
POLITECNICO DI TORINO

Master’s Degree in
COMPUTER ENGINEERING

Master’s Degree Thesis

Design and Development of an Air
Pollution Data Distribution System

Supervisors

Prof. Maurizio REBAUDENGO

Prof. Bartolomeo MONTRUCCHIO

Candidate

Kamil Lukasz SMOLEN

October 2020

Index

List of figures vi

1 Introduction 1
1.1 General context . 1
1.2 Thesis topic . 1
1.3 Starting situation . 2
1.4 Thesis organization . 3

2 Technologies and programming languages 5
2.1 DBMS MySQL . 5
2.2 Flask . 5
2.3 Python . 6
2.4 RESTful WebServices . 6

2.4.1 WebServices . 6
2.4.2 REST . 7

2.5 Android . 9
2.5.1 Overview . 9
2.5.2 Android software development 10
2.5.3 Android application components 11
2.5.4 MPAndroidChart . 13

2.6 Open Street Map . 13

3 Platform architecture 15
3.1 Remote server . 15

3.1.1 Accumulation of data concerning environmental pollution . . 16
3.1.2 maintenance of auxiliary tables in the DB 16
3.1.3 user management . 17
3.1.4 calculation of coefficients for data calibration 21
3.1.5 returning the calibrated data to the client 21

3.2 Android client . 23
3.2.1 Main screen . 23

iii

3.2.2 Login screen . 25
3.2.3 Registration screen . 25
3.2.4 Polution screen . 26
3.2.5 Last 2 hour history screen 27
3.2.6 General history screen . 28
3.2.7 Profile showing screen . 29
3.2.8 Profile editing screen . 30
3.2.9 Tools screen . 31

4 Server implementation 33
4.1 Modularity . 33
4.2 Web service startup . 34
4.3 Initialization and configuration . 35

4.3.1 __init__.py . 35
4.3.2 config.py . 37

4.4 Utils.py . 37
4.5 Templates and static content . 39
4.6 Users module . 42

4.6.1 Controllers . 42
4.6.2 Models . 47
4.6.3 Forms . 49
4.6.4 Schemas . 49

4.7 Measures module . 49
4.7.1 Controllers . 51
4.7.2 Models . 62
4.7.3 Schemas . 63
4.7.4 Utils . 63

4.8 ws_checking_system module . 66
4.9 Other project folders . 66

5 Mobile application implementation 67
5.1 Android manifest . 68
5.2 Activities . 69

5.2.1 MainActivity . 69
5.2.2 LoginActivity . 75
5.2.3 RegisterActivity . 77
5.2.4 PollutionActivity . 78
5.2.5 HistoryActivity . 88
5.2.6 GeneralHistoryActivity . 94
5.2.7 ShowProfileActivity . 95
5.2.8 EditProfileActivity . 96

iv

5.2.9 ToolsActivity . 96
5.3 Layouts . 97

5.3.1 activity_main.xml . 97
5.3.2 activity_pollution.xml . 104
5.3.3 activity_history.xml . 106

5.4 Values . 111
5.5 build.gradle(app) . 111

6 Testing and evaluation 113
6.1 Testing context . 113
6.2 Testing scripts . 113
6.3 Testing machine . 119
6.4 Testing procedure . 119

6.4.1 First latency/throughput testing 119
6.4.2 First inserting data script execution 120
6.4.3 Second latency/throughput testing 120
6.4.4 Cheking the inserted data 120
6.4.5 Second execution of the inserting data client 120

6.5 Results . 121
6.5.1 Latency . 121
6.5.2 Throughput . 121
6.5.3 Correct insertion of data . 122

Conclusions 125

Bibliografy 127

v

List of figures

2.1 Activity lifecycle [18] . 12

3.1 Registration email example . 18
3.2 User confirmed . 18
3.3 Password recovery email example 19
3.4 Reset password form . 20
3.5 Result of the reset password procedure 20
3.6 Main Screen . 24
3.7 Lateral menu . 24
3.8 Login screen . 25
3.9 Missing value message . 25
3.10 Registration screen . 26
3.11 Pollution screen . 27
3.12 Pin informations . 27
3.13 Current user position . 27
3.14 Last 2 hour history screen . 28
3.15 General history screen . 29
3.16 History charts . 29
3.17 Profile showing screen . 30
3.18 Editing profile screen . 30
3.19 Tools screen . 31

4.1 Web service project structure . 34
4.2 User record structure . 43
4.3 measure_table structure . 50
4.4 board_table structure . 50
4.5 five_min_avg table structure . 51
4.6 hour_avg table structure . 51

5.1 Android Manifest and Activities . 68
5.2 Res folder organization . 68

vi

6.1 Latency results . 121
6.2 throughput results . 122
6.3 Local DB records . 122
6.4 Number of record before script execution 123
6.5 Number of record after script execution 123
6.6 Local DB records after the second execution of the testing script . . 123
6.7 Number of records after the second execution of the script 123

vii

Chapter 1

Introduction

1.1 General context
Living in an era dominated by information, where this is widely available and
handy simply by pulling out the smartphone and where staying connected to the
network is not difficult at all, it opens up many avenues for innovation of all kinds.
Just think of the amount of devices that are becoming increasingly smart, paving
the way for services that are becoming essential to our lives, without which every
day would be much more difficult. Let’s think only of the possibility of checking
the departure time of the bus, checking the weather or simply staying up to date
with the latest news. The possibilities are nearly endless and our infrastructures,
buildings and even cities are becoming "smart". In the latter case, monitoring
systems are increasingly used and among these we must not forget environmental
monitoring. Living in a period in which to take care of our health and above all of
the environment is entering our daily routine, being aware of the environmental
situation in our close proximity becomes indispensable. Exactly for this reason,
technological innovation should allow us to access to this information with the
utmost simplicity.

1.2 Thesis topic
Taking into consideration the need for environmental monitoring and for the people
themselves to remain up-to-date on the surrounding situation, the main purpose
of the thesis is to allow every inhabitant of the city of Turin to have immediate
access to information regarding the quality of the air in their close proximity. The
work concerns the design of a system based on client-server architecture [1] capable
of distributing air pollution information in a simple and free way. Starting from
the in-depth study and the choice of the right technologies to use, the project

1

Introduction

concerns the complete development of a backend, that is a web service capable
of supporting the collection, distribution and manipulation of measurement data,
together with the complete management of the target users of the system. The
thesis also includes the creation of a mobile application capable of communicating
with the remote server, giving each user the possibility of using all the services
offered by the backend for consulting the data regarding air pollution in the simplest
and most intuitive way possible.

1.3 Starting situation

The thesis involves the creation of a data distribution system to end users. The
work is based on an already existing participatory data collection system. The
previous project was created as a thesis and had the purpose of collecting data and
their subsequent storage.

This system is based on a network of RasberryPi-type devices distributed in
strategic points of the city of Turin, equipped with sensors for measuring the
quantity of particles of the pm10 and pm2.5 type as well as sensors for measuring
ambient temperature, pressure and humidity. More specifically, the sensors for
collecting data regarding the concentrations of particles pm2.5 and pm10 are in
greater number, to be exact they are 4 for each type. This is because the system has
been designed to be relatively cheap compared to existing systems and consequently
to obtain more accurate measurements and to make the system more robust in case
of permanent or temporary failures to one of the sensors, they have been inserted
with redundancy. It should also be known that data samples are collected every
second. All these data are initially collected and saved locally on an SD card on
board of the device. Thanks to a mobile application installed on the smartphones of
users who decide to participate in the project and allow it to run in the background
on their device, the data is sent to the server using the mobile network of the same
device every time a user with this app passes near one of the data collection system,
and consequently the data is stored permanently on the remote DB.

One of the key ideas of this previous project was the creation of a system capable
of collecting reliable data without investing too much money in sensors. This means
that the data collected in order to be used and distributed to end users must first
be calibrated. This is possible thanks to the placement of some collecting systems
in the Arpa Piemonte [2] weather station in Turin which provides reference data.

The calibration of data together with all the logic of their manipulation and
distribution system to end users is instead the subject of the current thesis.

2

1.4 – Thesis organization

1.4 Thesis organization
The thesis is organized as follows:

• chapter 2 has the purpose of briefly describing the technologies and program-
ming languages used during the development of the system

• chapter 3 conceptually describes the architecture of the entire data distribution
system, analyzing each composing it part separately

• chapter 4 aims to explain how the backend was implemented, analyzing its
modularity and each of its modules

• chapter 5 is dedicated to explaining the implementation of the mobile applica-
tion

• chapter 6 describes how the tests were carried out and on which aspect they
are mainly oriented, describes the implementation of these tests and finally
discusses the results obtained

• finally follows a brief conclusion

3

4

Chapter 2

Technologies and
programming languages

2.1 DBMS MySQL
MySQL is a complete system for managing databases, in other words it is a DBMS
(Database Management System) owned by the Oracle Corporation company. It
is mainly based on SQL which is a standardized programming language to allow
the management and manipulation of relational model based databases. For this
reason MySQL can more specifically be called RDBMS to emphasize the fact that
it supports the relational model. The software is currently available both under
the GPL (General Public License) and the commercial license[3]. Thanks to being
available also in open source, MySQL guarantees excellent performance with a high
level of security that can be freely verified by accessing the source code itself.
From the beginning MySQL has been designed to maximize performance, allowing
the management of large amounts of data while also offering maximum compatibility
and remaining as compliant as possible with ANSI-SQL standards with also offering
more functionalities[4]. It is currently available on both Unix and Unix-like systems
as well as on Windows which makes it usable on virtually any existing operating
system. MySQL is also supported by many programming languages including Java
and Python which are the basis of this thesis.

2.2 Flask
Flask is nothing more than a web framework written in Python and distributed
under a BSD license, used to support the development of web applications including
web services or web API’s. More precisely it can be classified as a micro framework

5

Technologies and programming languages

as its core is simple but extensible. Inside there are only the basic features and we
do not find any code to implement features for which third-party libraries already
exist[5]. This means that there is no abstraction layer for databases or for form
validation. The programmer has free choice to use external components of any
kind and connect them as if they were native to the framework. Thanks to the
simplicity that allows to obtain a modular and flexible code without being burdened
by useless functionality, Flask was the best choice for this thesis

2.3 Python
Python is a high-level programming language, this means that it offers a considerable
level of abstraction compared to the implementation on the computer. The language
is considered as interpreted even if for all intents and purposes the code after the
first interpretation is converted into an intermediate language (byte code) which in
turn is reused in subsequent interpretations to ensure performance benefits[6].

Released in the early 1990s, Python can be considered a multi-paradigm language
as it is suitable for object-oriented programming, procedural programming or
functional programming.

The philosophy of the language is based on simplicity, the code written in Python
is very readable and thanks to the indentation that involves the use of a large
number of whitespaces instead of brackets, the code is clean and understandable
compared to other programming languages. Often this aspect makes Python perfect
for teaching programming. The language is also often called as "battery included"
because it has a feature-rich standard library that allows everyone to immediately
start writing code[7].

Python is characterized by the use of non-typed variables but dynamically typed
objects which means a strong type checking system. Ite also includes a dynamic
garbage collector.

The language remains among the most used and most popular in the world[8].

2.4 RESTful WebServices

2.4.1 WebServices
A web service is a software system designed to support distributed communications,
architectured to ensure the interoperability of programs that work on different
software and / or hardware architectures using distinct and different computers[9].
Communication occurs through the exchange of SOAP type messages encapsulated
within the HTTP protocol, from which the name "web services" comes. Messages
are often serialized using the XML standard or the JSON format.

6

2.4 – RESTful WebServices

The concept of web service has the characteristic of being abstract, as for the
concrete implementation we need agents and services. An agent is a concrete
software program, implemented in a programming language and on a specific
hardware platform, capable of sending and receiving messages described above. A
service, on the other hand, is the concrete implementation of a program capable of
satisfying the agent’s requests by sending appropriate responses encapsulated in
messages, thus carrying out the task of a data server[9].

Often in a web service we can count many agents and a single service, as we
tend to have an architecture with centralized data processing that responds to
multiple requests from different agents.

A very important feature of web services is that both agents and services can
be implemented using programming languages chosen by the developer, there are
no rules that bind the web service to the use of a specific programming language.
Thanks to the distributed architecture, the two components of the web service
do not need to know how the counterpart is implemented, as long as the API
(Application Programming Interfaces) or the communication interfaces remain the
same.

2.4.2 REST
Representional State Transfer is an architectural style for the design of distributed
software services such as web services. This means that REST is not exactly an
architecture but not even a standard, it is a set of architectural principles. REST is
characterized by the fact that in the communication between the counterparties it is
used only on the http protocol without further intermediate levels of encapsulation
such as eg. SOAP messages. Furthermore, the concept of session is not envisaged
in REST systems, that is why this architecture is called stateless. Any Web API
that respects the REST rules can be called a REST API in all the effects[10].

REST can be described by five basic principles:
• Resource identification: A REST-based web service is resource-oriented, where

a resource is any element that can be processed. Each resource must be
uniquely identified by a URI (Unique Resource Idenfifier)[11].

• Use of HTTP methods: this means that the methods integrated in the HTTP
protocol are used to express actions that we want to perform on the various
resources. To request a resource, the get method must be used and to perform
CRUD operations, we must take advantage of the PUT, POST and DELETE
methods[12].

• Self-describing resources: Each resource returned to the client is conceptually
separate from its representation on the server. The server’s job is to transform

7

Technologies and programming languages

the requested data into a format compliant with the request sent by the client.
The format can be for eg. XML, JSON or CSV.

• Links between resources: the resources must be connected to each other
through hypertext links. Furthermore, each resource must contain everything
that is necessary for its description and the description of its links, this means
that the links must be encapsulated in the resource itself. This mechanism
allows navigation between the resources themselves, using only what we have
already requested from the server.

• Stateless communication: each request sent by the client to the server must
be completely independent of the previously sent requests. This makes the
communication stateless but it does not mean that the application must not
have any state, simply thanks to the use of hypertext links contained within
each object it is possible to have a statefull application with the use of a
stateless communication that does not overload the server especially in cases
of a large amount of requests[13].

REST APIs can also be divided according to their level of maturity, that is,
according to the level of compliance with the principles described above. There are
four levels of maturity[14]:

• Level 0: A REST API is said to be level zero if it uses the HTTP protocol as
its communication protocol. This is because ideally a distributed application
could use a different protocol even if it is not widely adopted.

• Level 1: a REST API is level one when different URIs are used to interact
with different resources, ie the principle of identifying resources is applied.

• Level 2: this level of maturity is reached when the methods integrated in the
HTTP protocol are exploited to express actions concerning resources. The
GET method is used to request the resources, while the following methods are
used for CRUD operations: POST, PUT and DELETE. This level of maturity
also involves the use of standard HTTP protocol response codes.

• Level 3: a REST API is level three when hyperlinks are used to establish
the connection between the various resources of the web application. This
level implements the so-called HATEAOS (Hypermedia As Transfer Engine
Of Application State) that is, the state of the application is managed through
links integrated in the representations of the resources. An API of this level is
also called a RESTful API.

8

2.5 – Android

2.5 Android
2.5.1 Overview
Android is a mobile operating system developed by Google. It is based on the Linux
kernel and it is to all intents and purposes an embedded Linux distribution and not
a Unix-like system. Developed to run on embedded systems such as smartphones
and tablets but also watches and TVs. The operating system is an open source
project distributed under the Apache license. The source code is freely accessible
on the Internet and is known as AOSP (Android Open Source Project).

The development of Android has been going on uninterrupted since its first
release in 2008. Several versions of the operating system overseen by Google have
been developed over the years.

Version(name) API Level Release year
1.0(/) 1 2008

2.0(Eclair) 5 2009
3.0(Honeycomb) 11 2011

4.0(Ice Cream Sandwich) 14 2011
5.0(Lollipop) 21 2014

6.0(Marshmallow) 23 2015
7.0(Nougat) 24 2016
8.0(Oreo) 26 2017
9.0(Pie) 28 2018
10.0(Q) 29 2019

Table 2.1: Android available versions

Currently the most updated version of the operating system is version 10 also
called "Android Q", released in August 2019.

9

Technologies and programming languages

Despite the availability of the latest version, the distribution on the market of
the most popular operating system in the world looks like follows:

Android Platform Version (API Level) Distribution (as of April 10, 2020)
Android 4.0 “Ice Cream Sandwich” (15) 0.2%

Android 4.1 “Jelly Bean” (16) 0.6%
Android 4.2 “Jelly Bean” (17) 0.8%
Android 4.3 “Jelly Bean” (18) 0.3%
Android 4.4 “KitKat” (19) 4%
Android 5.0 “Lollipop” (21) 1.8%
Android 5.1 “Lollipop” (22) 7.4%

Android 6.0 “Marshmallow” (23) 11.2%
Android 7.0 “Nougat” (24) 7.5%
Android 7.1 “Nougat” (25) 5.4%
Android 8.0 “Oreo” (26) 7.3%
Android 8.1 “Oreo” (27) 14%
Android 9 “Pie” (28) 31.3%

Android 10 (29) 8.2%

Table 2.2: Android distribution[15]

It remains very clear that the latest version is not the most popular on the device
market[16]. This means that when we are developing applications for Android
devices, we have not to forget about previous versions and pay close attention to
backward compatibility.

2.5.2 Android software development
The development of applications for Android devices can take place through the
use of different programming languages such as Java, Kotlin or even C ++. The
design of each Android application is simplified thanks to the possibility of using
an SDK (Software Development Kit), that is a set of tools including a debugger,
library, emulator and much more that help the programmer in developing the code.
Since 2015, the official development environment, the so-called IDE (Integrated
development environment) of Android becomes Android Studio, replacing the
previous Ecplise. The development of the SDK and IDE proceeds in parallel with
the development of the operating system itself without losing sight of backward

10

2.5 – Android

compatibility. Within the SDK we also find ADB (Android Device Bridge) that is
a tool that allows you to execute instructions on a connected Android device. This
allows debugging directly on the device itself.

2.5.3 Android application components
The components of an Android application can be considered as basic blocks on
which to build a program based on this operating system. These components are
linked together thanks to a file in XML format, called Android Manifest which
contains their complete list together with a description and how they interact[17].

There are four types of Android components:

• Activities: this component has the task of presenting the user with the
graphical interface, giving the possibility to interact with the application. An
Android app can consist of one or more Activities, that is, one or more screens
with which the user can interact. When a program is started, the operating
system loads the MainActivity that is the main screen which in turn has the
ability to call others if the application provides for it.
The activities are managed by the so-called Activity stack, that is, a stack that
contains all the activities performed by the application. Each new activity
that is executed goes to the top of the stack and becomes the one running
while the previous activities remain in the lower places as long as the activity
at the top remains active.
Each activity is characterized by a very particular life cycle and can be in 4
different states:

– the activity is at the top of the stack and it is in the running state.
This means that we are talking about an activity with which the user is
interacting and it is active.

– the activity is visible on the screen but has lost focus, this means that
the user no longer has the opportunity to interact with it

– the activity is completely obscured by another and is no longer visible on
the screen. This means that it is in the stopped state.

– the activity is ready to be destroyed by the operating system, this means
that it will have to be recreated in order to be visiblea again on the screen.

The following figure shows the complete lifecycle of an activity to better
visualize its behavior. In the figure we can see that the colored elements
represent the states in which an application can be found while the gray
rectangles represent the methods that can be overwritten to implement the
actions we want during the transition from one state to another.

11

Technologies and programming languages

Figure 2.1: Activity lifecycle [18]

• Services: they are used by the operating system to perform long-running tasks.
These components do not have a graphical interface and always run in the
background. They can be used for example for application processing or for
playing music in the background while using another application.

• Broadcast Receivers: this component is used for communication between the
application and the operating system or for inter-application communication.
It allows the application to receive broadcast messages, it is the dual component

12

2.6 – Open Street Map

of the Intent that allow the application to send them.

• Content Providers: this component has the task of dealing with any data
problem. It can be used to retrieve data for example from a DB or from
another application. This procedure is performed through the use of a Content
Resolver.

2.5.4 MPAndroidChart
MPAndroid Chart is an open source library for plotting charts within Android
applications. The library was developed by PhijJay and its source code is fully
available in its repository on GitHub. It offers the possibility to draw almost any
graph without the need to use the Canvas, that is the Android drawing on the
screen element. MPAndroid Chart was used in this thesis to plot some LineCharts.

2.6 Open Street Map
Open Street Map is a collaborative project for the creation of geographic maps. The
work is aimed at mapping the whole world and making the content freely accessible.
For this reason OSM is distributed under an Open Database License which is totally
a free license. The use of the maps is also permitted for commercial purposes as
long as the source is cited. The project is carried out using free sources such as
aerial photographs. Everything is funded by the OpenStreetMap Foundation which
is responsible for finding the necessary funds. The work is called collaborative as
each user registered to the project can upload new data as GPS tracks of their
device[19]. The thesis involves the implementation of these maps as the project is
completely free.

13

14

Chapter 3

Platform architecture

This chapter describes how the entire project works. It consists of two main
elements which are respectively a remote server that performs the task of a web
service implemented using Flask micro-framework and a client implemented on the
Android platform capable of communicating with the server through the Internet
for viewing the data contained on the server.

The project consists of a data distribution system regarding environmental
pollution. Specifically, these are particles of type pm2.5 and pm10 collected, as
described in chapter 1.3 of this thesis, from an already existing system whose
evolution is represented by the project described here. The server has the hit
of storing the data collected by the system and saving them in a DB, but also
providing the calibrated data return service. The client in turn has the hit of
displaying the data present on the server to the end user of the system, that is, every
person who has downloaded the Android application and successfully registered in
the system.

The project description does not deal with implementation details, which will
be described in the following chapters. The work is described from a conceptual
point of view by explaining the tasks performed by each of the two main elements
of the project, together with the description of how they work and their usage.

3.1 Remote server
The remote server is one of the two main components of the entire project. This
key element of the system has been designed to play the role of a web service which
means that it must be installed on a computer that performs the work of a server
and must be accessible through the Internet, in other words, through a public IP
address. The server is very important as it is the core of the project and allows it
to work properly. This element, in addition to guaranteeing the basic functions

15

Platform architecture

for the operation of the environmental monitoring system, also has the task of
guaranteeing safety and robustness to the system as it must remain online ideally
for the entire operating time of the system and any failure inside it can cause the
interruption of the service provided.

Among the main tasks of the server we can list:

• accumulation of data concerning environmental pollution

• maintenance of auxiliary tables in the DB

• user management

• calculation of coefficients for data calibration

• returning the calibrated data to the client

3.1.1 Accumulation of data concerning environmental pol-
lution

Since this thesis is based on an already existing data collection system concerning
environmental pollution, the server must implement the service that offers the
possibility of saving the data collected within a DB. The whole mechanism works
by sending an appropriate HTTP request to the server. To carry out this work, the
server exposes an endpoint with final address "/measure", which when it receives
a request with the PUT method, analyzes the content of the request body from
which it extracts the data to be inserted into the DB. The data must in fact be
present within the body of the request in JSON format. Together with the data,
the request must contain a particular header called "x-access-token" containing the
unique token of the currently logged in user necessary for the correct processing
of the request itself. Once the server has received the incoming request, and after
analyzing its semantic correctness, it proceeds with the insertion of data into the
DB. The received data are not analyzed from the point of view of their semantic
correctness but are inserted into the DB because the logic of the server provides for
the accumulation of raw data. The following sections will describe how this data is
manipulated and returned to the client.

3.1.2 maintenance of auxiliary tables in the DB
The operation of the entire system is strictly dependent on the environmental data
collected by the monitoring devices, which, due to their design, collect a data sample
for every second of their operation. This means that within the table containing
the various measurements within the DB, the amount of data is very high. From
the point of view of request processing speed as well as from the point of view of

16

3.1 – Remote server

the client and the end user, processing and viewing data with such frequency would
be very difficult. Nor should we forget that the communication between the client
and the server takes place through the Internet, which means that the amount
of data transferred directly affects the response speed of the server perceived by
the end user. The following paragraphs also describe how the collected data must
be manipulated before being returned to the client for visualization within the
Android application. All these reasons explain the need to create two additional
tables within the DB containing respectively the average of the measurements made
every 5 minutes and the average of the measurements made every hour. In fact,
one of the main tasks of the server is to keep the two tables up to date. This task is
carried out through the use of two asynchronous tasks which, activated respectively
every 5 minutes or every hour, perform the necessary calculations on the data and
update the two tables. Thanks to their presence within the DB, the response and
processing of requests on the server side can be done faster, thus providing a better
service. In this thesis two tables are kept updated but the client only uses the one
containing the 5 minutes average data, the second one is left for future uses.

3.1.3 user management
The server internally implements the logic for managing users. This mechanism is
strictly necessary to ensure the security of the entire system as it allows interaction
with the web service only to registered users. The logic of the server provides
that users can cover different roles, more specifically users can be: user, admin, or
system_admin. The presence of three different roles within the system has been
planned for future use and further extensions of this project. At this time, within
the server there are only three functions that can be performed by a user superior
to the simple user. The first one concerns the possibility of promoting or degrading
the user’s role. The second one provides the ability to temporarily disable a user by
marking his record within the DB as not active. This feature was also designed for
future system extensions and can be performed by a higher user than a simple user.
The last one will be described in the following subsections. The only difference
between admin and system_admin is that the latter cannot be change his role.

The server offers all the following features necessary for proper user management:

• user registration

• user login and logout

• password recovery

• account editing

17

Platform architecture

User registration

The server offers the possibility for users to create a new account within the service.
To do this, the server offers an endpoint with a final address "/register". The HTTP
request for registration of a new user must be sent to this address with the POST
method, while the body must contain the user data in JSON format.

Once the server has received the request and, after checking its semantic cor-
rectness, proceeds to insert the new user into the DB, marking the corresponding
record as "to be confirmed". Each new user is created with role of "user" and active
state marked as "true".

At this point the server sends an account confirmation email to the email address
specified during the registration phase. Within the message a link with a unique
token is inserted that must be clicked by the user to complete his registration
phase[fig. 3.1]. Once visited, a web page is displayed with the confirmation of the
action in progress[fig. 3.2] and the user is marked as confirmed in the DB. The
registration phase is now concluded.

Figure 3.1: Registration email example

Figure 3.2: User confirmed

User login and logout

In order to manage users correctly, the server provides the login and logout functions
within the system. This is because only users who have already logged in have

18

3.1 – Remote server

the full power to interact with the web service. To allow the login procedure,
an endpoint with final address "/login" has been created which responds only
to requests sent via the http POST method. The body must contain the user’s
authentication credentials, i.e. email and password, encoded in JSON format. Once
the login request has been received, the server proceeds with the generation and
sending to the client of a unique and valid token until the next logout. This token
must be linked to each subsequent request sent to the server by the user in order
to confirm his identity. The token is added to future requests by adding a header
with the name of: "x-access-token".

The logout is the opposite procedure to login and can in turn be performed by
contacting the server through a POST http request on an address ending with
"/logout". The corresponding token of the user who wants to exit the service must
be attached to this request. Following this request, the server proceeds with the
invalidation of the token which will no longer be accepted as valid in future requests.

Password recovery

The server to ensure the possibility of recovering the passwords forgotten by users
offers the possibility to change them. This procedure is initiated by sending an
http request with the POST method to the address that ends with "/recover". This
request does not require the use of any token but only the sending within the body
of the email address of the user who wants to change their password. When the
server receives this request, it proceeds with the generation of a temporary token,
valid for 30 minutes from its creation. The token is inserted into a link sent to
the user via email[fig. 3.3]. At this point the user, by accessing his mailbox and
clicking on the received link, is directed to a web page that allows him to enter a
new password[fig. 3.4]. By confirming the form, the user is notified of the result of
the current procedure[fig. 3.5]. At this point the user can use the new password to
access the service.

