POLITECNICO DI TORINO

Corso di Laurea Magistrale in Ingegneria Elettronica

Tesi di Laurea Magistrale

Power consumption measurements
during NVM tests and solutions
for low power embedded test code
development

Relatore:
Prof. Paolo BERNARDI

Candidato:
Lavinia degli ABBATI

October 2020

Acknowledgments

This project was done in cooperation with Infineon Technologies AG and Politec-
nico di Torino. First, I would like to express my sincere gratitude to my supervisor
Paolo Bernardi for his precious help and constant encouragement throughout these
six months. He has shared with me his knowledge and experience, and I will always
grateful to him for this.

Then I would like to thank Rudolf Ullmann for the great opportunity to do my
master thesis in Infineon Technologies, for the constant willingness to help me and
the huge professionalism.

Furthermore I want to thank everyone at Infineon who was involved into the project
and who gave me all the support and information I needed. Thanks to the whole
team of productive memory testing (PTE) and especially Michele Gasparini and
Georg Horn for having supported me patiently and for the enthusiasm for their job
that they have passed over to me.

Inoltre un sentito riconoscimento a tutte le persone conosciute in questi mesi di
permanenza a Monaco. In particolare a Fabio, con cui ho condiviso questi mesi di
quarantena lontana da casa. Sono stata davvero fortunata ad incontrare una per-
sona del tuo spessore, mi hai trasmesso tanto. Ti porteré con me e faré miei i tuoi
insegnamenti, soprattutto "non ti devi preoccupare per quello su cui non puoi avere
controllo”.

Grazie a P(i)erpaolo, che non riesce a liberarsi di me da ben due anni. Abbiamo
condiviso ogni successo, sogno, gioia o dolore e ora anche una pandemia mondiale.

A tutte le persone che ho incontrato durante la mia carriera universitaria, ma so-
prattutto a Giuliana che ho sempre adorato e stimato fin dal primo giorno e a quelle
tre pazze delle mie amiche: Elena, Eleonora e Sara. Siete state la mia famiglia per
ben quattro anni, come dico sempre porto un pé di ognuna di voi in me. Grazie per i
vostri saggi consigli, per esserci sempre state quando ho dovuto prendere importanti
decisioni e per aver sempre creduto in me. Ma soprattutto grazie per i vostri sorrisi,
che mi hanno accompagnato con gioia lungo tutto questo percorso universitario.

A Francesco, con cui ho condiviso sogni, aspirazioni e un pezzo di cuore. Grazie
perché sei stato fondamentale in questo percorso di crescita. Da te ho imparato
cosa cosa sia la "cazzimm” e di come sia essenziale avere grinta e una spiccata cu-
riosita per arrivare fin dove si vuole arrivare. Ti auguro il meglio.

Alla mia amica storica, la mia omonima, Lavinia. Tu sei qualcosa di eccezionale,
dovrei scrivere un diario intero di ringraziamenti per te. Grazie che nonostante
questi anni di lontananza fisica, tu ci sia sempre stata. Grazie pr ogni messaggio

'77

mandato prima di un esame :”falli secchi tigre!”. Ti voglio bene.

A Flaminia, una cara amica che mi accompagna nel mio percorso di crescita fin da
quando al liceo ripetevamo insieme la ” MMMitosi e la MMMeiosi”.

A Marco, che conosco oramai da piu di dieci anni e che é sempre presente nella mia
vita, nelle mie scelte e soprattutto quando deve rimettermi la testa a posto perché
sto perdendo la via.

Ad Elena, ancora, perché é dal liceo che mi é vicina e insieme abbiamo imparato a
rialzarci dopo ogni difficolta.

A Michele, che mi stimola intellettualmente e culinariamente.

A Leonardo, che mi ha spinto oltre i miei limiti, facendo sempre il tifo per me e dan-
domi la forza necessaria per affrontare ogni problema. Grazie per la tua pazienza e
generosita.

Ai miei nonni e ai miei zii, a chi portruppo non ¢’é pii. Rimpiango gli anni

universitari solo perche mi hanno rubato un pé di vita che avrei potuto passare con
voi, vi ringranzio per la vostra immensa fiducia nei miei confronti e per aver sempre
creduto nella vostra nipotina.
Infine alla mia famiglia, che ¢ la piti grande fortuna della mia vita. Nonostante tutti
questi anni di lontananza non mi avete mai fatto sentire sola, mi avete sostenuto
sempre e mi avete fatto sentire amata come qando eravamo tutti sotto lo stesso
tetto. Grazie mamma, papo e bea per il vostro amore e i vostri insegnamenti, ve
ne sar6 per sempre infinitamente grata. Tutto quello che fino ad ora ho raggiunto é
grazie a Voi.

II

Table of contents

Acknowledgments
1 Introduction
2 Volatile and Non Volatile Memories

9

2.1 Flash memories architecture
2.2 Flash memories testing

Working setup

3.1 Busy signal used as trigger
3.2 Interface for measurements automation
3.3 Current measurements

Test flow variants
4.1 Temperature and voltage supply
4.2 Operating frequency

NVM tests characterisation and power estimation
5.1 Reduction of the frequency of the polling activity .
5.2 Modified version of ftlib_sfr write()
5.3 Directly load/store into the memory using MEMS()
5.4 Analysis on the portability of the test code

Voltage droops
6.1 Software solutions
6.2 Hardware solutions

Watfer level
7.1 Wafer probeo
7.2 Measurements on the wafer

Deepening
8.1 Pump Monitor effect

Conclusion

A Python scripts

IIT

17
18
20
29

33
34
39

41
49
54
57
65

67
70
72

76
77
78

85
85

91

94

Bibliography 101

v

List of tables

4.1 Icore values changing fprro 40
5.1 Test time of erase, verify, program test 43
52 Results 64
7.1 Vcore droops for verifying a minisector 83
9.1 Icore peaks for verifying a minisector 92

List of figures

2.1
2.2
2.3
2.4
2.5
2.6
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
4.1
4.2
4.3
4.4
4.5
4.6
5.1
5.2
2.3
5.4
3.5
5.6
5.7
5.8
2.9
5.10
5.11
5.12
0.13
5.14
5.15

