod is up and running, we need to make it reachable both from the
inside and the outside of the cluster depending on whether the client-side machine, respectively,
is part of the cluster or not. To achieve this, a Kubernetes service has been defined.

apiVersion: v1
kind: Service
metadata:
 name: RAR_001_APP_NAME_PID-service
 labels:
 app: RAR_001_APP_NAME_PID
spec:
 selector:
 app: RAR_001_APP_NAME_PID
 ports:
 - name: novnc-svc-port
 protocol: TCP
 port: 5800
 targetPort: 5800
 - name: vnc-svc-port
 protocol: TCP
 port: 5900
 targetPort: 5900
 - name: ssh-svc-port
 protocol: TCP
 port: 22
 targetPort: 22

 56

 type: ClusterIP

As you can see in the deployment.yaml code snippet above, a ClusterIP type service will

be created and, since its definition acts as a template, as it was for the deployment, also in this
case there is a function inside the cloudify script that will remove all the unused ports depending
on the chosen protocol (VNC or noVNC) and the encryption enabling. Actually, the function
is the same used for the deployment customization (adjust_protocol) so, depending on the user
choices, also in this case, the function will act as follows:

• if the encryption is enabled, all the ports will be removed except for the TCP 22
one;

• if the encryption is not enabled:
- the TCP 22 port will be removed;
- if the used protocol is VNC the noVNC port will be removed;
- if the used protocol is noVNC the VNC port will be removed.

The set of pods targeted by this service is determined by the app selector which matches
the pod one. Note that, as we will see afterwards, the app selector has been parametrized, both
in the service and in the deployment definition, to consent the applications concurrency
management. Moreover, since the deployment replicas is set to one, even if the pod fails its
execution, the restarted pod that will be reachable though the same service because it will have
the same app selector of the previous one.

However, since a ClusterIP type service has been used so far, the pod will be reachable
through the service only inside the cluster itself. To make it reachable from the outside the
cluster, there is a function in the cloudify script that will replace the ClusterIP with a NodePort
inside the service definition as shown in the following code snippet.

function enable_nodeport {
 sed -i "s/ClusterIP/NodePort/" ${targetDeploy}
}

function start_deploy {
 [...]
 if [["$run_mode" =~ ^[0-1]$]]; then
 enable_nodeport
 fi
 [...]
}

Note that, thanks to the if-then-fi statement above, only if the client-side machine is not

part of the cluster the NodePort will be used.

5.3.7. Managing the data persistency

One of the project requirements is to have the remote application configuration and data
persistency. To implement this feature, we choose to create a dynamically provisioned
persistent volume claim which uses the rook-ceph-block storageClassName.

Before going into the implementation details, a brief introduction to this class will be
provided. This is based on:

 57

• Rook, which «is an open source cloud-native storage orchestrator, providing the
platform, framework, and support for a diverse set of storage solutions to natively
integrate with cloud-native environments»35;

• Ceph, which «is a highly scalable distributed storage solution for block storage,
object storage, and shared filesystems with years of production deployments»36;

• Block Storage, which «allows a single pod to mount storage»37.
The rook-ceph-block class is a combination of those three elements. Assuming that this

class has been already defined inside the cluster, we can just create the PersistentVolumeClaim
as shown in the code snippet below (i.e. for Firefox):

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: firefox-pv-claim
spec:
 storageClassName: rook-ceph-block
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 100Mi

This definition will be reproduced for each target application to have a different volume

for each one. In the case above a 100 Mibibyte volume, with read and write access privileges
and named firefox-pv-claim will be created.

Once applied to the cluster, the persistent volume claim can be consumed by mounting it
inside the pod as shown in the deployment.yaml code snippet below.

apiVersion: apps/v1
kind: Deployment
[...]
spec:
 [...]
 template:
 [...]
 spec:
 [...]
 volumes:
 [...]
- name: RAR_002_APP_NAME-persistent-storage
persistentVolumeClaim:
claimName: RAR_002_APP_NAME-pv-claim
 containers:
 - name: RAR_001_APP_NAME_PID-kubernetes
 image: RAR_002_APP_NAME-headless-vnc
 [...]
 volumeMounts:
 [...]
 #Firefox PVC claim
- name: firefox-persistent-storage
mountPath: /home/vncuser/.mozilla
 #Libreoffice PVC claim
- name: libreoffice-persistent-storage
mountPath: /home/vncuser/Documents

35 Rook official website, https://rook.io/docs/rook/v1.4/, September 13th, 2020.
36 Rook official website – Ceph Storage, https://rook.io/docs/rook/v1.4/ceph-storage.html, September 13th, 2020.
37 Rook official website – Block Storage, https://rook.io/docs/rook/v1.4/ceph-block.html, September 13th, 2020.

 58

As you can see above, both the volumes and the volumeMounts entries have been

commented. This is because it is possible, both:
1. disabling the persistent volume claim, and nothing will be uncommented during the

cloudify script execution;
2. enabling the persistent volume claim and, in this case:
• the volumes entry will be uncommented and the RAR_002_APP_NAME string

will be replaced with the target application name;
• the volumeMounts entry related to the target application will be uncommented.

What explained above, will be done by the cloudify script as shown in the following code
snippet:

function adjust_volumes {
 #Uncomment volumes
 from=`grep -n "RAR_002_APP_NAME-persistent-storage" ${targetDeploy} | cut -d : -f -1`
 ((to=from+2))
 sed -i "${from},${to} {s/^#//g}" ${targetDeploy}

 #Uncomment volumeMounts
 from=`grep -n "${application_name}-persistent-storage" ${targetDeploy} | cut -d : -f -1`
 ((to=from+1))
 sed -i "${from},${to} {s/^#//g}" ${targetDeploy}
}

function start_deploy {
 [...]
 if [$use_pvc -eq 1]; then
 adjust_volumes
 fi
 [...]
}

5.3.8. Managing the applications concurrency

Since it is used a deployment to create the server-side pod, if we want to run more
instances of the same application, we need to parametrize the resources name, as mentioned in
the previous sections, to uniquely identify them. For this reason, for each resource name or
label will be used a static part, shared with each application instance, and a parametrized part,
which acts as a PID.

Thus, we need firstly to generate a PID and use it to compose the resources names as
shown in the following main function code snippet below inside the cloudify script.

function main() {
 [...]
 app_pid=$(cat /dev/urandom | tr -dc 'a-z0-9' | fold -w 10 | head -n 1)
 ssh_secret_name="rar-ssh-secret-"$app_pid
 vnc_srv_app_pid="$application_name-$app_pid"
 [...]
 viewer_ns_label="kod/vncviewer-$app_pid"
 [...]
}

 59

Similarly to the VNC_PASSWORD token generation seen in section 5.3.2., here the
script will generate a brand-new PID by retrieving a 10 alpha-numeric chars string from the
/dev/urandom Unix inode. Then, by combining a static part with the brand-new PID as shown
above, the following values will be created:

1. the secret name (ssh_secret_name variable), used to apply a new secret containing
the SSH public key, as seen in section 5.3.2.. In this case also the
RAR_003_SSH_SECRET string inside the secret volumes declaration of the
deployment will be replaced;

2. the server-side application name + PID (vnc_srv_app_pid variable), used for:
• the deployment name, the deployment “app” selector and pod and “app” label

definitions, as shown in the deployment.yaml code snippet below;

apiVersion: apps/v1
kind: Deployment
metadata:
 name: RAR_001_APP_NAME_PID-deployment
spec:
 [...]
 selector:
 matchLabels:
 app: RAR_001_APP_NAME_PID
 template:
 metadata:
 labels:
 app: RAR_001_APP_NAME_PID

• the service name, service “app” label and the service “app” selector, as shown

in section 5.3.6. In this case the RAR_001_APP_NAME_PID string will be
replaced;

3. the node label (viewer_ns_label variable), used for the pod scheduling seen in
section 5.3.5.. In this case the RAR_004_NS_LABEL string will be replaced.

Then, the cloudify script will modify the deployment.yaml file by replacing the parameters
with their values as described above by running the following function.

function adjust_appname_pid_secret_label {
 sed -i "s/RAR_001_APP_NAME_PID/${vnc_srv_app_pid}/" ${targetDeploy}
 sed -i "s/RAR_002_APP_NAME/${application_name}/" ${targetDeploy}
 sed -i "s/RAR_003_SSH_SECRET/${ssh_secret_name}/" ${targetDeploy}
 sed -i "s#RAR_004_NS_LABEL#${viewer_ns_label}#" ${targetDeploy}
}

This way, each kubectl apply -f deployment.yaml command will create a uniquely

identified instance of each defined resources.

 60

Chapter 6 - KubernetesOnDesktop: client-side implementation

6.1. Introduction

As we have seen in the KubernetesOnDesktop architecture chapter, the project consists
in two parts: the server-side and the client-side. In the previous chapter we discussed the server-
side by talking about its implementation focusing on the Docker and Kubernetes points of view
and specifying, in each case, which issues have been solved and how.

In this chapter we will discuss the client-side implementation. The client-side might not
have some of the server-side issues, i.e. to install a huge amount of software might not be
required, as well as to control how many machine resources will be assigned to the process or
to scale up the solution. Nevertheless, it may be useful to exploit some features of the
containerized approach (i.e. to avoid configuration and execution conflicts) or of the cloudified
approach (i.e. to exploit some of the Kubernetes features, if the viewer machine is a cluster
node too), we decided to implement all the solutions to enable the user to choose which one fits
his properly requirements. Note that, anyway, the native solution still remains subject to
possible configuration and execution conflicts.

6.2. Native implementation

6.2.1. Introduction

The native implementation is completely managed by the cloudify script and requires the
installation of both the vncviewer and the vncserver. To be more specific, it will be not
necessary to install the entire vncserver package but one of its tools, the vncpasswd.
Unfortunately, it has not a standalone installation. Moreover, we need to install an SSH client
(in our case OpenSSH has been used) and a PulseAudio server which, often, are already
installed in the most common linux distribution.

Finally, to install kubectl and to have a config file to access the remote cluster is required
to let the cloudify script retrieve the remote pod information (i.e. the node IP, the NodePort
exposed port, etc.), as we will see afterwards.

6.2.2. Managing the remote pod reachability

First of all, as we mentioned in the introduction above, we need to retrieve some remote
pod and service information useful to interact with the server-side. To be more specific, the
script requires the following parameters:

1. the IP address of the node executing the target application pod;
2. the name of the pod executing the target application;
3. the namespace to which that pod belongs;
4. the SSH port exposed through the NodePort;
5. if the connection encryption is not enabled, the VNC port exposed through the

Nodeport.
Note that, as we will see afterwards:

 61

• the SSH port exposed through the NodePort is always required since it will be used
to create a tunnel for the audio forwarding;

• if the video encryption is enabled, the VNC port will not be retrieved because it will
be not exposed at all by the server-side.

To retrieve the information above, it has been implemented a specific function in the
cloudify script, as you can see in the code snippet above.

function retrieve_pod_info {
 read -r targetNodeIp targetPodName targetPodNamespace <<<$(kubectl \
 get pod -l app=$vnc_srv_app_pid -n $k8s_namespace \
 -o "jsonpath={..status.hostIP} {.items..metadata.name} {.items..metadata.namespace}")
 if [[$enc -eq 1]]; then
 read -r targetNodePortSsh <<<$(kubectl \
 get svc -l app=$vnc_srv_app_pid -n $k8s_namespace \
 -o 'jsonpath={..spec.ports[?(@.name=="ssh-svc-port")].nodePort}')
 else
 read -r targetNodePortProtocol targetNodePortSsh <<<$(kubectl \
 get svc -l app=$vnc_srv_app_pid -n $k8s_namespace \
 -o 'jsonpath={..spec.ports[?(@.name=="'${protocol}'-svc-port")].nodePort}
{..spec.ports[?(@.name=="ssh-svc-port")].nodePort}')
 fi
}

This function will execute the kubectl get command by specifying the jsonpath output

format through the -o parameter. Actually, JSONPath is a «template composed of JSONPath
expressions enclosed by curly braces {}. Kubectl uses JSONPath expressions to filter on
specific fields in the JSON object and format the output»38.

6.2.3. Managing the video stream

Once all the required remote pod and service information are retrieved , we are ready to
interact with the server-side.