Figure 3.3: Password recovery email example

19

Platform architecture

Figure 3.4: Reset password form

Figure 3.5: Result of the reset password procedure

Account editing

The service offers each user registered within the system the ability to change the
data relating to their account at any time, as well as allowing the currently logged
in user to view the user’s data currently saved on the server. Within the system
there are two non-equal procedures for changing data concerning a registered user.
The first consists in sending an http request with the POST method to the address
that ends with "/users/<user_id>, where user_id is the unique identifier of each
user and can be retrieved from the token received during login. The body of this
request must contain the data to be modified on the server, encoded in JSON
format. The request must also be accompanied by the “x-access-token” header.
The second procedure that allows to change the user data is reserved only for users
with a role higher than the simple user and allows to change both the role and the
active status of a user. The use of this request has been implemented for possible
future uses and extensions. The procedure begins by sending an http request with
the PUT method to the address that ends with "/user/<user_id>", specifying the
data to be modified in the body (ROLE or active = True / False).

The functionality of viewing the data present regarding a user’s account is
available by sending an http request with the GET method to the server at the
address that ends with "/user/<user_id>", in response the client will receive the

20

3.1 – Remote server

user data encoded in JSON format. Also the last two methods must include the
“x-access-token” header in the request.

3.1.4 calculation of coefficients for data calibration
One of the main tasks of the server is data manipulation. These must be calibrated
before they can be sent to the client for viewing. The data calibration procedure is
performed at runtime and is described in the next subsection. However, it remains
important to know that to perform the calibration, the server must first calculate
the regression coefficients. These are calculated for a certain time range and must
be recalculated when they expire.

The system at its first start, before the first request received, performs the
calculation of these coefficients. The work is done through the use of a secondary
thread that does not hinder the operation of the server.

Since these coefficients have a validity period, the server offers the possibility to
recalculate them by sending an http request with the POST method to the address
that ends with "/measure". The body must specify both the new effective start
date and the new effective end date, encoded in JSON format. This work will only
be done if the request is sent by a user who has a higher role than the simple user.

3.1.5 returning the calibrated data to the client
One of the main tasks of the server is to return data regarding environmental
pollution ready for visualization on the client. The data is transferred in JSON
format after being calibrated. Calibration is the procedure by which a correction is
applied to each required record by applying linear regression using the coefficients
described in the previous section. Data calibration must be performed because
the sensors mounted on the detection devices (boards), which have the task of
providing data as reliable as possible without exaggerating the material cost of the
device itself, are not as accurate as the sensors used by weather stations in the
city of Turin. For this reason, in the calculation of the regression coefficients, data
coming from the boards positioned together with the official sensors of the ARPA
station in Turin are used. This allows the collected data to be correct and reliable.

Raw data calibration is performed at runtime each time a request arrives, this
is because the amount of data is very high within the DB and keeping a table
containing the corrected data means doubling the space occupied on the server.
The choice of the runtime calibration derives from the fact that each data request
is limited in a generally small time span and therefore the data to be corrected
are consequently few. The “ws_analysis” library developed at the Politecnico di
Torino specifically for this purpose is used to perform the calibration.

There are two ways of requesting data on the server. The first mode can be

21

Platform architecture

called by the client using an http request with the GET method at the address
ending with "/measure /<pm_kind>", where pm_kind represents the type of
polluting particles in the environment. This mode returns the last available record,
in chronological order, properly calibrated, for each detection sensor in the DB. In
this case, the service works on the table containing the data grouped every 5 minutes
in order to make the calculation faster and limit the amount of data transferred.
The second method of requesting data takes place following the client’s request sent
via the http GET method to the address "/measure/<pm_kind>/<board_id>",
where board_id represents the environmental pollution survey board from which
we want to receive the data. Some headers must be added to this request to better
specify what data the client wants to receive. Through the use of the headers we
can specify the time range for which we want the data, we can specify whether
the data must be filtered based on the ID of the detection board or based on the
ID of the single sensor (remembering that each board inside contains 4 sensors
for detecting pm2.5 particles, 4 sensors for detecting particles pm10, a sensor for
detecting environmental temperature, humidity and pressure). Finally, the headers
allow the client to specify whether the data to be returned must be those of the
last two hours available starting from a certain starting time. This feature has
been implemented to quickly visualize the most recent history of the data itself.
Also this method of getting data is working on the table containing the five minute
average records.

22

3.2 – Android client

3.2 Android client
The mobile application based on Android technology is the second main element
of the entire project. It aims to display data regarding environmental pollution,
such as PM 2.5 and PM 10 particles, together with information on environmental
temperature and humidity. The application was designed to be a client in all
respects, this means that it does not save any type of data internally, but all the
information necessary for visualization is requested from the web service described
above. The requests are made through a call to the server and follow the rules of
the REST API’s. The data is downloaded in real time only when strictly necessary
so as not to burden the use of the device, thus remaining up-to-date.

The application is structured in different screens:

• Main screen

• Login screen

• User registration screen

• Pollution screen

• Last 2 hour history screen

• General history screen

• Profile showing screen

• Profile editing screen

• Tools screen

3.2.1 Main screen
The main screen represents the first view that the user sees after starting the
application. Depending on whether the user has already logged in or not, this
screen shows the "Logout" button or the "Login" button [fig. 3.6]. This view mainly
allows navigation to other activities. By pressing the "Pollution" button, the user
will be shown the screen that allows to obtain and visualize the data regarding
the environmental situation, while by pressing the "History" button, the user will
be able to consult the history of previous measurements. The "Pollution" and
"History" buttons can be clicked only if the user has already logged in to the system,
otherwise a temporary message will be displayed indicating to log in first. In the
event that the user has not yet been authenticated, by pressing the "Login" button,
the view that allows to log in to the system will be shown. Similarly, if the "Logout"
button is visible, once pressed, the user logs out from the system.

23

Platform architecture

On this screen, it is possible to access a side pop-up menu by clicking on the icon
at the top left corner[fig. 3.7]. The menu in its upper part displays the currently
logged in user (if available), while in its second part it allows navigation to two
other views. The first, navigable by pressing the "Profile" option, displays the data
relating to the current user account, while the second, navigable by pressing the
"Tools" button, allows access to the application options screen.

Figure 3.6: Main Screen

Figure 3.7: Lateral menu

24

3.2 – Android client

3.2.2 Login screen

This screen allows the user to log in to the application by entering the email and
password used during user registration[fig. 3.8]. The current view also allows to
switch to the registration screen if the user has not yet performed the registration
procedure. To be able to register a new user just press on the word "Not an User?".
The current screen also allows the user to recover the login credentials in case of loss
of the password. The procedure consists of entering the email in the corresponding
box and clicking on the words "Don’t remember your password?". In this way, the
application will ask the server to change the password by sending an email to the
user. In the event that the message for password recovery is pressed but the email
box is empty, an information message about it will be displayed near the email
field[fig. 3.9].

Figure 3.8: Login screen Figure 3.9: Missing value message

3.2.3 Registration screen

This screen has the task of allowing the user to create a new account to register in
the system. The procedure consists in filling in all the fields visible on the screen
and confirming the operation by clicking on the "Register" button[fig. 3.10]. The
application, after verifying the data entered by the user, proceeds with a request to
the server for the creation of the new user. In the event that the email is not valid,
not all fields have been filled in or the password is not identical to its confirmation,
the view shows an appropriate message with the description of the current error
near the field concerned. The error message is displayed in the same way as in the
“Login” screen[fig. 3.9].

25

Platform architecture

Figure 3.10: Registration screen

3.2.4 Polution screen
This screen has the task of displaying in the most intuitive way possible the data
regarding ambient pollution, collected by the environmental monitoring system in
the city of Turin.

The view consists of a map, centered according to the specified setting of the
"Tools" screen, respectively in the center of the city of Turin or in the current
location of the user. For this feature the positioning of the device have to be
activated. At the top of the map, two buttons have been placed, one green and
one orange. The first represents the type of polluting particles currently visible on
the screen while the second allows to change it.

Indicators (pins) are placed on the map, which indicate the position of the
environmental pollution detection boards together with their range of action (20
meters)[fig. 3.11]. The color of the circle around the pin is chosen based on the
quality of the surrounding air. To determine the color and the message to be
displayed in the pin, the AQI (Air Quality Index) compliant scale is used. AQI is
an index that indicates the level of air pollution and based on it, the quality of the
surrounding air can be established[20]. Pressing on one of the pins displays the
latest data available on the server regarding the environmental situation at that
point together with the date on which they were collected[fig. 3.12]. It can be seen
that the board ids linked to a single pin can be more than one, this means that
multiple detection devices have been positioned in the same place. In this case the
displayed data represents the average of their measurements.

Through a long press on the pin, the user is directed to an additional screen
capable of viewing the most recent history regarding the boards indicated in the
pin.

26

3.2 – Android client

On the map, in the event that the positioning of the device is active, a "man"
icon is placed which indicates the current position of the user[fig. 3.13].

Figure 3.11: Pollution screen

Figure 3.12: Pin informations Figure 3.13: Current user position

3.2.5 Last 2 hour history screen
In this screen it is possible to consult the most recent history concerning the
measurements performed by the boards contained in the pin pressed to access this
screen.

When this view is started, the data regarding the first board in the list are
immediately displayed. The story can be consulted through three linear graphs
on the screen[fig. 3.14]. Each represents the history of the last two hours of
measurements available on the server. The “Sensor chart” shows the quantity of
polluting particles currently selected (pm 2.5 or pm 10) measured by the 4 sensors

27

Platform architecture

on the detection board. The other two graphs respectively show the measurements
regarding the environmental temperature and humidity. For each graph there are
two buttons that respectively allow the download of the image of the graph itself
and the download of the data displayed on the corresponding graph.

At the top of the screen, it is the possibility to select the board on which the
data is to be displayed.

Figure 3.14: Last 2 hour history screen

3.2.6 General history screen

In this screen the user can consult the history of the measurements of each board
present in the system. The view initially consists of the form for selecting the time
range in which the data must be displayed together with the ability to choose the
board id[fig. 3.15]. Once the "Search" button has been pressed, the graphs similar
to those described in the previous point are displayed with the same download
options[fig. 3.16].

28

3.2 – Android client

Figure 3.15: General history screen

Figure 3.16: History charts

3.2.7 Profile showing screen

This screen was designed to be able to consult the data relating to the profile of
the currently logged in user[fig. 3.17]. The view is only able to display the data
but, by clicking on the button at the top right of the screen, allows the user to
switch to the Activity for editing the data.

29

Platform architecture

Figure 3.17: Profile showing screen

3.2.8 Profile editing screen

The screen allows the user to change the data relating to the currently logged in
account. When the view is loaded, it pre-fills the form with the data currently
present on the server in order to make changes faster[fig. 3.18]. To make the
changes effective after modifying the form, the user need to press the "save" button
located at the top right of the screen. Once pressed, the changes will be saved and
the user will be redirected to the screen that displays the user profile.

Figure 3.18: Editing profile screen

30

3.2 – Android client

3.2.9 Tools screen
This Activity was designed to make the application more flexible and customizable.
The screen is the only one accessible without logging in first. The view allows the
user to change the web service address, which means that by entering an invalid or
non-existent value, the application stops working correctly[fig. 3.19]. This option
is available to allow the system admin of the current project to freely change the
address and port of the server without having to change the source code of the
Android application.

The screen also allows the user to choose whether, when loading the "Pollution"
Activity, the map should be centered on the user’s current position. Otherwise, the
zoom is performed on Turin city center[fig. 3.19]. The choice was made possible as
the service is available to every person registered who does not necessarily have to
be present in Turin to consult the data, thus avoiding being located in an area of
the world where the boards have not been positioned.

Figure 3.19: Tools screen

31

32

Chapter 4

Server implementation

This chapter describes the implementation details of the web service whose operation
was presented in the previous chapter. Here all the source files that make up the
server are analyzed, paying particular attention to the most important code parts.
The program was written using the integrated development environment (IDE)
called PyCharm Professional developed by JetBrains[21].

4.1 Modularity

The web service was written with the idea of being a modular project. This means
that within it there is a common piece of code that starts the web service itself
and manages the configuration of all modules. Each module is a separate part
of the program containing code for carrying out specific functions of the web
service described here. Thanks to the use of separate modules, the program is not
strictly linked to a single implementation, as each module can be easily replaced
by changing the configuration in the common code. This programming technique
also allows to easily add new features to the web service without going into the
existing code, just create a new module and configure it.

The modules have been implemented through the use of Blueprints which are
object modules that can contain within themselves a set of operations that can be
recorded on a Flask application[22].

The web service project is completely contained within the politoweatherstation-
backend package which contains a common piece of code necessary for its configu-
ration along with three main modules: users, measures, ws_checking_system[fig.
4.1]. Each part of this program will be described in detail in the following sections.

33

Server implementation

Figure 4.1: Web service project structure

4.2 Web service startup
The web service is started by executing the run.py script present within the
PyCharm project. This script has the only purpose of starting the system through
the initialization of the "app" object through a call to the main project package
(politoweatherstationbackend) which returns aa configurated instance of it, that
allows the service to function correctly. The code in figure below shows the run.py
script.

1 from po l i t oweathe r s ta t i onbackend import create_app
2

3 app = create_app ()
4

5 i f __name__ == ’__main__ ’ :
6 app . run (debug=False)

Listing 4.1: run.py script

The web service is also distributed together with a file called: "requirements.txt"
which has the task of containing a complete list of external modules used within
the project and which are necessary and must be installed in the server execution
environment . To install these external modules just execute the command: "pip
install -r requirements.txt" on the console. Every required external module will be
described during its usage in the following sections. The image below shows the
requirements.txt file.

1 APScheduler ==3.6.3
2 bcrypt ==3.1.7
3 Flask ==1.1.2
4 Flask−API==2.0
5 Flask−APScheduler ==1.11.0
6 Flask−Bcrypt ==0.7.1
7 Flask−JWT==0.3.2
8 Flask−Mail ==0.9.1

34

4.3 – Initialization and configuration

9 Flask−RESTful==0.3.8
10 Flask−SQLAlchemy==2.4.4
11 Flask−WTF==0.14.3
12 jsonschema ==3.2.0
13 mysql−connector ==2.2.9
14 pandas ==1.0.5
15 PyJWT==1.7.1
16 pygeohash ==1.2.0
17 SQLAlchemy==1.3.18
18 WTForms==2.3.1

Listing 4.2: requirements.txt file

4.3 Initialization and configuration
The web service is initialized and configured for proper operation through the
use of two separate scripts: __init__.py and config.py. The first gives the task
of returning a Flask type object that represents the entire application, while the
second has the task of setting a set of configuration parameters.

4.3.1 __init__.py
This script consists only of a function called create_app which, as described above,
gives the task of returning an object of type Flask, which represents the entire
application and is executed by the run.py script. The source code of the script is
as follows.

1 db = SQLAlchemy ()
2 bcrypt = Bcrypt ()
3 mail = Mail ()
4

5 de f create_app (c o n f i g _ c l a s s=Config) :
6 app = Flask (__name__)
7 app . c o n f i g . from_object (Conf ig)
8

9 db . init_app (app)
10 bcrypt . init_app (app)
11 mail . init_app (app)
12

13 from po l i t oweathe r s ta t i onbackend . u s e r s . c o n t r o l l e r s import users ,
Reg i s te r , Login , Recover , Users , Logout

14 from po l i t oweathe r s ta t i onbackend . measures . c o n t r o l l e r s import
measures , Measure , Live , MeasureI

15 from po l i t oweathe r s ta t i onbackend . measures . u t i l s import
insert_data_f ive , insert_data_hour

16

35

Server implementation

17 # Star t u s e r s Bluepr int
18 api = Api (u s e r s)
19 api . add_resource (Reg i s te r , ’/ r e g i s t e r ’)
20 api . add_resource (Login , ’/ l og in ’)
21 api . add_resource (Logout , ’/ logout ’)
22 api . add_resource (Recover , ’/ recover ’)
23 api . add_resource (Users , ’/ user/<user_id > ’)
24 # End use r s Bluepr int
25

26 # Star t measures Bluepr int
27 api = Api (measures)
28 api . add_resource (Measure , ’/ measure/<pm>/<bs_id > ’)
29 api . add_resource (MeasureI , ’/ measure ’)
30 api . add_resource (Live , ’/ measure/<pmKind> ’)
31 # End measures Bluepr int
32

33 app . r e g i s t e r _ b l u e p r i n t (users , u r l_pr e f i x =’/ws ’)
34 app . r e g i s t e r _ b l u e p r i n t (measures , u r l_pr e f i x =’/ws ’)
35

36 # s t a r t an async task to add data in to five_min_avg tab l e and
in to hour_avg tab l e

37 s chedu l e r = BackgroundScheduler ()
38 s chedu l e r . add_job (func=insert_data_f ive , t r i g g e r =" i n t e r v a l " ,

seconds =300) # maybe 360
39 s chedu l e r . add_job (func=insert_data_hour , t r i g g e r =" i n t e r v a l " ,

minutes=60) # maybe 61
40 s chedu l e r . s t a r t ()
41

42 Shut down the s chedu l e r when e x i t i n g the app
43 a t e x i t . r e g i s t e r (lambda : s chedu l e r . shutdown ())
44

45 re turn app

Listing 4.3: __init__.py script

The script creates an instance of the Flask object, configuring it immediately
through the use of the configuration object defined in the config.py script.

Following the application object, three external modules are added: SQLAlchemy,
Bycrypt and flask_mail which respectively concern the simplified management of
communication with the DB, the ability to encrypt data and finally the ability to
send emails from the web service.

At this point, we move on to adding the internal modules to the service, that is,
registering the Blueprints on the application object. To perform this action, each
Blueprint is imported with all its functionalities and the APIs to which the module
must respond are defined.

Finally, the script initializes and executes two asynchronous tasks that are
necessary to keep the tables containing the averages of the measurements updated,

36

4.4 – Utils.py

specifying the interruption of these tasks in the event of the application being
closed.

4.3.2 config.py
Only one class called “Config” is defined in this script. The task of this class is
to contain all the configuration variables necessary for each internal or external
module used in the project. It can be immediately noted that for security reasons
most of the set values are defined through the use of environment variables of the
underlying operating system. The source code of this script is shown below.

1 import os
2

3

4 c l a s s Config :
5 SECRET_KEY = os . env i ron . get (’SECRET_KEY’)
6 APPLICATION_ROOT = ’/ws ’
7 DB_USER = os . env i ron . get (’DB_USER’)
8 DB_PASS = os . env i ron . get (’DB_PASS’)
9 DB_NAME = os . env i ron . get (’DB_NAME’)

10 DB_ADDRESS = os . env i ron . get (’DB_ADDRESS’)
11 SQLALCHEMY_DATABASE_URI = ’ mysql+mysqlconnector : / / ’ + DB_USER +

’ : ’ ’@’ + DB_ADDRESS + ’/ ’ + DB_NAME
12 SQLALCHEMY_TRACK_MODIFICATIONS = False
13 MAIL_SERVER = ’ smtp . goog l ema i l . com ’
14 MAIL_PORT = 587
15 MAIL_USE_TLS = True
16 MAIL_USERNAME = os . env i ron . get (’MAIL_USERNAME’)
17 MAIL_PASSWORD = os . env i ron . get (’MAIL_PASS’)
18 BOARDS_JSON = os . env i ron . get (’BOARDS_JSON’)
19 ARPA_JSON = os . env i ron . get (’ARPA_JSON’)
20 START_FIRST_SENS_CAL = os . env i ron . get (’START_FIRST_SENS_CAL’)
21 END_FIRST_SENS_CAL = os . env i ron . get (’END_FIRST_SENS_CAL’)

Listing 4.4: config.py script

4.4 Utils.py
This script contains some generic application features that cannot be strictly linked
to a single module. The first function has the task of defining a decorator applicable
to other functions, capable of verifying whether the request can be served as it is
sent by an authorized user, i.e. a user who has successfully logged on to the system.
This verification is based on the analysis of the token sent with the request. Its
creation will be described in the following sections but, it is important to know
that the unique identificator of the user and an access counter parameters are saved

37

Server implementation

inside it. This token is mixed with a secret key and encrypted. Each user who has
logged in to the system receives one that must bind to each of his requests. For this
reason, in this function, the token is immediately extracted and decrypted using the
secret key of the server to verify its consistency. Once the consistency is confirmed,
the token is checked for validity. The logic of the application involves sending an
access counter within the token whose specific operation will be described later
but, upon receipt, it must be equal to the value saved on the server. In case of any
failed check, this function blocks the execution of the requested functionality and
provides security to the service. The code is as follows.

1 de f token_required (f) :
2 @wraps (f)
3 de f decorated (∗ args , ∗∗ kwargs) :
4 token = None
5

6 i f ’ x−access −token ’ in r eque s t . headers :
7 token = reques t . headers [’ x−access −token ’]
8

9 i f not token :
10 re turn make_response ({ " msg " : "Bad reque s t "} , s t a tu s .

HTTP_400_BAD_REQUEST)
11

12 t ry :
13 data = jwt . decode (token , current_app . c o n f i g [’SECRET_KEY

’])
14 current_user = User . query . f i l t e r _ b y (user_id=data [’ user_id

’]) . f i r s t ()
15 i f current_user . counter != data [’ counter ’] or not

current_user . conf i rmed or not current_user . a c t i v e :
16 re turn make_response ({ " msg " : " Unauthorized "} , s t a tu s .

HTTP_401_UNAUTHORIZED)
17 except :
18 re turn make_response ({ " msg " : "Bad reque s t "} , s t a tu s .

HTTP_400_BAD_REQUEST)
19

20 re turn f (current_user , ∗ args , ∗∗ kwargs)
21

22 re turn decorated

Listing 4.5: token_required funtion

The second function has the task of sending the confirmation email of the
newly registered user. The message is sent through the use of the external module
"flask_mail" and from the configured address of the "config.py" file. A specific token
for this purpose is sent within the message to allow user confirmation. The token
is inserted into a link which, once pressed by the user, redirects to a static page on
the server that confirms this operation.

38

4.5 – Templates and static content

1 de f send_confirm_email (user) :
2 token = user . get_confirm_token ()
3 msg = Message (’ User Conf irmation Request ’ ,
4 sender =’ p o l i t o . weather . s tat ion@gmai l . com ’ ,
5 r e c i p i e n t s =[user . emai l])
6 msg . body = f ’ ’ ’ To conf i rm your account , v i s i t the f o l l o w i n g l i n k :
7 { ur l_for (’ u s e r s . r e g i s t e r ’ , token=token , _external=True) }
8 ’ ’ ’
9 mail . send (msg)

Listing 4.6: send_confirm_email function

The last function is very similar to the previous one but has the task of sending
the email with the link to allow the user’s password to be changed. Also in this
case a specific token is inserted within the link to allow this functionality. The
code of this function in quite equal to the previous one described.

4.5 Templates and static content
The web service inside contains the source code of some static web pages together
with a style file for their visualization. These pages can be visited through the links
sent to the user via the emails described above. The features of these pages are
used to display the result of operations carried out by the user such as confirmation
of your email address or confirmation of the password change. Among the features
of these pages there is also that of entering a new password. All pages have been
written to have a common layout described in the “layout.html” file and add only
the content necessary to provide their functionality. In the following the source
code of the common layout is displayed, the source for the password change page
and the source of a notification page of the action just carried out.

1 <!DOCTYPE html>
2 <html lang="en">
3 <head>
4 <!−− Required meta tags −−>
5 <meta cha r s e t ="utf −8">
6 <meta name="viewport " content="width=device−width , i n i t i a l −s c a l e

=1, shr ink−to− f i t=no">
7

8 <!−− Bootstrap CSS −−>
9 <l i n k r e l =" s t y l e s h e e t " h r e f ="https : // stackpath . bootstrapcdn . com/

boots t rap / 4 . 3 . 1 / c s s / boots t rap . min . c s s " i n t e g r i t y ="sha384−
ggOyR0iXCbMQv3Xipma34MD+dH/1 fQ784/ j6cY/iJTQUOhcWr7x9JvoRxT2MZw1T"
c r o s s o r i g i n ="anonymous">

10 <l i n k r e l =" s t y l e s h e e t " type=" text / c s s " h r e f ="{{ ur l_for (’ s t a t i c ’ ,
f i l ename =’main . css ’) }}">

39

Server implementation

11

12 {% i f t i t l e %}
13 <t i t l e >Po l i t o Weather Sta t i on − {{ t i t l e }}</ t i t l e >
14 {% e l s e %}
15 <t i t l e >Po l i t o Weather Stat ion </ t i t l e >
16 {% e n d i f %}
17 </head>
18 <body>
19 <header c l a s s =" s i t e −header">
20 <nav c l a s s ="navbar navbar−expand−md navbar−dark bg−s t e e l f i xed −

top">
21 <div c l a s s =" conta ine r ">
22 <h1 c l a s s ="navbar−brand mr−4">Po l i t o Weather Stat ion </h1>
23 <button c l a s s ="navbar−t o g g l e r " type="button " data−t o g g l e ="

c o l l a p s e " data−t a r g e t="#navbarToggle " ar ia −c o n t r o l s ="navbarToggle "
ar ia −expanded=" f a l s e " ar ia −l a b e l ="Toggle nav igat i on ">

24
25 </button>
26 </div>
27 </div>
28 </nav>
29 </header>
30 <main r o l e ="main " c l a s s =" conta ine r ">
31 <div c l a s s ="row">
32 <div c l a s s ="co l −md−8">
33 {% block content %}{% endblock %}
34 </div>
35 </div>
36 </main>
37 <!−− Optional JavaScr ipt −−>
38 <!−− jQuery f i r s t , then Popper . j s , then Bootstrap JS −−>
39 <s c r i p t s r c ="https : // code . jquery . com/ jquery −3 . 3 . 1 . s l im . min . j s "

i n t e g r i t y ="sha384−q8 i /X+965
DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6j izo "
c r o s s o r i g i n ="anonymous"></s c r i p t >

40 <s c r i p t s r c ="https : // cdnj s . c l o u d f l a r e . com/ ajax / l i b s /popper . j s
/1 . 14 . 7/umd/popper . min . j s " i n t e g r i t y ="sha384−
UO2eT0CpHqdSJQ6hJty5KVphtPhzWj9WO1clHTMGa3JDZwrnQq4sF86dIHNDz0W1"
c r o s s o r i g i n ="anonymous"></s c r i p t >

41 <s c r i p t s r c ="https : // stackpath . bootstrapcdn . com/ boots t rap / 4 . 3 . 1 /
j s / boots t rap . min . j s " i n t e g r i t y ="sha384−
JjSmVgyd0p3pXB1rRibZUAYoIIy6OrQ6VrjIEaFf/nJGzIxFDsf4x0xIM+B07jRM"
c r o s s o r i g i n ="anonymous"></s c r i p t >

42 </body>
43 </html>

Listing 4.7: layout.html file

1 {% extends " layout . html " %}

40

4.5 – Templates and static content

2 {% block content %}
3 <div c l a s s ="content−s e c t i o n ">
4 <form method="POST" ac t i on ="">
5 {{ form . hidden_tag () }}
6 <f i e l d s e t c l a s s ="form−group">
7 <legend c l a s s ="border−bottom mb−4">Reset Password</

legend>
8 <div c l a s s ="form−group">
9 {{ form . password . l a b e l (c l a s s ="form−cont ro l −l a b e l

") }}
10 {% i f form . password . e r r o r s %}
11 {{ form . password (c l a s s ="form−c o n t r o l form−

cont ro l −l g i s −i n v a l i d ") }}
12 <div c l a s s =" inva l i d −f eedback">
13 {% f o r e r r o r in form . password . e r r o r s %}
14 {{ e r r o r }}
15 {% endfor %}
16 </div>
17 {% e l s e %}
18 {{ form . password (c l a s s ="form−c o n t r o l form−

cont ro l −l g ") }}
19 {% e n d i f %}
20 </div>
21 <div c l a s s ="form−group">
22 {{ form . confirm_password . l a b e l (c l a s s ="form−

cont ro l −l a b e l ") }}
23 {% i f form . confirm_password . e r r o r s %}
24 {{ form . confirm_password (c l a s s ="form−c o n t r o l

form−cont ro l −l g i s −i n v a l i d ") }}
25 <div c l a s s =" inva l i d −f eedback">
26 {% f o r e r r o r in form . confirm_password .

e r r o r s %}
27 {{ e r r o r }}
28 {% endfor %}
29 </div>
30 {% e l s e %}
31 {{ form . confirm_password (c l a s s ="form−c o n t r o l

form−cont ro l −l g ") }}
32 {% e n d i f %}
33 </div>
34 </ f i e l d s e t >
35 <div c l a s s ="form−group">
36 {{ form . submit (c l a s s ="btn btn−out l i n e −i n f o ") }}
37 </div>
38 </form>
39 </div>
40 {% endblock content %}

Listing 4.8: recover.html source

41

Server implementation

1 {% extends " layout . html " %}
2 {% block content %}
3 <h1>Your account has been s u c c e s s f u l l y conf irmed !</h1>
4 {% endblock content %}

Listing 4.9: user_confirmed.html file

4.6 Users module
This module contains all the code concerning user management. Each user is
allowed to perform operations such as eg. login/logout or register for a new account.
The module composed of 5 source scripts divided according to the functionality
of the executed code. The script __init__.py is an empty source file as it only
serves to make the project recognize that the “users” folder is a separate module.
This module contains also:

• controllers.py

• models.py

• forms.py

• schemas.py

4.6.1 Controllers
In this file, the module is explicitly referred to be a Blueprint. The functionalities
contained in this script concern the definition of the user resources accessible
through the web service together with the functions that must be performed once
the REST APIs registered to this module are called.