SRAM VS DRAM cell, 6
NOR-flash and NAND-flash architecture 8
Cell flash structure 9
FLASH cell erased or programmed 10
Memory BISTo 13
Setup 15
Erase test: Icore(yellow) ; Ivddp3(green) ; busy signal (pink) 18
Project flow for test automation 20
Example of measurements obtained with Python 23
Zoom in the test 23
Verify test measured from the oscilloscope 24
Verify test measured and plotted with Python 25
Current probe 31
Current probe and DUT 32
Indirect measure circuit oL 32
Thermostream 34
Icore at room temperature and at 125°C 35
Comparison between Icore at different supply levels 36
Vin dependencies 37
Icore during erase test for FF device at different supply values 38
[core during verify test at different operating frequency 40
Pinmap 42
Analog VTP connector 42
Structure of the erase testo 43
Structure of the program test 44
Zoom into the program test L. 45
Structure of the verify test 46
Zoom into the verify of two minisectors 47
ftlib_verify sse_mnsec.c with polling delay added into the TC 50
Icore during the verify of two minisectors with polling delayed of 100 50

Icore during the verify of two minisectors with polling delayed of 2000 51
Ftlib.pumprun() 52
Impact of polling delayed on the Icore during the erase test 53
New test code of the ftlib_sfrowrite() 54
Icore during erase test with new version of ftlib_sfr write() 55
Icore during verify test with new version of ftlib_sfr_write() 56

VI

5.16
5.17
0.18
5.19
5.20
5.21
5.22
0.23
6.1
6.2
6.3
6.4

6.5
6.6
6.7
6.8
6.9

6.10

6.11
7.1
7.2
7.3
7.4

7.5
7.6

7.7

7.8
7.9
7.10
8.1
8.2
8.3

8.4

ftlib_verify sse.mnsec.c 57

Icore(blue) during the verify of two mnsec using MEMS8() 59
Icore during the verify of two mnsec using MEMS() with delay of 2000 59
Erase test with MEMS8() 61
Verify test with MEMS8() 62
MEMS() VS ftlib_sfr read() duration 63
Program test with MEMS8() 63
Choice of the right family device. 65
Voltage peaks due to current jumps 67
Vcore droops and possible fail 68
Board schematic 69
Vcore reduction during the verify test with the original test code

(blue) and with the modified one(red) 70
Vcore during the verify of a mnsec 71
Vcore during the verify of a mnsec using directly MEMS8() 71
Round cables o 72
Flat cables o 72
Vcore from the board supplied by flat cables during the initial part

of the verify testo 73
Vcore from the board with bulk capacitance and flat cables during

the initial part of the verify test 74
Vcore with MEMS(), bulk C and flat cables 75
Manufacturing process of basic silicon wafers 76
Picoprobes and picopads L 7
Wafer test system 78
Verify w the initial locking of the PLL: Vcore (yellow) and Icore

(greem) 79
Verify w/o locking of the PLL: Vcore (yellow) and Icore (green) . . . 80
Vcore during the verify w/ and w/o feedback measured from the

board (yellow) and from the wafer (red and blue) 81
Vcore during the verify with C' = 470uf": Vcore from the board

(yellow) and from the wafer(pink) 82
Mnsec measured on the board 0L 82
Mnsec measured on the wafer w/ and w/o feedback loop 83
Mnsec measured on the wafer with C' =470pF 83
ftlib_pumpinit() oo 86
setInvalidOperation()o Lo 87
Icore on board level with PM enabled(green)/disabled(yellow) during

erase test Lo 88
Icore on board level with PM enabled (green)/disabled (yellow) dur-

ing program testo 89

VII

8.5 Icore on wafer level with PM enabled (green)/disabled (yellow) during
erase test L

VIII

Acronyms

NVM: Non Volatile Memory

IC : Integrated Circuit

DUT : Device Under Test

TT : Test Time

HW : Hardware

SW : Software

ROM : Read Only Memory

RAM : Random Access Memory

MBIST : Memory Built-In Self-Test

MSIST : Memory Software-Implemented Self-Test
LFSR : Linear-Feedback Shift-Register

MISR : Multiple-Input Signature Register

mnsec : Minisector

Vcore : Voltage supply on the core domain (1.30V)
Icore : Current that flows on the core domain
TC : Test Code

IX

Chapter 1

Introduction

In the last decades memories, the densest part of an Integrated Circuit, are increased
in both density and performances. Their evolving complexity is becoming more and
more important, this makes memory faults modeling and test algorithms areas of
significant concern.

In the 2016 it has started a project about the Non-Volatile-Memory (NVM) testing,
from the collaboration between the Politecnico of Torino and Infineon Technologies
AG. The first steps of this project concerned choosing the most appropriate fault

models, test algorithms and DFT techniques in order to achieve the highest fault

__ Fdetectedf aults

coverage (= m) in the smallest time possible and to have an IC easily

testable and diagnosable.

The last part of this project started in March 2020 with the goal of validating the
tests on the real device, in particular doing an analysis of the power consumed by
the Device Under Test (DUT) when the tests are executing on it. The DUT can
be tested with two different approaches : virtually or on the real physical device.[4]
Virtual testing means using emulators or simulators that test the model of the sil-
icon chip, of course the cost of the test is reduced, but the user conditions can not
be replicated. Instead testing directly the real device is more expensive because

certainly we need the physical device, but it has the advantage of being the fastest

1 — Introduction

approach. In this project the tests are executed on the real device and so the mea-
surements that are taken.

Infineon Technologies AG has the aim to understand how much power is really
consumed by the DUT during the NVM tests execution and to identify the major
causes of this consumption. Consequently, trying to reduce them with the goal of
executing more tests in parallel decreasing the overall test time, speeding up the
time-to-market.

These are the objects of this work, in particular the test that are going to be char-
acterised are the ones performed on the flash memories embedded on one of the last
product of Infineon Technologies AG: A2G-TC38EVOx.

As all the Integrated Circuits, the TC38xEVO is mainly composed of two parts:
the DIE, which is the silicon chip and the package which has the main function of
protecting the DIE and to make it more handled. Every IC undergoes several phases
before being ready to go into the market and according to STMicroelectronics [1]
these phases can be mainly subdivided in two : front-end and back-end, which cor-
respond respectively to the wafer fabrication and the packaging of the DIE.
Testing is a procedure that is done during each phase of the circuit production be-
cause the earlier the DUT is tested the more is the money we can save if it is faulty
and clearly the single chip at wafer level costs less than the IC already encapsulated.
Testing can chiefly be subdivided in wafer probing done on the DIE and final tests
done on the IC.