As we have seen when we were talking about the server-side, the project implementation
supports both VNC and noVNC protocols. Their implementation will be discussed separately
afterwards but both share the same connection security infrastructure. So, first of all we will
analyze it and then we will focus our attention on each specific video stream protocol.

6.2.3.1. Managing the video stream connection security

The video stream connection security is an optional feature which can be enabled by the
user through a cloudify script execution parameter. In the client-side the connection security is
also managed through the OpenSSH tool too but, obviously, this time the SSH client will be
used.

Since, as said before, the connection security infrastructure is shared between both the
VNC and the noVNC protocols and each of those protocol server is listening to different TCP
port, we need to set which one to use depending on the chosen protocol by assigning to the
${port} variable the right value. As you can see afterwards, this variable will be used by the ssh

38 Kubernetes official website – JSONPath Support, https://kubernetes.io/docs/reference/kubectl/jsonpath/,

September 15th, 2020.

 62

command to implement the ssh port forwarding. The cloudify code snippet below will show
you how ${port} will be set.

function prepare_env_runmode_0_1 {
 [...]
 if [$enc -eq 1]; then
 if ["$protocol" = "vnc"]; then
 port=5900;
 else
 port=5800;
 fi
 fi
 [...]
}

Once the ${port} value has been set, we can establish the SSH connection by running the

ssh command.

function run_native_vncviewver_novnc_application {
 [...]
 if [$enc -eq 1]; then
 [...]
 ssh -o UserKnownHostsFile=/dev/null \
 -i "${working_dir}/id_rsa" \
 -o StrictHostKeyChecking=no -f -N \
 -S "${working_dir}/ssh_socket:${targetNodePortSsh}" \
 -L ${port}:localhost:${port} \
 vncuser@${targetNodeIp} \
 -p ${targetNodePortSsh} &>/dev/null
 [...]
 fi
 [...]
}

As you can see in the cloudify script code snippet above, when the connection security

has been required ($enc=1) from the user, it will be obtained by executing the ssh command
with the following parameters:

• -o UserKnownHostsFile, which specifies the host key checking file. «By default,
the SSH client verifies the host key against a local file containing known,
trustworthy machines. […] When you login to a remote host for the first time, the
remote host's host key is most likely unknown to the SSH client. The default
behavior is to ask the user to confirm the fingerprint of the host key»39. By setting
it to /dev/null, when a new host will be found, it will not be written in the default
host key checking file;

• -o StrictHostKeyChecking, which «specifies if SSH will automatically add new host
keys to the host key database file. By setting it to no, the host key is automatically
added, without user confirmation, for all first-time connection. Because of the null
key database file, all connection is viewed as the first-time for any SSH server host.
Therefore, the host key is automatically added to the host key database with no user

39 Peter Leung, How to disable SSH host key checking, https://linuxcommando.blogspot.com/2008/10/how-to-

disable-ssh-host-key-checking.html, September 15th, 2020.

 63

confirmation. Writing the key to the /dev/null file discards the key and reports
success»40;

• -f, which «requests ssh to go to background just before command execution. This
is useful if ssh is going to ask for passwords or passphrases, but the user wants it in
the background»41 as we want to;

• -N, which specifies to «not execute a remote command. This is useful for just
forwarding ports»42;

• -i, which «selects a file from which the identity (private key) for RSA or DSA
authentication is read»43. Since we choose to use the public key authentication
method to login with SSH to the remote pod, here we will specify the private key
related to the public one mounted inside the remote pod, as seen in section 5.2.3.2.;

• -S, which «specifies the location of a control socket for connection sharing»44. This
has been used to link all together the SSH remote pod connection (to be more
specific, the video and the audio connections), to clean them up easily at the end of
the process execution;

• -L port:host:hostport, which «specifies that the given port on the local (client) host
is to be forwarded to the given host and port on the remote side. This works by
allocating a socket to listen to port on the local side […]. Whenever a connection
is made to this port, the connection is forwarded over the secure channel, and a
connection is made to host port hostport from the remote machine»45. This
technique, named port forwarding, allows us to create a tunnel between the local
host and the remote pod so that all the connections to the local ${port} will be
forwarded to the remote server, in our case, at the same port. Of course, as seen
before, the cloudify script has already set the ${port} value depending on whether
the VNC or noVNC protocol will be used;

• vncuser@${targetNodeIp}, which specifies the user (vncuser) that wants to login
the pod on the remote node having IP address targetNodeIp, which has been
retrieved as seen in section 6.2.2.;

• -p ${targetNodePortSsh}, which specifies the port the SSH server is listening to.
Note that its value has been retrieved as seen in section 6.2.2..

6.2.3.2. Managing the VNC protocol video stream

Since, as said before, the video stream could be whether secured by using an SSH tunnel
or not, the target IP address and port will be different too. In fact:

• if a secured tunnel is used all the connection to the remote VNC server will be done
by using the ssh port forwarding, as we have seen in section 6.2.3.1.. This means

40 Peter Leung, How to disable SSH host key checking, https://linuxcommando.blogspot.com/2008/10/how-to-

disable-ssh-host-key-checking.html, September 15th, 2020.
41 ssh(1) - Linux man page, https://linux.die.net/man/1/ssh, September 15th, 2020.
42 Idem.
43 Idem.
44 Idem.
45 Idem.

 64

that we can just use localhost as an IP address and as a port the one the server-side
is listening to;

• if the connection security is disabled, the remote IP address will be the one of the
Kubernetes node in which the server-side pod runs and the port is the one exposed
through the NodePort service.

To obtain the right target IP address and port to establish the VNC connection, the
${target} variable will be properly set and then used afterwards.

function prepare_env_runmode_0_1 {
 [...]
 if ["$protocol" = "vnc"]; then
 if [$enc -eq 1]; then
 echo "Starting encrypted VNC connection..."
 target="localhost::${port}"
 else
 echo "Starting clear VNC connection..."
 target="$targetNodeIp::$targetNodePortProtocol"
 fi
 fi
}

As you can see in the cloudify script code snippet above:
• when the secure connection is enabled, the target will be set to localhost::${port}

as mentioned before. The ${port} variable is the one set in section 6.2.3.1.;
• when the secure connection in disabled, the target will be set to

$targetNodeIp::$targetNodePortProtocol. The first variable will contain, as
mentioned before, the IP address of the Kubernetes node which is running the
server-side pod, the second one is the NodePort service exposed port. Note that
these two variables have been already retrieved as seen in section 6.2.2..

Once the $target variable has been set, the cloudify script will just execute the following
command to run the VNC viewer:

vncviewer -CompressLevel $compression -QualityLevel $quality $target \
-passwd <(echo ${token} | vncpasswd -f) 2>/dev/null

As you can see in the code snippet above, the following parameters have been used in the

vncviewer command:
• -CompressLevel to specify the compression level;
• -QualityLevel to specify the image quality level;
• $target, the variable described above containing the remote IP address and the port

in the form IPaddress::port;
• -passwd to specify the file containing the password required to access the VNC

server. This password, as seen before, is a One Time Token generated as described
in section 5.3.2. and stored in the ${token} variable. Since this token is just a
plaintext string and not an encrypted file as the -passwd would expect, it will be
manipulated this way: the vncpasswd, by specifying the -f parameter, will receive
the plaintext from the stdin through the pipe and will return the encrypted string to
the stdout which will be returned as a file to the -passwd through the “<” operator.

 65

By executing this command, a window showing the target application Grafical User
Interface will appear and it can be used just as if the application was executed on the local
machine.

The vncviewer is a blocking process, it means that the cloudify script will wait for the
vncviewer execution end and then it will cleanup all the allocated resources.

6.2.3.3. Managing the noVNC protocol video stream

As seen for the VNC protocol, even in this case the video stream could be whether secured
by using an SSH tunnel or not, so the target IP address and port will be different. For this reason,
similarly to the previous case, we choose to use a variable named $url to obtain the right target
IP address and port to establish the noVNC connection. However, this time, we does not need
just a IPaddress::port string but a URL to be opened with a browser.

if [$enc -eq 1]; then
 echo -n "Starting encrypted NOVnc connection..."
 url="http://localhost:$port"
else
 echo -n "Starting clear NOVnc connection..."
 url="http://$targetNodeIp:$targetNodePortProtocol"
fi

The cloudify script code snippet above shows how the $url will be set. Actually, the

procedure is very similar to the one already seen in the previous section for the VNC protocol,
except for the obtained string which has the form: http://IPaddress:port .

It means that we can do the same considerations about the localhost:$port (for the ssh
port forwarding) and $tagetNodeIp:$targetNodePortProtocol usage and that the mentioned
variables are exactly the same seen in the previous section for the VNC protocol.

Once the $url variable has been set, the cloudify script will run a browser which will open
that URL.

echo "Your token is ${token}, insert it into your browser"
notify-send -t 10000 -a 'Kubernetes on Desktop' "One time Token" "$token"
firefox $url &>/dev/null

As you can see in the code snippet above, since also in this case to access the noVNC

server the token is required, first of all it will be printed on the command line, with the echo
command, and shown with a notification popup, through the notify-send command.

Then, a browser will be executed, in our case Mozilla Firefox, which will open the target
URL, thanks to the $url parameter, and show a login page. So, we can just copy/paste the token
and login to the noVNC server. Once the access will be granted, we can interact with the target
application through the browser.

Note that firefox is a blocking process, it means that the cloudify script will wait for the
firefox execution end and then it will cleanup all the allocated resources.

 66

6.2.4. Managing the audio stream

As mentioned in section 5.2.4., to manage the audio stream, the client-side will run a
PulseAudio server which will be reachable from the remote pod by using an SSH tunnel that
will map a remote TCP port (the one on the server-side) with a local TCP port (the one on the
client-side).

Since this is a native implementation of the client-side, we can assume that the
PulseAudio is already running on the local machine, but we still need to configure it to be used
as a TCP remote server. To achieve this goal, we just need to load the module-native-protocol-
tcp PulseAudio module as shown in the cloudify code snippet below.

pactl load-module module-native-protocol-tcp port=${pulsePort} auth-ip-acl=127.0.0.1

This will make the PulseAudio local instance exploitable from a remote machine through

a TCP connection. Below, the command above will be examined in-depth:
• pactl, an application that «can be used to issue control commands to the PulseAudio

sound server»46;
• load-module, a parameter telling pactl to «load the specified module with the

specified arguments into the running sound server»47;
• module-native-protocol-tcp, a module enabling the PulseAudio daemon to be

reachable through the TCP protocol on the port specified with the port parameter;
• port, a parameter which specifies the port the PulseAudio server will listen to for

remote connections. In our case, this will be set to ${pulsePort} value which is the
same used for the PULSE_SERVER environment variable definition seen in
section 5.3.4.. Actually, this value (which is 34567) has been hard coded inside the
cloudify script and the deployment.yaml definition file;

• auth-ip-acl=127.0.0.1, a parameter used to authenticate the client through its IP
address. The IP address authentication is usually a really bad idea because it is
subject to many attacks (i.e. IP spoofing, Man In The Middle, etc.) but, since there
is an SSH tunnel which wraps the connection, as we will see afterwards, in this case
it will not be an issue to authorize connections from localhost. Moreover, the
connections will only come from the localhost thanks to reverse port forwarding
mechanism that we will see afterwards.

Once the PulseAudio daemon is ready to accept remote TCP connection, we need to
create a tunnel to forward the audio stream from the project server-side to the client-side. In
fact, as mentioned in section 5.2.4., since the PulseAudio server runs on the project client-side,
this mechanism has some limits:

1. the project server-side (it means the remote pod) needs to know in advance which
is the project client-side IP address;

46 Ubuntu manpages, http://manpages.ubuntu.com/manpages/trusty/man1/pactl.1.html, September 16th, 2020.
47 Idem

 67

2. the project client-side machine should be reachable from the server-side (it means
from the remote pod). This is a problem, i.e. if the project client-side machine is
behind a NAT.