SYSTEM_ADMIN creation

At this point, a function is also defined for creating the user with the role of
"SYSTEM-ADMIN" which is performed immediately before the first request received.
The “@users.before_app_first_request” decorator indicates exactly this behavior
of the function.

1 @users . be fore_app_f i r s t_request
2 de f create_system_admin () :
3 # check i f the SYSTEM_ADMIN i s a l r eady in the db
4 user = User . query . f i l t e r _ b y (emai l =’admin ’) . f i r s t ()
5 i f u ser :
6 re turn

42

4.6 – Users module

7

8 # c r e a t e the SYSTEM_ADMIN
9 hashed_password = bcrypt . generate_password_hash (’ admin ’) . decode (’

ut f −8 ’)
10 user = User (emai l =’admin ’ , password=hashed_password ,
11 name=’admin ’ , surname=’admin ’ , b i r th =’1990−01−01 ’ ,
12 r o l e =’SYSTEM_ADMIN’ , conf irmed=True , a c t i v e=True ,

counter =0,
13 re set_pass=False)
14 db . s e s s i o n . add (user)
15 db . s e s s i o n . commit ()

Listing 4.10: create_system_admin function

Register resource

The “Register” class is defined in this file and is marked as a resource. This means
that it is possible to define functions that can be contacted through the REST
APIs. Two functions have been defined within it, one reachable through the POST
method, has the task of creating a new user and saving his data in the DB by also
sending the email to confirm the account. This procedure is started only if the
request body conforms to the predefined JSON schema in the “schemas.py” file.
Each user record within the DB has the following structure.

Figure 4.2: User record structure

The confirmed field is used to indicate whether the user has confirmed its email,
the active field indicates whether the user is currently active and therefore has
access to all the features offered by the service. The counter represents the number
of accesses performed by the user. This is for the login phase and is explained later.
Finally, the rest_pass field indicates whether the user has started the password
change procedure.

Below the source code of the first function in showed. It is possible to note that
the password is hashed before beeing saved on the DB. For this task the "bcrypt"
module is used.

43

Server implementation

1 de f post (s e l f) :
2 data = reques t . get_json ()
3 # check i f the re i s a j son data a v a i l a b l e in the r eques t
4 i f not data :
5 re turn make_response ({ " msg " : "Bad reque s t "} , s t a tu s .

HTTP_400_BAD_REQUEST)
6 # v a l i d a t i o n o f the j son data aga in s t the c o r r e c t j son schema
7 t ry :
8 jsonschema . v a l i d a t e (data , reg i s ter_schema)
9 except jsonschema . Va l idat ionError :

10 re turn make_response ({ " msg " : "Bad reque s t "} , s t a tu s .
HTTP_400_BAD_REQUEST)

11

12 # c r e a t e a new user to be saved in the bd and send a
con f i rmat ion emai l

13 hashed_password = bcrypt . generate_password_hash (data [’
password ’]) . decode (’ ut f −8 ’)

14 user = User (emai l=data [’ email ’] , password=hashed_password ,
15 name=data [’ name ’] , surname=data [’ surname ’] , b i r th

=data [’ b i r th ’] ,
16 r o l e =’USER’ , conf irmed=False , a c t i v e=True ,

counter =0,
17 re set_pass=False)
18 db . s e s s i o n . add (user)
19 db . s e s s i o n . commit ()
20 send_confirm_email (user)
21 re turn make_response ({ " msg " : " Created S u c c e s s f u l l y "} , s t a tu s .

HTTP_201_CREATED)

Listing 4.11: POST function

The second function that can be contacted through the GET method has the
task of marking the user as confirmed = true. To do that it has to verify the
validity of the token contained in the request.

1 de f get (s e l f) :
2 token = reques t . a rgs . get (’ token ’)
3 # check i f the r eques t conta in s the token
4 i f token :
5 user = User . ver i fy_conf irm_token (token)
6 i f u ser i s None :
7 re turn make_response ({ " msg " : "Bad reque s t "} , s t a tu s .

HTTP_400_BAD_REQUEST)
8 # in t h i s case the user i s not conf irmed yet
9 i f u ser == −1:

10 headers = { ’ Content−Type ’ : ’ t ex t /html ’ }
11 re turn make_response (render_template (’

user_already_confirmed . html ’ , t i t l e =’ Success ’) ,
12 s t a tu s .HTTP_200_OK,

44

4.6 – Users module

13 headers)
14 # s e t the user to conf irmed
15 user . conf i rmed = True
16 db . s e s s i o n . commit ()
17 headers = { ’ Content−Type ’ : ’ t ex t /html ’ }
18 re turn make_response (render_template (’ user_confirmed . html

’ , t i t l e =’ Success ’) , s t a tu s .HTTP_200_OK, headers)
19 # i f the re i s not a token in the reque s t re turn e r r o r
20 re turn make_response ({ " msg " : "Bad reque s t "} , s t a tu s .

HTTP_400_BAD_REQUEST)

Listing 4.12: GET function

Both functions respond with messages with standard http codes such as eg. “200
OK” or “400 Bad request” in case of success or failure.

Login resource

A resource class called “Login” is also defined in the file. Inside, only one function
accessible via the POST method has been defined that allows the user to log in to
the system.

1 c l a s s Login (Resource) :
2 # http : / / 1 2 7 . 0 . 0 . 1 : 5 0 0 0 / l o g i n
3 # used to l o g i n in to the s e r v i c e
4 de f post (s e l f) :
5 data = reques t . get_json ()
6 # check i f the re i s a j son data with the r eques t
7 i f not data :
8 re turn make_response ({ " msg " : "Bad reque s t "} , s t a tu s .

HTTP_400_BAD_REQUEST)
9

10 # v a l i d a t e the j son data aga in s t the c o r r e c t j son schema
11 t ry :
12 jsonschema . v a l i d a t e (data , login_schema)
13 except jsonschema . Va l idat ionError :
14 re turn make_response ({ " msg " : "Bad reque s t "} , s t a tu s .

HTTP_400_BAD_REQUEST)
15

16 user = User . query . f i l t e r _ b y (emai l=data [’ email ’]) . f i r s t ()
17

18 # check i f the user i s conf irmed and a c t i v e
19 i f not user or not user . conf irmed or not user . a c t i v e :
20 re turn make_response ({ " msg " : "Bad reque s t "} , s t a tu s .

HTTP_400_BAD_REQUEST)
21

22 # check i s the u s e r s password i s c o r r e c t
23 i f not bcrypt . check_password_hash (user . password , data [’

password ’]) :

45

Server implementation

24 re turn make_response ({ " msg " : " Unauthorized "} , s t a tu s .
HTTP_401_UNAUTHORIZED)

25

26 # c r e a t e the jwt token that have to be add to any other
r eque s t that r e q u i r e s to be authent i ca ted

27 # t h i s conta in s a counter that w i l l be d i f f e r e n t at the next
l o g i n j u s t to avoid the re−usage o f o ld tokens

28 token = jwt . encode ({ ’ user_id ’ : user . user_id , ’ counter ’ : user .
counter } , current_app . c o n f i g [’SECRET_KEY’])

29

30 content = j s o n i f y ({ ’ token ’ : token . decode (’UTF−8 ’) })
31 re turn make_response (content , s t a tu s .HTTP_200_OK)

Listing 4.13: Login resource

As you can see from the code, the function, after extracting the email and password
from the body of the request, proceeds with the verification of the existence of
this user and the verification of his active and confirmed status. If the checks are
successfully passed, the token is created which must be attached to the user’s next
requests to confirm his identity. This token is encrypted through the "jwt" library
configured when the application is started. Inside, the information on the user ID
and the number of accesses, necessary for its verification, are saved.

The token as it was designed does not have a validity period, to give the user the
opportunity to remain logged into the system even after a long period of non-use
of the Android client application. This means that to invalidate the token, i.e. log
out, it is necessary to change a data present on the server in order to make its
verification no longer valid. This data is the "counter" field which is increased at
each logout. At this point, if a request arrives with a token whose "counter" field
does not match the one saved on the server, the function will not be executed.

Logout resource

This resource is declared in the same way as the resources previously described,
inside it contains only one function accessible through the POST method. The
“@token_required” decorator indicates that for its execution it is necessary to have
a valid token. Among the most important points of the function it is important to
note that the user’s counter is incremented to invalidate the token and log out.

1 counter = current_user . counter
2 counter = counter + 1
3 current_user . counter = counter

Listing 4.14: counter incrementation

46

4.6 – Users module

Recover resource

This resource class contains two functions, one accessible through the POST
method to be able to request the password change, and one accessible through
the GET method which allows the actual password change. The operation of the
two functions is similar to the operation seen during user registration and email
confirmation (Register resource section). Also in this case, the first function is
intended to send the user the email with a token. The second displays the static
page for changing the password and saves the changed data within the DB. The
only peculiarity of this function is that the data is taken from an HTML form as
the new password is entered within a web page.

1 form = RecoverPasswordForm ()
2 i f form . validate_on_submit () :
3 hashed_password = bcrypt . generate_password_hash (form .

password . data) . decode (’ ut f −8 ’)
4 user . password = hashed_password
5 user . re se t_pass = False
6 db . s e s s i o n . commit ()

Listing 4.15: getting data from the form

Users resource

This resource was created to allow users to obtain their account data along with
the ability to change them. A function accessible with the GET method returns
the data of the user specified in the address of the request itself. The method does
not need any further explanation as the code has no particularities. There are also
two other functions in the resource that are accessible with the POST method
and the PUT method respectively. The execution of the first is allowed to every
user normally logged in to the system and allows you to change user data such as:
email, name, surname and date of birth. The second instead gives the possibility
to change the user’s role together with the possibility to change the active status.
This second method is accessible only to users with a higher role than the normal
user as it is a very risky operation from the point of view of the security of the
system itself. The code of the functions described here is not shown as it does not
show anything that has not already been seen before.

4.6.2 Models
This script has the purpose of defining the class of objects on which the data
coming from and to the DB will be mapped. This mechanism is the so-called
"object-relational mapping" and is implemented thanks to the use of the external
SQLAlchemy module. The so mapped are accessible through simple objects and

47

Server implementation

editable by changing the properties. The next piece of code how that mapping is
done.

1 c l a s s User (db . Model) :
2 __tablename__ = ’ user ’
3 user_id = db . Column(db . BigInteger , primary_key=True)
4 emai l = db . Column(db . S t r ing (120) , n u l l a b l e=False , unique=True)
5 password = db . Column(db . S t r ing (60) , n u l l a b l e=False)
6 name = db . Column(db . S t r ing (30) , n u l l a b l e=False)
7 surname = db . Column(db . S t r ing (30) , n u l l a b l e=False)
8 b i r th = db . Column(db . Date , n u l l a b l e=False)
9 r o l e = db . Column(db . S t r ing (30) , n u l l a b l e=False)

10 conf irmed = db . Column(db . Boolean , n u l l a b l e=False)
11 a c t i v e = db . Column(db . Boolean , n u l l a b l e=False)
12 counter = db . Column(db . BigInteger , n u l l a b l e=False)
13 re set_pass = db . Column(db . Boolean , n u l l a b l e=False)

Listing 4.16: user mapping data class

In addition to containing the same properties contained within each user record in
the DB, the class also contains two functions for creating the reset and confirmation
token. Both code internally only the user id as in this case the counter is not
necessary. The first token is also created with a validity period of 30 minutes after
which the request to change the password is no longer feasible.

1 de f get_reset_token (s e l f , exp i r e s_sec =1800) :
2 s = S e r i a l i z e r (current_app . c o n f i g [’SECRET_KEY’] , exp i r e s_sec)
3 re turn s . dumps ({ ’ user_id ’ : s e l f . user_id }) . decode (’ ut f −8 ’)

Listing 4.17: get token function example

Finally, the class contains two other static methods to allow the verification of
the two tokens described above.

1 @staticmethod
2 de f ver i fy_rese t_token (token) :
3 s = S e r i a l i z e r (current_app . c o n f i g [’SECRET_KEY’])
4 t ry :
5 user_id = s . l oads (token) [’ user_id ’]
6 user = User . query . f i l t e r _ b y (user_id=user_id) . f i r s t ()
7 i f not user . re se t_pass or not user . conf irmed or not user .

a c t i v e :
8 re turn −1
9 except :

10 re turn None
11 re turn User . query . get (user_id)

Listing 4.18: verify token function example

48

4.7 – Measures module

4.6.3 Forms
This script defines the class that models the Form for entering the necessary
data when changing the password. The Form is defined thanks to the use of the
"FlaskForms" module which also offers the validation functionality of the same thus
verifying in a very simple way the correctness of the data entered. The source code
of the script described here is visible below.

1 c l a s s RecoverPasswordForm (FlaskForm) :
2 password = PasswordField (’ Password ’ , v a l i d a t o r s =[DataRequired ()])
3 confirm_password = PasswordField (’ Confirm_Password ’ ,
4 v a l i d a t o r s =[DataRequired () ,

EqualTo (’ password ’)])
5 submit = SubmitField (’ Reset Password ’)

Listing 4.19: Form.py content

4.6.4 Schemas
The script has the sole task of defining some variables containing the JSON schema
to which the data coming from the requests within the body must be subject. As
can be seen from the code shown in the previous sections, each request before
being processed checks the validity of the data received by validating them with
the schemes defined here. Below a variable containg a reference schema is showed.

1 users_post_schema = {
2 ’ p r ope r t i e s ’ : {
3 ’ email ’ : { ’ type ’ : ’ s t r i ng ’ , ’ pattern ’ : " ^ ([a−zA−Z0−9_\ −\.]+)@

([a−zA−Z0−9_\ −\.]+) \ . ([a−zA−Z]{2 , 5}) $ "} ,
4 ’name ’ : { ’ type ’ : ’ s t r i ng ’ } ,
5 ’ surname ’ : { ’ type ’ : ’ s t r i ng ’ } ,
6 ’ b i r th ’ : { ’ type ’ : ’ s t r i ng ’ , ’ pattern ’ : "^\d

{4}\ − (0? [1 −9] |1 [012]) \ − (0 ? [1 − 9] | [1 2] [0 −9] | 3 [0 1]) $ "}
7 }
8 }

Listing 4.20: example of a validation schema

4.7 Measures module
This module contains all the code concerning the management of the measures
collected by the boards distributed for the city of Turin. It allows both to upload the
data collected within the DB and to query the database to obtain the measurements
ready for visualization on the client application. Among the most important tasks

49

Server implementation

of this module is that of keeping updated the tables containing the averages of the
measurements made.

The module interacts with four tables of the database:

• measure_table that contains all the measures collected by the system.

Figure 4.3: measure_table structure

• board_table that contains the data about all the detection boards distribuited
in the city of Turin

Figure 4.4: board_table structure

• five_min_avg that contains the average data, made every five minute from
the measurements colected in the measure_table

50

4.7 – Measures module

Figure 4.5: five_min_avg table structure

• hour_avg that contains the average data, made every hour from the measure-
ments colected in the measure_table

Figure 4.6: hour_avg table structure

The module is divided, in a similar way to those of the user one, in several
source files:

• controllers.py

• models.py

• schemas.py

• utils.py

4.7.1 Controllers
This source script contains the definition of the resources contained in this module,
together with the functions performed following the calls to the connected REST
APIs. In addition, some functions are defined for the calculation of the regression
coefficients necessary for the calibration of the data, together with a function that
applies the calibration to the required measurements.

51

Server implementation

caption=startup_sensor_calibration()

The function is executed only once before receiving any request from the web service.
This operation is specified by using the "@before_app_first_request" decorator.
The task of this function is to start the process of calculating the regression
coefficients necessary for data calibration by running the "first_sensor_calibration"
function in a separate thread so as not to hinder other requests received from the
server during this calculation.

1 @measures . be fore_app_f i r s t_request
2 de f s ta r tup_senso r_ca l ib ra t i on () :
3 # prepa i r the data f o r the c a l i b r a t i o n
4 s t a r t = current_app . c o n f i g [’START_FIRST_SENS_CAL’]
5 end = current_app . c o n f i g [’END_FIRST_SENS_CAL’]
6 boards = current_app . c o n f i g [’BOARDS_JSON’]
7 arpa = current_app . c o n f i g [’ARPA_JSON’]
8 user = current_app . c o n f i g [’DB_USER’]
9 pwd = current_app . c o n f i g [’DB_PASS’]

10 addr = current_app . c o n f i g [’DB_ADDRESS’]
11 name = current_app . c o n f i g [’DB_NAME’]
12

13 # s t a r t s a thread that c a l i b r a t e s the s e n so r s the f i r s t time
14 t = Thread (t a r g e t=f i r s t _ s e n s o r _ c a l i b r a t i o n , args=(s ta r t , end ,

boards , arpa , user , pwd , addr , name))
15 # you have to s e t daemon true to not have to wait f o r the p roce s s

to j o i n
16 t . daemon = True
17 t . s t a r t ()
18

19 pr in t (’ Ca l i b r a t i ng the s e n s o r s ! ’)

Listing 4.21: startup_sensor_calibration function

first_sensor_calibration()

In this function, first of all it is specified through the use of a boolean global
variable that the process of the first calculation of the coefficients is in progress.
So if any data requests arrive at the server during this process, they will receive a
negative response until it is completed.

1 i f not c a l i b r a t i n g _ s e n s o r s :
2 c a l i b r a t i n g _ s e n s o r s = True
3 e l s e :
4 re turn

Listing 4.22: setting global variable

52

4.7 – Measures module

At this point a global object "x" is initialized as "SensorAnalysis", a class imported
from the "ws_analysis" library developed at the Politecnico di Torino. The object of
this type has the task of containing the regression coefficients for each existing data
detection sensor. During the initialization of the object, a time range is specified
for which the coefficients must be calculated. The "load()" method allows you to
load the data necessary for the calculation from the DB.

1 x = SensorAna lys i s (s ta r t , end ,
2 board=boards ,
3 arpa_stat ion=arpa)
4

5 x . db_setup (user , ’ ’ , addr , name)
6 # connect ion s t r i n g to be used i s r e a l environment and not

l o c a l h o s t !
7 # x . db_setup (user , pwd , addr , name)
8 x . load_data (load_from_db=True)

Listing 4.23: x object initialization

At this point, by calling the “calibrate_sensor_lr” function and passing each
available sensor as a parameter, the relative coefficients are calculated.

1 pmKinds = [’ pm25 ’ , ’pm10 ’]
2 f o r pmKind in pmKinds :
3 f o r board in boardNumbers :
4 f o r s in board_l i s t [board] [pmKind] :
5 x . ca l i b r a t e_sen so r_ l r (s , 0 , s ta r t_dt_ca l ib ra t i on ,

end_dt_cal ibrat ion , use_temp=True , use_rh=True ,
6 th r e sho ld =150.0 , r epor t=False)

Listing 4.24: regression coefficients calculation

apply_calibration()

The function has the task of calibrating the data received for a sensor by applying
the regression coefficients contained within the global object "x". The procedure is
performed thanks to the functionality offered by the “ws_analysis” library.

1 de f app ly_ca l ib ra t i on (s_name , cal_type , data) :
2 r = pd . DataFrame ()
3 r [’ date ’] = data [’ date ’]
4 r [’ hour ’] = data [’ hour ’]
5 r [’ minute ’] = data [’ minute ’]
6

7 data . dropna (i n p l a c e=True)
8 data . reset_index (drop=True , i n p l a c e=True)
9

10 r e g r e s s o r = x . s e n s o r s [s_name] . s_reg r e s so r [cal_type . va lue]

53

Server implementation

11

12 i f r e g r e s s o r == 0 :
13 pr in t ("ERR: Sensor i s not c a l i b r a t e d us ing r equ i r ed type " +

cal_type . name)
14 pr in t (" Returning not c a l i b r a t e d data ")
15 re turn data [’ sens ’]
16

17 i f data . empty :
18 pr in t ("No data a v a i l a b l e ")
19 data [’ ca l ’] = data [’ sens ’]
20 e l s e :
21

22 i f cal_type == CalType . l r t h :
23 data [’ ca l ’] = r e g r e s s o r . p r e d i c t (data [[’ sens ’ , ’ temp ’ , ’ rh

’]])
24 e l i f cal_type == CalType . l r t :
25 data [’ ca l ’] = r e g r e s s o r . p r e d i c t (data [[’ sens ’ , ’ temp ’]])
26 e l i f cal_type == CalType . l r h :
27 data [’ ca l ’] = r e g r e s s o r . p r e d i c t (data [[’ sens ’ , ’ rh ’]])
28 e l i f cal_type == CalType . r f :
29 data [’ ca l ’] = pd . S e r i e s (
30 r e g r e s s o r . p r e d i c t (data [[’ sens ’ , ’ temp ’ , ’ rh ’]]))
31 e l s e :
32 pr in t ("ERR: i n v a l i d c a l i b r a t i o n type ")
33 pr in t (" Returning not c a l i b r a t e d data ")
34 data [’ ca l ’] = data [’ sens ’]
35

36 re turn data [’ ca l ’]

c

MeasureI resource

This resource class allows to load measurements into the DB as well as allowing
to re-calculate the regression coefficients in a different time range from the one
calculated at the service startup.

The function performed after receiving the request with the PUT method allows
the client to load a set of measurements within the "measure_table" table. The data
before being definitively entered into the DB are checked by the "check_function"
offered by the "ws_checking_system" module which has the task of analyzing the
correctness of the measurements received. If the answer is "True", the data are
loaded as they are in to the target table, if instead a correct data set is obtained as
an answer, at this point the result obtained is saved.

1 @token_required
2 de f put (current_user , s e l f) :
3 i n s e r t e d = 0

54

4.7 – Measures module

4 data = reques t . get_json ()
5 # check i f the re i s a j son data a v a i l a b l e in the r eques t
6 i f not data :
7 re turn make_response ({ " msg " : "Bad reque s t "} , s t a tu s .

HTTP_400_BAD_REQUEST)
8 # v a l i d a t i o n o f the j son data aga in s t the c o r r e c t j son schema
9 t ry :

10 jsonschema . v a l i d a t e (data , measure_schema)
11 except Va l idat ionError :
12 re turn make_response ({ " msg " : "Bad reque s t "} , s t a tu s .

HTTP_400_BAD_REQUEST)
13

14 r e s = check_funct ion (data [’ data_block ’])
15 i f r e s == True :
16 # add the data to the db
17 f o r rec_measure in data [’ data_block ’] :
18 measure = MeasureDB(sensorID=rec_measure [’ sensorID ’] ,

timestamp=rec_measure [’ timestamp ’] ,
19 data=rec_measure [’ data ’] , geoHash

=rec_measure [’ geoHash ’] ,
20 a l t i t u d e=rec_measure [’ a l t i t u d e ’])
21 db . s e s s i o n . add (measure)
22 i n s e r t e d += 1
23 db . s e s s i o n . commit ()
24 e l s e :
25 # add the data l i k e i t was returned from the check

func t i on to the db because they are damaged or wrong
26 f o r rec_measure in r e s [’ data_block ’] :
27 measure = MeasureDB(sensorID=rec_measure [’ sensorID ’] ,

timestamp=rec_measure [’ timestamp ’] ,
28 data=rec_measure [’ data ’] , geoHash

=rec_measure [’ geoHash ’] ,
29 a l t i t u d e=rec_measure [’ a l t i t u d e ’])
30 db . s e s s i o n . add (measure)
31 i n s e r t e d += 1
32 db . s e s s i o n . commit ()
33

34 re turn make_response ({ " msg " : "OK" , " i n s e r t e d " : i n s e r t e d } ,
s t a tu s .HTTP_200_OK)

Listing 4.25: put method

The post method, on the other hand, allows you to recalculate the regres-
sion coefficients for each sensor. The code inside is identical to that of the
"first_sensor_calibration" function with the difference that the time range is re-
ceived from the body of the POST request. The method is also accessible only to
users with the role of admin or system_admin.

55

Server implementation

Measure resource

This resource class, thanks to the method defined within it, allows to request
measurements from the DB.

The get function allows the client to request calibrated data relating to measure-
ments by querying the five_min_avg table. Based on how the request is structured,
it is possible to get all the data in a selected time range, or data only for a specific
board/sensor. In addition, there is also the possibility of obtaining the last two
hours of measurement starting from a date and time chosen for a selected board.

The request must be sent to the address that ends with "/measure/<pm_Kind>/<board/sensor_id>".
Thus it is possible to specify immediately what type of partelles and to which
board the required data must belong. Through the use of specific headers it is
possible to specify the type of filtering of the measures. The "board" header allows
the client to specify whether filtering should be performed on the board_id entered
in the address, the "filter" header specifies the same action on the sensor_id. The
"last-two" headers together with the "from" headers allow the client to specify that
the request concerns the last two hours of measurements starting from the time
contained in the "from" attribute.

The get method, after checking the semantic correctness of the request, initializes
a data structure capable of containing the measurements requested by the client.

1 queried_data = pd . DataFrame ()
2

3 # c r e a t e index f o r d e s i r e d date range (hour f requency)
4 d t i = pd . date_range (s t a r t=s ta r t , end=end , f r e q =’5min ’)
5

6 # c r e a t e data frame with date and hour and minute
7 queried_data [’ date ’] = pd . S e r i e s (d t i . date)
8 queried_data [’ hour ’] = pd . S e r i e s (d t i . hour)
9 queried_data [’ minute ’] = pd . S e r i e s (d t i . minute)

10 queried_data . date = pd . to_datetime (queried_data . date)

Listing 4.26: data structure initialization

At this point, for each existing board, the data regarding measurements, tem-
perature and humidity are requested from the DB.