The wafer probing is a step of testing done between the wafer fabrication and the
packaging of the DIE. It verifies the physical wafer fabrication and also the function-
ality of each silicon chip, if one of the chips on the wafer does not pass the tests it is

marked as faulty while the others are packaged in the form of Integrated Circuits.

1 — Introduction

The next tests are performed on the IC and to execute them we need a socket, whose
function is to connect the DUT and the tester and it is soldered onto a Printed Cir-
cuit Board, in this way it is easy to add and remove an IC from the socket. It
provides proper transmission paths between the (DUT) and the test board because
in this way it is possible to apply on the DUT some stimuli from outside and collect
the correspondence outputs. These outputs are compared with the responses given
from an ideal good circuit and if they match it means that the circuit is good, oth-
erwise that is faulty.

In this work are characterised the tests executed on the real DIE and on the real 1C,
and then the outcome of the measurements are compared to understand the main
differences between these two results.

Once that all the critical tests have been characterised in terms of power consump-
tion we have found three main solutions that do not have impact on the NVM tests
quality but improve the power characteristic of every test. Each solution is based on
the same assumption, which consists in saying that more are the context switches
requested by the application and higher will be the overall power consumption.

The work is organized as follow:

e In Chapter two there is a brief introduction to the memories that can be
embedded in a circuit and how they can be tested, focusing in particular on

the FLASH memories.

e Chapter three contains a description of used the measurement environment, in
particular how the measurements are collected and how it is possible to assure
a consistency along the measurements taken in different interval of time.

e Chapter four develops an analysis on the effect that temperature, level of the

3

1 — Introduction

voltage supply and the operating frequency have on the device.

In Chapter five there is an NVM tests characterisation and findings , with a
short analysis on the portability of the test code among the different families

of devices.

Chapter six develops an analysis on the correlation between current jumps and
voltage droops and how it is possible to reduce the voltage droops acting also

via HW.

Chapter seven contains a brief explanation of the wafer probe setup and com-
parison between the measurements taken with this setup and the ones taken

while testing the IC.

Finally, Chapter eight contains extra-analysis done but that unfortunately

have not contributed to valid results.

Chapter 2

Volatile and Non Volatile

Memories

Memories have the function to store data permanently or temporally depending on
the needs of the IC where they are embedded in[16]. Therefore, the memories can
be mainly classified in Non-Volatile-Memories(NVM) and Volatile-Memories (VM).
In a volatile memory data are stored temporally and they are accessible only if the
power is ON, so every time the system is rebooted the information is lost.

Instead in a Non Volatile Memory even if the power supply is switched OFF, the
data are not lost.

Random-Access-Memory (RAM) is a VM used if there is no need to store information
permanently but there is the need to have a fast access to the data stored inside it.
As suggested by the name, this type of memory makes possible to access at the data
in a random order and this characteristic makes the RAM the most used for holding
data while the CPU is working on a task, since the CPU has not finished. According
to Arunkumar Krishnan [20] there are two types of RAM: Static-Ram (SRAM) and
Dynamic-Ram(DRAM), the first one is faster but less dense than the second one.
The difference between these two is that a SRAM cell is composed by six transistors
while a DRAM cell is composed just by a capacitor and a transistor so there is an

advantage in terms of area occupied but due to the physical characteristic of the

5

2 — Volatile and Non Volatile Memories

capacitor the DRAM needs to be refreshed periodically. The two cells in comparison:

| Word line Word line | Vee

Pass
transistor

Capacitor

Bit
line

(a) DRAM cell (b) Typical SRAM cell

Figure 2.1: SRAM VS DRAM cell

On the other hand the NVM are used if it is needed to maintain the data stored
inside the memory even if the power is switched OFF[17]. According to Paul Zand-
bergen [18], the NVMs can be classified as:

e ROM : Read-Only-Memory.
It is used to store data that will remain the same for all the usage of the
device, in particular it is mainly used to store information that are needed
when the device is booted. A ROM is programmed during its manufacturing
process because to achieve a certain configuration some specific internal fuses

are blown and this makes the process irreversible.

e PROM : Programmable Read-Only Memory.
It is programmed after manufacturing but also in this case the process is

irreversible and so it can be programmed just once.

e EPROM :Erasable Programmable Read-Only Memory.
This memory can be programmed more than one time, because it can be

erased with a strong ultra-violet radiation through a window designed into

6

2 — Volatile and Non Volatile Memories

the memory itself. The erase process is not selective but it acts on the entire

memory.

e EEPROM : Electrically Erasable Programmable Read-Only Memory.
It is similar to the EPROM, but in this case to be erase it is not subjected to
radiations, but to electrical signals that makes everything easier because the

memory to be erased is not removed from where it is used.

e FLASH
It is a form of EEPROM but faster due to it can be erased in block of bytes
and not just byte after byte as for the EEPROM. This memory is the one that
Infineon Technologies embedded in its products and in the next section it is

described more in detail.

2.1 Flash memories architecture

Flash memories are Non Volatile Memories that can be electrically erased and pro-
grammed in block of bytes and they are composed by an array of floating-gate
transistors, as written by T. Windbache [5]. There are two types of flash memories:
NOR-flash and NAND-flash which names are explanatory of how the memory cells
are organized. Infineon Technologies AG chooses the NOR-flashes to be embedded
inside its ICs.

The DUT that has been analysed in this work is the A2G-TC38EVOx, which is one
of the last versions of the Aurix devices designed by the company.