Through the tunnel creation we will overcome these limitations but, this time, we cannot
create it exactly the same way we did, as seen in section 6.2.3.1., to secure the VNC connection.
In fact, in that case the tunnel forwards a local port (it means a port of the project client-side)
to the remote server; this time we want to forward a remote port to a local one in order that it is
possible creating connections from the project server-side (the remote pod) to the project client-
side. To obtain this, a mechanism named ssh reverse port forwarding will be used.

ssh -o UserKnownHostsFile=/dev/null \
 -i "${working_dir}/id_rsa" \
 -o StrictHostKeyChecking=no -f -N \
 -M -S "${working_dir}/ssh_socket:${targetNodePortSsh}" \
 -R ${pulsePort}:localhost:${pulsePort} \
 vncuser@${targetNodeIp} \
 -p ${targetNodePortSsh} &>/dev/null

The cloudify script code snippet above creates a tunnel with the remote port forwarding

mechanism. As you can see, the ssh command parameters are almost the same we have seen in
section 6.2.3.1. when we were talking about the ssh port forwarding, except for the -R
parameter which replaces the -L one.

In fact, the -R port:host:hostport parameter «specifies that the given port on the remote
(server) host is to be forwarded to the given host and port on the local side. This works by
allocating a socket to listen to port on the remote side, and whenever a connection is made to
this port, the connection is forwarded over the secure channel, and a connection is made to host
port hostport from the local machine».48 Moreover, as side effect, the audio streaming will be
also encrypted through the SSH protocol.

Actually, there is another parameter which has not been used in video encryption: the -
M. Actually, this parameter «places the ssh client into ''master'' mode for connection sharing»49.
This way, each tunnel that shares the same -S parameter value will share the same connection
that has been created from the master. This has two effects:

1. it is not required to create a new TCP connection for each tunnel, so the process
needs less resources than having separate connections for each tunnel;

2. it is possible to close all the connection related tunnels gracefully through a ssh
command.

The -M parameter appears in this ssh command and not in the video stream encryption
one just because this code snippet will be run for first during the cloudify script execution, so
this one will be the master and all the others will be the slaves.

48 ssh(1) - Linux man page, https://linux.die.net/man/1/ssh, September 16th, 2020.
49 Idem.

 68

6.3. Docker implementation

6.3.1. Introduction

In the previous section the client-side native implementation has been examined. As said
before, even if it is the simplest one, this might present some issues (i.e. configuration and
execution conflicts). Thus, the user might choose a containerized solution. In this case we can
have two choices: using docker or using Kubernetes. The latter solution, of course, will work
only if the local machine is part of the Kubernetes cluster too and will be deepened afterwards.
Moreover, that one is based, someway, on the docker implementation since it uses the same
client-side docker image, making this solution a sort of evolution of the previous one. For now,
we will focus on the docker implementation but, before going into the its details, it should be
better to put in evidence some elements:

1. unlike the server-side, the client side has just one Dockerfile which will contain, as
we will see afterwards, all the software required to run the Graphical User Interface,
to reproduce the audio stream and to manage the connection security;

2. the docker image will contain a script named run_vncviewer.sh which is the
container entry point;

3. since the script mentioned above actually reuses much of the cloudify script
commands, it needs to receive some run parameters at startup time: many of these
are always mandatory, the others are required only in certain cases that will be
discussed afterwards. These parameters will be passed to the run.vncviewer.sh
script as “<variable_name>=<variable_value>” couples, through the docker run
command;

4. unlike the native implementation, just the VNC protocol has been used to
implement this solution. In fact, the noVNC in the native implementation was
effective because it avoided installing any software in the client-side host since it
uses a browser instead of a natively installed VNC viewer. The containerized
solution achieves this goal automatically so installing a browser inside the container
to make the noVNC protocol available would be just an unnecessary overhead.
Note that if both the noVNC protocol and the docker run mode cloudify script
parameters will be specified, once the script will be launched it will return an error
and will terminate its execution.

Compared to the native implementation, as you can imagine, in this solution we will have
some more challenges since we need to share, someway, the host audio and video peripherals
with the container to make the video stream visible and the audio stream audible to the user.
We will discuss the relative solutions in detail in the following sections.

6.3.2. Managing the remote pod reachability

As seen in the native implementation, even in this case the first required thing is to
retrieve some remote pod and service information, useful to make the docker container interact
with the server-side. To be more specific, these are the required elements:

1. the IP address of the node executing the target application pod;
2. the name of the pod executing the target application;

 69

3. the namespace which that pod belongs to;
4. the SSH port exposed through the NodePort;
5. if the connection encryption is not enabled, the VNC port exposed through the

Nodeport.

Actually, the cloudify script itself is in charge of retrieving this information by executing

the same function used in the native implementation, as seen in section 6.2.2.. What is new in
this case, is that we need to pass the obtained information to the container, as mentioned in the
previous section, through the docker run command. For convenience, we will see which one
will be passed and how once we will specify how they will be exploited to implement the client-
side features.

6.3.3. Managing the video stream

6.3.3.1. Managing the video stream connection security

Before going into the connection security implementation details, it is useful to point out
some elements:

1. as for the native implementation, even in this case the OpenSSH client tool will be
used to implement the connection security. It will be installed inside the container
through the following Dockerfile command.

RUN DEBIAN_FRONTEND=noninteractive apt-get install -y \ [...]
 ssh \
 [...]

2. as seen in section 6.2.3.1., even in this case, the video stream connection security

is an optional feature which can be enabled by the user through a cloudify script
execution parameter;

3. as we will see afterwards, this feature implementation requires most of the steps
discussed in the section mentioned before, but with some variations.

Now we can analyze the steps to go through to implement this feature. First of all, we
need to let the run_vncviewer.sh script inside the container know whether the connection
security has been enabled by the user or not.

function create_container_and_launch_vncviewer {
[...]
docker run [...]
 $tigervnc_docker `#docker image name` \
 enc=$1 `#enc` \
 [...]
[...]
}

create_container_and_launch_vncviewer \
 ${enc} ${compression} ${quality} ${target} \
 ${token} ${targetNodeIp} ${targetNodePortSsh} ${port}

 70

The cloudify script code snippet above shows that, for this purpose, the run-vncviewer.sh
enc parameter will be passed by setting it to the cloudify script ${enc} variable value: if its value
is equal to 1 the connection will be secured, otherwise, if it is equal to 0 a clear connection will
be used. Note that the enc parameter is always mandatory.

The next step is to select the TCP port the VNC server is listening to. This is required to
create the ssh tunnel by using the ssh port forwarding mechanism. In the native implementation
both the VNC and noVNC protocols were available so the server port should be different
depending on the chosen protocol. Since in this case just the VNC one is available, the port will
be always the same that is the VNC protocol-related one. Anyway, to exploit the code reuse,
exactly the same mechanism we have seen in the native implementation will be used. It means
that the cloudify script ${port} variable will be set and, for this purpose, the cloudify script itself
will execute the prepare_env_runmode_0_1 function exactly the same way we have seen in
section 6.2.3.1..

Once the port has been selected, we need to pass this information to the run_vncviewer.sh
script. This, as you can see in the cloudify script code snippet below, will be obtained by passing
enc_port parameter, set to the cloudify script ${port} variable value, to the run-vncviewer.sh
script.

function create_container_and_launch_vncviewer {
[...]
docker run [...]
 $tigervnc_docker `#docker image name` \
 [...]
 enc_port=$8 `#port` \
 [...]
[...]
}

create_container_and_launch_vncviewer \
 ${enc} ${compression} ${quality} ${target} \
 ${token} ${targetNodeIp} ${targetNodePortSsh} ${port}

Note that the enc_port parameter is mandatory only if the connection security is enabled.
Once the script knows which is the port the VNC server is listening to, following what is

described in section 6.2.3.1. for the native implementation, the next step should have been
running the ssh command to create the tunnel with the ssh port forwarding mechanism.
However, there are still some missing parameters inside the run_vncviewer.sh script which have
to be passed through the docker run command as well.

function create_container_and_launch_vncviewer {
docker run -d --name $vnc_cli_app_pid \
 -v ${working_dir}:/home/vnc/ssh_id_rsa \
 $tigervnc_docker `#docker image name` \
 [...]
 target_node_ip=$6 `#targetNodeIp` \
 target_node_port_ssh=$7 `#targetNodePortSsh` \
 [...]
}

create_container_and_launch_vncviewer \
 ${enc} ${compression} ${quality} ${target} \
 ${token} ${targetNodeIp} ${targetNodePortSsh} ${port}

 71

In fact, as you can see in the cloudify code snippet above, we need to let the
run_vncviewer.sh script know:

1. the IP address of the remote node running the server-side pod. This information will
be passed to the script through the target_node_ip parameter, set to the cloudify
script ${targetNodeIp} variable value, and it is mandatory only if the connection
security is enabled;

2. the TCP port the remote SSH server is listening to. This information will be passed
to the script through the target_node_port_ssh parameter, set to the cloudify script
${targetNodePortSsh} variable value, and it is mandatory only if the connection
security is enabled;

3. the ssh private key. Actually, since the ssh command will look for a file containing
the private key and the that key is stored inside a host machine file, we simply need
to mount that file inside the container through the docker run -v parameter, as shown
above.

Now that all the required parameters are available inside the container, we can execute
the ssh command as follows.

ssh -4 -o UserKnownHostsFile=/dev/null \
 -i "${SSH_ID_RSA}/id_rsa" \
 -o StrictHostKeyChecking=no -f -N \
 -S "${SSH_SOCKET}/ssh_socket:${!target_node_port_ssh}" \
 -L ${!enc_port}:localhost:${!enc_port} \
 vncuser@${!target_node_ip} -p ${!target_node_port_ssh}

As you can see in the run_vncviewer.sh script code snippet above, the command is exactly

the same we have analyzed in section 6.2.3.1.. Of course, the variables names are different since
this one is a different script, but the meaning is the same.

Finally, you will notice that there is the -4 parameter which is missing in the native
implementation. This is required just to force ssh to use only the IPv4 protocol.

6.3.3.2. Managing the VNC video stream

Before going into the VNC video stream implementations details, even in this case, it is
useful to point out some elements:

1. as for the native implementation, even in this case the TigerVNC viewer will be
used. Actually, since the vncpasswd tool is required too, as seen in section 6.2.1.,
we need to install the entire TigerVNC package, not just the vncviewer;

2. to enable the vncviewer to show the Graphical User Interface it is required to
install inside the container the libgl1-mesa-dri and the libgl1-mesa-glx libraries;

3. as for the connection security, even this feature implementation requires most of
the steps discussed in the native implementation equivalent described in section
6.2.3.2., even if with some adaptations.

All the software described above will be installed inside the docker container as shown
in the Dockerfile code snippet below.

 72

RUN DEBIAN_FRONTEND=noninteractive apt-get install -y \
 [...]
 libgl1-mesa-dri \
 libgl1-mesa-glx

RUN wget -qO- https://dl.bintray.com/tigervnc/stable/tigervnc-1.8.0.x86_64.tar.gz | \
 tar xz --strip 1 -C /

Now we can analyze the steps to go through to implement this feature.
Since, as said before, the video stream could be whether secured by using an SSH tunnel

or not, the target IP address and port will be different too. In fact:
• if a secured tunnel is used all the connection to the remote VNC server will be done

by using the ssh port forwarding, as we have seen in the previous section. This
means that we can just use localhost as IP address and as port the one the server-
side is listening to;

• if the connection security is disabled, the remote IP address will be the one of the
Kubernetes node in which the server-side pod runs and the port is the one exposed
through the NodePort service.

So, the right target IP address and port, required to establish the VNC connection, will be
obtained by executing the same cloudify script function prepare_env_runmode_0_1 code
snippet shown in section 6.2.3.2. for the native implementation. This way the ${target} variable
will be set, then we just need to pass this value to the script inside the docker container through
the target parameter. Moreover, to execute the vncviewer command the following parameters
are required too:

1. the video compression level, passed to the run_vncviewer.sh script through the
compression parameter, set to the cloudify script ${compression} variable value;

2. the image quality level, passed to the mentioned script through the quality
parameter, set to the cloudify script ${quality} variable value;

3. the VNC token used to allow the client to access the VNC server, passed to the
mentioned script through the token parameter, set to the cloudify script ${token}
variable value.

function create_container_and_launch_vncviewer {
[...]
docker run -d --name $vnc_cli_app_pid \ [...]
 -v /tmp/.X11-unix/:/tmp/.X11-unix/ \
 [...]
 -v /dev/shm:/dev/shm \
 -v /var/run/dbus:/var/run/dbus \
 -e DISPLAY \
 $tigervnc_docker `#docker image name` \
 [...]
 compression=$2 `#compression` \
 quality=$3 `#quality` \
 target=$4 `#target` \
 token=$5 `#token` \
 [...]