1 # load pmKind
2 f o r s in x . board_l i s t [i] [pm] :
3 # check i f f i l t e r i n g on senso r and i f i t i s the s e l e c t e d one
4 i f do_any_f i l ter == ’ True ’ and f i l ter_on_board == ’ False ’ and not

s t r (s) == bs_id :
5 cont inue
6

7 one_taken = True
8

9 s_name = ’ s ’ + s t r (s)

56

4.7 – Measures module

10

11 i f last_two == ’ True ’ :
12 mysql_stm = "SELECT date , hour , minute , va lue FROM

WEATHER_STATION.FIVE_MIN_AVG WHERE date = ’ " + \ s t a r t + " ’ AND
hour >= ’ " + hour + " ’ AND sensorID = " + \ s t r (s) + " ; "

13 e l s e :
14 mysql_stm = "SELECT date , hour , minute , va lue FROM

WEATHER_STATION.FIVE_MIN_AVG WHERE date >= ’ " + \ s t a r t + " ’ AND
date <= ’ " + end + " ’ AND sensorID = " + \ s t r (s) + " ; "

15

16 t ry :
17 pr in t (" \ t − g e t t i n g data f o r s enso r " + s t r (s))
18 cur so r . execute (mysql_stm)
19 r e co rd s = cur so r . f e t c h a l l ()
20 except :
21 pr in t (" Unable to get data from DB")
22 re turn
23

24 hdf = pd . DataFrame ()
25 hdf [’ date ’] = pd . S e r i e s ((pd . to_datetime (r [0]) f o r r in

r e co rd s))
26 hdf [’ hour ’] = pd . S e r i e s (r [1] f o r r in r e co rd s)
27 hdf [’ minute ’] = pd . S e r i e s (r [2] f o r r in r e co rd s)
28 hdf [s_name] = pd . S e r i e s (r [3] f o r r in r e co rd s)
29 queried_data = pd . merge (queried_data , hdf , l e f t_on =[
30 ’ date ’ , ’ hour ’ , ’ minute ’] , r ight_on =[’ date ’ , ’ hour ’ , ’

minute ’] , how="outer ")
31

32 # i f i have taken some data and i f i l t e r on s e n so r s break the
f o r because i a l r eady have the data

33 i f do_any_f i l ter == ’ True ’ and f i l ter_on_board == ’ False ’ :
34 break

Listing 4.27: loading pmKind data from the DB
The loading of temperature and humidity data is made in the same way as seen for
the pmKind measures.

Once all the data has been loaded, the calibration process begins. For each
measurement requested by the client, the “apply_calibtation” function is performed.

1 f o r i in range (l en (x . board_l i s t)) :
2 i f do_any_f i l ter == ’ True ’ and f i l ter_on_board == ’ True ’ and not

s t r (x . board_l i s t [i] [’ board_id ’]) == bs_id :
3 cont inue
4

5 f o r s in x . board_l i s t [i] [pm] :
6 i f do_any_f i l ter == ’ True ’ and f i l ter_on_board == ’ False ’ and

not s t r (s) == bs_id :
7 cont inue
8

57

Server implementation

9 s_name = ’ s ’ + s t r (s)
10 s enso r = x . s e n so r s [s_name]
11 t_name = ’ s ’ + \
12 s t r (x . board_l i s t [s enso r . get_b_id ()] [’ temp ’] [0])
13 h_name = ’ s ’ + s t r (x . board_l i s t [s enso r . get_b_id ()] [’ rh ’] [0])
14 # a_name = ’ s ’ + s t r (x . a rpa_ l i s t [0] [json_data [’ pmKind ’]] [0])
15

16 data = pd . DataFrame ()
17 data [’ date ’] = queried_data [’ date ’]
18 data [’ hour ’] = queried_data [’ hour ’]
19 data [’ minute ’] = queried_data [’ minute ’]
20 data [’ sens ’] = queried_data [s_name]
21 data [’ temp ’] = queried_data [t_name]
22 data [’ rh ’] = queried_data [h_name]
23 # data [’ arpa ’] = queried_data [a_name]
24

25 i f s en so r . i s_ca l () :
26 data [’ ca l ’] = app ly_ca l ib ra t i on (s_name , CalType . l r th ,

data)
27 s_name_cal = s_name + ’ _cal ’
28 data = data . rename (index=str , columns={’ sens ’ : s_name , ’

ca l ’ : s_name_cal })
29 queried_data = queried_data . merge (data [[’ date ’ , ’ hour ’ , ’

minute ’ , s_name_cal]] ,
30 l e f t_on =[’ date ’ , ’ hour

’ , ’ minute ’] ,
31 right_on =[’ date ’ , ’ hour

’ , ’ minute ’] ,
32 how=" l e f t ")
33 e l s e : # senso r i s not c a l i b r a t e d
34 pr in t (’ Sensor not ca l i b r a t ed ’ + s t r (s enso r . get_s_id ()))

Listing 4.28: data calibration

At this point the data is converted to JSON format and sent as a response to
the client.

1 queried_data [’ date ’] = queried_data [’ date ’] . dt . s t r f t i m e (’%Y−%m−%d ’)
2 returnData = queried_data . to_json (o r i e n t =’ records ’)
3 re turn make_response (returnData , s t a tu s .HTTP_200_OK)

Listing 4.29: returning data

Live resource

This resource class has an internal get method that can return data containing the
most recent measurements for each sensor.

Once the semantic correctness of the request has been verified, a for loop cycles
through all the existing boards and sensors, querying the DB to obtain the most

58

4.7 – Measures module

recent measurement available for each of them. Immediately after the request for
the data, these are calibrated and added to a data structure which at the end of
the cycle is converted into JSON format and sent as a response to the client.

1 # used to get the l a s t a v a i l a b l e data f o r each sensor , i t i s the l i v e
d i sp l ay data endpoint

2 @token_required
3 de f get (current_user , s e l f , pmKind) :
4 g l o b a l x
5 # check i f the s e n s o r s c a l i b r a t i o n i s a l r eady done almost one

time
6 i f not s en s_ca l ib ra t ed :
7 re turn make_response ({ " msg " : " C o n f l i c t : Sensors not

c a l i b r a t e d yet "} , s t a tu s .HTTP_409_CONFLICT)
8

9 # check i f the pmKind i s a r ea sonab l e va lue
10 i f not pmKind == "pm10" and not pmKind == "pm25 " :
11 re turn make_response ({ " msg " : "Bad reque s t "} , s t a tu s .

HTTP_400_BAD_REQUEST)
12

13 # here s t a r t s the code f o r data c a l i b r a t i o n
14

15 # c r e a t e a connect ion cur so r f o r quer ing the data from the db
16 connect ion = db . eng ine . raw_connection ()
17 cur so r = connect ion . cu r so r (bu f f e r ed=True)
18

19 # obj e c t to conta in a l l the data that w i l l be read from the db
and transformed to JSON

20 r e s u l t = { ’ boards ’ : [] }
21

22 # loads the data from the db in order to perform c a l i b r a t i o n on
them

23 f o r i in range (l en (x . board_l i s t)) :
24 board = { ’ id ’ : i , ’ s ensor s ’ : [] }
25 # load pmKind
26 f o r s in x . board_l i s t [i] [pmKind] :
27 s s s = {}
28 s_name = ’ s ’ + s t r (s)
29 mysql_stm = "SELECT ∗ FROM WEATHER_STATION.FIVE_MIN_AVG

WHERE id = (SELECT MAX(id) FROM WEATHER_STATION.FIVE_MIN_AVG WHERE
sensorID = " + \

30 s t r (s) + ") ; "
31 t ry :
32 pr in t (" \ t − g e t t i n g data f o r s enso r " + s t r (s))
33 cur so r . execute (mysql_stm)
34 r e co rd s = cur so r . f e t c h a l l ()
35 except :
36 pr in t (" Unable to get data from DB")
37 re turn

59

Server implementation

38

39 # save the quer i ed data in to a dataframe
40 hdf = pd . DataFrame ()
41 hdf [’ sens_id ’] = pd . S e r i e s (r [4] f o r r in r e co rd s)
42 hdf [’ date ’] = pd . S e r i e s (r [1] f o r r in r e co rd s)
43 hdf [’ hour ’] = pd . S e r i e s (r [2] f o r r in r e co rd s)
44 hdf [’ minute ’] = pd . S e r i e s (r [3] f o r r in r e co rd s)
45 hdf [’ sens ’] = pd . S e r i e s (r [5] f o r r in r e co rd s)
46 hdf [’ max ’] = pd . S e r i e s (r [6] f o r r in r e co rd s)
47 hdf [’ min ’] = pd . S e r i e s (r [7] f o r r in r e co rd s)
48 hdf [’ std ’] = pd . S e r i e s (r [8] f o r r in r e co rd s)
49 hdf [’ geoHash ’] = pd . S e r i e s (r [9] f o r r in r e co rd s)
50

51 # i f the re i s a r e s u l t i query the db a l s o f o r the
temperature and humidity , i need them f o r c a l i b r a t i o n

52 i f not hdf . empty :
53 s enso r = x . s e n so r s [s_name]
54

55 # query the s en s o r s temperature
56 mysql_stm = "SELECT ∗ FROM WEATHER_STATION.

FIVE_MIN_AVG WHERE date = ’ " + \
57 s t r (hdf . i l o c [0] [’ date ’]) + " ’ AND hour =

’ " + s t r (
58 hdf . i l o c [0] [’ hour ’]) + " ’ AND minute = ’ " + s t r (

hdf . i l o c [0] [’ minute ’]) + " ’ AND sensorID = " + \
59 s t r (x . board_l i s t [s enso r . get_b_id ()] [’ temp

’] [0]) + " ; "
60 t ry :
61 pr in t (" \ t − g e t t i n g data f o r s enso r " + s t r (s))
62 cur so r . execute (mysql_stm)
63 r e co rd s = cur so r . f e t c h a l l ()
64 except :
65 pr in t (" Unable to get data from DB")
66 re turn
67

68 # add the temperature to the data frame
69 hdf [’ temp ’] = pd . S e r i e s (r [5] f o r r in r e co rd s)
70

71 # query the s en s o r s humidity
72 mysql_stm = "SELECT ∗ FROM WEATHER_STATION.

FIVE_MIN_AVG WHERE date = ’ " + s t r (
73 hdf . i l o c [0] [’ date ’]) + " ’ AND hour = ’ " + \
74 s t r (hdf . i l o c [0] [’ hour ’]) + " ’ AND minute

= ’ " + s t r (
75 hdf . i l o c [0] [’ minute ’]) + " ’ AND sensorID = " + \
76 s t r (x . board_l i s t [s enso r . get_b_id ()] [’ rh

’] [0]) + " ; "
77

78 t ry :

60

4.7 – Measures module

79 pr in t (" \ t − g e t t i n g data f o r s enso r " + s t r (s))
80 cur so r . execute (mysql_stm)
81 r e co rd s = cur so r . f e t c h a l l ()
82 except :
83 pr in t (" Unable to get data from DB")
84 re turn
85

86 # add the humidity to the data frame
87 hdf [’ rh ’] = pd . S e r i e s (r [5] f o r r in r e co rd s)
88

89 # i f the s e l e c t e d senso r has a l r eady the c a l i b r a t i o n
c o e f f i c i e n t s c a l i b r a t e i apply the c a l i b r a t i o n

90 i f s en so r . i s_ca l () :
91 hdf [’ ca l ’] = app ly_ca l ib ra t i on (s_name , CalType .

l r th , hdf)
92 e l s e : # senso r i s not c a l i b r a t e d
93 pr in t (’ Sensor not ca l i b r a t ed ’ + s t r (s enso r .

get_s_id ()))
94

95 # save the data frame in to an ob j e c t
96 s s s [’ id ’] = s t r (hdf . i l o c [0] [’ sens_id ’])
97 s s s [’ date ’] = s t r (hdf . i l o c [0] [’ date ’])
98 s s s [’ hour ’] = s t r (hdf . i l o c [0] [’ hour ’])
99 s s s [’ minute ’] = s t r (hdf . i l o c [0] [’ minute ’])

100 s s s [’ value ’] = s t r (hdf . i l o c [0] [’ sens ’])
101 s s s [’ max ’] = s t r (hdf . i l o c [0] [’ max ’])
102 s s s [’ min ’] = s t r (hdf . i l o c [0] [’ min ’])
103 s s s [’ std ’] = s t r (hdf . i l o c [0] [’ std ’])
104

105 # add the senso r ob j e c t to a board ob j e c t
106 board [’ s ensor s ’] . append (s s s)
107 board [’ temp ’] = s t r (hdf . i l o c [0] [’ temp ’])
108 board [’ rh ’] = s t r (hdf . i l o c [0] [’ rh ’])
109 l at_long = pgh . decode (s t r (hdf . i l o c [0] [’ geoHash ’]))
110 board [’ l a t ’] = s t r (lat_long [0])
111 board [’ long ’] = s t r (lat_long [1])
112 # add the board to the r e s u l t ob j e c t
113 r e s u l t [’ boards ’] . append (board)
114

115 # convert the r e s u l t i n to j son
116 result_JSON = json . dumps(r e s u l t)
117

118 # response with j son body
119 re turn make_response (result_JSON , s t a tu s .HTTP_200_OK)

Listing 4.30: get method of the Live resource

61

Server implementation

Board resource

This resource class through the only get method inside it is able to return to the
client the list of all the boards available within the DB.

1 c l a s s Board (Resource) :
2 @token_required
3 de f get (current_user , s e l f) :
4 boards = BoardDB . query . w i th_ent i t i e s (BoardDB . boardID) . a l l ()
5 r e s u l t = []
6

7 f o r board in boards :
8 r e s u l t . append (board . boardID)
9

10 # convert the r e s u l t i n to j son
11 result_JSON = json . dumps(r e s u l t)
12

13 pr in t (result_JSON)
14

15 # response with j son body
16 re turn make_response (result_JSON , s t a tu s .HTTP_200_OK)

Listing 4.31: Board resource class

4.7.2 Models
This source file contains the definition of two classes that represent the "mea-
sure_table" and "board_table" tables within the DB. Thanks to their use it is
possible to interact with the database by querying and modifying the corresponding
tables thanks to the application of the "object-relational mapping" offered by the
"SQLAlchemy" library.

1 c l a s s MeasureDB(db . Model) :
2 __tablename__ = ’ measure_table ’
3 measureID = db . Column(db . BigInteger , primary_key=True)
4 sensorID = db . Column(db . Integer , n u l l a b l e=False)
5 timestamp = db . Column(db . Integer , n u l l a b l e=False)
6 data = db . Column(db . Float , n u l l a b l e=False)
7 geoHash = db . Column(db . Integer , n u l l a b l e=False)
8 a l t i t u d e = db . Column(db . Float , n u l l a b l e=True)
9

10

11 c l a s s BoardDB(db . Model) :
12 __tablename__ = ’ board_table ’
13 boardID = db . Column(db . BigInteger , primary_key=True)
14 vendor = db . Column(db . S t r ing (60) , n u l l a b l e=False)
15 model = db . Column(db . S t r ing (60) , n u l l a b l e=False)
16 ser ia lNumber = db . Column(db . S t r ing (60) , n u l l a b l e=False)

62

4.7 – Measures module

Listing 4.32: models.py file

4.7.3 Schemas
Within this file it is specified how the data sent to the server must be structured
within the body of the http requests directed to this module. Below it can be seen
an example of such structure.

1 post_measure_schema = {
2 ’ r equ i red ’ : [’ s t a r t ’ , ’ end ’] ,
3 ’ p r ope r t i e s ’ : {
4 ’ s t a r t ’ : { ’ type ’ : ’ s t r i ng ’ , ’ pattern ’ : "^(2 [0 −9]{3})

− (0 [1 −9] |1 [012]) − (0 [1 − 9] | [1 2] [0 − 9] | 3 [0 1]) $ "} ,
5 ’ end ’ : { ’ type ’ : ’ s t r i ng ’ , ’ pattern ’ : "^(2 [0 −9]{3})

− (0 [1 −9] |1 [012]) − (0 [1 − 9] | [1 2] [0 − 9] | 3 [0 1]) $ "}
6 }
7 }

Listing 4.33: schema example

4.7.4 Utils
In this source file, the functions for entering data into the tables containing the
averages of the measurements have been specified. These functions run every 5
minutes or every hour, respectively, depending on which table they are entering
data into. Their use has been declared in the project initialization source file and
both are started within separate threads.

In the following, only the “insert_data_five” function is described as the work
of the second function is the same by averaging over a wider time range.

The "insert_data_five" function after establishing the connection with the DB
starts a for loop on each sensor existing within the system.

In this cycle, the code first establishes in which time range the average of the
measurements should be performed. The start date is that of the last record for the
sensor analyzed within the five_min_avg table while the end date is the multiple
of 5 minutes closest to the date of execution of this function.

1 # get the l a s t date and time i n s e r t e d in the five_min_avg tab l e
2 statement = "SELECT ∗ FROM five_min_avg WHERE sensorID = : y ORDER BY

id DESC LIMIT 1"
3 query = conn . execute (t ex t (statement) , y=s)
4 # save the r e s u l t i n to an ob j e c t which at index 0 conta in s the date ,

at 1 the hour and at 2 the minutes
5 r e s u l t = query . f i r s t ()

63

Server implementation

6

7 # c r e a t i n g the start_date value
8 # check i f the datet ime i s v a l i d because i f the t ab l e i s empty there

w i l l be not be a v a l i d va lue o f s tart_date
9 # i n s e r t a d e f a u l t one

10 i f not r e s u l t :
11 # start_date = pd . to_datetime (’2019−06−01 0 0 : 0 0 : 0 0 ’) . timestamp ()
12 # i t w i l l take too much time , i t i s b e t t e r to run the s c r i p t

manually which manually s p e c i f i e d pe r i od s o f time
13 pr in t (" There i s no data in the five_min_avg tab l e so i t i s b e t t e r

to run the s c r i p t manually f o r s enso r : " + s)
14 cont inue
15 e l s e :
16 s t a r t = datet ime . datet ime . s t rpt ime (s t r (r e s u l t [1]) + ’ ’ + s t r (

r e s u l t [2]) + ’ : ’ + s t r (r e s u l t [3]) + ’ : 0 0 ’ ,
17 "%Y−%m−%d %H:%M:%S ")
18 s tart_date = s t a r t + datet ime . t imede l ta (minutes=5)
19 s tart_date = start_date . timestamp ()
20

21 # c r e a t i n g the end_date value
22 # take the cur rent time
23 t = datet ime . datet ime . now ()
24 # check i f the time i s mu l t ip l e o f 5 min
25 m = t . minute
26 l e f t = 5 − (m % 5)
27 # i f i s not round the time to the prev ious e n t i r e f i v e min time
28 i f l e f t != 5 :
29 end = t − datet ime . t imede l ta (minutes=(5 − l e f t))
30 e l s e :
31 end = t
32

33 # c r e a t e the end datet ime f o r query the database
34 # the time must be l i k e : 14 : 54 : 59
35 end_date = (end − datet ime . t imede l ta (minutes=1)) . s t r f t i m e ("%Y−%m−%d %

H:%M: 5 9 ")
36 end_date = pd . to_datetime (s t r (end_date)) . timestamp ()

Listing 4.34: time range calculation

At this point the data is requested from the measure_table table in the specified
time range calculated previously.

1 # query that takes a l l the data from measure_table in the s e l e c t e d
date and time

2 sqlQuery = ’ ’ ’SELECT ∗
3 FROM measure_table
4 WHERE timestamp >= %s
5 AND timestamp <= %s
6 AND sensorID = %s
7 ’ ’ ’

64

4.7 – Measures module

8

9 # load the data from the db to a data frame
10 df = pd . read_sql (sqlQuery , con=db_connection , params=(start_date ,

end_date , s))

Listing 4.35: quering measure_table

Now it is checked whether the number of measurements obtained equals the
number of seconds in that time range to know if there is enough data to perform
the average.

1 # check how many seconds I have in the i n t e r v a l so I know how many
va lue s I should have

2 d i f f = end_date − s tart_date + 1
3 # j u s t a check to know i f I have enough data to make the

five_min_average , i f not sk ip to the next one
4 i f d f . s i z e < d i f f :
5 cont inue

Listing 4.36: checking data

After the check, the data is averaged and the maximum, minimum and standard
deviation values are calculated.

1 # convert timestamp in to datet ime
2 df [’ timestamp ’] = pd . to_datetime (df [’ timestamp ’] , un i t =’s ’)
3 # group the data by sensorID and every 5 minutes
4 grouped = df . groupby ([pd . Grouper (key=’ sensorID ’) , pd . Grouper (key=’

geoHash ’) , pd . Grouper (key=’ a l t i t u d e ’) ,
5 pd . Grouper (key=’timestamp ’ , f r e q =’300s ’)]) [’

data ’] . agg ({ ’mean ’ , ’max ’ , ’min ’ , ’ std ’ })

Listing 4.37: execute the average value

At this point the data is inserted into the five_min_avg table.
1 # s p l i t the mult i index in to separa te columns
2 grouped . reset_index (i n p l a c e=True)
3 # s p l i t the timestamp in to separa te columns
4 grouped [’ date ’] = grouped [’ timestamp ’] . dt . s t r f t i m e (’%Y−%m−%d ’)
5 grouped [’ hour ’] = grouped [’ timestamp ’] . dt . s t r f t i m e (’%H’)
6 grouped [’ minute ’] = grouped [’ timestamp ’] . dt . s t r f t i m e (’%M’)
7 # d e l e t e the timestamp column
8 de l grouped [’ timestamp ’]
9

10 # reorde r the columns o f the data frame l i k e in the db
11 grouped = grouped [[’ date ’ , ’ hour ’ , ’ minute ’ , ’ sensorID ’ , ’mean ’ , ’max

’ , ’min ’ , ’ std ’ , ’ geoHash ’ , ’ a l t i t u d e ’]]
12 # rename a column l i k e in the db
13 grouped . rename (columns={’mean ’ : ’ value ’ } , i n p l a c e=True)
14

65

Server implementation

15 # round the r e s u l t to two dec imals
16 grouped [’ value ’] = grouped [’ value ’] . round (dec imals =2)
17 grouped [’ std ’] = grouped [’ std ’] . round (dec imals =2)
18

19 # add a l l the data from the data frame to a five_min_avg tab l e in the
database

20 grouped . to_sql (name=’five_min_avg ’ , con=db_connection , i f _ e x i s t s =’
append ’ , index=False)

Listing 4.38: inserting data into five_min_avg table

4.8 ws_checking_system module
This module was inserted within the project to check the measurements received
from the boards before inserting them in the DB. The implementation of this
module was not developed as it was left to future extensions of the project.

4.9 Other project folders
Within the web service project, two folders with the name of "five_min_avg and
hour_avg are included. Each of these folders contains all the material necessary for
the creation of the two tables that keep the data concerning the averages within
the DB.

The files with the “.sql” extension are used to create the tables inside the
database, while the files with the “.py” extension are the scripts that perform the
same work as the two asynchronous functions for calculating the average.

The use of these files is necessary for the first filling of the tables containing the
averages as the asynchronous functions are not able to do their job when there is
no data within the tables. This is because the calculation of the start date of the
performing avegare range is based on the already existing data. For this reason the
scripts allow the system administrator to enter the start and end date manually,
thus initializing the two tables with the measurements.

66

Chapter 5

Mobile application
implementation

The mobile application was developed within the Android Studio integrated devel-
opment environment using the Java programming language. The structure of the
application is divided into different source files depending on the function performed
by the code. Among the various source files it can be recognized a file called “An-
droidManifest.xml” whose task is organizational of the project. There is also a set
of files whose name ends in "Activity" within the "it.polito.politopollutionsystem"
package[fig. 5.1]. These files contain the Java code and perform the functionalities
offered by the application. In the project contained in Android Studio it can be
also noted a folder with the name “res”[fig. 5.2]. This folder represents all the
static content of the application and is further divided into more subfolders:

• drawable: inside we find the images and icons present in the application

• font: represents the special fonts used within the project

• layout: here the source files containing the graphics of each activity in the
project are specified

• menu: the folder contains the files that describe the menus in the application

• values: here the files are contained to describe eg. the colors or strings used
for the presentation of the application views.

67

Mobile application implementation

Figure 5.1: Android Manifest and Activities

Figure 5.2: Res folder organization

5.1 Android manifest
Within this source file, with an xml extension, the organization of the entire
application project is described. All its components and how they interact are
listed and also the permissions that the application needs for proper operation.

The permissions are added through the use of the "user-permission" tag. The
code below represents the permissions needed by this application along with how
they are added to the manifest file.

1 <uses−permis s ion android : name="android . permis s ion .INTERNET" />
2 <uses−permis s ion android : name="android . permis s ion .

ACCESS_NETWORK_STATE" />
3 <uses−permis s ion android : name="android . permis s ion .

WRITE_EXTERNAL_STORAGE" />
4 <uses−permis s ion android : name="android . permis s ion .

ACCESS_FINE_LOCATION"/>

Listing 5.1: user permissions

The next piece of code represents another significant snippet of the Android-
Manifest file.

68

5.2 – Activities

1 <a p p l i c a t i o n
2 android : allowBackup=" true "
3 android : i con ="@drawable/ earth200 "
4 android : l a b e l ="@str ing /app_name"
5 android : roundIcon="@mipmap/ ic_launcher_round "
6 android : supportsRt l=" t rue "
7 android : u s e s C l e a r t e x t T r a f f i c =" t rue "
8 android : theme="@style /AppTheme"
9 t o o l s : targetApi="m">

10 <a c t i v i t y
11 android : name=". MainActivity "
12 android : l a b e l ="@str ing /app_name"
13 android : s c r e enOr i en ta t i on =" p o r t r a i t "
14 android : theme="@style /AppTheme . NoActionBar "
15 t o o l s : i gno r e =" LockedOr ientat ionAct iv i ty ">
16 <intent − f i l t e r >
17 <act i on android : name="android . i n t e n t . a c t i on .MAIN" />
18

19 <category android : name="android . i n t e n t . category .
LAUNCHER" />

20 </intent − f i l t e r >
21 </a c t i v i t y >
22

23 <a c t i v i t y
24 android : name=". user_management . Log inAct iv i ty "
25 android : s c r e enOr i en ta t i on =" p o r t r a i t "
26 android : parentActivityName =". MainActivity "
27 t o o l s : i gno r e =" LockedOr ientat ionAct iv i ty " />

Listing 5.2: application tag

As can be seen from the code, the file also contain an "application" tag which
has the task of representing the organization of the entire application. Via the
properties of this tag, e.g. the icon, the title or the main theme can be changed.
Insite it, all the elements making up the application are inserted, as described
in chapter 2. This project contains only elements of the Activity type inserted
through the tag with the same name. It can be seen that for each "activity" tag
the name and its parent are specified but also the orientation on the screen of that
view.

5.2 Activities
5.2.1 MainActivity
This activity is the first visible immediately after starting the application. Its
general organization is visible in the code below.

69

Mobile application implementation

1 pub l i c c l a s s MainActivity extends AppCompatActivity implements
NavigationView . OnNavigat ionItemSe lectedLis tener {

2 pr i va t e RequestQueue queue ;
3 pr i va t e S t r ing u r l ;
4 pr i va t e SharedPre f e rences sharedPre f ;
5 pr i va t e TextView mailHeader ;
6 pr i va t e NavigationView navigat ionView ;
7 pr i va t e View header ;
8

9 @Override
10 protec ted void onCreate (Bundle savedIns tanceState) { . . . }
11

12 @Override
13 protec ted void onResume () { . . . }
14

15 pub l i c void l og In (View view) { . . . }
16

17 pub l i c void logout (View view) throws JSONException { . . . }
18

19 pub l i c void gene ra lH i s t o ry (View view) { . . . }
20

21 pub l i c void p o l l u t i o n (View view) { . . . }
22

23 @Override
24 pub l i c boolean onNavigat ionItemSe lected (@NonNull MenuItem

menuItem) { . . . }
25 }

Listing 5.3: MainActivity organization

The MainActivity class to become an actual Activity needs to extend the
AppCompatActivity class. Thanks to this procedure it is possible to overwrite
e.g. the onCreate() method that allows the application to execute the code while
creating the activity itself. This class also implements a specific interface for
managing clicks on the side menu items that can be used in this view. This class
also defines some private properties that will be explained during their use.

onCreate()

This method has the task of creating the activity. First of all it inserts the layout
inside it using the "setContentView()" method.