This IC has two type of NOR-flash memories embedded in it: Program Flash
(PFLASH) and Data Flash (DFLASH). The first one is used to store programs

7

2 — Volatile and Non Volatile Memories

and it is divided in several independent banks while the second one is used to store
data and it is divided into two separate banks. In a NOR-flash each cell has one end
connected straight to ground and the other connected to a bit line. It acts like a
NOR gate because when one of the word lines is high, the corresponding transistor
pulls the output bit line low. Instead in a NAND-flash memory, the transistors are
connected in series. The architecture of a NAND-flash and a NOR-flash memories

are:

NOR Bit Ling
Word Word Word Word Word Word
Lme b Lineg 1 Line 2 Line 3 Line 4 Line 5
I | | | | l
i Il i
NAND Bit Line
Ground BitLine
Select Word ‘Word Word Word Select
Transistor Line 0 Line 1 Line & Line 7 Trangistor

W B B

Figure 2.2: NOR-flash and NAND-flash architecture

As mentioned by Vatajelu Zambelli [6], a flash memory cell consists in a floating

gate Metal Oxide Semiconductor field-effect transistor (MOSFET):

2 — Volatile and Non Volatile Memories

Cantrod Gate [CG)
Intar poly Oaicha (NG

Flaating Gate (FG)

5
Diwain (D) Tunnel Oxlde Saisres [5)

|/ Bulk (B) i N

Figure 2.3: Cell flash structure

On top there is the control gate (CG) and below the floating gate (FG) which
is insulated by two thick layers of oxide. The FG is inserted between the CG and
the MOSFET channel and due to it is electrically isolated all around, any electrons
placed on it are trapped there and when the FG holds a charge it screens the electric
field from the CG and these electrons can remain there for many years. The pres-
ence of electrons in the FG modifies the threshold voltage (Vzy) of the MOSFET,
in particular (Vzy,) is shifted to be more positive if electrons are trapped in the FG,
in contrary the presence of positive charges (absence of electrons) makes (V) more
negative. If the Vzy, is lower than the one the MOSFET has in normal condition(so
"positive” charges in the floating gate), we read a ’0’(cell programmed), otherwise
a’l” (cell erased).

The physical mechanism used to inject and extract electrons to/from the FG is the
Fowler-Nordheim tunneling. It lies in applying a high electrical field to the thick
tunnel oxide (~ 10MV/ecm) and this causes electron transfers across the insulator
layer to the floating gate.

For programming the flash-cell it is applied an elevated voltage on the control gate
that is coupled to the floating gate through the dielectric and in consequence also
the FG is raised the to the programming voltage.

In this way the channel is turned on and the electrons flow from the source to the

9

2 — Volatile and Non Volatile Memories

drain with a great energy and they collide with the crystal lattice of the channel
material. This dissipates heat which raises the temperature of the silicon, the elec-
trons become "hotter” and many scatter towards the oxide layer, the ones which
have a sufficient energy overcome the barrier and accumulate on the floating gate

and they remain there until they are removed by an erase cycle.

After the programming operation the cell is set to 0.

For erasing the cell it is applied a large voltage between the CG and source terminal,

it makes the electrons jump the thin oxide layer and being trapped into the floating

gate, in this way it is reset the cell to its natural state "1’ [7].

Control Control
gate gate
&> Oxide
Floating @) [®) ©)]
gate 41— @ / O G)@
eNele)
[]
Source eeee Drain Source/ _ Drain
OO oo oy
Erased Programmed

Figure 2.4: FLASH cell erased or programmed

Now it is clear how to program/erase memory flash cells and so we can explain

how the flash memories are tested because basically testing memories consists of

writing data, storing data and reading data from any cells.

10

2 — Volatile and Non Volatile Memories

2.2 Flash memories testing

Testing memories is essential because they are the denser part in an electronic circuit
and so the probability of a fault to occur is very high. To analyze the memory circuit
and develop techniques for the detection of failures, fault models are used. According
to Einfochips [2] it is important to use good fault models able to test all the faults
that could affect the memory cells and also implementing a self-repair of the faulty
cells via redundant cells. The faults that could affect a memory can be grouped in

two families:
e Faults among cells
e Faults in a single cell

The faults among cells are divided in Coupling Faults (CF) and Neighborhood Pat-
tern Sensitive Faults (NPSF). CF manifest themselves as an interaction between
the value of a cell and the value of another cell, so it could be that if in a cell it is
stored a certain value, the value in another cell also changes. NPSF causes that a
cell varies its content depending on the content of a group of cells.

On the other hand, the faults affect a single cell are the stuck-at-faults (when a cell
is stucked at 0 or at 1), the stuck-at-open (the cell is inaccessible due to an open in
the word line), the transition faults (cell can assume any value but then it cannot be
changed) and the data retention faults (data stored in the cell is lost after a given
period of time).

All these faults must be covered and this makes testing a very challenging and time
consuming part during the development of a product. The March tests are the sim-

pler and effective test algorithms to detect all the possible faults and to speed-up

11

2 — Volatile and Non Volatile Memories

the overall test time, According to Michel Linder [3]. Each March algorithm consists
of a sequence of March elements, which in turns consist of a sequence of operations
such as : writing a 0’ into a cell, reading a ’0’ into a cell, writing a "1’ into a cell or
reading a "1’ into a cell. Every element is applied to each single cell of the memory
with a given order, from the lowest address to the highest or viceversa. An example

of March algorithm is:

e write Os (w0s) from the first to the last cell of the memory

e read Os (r0s) and then write 1s (wls) from the first to the last cell of the

memory

e Read 1s (rls) and then write Os (w0s) from the first to the last cell of the

memory

Test engineers decide which March element apply and in which order and basing on
that, they write the test codes that will be then uploaded and executed on the de-
vice. To perform the test two approaches can be followed: MBIST(Memory Built-In
Self-Test) and MSIST(Memory Software-Implemented Self-Test). [3]

e MSIST, Memory Software-Implemented Self-Test
It has the advantage to be a flexible and cheap solution due to it does not
require any additional hardware but everything is done via software. The
tests are executed directly by the system itself and the input patterns are

written directly inside the memory, as the test codes.

e MBIST , Memory Built-In Self-Test[19]

It brings a reduction in the test time but also a hardware overhead, because

12

2 — Volatile and Non Volatile Memories

as suggested by the name, this technique demands for dedicated circuits built
just for testing purposes able to run memory testing algorithms. The HW
overhead is given by a MBIST controller which indicates when starts the test
algorithm, and address generator, a data generator that produces the input
patterns and a comparator which computes the signature of the outputs.