[...]
}

create_container_and_launch_vncviewer \
 ${enc} ${compression} ${quality} ${target} \
 ${token} ${targetNodeIp} ${targetNodePortSsh} ${port}

 73

The cloudify code snippet above shows how the mentioned parameters will be passed to
the run_vncviewer.sh script. Moreover, as you can see above, to make the Graphical User
Interface work properly, there are some more requirements:

1. the host’s shared memory (/dev/shm) have to be mounted inside the container to
avoid crashes;

2. the host’s D-Bus (/dev/dbus) have to be mounted inside the container. The D-Bus
is an inter-process communication mechanism required to avoid crashes too;

3. the host’s /tmp/.X11-unix/ have to be mounted inside the container. This directory
contains the video Unix-domain socket;

4. the DISPLAY environment variable has to be set. This variable select which video
Unix socket should be used. Combined with the /tmp/.X11-unix/ allows the
container to exploit the host’s video interface.

Now that all the required parameters, volumes and environment variables are available
inside the container, we can execute the vncviewer command as follows.

vncviewer -CompressLevel ${!compression} -QualityLevel ${!quality} \
 ${!target} -passwd <(echo ${!token} | vncpasswd -f)

As you can see in the run_vncviewer.sh script code snippet above, the command is exactly

the same we have analyzed in section 6.2.3.2.. Obviously, the variables names are different
since this one is a different script, but the meaning is the same.

6.3.4. Managing the audio stream

Before going into the audio stream management implementation details, even in this case,
it is useful to point out some elements:

1. as for the native implementation, even in this case the PulseAudio will be used.
This will be installed inside the container through the Dockerfile command below.

RUN DEBIAN_FRONTEND=noninteractive apt-get install -y \
 [...]
 pulseaudio \
 [...]

2. as for the connection security and the VNC video stream management, even this

feature implementation requires most of the steps discussed in the native
implementation equivalent described in section 6.2.4., even if with some
adaptations.

Now we can analyze the steps to go through to implement this feature. Even in this case,
as described in the section mentioned above, to manage the audio stream, the client-side will
run a PulseAudio server which will be reachable from the remote pod by using an SSH tunnel
that will map a remote TCP port (the one on the server-side) with a local TCP port (the one on
the client-side).

Unlike the native implementation, this time we have not a PulseAudio daemon already
running in the container. Actually, it should be possible to mount the host’s Unix socket as we

 74

did for the video interface, but in this case, we would have some issues. In fact, since we need
to load the TCP module to receive the remote pod audio stream through that protocol, we need
to have an entire PulseAudio daemon instance running and this is not possible just by mounting
the audio Unix socket. So, we choose to mount the host’s sound device into the container and
then run PulseAudio by using the actual host’s audio interface directly instead of through the
host’s Unix socket. So, this is what is required to make the PulseAudio instance run properly:

• mounting the host’s sound card device inside the container not just as a volume, as
we did for the video socket, but as an actual device as shown in the following
cloudify script code snippet;

docker run [...] \
 --device /dev/snd:/dev/snd \
 [...]

• copying some configuration files to enable the PulseAudio instance to discovery

the mounted sound card.

COPY ["./resources/pulseaudio_config/client.conf",
"./resources/pulseaudio_config/daemon.conf",
"./resources/pulseaudio_config/default.pa", "/etc/pulse/"]
COPY ["./resources/pulseaudio_config/avahi-daemon.conf", "/etc/avahi/"]
RUN chmod 777 /etc/pulse/*

As you can see in the Dockerfile code snippet above, the following files will be
copied inside the container:
a. client.conf, which contains some default PulseAudio configuration variable;
b. daemon.conf, which contains some others default PulseAudio configuration

variable;
c. default.pa, which is the most important configuration file since it is the one that

allows PulseAudio to load the module to interact with the mounted sound card.
This will be done by adding in this file the following line:

load-module module-alsa-sink device=hw:0,0

Once the files have been copied, the Dockerfile will change their privileges to make
them work properly.

Since all the required elements have been already prepared from the Dockerfile as
specified above, the run_vncviewer.sh script just needs to launch the PulseAudio daemon.

function launch_pulseaudio_server {
 [...]
 pulseaudio -D 1>&2
 [...]
}

 75

The run_vncviewer.sh code snippet above will launch the PulseAudio daemon which will
load its configuration files and will be ready to reproduce the sound. Note that the -D parameter
is to tell the PulseAudio process to run as a daemon, detached from the terminal.

Now that we have a PulseAudio daemon running inside the container and exploiting the
mounted host’s sound card, we can proceed as it has been seen in section 6.2.4. talking about
the native implementation. So, first of all, we need to load the module-native-protocol-tcp
module to enable the PulseAudio daemon to be used as a TCP remote server as shown in the
run_vncviewer.sh code snippet below.

function launch_pulseaudio_server {
 [...]
 pactl load-module module-native-protocol-tcp port=${PULSE_PORT} auth-ip-acl=127.0.0.1
 [...]
}

As you can see, the command is exactly the same we have analyzed in section 6.2.4.. Of

course, the variables names are different since this one is a different script, but the meaning is
the same. Note that the ${PULSE_PORT} is actually an environment variable which has been
set through the following Dockerfile code snippet.

ENV [...]\
 PULSE_PORT=34567

The PULSE_PORT variable has the same value set in the server-side PULSE_SERVER

environment variable seen in section 5.3.4.. This is, of course, because that value represents the
TCP port the PulseAudio daemon is listening to receive the remote audio stream.

Once the PulseAudio daemon is ready to accept remote TCP connection, it is necessary
to create a tunnel to forward the audio stream from the project server-side to the client-side.

function launch_pulseaudio_server {
 [...]
 ssh -4 -o UserKnownHostsFile=/dev/null \
 -i "${SSH_ID_RSA}/id_rsa" \
 -o StrictHostKeyChecking=no -f -N \
 -M -S "${SSH_SOCKET}/ssh_socket:${!target_node_port_ssh}" \
 -R ${PULSE_PORT}:localhost:${PULSE_PORT} \
 vncuser@${!target_node_ip} -p ${!target_node_port_ssh} 1>&2
 [...]
}

As it can be seen in the run_vncviewer.sh code snippet above, even in this case the

command is exactly the same we have analyzed in section 6.2.4.. Obviously, the variables
names are different too since this one is a different script, but the meaning is the same.

This way the tunnel which will wrap the audio stream can been created, and everything
is ready to reproduce the sound on the local machine.

 76

6.3.5. Managing the applications concurrency

In the Kubernetes server-side implementation we have seen that since a deployment is
used to create the server-side pod, if we want to run more instances of the same application, we
need to parametrize the resources name to uniquely identify them. Actually, even in this case,
we need to use a different execution container name to uniquely identify it and to gracefully
clean up the allocated resources once the execution ends. For this purpose, we parametrized the
container name as shown in the following cloudify script code snippet.

function create_container_and_launch_vncviewer {
 [...]
 docker run -d --name $vnc_cli_app_pid \
 [...]
}

As you can see in the code snippet above, the container name will be set through the --

name run parameter. The $vnc_cli_app_pid variable is composed by a static part, which is a
string hard coded inside the $tigervnc_container_name variable, and a PID which has been
generated as shown in section 5.3.8. and stored in the $app_pid variable.

function main() {
 [...]
 app_pid=$(cat /dev/urandom | tr -dc 'a-z0-9' | fold -w 10 | head -n 1)
 [...]
 vnc_cli_app_pid="$tigervnc_container_name-$app_pid"
 [...]
}

As you can see in the cloudify code snippet above, the $vnc_cli_app_pid is just a

concatenation of the two variables mentioned before interspersed with a dash character.
Note that the $app_pid variable has the same value of the server-side, this way we can

simplify the pods identification and associate the client-side to the server-side pod.

6.4. Kubernetes implementation

6.4.1. Introduction

In the previous sections the native and the containerized implementation have been
examined. This chapter focuses on the last kind of implementation, the Kubernetes one, which
allows us to realize a fully cloudified architecture. We will explain how it has been realized and
how we took advantage of being a cluster node by exploiting some Kubernetes features.

This implementation consists in a Kubernetes job, defined in the vncviewer.yaml file,
running the docker image discussed in the previous sections. Of course, this will work only if
the local machine is a Kubernetes cluster node too, equipped with a graphic card and a monitor
to show the target application Graphical User Interface, a sound card and a speaker to reproduce
its sounds, a keyboard and a mouse to interact with it.

Finally, as mentioned for the server-side implementation in section 5.3.1., the application
lifecycle (both for the server-side and the client-side) is managed through the cloudify bash

 77

script which will create all the Kubernetes resources, will wait for their completion and then
will clean up the cluster.

6.4.2. Managing the remote pod reachability

Since the local machine is e Kubernetes node, unlike the native and docker
implementation, we can exploit a Kubernetes feature to reach the remote pod.

In this case, as discussed in section 5.3.6., the server-side will not create a NodePort
service to make the pod reachable but just a simple ClusterIP. For this reason, it is not required
to retrieve the server-side pod and service information seen in section 6.2.2. since we will
exploit the DNS for services and Pods Kubernetes feature.

In fact, each Kubernetes services should be reached through a URL formed as follows.

my-svc.my-namespace.svc.cluster-domain.example

So, in our case, to make the remote pod reachable, we just need to create that URL by

replacing:
• my-svc, with the name of the service created in the server-side as we discussed in

section 5.3.8.. This name has a variable part, stored in the $vnc_srv_app_pid
cloudify script variable containing the target application name and a PID, and a
static part, which is the string “-service”. This way, the final name will appear in
the following way: firefox-01a23h56fj-service. So, the my-svc string has to be
replaced with a concatenation of the mentioned cloudify variable and the constant
string;

• my-namespace, with the Kubernetes namespace the service belongs to. This value
has been stored in the cloudify script variable named $k8s_namespace;

• cluster-domain-example, with the cluster domain. Actually, since we assume that
the cluster has a single domain, the default one, we can remove this part of the URL.

function prepare_env_runmode_2 {
 [...]
 svc_URL=$vnc_srv_app_pid"-service."$k8s_namespace".svc"
 [...]
}

The cloudify script code snippet above shows how the mentioned URL has been

composed and stored in the $svc_URL variable. So, each time we need the IP address of the
remote node running the target application pod we can use the mentioned variable in place of
it. We will see how it will be exploited and in which case afterwards, once we will describe
how have been implemented the client-side features.

 78

6.4.3. Managing the video stream

6.4.3.1. Managing the video stream connection security

Since the client-side Kubernetes job runs the same docker image seen in the docker
implementation, the video stream connection security mechanism is actually the same shown
in section 6.3.3.1.. In fact, to implement it, the ssh command will be used to create a tunnel with
the ssh port forwarding mechanism, which will wrap the video stream.

Indeed, the difference is in the way the parameter will be passed to the script inside the
container and the volumes will be mounted in it. This is because, of course, in this case no
docker run command will be used but the vncviewer.yaml file, in which the job itself is defined,
will be applied.

The ssh command, as seen in section 6.3.3.1., requires:
• the ssh private key, contained in a host’s machine file that will be mounted inside

the container;
• the run_vncviewer.sh script enc execution parameter, a boolean that specifies

whether the encryption has been enabled;
• the run_vncviewer.sh script enc_port execution parameter, which specifies the

VNC server port;
• the run_vncviewer.sh script target_node_ip execution parameter, which should be

the remote node IP address. We will see afterwards that something different will
be used;

• the run_vncviewer.sh script target_node_port_ssh execution parameter, which
specifies the SSH server port;

The vncviewer.yaml code snippet below will show how the mentioned file containing the
ssh private key will be mounted inside the container and how the required parameters will be
passed to the container entry point.

apiVersion: batch/v1
kind: Job
[...]
spec:
 template:
 [...]
 spec:
 [...]
 containers:
 - name: RAR_002_TIGERVNC_CONTAINER_NAME
 [...]
 volumeMounts:
 - mountPath: /home/vnc/ssh_id_rsa
 name: workingdir
 [...]
 args:
 - "RAR_004_ENC"
 [...]
 - "RAR_010_TARGET_NODE_IP"
 - "RAR_011_TARGET_NODE_PORT_SSH"
 - "RAR_012_ENC_PORT"
 [...]
 volumes:
 - name: workingdir
 hostPath:
 path: RAR_015_WORKING_DIR
 [...]