1 setContentView (R. layout . act iv ity_main) ;

Listing 5.4: layout inflation

At this point the method switches to the initialization of the toolbar and the
side menu, whose code is omitted as it is not interesting enough for this description.

70

5.2 – Activities

The initialization of the shared preferences takes place at this instant of the
code. This object allows the program to access a memory area reserved for the
application in which properties can be saved. This properties contains in fact, the
token received during the login phase. In this way it remains easily accessible and
is not lost when the application is closed.

1 sharedPre f = getAppl i cat ionContext () . g e tSharedPre f e r ence s ("
sharedPre f s " , Context .MODE_PRIVATE) ;

Listing 5.5: shared preferences initialization

The last task of this method is to check if the user has already logged in, verifying
the presence of the token. If the token is present, the logout button is displayed
and the current user is displayed in the side menu. Otherwise the login button
remains visible.

1 i f (sharedPre f . g e tS t r i ng (" token " , " ") . equa l s (" ")) {
2 f indViewById (R. id . btnLogout) . s e t V i s i b i l i t y (View .GONE) ;
3 f indViewById (R. id . btnLogIn) . s e t V i s i b i l i t y (View . VISIBLE) ;
4 mailHeader=header . findViewById (R. id . nav_email) ;
5 mailHeader . setText (" ") ;
6 } e l s e {
7 f indViewById (R. id . btnLogIn) . s e t V i s i b i l i t y (View .GONE) ;
8 f indViewById (R. id . btnLogout) . s e t V i s i b i l i t y (View . VISIBLE) ;
9 mailHeader=header . findViewById (R. id . nav_email) ;

10 mailHeader . setText (sharedPre f . g e tS t r i ng (" emai l " , " ")) ;
11 }

Listing 5.6: checking token

onResume()

This method is called each time when the current activity returns to the top of
the activity stack. This can happen when for eg. by opening the login activity we
decide to close it.

The only task of this method is to check in a manner similar to the onCreate()
method if there is a token representing a logged in user.

logIn()

The method is executed after pressing the Login button. Its only purpose is to
open the activity that allows the user to perform the application access procedure.

1 s t a r t A c t i v i t y (new Intent (th i s , Log inAct iv i ty . c l a s s)) ;

Listing 5.7: logIn method

71

Mobile application implementation

logout()

This method has the task of sending the request to logout from the web service, i.e.
invalidating the user’s token.

First of all, since this operation can take a few seconds, a loading indicator is
setted as visible.

1 f indViewById (R. id . loadData) . s e t V i s i b i l i t y (View . VISIBLE) ;

Listing 5.8: show loading status

A JSON object is prepared containing the data to be inserted in the body of
the request

1 JSONObject jsonBody = new JSONObject () ;
2 jsonBody . put (" emai l " , sharedPre f . g e tS t r i ng (" emai l " , " ")) ;
3 f i n a l S t r ing requestBody = jsonBody . t oS t r i ng () ;

Listing 5.9: JSON preparing

Two objects are also initialized, one representing the queue of requests to be
sent outside the application and the url to which these requests are directed.

1 queue = Vol ley . newRequestQueue (t h i s) ;
2 u r l =sharedPre f . g e tS t r i ng (" host " , " http :// l o c a l h o s t :5000/ ws ") +"/

logout " ;

Listing 5.10: objects initialization

At this point an object is created that represents the request sent to the web
service. The internal method onResponse() specifies the actions to be performed in
case the request receives a successful response. In this case, the token and email
values within the shared preferences are simply deleted. In the code it can also be
seen that there is a similar method in case of a failed request. In addition, three
other methods are overridden that allow the application to specify the header,
content-type and body of the request.

1 Str ingRequest s t r ingReques t = new Str ingRequest (Request . Method .
POST, ur l ,

2 new Response . L i s t ener <Str ing >() {
3 @Override
4 pub l i c void onResponse (S t r ing response) {
5 // r e s e t the emai l ant token in the shared

p r e f s .
6 SharedPre f e rences . Editor e d i t o r = sharedPre f .

e d i t () ;
7 e d i t o r . putStr ing (" token " , " ") ;
8 e d i t o r . putStr ing (" emai l " , " ") ;
9 e d i t o r . apply () ;

72

5.2 – Activities

10 f indViewById (R. id . loadData) . s e t V i s i b i l i t y (
View .GONE) ;

11 Toast . makeText (getAppl i cat ionContext () , "
Success " , Toast .LENGTH_LONG) . show () ;

12 f i n i s h () ;
13 s t a r t A c t i v i t y (g e t In t en t ()) ;
14 }
15 } , new Response . E r ro rL i s t ene r () {
16 @Override
17 pub l i c void onErrorResponse (Vol l eyError e r r o r) {
18 f indViewById (R. id . loadData) . s e t V i s i b i l i t y (View .GONE) ;
19 Toast . makeText (getAppl i cat ionContext () , " Problems " ,

Toast .LENGTH_LONG) . show () ;
20 }
21 }) {
22 @Override
23 pub l i c Map<Str ing , Str ing > getHeaders () throws

AuthFai lureError {
24 //add header params to the reque s t
25 Map<Str ing , Str ing > params = new HashMap<Str ing ,

Str ing >() ;
26 params . put (" x−access −token " , sharedPre f . g e tS t r i ng ("

token " , " ")) ;
27 re turn params ;
28 }
29

30 @Override
31 pub l i c S t r ing getBodyContentType () {
32 re turn " a p p l i c a t i o n / j son ; cha r s e t=utf −8";
33 }
34

35 @Override
36 pub l i c byte [] getBody () throws AuthFai lureError {
37 //add body to the r eque s t
38 t ry {
39 re turn requestBody == n u l l ? n u l l : requestBody .

getBytes (" utf −8") ;
40 } catch (UnsupportedEncodingException uee) {
41 VolleyLog . wtf (" Unsupported Encoding whi l e t ry ing

to get the bytes o f %s us ing %s " , requestBody , " utf −8") ;
42 re turn n u l l ;
43 }
44 }
45 } ;

Listing 5.11: resquest code

Finally, the code specifies that the request must be sent only once to the server
after which the request is added to the queue for sending.

73

Mobile application implementation

1 s t r ingReques t . s e tRet ryPo l i cy (new Defau l tRetryPo l i cy (
2 0 ,
3 Defau l tRetryPo l i cy .DEFAULT_MAX_RETRIES,
4 Defau l tRetryPo l i cy .DEFAULT_BACKOFF_MULT)) ;
5 queue . add (s t r ingReques t) ;

Listing 5.12: sending request

pollution()

This method is used to start the activity that presents real-time data on pollution.
During this procedure the “pm” parameter is passed to the child view, which
indicates the type of pollution particles that must be displayed. Before launching
the new activity, it is checked whether the user has already logged in.

1 i f (sharedPre f . g e tS t r i ng (" token " , " ") . equa l s (" ")) {// not logged
2 Toast . makeText (th i s , " Login f i r s t " , Toast .LENGTH_LONG) .

show () ;
3 } e l s e {
4 In tent i n t e n t = new Intent (th i s , P o l l u t i o n A c t i v i t y . c l a s s)

;
5 SharedPre f e rences . Editor e d i t o r = sharedPre f . e d i t () ;
6 e d i t o r . putStr ing ("pm" , "pm25 ") ;
7 e d i t o r . apply () ;
8 s t a r t A c t i v i t y (i n t e n t) ;
9 }

Listing 5.13: pollution method

generalHistory()

Its task is to launch the activity for viewing the general history of the measurements.
The procedure is similar to the previous point, without adding the "pm" parameter.

onNavigationItemSelected()

This method allows the application to manage the click on the options in the side
menu. The code inside it, has the only task of starting the activities corresponding
to the relative items in the menu.

1 pub l i c boolean onNavigat ionItemSe lected (@NonNull MenuItem
menuItem) {

2 i n t id = menuItem . getItemId () ;
3

4 i f (id == R. id . p r o f i l e) {
5 i f (sharedPre f . g e tS t r i ng (" token " , " ") . equa l s (" ")) {

74

5.2 – Activities

6 Toast . makeText (th i s , " Login f i r s t " , Toast .LENGTH_LONG
) . show () ;

7 } e l s e {
8 s t a r t A c t i v i t y (new Intent (th i s , ShowPro f i l eAct iv i ty .

c l a s s)) ;
9 }

10 } e l s e i f (id == R. id . t o o l s) {
11 s t a r t A c t i v i t y (new Intent (th i s , Too l sAct iv i ty . c l a s s)) ;
12 }
13

14 DrawerLayout drawer = findViewById (R. id . drawer_layout) ;
15 drawer . c loseDrawer (GravityCompat .START) ;
16 re turn true ;
17 }

Listing 5.14: menu managing code

5.2.2 LoginActivity
This activity has the task of allowing the user to log in. Its main methods are
visible below.

1 pub l i c c l a s s Log inAct iv i ty extends AppCompatActivity{
2 pr i va t e SharedPre f e rences sharedPre f ;
3 pr i va t e RequestQueue queue ;
4 pr i va t e S t r ing u r l ;
5 pr i va t e S t r ing emai l ;
6 pr i va t e S t r ing password ;
7

8 pr i va t e Pattern pattern ;
9 pr i va t e Matcher m;

10

11 pr i va t e EditText edtEmail ;
12 pr i va t e EditText edtPass ;
13

14 @Override
15 protec ted void onCreate (Bundle savedIns tanceState) { . . . }
16

17 pub l i c void r e g i s t e r (View view) { . . . }
18

19 pub l i c void l o g i n (View view) throws JSONException { . . . }
20

21 pub l i c void r ecove r (View view) throws JSONException { . . . }
22 }

Listing 5.15: Login activity organization

75

Mobile application implementation

onCreate()

The method only performs the function of adding the layout to the activity and
initializes the fields for entering data by the user.

1 @Override
2 protec ted void onCreate (Bundle savedIns tanceState) {
3 super . onCreate (savedIns tanceSta te) ;
4 setContentView (R. layout . ac t iv i ty_s ign_in) ;
5

6 sharedPre f = getAppl i cat ionContext () . g e tSharedPre f e r ence s ("
sharedPre f s " , Context .MODE_PRIVATE) ;

7 edtEmail = (EditText) findViewById (R. id . s ignInEmai l) ;
8 edtPass = (EditText) findViewById (R. id . signInPwd) ;
9 }

Listing 5.16: onCreate method

register()

Its task is to initiate the user registration activity. The procedure is similar to the
start-ups seen previously. It is triggered by clicking on the string "Not an User?".

login()

The method is triggered after clicking on the login button. Before executing the
code that sends the request to the web service, the correctness of the data entered
by the user is analyzed. In case of problems, the procedure ends immediately.

1 Boolean e r r o r=Boolean .FALSE;
2

3 emai l = edtEmail . getText () . t oS t r i ng () ;
4 password = edtPass . getText () . t oS t r i ng () ;
5

6 // checks i s some f i e l d s are not empty
7 i f (emai l . isEmpty ()) {
8 edtEmail . s e tEr ro r (" Miss ing value ") ;
9 e r r o r = Boolean .TRUE;

10 }
11

12 i f (password . isEmpty ()) {
13 edtPass . s e tEr ro r (" Miss ing value ") ;
14 e r r o r = Boolean .TRUE;
15 }
16

17 // check i f the re i s a v a l i d emai l
18 pattern = Pattern . compi le (" ^ ([a−zA−Z0−9_\\ −.]+)@([a−zA−Z0−9_

\\ −.]+) \ \ . ([a−zA−Z]{2 , 5}) $ ") ;

76

5.2 – Activities

19 m = pattern . matcher (edtEmail . getText () . t oS t r i ng ()) ;
20 i f (! (m. matches ())) {
21 edtEmail . s e tEr ro r (" I n s e r t a v a l i d emai l ") ;
22 e r r o r = Boolean .TRUE;
23 }
24

25 i f (e r r o r) {
26 re turn ;
27 }

Listing 5.17: inserted value cheking code

At this point, the procedure for preparing and sending the request to the server
is similar to that seen for the logout procedure in the MainActivity. The difference
lies in the code within the onResponse() method which, if successful, has the task
of saving the token received together with the user’s email address in the shared
preferences object.

1 JSONObject j son = new JSONObject (re sponse) ;
2 SharedPre f e rences sharedPre f = getAppl i cat ionContext () .

g e tSharedPre f e r ence s (" sharedPre f s " , Context .MODE_PRIVATE) ;
3 SharedPre f e rences . Editor e d i t o r = sharedPre f . e d i t () ;
4 e d i t o r . putStr ing (" token " , j son . g e tS t r i ng (" token ")) ;
5 e d i t o r . putStr ing (" emai l " , emai l) ;
6 e d i t o r . apply () ;
7

8 f indViewById (R. id . loadData) . s e t V i s i b i l i t y (View .GONE) ;
9

10 Toast . makeText (getAppl i cat ionContext () , " Success " , Toast .
LENGTH_LONG) . show () ;

11 f i n i s h () ;

Listing 5.18: login response code

recover()

This last method is used to send the password recovery request to the web service.
The procedure is similar to the requests seen above. The function takes the value of
the email from the edit text present in this Activity, also checking the correctness
of the data entered.

5.2.3 RegisterActivity
This activity allows the registration of new users in the system. Inside, only two
methods are implemented: onCreate() and register().

77

Mobile application implementation

onCreate()

In this method, fields are mainly initialized for the user to enter data together with
the addition of the layout to the current activity. The code is identical to the code
seen in the LoginActivity’s onCreate() method.

register()

The code of this function is executed after clicking on the “Register” button. The
method initially checks the correctness of the data entered within the various edit
text present in the Activity. The procedure for sending the request to the web
service is similar to those seen in the previous sections and does not introduce
anything new. For this reason, no bits of source code are displayed in its description.

5.2.4 PollutionActivity
This activity has the task of displaying the most updated data relating to environ-
mental pollution to the user. Later you can see its structure.

1 pub l i c c l a s s P o l l u t i o n A c t i v i t y extends AppCompatActivity {
2 pr i va t e f i n a l i n t REQUEST_PERMISSIONS_REQUEST_CODE = 1 ;
3 pr i va t e MapView map = n u l l ;
4 pr i va t e FusedLocat ionProv iderCl i ent fu s edLoca t i onC l i en t ;
5 pr i va t e OverlayItem i ;
6 pr i va t e Button btnpm25 ;
7 pr i va t e Button btnpm10 ;
8

9 pr i va t e RequestQueue queue ;
10 pr i va t e S t r ing u r l ;
11 pr i va t e SharedPre f e rences sharedPre f ;
12 pr i va t e S t r ing pm;
13 pr i va t e Boolean myloc ;
14

15 @Override
16 protec ted void onCreate (Bundle savedIns tanceState) { . . . }
17

18 @Override
19 pub l i c void onResume () { . . . }
20

21 @Override
22 pub l i c void onPause () { . . . }
23

24 pr i va t e void r eque s tPe rm i s s i on s I fNec e s s a ry (S t r ing [] pe rmi s s i ons)
{ . . . }

25

26 pr i va t e i n t getAQIFi l lColor (Double v) { . . . }
27

78

5.2 – Activities

28 pr i va t e i n t getAQIStrokeColor (Double v) { . . . }
29

30 pr i va t e S t r ing getAQIQuality (Double v) { . . . }
31

32 pub l i c void pm10(View view) { . . . }
33

34 pub l i c void pm25(View view) { . . . }
35 }

Listing 5.19: PollutionActivity organization

onCreate()

This method does most of the work of this Activity.
First of all, the values necessary for the creation of this activity are read from

the shared preferences and saved in variables. The "pm" is used to know what data
to request from the server while "myloc" indicates how the initial zoom on the map
must be performed.

1 sharedPre f = getAppl i cat ionContext () . g e tSharedPre f e r ence s ("
sharedPre f s " , Context .MODE_PRIVATE) ;

2 pm = sharedPre f . g e tS t r i ng ("pm" , " ") ;
3 myloc = sharedPre f . getBoolean (" myloc " , f a l s e) ;

Listing 5.20: reading configuration

At this point, after entering the layout in the activity, the buttons visible at the
top of the Activity are initialized. Based on the value of "pm" they are colored and
made clickable or not.

1 btnpm25 = findViewById (R. id . btnpm25) ;
2 btnpm10 = findViewById (R. id . btnpm10) ;
3 i f (pm. equa l s (" pm25 ")) {
4 btnpm25 . setBackgroundColor (Color . parseColor ("#FF048C32 ")) ;
5 btnpm10 . setBackgroundColor (ContextCompat . getColor (

getAppl i cat ionContext () ,
6 R. c o l o r . co lorAccent)) ;
7 btnpm25 . s e t C l i c k a b l e (f a l s e) ;
8 btnpm10 . s e t C l i c k a b l e (t rue) ;
9 } e l s e {

10 btnpm10 . setBackgroundColor (Color . parseColor ("#FF048C32 ")) ;
11 btnpm25 . setBackgroundColor (ContextCompat . getColor (

getAppl i cat ionContext () ,
12 R. c o l o r . co lorAccent)) ;
13 btnpm10 . s e t C l i c k a b l e (f a l s e) ;
14 btnpm25 . s e t C l i c k a b l e (t rue) ;
15 }

Listing 5.21: buttons initialization

79

Mobile application implementation

Now is the time to initialize the object that represents the map and ask the user
for the necessary permissions if this procedure has not yet been performed.

1 // i n i t i a l i z e the map
2 map = (MapView) findViewById (R. id .map) ;
3 map . s e tT i l eSou r c e (Ti l eSourceFactory .MAPNIK) ;
4

5 // permis s ion reques t
6 r eque s tPe rm i s s i on s I fNec e s s a ry (new St r ing [] {
7 Manifest . permis s ion .ACCESS_FINE_LOCATION,
8 Manifest . permis s ion .WRITE_EXTERNAL_STORAGE
9 }) ;

Listing 5.22: map and permissions

At this point it is possible to zoom on the map in the user’s current position or
in the center of Turin, based on the value in the "myloc" variable.

1 f i n a l IMapControl ler mapControl ler = map . g e t C o n t r o l l e r () ;
2 mapControl ler . setZoom (20) ;
3

4 i f (myloc == true) {
5 // use i f cur rent l o c as s t a r t i n g po int
6 f u s edLoca t i onC l i en t = Loca t i onSe rv i c e s .

ge tFusedLocat ionProv iderCl i ent (t h i s) ;
7 f u s edLoca t i onC l i en t . getLastLocat ion ()
8 . addOnSuccessListener (th i s , new OnSuccessListener<

Location >() {
9 @Override

10 pub l i c void onSuccess (Locat ion l o c a t i o n) {
11 // Got l a s t known l o c a t i o n . In some ra r e

s i t u a t i o n s t h i s can be n u l l .
12 i f (l o c a t i o n != n u l l) {
13 GeoPoint s t a r tPo in t = new GeoPoint (

l o c a t i o n . ge tLat i tude () , l o c a t i o n . getLongitude ()) ;
14 mapControl ler . s e tCenter (s t a r tPo in t) ;
15 }
16 }
17 }) ;
18 } e l s e {
19 GeoPoint s t a r tPo in t = new GeoPoint (45 . 0419 , 7 .6259) ;
20 mapControl ler . s e tCenter (s t a r tPo in t) ;
21 }

Listing 5.23: zoom on map

Now the user’s current position on the map is added and the possibilities of
zooming and interacting with it is enabled. The location will only be displayed if
the GPS on the device is active.

80

5.2 – Activities

1 MyLocationNewOverlay mLocationOverlay = new MyLocationNewOverlay (
new GpsMyLocationProvider (getAppl i cat ionContext ()) ,map) ;

2 mLocationOverlay . enableMyLocation () ;
3 map . getOver lays () . add (mLocationOverlay) ;
4

5 map . setBui l t InZoomContro l s (t rue) ;
6 map . setMult iTouchContro ls (t rue) ;

Listing 5.24: current user position

In this part of the method, the data request is made to the web service at the
endpoint which returns the most updated data. The request is structured and in
the same way seen in the previous cases.

In the onResponse() method the data regarding the latest most recent measure-
ments are first read from the JSON of the response and are divided according to
the geoHash, this is because multiple boards can be placed in one place and during
the positioning of the markers on the map the data displayed in its description
must represent the average of the values received for all measurements relating to
the same location. The following piece of code represents the drawing process of
the values received.

1 // ar rays to t rack add the data f o r every board with d i f f e r e n t
l o c a t i o n (lat_long)

2 ArrayList<Double> s s = new ArrayList <>() ; // s e n so r s
3 ArrayList<Double> t t = new ArrayList <>() ; // temperature
4 ArrayList<Double> r r = new ArrayList <>() ; // humidity
5 ArrayList<Str ing > pos = new ArrayList <>() ; // p o s i t i o n −> l a t long
6 ArrayList<Integer > n = new ArrayList <>() ; //number o f boards
7 ArrayList<Str ing > bb = new ArrayList <>() ; // board i d s
8 ArrayList<Str ing > dd = new ArrayList <>() ; // date
9 i n t z = 0 ; // index f o r the prev ious dec l a r ed ar rays

10

11 f o r (i n t k = 0 ; k < json . l ength () ; k++){ // f o r on every board in
the re sponse

12 boolean stop=f a l s e ; // boolean to stop i f the date o f the new
s en s o r s i s b e f o r e the cur rent one

13 boolean r e p l a c e=f a l s e ; // boolean to r e p l a c e the data i f the
cur rent date i s a f t e r the incoming one so the è r ev i ou s data i s
i n v a l i d

14 JSONObject board = ((JSONObject) j son . get (k)) ; // read the
board ob j e c t from the j son

15 JSONArray s en s o r s = board . getJSONArray (" s e n so r s ") ; // read the
s en s o r s o f the cur rent board

16 i f (s en s o r s . l ength () == 0) { // i f the board i s empty
17 cont inue ;
18 }
19

81

Mobile application implementation

20 // check i f the board with t h i s l o c a t i o n i s a l r eady in the
ar rays so add new one or sum to the prev ious one

21 i f (pos . conta in s (board . g e tS t r i ng (" l a t ")+ " ,"+ board . g e tS t r i ng ("
long "))) {

22 i n t index = pos . indexOf (board . g e tS t r i ng (" l a t ") +" ,"+ board .
g e tS t r i ng (" long ")) ;

23 // check i f the date i f a f t e r o f b e f o r e or the same o f the
prev ious one

24 f o r (i n t u=0; u<4; u++) {
25 i f (dd . get (index) . equa l s (((JSONObject) s en s o r s . get (u)) .

g e tS t r i ng (" date ")+ " "+
26 ((JSONObject) s e n so r s . get (u)) .

g e tS t r i ng (" hour ")+ " : "+
27 ((JSONObject) s e n so r s . get (u)) .

g e tS t r i ng (" minute ")+ " : " + " 0 0 ")) {
28 s s . add (index , s s . get (index) + Double . parseDouble

(((JSONObject) s en s o r s . get (u)) . g e tS t r i ng (" va lue "))) ;
29 } e l s e i f (new SimpleDateFormat (" yyyy−MM−dd HH:mm: s s ") .

parse (dd . get (index)) . b e f o r e (new SimpleDateFormat (" yyyy−MM−dd
HH:mm: s s ") . parse (((JSONObject) s en s o r s . get (u)) .

g e tS t r i ng (" date ")+ " "+
30 ((JSONObject) s e n so r s . get (u)) .

g e tS t r i ng (" hour ")+ " : "+
31 ((JSONObject) s e n so r s . get (u)) .

g e tS t r i ng (" minute ")+ " : " +"00"))) {
32 stop = true ;
33 } e l s e { // cur rent i s a f t e r the new one
34 s s . add (z , s s . get (index) + Double . parseDouble (((

JSONObject) s en s o r s . get (u)) . g e tS t r i ng (" va lue "))) ;
35 r e p l a c e = true ;
36 }
37 }
38 i f (stop) {
39 cont inue ;
40 }
41 i f (r e p l a c e) {
42 n . add (index , 1) ;
43 bb . add (index , board . g e tS t r i ng (" id ")) ;
44 t t . add (index , Double . parseDouble (board . g e tS t r i ng ("

temp "))) ;
45 r r . add (index , Double . parseDouble (board . g e tS t r i ng (" rh

"))) ;
46 } e l s e {
47 n . add (index , n . get (index)+ 1) ;
48 bb . add (index , bb . get (index) . concat (" , " + board .

g e tS t r i ng (" id "))) ;
49 t t . add (index , t t . get (index) + Double . parseDouble (

board . g e tS t r i ng (" temp "))) ;

82

5.2 – Activities

50 r r . add (index , r r . get (index) + Double . parseDouble (
board . g e tS t r i ng (" rh "))) ;

51 }
52

53 } e l s e {
54 f o r (i n t u=0; u<4; u++) {
55 dd . add (z , ((JSONObject) s e n so r s . get (u)) . g e tS t r i ng ("

date ")+ " "+
56 ((JSONObject) s e n so r s . get (u)) . g e tS t r i ng (" hour

")+ " : "+
57 ((JSONObject) s e n so r s . get (u)) . g e tS t r i ng ("

minute ")+ " : " +"00") ;
58 s s . add (z , Double . parseDouble (((JSONObject) s e n so r s . get

(u)) . g e tS t r i ng (" va lue "))) ;
59 }
60 pos . add (z , board . g e tS t r i ng (" l a t ") +" ,"+ board . g e tS t r i ng ("

long ")) ;
61 bb . add (board . g e tS t r i ng (" id ")) ;
62 n . add (z , 1) ;
63 t t . add (z , Double . parseDouble (board . g e tS t r i ng (" temp "))) ;
64 r r . add (z , Double . parseDouble (board . g e tS t r i ng (" rh "))) ;
65

66 z++;
67 }
68

69 }

Listing 5.25: sorting data

Each received measurement is analyzed from the point of view of its geoHash,
after which the dates in which the data sample was collected are checked, thus
keeping only the most up-to-date data and discarding the values with non-uniform
dates from the average calculation. This procedure is necessary as the web service
returns the most updated value contained within the DB but, with many boards
positioned in the same location, the problem could arise that not all data have the
same date and time as a board for example could be broken. All the data is sorted
into different arrays which contain for each different geoHash found, the sum of
the values read up to that moment. Each array contains different data such as eg.
the sum of the measurements or the sum of the temperatures.

At this point it is possible to move on to the calculation of the average, iterating
the vectors and dividing each value by the number of values read.