The BIST controller gives the input to start the self-testing procedure, once
the input patterns have been produced by the data generator and applied to
the memory, the output of the memory are compressed into a signature by the
comparator. This signature is passed to the controller which compares it with
the excepted signature, if the two do not match means the memory is faulty

otherwise not.

Address Generator Addr
START N
BIST .
Data Generator Memory
Goobp/FAuLTY' | Controller
[y
Comparator Dot o
L

Figure 2.5: Memory BIST

Infineon Technologies AG organizes the NVM Testing with the execution of a soft-
ware BIST. The CPU sends the "START” signal to the BIST controller that starts
executing the tests, which mainly consist in successive sequences of flash readout
at different conditions to verify the content of the FLASH after having erase/pro-
grammed it.

For this project we focus the attention just on one of these test sequences, which

13

2 — Volatile and Non Volatile Memories

is the first test sequence applied at the DUT and it is named WS1by Infineon. It
is performed at room temperature(~ 20°). All the WS1 flow is collected in JAZZ,
which is a tool to facilitate all the prototype debug, system validation, system char-
acterization and productive test.

It provides built in tests or custom developed tests thanks to Perl Scripting support,
but it allows also to use Python scripting.

Another feature is the easiness of reusability, because it is possible to use the same
flow developed for testing / validating your product and apply it on several prod-
ucts or product samples at the same time, so increasing the production throughput
without investing engineering efforts.

To test the IC, firstly it must be inserted in the socket, then we have to connect the
board at the PC trough the MiniWiggler. This is an Infineon tool, it provides an
USB interface to be attached at the computer and on the device side the connection

goes over a 10-pin interface named DAP.

14

2 — Volatile and Non Volatile Memories

Figure 2.6: Setup

Then via JAZZ must be specified which is the executable that is intended to
upload on the device. The executable is a file.hex built in TASKING and contains
all the information about the tests we want to perform on the DUT, it has to be
uploaded in JAZZ in the test devcfg_t_b_ta_ld.

After these two steps are concluded, we can power- on the system and run the JAZZ
flow WS1. It includes an initial sequence of tests that have not impact in the FLASH
memory itself but they are necessary to have all the analogue parameters that will
be used as reference for the test that will be executed on the flash itself.

In the second part of the flow it is performed the chosen March algorithm, so there

is a sequence of operations and each operation is repeated for all the memory cells

15

2 — Volatile and Non Volatile Memories

till all the operations are concluded. This sequence of operations is:
e Erase all the memory cells (wls)
e Verify that the memory has been erased (rls)
e Program all the memory cells (w0s)
e Verify that the memory has been programmed (r0s)

Between these tests it is possible to vary some test conditions, such as the frequency
of the PLL and also to enable/disable circuitries inside the DUT, according to which
is the final goal we want to achieve. All the above tests are characterised in terms

of power and these characterisations are shown in the next paragraphs.

16

Chapter 3

Working setup

Having a "strong” and stable working setup is essential in project like this because
it is important to assure the same conditions for all the measurements. In this way
all the measurements taken by the same instrument, under the same conditions will
give the same result.

The environmental conditions such as humidity and room temperature (~ 20°C')
remain stable for all the measurements campaign because this is guaranteed by the
laboratory rules. Instead there are other parameters that need to be controlled by
us. For instance the oscilloscope’s channels must be set in the same way for all the
same kind of tests. Differently, the risk is that we could misinterpret some mea-
surements when we compare them if they have been collected with different time
(s/DIV) or amplitude (V/DIV) scale.

Another important aspect is that we must use always the same IC for all the mea-
surements and assure that the IC does exactly the same operations before performing
the test we want to measure. Otherwise the risk could be that in a measurement
are present power variations that in another measurement of the same test are not.
Moreover when it is analysed a measurement and it is needed to compare it with
another one, we have to be sure we are watching the same time window. For this

reason it is necessary to trigger the oscilloscope always with the same signal.

17

3 — Working setup

3.1 Busy signal used as trigger

It is essential to trigger the oscilloscope when a test is being executing, because in
this way we can measure the current requested by the DUT during this interval of
time and do our analysis. Moreover it is important we visualize on the oscilloscope
always the same interval of time because otherwise we could not make comparison
between two measurements of the same test taken in different moments.

To have a signal that allows us to understand when the test is being executing
it is taken advantage of the Infineon’s FSIST Handshake Protocol for LL-FSIST
commands [8]. This protocol uses two control signals: Busy (BUSY) and Error
(ERR) , the BUSY is the one used as trigger for the oscilloscope. The BUSY signal
remains high as long as the test is not completed. When it is completed, the signal
goes low indicating that the results are available to be read. As said before, the
BUSY signal has been mapped on the board in one of its external pin to make
possible a connection of the board with the oscilloscope through a probe.

An example for what we visualize on the oscilloscope is reported below:

Measure

Thase 223 ms|
m

2 | 64.0 ms/div Norm.
3845V -1.05000 V -80.. H i 64 MS 100 MSis Edge

1.00 Vidiv 50.0 mV

= 1270mV ---- 450 mV ---- 8505 mV |--—-

Figure 3.1: Erase test: Icore(yellow) ; Ivddp3(green) ; busy signal (pink)

18

3 — Working setup

In particular the image shows the current requested by the erase test from two
domains and the busy signal. As a matter of fact the busy signal goes up when the
tests starts and down when it is finished.

The colours correspond to these signals:

e yellow signal: Current on the core domain (Icore) (20 mA/div)

e green signal: Current on the 3.3V domain I(Vddp) (20 mV/div = 20 mA /div)

e pink signal: busy signal

These scales of time and amplitude are the same for every erase test that we have
measured in this project.

Of course for the verify test the time scale and the amplitude scale are different with
respect the one for the erase, because the verify test is characterised by another test
time and it requires other levels of current to be executed.

In conclusion, when the tests are executed via JAZZ the oscilloscope is always trig-
gered by the BUSY signal that goes high when the test starts and thanks to this, it
is possible to compare measurements of the same test but taken in different moments
under the same environmental conditions.

Notwithstanding to have a stable system but to avoid setting everytime manually
the amplitude/time scale of the oscilloscope, it has been developed an interface be-
tween the laboratory instruments and the PC. Thanks to this interface we have
control both on the oscilloscope and on the power supply and this means we can
set the channels of these two instruments directly from the PC without doing it
manually and also save the measurements as waveform objects saved on the PC. All

the characteristics of the interface are explained in the next section.