 79

As you can see in the code snippet above, since the run_vncviewer.sh script is the
container entrypoint, we can pass the required parameters through the yaml args field as a list
of arguments. Of course, since the vncviewer.yaml file acts as a template similarly to the
deployment.yaml file seen in the server-side implementation, the arguments are parametrized
and will be replaced with their values from the cloudify script as shown in the code snippet
below.

function adjust_and_apply_pod {
 [...]
 sed -i "s#RAR_004_ENC#enc=$enc#g" $tigervncPodFile
 [...]
 sed -i "s#RAR_010_TARGET_NODE_IP#target_node_ip=$targetNodeIp#g" \
 $tigervncPodFile
 sed -i "s#RAR_011_TARGET_NODE_PORT_SSH#target_node_port_ssh=$targetNodePortSsh#g" \
 $tigervncPodFile
 sed -i "s#RAR_012_ENC_PORT#enc_port=$port#g" $tigervncPodFile
 [...]
 sed -i "s#RAR_015_WORKING_DIR#$working_dir#g" $tigervncPodFile
 [...]
}

As you can see above, each RAR_***_***** parameter will be replaced, as expected by

the run_vncviewer.sh script, with a string like this one <param_name>=<param_value>.
Note that, even if the $enc variable is actually the same seen in section 6.3.3.1., the other

variables will have different values. In fact, since the remote node’s IP address is no longer
required and the ClusterIP service has been used in place of the NodePort, they have been set
as shown in the cloudify script code snippet below.

function prepare_env_runmode_2 {
 port=5900
 [...]
 targetNodeIp=$svc_URL
 targetNodePortSsh=$ssh_port
}

So, the $port variable value will be hard-coded because it will be always the same since

only the VNC protocol has been implemented, the $targetNodeIp has been replaced with the
service URL retrieved as shown in section 6.4.2., and the $targetNodePortSsh will be hard-
coded too because it will be always the same since no NodePort service will be used this time
and just the SSH server port will be exposed.

Finally, a tiny specification about the ssh private key file mounting should be done. In
fact, mounting a local filesystem file is possible because, as we will see afterwards, the client-
side pod will be always scheduled on the local node. Otherwise this solution wouldn’t have
worked. Moreover, the RAR_015_WORKING_DIR parameter will be replaced with the ssh
private key file path.

6.4.3.2. Managing the VNC video stream

 Similarly to the previous section, since the client-side Kubernetes job runs the same
docker image seen in the docker implementation, the VNC video stream management is

 80

actually the same shown in section 6.3.3.2.. In fact, to implement it, the vncviewer command
will be used to connect to the VNC server.

Even in this case, the difference is in the way the parameter will be passed to the script
inside the container, the volumes will be mounted, and the environment variables will be
defined in it. This is because, as said before, in this case no docker run command will be used
but the vncviewer.yaml file will be applied. As first, we will analyze the vncviewer command
parameter passing, then we will discuss about the volumes to mount and the environment
variable to expose.

The vncviewer command, as seen in section 6.3.3.2., requires:
• the run_vncviewer.sh script compression execution parameter, which specifies the

compression level;
• the run_vncviewer.sh script quality execution parameter, which specifies the

image quality;
• the run_vncviewer.sh script target execution parameter, which is a string

composed as follows <target_IPaddress>::<VNC_port> (see section 6.2.3.2.).
Unlike the native and the containerized implementations, in which an IP addresses
will be actually used, in this case it will be replaced by the svc_URL cloudify script
variable seen in section 6.4.2.. So, the $target variable will be obtained as shown
in the cloudify code snippet below.

function prepare_env_runmode_2 {
 [...]
 if [$enc -eq 1]; then
 echo "Starting encrypted VNC connection..."
 target="localhost::$port"
 else
 echo "Starting clear VNC connection..."
 target="$svc_URL::$port"
 fi
 [...]
}

As you can see, the if-then-fi statement above is exactly the same we have seen in
section 6.2.3.2. for the native implementation except for: the $targetNodeIp,
which has been replaced with the $svc_URL variable, and the
$targetNodePortProtocol, which has been replaced with the $port since variable
discussed in section 6.4.3.1.;

• the run_vncviewer.sh script token execution parameter, which is used to allow the
client to access the VNC server.

The vncviewer.yaml code snippet below will show how the required parameters will be
passed to the container entry point.

apiVersion: batch/v1
kind: Job
[...]
spec:
 template:
 [...]
 spec:
 [...]
 containers:

 81

 - name: RAR_002_TIGERVNC_CONTAINER_NAME
 [...]
 args:
 [...]
 - "RAR_006_COMPRESSION"
 - "RAR_007_QUALITY"
 - "RAR_008_TARGET"
 - "RAR_009_TOKEN"
 [...]

As you can see in the code snippet above, similarly to the previous section, since the

run_vncviewer.sh script is the container entrypoint, we can pass the required parameters
through the yaml args field as a list of arguments. Even in this case, the arguments are
parametrized and will be replaced with their values from the cloudify script as shown in the
code snippet below.

function adjust_and_apply_pod {
 [...]
 sed -i "s#RAR_006_COMPRESSION#compression=$compression#g" $tigervncPodFile
 sed -i "s#RAR_007_QUALITY#quality=$quality#g" $tigervncPodFile
 sed -i "s#RAR_008_TARGET#target=$target#g" $tigervncPodFile
 sed -i "s#RAR_009_TOKEN#token=$token#g" $tigervncPodFile
 [...]
}

As you can see above, even in this case each RAR_***_***** parameter will be replaced,

as expected by the run_vncviewer.sh script, with a string like this one
<param_name>=<param_value>. Note that, except for the $target variable discussed above,
the others are exactly the same seen in section 6.3.3.2..

Finally, now that we have seen how the vncviewer parameters will be passed to the
run_vncviewer.sh script, we can focus our attention on the required volumes to be mounted and
the environment variable to be exposed in the local pod to enable the vncviewer to show the
Graphical User Interface work properly. As we have seen in section 6.3.3.2., we refer to the
following volumes/environment variables:

• the shared memory (/dev/shm) volume, to avoid crashes;
• the host’s D-Bus (/dev/dbus) volume, an inter-process communication mechanism

required to avoid crashes too;
• the host’s /tmp/.X11-unix/ volume, contains the video Unix-domain socket;
• the DISPLAY environment variable, that selects which video Unix socket should be

used. Combined with the /tmp/.X11-unix/ allows the container to exploit the host’s
video interface.

The vncviewer.yaml code snippet below will show how they will be mounted/exposed
inside the pod.

apiVersion: batch/v1
kind: Job
[...]
spec:
 template:
 [...]
 spec:
 [...]
 containers:

 82

 - name: RAR_002_TIGERVNC_CONTAINER_NAME
 [...]
 env:
 - name: DISPLAY
 value: :0
 [...]
 volumeMounts:
 [...]
 - mountPath: /tmp/.X11-unix
 name: video
 [...]
 - mountPath: /dev/shm
 name: tempsystem
 - mountPath: /var/run/dbus
 name: systembus
 [...]
 volumes:
 [...]
 - name: video
 hostPath:
 path: /tmp/.X11-unix
 [...]
 - name: tempsystem
 hostPath:
 path: /dev/shm
 - name: systembus
 hostPath:
 path: /var/run/dbus
 [...]

This way all requirements are met, so the GUI will be displayed correctly.

6.4.4. Managing the audio stream

Similarly to the previous sections, since the client-side Kubernetes job runs the same
docker image seen in the docker implementation, the audio stream management is actually the
same shown in section 6.3.4.. In fact, to implement it, the PulseAudio server have to be
launched and enabled to receive the audio stream through a TCP connection wrapped in an ssh
remote port forwarding tunnel.

The difference is in the way the sound device will be mounted. This is because, as said
before, in this case no docker run command will be used but the vncviewer.yaml file will be
applied. So, to make the audio work properly we just need to mount the host’s sound card device
inside the container as shown in the vncviewer.yaml code snippet below.

apiVersion: batch/v1
kind: Job
[...]
spec:
 template:
 [...]
 spec:
 [...]
 containers:
 - name: RAR_002_TIGERVNC_CONTAINER_NAME
 [...]
 volumeMounts:
 [...]
 - mountPath: /dev/snd
 name: sound
 [...]
 securityContext:
 privileged: true
 [...]
 volumes:
 [...]

 83

 - name: sound
 hostPath:
 path: /dev/snd

As you can see in the code snippet above, unlike the docker implementation we have seen

in section 6.3.4. in which the sound card has been mounted as a device through the docker run
--device parameter, Kubernetes doesn’t have an equivalent mounting feature so, we are forced
to mount it as a volume. However, this way it will not work because the container does not
recognize it as a device and the PulseAudio daemon will not load the sound card during its
initialization process. Anyway, we can solve this problem by specifying a privileged
securityContext field. This way the PulseAudio daemon will recognize the sound card and the
sound will be reproduced correctly.

Finally, the ssh command that will create the remote port forwarding tunnel requires the
following elements:

• the ssh private key, contained in a host’s machine file that will be mounted inside
the container;

• the run_vncviewer.sh script enc execution parameter, a boolean that specifies
whether the encryption has been enabled;

• the run_vncviewer.sh script enc_port execution parameter, which specifies the
VNC server port;

• the run_vncviewer.sh script target_node_ip execution parameter, which should be
the remote node IP address but, in this case, as seen before, is the service URL;

• the run_vncviewer.sh script target_node_port_ssh execution parameter, which
specifies the SSH server port.

These elements have been retrieved as seen in section 6.4.3.1..

6.4.5. Managing the application termination

In the previous sections we said that all the architecture lifecycle is managed through the
cloudify script which is in charge of deploy the server-side and the client-side and once the
target application execution ends it will destroy them and cleanup all the allocated resources.

In the other implementations, the remote application termination has been caught by the
cloudify script in these ways:

• in the native implementation, since the vncviewer is a blocking command, once
the viewer will be closed that command will return and the cloudify script resume
its execution;

• in the docker implementation will be used the docker wait <container_name>
blocking command which will return once the docker execution has been
completed, then the cloudify script can resume its execution.

In the Kubernetes implementation, actually, there is the command Kubectl wait which
has the same docker wait purpose. What we expect to do is to catch the job Completed status
to clean up all the resources. This is one of the reasons why we choose to use a job to implement
the Kubernetes server-side. Unfortunately, the kubectl wait command has been marked
“Experimental” and it doesn’t have always the expected behavior. For this reason, we need to
implement an alternative system to be sure the job termination will be caught.

 84

We can have two solutions:
1. implementing a polling system in which the job status will be checked every n

seconds and, once it becomes “Completed”, the cloudify script will resume its
execution;

2. implementing a signaling system in which is the job-related pod that tells the
cloudify script that the execution is over.

Since the first solution can generate some overhead in terms of CPU consumption and
lack of responsiveness, we decided to implement the second one.

For this purpose, the cloudify script uses a netcat server which will wait for a remote
signal and the run_vncviewer.sh script will use a netcat client which will send a message once
its process is going to terminate.

6.4.5.1. Implementing the server-side signaling system

To realize the signaling system above, we need to prepare the netcat server environment
in the cloudify script then to execute the netcat server itself. The first thing to is to find a free
TCP port in the host.

function adjust_and_apply_pod {
 [...]
 while true; do
 pod_wait_port=$(shuf -i 1025-65535 -n 1)

 read -r pod_port_to_check_local_ip <<< \
 $(nc -zv localhost $pod_wait_port 2>&1)
 read -r pod_port_to_check_localhost <<< \
 $(nc -zv $current_node_address $pod_wait_port 2>&1)
 #Check generated port
 if [[$(echo $pod_port_to_check_local_ip | grep succeeded) == ""]] && \
 [[$(echo $pod_port_to_check_localhost | grep succeeded) == ""]]; then
 #It's a free port. OK
 break;
 fi
 done
 [...]
}

As you can see in the cloudify code snippet above, since the first 1024 ports are reserved,

a number between 1025 and 65535 will be generated by executing the shuf command. Then,
through the netcat -zv command it will be checked whether that is a free port or not. The loop
will be repeated until a free port will be found.