1 // i t e r a t e over the ar rays to make the mean o f the va lue s summed
in the f o r be f o r e

2 f o r (i n t f =0; f<pos . s i z e () ; f++){
3 Double s_mean = Math . round ((s s . get (f) / (n . get (f) ∗ 4)) ∗

100 .0) / 1 0 0 . 0 ;

83

Mobile application implementation

4 Double t_mean = Math . round ((t t . get (f) / n . get (f)) ∗ 100 .0) /
1 0 0 . 0 ;

5 Double r_mean = Math . round ((r r . get (f) / n . get (f)) ∗ 100 .0) /
1 0 0 . 0 ;

6 St r ing q u a l i t y = getAQIQuality (s_mean) ;
7 i f (q u a l i t y == n u l l) {
8 f indViewById (R. id . loadData) . s e t V i s i b i l i t y (View .GONE) ;
9 Toast . makeText (getAppl i cat ionContext () , " Qual i ty

Problems " , Toast .LENGTH_LONG) . show () ;
10 re turn ;
11 }
12 // add the item to the array
13 i = new OverlayItem (" Board i d s : " + bb . get (f) ,
14 " Date : " + dd . get (f) +
15 "\ nValue : " + s_mean +
16 "\ nTemperature : " + t_mean +
17 "\ nHumidity : " + r_mean +
18 "\ nQual ity : " + qua l i ty ,
19 new GeoPoint (Double . parseDouble (pos . get (f) . s p l i t (" , ")

[0]) ,
20 Double . parseDouble (pos . get (f) . s p l i t (" , ") [1]))) ;
21 i tems . add (i) ;
22 // adding c i r c l e s around the po in t s
23 List <GeoPoint> c i r c l e = Polygon . po in t sAsC i r c l e (new GeoPoint (

Double . parseDouble (pos . get (f) . s p l i t (" , ") [0]) , Double . parseDouble (
pos . get (f) . s p l i t (" , ") [1])) , 20) ;

24 Polygon p = new Polygon (map) ;
25 p . s e tPo in t s (c i r c l e) ;
26 p . s e t T i t l e (" Range ") ;
27 i n t s t rokeCo lo r = getAQIStrokeColor (s_mean) ;
28 i f (s t rokeCo lo r == −1 | | s t rokeCo lo r == −2){
29 f indViewById (R. id . loadData) . s e t V i s i b i l i t y (View .GONE) ;
30 Toast . makeText (getAppl i cat ionContext () , " Strokr Color

Problems " , Toast .LENGTH_LONG) . show () ;
31 re turn ;
32 }
33 p . s e tS t rokeCo lo r (s t rokeCo lo r) ;
34 i n t f i l l C o l o r = getAQIFi l lCo lor (s_mean) ;
35 i f (f i l l C o l o r == −1 | | f i l l C o l o r == −2){
36 f indViewById (R. id . loadData) . s e t V i s i b i l i t y (View .GONE) ;
37 Toast . makeText (getAppl i cat ionContext () , " F i l l Color

Problems " , Toast .LENGTH_LONG) . show () ;
38 re turn ;
39 }
40 p . s e t F i l l C o l o r (f i l l C o l o r) ; // 50FF0000
41 map . getOverlayManager () . add (p) ;
42 }

Listing 5.26: calculating the mean value

84

5.2 – Activities

During this procedure the “OverlayItems” are created, which will be the points
actually visible on the map and they are added to a common array to add them
all together at the end of the cycle. The cycle also includes the addition of circles,
colored according to the value of environmental pollution, around each marker on
the map. The color to be displayed as well as the descriptive text are requested
from the functions declared at the bottom of the file.

At this point all the "OverlayItems" are added to the map by also setting the
possibility of a long press on the markers which gives the possibility to open the
activity capable of presenting the most recent history of the measurements at that
point.

1 ItemizedOverlayWithFocus<OverlayItem> mOverlay = new
ItemizedOverlayWithFocus<OverlayItem >(items ,

2 new ItemizedIconOver lay . OnItemGestureListener<OverlayItem
>() {

3 @Override
4 pub l i c boolean onItemSingleTapUp (f i n a l i n t index , f i n a l

OverlayItem item) {
5 //do something
6 re turn true ;
7 }
8 @Override
9 pub l i c boolean onItemLongPress (f i n a l i n t index , f i n a l

OverlayItem item) {
10 //on long pr e s s opening o f the h i s t o r y a c t i v i t y , pas s ing

the l i s t o f boards as ext ra
11 In tent i n t e n t = new Intent (getAppl i cat ionContext () ,

H i s t o ryAct i v i t y . c l a s s) ;
12 i n t e n t . putExtra (" boards " , item . g e t T i t l e ()) ;
13 i n t e n t . putExtra (" sn ippet " , item . getSn ippet ()) ;
14 s t a r t A c t i v i t y (i n t e n t) ;
15 re turn f a l s e ;
16 }
17 } , getAppl i cat ionContext ()) ;
18 mOverlay . setFocusItemsOnTap (t rue) ;
19 map . getOver lays () . add (mOverlay) ;

Listing 5.27: adding markers

onResume()

This method has the only task of restarting the map when the Activity restarts.
1 @Override
2 pub l i c void onResume () {
3 super . onResume () ;
4 map . onResume () ; // needed f o r compass , my l o c a t i o n over lays ,

v6 . 0 . 0 and up

85

Mobile application implementation

5 }

Listing 5.28: onResume()

onPause()

Here the map is paused when the activity pauses.
1 @Override
2 pub l i c void onPause () {
3 super . onPause () ;
4 map . onPause () ; // needed f o r compass , my l o c a t i o n over lays ,

v6 . 0 . 0 and up
5 }

Listing 5.29: onPause()

requestPermissionsIfNecessary()

This method has the task of requesting the necessary permissions from the user
to ensure the proper functioning of the activity. It is called during the onCreate()
method.

1 pr i va t e void r eque s tPe rm i s s i on s I fNec e s s a ry (S t r ing [] pe rmi s s i ons)
{

2 ArrayList<Str ing > permiss ionsToRequest = new ArrayList <>() ;
3 f o r (S t r ing permis s ion : pe rmi s s i ons) {
4 i f (ContextCompat . checkSe l fPe rmi s s i on (th i s , permis s ion)
5 != PackageManager .PERMISSION_GRANTED) {
6 // Permiss ion i s not granted
7 permiss ionsToRequest . add (permis s ion) ;
8 }
9 }

10 i f (permiss ionsToRequest . s i z e () > 0) {
11 ActivityCompat . r eque s tPermi s s i ons (
12 th i s ,
13 permiss ionsToRequest . toArray (new St r ing [0]) ,
14 REQUEST_PERMISSIONS_REQUEST_CODE) ;
15 }
16 }

Listing 5.30: requestPremissionsIfNecessaty()

getAQIFillColor()

The method is invoked during the addition of the circumferences around the marker
and returns the color that must be applied to the background of the circle based
on the value of environmental pollution.

86

5.2 – Activities

1 pr i va t e i n t getAQIFi l lColor (Double v) {
2 i f (pm. equa l s (" pm10 ")) {
3 i f (v >= 0 && v <= 50) {
4 re turn Color . parseColor ("#50048C32 ") ;
5 } e l s e i f (v >= 51 && v <=100){
6 re turn Color . parseColor ("#5000FF00 ") ;
7 } e l s e i f (v >= 101 && v <=250){
8 re turn Color . parseColor ("#50FFFF00 ") ;
9 } e l s e i f (v >= 251 && v <=350){

10 re turn Color . parseColor ("#50FFA500 ") ;
11 } e l s e i f (v >= 351 && v <=430){
12 re turn Color . parseColor ("#50FF0000 ") ;
13 } e l s e i f (v >= 431) {
14 re turn Color . parseColor ("#50800000") ;
15 } e l s e {
16 re turn −2; // i t means a value not in the range
17 }
18 } e l s e i f (pm. equa l s (" pm25 ")) {
19 i f (v >= 0 && v <= 30) {
20 re turn Color . parseColor ("#50048C32 ") ;
21 } e l s e i f (v >= 31 && v <=60){
22 re turn Color . parseColor ("#5000FF00 ") ;
23 } e l s e i f (v >= 61 && v <=90){
24 re turn Color . parseColor ("#50FFFF00 ") ;
25 } e l s e i f (v >= 91 && v <=120){
26 re turn Color . parseColor ("#50FFA500 ") ;
27 } e l s e i f (v >= 121 && v <=250){
28 re turn Color . parseColor ("#50FF0000 ") ;
29 } e l s e i f (v >= 251) {
30 re turn Color . parseColor ("#50800000") ;
31 } e l s e {
32 re turn −2; // i t means a value not in the range
33 }
34 } e l s e {
35 re turn −1; // i t means a value o f pmKind not in pm25 or

pm10
36 }
37 }

Listing 5.31: getAQIFillColor()

In this activity there are two other similar methods that respectively return the
color of the edge of the circle and the descriptive string of the state of the air.

pm10()

This function is called once the button with the same name visible in the high part
of the map is clicked. Its task is to recreate the current activity but changing the

87

Mobile application implementation

"pm" parameter, that is the data that must be shown on the map.
1 pub l i c void pm10(View view) {
2 SharedPre f e rences . Editor e d i t o r = sharedPre f . e d i t () ;
3 e d i t o r . putStr ing ("pm" , "pm10 ") ;
4 e d i t o r . apply () ;
5 t h i s . r e c r e a t e () ;
6 }

Listing 5.32: pm10()

pm25()

Method with operation similar to that previously described.

5.2.5 HistoryActivity
This activity has the task of displaying the history of the last two hours available
of the measurements regarding the boards present under the pin clicked to access
it. The history is displayed in the form of three graphs made using the external
library "MPAndroidChart". The structure of the source file is visible below.

1 pub l i c c l a s s H i s t o ryAct i v i t y extends AppCompatActivity {
2 pr i va t e RequestQueue queue ;
3 pr i va t e S t r ing u r l ;
4 pr i va t e SharedPre f e rences sharedPre f ;
5 pr i va t e S t r ing pm;
6 pr i va t e Spinner sItems ;
7

8 pr i va t e LineChart chart ;
9 pr i va t e LineChart chartT ;

10 pr i va t e LineChart chartH ;
11

12 pr i va t e S t r ing date ;
13 pr i va t e S t r ing hour ;
14

15 pr i va t e JSONArray j son ;
16

17 @Override
18 protec ted void onCreate (Bundle savedIns tanceState) { . . . }
19

20 pub l i c void saveSensImage (View view) { . . . }
21

22 pub l i c void saveSensData (View view) { . . . }
23

24 pub l i c void saveTempImage (View view) { . . . }
25

26 pub l i c void saveTempData (View view) { . . . }

88

5.2 – Activities

27

28 pub l i c void saveHumidityImage (View view) { . . . }
29

30 pub l i c void saveHumidityData (View view) { . . . }
31 }

Listing 5.33: HistoryActivity organization

onCreate()

During the creation of this activity, one of the most important points is the
initialization of the graphs for visualization of the past history. Below is the
initialization code of one of the three graphics in the activity.

1 chart = findViewById (R. id . chart) ;
2 chart . setBackgroundColor (Color .WHITE) ;
3

4 XAxis xAxis = chart . getXAxis () ;
5 xAxis . setValueFormatter (new ValueFormatter () {
6

7 pr i va t e f i n a l SimpleDateFormat mFormat = new SimpleDateFormat ("HH:mm
" , Loca le .ENGLISH) ;

8 @Override
9 pub l i c S t r ing getFormattedValue (f l o a t va lue) {

10 long m i l l i s = (long) va lue ;
11 Calendar ca l endar = Calendar . g e t In s tance () ;
12 ca l endar . s e tT imeInMi l l i s (m i l l i s) ;
13 re turn mFormat . format (ca l endar . getTime ()) ;
14 }
15 }) ;

Listing 5.34: chart initialization example

The value on the x axis is transformed into a formatted string to show the hour
and minutes related to the measures shown.

At this point, ids are initialized within the spinner for choosing the board whose
values should be displayed on the charts.

The spinner also adds the ability to listen when the value inside it is changed.
Each time the value changes, a new data request is sent to the web service. The
procedure remains the same as those described above.

1 ((Spinner) findViewById (R. id . spnBoards)) . s e tOnItemSe l ec tedL i s t ener (
2 newAdapterView . OnItemSe lectedLis tener () {
3 @Override
4 pub l i c void onItemSelected (AdapterView<?> parentView ,
5 View selectedItemView ,
6 i n t po s i t i on ,
7 long id) {// reque s t sending code }

89

Mobile application implementation

8 } ;

Listing 5.35: adding listener to the spinner
After receiving the data, these are sorted into different arrays depending on

the sensor they come from and added to the “LineDataSets”. Each such object
represents a separate data line on the chart. Once this procedure has been carried
out, the data can be set to the corresponding graph.

1 f o r (i n t k = 1 ; k < json . l ength () ; k++) { // f o r on l i n e data in the
re sponse

2 date = format . parse (((JSONObject) j son . get (k)) . g e tS t r i ng (" date ") +
" " +

3 ((JSONObject) j son . get (k)) . g e tS t r i ng (" hour ") + " : "
+

4 ((JSONObject) j son . get (k)) . g e tS t r i ng (" minute ")
+" :00") ;

5 yValues1 . add (new Entry (date . getTime () , Float . par seF loat (((
JSONObject) j son . get (k)) . g e tS t r i ng (keys . get (2))))) ;

6 yValues2 . add (new Entry (date . getTime () , Float . par seF loat (((
JSONObject) j son . get (k)) . g e tS t r i ng (keys . get (3))))) ;

7 yValues3 . add (new Entry (date . getTime () , Float . par seF loat (((
JSONObject) j son . get (k)) . g e tS t r i ng (keys . get (4))))) ;

8 yValues4 . add (new Entry (date . getTime () , Float . par seF loat (((
JSONObject) j son . get (k)) . g e tS t r i ng (keys . get (5))))) ;

9 yValuesT . add (new Entry (date . getTime () , Float . par seF loat (((
JSONObject) j son . get (k)) . g e tS t r i ng (keys . get (0))))) ;

10 yValuesH . add (new Entry (date . getTime () , Float . par seF loat (((
JSONObject) j son . get (k)) . g e tS t r i ng (keys . get (1))))) ;

11 }
12 //add data to s e n so r s chart
13 LineDataSet s e t1 = new LineDataSet (yValues1 , keys . get (2) . s p l i t ("_")

[0]) ;
14 s e t1 . s e t F i l l A l p h a (110) ;
15 LineDataSet s e t2 = new LineDataSet (yValues2 , keys . get (3) . s p l i t ("_")

[0]) ;
16 s e t2 . s e t F i l l A l p h a (110) ;
17 LineDataSet s e t3 = new LineDataSet (yValues3 , keys . get (4) . s p l i t ("_")

[0]) ;
18 s e t3 . s e t F i l l A l p h a (110) ;
19 LineDataSet s e t4 = new LineDataSet (yValues4 , keys . get (5) . s p l i t ("_")

[0]) ;
20 s e t4 . s e t F i l l A l p h a (110) ;
21 ArrayList<ILineDataSet> dataSets = new ArrayList <>() ;
22 dataSets . add (s e t1) ;
23 dataSets . add (s e t2) ;
24 s e t2 . s e tCo lo r (Color .RED) ;
25 s e t2 . s e t C i r c l e C o l o r (Color .RED) ;
26 dataSets . add (s e t3) ;
27 s e t3 . s e tCo lo r (Color .GREEN) ;

90

5.2 – Activities

28 s e t3 . s e t C i r c l e C o l o r (Color .GREEN) ;
29 dataSets . add (s e t4) ;
30 s e t4 . s e tCo lo r (Color .BLUE) ;
31 s e t4 . s e t C i r c l e C o l o r (Color .BLUE) ;
32 LineData data = new LineData (dataSets) ;
33

34 chart . setData (data) ;
35 chart . i n v a l i d a t e () ;

Listing 5.36: adding data to the charts

saveSensImage()

This method allows the user to download the image of the chart represent-
ing the values read by the various sensors. The code sets the filename as:
date_hour_board_last_2_hour_sens_chart. In case of a multiple download,
the name is followed by a consecutive number starting from 1 closed inside round
brackets.

The saveToGallery method is used to save the file.
1 pub l i c void saveSensImage (View view) {
2 i n t counter = 1 ;
3 St r ing fn ;
4 St r ing [] s_date ;
5

6 F i l e f o l d e r = new F i l e (Environment .
ge tExte rna lS to rageDi r e c to ry ()

7 + "/DCIM") ;
8

9 i f (! f o l d e r . e x i s t s ())
10 f o l d e r . mkdir () ;
11

12 s_date = date . s p l i t (" −") ;
13

14 fn = s_date [0] + "_" + s_date [1] + "_" + s_date [2] + "_" +
sItems . ge tSe l e c t ed I t em () . t oS t r i ng () + " _last_2_hour_sens_chart " ;

15

16 // check i f the f i l e a l r eady e x i s t s
17 F i l e out = new F i l e (Environment . ge tExte rna lS to rageDi r ec to ry ()
18 + "/DCIM/" + s_date [0] + "_" + s_date [1] + "_" +

s_date [2] +"_" + sItems . ge tSe l e c t ed I t em () . t oS t r i ng () + "
_last_2_hour_sens_chart . png ") ;

19 whi le (out . e x i s t s ()) {
20 out = new F i l e (Environment . ge tExte rna lS to rageDi r e c to ry ()
21 + "/DCIM/" + s_date [0] + "_" + s_date [1] + "_" +

s_date [2] +"_" + sItems . ge tSe l e c t ed I t em () . t oS t r i ng () + "
_last_2_hour_sens_chart ("+ counter + ") . png ") ;

91

Mobile application implementation

22 fn = s_date [0] + "_" + s_date [1] + "_" + s_date [2] +"_"
+ sItems . ge tSe l e c t ed I t em () . t oS t r i ng () + " _last_2_hour_sens_chart
("+ counter + ") " ;

23 counter++;
24 }
25

26 chart . saveToGal lery (fn) ;
27 Toast . makeText (getAppl i cat ionContext () , " Image c o r r e c t l y

saved " , Toast .LENGTH_LONG) . show () ;
28 }

Listing 5.37: saving chart image

saveSensData()

This method allows the user to download the data relating to the chart in the form
of a file with the extension “.csv”. After specifying the file name in a similar way to
the method described above, the data is saved through the use of a separate thread
in a file saved in memory. The files thus created are saved in the “Polution_exports”
folder, created by this method, in the phone memory.

1 new Thread () {
2 pub l i c void run () {
3 t ry {
4 Fi l eWr i t e r fw = new Fi l eWr i t e r (f i l ename) ;
5 ArrayList<Str ing > keys= new ArrayList <>() ;
6 Pattern p = Pattern . compi le (" . ∗ _cal ") ;
7 Matcher m;
8

9 // get keys
10 I t e r a t o r <Str ing > i t e r a t o r = ((JSONObject) j son . get

(0)) . keys () ;
11 whi le (i t e r a t o r . hasNext ()) {
12 St r ing currentKey = i t e r a t o r . next () ;
13

14 m = p . matcher (currentKey) ;
15 i f (m. matches ()) {
16 keys . add (currentKey) ;
17 }
18 }
19 //add keys to csv
20 fw . append (" date ") ;
21 fw . append (’ , ’) ;
22

23 fw . append (" hour ") ;
24 fw . append (’ , ’) ;
25

26 fw . append (" minute ") ;

92

5.2 – Activities

27 fw . append (’ , ’) ;
28

29 fw . append (keys . get (0) . s p l i t ("_") [0]) ;
30 fw . append (’ , ’) ;
31

32 fw . append (keys . get (1) . s p l i t ("_") [0]) ;
33 fw . append (’ , ’) ;
34

35 fw . append (keys . get (2) . s p l i t ("_") [0]) ;
36 fw . append (’ , ’) ;
37

38 fw . append (keys . get (3) . s p l i t ("_") [0]) ;
39 fw . append (’ , ’) ;
40 fw . append (’\ n ’) ;
41

42 //add data to csv
43 f o r (i n t k = 1 ; k < json . l ength () ; k++) { // f o r on

l i n e data in the j son that conta in s the l a s t re sponse
44 fw . append (((JSONObject) j son . get (k)) . g e tS t r i ng

(" date ")) ;
45 fw . append (’ , ’) ;
46 fw . append (((JSONObject) j son . get (k)) . g e tS t r i ng

(" hour ")) ;
47 fw . append (’ , ’) ;
48 fw . append (((JSONObject) j son . get (k)) . g e tS t r i ng

(" minute ")) ;
49 fw . append (’ , ’) ;
50 fw . append (((JSONObject) j son . get (k)) . g e tS t r i ng

(keys . get (0))) ;
51 fw . append (’ , ’) ;
52 fw . append (((JSONObject) j son . get (k)) . g e tS t r i ng

(keys . get (1))) ;
53 fw . append (’ , ’) ;
54 fw . append (((JSONObject) j son . get (k)) . g e tS t r i ng

(keys . get (2))) ;
55 fw . append (’ , ’) ;
56 fw . append (((JSONObject) j son . get (k)) . g e tS t r i ng

(keys . get (3))) ;
57 fw . append (’ , ’) ;
58 fw . append (’\ n ’) ;
59 }
60 fw . c l o s e () ;
61 } catch (Exception e) {
62 }
63 }
64 } . s t a r t () ;

Listing 5.38: saving chart data

93

Mobile application implementation

Other methods

The other methods visible in this activity are similar in operation to the last two
previously described. The only difference lies in the fact that they concern the
download of images and data regarding the other two charts in the activity.

5.2.6 GeneralHistoryActivity
This activity is used to visualize the history of measurements in a time range
selected by the user. The source code is totally identical to that of the History
activity with the only difference being the addition of two DatePickerDialogs for
selecting the two dates.

When the user clicks on one of the two edit text that are used to enter the date,
the "start_date" or "end_date" functions are executed. The functions do the same
job and have the task of creating and displaying a DatePickerDialog and setting a
listener, declared in the onCreate() method, capable of filling the contents of the
edit text with the date selected when the dialog is closed.

1 pub l i c void start_date (View view) {
2 Calendar c a l = Calendar . g e t In s tance () ;
3 i n t year = c a l . get (Calendar .YEAR) ;
4 i n t month = c a l . get (Calendar .MONTH) ;
5 i n t day = c a l . get (Calendar .DAY_OF_MONTH) ;
6

7 DatePickerDia log d i a l o g = new DatePickerDia log (
8 Genera lH i s to ryAct iv i ty . th i s ,
9 android .R. s t y l e . Theme_Holo_Light_Dialog_MinWidth ,

10 mDateListenerStart ,
11 year , month , day
12) ;
13 d i a l o g . getWindow () . setBackgroundDrawable (new ColorDrawable (

Color .TRANSPARENT)) ;
14 d i a l o g . show () ;
15 }

Listing 5.39: startethod

Later can be seen the code for the initialization of the listener for closing the
dialog linked to the start edit text.

1 mDateListenerStart = new DatePickerDia log . OnDateSetListener () {
2 @Override
3 pub l i c void onDateSet (DatePicker datePicker , i n t year ,

i n t month , i n t day) {
4 month = month + 1 ;
5

6 St r ing strMonth = " " ;
7 St r ing strDay = " " ;

94

5.2 – Activities

8

9 i f (month<10){
10 strMonth = "0 " + month ;
11 } e l s e {
12 strMonth = In t eg e r . t oS t r i ng (month) ;
13 }
14

15 i f (day<10){
16 strDay = "0 " + day ;
17 } e l s e {
18 strDay = In t eg e r . t oS t r i ng (day) ;
19 }
20

21 edtSta r t . setText (new St r i ngBu i l d e r () . append (year) .
append ("−")

22 . append (strMonth) . append ("−") . append (
strDay)) ;

23 }
24 } ;

Listing 5.40: listener for DatePickerDialog

5.2.7 ShowProfileActivity
The only task of this activity is to show the data of the account corresponding to
the currently logged in user. The code in the onCreate() method sends the request
to the web service to retrieve the information it needs to display.

The only peculiarity of this activity lies in the fact that, once the button to
navigate to the EditProfileActivity is clicked, it is called with the startActivity-
ForResult() method. This means that once the child activity is closed, the code
will execute the onActivityResult() method. The mechanism has been inserted in
the code to allow updating the displayed data after any modification (completed
successfully), without having to request them again from the server.

1 pub l i c void e d i t P r o f i l e (View view) {
2 In tent i n t e n t = new Intent (th i s , E d i t P r o f i l e A c t i v i t y . c l a s s) ;
3 Bundle b = new Bundle () ;
4 b . putStr ing (" emai l " , emai l . getText () . t oS t r i ng ()) ;
5 b . putStr ing (" name " , name . getText () . t oS t r i ng ()) ;
6 b . putStr ing (" surname " , surname . getText () . t oS t r i ng ()) ;
7 b . putStr ing (" b i r th " , b i r th . getText () . t oS t r i ng ()) ;
8 i n t e n t . putExtras (b) ;
9 s t a r tAc t i v i t yFo rRe su l t (intent , 1) ;

10 }
11

12 @Override

95

Mobile application implementation

13 pub l i c void onAct iv i tyResu l t (i n t requestCode , i n t resultCode ,
In tent data) {

14 super . onAct iv i tyResu l t (requestCode , resultCode , data) ;
15 switch (requestCode) {
16 case (1) : {
17 i f (re su l tCode == Act iv i ty .RESULT_OK) {
18 Bundle b = data . getExtras () ;
19 i n t va lue = −1; // or other va lue s
20 i f (b != n u l l) {
21 emai l . setText (b . g e tS t r i ng (" emai l ")) ;
22 name . setText (b . g e tS t r i ng (" name ")) ;
23 surname . setText (b . g e tS t r i ng (" surname ")) ;
24 b i r th . setText (b . g e tS t r i ng (" b i r th ")) ;
25 }
26 }
27 break ;
28 }
29 }
30 }

Listing 5.41: startActivityForResult procedure

5.2.8 EditProfileActivity
The code contained within this activity is used to send the changes made on user
data to the web service. In the onCreate() method, all the objects present within
the layout are initialized, while the "save" method sends the request to the server.

The only noteworthy piece of code is represented by how the result is entered to
be sent to the parent activity after the data has been changed.

1 In tent r e s u l t I n t e n t = new Intent () ;
2 Bundle b = new Bundle () ;
3 b . putStr ing (" emai l " , emai l . getText () . t oS t r i ng ()) ;
4 b . putStr ing (" name " , name . getText () . t oS t r i ng ()) ;
5 b . putStr ing (" surname " , surname . getText () . t oS t r i ng ()) ;
6 b . putStr ing (" b i r th " , b i r th . getText () . t oS t r i ng ()) ;
7 r e s u l t I n t e n t . putExtras (b) ;
8 s e tRe su l t (Ac t i v i ty .RESULT_OK, r e s u l t I n t e n t) ;

Listing 5.42: setResult procedure

5.2.9 ToolsActivity
This activity has the purpose of saving the base address of the web service within
the shared preferences together with the zoom setting on the current position of
the user on the map during the execution of the PollutionActivity.

96

5.3 – Layouts

By clicking on the “Save” button the settings are saved.
1 pub l i c void save (View view) {
2 SharedPre f e rences . Editor e d i t o r = sharedPre f . e d i t () ;
3 e d i t o r . putStr ing (" host " , edtHost . getText () . t oS t r i ng ()) ;
4 e d i t o r . putBoolean (" myloc " , swtLoc . isChecked ()) ;
5 e d i t o r . apply () ;
6 Toast . makeText (getAppl i cat ionContext () , " Saved " , Toast .

LENGTH_LONG) . show () ;
7 }

Listing 5.43: save method

5.3 Layouts
The layouts are files containing xml code for the representation of the graphics
visible on the screen. For each activity within the "res/layout" folder there is a
corresponding layout file. This happens because each activity has its own graphics
to display.

Each element visible on the screen can be added by inserting specific tags
specific to each component. The insertable tags can represent both real elements
and layouts, that is how they should be arranged on the screen.

Since all the layouts are very similar to each other, three representative files are
described below for the description of each element used by this project:

• activity_main.xml

• activity_pollution.xml

• activity_history.xml

5.3.1 activity_main.xml
This layout is linked to the MainActivity, which means that it is the first to be
loaded and displayed. Inside, first of all another file is included containing the
description of the navigation bar. In the next part, the side menu is added, which
in turn is made up of two other xml files.

1 <?xml ve r s i on ="1.0" encoding="utf −8"?>
2 <androidx . drawer layout . widget . DrawerLayout xmlns : android="http ://

schemas . android . com/apk/ r e s / android "
3 xmlns : app="http :// schemas . android . com/apk/ res−auto "
4 xmlns : t o o l s ="http :// schemas . android . com/ t o o l s "
5 android : id="@+id / drawer_layout "
6 android : layout_width="match_parent "

97

Mobile application implementation

7 android : layout_height="match_parent "
8 android : fitsSystemWindows=" true "
9 t o o l s : openDrawer=" s t a r t ">

10

11 <inc lude
12 l ayout="@layout/app_bar_main "
13 android : layout_width="match_parent "
14 android : layout_height="match_parent " />
15

16 <com . goog l e . android . mate r i a l . nav igat i on . NavigationView
17 android : id="@+id /nav_view "
18 android : layout_width="wrap_content "
19 android : layout_height="match_parent "
20 android : layout_grav i ty=" s t a r t "
21 android : fitsSystemWindows=" true "
22 app : headerLayout="@layout/nav_header_main "
23 app : menu="@menu/ activity_main_drawer " />
24

25 </androidx . drawer layout . widget . DrawerLayout>

Listing 5.44: activity_main.xml

app_bar_main.xml

This file is included for inserting the application toolbar. It also adds the main
content displayed by this activity through the inclusion of the content_main.xml
file.