19

3 — Working setup

3.2 Interface for measurements automation

The interface between the oscilloscope and the PC and between the power supply
and the PC have the goals of setting the channels of the oscilloscope, of acquire the
waveforms visualized on the screen of the oscilloscope and also of setting the power

supply channels depending on the level of voltage with which we want to supply the

device.

Three Python scripts have been developed to do all of these steps and two of them

are inserted in Jazz in a specific order.

The order in which they are inserted in the Jazz flow is schematized in this flow

chart:

...... JAZZ flow

set oscilloscope

!

¥

execute the JAZZ test

v

[y

measure the wanted channel
and capture it as waveform

Set MAX voltage
supply :
(1.33;3.63;5.5)V

Nominal
supply?

Plot the waveform
remotely with Python

Set nominalvoltage

supply to :
(1.3:33:5)\V

...... JAZZ flow

Figure 3.2: Project flow for test automation

Every colour corresponds to a Python script:

e Yellow: Before_ test.py

20

Set MIN voltage

supply to :
(1.14;3:4)V

3 — Working setup

This python code is inserted in Jazz before the test we want to analyse. Its

function is to set the oscilloscope in a proper way. (trigger, time/DIV, V/DIV)
e Red: it is the test under analysis

e Blue: After_test.py
This python script is inserted in the Jazz flow suddenly after the test we want
to analyse. Its functions are to collect the data, save them in a "file.npz” and

change, if requested, the voltage supply.

e Light green: Manipulate_data.py
It is not inserted in the JAZZ flow and its function is to open the ”file.npz”

previously saved and remotely analyse the data collected and plot them again.

These scripts are reported in the Appendix A.

The first two scripts are inserted in the JAZZ flow, one before and one immediately
after the test we want to evaluate, while the third one is run externally from Jazz.
Usually the oscilloscope needs to be set manually before performing a measurement
and then if it is needed to save it, this measurement has to be saved as a screenshot
and then import it into the computer.

This process requires a considerable effort for the engineer that has to stop the test
flow on JAZZ; wait for the oscilloscope to be triggered; capture the image; save it
and import it on the computer as a "file.npg”.

All of these steps are automatize with the two scripts: ”before_test.py” and ”af-
ter_test.py” and so the repetitive manual labour is reduced, that results in time
savings but also in an increased consistency and repeatability of the measurements
taken.

The effort in the usage of the oscilloscope is mainly caused by:

21

3 — Working setup

e Saving screenshot requires to connect the USB on the oscilloscope, print the

image on the USB, disconnect it and import the image on the PC.

e Once the image is captured and imported on the PC it is "freezed” and this

makes impossible a remotely analysis on it.

e Difficult comparison between waveforms of the same type but taken in different

moments

e The oscilloscope LeCroy WaveRunner 640Zi has four channels so it is impos-

sible to visualize in the same time more than four signals together.

The original flow of JAZZ has been modified adding the developed Python scripts
able to set the oscilloscope in the right configuration before the test is executed.
Once the test is finished, the data we visualize from the screen of the oscilloscope
are saved into the PC as waveform objects.

Once this is done from the PC it is possible to remotely processing the data collected
with Python while the JAZZ flow can continue running.

In the meantime that the data have been saved, with some ”if-branch” it is controlled
which is the value of the voltage supply and we can change it without stopping JAZZ
flow. After the new voltage supply has been set, the test is repeated again and data
are collected.

Once we have all the wanted measurements saved in our PC, we can perform all the
analysis we need. For example if we have peaks (such as in the verify0 test) it is
possible to know how much they are just specify in the script to count them, or if
we want to zoom in a particular part it is not needed to save again the data again
from the oscilloscope to the USB, but it is needed just to zoom on this interested

part with the mouse.

22

3 — Working setup

— Icore
0.351 — banks
— ext_sectors
— Sectors
— z0naAB
pollin
0.30 9
025
o201 |
€
g
5
’ [
0.15
[
0.10 I
0.05

0.000 0.005 0.010 0.015 0.020 0.025 0.030
time [s]

Figure 3.3: Example of measurements obtained with Python

This is the verify0 test and as it is possible to notice the signals plotted together
are more than four.

Now it is possible to zoom on the image just with the mouse:

— Icore
— start_stop

=1

0

9,17 ms

4.6 ms

v

0.014 0.016 0.018
time [s]

Figure 3.4: Zoom in the test

23

3 — Working setup

After having specified into the Python script to count the peaks of the current

core for every zone, the result has been saved into a variable and it is 66. In this

simply way now it is known that every zones is composed of 66 current peaks, each

of 7TmA with a periodicity of 70us.

To better understand what this method is able to do are reported two images of the

same measure, one obtain with the oscilloscope and save on a USB memory and one

after having executed the three scripts:

Measure

value

mean

min

max

sdev

num

status

FIB[050

50.0 mV/

-153.00 mV|

+ 22853 mv/¢

VMY

B
£

sl LI

1.00 Vidiv 50.0 mV

5.0 1.00 ms/div Normal 244 V|
65350 VV -1.13000 V| -91.900 m S (=]

ge Posilive

] cs R R EE base_-3.00 ms|Ingger (808
W

880.7 mV 1+ — I

Figure 3.5: Verify test measured from the oscilloscope

Instead importing it as a waveform type from the oscilloscope to the laptop with

an USB cable, we plot it with another code in python and it is obtained :

24

3 — Working setup

t [A]
o
&

0.05
~0.002 0.000 0.002 0.004 0.006

Figure 3.6: Verify test measured and plotted with Python

To develop the scripts it is used Python. It is an object-oriented language and
the main idea is to define an object: "scope”, which corresponds to the oscilloscope
with which we are doing the measurements and then define its attributes such as
the number of channels, the sampling frequency and the trigger channel, the trigger
level and so on.