Once a free port has been found, we can execute the netcat server.

function adjust_and_apply_pod {
 [...]
 pod_finished_can_exit=0
 while [$pod_finished_can_exit -eq 0]; do
 while read line; do
 if ["$line" == "Close_${token}"]; then
 pod_finished_can_exit=1
 break
 fi
 done < <(nc -q -1 -l $pod_wait_port)
 done

}

 85

The cloudify script code snippet above shows how the signaling system server-side has

been implemented. The actual server will be launched through th nc command which will
receive the following parameters:

• -q -1, which will force the nc command not to end once it receives the EOF on stdin.
This behavior is due to the negative number specification (-1) for the -q parameter
and it will prevent the premature termination of the nc server since we need to wait
forever until a message will be received;

• -l, which specifies that the nc process have to wait for connection on the specified
port. In our case the port is the one specified in the varible $pod_wait_port and
retrieved as seen in the previous code snippet above.

Once the nc process will receive a connection request it will wait for a message that will
be redirected on the stdin and stored in the $line variable through the read command. Then, the
script will check that the message corresponds to the expected one and, since it means that the
remote application execution is over, it will clean up all the resources and ends. Note that the
script will wait for the right message before exit to prevent that some attacker forces the
resources cleanup before the actual application termination. Moreover, for this purpose, the
message contains the One Time Token generated, as we have seen in section 5.3.2., for the
VNC server access and stored in the ${token} variable, so that making attacks will be even more
difficult than a static message.

6.4.5.2. Implementing the client-side signaling system

The client-side signaling system, of course, has been implemented inside the
run_vncviewer.sh script.

function close_connection {
nc ${!client_host_ip} ${!client_host_port} <<-EOF 1>&2
 Close_${!token}

EOF
}

function clean_and_exit {
 [...]
 if [[${!pod} -eq 1]]; then
 echo "Send pod terminating status to cloudify..." 1>&2
 close_connection
 echo "Terminating sent." 1>&2
 fi
 [...]
}

The run_vncviewer.sh code snippet above shows how it has been implemented. As you

can see, once the script execution is going to terminate, it will check if the run_vncviewer.sh
pod execution parameter is set to 1. We have not discussed about this yet, but this is a mandatory
parameter which tells the script how to behave once it is going to terminate its execution. Since
the docker image is the same both in the docker run mode and in the pod run mode, the script
needs to know whether it is the first (pod=0) or the second (pod=1) case just because the second
one requires to signal the process termination to the cloudify script.

 86

Then, the close_connection function will be executed. This one is in charge of sending
the closing message (which also contains the One Time Token as discussed in the previous
section) through the nc command. As you can see, the closing message is not a simple string
but has two lines: this is because the ns server requires the carriage return as string termination,
otherwise it will be stuck forever waiting for the message.

A part the run_vncviewer.sh execution parameter named pod, also the following one are
mandatory in this case:

• client_host_ip, which specifies the IP address of the host running the cloudify script;
• client_host_port, which specifies the port the nc server is listening to, generated as

shown in the previous section.
The three parameters above, as we have seen for the other run_vncviewer.sh parameters

in the previous sections, will be passed through the vncviewer.yaml args field as a list of
arguments. The code snippet below will show it.

apiVersion: batch/v1
kind: Job
[...]
spec:
 template:
 [...]
 spec:
 [...]
 containers:
 - name: RAR_002_TIGERVNC_CONTAINER_NAME
 [...]
 args:
 [...]
 - "RAR_005_POD"
 [...]
 - "RAR_013_CLIENT_HOST_IP"
 - "RAR_014_CLIENT_HOST_PORT"
 [...]

Even in this case, the arguments are parametrized and will be replaced with their values

by the cloudify script as shown in the code snippet below.

function adjust_and_apply_pod {
 [...]
 sed -i "s#RAR_005_POD#pod=1#g" $tigervncPodFile
 [...]
 sed -i "s#RAR_013_CLIENT_HOST_IP#client_host_ip=$current_node_address#g" \
 $tigervncPodFile
 sed -i "s#RAR_014_CLIENT_HOST_PORT#client_host_port=$pod_wait_port#g" $tigervncPodFile
 [...]
}

As you can see above, even in this case each RAR_***_***** parameter will be replaced,

as expected by the run_vncviewer.sh script, with a string like this one
<param_name>=<param_value>.

We have discussed the $pod_wait_port variable and the pod execution parameter before
but we havent’t talked about the $current_node_address variable yet. It contains the local
machine IP address and will be retrieved as shown in the cloudify script code snippet below.

 87

function retrieve_curr_k8s_node_info {
 [...]
 IFS='#' read -r -a current_node_info <<< $(kubectl get nodes -l
kubernetes.io/hostname=`cat /etc/hostname` -o 'jsonpath={range
.items[0].status.addresses[*]}{.type}={.address}#{end}')
 for ((i=0; i<${#current_node_info[@]}; i++)); do
 [...]
 if [[$(echo ${current_node_info[$i]} | cut -d '=' -f 1) == "InternalIP"]];then
 current_node_address=$(echo ${current_node_info[$i]} | cut -d '=' -f 2)
 fi
 done
 [...]
}

As you can see, the function used above is actually the one we have seen in section 5.3.5.

where we wanted to retrieve the node name of the local machine. The mechanism, even in this
case, is the same used in the mentioned section but this time we will retrieve the IP address
bound to the node which has the name equals to the one written in the /etc/hostname file.

6.4.6. Managing the pod scheduling

We have discussed, so far, how the audio/video remotization has been implemented with
pod run mode but there is another important challenge since, as mentioned in section 4.4.4.,
this way we run the risk of executing the VNC viewer pod in a node that is not the local one.
This is an undesirable event because even if we want to offload the desktop application
execution, we still want to interact with it from the local machine. To achieve this goal, we
needed to make a tiny customization in the vncviewer.yaml file.

apiVersion: batch/v1
kind: Job
[...]
spec:
 template:
 [...]
 spec:
 nodeName: RAR_001_K8S_NODE_NAME
 [...]

As you can see in the code snippet above, inside the pod specs we specified the nodeName

which is used to force the pod scheduling and execution in the node having the specified name.
Even in this case, the node name is parametrized and will be replaced with its value by

the cloudify script as shown in the code snippet below.

function adjust_and_apply_pod {
 [...]
 sed -i "s#RAR_001_K8S_NODE_NAME#$current_node_name#g" $tigervncPodFile
 [...]
}

The $current_node_name variable used above is the same retrieved, as shown in section

5.3.5., through the cloudify script function retrieve_curr_k8s_node_info by using the
/etc/hostname file content, and represents the local machine node name. In the case discussed

 88

in the mentioned section that has been used to avoid the remote pod scheduling on the local
machine, in this case it is used exactly for the opposite purpose.

6.4.7. Managing the applications concurrency

In the Kubernetes server-side implementation we have seen that since a deployment is
used to create the server-side pod, if we want to run more instances of the same application, we
need to parametrize the resources name to uniquely identify them. Actually, even in this case,
we need to use a different job name and “app” label to uniquely identify the job and the related
pod, and to gracefully clean up the allocated resources once the execution ends. For this
purpose, we parametrized their values as shown in the following vncviewer.yaml code snippet.

apiVersion: batch/v1
kind: Job
metadata:
 name: RAR_000_APP_NAME_PID-job
 labels:
 app: RAR_000_APP_NAME_PID
spec:
 template:
 metadata:
 labels:
 app: RAR_000_APP_NAME_PID
 spec:
 [...]
 containers:
 - name: RAR_002_TIGERVNC_CONTAINER_NAME
 [...]

As you can see above, the job name, the “app” selector and the pod “app” label have been

parametrized through the RAR_000_APP_NAME_PID string. Note that the job name is actually
composed by a variable part followed by the “-job” static string.

Even the pod container name has been parametrized but with the
RAR_002_TIGERVNC_CONTAINER_NAME string.

As usual, the mentioned parameters will be replaced with their values by the cloudify
script as shown in the code snippet below.

function adjust_and_apply_pod {
 [...]
 sed -i "s#RAR_000_APP_NAME_PID#$vnc_cli_app_pid#g" $tigervncPodFile
 [...]
 sed -i "s#RAR_002_TIGERVNC_CONTAINER_NAME#$vnc_cli_app_pid#g" $tigervncPodFile
 [...]
}

The $vnc_cli_app_pid variable is the same we have seen in section 6.3.5. and is composed

by a static part, which is a string hard coded inside the $tigervnc_container_name variable, and
a PID which has been generated as shown in section 5.3.8. and stored in the $app_pid variable.

 89

Chapter 7 - Validation

7.1. Supported applications and exploited hardware capabilities

As mentioned in section 5.2.1.2., the app_image Dockerfile has been realized to be used
as a sort of template to install the required target application inside the docker image. In fact,
since it uses the Debian apt-get package manager, basically all the applications provided with
that kind of installation package can be installed.

Moreover, to enable the user to install application that are not available on the chosen
Linux Distribution official repositories, the REPO_TO_ADD docker build arg has been
provided.

So far, the supported applications are:
• Mozilla Firefox, a widely used Internet browser;
• Libreoffice, a free and powerful office suite;
• Blender, a «free and open source 3D creation suite. It supports the entirety of the

3D pipeline-modeling, rigging, animation, simulation, rendering, compositing and
motion tracking, video editing and 2D animation pipeline»50.

Those applications have been installed using “ubuntu:18.04” as a base image and widely
tested to check they work properly in each client-side run mode.

Furthermore, installing Blender inside the Docker image required the addition of the
“ppa:thomas-schiex/blender” source repository since on the chosen base image only the snap
package is available.

 In general, the application offloading enables the user to exploit all the remote hardware
capabilities. It means that also the remote graphic card may be used, if there are any. So, since
Blender is an open source 3D creation suite, a Docker image exploiting the remote graphic card
capability has been created. For this purpose, assuming that the remote host is provided with a
NVIDIA graphic card, a Blender image has been created by using the “nvidia/cuda:10.2-
runtime-ubuntu18.04” base image. This one is actually built on the “ubuntu:18.04” parent
image by adding the required NVIDIA libraries. This way the base image will provide the same
environment obtained for the other images created by using the “ubuntu:18.04”, and by adding
the libraries required to exploit the remote NVIDIA graphic card capabilities. Actually, using
the aforementioned base image is not sufficient. In fact, the remote node must be provided with:

• NVIDIA CUDA drivers, natively installed on the remote operating system;
• nvidia-container-runtime, «a GPU aware container runtime, compatible with the

Open Containers Initiative (OCI) specification used by Docker, CRI-O, and other
popular container technologies. It simplifies the process of building and deploying
containerized GPU-accelerated applications to desktop, cloud or data centers. With
NVIDIA Container Runtime supported container technologies like Docker,
developers can wrap their GPU-accelerated applications along with its

50 Blender official website - About, https://www.blender.org/, October 12th, 2020.

 90

dependencies into a single package that is guaranteed to deliver the best
performance on NVIDIA GPUs, regardless of the deployment environment»51.

The Blender image created above has been successfully tested by scheduling the related
pod on a Kubernetes node provided with a NVIDIA graphic card along with the required
drivers, packages and configurations. A 2D image rendering has been executed by using both
a basic Blender image and a GPU aware Blender image. The latter image execution has shown
a sensitive reduction of the execution time due to the GPU exploitation.

7.2. Measures

7.2.1. Resource consumption: native vs containerized vs cloudified application

So far, the supported applications and the related hardware capability exploitation have
been discussed. This section will present a comparison between the resource consumption data
of one of the supported native applications and the related containerized implementation. For
this purpose, since the client-side is provided with three run modes (native, Docker container
and Kubernetes pod) the focus will be placed on both the server-side and the client-side pointing
out how the resource consumption on the local machine changes compared to the native
application execution. For this purpose, the Firefox image has been chosen.

7.2.1.1. Execution context specifications

The tests have been made on a vanilla Kubernetes cluster composed by four nodes. Each
node is a VirtualBox virtual machine with the following hardware and software specifications:

Node Specifications

Master

System

Base memory 6144 MB
Processors 2

Acceleration VT-x/AMD-V, Nested Paging, KVM
Paravirtualization

Video

Video memory 128 MB
Graphics
controller VMSVGA

Acceleration 3D
Operating

system Ubuntu Server 20.04 LTS

Docker Version 19.03.12
Kubernetes Version 1.18.5

51 Nvidia developer official website - NVIDIA Container Runtime, https://developer.nvidia.com/nvidia-

container-runtime, October 12th, 2020.