1 <?xml ve r s i on ="1.0" encoding="utf −8"?>
2 <androidx . coo rd ina to r l ayout . widget . CoordinatorLayout xmlns : android="

http :// schemas . android . com/apk/ r e s / android "
3 xmlns : app="http :// schemas . android . com/apk/ res−auto "
4 xmlns : t o o l s ="http :// schemas . android . com/ t o o l s "
5 android : layout_width="match_parent "
6 android : layout_height="match_parent "
7 t o o l s : context =". MainActivity">
8

9 <com . goog l e . android . mate r i a l . appbar . AppBarLayout
10 android : layout_width="match_parent "
11 android : layout_height="wrap_content "
12 android : theme="@style /AppTheme . AppBarOverlay">
13

14 <androidx . appcompat . widget . Toolbar
15 android : id="@+id / too lba r "
16 android : layout_width="match_parent "
17 android : layout_height ="? a t t r / ac t i onBarS i z e "
18 android : background="? a t t r / co lorPr imary "
19 app : popupTheme="@style /AppTheme . PopupOverlay " />

98

5.3 – Layouts

20

21 </com . goog l e . android . mate r i a l . appbar . AppBarLayout>
22

23 <inc lude layout="@layout/content_main " />
24

25 </androidx . coo rd ina to r l ayout . widget . CoordinatorLayout>

Listing 5.45: app_bar_main.xml

content_main.xml

Inside the file, first of all, a progress bar is inserted which has the task of showing
the loading procedure during requests to the web service. This element is initially
set with visibility set to "gone" in order not to take up space on the screen as no
loading should be visible when the application is started. The elevation value is
used to indicate that the progress bar must appear above every other element on
the screen if it is made visible.

Then the string "welcome" is inserted with a relative layout for the positioning
of the buttons on this screen. Inside, the elements are still inserted in two linear
layouts to ensure a correct arrangement of the components on the screen. As can be
seen from the code below, the "Pollution" and "History" buttons are actually pairs
of ImageView and TextView. In this configuration, the image is made clickable
and the text is used to describe the action performed.

Finally, two Buttons are inserted, one for login and one for logout, visible on the
screen depending on the case if the user has already logged into the application.

1 <?xml ve r s i on ="1.0" encoding="utf −8"?>
2 <androidx . c o n s t r a i n t l a y o u t . widget . ConstraintLayout xmlns : android="

http :// schemas . android . com/apk/ r e s / android "
3 xmlns : app="http :// schemas . android . com/apk/ res−auto "
4 xmlns : t o o l s ="http :// schemas . android . com/ t o o l s "
5 android : layout_width="match_parent "
6 android : layout_height="match_parent "
7 android : background="@color / co lorAccent "
8 app : layout_behavior="@str ing / appbar_scrol l ing_view_behavior "
9 t o o l s : context =". MainActivity">

10

11 <ProgressBar
12 android : id="@+id / loadData "
13 s t y l e ="? android : a t t r / progre s sBarSty l e "
14 android : layout_width="wrap_content "
15 android : layout_height="wrap_content "
16 android : v i s i b i l i t y ="gone "
17 android : e l e v a t i o n ="7dp "
18 app : layout_constraintBottom_toBottomOf="parent "
19 app : layout_constraintEnd_toEndOf="@+id / r e l a t i v eLayout "

99

Mobile application implementation

20 app : layout_const ra intStar t_toStar tOf ="parent "
21 app : layout_constraintTop_toTopOf="parent " />
22

23 <TextView
24 android : id="@+id / textView "
25 android : layout_width="wrap_content "
26 android : layout_height="wrap_content "
27 android : fontFamily="@font/ berkshire_swash "
28 android : t ex t ="@str ing /welcome "
29 android : t extCo lor ="@android : c o l o r / white "
30 android : t e x t S i z e ="36sp "
31

32 app : layout_constraintBottom_toTopOf="@+id / r e l a t i v eLayout "
33 app : layout_constraintEnd_toEndOf="parent "
34 app : l ayout_cons t ra in tHor i zonta l_b ia s ="0.496"
35 app : layout_const ra intStar t_toStar tOf ="parent "
36 app : layout_constraintTop_toTopOf="parent "
37 app : l ayout_cons t ra in tVer t i ca l_b ia s ="0.479" />
38

39 <Relat iveLayout
40 android : id="@+id / r e l a t i v eLayout "
41 android : layout_width=" f i l l _ p a r e n t "
42 android : layout_height="wrap_content "
43 android : layout_marginStart ="8dp "
44 android : layout_marginTop="8dp "
45 android : layout_marginEnd="8dp "
46 android : layout_marginBottom="8dp "
47 android : background="# f f f "
48 android : o r i e n t a t i o n =" v e r t i c a l "
49 android : padding="20dp "
50 app : layout_constraintBottom_toBottomOf="parent "
51 app : layout_constraintEnd_toEndOf="parent "
52 app : layout_const ra intStar t_toStar tOf ="parent "
53 app : layout_constraintTop_toTopOf="parent">
54

55 <LinearLayout
56 android : layout_width="match_parent "
57 android : layout_height="wrap_content "
58 android : o r i e n t a t i o n =" v e r t i c a l ">
59

60 <LinearLayout
61 android : id="@+id /mainPanel "
62 android : layout_width="match_parent "
63 android : layout_height="wrap_content "
64 android : cl ipToPadding=" f a l s e "
65 android : o r i e n t a t i o n =" h o r i z o n t a l ">
66

67 <androidx . cardview . widget . CardView
68 android : id="@+id / seeRestaurants "

100

5.3 – Layouts

69 android : layout_width="match_parent "
70 android : layout_height="match_parent "
71 android : layout_grav i ty=" c e n t e r _ v e r t i c a l "
72 android : layout_marginEnd="8dp "
73 android : layout_marginBottom="8dp "
74 android : layout_weight ="1"
75 app : cardCornerRadius ="36dp "
76 android : layout_marginRight="8dp "
77 android : layout_marginTop="10dp">
78

79 <LinearLayout
80 android : layout_width="match_parent "
81 android : layout_height="wrap_content "
82 android : layout_grav i ty=" cente r "
83 android : o r i e n t a t i o n =" v e r t i c a l ">
84

85 <ImageView
86 android : id="@+id / pol lut ionImgView "
87 android : layout_width="match_parent "
88 android : layout_height ="80dp "
89 android : layout_grav i ty=" cente r "
90 android : onCl ick=" p o l l u t i o n "
91 app : srcCompat="@drawable/ po l lu t i on_icon "
92 t o o l s : srcCompat="@drawable/ po l lu t i on_icon

" />
93

94 <TextView
95 android : id="@+id / textView6 "
96 android : layout_width="match_parent "
97 android : layout_height="wrap_content "
98 android : t ex t ="@str ing / p o l l u t i o n "
99 android : textAlignment=" cente r "

100 android : textAppearance="@style /
TextAppearance . AppCompat . Display1 "

101 android : t extCo lor ="#000000"
102 android : t e x t S i z e ="25sp "
103 android : t e x t S t y l e ="bold "
104 android : g rav i ty =" cente r_hor i zonta l " />
105 </LinearLayout>
106 </androidx . cardview . widget . CardView>
107

108 <androidx . cardview . widget . CardView
109 android : id="@+id / seeOrders "
110 android : layout_width="match_parent "
111 android : layout_height="match_parent "
112 android : layout_grav i ty=" c e n t e r _ v e r t i c a l "
113 android : layout_marginStart ="8dp "
114 android : layout_marginBottom="8dp "
115 android : layout_weight ="1"

101

Mobile application implementation

116 app : cardBackgroundColor="#BFFFFFFF"
117 app : cardCornerRadius ="36dp "
118 android : layout_marginLeft ="8dp "
119 android : layout_marginTop="10dp">
120

121 <LinearLayout
122 android : layout_width="match_parent "
123 android : layout_height="wrap_content "
124 android : o r i e n t a t i o n =" v e r t i c a l "
125 android : background="#BFFFFFFF">
126

127 <ImageView
128 android : id="@+id / infoImgView "
129 android : layout_width="match_parent "
130 android : layout_height ="88dp "
131 android : layout_grav i ty=" cente r "
132 android : onCl ick=" gene ra lH i s t o ry "
133 app : srcCompat="@drawable/ h i s t o r y "
134 t o o l s : srcCompat="@drawable/ h i s t o r y " />
135

136 <TextView
137 android : id="@+id / textView5 "
138 android : layout_width="match_parent "
139 android : layout_height="wrap_content "
140 android : t ex t ="@str ing /menu_history "
141 android : textAlignment=" cente r "
142 android : textAppearance="@style /

TextAppearance . AppCompat . Display1 "
143 android : t extCo lor ="#000000"
144 android : t e x t S i z e ="25sp "
145 android : t e x t S t y l e ="bold "
146 android : g rav i ty =" cente r_hor i zonta l " />
147 </LinearLayout>
148 </androidx . cardview . widget . CardView>
149 </LinearLayout>
150 <Button
151 android : id="@+id /btnLogout "
152 android : layout_width=" f i l l _ p a r e n t "
153 android : layout_height="wrap_content "
154 android : layout_margin="22dp "
155 android : background="#d67601 "
156 android : t ex t ="@str ing / logout "
157 android : textAl lCaps=" f a l s e "
158 android : t extCo lor="# f f f "
159 android : t e x t S i z e ="18sp "
160 android : onCl ick=" logout "/>
161

162 <Button
163 android : id="@+id /btnLogIn "

102

5.3 – Layouts

164 android : layout_width=" f i l l _ p a r e n t "
165 android : layout_height="wrap_content "
166 android : layout_margin="22dp "
167 android : background="#d67601 "
168 android : t ex t ="@str ing / l o g i n "
169 android : textAl lCaps=" f a l s e "
170 android : t extCo lor="# f f f "
171 android : t e x t S i z e ="18sp "
172 android : onCl ick=" l og In "/>
173 </LinearLayout>
174 </Relat iveLayout>
175 </androidx . c o n s t r a i n t l a y o u t . widget . ConstraintLayout>

Listing 5.46: cntent_main.xml

nav_header_main.xml

This file is included by the side menu entry code and represents its other part.
Inside it only the string representing the currently logged in user can be seen.

1 <?xml ve r s i on ="1.0" encoding="utf −8"?>
2 <LinearLayout xmlns : android="http :// schemas . android . com/apk/ r e s /

android "
3 xmlns : app="http :// schemas . android . com/apk/ res−auto "
4 xmlns : t o o l s ="http :// schemas . android . com/ t o o l s "
5 android : layout_width="match_parent "
6 android : layout_height="@dimen/nav_header_height "
7 android : background="@drawable/side_nav_bar "
8 android : g rav i ty ="bottom "
9 android : o r i e n t a t i o n =" v e r t i c a l "

10 android : paddingLeft="@dimen/ act iv i ty_hor i zonta l_marg in "
11 android : paddingTop="@dimen/ ac t iv i ty_ver t i ca l_marg in "
12 android : paddingRight="@dimen/ act iv i ty_hor i zonta l_marg in "
13 android : paddingBottom="@dimen/ act iv i ty_ver t i ca l_marg in "
14 android : backgroundTint="@color / co lorPr imary "
15 android : theme="@style /ThemeOverlay . AppCompat . Dark">
16

17 <TextView
18 android : id="@+id /nav_email "
19 android : layout_width="wrap_content "
20 android : layout_height="wrap_content "
21 android : t ex t ="email@email . com" />
22

23 </LinearLayout>

Listing 5.47: nav_header_main.xml

103

Mobile application implementation

activity_main_drawer.xml

This file contained within the "res/menu" folder specifies the choice options visible
in the side menu. The insertion takes place through the use of "item" tags within
the "group" tag.

1 <?xml ve r s i on ="1.0" encoding="utf −8"?>
2 <menu xmlns : android="http :// schemas . android . com/apk/ r e s / android "
3 xmlns : t o o l s ="http :// schemas . android . com/ t o o l s "
4 t o o l s : showIn="navigation_view">
5

6 <group android : checkableBehavior=" s i n g l e ">
7 <item
8 android : id="@+id / p r o f i l e "
9 android : i con ="@drawable/ user "

10 android : t i t l e ="@str ing / menu_profi le " />
11 <item
12 android : id="@+id / t o o l s "
13 android : i con ="@drawable/ic_menu_manage "
14 android : t i t l e ="@str ing /menu_tools " />
15 </group>
16 </menu>

Listing 5.48: activity_main_drawer.xml

5.3.2 activity_pollution.xml
The layout mainly consists of the MapView tag which has the task of inserting the
map inside it. This occupies the entire visible surface on the screen. In addition,
two buttons are added within a LinearLayout with higher elevetion to be visible
above the map. Finally, there is the progress bar to indicate its loading.

1 <?xml ve r s i on ="1.0" encoding="utf −8"?>
2 <androidx . c o n s t r a i n t l a y o u t . widget . ConstraintLayout
3 xmlns : android="http :// schemas . android . com/apk/ r e s / android "
4 xmlns : app="http :// schemas . android . com/apk/ res−auto "
5 xmlns : t o o l s ="http :// schemas . android . com/ t o o l s "
6 android : o r i e n t a t i o n =" v e r t i c a l "
7 android : layout_width=" f i l l _ p a r e n t "
8 android : layout_height=" f i l l _ p a r e n t ">
9

10 <LinearLayout
11 android : layout_width="match_parent "
12 android : layout_height="wrap_content "
13 app : layout_const ra intStar t_toStar tOf ="parent "
14 app : layout_constraintTop_toTopOf="parent "
15 android : layout_marginTop="10dp "
16 android : layout_marginStart ="10dp "

104

5.3 – Layouts

17 android : layout_marginEnd="10dp "
18 android : e l e v a t i o n ="7dp">
19

20 <Button
21 android : id="@+id /btnpm25 "
22 android : layout_width="wrap_content "
23 android : layout_height="wrap_content "
24 android : layout_weight ="1"
25 android : t ex t ="@str ing /pm25"
26 android : t extCo lor="# f f f "
27 android : onCl ick="pm25"/>
28

29 <Button
30 android : id="@+id /btnpm10 "
31 android : layout_width="wrap_content "
32 android : layout_height="wrap_content "
33 android : layout_weight ="1"
34 android : t ex t ="@str ing /pm10"
35 android : t extCo lor="# f f f "
36 android : onCl ick="pm10"/>
37 </LinearLayout>
38

39 <org . osmdroid . views . MapView
40 android : id="@+id /map"
41 android : layout_width=" f i l l _ p a r e n t "
42 android : layout_height=" f i l l _ p a r e n t "
43 app : layout_constraintBottom_toBottomOf="parent "
44 app : layout_constraintEnd_toEndOf="parent "
45 app : layout_const ra intStar t_toStar tOf ="parent "
46 app : layout_constraintTop_toTopOf="parent " />
47

48 <ProgressBar
49 android : id="@+id / loadData "
50 s t y l e ="? android : a t t r / progre s sBarSty l e "
51 android : layout_width="wrap_content "
52 android : layout_height="wrap_content "
53 android : v i s i b i l i t y ="gone "
54 android : e l e v a t i o n ="7dp "
55 app : layout_constraintBottom_toBottomOf="parent "
56 app : layout_constraintEnd_toEndOf="parent "
57 app : layout_const ra intStar t_toStar tOf ="parent "
58 app : layout_constraintTop_toTopOf="parent " />
59

60 </androidx . c o n s t r a i n t l a y o u t . widget . ConstraintLayout>

Listing 5.49: activity_pollution.xml

105

Mobile application implementation

5.3.3 activity_history.xml
The content of this layout is inserted inside a ScrollView to allow the user to scroll
the content of the view. It consists of a spinner for choosing the board id whose
data must be displayed followed by three identical pieces of code for the insertion of
a descriptive string, the chart and two buttons to give the possibility to download
the content. Charts are added thanks to the LineChart tag contained within the
external MPAndroidChart library.

1 <?xml ve r s i on ="1.0" encoding="utf −8"?>
2 <androidx . c o n s t r a i n t l a y o u t . widget . ConstraintLayout
3 xmlns : android="http :// schemas . android . com/apk/ r e s / android "
4 xmlns : app="http :// schemas . android . com/apk/ res−auto "
5 xmlns : t o o l s ="http :// schemas . android . com/ t o o l s "
6 android : layout_width="match_parent "
7 android : layout_height="match_parent "
8 android : background="@color / co lorAccent ">
9

10 <Scro l lV iew
11 android : layout_width="match_parent "
12 android : layout_height="match_parent">
13

14 <LinearLayout
15 android : layout_width="match_parent "
16 android : layout_height="wrap_content "
17 android : o r i e n t a t i o n =" v e r t i c a l "
18 android : textAlignment=" cente r "
19 android : g rav i ty =" cente r_hor i zonta l ">
20

21 <TextView
22 android : id="@+id / textView "
23 android : layout_width="wrap_content "
24 android : layout_height="wrap_content "
25 android : fontFamily="@font/ berkshire_swash "
26 android : t ex t ="@str ing / l a s t _ h i s t o r y "
27 android : t extCo lor ="@android : c o l o r / white "
28 android : t e x t S i z e ="36sp "
29 android : paddingTop="20dp "
30 android : paddingBottom="20dp"/>
31

32 <Relat iveLayout
33 android : id="@+id / r e l a t i v eLayout "
34 android : layout_width=" f i l l _ p a r e n t "
35 android : layout_height="wrap_content "
36 android : layout_marginStart ="8dp "
37 android : layout_marginTop="8dp "
38 android : layout_marginEnd="8dp "
39 android : layout_marginBottom="8dp "
40 android : background="# f f f "

106

5.3 – Layouts

41 android : o r i e n t a t i o n =" v e r t i c a l "
42 android : padding="20dp">
43

44 <LinearLayout
45 android : layout_width=" f i l l _ p a r e n t "
46 android : layout_height="wrap_content "
47 android : o r i e n t a t i o n =" v e r t i c a l ">
48

49

50

51 <LinearLayout
52 android : layout_width="match_parent "
53 android : layout_height="match_parent "
54 android : o r i e n t a t i o n =" h o r i z o n t a l "
55 android : layout_marginTop="10dp">
56

57 <TextView
58 android : id="@+id / textView2 "
59 android : layout_width="wrap_content "
60 android : layout_height="match_parent "
61 android : t ex t ="@str ing /board_id "
62 android : t e x t S i z e ="16dp"/>
63

64 <Spinner
65 android : id="@+id /spnBoards "
66 android : layout_width="match_parent "
67 android : layout_height="match_parent "
68 android : paddingLeft ="32dp "
69 android : s i n g l e L i n e =" true "
70 android : textAlignment=" cente r "
71 android : g rav i ty =" cente r_hor i zonta l "
72 android : layout_marginBottom="5dp"/>
73

74 </LinearLayout>
75

76

77 </LinearLayout>
78 </Relat iveLayout>
79

80 <TextView
81 android : id="@+id / txtCharts "
82 android : layout_width="wrap_content "
83 android : layout_height="match_parent "
84 android : t ex t ="@str ing / sensor_chart "
85 android : fontFamily="@font/ berkshire_swash "
86 android : t extCo lor ="@android : c o l o r / white "
87 android : t e x t S i z e ="16dp "
88 android : v i s i b i l i t y ="gone "
89 android : layout_marginBottom="8dp"/>

107

Mobile application implementation

90

91 <com . github . mikephi l . cha r t ing . char t s . LineChart
92 android : id="@+id / chart "
93 android : layout_width="match_parent "
94 android : layout_height ="300dp "
95 android : v i s i b i l i t y ="gone "
96 android : layout_marginStart ="8dp "
97 android : layout_marginEnd="8dp "
98 android : layout_marginBottom="4dp"/>
99

100 <LinearLayout
101 android : id="@+id / btnSens "
102 android : layout_width="wrap_content "
103 android : layout_height="match_parent "
104 android : v i s i b i l i t y ="gone "
105 android : layout_marginBottom="10dp">
106

107 <Button
108 android : id="@+id /btnSaveSensImage "
109 android : layout_height="wrap_content "
110 android : layout_width="wrap_content "
111 android : t ex t ="@str ing /save_image "
112 android : onCl ick="saveSensImage "
113 />
114

115 <Button
116 android : id="@+id /btnSaveSensData "
117 android : layout_height="wrap_content "
118 android : layout_width="wrap_content "
119 android : t ex t ="@str ing / save_data "
120 android : onCl ick="saveSensData "
121 />
122

123 </LinearLayout>
124

125 <TextView
126 android : id="@+id /txtChartT "
127 android : layout_width="wrap_content "
128 android : layout_height="match_parent "
129 android : t ex t ="@str ing /temp_chart "
130 android : fontFamily="@font/ berkshire_swash "
131 android : t extCo lor ="@android : c o l o r / white "
132 android : t e x t S i z e ="16dp "
133 android : v i s i b i l i t y ="gone "
134 android : layout_marginBottom="8dp"/>
135

136 <com . github . mikephi l . cha r t ing . char t s . LineChart
137 android : id="@+id /chartTemp "
138 android : layout_width="match_parent "

108

5.3 – Layouts

139 android : layout_height ="300dp "
140 android : v i s i b i l i t y ="gone "
141 android : layout_marginStart ="8dp "
142 android : layout_marginEnd="8dp "
143 android : layout_marginBottom="4dp"/>
144

145 <LinearLayout
146 android : id="@+id /btnTemp"
147 android : layout_width="wrap_content "
148 android : layout_height="match_parent "
149 android : v i s i b i l i t y ="gone "
150 android : layout_marginBottom="10dp">
151

152 <Button
153 android : id="@+id /btnSaveTempImage "
154 android : layout_height="wrap_content "
155 android : layout_width="wrap_content "
156 android : t ex t ="@str ing /save_image "
157 android : onCl ick="saveTempImage "
158 />
159

160 <Button
161 android : id="@+id /btnSaveTempData "
162 android : layout_height="wrap_content "
163 android : layout_width="wrap_content "
164 android : t ex t ="@str ing / save_data "
165 android : onCl ick="saveTempData "
166 />
167

168 </LinearLayout>
169

170 <TextView
171 android : id="@+id /txtChartH "
172 android : layout_width="wrap_content "
173 android : layout_height="match_parent "
174 android : t ex t ="@str ing / humidity_chart "
175 android : fontFamily="@font/ berkshire_swash "
176 android : t extCo lor ="@android : c o l o r / white "
177 android : t e x t S i z e ="16dp "
178 android : v i s i b i l i t y ="gone "
179 android : layout_marginBottom="8dp"/>
180

181 <com . github . mikephi l . cha r t ing . char t s . LineChart
182 android : id="@+id / chartHumidity "
183 android : layout_width="match_parent "
184 android : layout_height ="300dp "
185 android : v i s i b i l i t y ="gone "
186 android : layout_marginStart ="8dp "
187 android : layout_marginEnd="8dp "

109

Mobile application implementation

188 android : layout_marginBottom="4dp"/>
189

190 <LinearLayout
191 android : id="@+id /btnHumidity "
192 android : layout_width="wrap_content "
193 android : layout_height="match_parent "
194 android : v i s i b i l i t y ="gone "
195 android : layout_marginBottom="10dp">
196

197 <Button
198 android : id="@+id /btnSaveHumidityImage "
199 android : layout_height="wrap_content "
200 android : layout_width="wrap_content "
201 android : t ex t ="@str ing /save_image "
202 android : onCl ick="saveHumidityImage "
203 />
204

205 <Button
206 android : id="@+id /btnSaveHumidityData "
207 android : layout_height="wrap_content "
208 android : layout_width="wrap_content "
209 android : t ex t ="@str ing / save_data "
210 android : onCl ick="saveHumidityData "
211 />
212

213 </LinearLayout>
214

215

216

217 </LinearLayout>
218 </Scrol lView>
219

220 <ProgressBar
221 android : id="@+id / loadData "
222 s t y l e ="? android : a t t r / progre s sBarSty l e "
223 android : layout_width="wrap_content "
224 android : layout_height="wrap_content "
225 android : v i s i b i l i t y ="gone "
226 android : e l e v a t i o n ="7dp "
227 app : layout_constraintEnd_toEndOf="parent "
228 app : layout_const ra intStar t_toStar tOf ="parent "
229 app : layout_constraintTop_toTopOf="parent "
230 android : layout_marginTop="115dp"/>
231

232

233 </androidx . c o n s t r a i n t l a y o u t . widget . ConstraintLayout>

Listing 5.50: activity_history.xml

110

5.4 – Values

5.4 Values
This folder contains xml files that specify some static layout resources. Among the
most important files are colors.xml and strings.xml.

Within the first, the colors used by the various file layouts can be defined. The
strength of using this approach lies in the fact that by changing a single resource it
is possible to change the colors in the entire application.

1 <?xml ve r s i on ="1.0" encoding="utf −8"?>
2 <resource s >
3 <c o l o r name="colorPr imary ">#125688</ co lo r >
4 <c o l o r name="colorPrimaryDark">#125688</ co lo r >
5 <c o l o r name="textColorPrimary">#FFFFFF</co lo r >
6 <c o l o r name="windowBackground">#FFFFFF</co lo r >
7 <c o l o r name="co lorAccent">#d67601</co lo r >
8 <c o l o r name=" s e l e c t e d ">#8CFF8C00</co lo r >
9 </resource s >

Listing 5.51: colors.xml

The second file defines all the strings displayed in the various layouts. By
default, the application uses the strings.xml file but the corresponding files for each
language the application want to support can also be defined. This approach allows
the application to show the strings in every possible language by defining them
within a single file without having to change all the layouts. Below the definition
of some of the strings available for this application can be seen.

1 <s t r i n g name="menu_tools">Tools </s t r i ng >
2 <s t r i n g name="menu_history">History </s t r i ng >
3 <s t r i n g name=" l o g i n ">Login</s t r i ng >
4 <s t r i n g name=" logout ">Logout</s t r i ng >
5 <s t r i n g name="emai l ">Email</s t r i ng >
6 <s t r i n g name="pass ">Password</s t r i ng >
7 <s t r i n g name="notUser">Not an User?</ s t r i ng >
8 <s t r i n g name="welcome_back">Welcome Back</s t r i ng >
9 <s t r i n g name="notImplemented">This f e a t u r e w i l l be added soon</

s t r i ng >
10 <s t r i n g name=" e d i t ">EDIT</s t r i ng >
11 <s t r i n g name="save">SAVE</s t r i ng >

Listing 5.52: strings.xml

5.5 build.gradle(app)
This configuration file allows the application to link some dependencies of external
libraries within the project by inserting them within the "dependencies" tag.

111

Mobile application implementation

The external libraries used by this application are eg. "MPAndroidChart" or
"osmdroid" which respectively allow the creation of charts and management of the
map. The code below displays the process of adding external dependencies.