To specify which oscilloscope we are using we must connect it with the PC trough an
USB cable, and from the National Instruments Measurement Automation Explorer
(NI MAX) environment its IP number must be copied and pasted in the script, as

reported below:

e scope = SimpleScope(IIviScope()) it is created the object "scope” for the

oscilloscope

o resourcename = 'USBO::0v05FF::0x1023::2801N55814::INSTR’ IP number of

the oscilloscope

25

3 — Working setup

”Before_test.py” is a script in which we specify the oscilloscope we are using |,
with the functions above, and then we specify its attributes, such the number of
channels we will use, the characteristic of each channels in terms of amplitude/DIV,
offset, zero point and then the sampling frequency , the time/DIV and the coupling
mode. As explained before this script is inserted in JAZZ before the test that will
be analysed.

It must be specified that to decide the value at which the each channel of the oscil-
loscope must be set, we have to run the test at least one time and observe which are
its characteristics in terms of range in which the current could vary and test time in
order to set correctly the time/DIV and the amplitude/DIV on the oscilloscope for
that particular test and maintain it for all the successive measurement on the same
test.

The code have been written including the PyVerify package, which supports au-
tomation. This package includes different functions that make possible the setting
of the oscilloscope from the PC.

The function used to specify the attributes of the object "scope” are:

e scope.ScopeSetup (0.6, 50e6)
it is set the sampling frequency of the object ”scope”, in particular it is chosen
to set it at its maximum level which is fyumpe=50 MS/s. In this way we have

the highest resolution for the measurements.

o scope. Trigger_Edge(Level=0.5, Slope="RISE’, Position=1, Coupling="DC",
Channellndex=2)
it is decided the trigger channel, level an position and also the coupling mode

of the oscilloscope. In this case the trigger-channel is the channel number

26

3 — Working setup

2(where it is connected the busy signal), which triggers the oscilloscope every
time there is a rising edge at its 50% of dynamic. The coupling mode chosen
is the DC one, because with the AC mode it is introduced more noise on the

waveform.

e scope.ch(i) = scope.GetChannel(i)
it is defined which channels of the oscillosocpe will be used for measurements,

in our project all the four channels are used.

e scope.ch(i). ProbeSetup(Coupling="DC’, Bandwidth=20e6, Vrange=0.160, Offset=-
0.270, Position=0, Probe_Atin=1, Probe_Type="voltage’, Impedance=50)
all the attributes of the specified channels ”i” are set.
It is choose the 5082 — DC' coupling mode to have less noise overlapped on
the measurement, then it is decided the bandwidth of the oscilloscope and
then the offset, the probe attenuation. The amplitude/DIV for that particular
channel, in this example the total dynamic visualized on the screen is 0.16V

that means 16 mV/DIV due to the oscilloscope has 10 DIV in vertical, while

the offset is set to -270mV.

” After_test.py” instead is executed after the execution of the test we want to
analyse and its functions is to collect the signal on the oscilloscope and save them
into a "file.npz” that then will be manipulated with another script ans also to set
the properly the power supply. To do so, it is used again the PyVerify package and it
is defined the ”"scope” object with its channels that are intend to measure and then

?

for each channel are collected the data, that are saved in a "file.npz” in a specific

folder specified in the path.

27

3 — Working setup

e dataOfCH(i).save_to_file(’C:/Users/file.npz’)
After having save the data coming from the wanted channels, it is controlled
the level of the power supply and change it if required. Others two objects are
created "PWR_CORE” and "POWER _Vext_Vdp” because two power supplies
are used, respectively one to generate Vcore(1.3V) and the other to generate
Vext(5V) an Vddp3(3.3V).
The flow is similar to the one we have already analysed for the oscilloscope,

so for every object are then specified the attribute. To create the object:

e PWR_CORE = SimpleDCSource(IIviDCPwr())

object "power-supply” created for Vcore

o resourcename_core = 'GPIBO0::5::INSTR’
IP number of the power supply used to define its attributes, that in this case

it has just a channel for the generation of Vcore:
e PWR_CORE.chcore = PWR_CORE.GetChannel(1)

e PWR_CORE.chcore. Configure_VoltageLevel(Level=1.30, CurrentLimit=1) to
specify the value we want generate from that channel, in this case 1.3V with

a current limit of 1A.

Then it is done the same for the other power supply. In this script there are some
nested ”if-else” to specify which value we want to set on the power supply considering
the situation in which we want to repeat the measurement changing the power supply
from the nominal to the maximum and then to the minimum values for Vcore, Vext
and Vddp3.

The last script is the ” Manipulate_data.py”, its function is to post-process the

28

3 — Working setup

data that have been saved previously. For every waveform saved it is created a

waveform-object :

o wavel = Waveform.load_from_file(filepath="C:/Users/file.npz”) in wavel is
copied the content of the "file.npz” that has been previously created with the
data of the waveform captured with the oscilloscope Then for every waveform

object are specified its attributes:
e samplel= wave.data

e timel=wave.time and then it is used the package "pyplot” to plot the wave-

form:

e plt.plot(timel, datal, 'b’, label="1Icore’) it is plotted the waveform with timel
on the abscissa, datal on the ordinate, with blue color and with ”Icore” as
label.

Of course it is possible also to plot more waveforms together just specifying

others waveform objects with their attributes and plot them.

3.3 Current measurements

The starting step of this work is characterising each NVM test in term of power
consumption. In the laboratory the usable tools for this purpose are the oscillo-
scope and the current probes, this is why are performed current measurements and
not directly power measurements. The main assumption is that current is directly

proportional to static power according to the formula:

P=1y, Vi

29

3 — Working setup

Viq is the voltage set on the power supply, while "I’ is the overall current that flows
through the cable from the power supply to the board.

The value of the voltage supply should remain almost stable for the entire period in
which the device is ON, while the current changes depending on the amount of work
the DUT has to do in this way we have an indirect measure of the power requested
by the DUT from this domain.It is analysed the current Iy, requested by the DUT
during the test execution.

The device AURIX-2G TC38xEVO works with three power domains which are:
e Vcore = 1,25 V (the device still works in the range of 1,25V + 10%
e Vddp = 3,3 V (the device still works in the range of 3,3V + 10%
e Vext = 5 V (the device still works in the range of 5V 4+ 20%)

Each of this domain is used for different purposes by the device and so the currents
that flow from them into the device have completely different shapes. At the be-
ginning of this project all the three currents were analysed, but after few analysis
on the measurements we have discovered that the most critical domain in terms of
variations is the core domain, this is why it is chosen this domain to perform the
next analysis.