 91

Node Specifications

Worker-01

System

Base memory 6144 MB
Processors 1

Acceleration VT-x/AMD-V, Nested Paging, KVM
Paravirtualization

Video

Video memory 128 MB
Graphics
controller

VMSVGA

Acceleration 3D
Operating

system Ubuntu Server 20.04 LTS

Docker Version 19.03.12
Kubernetes Version 1.18.5

Node Specifications

Worker-02

System

Base memory 6144 MB
Processors 1

Acceleration VT-x/AMD-V, Nested Paging, KVM
Paravirtualization

Video

Video memory 128 MB
Graphics
controller

VMSVGA

Acceleration 3D
Operating

system
Ubuntu Server 20.04 LTS

Docker Version 19.03.12
Kubernetes Version 1.18.5

Node Specifications

Client-01

System

Base memory 6144 MB
Processors 2

Acceleration VT-x/AMD-V, Nested Paging, KVM
Paravirtualization

Video

Video memory 128 MB
Graphics
controller VMSVGA

Acceleration 3D
Operating

system
Ubuntu Desktop 20.04 LTS

 92

Docker Version 19.03.12
Kubernetes Version 1.18.5

The physical host is provided with the following hardware and software:
• CPU: Intel Core i7-6820HK;
• RAM: 32GB;
• Graphic card: NVIDIA GeForce GTX 980M;
• Operating system: Microsoft Windows 10;
• VirtualBox version: 6.1.12 r139181.

7.2.1.2. Measure specifications and used tools

The tests have been made by executing the cloudify script with the following settings:
• VNC video quality: 5;
• VNC video compression: 2;
• Secure connections: enabled.

Note that the cloudify script has been executed always in the Client-01 node since it is the
only one provided with a desktop interface. Besides, the server-side has been scheduled always
in the Master-01 node. To obtain this, the scheduling on the other nodes has been disabled by
adding a taint on each through the following command execution:

kubectl taint nodes <node_name> key=value:NoSchedule

Finally, disabling the scheduling on the Client-01 node was not necessary since, as seen

in section 5.3.5., the cloudify script force the server-side pod execution on a foreign node by
construction.

For each measure, has been reproduced always the same video in streaming with Firefox,
following always the same steps to find and reproduce it, and paying attention to specify always
the same image quality (720p) in order to obtain significant values for each measured resource.

The following sections will report the measured values of:
• CPU, expressed in percentage of usage on the local machine and in milli-units on

the remote node. Note that the milli-units express the number of requests per
seconds. For example, 500m would be half a request per second, 10000m would be
10 requests per second, and 10500m would be 10.5 requests per second;

• RAM, expressed in MiB;
• Network traffic transmitted in bytes;
• Network traffic received bytes.

The tables in the following sections will contain the average value for each resource,
obtained by executing the arithmetic mean over a sample set. For this purpose, a sample rate of
1 second for each measure has been chosen. Finally, to make that values statistically relevant,
the measures have been made three times, one for each application execution.

To obtain the samples described above, several tools have been employed:

 93

• top, used to retrieve the CPU usage in percentage and the memory consumed in
bytes of a native process;

• nethogs, shows the transmitted/received network traffic in bytes of a native process;
• docker stats, returns the CPU usage in percentage, the memory consumed in bytes

and the transmitted/received network traffic in bytes of a Docker container;
• kubectl top, returns the CPU usage in milli-units and the memory consumed in bytes

of a Kubernetes pod;
• Prometheus, is a Kubernetes monitoring system. In this case, it has been used to

retrieve the transmitted/received network traffic in bytes of a Kubernetes pod.

7.2.1.3. Firefox native execution

The first measures to report are those related to the native Firefox execution. Note that,
in this case the top and the nethogs tools have been used to retrieve the sample values.

The first tool allows the process monitoring by specifying its PID. Since Firefox during
its execution creates several child processes, a script has been created to collect all the PIDs
related to Firefox and to retrieve the CPU and memory values for all of them.

#!/bin/bash

logfile="./measures/firefox_cpu_mem_03.txt"

#Init logfile
echo "" > $logfile

while true; do
 #Init pid array
 pids=()

 #Set line separator
 IFS=$'\n'

 #Retrieve all pid matching firefox process
 for line in $(ps aux | grep firefox); do
 val=$(echo $line | cut -d " " -f 3)
 if [[$val -ne ""]]; then
 #Add pid to pid array
 pids+=("-p$val")
 fi
 done

 #Run top with all the arrays
 top -b -n1 ${pids[@]} >> $logfile

 #Sleep
 sleep 1
done

The obtained values for each process will be added together to obtain the total amount

for each resource.
The nethogs tool allows to continuously monitor the network activity of a process. It

shows the process name, its PID, and the total amount of bytes transmitted and received since
the target process start. Actually, if the nethogs application is launched during the target
application execution, it will collect only the values from that moment ahead. For this reason,
nethogs has been launched before the target application execution. Once the target application
ends, it is possible to retrieve its total amount of network traffic.

 94

The table below shows the average values of each resource.

Measure nr.
CPU usage

(%)
RAM usage

(MiB)

Network
transmitted traffic

(MiB)

Network
received traffic

(MiB)
1 52,01% 1005,33 MiB 1,614 MiB 44,920 MiB
2 64,69% 1055,24 MiB 1,510 MiB 45,788 MiB
3 48,57% 999,65 MiB 1,614 MiB 43,266 MiB
 55,09% 1020,07 MiB 1,579 MiB 44,658 MiB

Note that the last line contains the average values among the three measures for each

resource.

7.2.1.4. Firefox execution with client-side native run mode

This section is related to the execution of the target application on a remote pod in the
case the vncviewer, the ssh client and the PulseAudio server have been installed natively on the
local host. In this case, the measures of both the server-side pod and the client-side processes
will be shown. For this purpose, the top and the nethogs tools have been used for the native
processes monitoring, while the kubectl top and the Prometheus tools have been used for the
remote pod monitoring.

To be more specific, since the client-side is composed by both the vncviewer and the ssh
tools, both will be monitored. The obtained values for each process will be added together to
obtain the total amount for each resource. Actually, in the client-side there is also the
PulseAudio process but since it is a daemon always running on the operating system, its
resources consumption can be ignored. Finally, since the secure connection option has been
enabled, the network traffic related to both the audio and the video streaming will be received
and transmitted only by the ssh process.

The table below shows the average values of each resource for the client-side.

Measure nr. CPU usage
(ssh% + vncviewer%)

RAM usage
(ssh MiB + vncviewer MiB)

Network
transmitted traffic

(MiB)

Network
received traffic

(MiB)
1 (2,4 + 27,53) % (3,55 + 14,62) MiB 3,610 MiB 190,636 MiB
2 (2,45 + 31,77) % (3,48 + 14,57) MiB 3,873 MiB 215,848 MiB
3 (2,55+ 31,98) % (3,48 + 14,63) MiB 3,983 MiB 221,564 MiB

 32,89% 18,11 MiB 3,821 MiB 209,350 MiB

Note that the last line contains the average values among the three measures for each

resource.
The table below shows the average values of each resource for the server-side.

 95

Measure nr.
CPU usage
(milli-units)

RAM usage
(MiB)

Network
transmitted traffic

(MiB)

Network
received traffic

(MiB)
1 728,28m 532,18 MiB 190,60 MiB 59,34 MiB
2 548,00m 426,22 MiB 210,00 MiB 69,46 MiB
3 716,02m 513,99 MiB 186,07 MiB 63,68 MiB
 664,10m 490,80 MiB 195,56 MiB 64,16 MiB

Note that the last line contains the average values among the three measures for each

resource.
Analyzing the values shown in the tables above, it can be seen that the resources

consumption in the client-side is much lower than the native application one. Moreover, even
if it is not possible to compare the CPU usage since kubectl top command provides it only in
milli-units, while top command provides it only in percentage, it is possible to see that basically
there is not a resource consumption worsening due to the application containerization in the
server-side. Actually, just the network usage increased. In fact, the received traffic from the
client-side, as well as the transmitted traffic from the server-side, is higher than the received
traffic of the native application. This overhead is due to the VNC and audio streaming. Anyway,
if the network bandwidth is sufficiently wide, this overhead may be acceptable considering the
benefits due to the remote node hardware capabilities exploitation. In addition, it is possible to
act on the VNC video compression and quality to decrease the bandwidth consumption if
needed.

7.2.1.5. Firefox execution with client-side Docker container run mode

This section is related to the execution of the target application on a remote pod in the
case the client-side has been containerized too and executed through the docker run command.

In this case, as in the previous one, the measures of both the server-side pod and the client-
side processes will be shown. For this purpose, the kubectl stats tool has been used for the client
side monitoring, and and the kubectl top and the Prometheus tools have been used for the remote
pod monitoring.

The table below shows the average values of each resource for the client-side.

Measure nr.
CPU usage

(%)
RAM usage

(MiB)

Network
transmitted traffic

(MiB)

Network
received traffic

(MiB)
1 43,76% 11,69 MiB 4,04 MiB 243,19 MiB
2 44,56% 11,38 MiB 4,06 MiB 244,14 MiB
3 43,80% 11,77 MiB 3,99 MiB 232,70 MiB
 44,04% 11,61 MiB 4,03 MiB 240,01 MiB

 96

Note that the last line contains the average values among the three measures for each
resource.

The table below shows the average values of each resource for the server-side.

Measure nr.
CPU usage
(milli-units)

RAM usage
(MiB)

Network
transmitted traffic

(MiB)

Network
received traffic

(MiB)
1 655,3m 530,82 MiB 216,62 MiB 63,32 MiB
2 499,06m 411,24 MiB 222,59 MiB 66,85 MiB
3 553,71m 416,35 MiB 230,91 MiB 70,92 MiB
 569,36m 452,80 MiB 223,37 MiB 67,03 MiB

Note that the last line contains the average values among the three measures for each

resource.
Analyzing the values shown in the tables above, it can be seen that the resource

consumption in the client-side, except for the network traffic, is lower than the native Firefox
application execution. Compared to the docker container run mode, the containerized client-
side resource consumption is very similar to the native one. Finally, the server-side pod resource
consumption is very similar to the that shown in the previous section.

Also in this case, the increasing of the network traffic is due to the VNC and audio
streaming. Thus, the same observations can be made.

7.2.1.6. Firefox execution with client-side Kubernetes pod run mode

This section is related to the fully cloudified exexution. In this case, as in the previous
one, the measures of both the server-side pod and the client-side processes will be shown. For
this purpose, since all the execution has been cloudified, just the kubectl top and the Prometheus
tools will be necessary. Anyway, in order to provide an estimation on the CPU percentage
consumption of the client-side pod, the docker stats tool has been used to monitor the container
executed in the pod itself.

The table below shows the average values of each resource for the client-side.

Measure nr.
CPU usage
(m and %)

RAM usage
(MiB)

Network
transmitted traffic

(MiB)

Network
received traffic

(MiB)

1
260,14m
17,73% 20,13 MiB 3,46 MiB 188,27 MiB

2
178,66m
35,64% 10,27 MiB 3,61 MiB 187,52 MiB

3
334,37m
39,10% 10,24 MiB 3,43 MiB 184,30 MiB

 257,72m
30,82%

13,55 MB 3,50 MiB 125,26 MiB

 97

Note that the last line contains the average values among the three measures for each
resource.

The table below shows the average values of each resource for the server-side.

Measure nr.
CPU usage
(milli-units)

RAM usage
(MiB)

Network
transmitted traffic

(MiB)

Network
received traffic

(MiB)
1 497,34m 403,51 MiB 213,83 MiB 61,88 MiB
2 709,46m 489,19 MiB 200,89 MiB 63,89 MiB
3 713,06m 467,14 MiB 226,20 MiB 60,92 MiB
 639,95m 453,28 MiB 213,64 MiB 62,23 MiB

Note that the last line contains the average values among the three measures for each

resource.
Analyzing the values shown in the tables above, including in this case it can be seen that

the resource consumption in the client-side, except for the network traffic, is lower than the
native Firefox application execution. Compared to the other run modes, the client-side resource
consumption is very similar. This was an expected behavior since the pod executes a Docker
container too. Finally, the server-side pod resource consumption is very similar to that shown
in the other client-side run modes.