1 dependenc ies {
2 implementation f i l e T r e e (d i r : ’ l i b s ’ , i n c lude : [’ ∗ . j a r ’])
3 implementation ’ androidx . appcompat : appcompat : 1 . 0 . 2 ’
4 implementation ’ androidx . l egacy : legacy−support−v4 : 1 . 0 . 0 ’
5 implementation ’com . goog l e . android . mate r i a l : mate r i a l : 1 . 0 . 0 ’
6 implementation ’ androidx . c o n s t r a i n t l a y o u t : c o n s t r a i n t l a y o u t : 1 . 1 . 3 ’
7 implementation ’ androidx . nav igat i on : nav igat ion −fragment : 2 . 0 . 0 ’
8 implementation ’ androidx . nav igat i on : nav igat ion −ui : 2 . 0 . 0 ’
9 implementation ’ androidx . l i f e c y c l e : l i f e c y c l e −ex t en s i on s : 2 . 0 . 0 ’

10 implementation ’com . android . v o l l e y : v o l l e y : 1 . 1 . 1 ’
11 test Implementat ion ’ j u n i t : j u n i t : 4 . 1 2 ’
12 androidTestImplementation ’ androidx . t e s t . ext : j u n i t : 1 . 1 . 1 ’
13 androidTestImplementation ’ androidx . t e s t . e s p r e s s o : e spre s so −core

: 3 . 2 . 0 ’
14 implementation ’ org . osmdroid : osmdroid−android : 6 . 0 . 1 ’
15 implementation ’com . goog l e . android . gms : play−s e r v i c e s −l o c a t i o n

: 1 7 . 0 . 0 ’
16 implementation ’com . github . Phi lJay : MPAndroidChart : v3 . 1 . 0 ’
17 }

Listing 5.53: dependencies

112

Chapter 6

Testing and evaluation

This chapter describes the testing phase of the thesis project, explaining how the
tests were performed together with an analysis of the obtained results.

6.1 Testing context
During the testing phase of the project, all attention was paid to the web service.
Due to the way the work has been structured, the server is the central point of the
entire data distribution system and it is its responsibility to perform all the tasks
that require long computation time, as well as keeping the data updated within
the DB. This means that the stability of the backend is a priority and needs more
attention during the testing phase. It should also be noted that the tests for the
correct functioning of the server can be performed locally, by writing a testing
client capable of sending http requests, as there is only one instance of the server,
while to test the mobile application it is first necessary to run the deployment of
the web service, subsequently distributing the application to a group of reliable
users within the Politecnico di Torino to check its operation.

The tests involving a large number of people is very difficult to organize so all
the attention was focused on the backend.

6.2 Testing scripts
To test the functioning of the web service, two scripts were written, located in the
"testing_client" folder. The task of the first program (testPUT.py) is to send many
simultaneous http requests to the server to check that they are executed correctly.

Since the web service, in addition to being a data distribution system, is mainly
a measurement collection system with the task of making them permanent on
the server, the requests forwarded by the testing client to the backend are PUT

113

Testing and evaluation

requests to the address that ends with “/measure”, this means that they have to
insert data into the DB and they represents one of the most frequent requests
received by the server. By using requests of this type, it is also possible to check if
the data is inserted correctly within the database.

The script inside contains a function called "add_data" which has the task of
generating random measurements for board 0 and inserting them both within a
local DB and sending them with the http PUT request to the web service. The
number of data generated can be specified by setting the number of iterations
within the for loop.

1 de f add_data (index) :
2 num = random . rand int (2 , 5)
3 time . s l e e p (num)
4 pr in t (" Thread " + s t r (index) + " s l e e p s " + s t r (num) + " seconds

")
5

6 t_conn = s q l i t e 3 . connect (’ TestDB . db ’ , t imeout =600)
7 t_c = t_conn . cur so r ()
8

9 # v a r i a b l e s to c r e a t e a we l l formatted j son f i l e to send
10 data = {}
11 l = []
12

13 # f o r to generate random data and save then in to the l o c a l db
14 f o r x in range (3600) :
15 n = random . rand int (2 , 9)
16 obj = {" sensorID " : 12 , " timestamp " : 2 , " data " : n , " geoHash " :

" sadsad " , " a l t i t u d e " : 1222}
17 t_c . execute (’ ’ ’
18 INSERT INTO measure_table (sensorID , timestamp , data , geoHash

, a l t i t u d e)
19 VALUES (12 , 2 , ? , " sadsad " , 1222)
20 ’ ’ ’ , [n])
21 l . append (obj)
22 obj = {" sensorID " : 14 , " timestamp " : 2 , " data " : n , " geoHash " :

" sadsad " , " a l t i t u d e " : 1222}
23 t_c . execute (’ ’ ’
24 INSERT INTO measure_table (sensorID , timestamp , data ,

geoHash , a l t i t u d e)
25 VALUES (14 , 2 , ? , " sadsad " , 1222)
26 ’ ’ ’ , [n])
27 l . append (obj)
28 obj = {" sensorID " : 16 , " timestamp " : 2 , " data " : n , " geoHash " :

" sadsad " , " a l t i t u d e " : 1222}
29 t_c . execute (’ ’ ’
30 INSERT INTO measure_table (sensorID , timestamp , data ,

geoHash , a l t i t u d e)
31 VALUES (16 , 2 , ? , " sadsad " , 1222)

114

6.2 – Testing scripts

32 ’ ’ ’ , [n])
33 l . append (obj)
34 obj = {" sensorID " : 18 , " timestamp " : 2 , " data " : n , " geoHash " :

" sadsad " , " a l t i t u d e " : 1222}
35 t_c . execute (’ ’ ’
36 INSERT INTO measure_table (sensorID , timestamp , data ,

geoHash , a l t i t u d e)
37 VALUES (18 , 2 , ? , " sadsad " , 1222)
38 ’ ’ ’ , [n])
39 l . append (obj)
40 n = random . rand int (2 , 9)
41 obj = {" sensorID " : 13 , " timestamp " : 2 , " data " : n , " geoHash " :

" sadsad " , " a l t i t u d e " : 1222}
42 t_c . execute (’ ’ ’
43 INSERT INTO measure_table (sensorID , timestamp , data ,

geoHash , a l t i t u d e)
44 VALUES (13 , 2 , ? , " sadsad " , 1222)
45 ’ ’ ’ , [n])
46 l . append (obj)
47 obj = {" sensorID " : 15 , " timestamp " : 2 , " data " : n , " geoHash " :

" sadsad " , " a l t i t u d e " : 1222}
48 t_c . execute (’ ’ ’
49 INSERT INTO measure_table (sensorID , timestamp , data ,

geoHash , a l t i t u d e)
50 VALUES (15 , 2 , ? , " sadsad " , 1222)
51 ’ ’ ’ , [n])
52 l . append (obj)
53 obj = {" sensorID " : 17 , " timestamp " : 2 , " data " : n , " geoHash " :

" sadsad " , " a l t i t u d e " : 1222}
54 t_c . execute (’ ’ ’
55 INSERT INTO measure_table (sensorID , timestamp , data ,

geoHash , a l t i t u d e)
56 VALUES (17 , 2 , ? , " sadsad " , 1222)
57 ’ ’ ’ , [n])
58 l . append (obj)
59 obj = {" sensorID " : 19 , " timestamp " : 2 , " data " : n , " geoHash " :

" sadsad " , " a l t i t u d e " : 1222}
60 t_c . execute (’ ’ ’
61 INSERT INTO measure_table (sensorID , timestamp , data ,

geoHash , a l t i t u d e)
62 VALUES (19 , 2 , ? , " sadsad " , 1222)
63 ’ ’ ’ , [n])
64 l . append (obj)
65 n = random . rand int (19 , 25)
66 obj = {" sensorID " : 20 , " timestamp " : 2 , " data " : n , " geoHash " :

" sadsad " , " a l t i t u d e " : 1222}
67 t_c . execute (’ ’ ’
68 INSERT INTO measure_table (sensorID , timestamp , data ,

geoHash , a l t i t u d e)

115

Testing and evaluation

69 VALUES (20 , 2 , ? , " sadsad " , 1222)
70 ’ ’ ’ , [n])
71 l . append (obj)
72 obj = {" sensorID " : 21 , " timestamp " : 2 , " data " : 23323 , "

geoHash " : " sadsad " , " a l t i t u d e " : 1222}
73 t_c . execute (’ ’ ’
74 INSERT INTO measure_table (sensorID , timestamp , data ,

geoHash , a l t i t u d e)
75 VALUES (21 , 2 , ? , " sadsad " , 1222)
76 ’ ’ ’ , [n])
77 l . append (obj)
78 t_conn . commit ()
79

80 # c r e a t e the j son data
81 data [’ data_block ’] = l
82 json_data = json . dumps(data)
83

84 re sponse = reque s t s . put (ur l , data=json_data , headers=headers)
85

86 r e s = response . j son ()
87

88 pr in t (r e s)
89

90 pr in t (" Thread " + s t r (index) + " f i n i s h e d ")

Listing 6.1: add_data function

The main code of the script has the task of setting the configuration parameters
of the connection to the local DB, creating it if necessary, together with the
connection parameters to the web service.

1 # c r e a t e the u r l amd the headers to send data to the s e r v e r
2 u r l = ’ http : / / 1 2 7 . 0 . 0 . 1 : 5 0 0 0 / ws/measure ’
3 headers = {" Content−Type " : " a p p l i c a t i o n / j son " ,
4 " x−access −token " : " eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9 .

eyJ1c2VyX2lkIjo1MSwiY291bnRlciI6MX0 .
gBzzmxxxn3TIcB87VKIv1MrfuGEcUw5tBf−FeJGgIlo "}

5

6 # c r e a t e l o c a l DB
7 conn = s q l i t e 3 . connect (’ TestDB . db ’)
8 c = conn . cur so r ()
9 # drop the measure_table f i r s t

10 c . execute (’ ’ ’
11 DROP TABLE IF EXISTS measure_table
12 ’ ’ ’)
13 conn . commit ()
14 # c r e a t e the l o c a l measure_table
15 c . execute (’ ’ ’CREATE TABLE measure_table

116

6.2 – Testing scripts

16 ([measureID] INTEGER PRIMARY KEY, [sensorID] INTEGER , [
timestamp] in t ege r , [data] FLOAT, [geoHash] VARCHAR(12) , [a l t i t u d e
] FLOAT) ’ ’ ’)

17 conn . commit ()

Listing 6.2: setting parameters

At this point some parallel program threads are generated that are able to
execute the “add_data” function, thus simulating the clients that is sending data
to the web service. Thanks to the use of two for loops it is possible to specify how
many threads we want to run simultaneously and how many times the procedure
must be repeated.

1 f o r z in range (2) :
2 threads = []
3

4 # c r e a t e the threads and s t a r t them
5 f o r i in range (5) :
6 t = Thread (t a r g e t=add_data , args=(i ,))
7 threads . append (t)
8 t . s t a r t ()
9

10 # wait f o r the threads
11 f o r x in threads :
12 x . j o i n ()

Listing 6.3: creating threads

Finally, the testing client queries the local database to obtain the number of
data inserted inside it. This value will subsequently allow us to check if the same
number of data has been entered into the DB contacted by the backend.

1 # di sp l ay the number o f raws in the measure_table
2 c . execute (’ ’ ’
3 SELECT COUNT(∗)
4 FROM measure_table
5 WHERE timestamp = 2
6 ’ ’ ’)
7 pr in t (c . f e t c h a l l ())

Listing 6.4: quering local DB

The second script has the task of testing the latency and throughput of the
web service, simulating the execution of a variable number of clients through the
use of different threads. The numebr of simulated clients as well as the number of
requests to make can be setted at the beginning of the script.

1 threads = []
2

3 t0 = time . time ()

117

Testing and evaluation

4

5 # c r e a t e the threads and s t a r t them
6 f o r i in range (c l i e n t s) :
7 t = Thread (t a r g e t=send_requests , a rgs=(i ,))
8 threads . append (t)
9 t . s t a r t ()

10

11

12 # wait f o r the threads
13 f o r p in threads :
14 p . j o i n ()
15

16 t1 = time . time ()
17

18 t o t a l = t1 − t0
19

20 l a t = gen_latency / c l i e n t s
21 throughput = n_requests / t o t a l
22

23

24 pr in t (s t r (l a t))
25 pr in t (s t r (throughput))

Listing 6.5: creation of multiple threads

In the code visible above it is also possible to see that how the throughput
and medium latency is calculated, noting that the time interval for sending and
receiving all the requests is measured at this point.

It is also visible that each thread executes the “send_requests” function which
has the task of generating GET requests and sending them to the web service. The
number of requests to be send is splitted between all the generated clients Each
request concerns the measurements of the day "2018-11-10", filtering the data so as
to obtain only those relating to particles type pm2.5 and board number 8. This
type of request was used as it is one of the heavier on the server.

As requests are generated and sent to the web service, the response time for
each is measured, establishing is this way the latency value.

1 de f send_requests (c l i en t_ index) :
2 g l o b a l gen_latency
3 x = 0
4

5 u r l = ’ http : / / 1 2 7 . 0 . 0 . 1 : 5 0 0 0 / ws/measure/pm25/8 ’
6 headers = {" Content−Type " : " a p p l i c a t i o n / j son " ,
7 " x−access −token " : "

eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9 .
eyJ1c2VyX2lkIjoxMTQsImNvdW50ZXIiOjR9 .
WAYJy1ypOamJCbvoap25MPfA29MqZADNTFSgMco7tLE" ,

8 " s t a r t " : "2018 −11 −10" ,

118

6.3 – Testing machine

9 " end " : "2018 −11 −10" ,
10 " board " : " True " ,
11 " f i l t e r " : " True " ,
12 " l a s t −two " : " Fa l se " ,
13 " from " : "9 "}
14

15 n = n_requests / c l i e n t s
16

17 f o r j in range (i n t (n)) :
18 t2 = time . time ()
19 re sponse = reque s t s . get (ur l , headers=headers)
20 r e s = response . j son ()
21 t3 = time . time ()
22 p a r t i a l = t3 − t2
23 x = x + p a r t i a l
24

25

26 l a t ency = x / (n_requests / c l i e n t s)
27

28 gen_latency = gen_latency + la t ency
29

30 pr in t (" C l i en t " + s t r (c l i en t_ index) + " : \n " + " l a t ency : " + s t r (
l a t ency))

Listing 6.6: send_requests function

6.3 Testing machine
During all the tests, both regarding the web service and the testing client programs
has been executed on a personal computer with the Windows 10 operating system
with 64-bit architecture installed. The host machine is equipped with an Intel
Core i7-7700 HQ processor with 2.8 GHz clock frequency and have 16 GB of RAM
memory.

6.4 Testing procedure
Once the web service has been started on the host machine and after waiting for
the backend to calculate the regression coefficients for every sensor for the first
time, the server testing process has been as described in the following subsections.

6.4.1 First latency/throughput testing
During this phase the testing script (testGET) was performed exactly three times,
configuring the number of simulated clients to 1, 2 and 4 respectively and the

119

Testing and evaluation

number of request to be sent to 12. This test was performed while the web service
is free from any other request in order to check its performances, latency and
throughput, in the best case.

6.4.2 First inserting data script execution
In this phase the “testPUT.py” script was executed, configured to create 5 separate
threads twice, which sent 3600 data per request to the server. This process was
designed to keep the web service busy so that to be able to perform the next testing
steps.

6.4.3 Second latency/throughput testing
In this phase the “testGET” script was run again three times, configured in the
same way as it was in its previous execution. In this case, however, the web service
is still busy by the execution of PUT type requests made by the second testing
script, thus allowing to obtain data regarding the average latency and throughput
when the server remains under pressure.

6.4.4 Cheking the inserted data
In this phase, it is checked whether the data generated at random by the testing
client have been correctly inserted into the web service DB. To perform this test,
it was checked whether the amount of data entered in the local DB of the testing
client, and displayed at the end of the script execution, is equal to the amount of
data inserted in the server DB.

6.4.5 Second execution of the inserting data client
In this phase, the “testGET.py” script was run again with different configuration
parameters in order to load, through a single execution of 5 separate threads, a
big amount of data for each request sent to the server. In fact, each thread had
the task of generating 36,000 samples of random data, corresponding to one hour
of measurements on a single board. This test was necessary to check if the web
service is able handle large data inserting requests.

120

6.5 – Results

6.5 Results
6.5.1 Latency
From the results obtained during the tests it can be observed that the latency is
strictly dependent on the number of clients running simultaneously. Both in the
case of free and busy servers, the increase is considerable[6.1].

This behavior can be generated by the fact that the execution of the web service
and the two test scripts takes place on the same physical machine that does not
have the same performance as a computer set up to host the backend. For this
reason, the results obtained can be considered satisfactory since even in the worst
case the latency slightly exceeds one second; which means acceptable waiting times
for the client. From the tests it is also possible to notice how the latency undergoes
a slight degradation, of about 0.2s, when the server is busy, which means that the
drop in performance is acceptable, especially on a personal computer.

Figure 6.1: Latency results

6.5.2 Throughput
The results obtained in the tests[6.2] show that the throughput is less dependent
on the number of clients running at the same time, but more linked to the current
situation of the web service. In fact, by analyzing the results obtained, it is
possible to note that the performance case due to the increase in the number of
clients is always lower than the case due to the occupation of the server. In both

121

Testing and evaluation

cases, however, the results can be considered satisfactory as the degradation in
performance is not so significant, especially considering the fact of running on a
personal computer.

Figure 6.2: throughput results

6.5.3 Correct insertion of data

Analyzing also the aspect of correct data entry within the DB, it can be seen
that the first execution of the testing client introduces the creation of 36,000 data
records[fig.6.3] within the "TestDB" local to the script. Observing in the meanwhile
how the number of records has changed inside the "measure_table" table of the
web service data base, before[fig.6.4] and after[fig.6.5] the execution of the script, it
can be seen that the number has changed exactly of 36000 units and the data have
been entered correctly.

Figure 6.3: Local DB records

122

6.5 – Results

Figure 6.4: Number of record before script execution

Figure 6.5: Number of record after script execution

From the second execution of the testing client it is possible to observe that
it caused the creation of 180000 data records in the local DB [fig. 6.6], and that,
after having deleted the random data previously inserted from the web service DB,
the number of records is varied by exactly the same amount[fig.6.7]. This test is to
be considered satisfactory as the server is able to enter data correctly even in large
quantities.

Figure 6.6: Local DB records after the second execution of the testing script

Figure 6.7: Number of records after the second execution of the script

123

124

Conclusions

The need to monitor environmental pollution is becoming increasingly important,
especially in large cities like Turin where the air quality, especially in the winter
period, can become very bad. Despite numerous efforts by the authorities, such as
car traffic regulations, which can also end up in a total block of traffic in cases of
critical pollution, the situation of air quality remains very worrying. For this reason,
citizens need to be aware of the quality of the air around them. The monitoring
systems of the city of Turin provide very accurate data but, being positioned only
in some strategic points of the agglomeration, they are unable to keep the citizen
informed about the state of the air in their closest proximity. From this arises the
need for a system capable of returning this kind of information to the citizens.

The data distribution system described in this thesis represents an easy and above
all immediate way to keep every citizen updated on the state of the surrounding
air quality. The use of an Android client for presenting data to the end user allows
access to information anywhere in the city. The mobile application also does not
appear to be expensive either in terms of battery consumption as it does not have
any processes running in the background or from the point of view of memory
usage as the data is not saved locally.

Since the central point of the entire system is based on the use of a REST web
service, and all data computation is performed remotely, the system is not tied
in any way to just using an Android application as a client for data visualization.
In fact, the project can be extended at any time by adding other clients based
on different operating systems or by creating a website. Moreover, thanks to the
modular architecture of the server, it is possible to add new features to the system
without affecting the existing code.

In the case of using the system in real situations, it is only necessary to deploy
the web service on a suitable server machine and distribute the client to citizens.
Once these two operations have been performed, the system is ready for use.

Considering all aspects of the project of this thesis, the data distribution system
turns out to be an effective way of informing citizens about air quality, also leaving
the doors open to numerous extensions to further improve its operation.

125

126

Bibliografy

[1] Client Server Architecture. url: https://cio-wiki.org/wiki/Client_
Server_Architecture.

[2] L’Agenzia. url: http://www.arpa.piemonte.it/chi-siamo/lagenzia.
[3] Using MySQL licensing: Open source license vs. commercial license. url:

https : / / searchitchannel . techtarget . com / feature / Using - MySQL -
licensing-Open-source-license-vs-commercial-license.

[4] S. Suehring. MySQL Bible. Wiley, 2002, p. 171.
[5] Foreword. url: https://flask.palletsprojects.com/en/1.1.x/forewor

d/.
[6] How do I create a .pyc file? url: http://effbot.org/pyfaq/how-do-i-

create-a-pyc-file.htm.
[7] PEP 206 – Python Advanced Library. url: https://www.python.org/dev/

peps/pep-0206/.
[8] THE 10 MOST POPULAR PROGRAMMING LANGUAGES TO LEARN

IN 2020. url: https://www.northeastern.edu/graduate/blog/most-
popular-programming-languages/.

[9] Web Services Architecture. url: https://www.w3.org/TR/ws-arch/.
[10] M. Masse. REST API Design Rulebook: Designing Consistent RESTful Web

Service Interfaces. O’Reilly Media, Inc, 2011, p. 5.
[11] REST, i pricipi dell’architettura. url: https://www.html.it/pag/19596/i-

principi-dellarchitettura-restful/.
[12] Mappare le azioni ’CRUD’ sui metodi HTTP. url: https://www.html.it/

pag/19597/mappare-le-azioni-crud-sui-metodi-http/.
[13] Stateless, autodefinizione e collegamenti tra risorse. url: https://www.

html.it/pag/19598/stateless-autodefinizione-e-collegamenti-tra-
risorse/.

127

https://cio-wiki.org/wiki/Client_Server_Architecture
https://cio-wiki.org/wiki/Client_Server_Architecture
http://www.arpa.piemonte.it/chi-siamo/lagenzia
https://searchitchannel.techtarget.com/feature/Using-MySQL-licensing-Open-source-license-vs-commercial-license
https://searchitchannel.techtarget.com/feature/Using-MySQL-licensing-Open-source-license-vs-commercial-license
https://flask.palletsprojects.com/en/1.1.x/foreword/
https://flask.palletsprojects.com/en/1.1.x/foreword/
http://effbot.org/pyfaq/how-do-i-create-a-pyc-file.htm
http://effbot.org/pyfaq/how-do-i-create-a-pyc-file.htm
https://www.python.org/dev/peps/pep-0206/
https://www.python.org/dev/peps/pep-0206/
https://www.northeastern.edu/graduate/blog/most-popular-programming-languages/
https://www.northeastern.edu/graduate/blog/most-popular-programming-languages/
https://www.w3.org/TR/ws-arch/
https://www.html.it/pag/19596/i-principi-dellarchitettura-restful/
https://www.html.it/pag/19596/i-principi-dellarchitettura-restful/
https://www.html.it/pag/19597/mappare-le-azioni-crud-sui-metodi-http/
https://www.html.it/pag/19597/mappare-le-azioni-crud-sui-metodi-http/
https://www.html.it/pag/19598/stateless-autodefinizione-e-collegamenti-tra-risorse/
https://www.html.it/pag/19598/stateless-autodefinizione-e-collegamenti-tra-risorse/
https://www.html.it/pag/19598/stateless-autodefinizione-e-collegamenti-tra-risorse/

BIBLIOGRAFY

[14] 4 Maturity Levels of REST API Design. url: https://blog.restcase.com/
4-maturity-levels-of-rest-api-design/#:~:text=The%20Richards
on%20REST%20Maturity%20Model,3%20in%20this%20maturity%20model.
&text=However%2C%20all%20these%20are%20discussing,not%20the%
20design%20maturity%20level.

[15] Android Version Distribution statistics will now only be available in Android
Studio. url: https : / / www . xda - developers . com / android - version -
distribution-statistics-android-studio/.

[16] Mobile Operating System Market Share Worldwide. url: https://gs.statc
ounter.com/os-market-share/mobile/worldwide.

[17] Android application components. url: http://www.w3big.com/android/
android-application-components.html.

[18] Activity. url: https://developer.android.com/reference/android/
app/Activity.

[19] About OpenStreetMap. url: https://wiki.openstreetmap.org/wiki/
About_OpenStreetMap.

[20] Air Quality Index Scale and Color Legend. url: https://aqicn.org/scale/.
[21] The Python IDE for Professional Developers. url: https://www.jetbrains.

com/pycharm/.
[22] Modular Applications with Blueprints. url: https://flask.palletsprojec

ts.com/en/1.1.x/blueprints/.

128

https://blog.restcase.com/4-maturity-levels-of-rest-api-design/#:~:text=The%20Richardson%20REST%20Maturity%20Model,3%20in%20this%20maturity%20model.&text=However%2C%20all%20these%20are%20discussing,not%20the%20design%20maturity%20level
https://blog.restcase.com/4-maturity-levels-of-rest-api-design/#:~:text=The%20Richardson%20REST%20Maturity%20Model,3%20in%20this%20maturity%20model.&text=However%2C%20all%20these%20are%20discussing,not%20the%20design%20maturity%20level
https://blog.restcase.com/4-maturity-levels-of-rest-api-design/#:~:text=The%20Richardson%20REST%20Maturity%20Model,3%20in%20this%20maturity%20model.&text=However%2C%20all%20these%20are%20discussing,not%20the%20design%20maturity%20level
https://blog.restcase.com/4-maturity-levels-of-rest-api-design/#:~:text=The%20Richardson%20REST%20Maturity%20Model,3%20in%20this%20maturity%20model.&text=However%2C%20all%20these%20are%20discussing,not%20the%20design%20maturity%20level
https://blog.restcase.com/4-maturity-levels-of-rest-api-design/#:~:text=The%20Richardson%20REST%20Maturity%20Model,3%20in%20this%20maturity%20model.&text=However%2C%20all%20these%20are%20discussing,not%20the%20design%20maturity%20level
https://www.xda-developers.com/android-version-distribution-statistics-android-studio/
https://www.xda-developers.com/android-version-distribution-statistics-android-studio/
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide
http://www.w3big.com/android/android-application-components.html
http://www.w3big.com/android/android-application-components.html
https://developer.android.com/reference/android/app/Activity
https://developer.android.com/reference/android/app/Activity
https://wiki.openstreetmap.org/wiki/About_OpenStreetMap
https://wiki.openstreetmap.org/wiki/About_OpenStreetMap
https://aqicn.org/scale/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://flask.palletsprojects.com/en/1.1.x/blueprints/
https://flask.palletsprojects.com/en/1.1.x/blueprints/

	List of figures
	Introduction
	General context
	Thesis topic
	Starting situation
	Thesis organization

	Technologies and programming languages
	DBMS MySQL
	Flask
	Python
	RESTful WebServices
	WebServices
	REST

	Android
	Overview
	Android software development
	Android application components
	MPAndroidChart

	Open Street Map

	Platform architecture
	Remote server
	Accumulation of data concerning environmental pollution
	maintenance of auxiliary tables in the DB
	user management
	calculation of coefficients for data calibration
	returning the calibrated data to the client

	Android client
	Main screen
	Login screen
	Registration screen
	Polution screen
	Last 2 hour history screen
	General history screen
	Profile showing screen
	Profile editing screen
	Tools screen

	Server implementation
	Modularity
	Web service startup
	Initialization and configuration
	__init__.py
	config.py

	Utils.py
	Templates and static content
	Users module
	Controllers
	Models
	Forms
	Schemas

	Measures module
	Controllers
	Models
	Schemas
	Utils

	ws_checking_system module
	Other project folders

	Mobile application implementation
	Android manifest
	Activities
	MainActivity
	LoginActivity
	RegisterActivity
	PollutionActivity
	HistoryActivity
	GeneralHistoryActivity
	ShowProfileActivity
	EditProfileActivity
	ToolsActivity

	Layouts
	activity_main.xml
	activity_pollution.xml
	activity_history.xml

	Values
	build.gradle(app)

	Testing and evaluation
	Testing context
	Testing scripts
	Testing machine
	Testing procedure
	First latency/throughput testing
	First inserting data script execution
	Second latency/throughput testing
	Cheking the inserted data
	Second execution of the inserting data client

	Results
	Latency
	Throughput
	Correct insertion of data

	Conclusions
	Bibliografy