The increase of the network traffic, as for the other cases, is due to the VNC and audio
streaming. Thus, the same observations can be made.

7.2.2. Start-up time consumption analysis

So far, the resource consumption in each kind of execution mode has been analyzed.
Actually, focusing on the cases in which the server-side have been containerized and remotized
on a remote node, there will be a startup time consumption overhead. This is because the
Kubernetes cluster requires some time to schedule and start the pod on the remote node. In the
following sections will be shown how the startup time changes in each kind of execution,
highlighting how much time will be spent on the local host and on the foreign node until the
target application starts.

7.2.2.1. Firefox execution with client-side native run mode

In this execution mode, the cloudify script will prepare at first the deployment.yaml file
according to the execution parameters, then will apply the Deployment. The time between the
beginning of the execution and the kubectl apply command has been named T1. Then, the
cloudify script will wait for the pod to be in Running status. The time between the kubectl apply
command and the pod Running status has been named T2 ad will be spent on the foreign node.
Once the pod is running, the cloudify script will launch vncviewer and the GUI will be available.
The picture below shows what has been described above.

 98

Figure 10: native run mode startup time analysis

The times specified in the picture above have been measured and reported in the table
below.

Measure nr. T1 T2 Tot.

1 1,497 s 4,716 s 6,213 s
2 2,835 s 4,649 s 7,484 s
3 1,909 s 4,865 s 6,774 s
 2,080 s 4,743 s 6,823 s

Note that the last line contains the average values among the three measures for each

resource.
As it can be seen in the table above, much of the startup time has been spent on the foreign

node.

7.2.2.2. Firefox execution with client-side Docker container run mode

This execution mode is very similar to the previous one. The difference is that the client-
side is a container instead of native applications. For this reason, the same conclusions
discussed in the previous section can be reached.

Figure 11: docker run mode startup time analysis

 99

The times specified in the picture above have been measured and reported in the table
below.

Measure nr. T1 T2 Tot.

1 0,764 s 7,759 s 8,523 s
2 2,597 s 4,748 s 7,345 s
3 1,390 s 5,720 s 7,110 s
 1,584 s 6,076 s 7,659 s

Note that the last line contains the average values among the three measures for each

resource.

7.2.2.3. Firefox execution with client-side Kubernetes pod run mode

In this execution mode the timeline is a little different. In fact, since the client-side is a
pod too, once the target application pod is running, the cloudify script prepares the
vncviewer.yaml file and then to apply the job. So, the first part of the execution, it means from
the very beginning to the target application pod Running status, is the same shown in the
previous sections. The time between the target application pod Running status and the execution
and the kubectl apply command for the job has been named T3 and will be spent on the local
host. Then, the cloudify script will wait for the vncviewer pod to be in Running status. The time
between the kubectl apply command and the pod Running status has been named T4 ad will be
spent on the foreign node.

The picture below shows what has been described above.

Figure 12: pod run mode startup time analysis

The times specified in the picture above have been measured and reported in the table
below.

Measure nr. T1 T2 T3 T4 Tot.

1 2,256 s 5,645 s 0,105 s 6,736 s 14,742 s
2 1,185 s 5,278 s 0,081 s 6,525 s 13,069 s

 100

3 1,398 s 6,916 s 0,101 s 6,762 s 15,177 s
 1,613 s 5,946 s 0,096 s 6,674 s 14,329 s

Note that the last line contains the average values among the three measures for each

resource.
The startup time is much higher than the target native application one, just like the

previously discussed client-side execution modes. Obviously, this depends on the fact that this
time there are two pods to be scheduled by the Kubernetes cluster. However, considering the
benefits given by the fully cloudified execution discussed in the previous chapters in terms of
pod reachability and other elements, this might be an acceptable overhead.

7.3. KubernetesOnDesktop on Liqo

So far, the validation on a vanilla Kubernetes installation has been shown. Actually, there
is an «open source project named Liqo started at Politecnico of Turin that allows Kubernetes
to seamlessly and securely share resources and services, enabling to run your tasks on any other
cluster available nearby. Thanks to the support for K3s, which is a lightweight official
Kubernetes distribution, also single machines can join a Liqo domain, creating dynamic,
opportunistic data centers that include also commodity desktop computers and laptops as
well»52.

The Liqo project allows to virtualize a peered remote cluster as a single node of the user’s
cluster. It means that the pod scheduling will be managed from Kubernetes as usual and then
the KubernetesOnDesktop project may be executed in this context as well. The main advantage
of using KubernetesOnDesktop with Liqo is the possibility to use the user’s desktop PC or
laptop as a single K3s cluster node and offload the desktop application execution on a peered
remote cluster. This way, it is possible to exploit all the fully cloudified implementation features
even in a commonly used desktop PC or laptop.

For this purpose, the KubernetesOnDesktop project has been tested successfully by
creating two VirtualBox virtual machine provided with a K3s single node cluster for each and
with the Liqo installation. Once the two clusters peered each other, so that a new virtual node
representing the remote cluster has been created on each by Liqo itself, the cloudify script has
been launched on one of them. Accordingly with the pod scheduling described in the previous
chapters, the client-side pod has been scheduled on the local node (it means on the local cluster)
and the server-side pod has been scheduled on the other node (it means on the foreign cluster,
since it is represented as a virtual node in the local cluster). This way it has been possible to
effectively exploit the remote machine hardware capabilities by using the fully cloudified
implementation.

52 Liqo official website – What is Liqo, https://liqo.io/, October 13th, 2020.

 101

Chapter 8 - Conclusions

In this thesis it has been explained how to offload a desktop application execution to a
remote Kubernetes cluster node by maintaining its control on the local host through the
Graphical User Interface and the audio stream remotization.

As described in the previous chapters, the main architecture has been split in a server-
side and a client-side. The first one is in charge of executing the target application and of
remotizing its Graphical User Interface and the sound to the local host; the client-side is in
charge of showing the remote application’s Graphical User Interface and reproducing the
application’s sound in the local machine. To achieve these goals, it has been used in the server-
side a VNC server and a PulseAudio client in order to transmit the audio/video streams, and in
the client-side a VNC client and a PulseAudio server to receive those. Moreover, to make the
connections secure the SSH protocol has been used in both sides.

To implement the server-side, the containerization technologies have been exploited. In
fact, by using Docker it is possible to containerize the target application, along with its
dependencies, the VNC client, the PulseAudio server and the SSH tools. This way several issues
have been solved, for example, those related to the huge amount of software installations on
the remote machine and the lack of control of the resources assigned by the remote host to the
target application. In addition, since the remote machine may be a cluster node, Kubernetes has
been used as orchestrator in order to avoid a by hand scheduling. For this reason, a Deployment
has been created. Once applied on the cluster, it will create in turn a pod executing the
aforementioned server-side container. Thanks to Kubernetes the pod will be automatically
scheduled on a remote node that has sufficient resources.

The client-side implementation has been realized with three execution modes: native,
Docker container and Kubernetes pod. Each one shares an issue related to the remote pod
reachability. In fact, since the server-side runs on a remote cluster connecting the client-side to
the remote pod is necessary. In order to solve that problem a service has been created on the
cluster.

In the native implementation the client-side software has been installed natively on the
local machine. This solution presents some issues since the client-side tools can have some
execution or configuration conflicts with the pre-existent applications. Moreover, a huge
amount of software installation is required, and this will negatively impact on the user
experience. In order to solve these issues, a containerized implementation of the client-side has
been provided as well. In this case there was a new challenge related to the container
audio/video binding with the host’s interfaces. This has been respectively solved for the video
by exposing the host’s DISPLAY environment variable (containing the video Unix socket) and
by mounting the host’s /tmp/.x11-unix inode to the container, for the audio by mounting the
host’s sound card as a drive in the container. In both the previous implementation, the remote
pod reachability has been managed through a NodePort service. Finally, since the client-side
could be a Kubernetes node as well, a Kubernetes Job has been created that, once applied on
the cluster, will create in turn a pod executing the aforementioned client-side container. In this
case it is possible to exploit the Kubernetes DNS Service feature to make the remote pod
reachable from the client-side instead of use a NodePort service. However, a problem related
to the pod scheduling still exists. In fact, the server-side pod must be scheduled on a remote

 102

node and the client-side pod must be scheduled on the local node. For this purpose, the pod
Kubernetes Affinity feature has been exploited.

Moreover, Kubernetes Persistent Volume Claims have been used to enable the target
application data persistency, in order to improve the user experience.

The project tests demonstrate that the desktop application offloading can work without
affecting negatively the resource consumption and the user experience. The only sensitive
overhead has been recorded for the network traffic due to the VNC and PulseAudio streams.
Nevertheless, considering the advantage due to the remote host hardware capabilities
exploitation and substantial saving of resources on the local machine, this is an acceptable
overhead. Moreover, it is possible to change the VNC video quality and compression
parameters in order to obtain a tradeoff between the user experience and the resources
consumption.

In conclusion, several features can be additionally implemented in the project, for
example a sort of “live cloudification”. It means that once the user launches an application, the
system call may be intercepted from kernel module so that the operating system itself can
automatically check whether the application can be executed as a remote pod or natively on the
host, depending on the network bandwidth availability. This way, the user will not have to take
care of choosing what is the best way of executing the target application.

Another additional feature that can be considered is the “hardware remotization”, that is
to say a way to control a remote physical peripheral (for instance a robot connected to the
remote host through a USB port).

Finally, regarding the cloudify script, it may be adapted in order to be used to create a
Kubernetes operator. This way the application launch and control will be decoupled from the
local machine, since the cloudify script itself will be cloudified.

 103

Bibliography

Books:
• Turnbull J., The Docker Book. Containerization is the new virtualization, 2019.
• Kane S. P., Matthias K., Docker: Up & Running. Shipping reliable containers in

production, O’Reilly, 2018, second edition.
• Sayfan G., Mastering Kubernetes. Large scale container deployment and management,

Packt Publishing, 2017.
• Burns B., Beda J., Hightower K., Kubernetes Up & Running. Dive into the Future of

Infrastructure, O’Reilly, 2019, second edition.

Websites:
• Docker official website, https://docs.docker.com/, October 13th, 2020.
• Kubernetes official website – Kubernetes Documentation,

https://kubernetes.io/docs/home/, October 13th, 2020.
• Vmware official website - Virtual Desktop,

https://www.vmware.com/topics/glossary/content/virtual-desktops, October 10th, 2020.
• Citrix official website - What is Desktop as a Service (DaaS)?,

https://www.citrix.com/en-gb/glossary/what-is-desktop-as-a-service-daas.html, October
10th, 2020.

• Microsoft official website - Use apps from your Android device on your PC,
https://support.microsoft.com/en-us/help/4577326/use-apps-from-your-android-device-
on-your-pc, October 10th, 2020.

• OpenSSH official website, https://www.openssh.com, September 9th, 2020.
• TigerVNC official website, https://tigervnc.org, September 9th, 2020.
• Tristan Richardson - RealVNC Ltd. and others, Xvnc − the X VNC server,

https://tigervnc.org/doc/Xvnc.html, September 10th, 2020.
• noVNC official website, https://novnc.com/info.html, September 9th, 2020.
• PulseAudio official website, https://www.freedesktop.org/wiki/Software/PulseAudio/,

September 9th, 2020.
• Websockify official GitHub repository, https://github.com/novnc/websockify, September

9th, 2020.
• x(7) - Linux man page, https://linux.die.net/man/7/x, September 9th, 2020.
• Rook official website, https://rook.io/docs/rook/v1.4/, September 13th, 2020.
• Peter Leung, How to disable SSH host key checking,

https://linuxcommando.blogspot.com/2008/10/how-to-disable-ssh-host-key-
checking.html, September 15th, 2020.

• ssh(1) - Linux man page, https://linux.die.net/man/1/ssh, September 15th, 2020.
• Ubuntu manpages, http://manpages.ubuntu.com/manpages/trusty/man1/pactl.1.html,

September 16th, 2020.
• Blender official website - About, https://www.blender.org/, October 12th, 2020.

 104

• Nvidia developer official website - NVIDIA Container Runtime,
https://developer.nvidia.com/nvidia-container-runtime, October 12th, 2020.

• Liqo official website – What is Liqo, https://liqo.io/, October 13th, 2020.