The oscilloscope does voltage-measurements, for this reason if we want to measure
the current we need to use some dedicated instruments that allow us to visualize
the current measured directly from the oscilloscope.

According to the availability of the Infineon laboratory, these instruments that are:

1. CURRENT PROBE

It is used a current probe (Tektronix TCPA300) [9], that enables to measure

30

3 — Working setup

current without breaking the electrical circuit because it is not electrically
connected to the DUT.

The probe is clamped around the power supply cable that carries the current in
which we are interested and then thanks to the two sensors inside the probe it is
measured the strength of the electromagnetic field around the conductor. The
complete current measurement system consist of a the current probe Tektronix
TCPA300, the probe amplifier and then the oscilloscope. The aim of the
amplifier is to converts the current sensed by the probe to a proportional
voltage that is displayed on the oscilloscope. The structure of the current

probe is:

Test oscilloscope Amplifier

Current probe

Input

50 Q oscilloscope input - use the
TEKPROBE Interface Cable or use a 50 Q
cable. (Add 50 € termination here if

oscilloscope has only high-impedance input.)

Output

Figure 3.7: Current probe

In order to visualize correctly the current measurement on the oscilloscope, it
has to be set with a 50(2 of input impedance and also once that the current
probe is connected to the oscilloscope it is necessary to push the button of
the ’autobalance’ present on the current-probe amplifier in order to remove
any residual magnetization that otherwise could introduce an offset in the
measurements.

Below it is reported an example of current probe connected to the round cable

31

3 — Working setup

of a power supply:

Power supply

-+
Current probe ? 1)
:i: DUT

Figure 3.8: Current probe and DUT

2. OHM’S LAW : [= %
It simply states that the current flowing through a resistor is directly propor-
tional to the ratio between the voltage applied and the resistor.
In this way, inserting a resistor R = 1{2 we have a 1:1 correspondence between

the current and the voltage measured from the oscilloscope. [10]

VBUS

lioap = 2
SHUNT
—_—

Voys —— RsHunt

Figure 3.9: Indirect measure circuit

Surely the current probe is the one that gives the most accurate results between
these two methods, for this reason it is chosen to use the current probe to measure

the current on the core domain.

32

Chapter 4

Test flow variants

There are different parameters that impact the behavior of the system and these
are in particular the temperature, the level of the voltage supply and the operating
frequency.

At extreme conditions, so near to the maximum/minimum levels acceptable by the
DUT the risk of failures is higher and moreover with a high temperature, a high
voltage supply and a high operating frequency the DUT may overheat and this
could cause the IC and the board to merge. While with a low voltage supply and
low operating frequency the danger is that the system has no sufficient energy to
start the operations.

It is important to test the DUT under these extreme conditions because it could
behave differently from what expected and this could cause failures.

In this paragraph it is analyzed the behavior of the system subjected at high tem-
perature (125°C), which is 100°C more than the room temperature and it is also
measured its behaviour under the combination of high temperature and maximum
voltage supply applicable.

Furthermore it is analysed the response of the DUT with different operating fre-

quencies.

33

4 — Test flow variants

4.1 Temperature and voltage supply

To increase the temperature of the DUT until the desired value it is used the Ther-
monics Temperature Forcing System, which provides advanced temperature testing

capabilities. [13]

Figure 4.1: Thermostream

This system can provide a temperature range of -90°C to 225°C in few seconds
with an accuracy of £1 °C, it delivers clean dry air at the board that is positioned
at the end of the mechanical arm we see from Figure 4.1.

The board has sensors that allow to control the temperature on the device, in this
way we have a precise information of the temperature at which we are submitting
the device inside the socket. Once the probes of the oscilloscope and the MiniWig-
gler are connected to the board, it is positioned under the arm of the thermostream
and we can start the measurements.

After the executions of all the test flow it is noticed that just Icore changes signif-

icantly with the temperature, while Ivddp (current on the 3.3V domain) remains

34

4 — Test flow variants

stable and this is the reason why in the next pages is shown only the analysis done
on Icore (current on the core supply), in particular during the erase test.

During the execution of the erase test Icore has a particular step-shape that is in-
dependent from the temperature, while it is the level of the current that changes.
Especially the current requested during the test increases with temperature. In the
plot below we can see that if the temperature is set to 25°C (red curve) we have a
certain level of current while if it is set to 125°C (green curve) the level increases,

while the shape remains identical.

— lIcore during erase @125°C
—— Icore during erase @25°C
0.300

0.2754
0.2501 @

0.225 4

urrent [A]

0.2001 J

0.175

0.150 4

0.125

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
time [s]

Figure 4.2: Icore at room temperature and at 125°C

Now it is better understandable that an increase in the temperature of 100°C
brings to an increase in the current of about 9.5mA, in fact from the plot the two
waveforms are exactly the same in terms of shape but there is just a shift between
the two of about 9-10mA.

Keeping the high temperature T=125°C , it is repeated the measurement increasing

the voltage supply from its nominal value: (1,25; 3,3; 5)V to the maximum value:

35

4 — Test flow variants

(1,36; 3,63; 5,5)V and what we observe is that during the test the current requested
increases.

To better understand the differences between the waveforms in these two conditions
(same temperature but different voltage supply), they are plotted together with

Python and the result is:

0.325
uring erase @125°C at nominal voltage supply (1.25; 3.3; 5)V
uring erase @125°C at maximum voltage supply (1.36; 3.63; 5.5V

0.300

0.275 i :: ::: :: :: f:::: :::::: :::: ’: : ::: ::::: ’ :::: :::::::

0.250 F 5 I I

0.225

current [A]

0.200

0175

0.150 1 H

0.0 0.1 02 03 04
time [s]

Figure 4.3: Comparison between Icore at different supply levels

As excepted an increasing in the voltage supply brings to an increase in the
current of around 20mA for the Icore and 4mA for the current on the 3.3V domain,
instead the current peaks remain of the same amplitude with temperature variations.
These current variations are not the same for every device, because each family of
devices acts differently if the boundary conditions are modified and to prove this
statement is analysed also another device, the "2TC3Exx FF”.

FF states for Fast-Fast, that means Fast-nmos and Fast-pmos. It is built with a
technology for which both the transistors have the subthreshold voltage V;;, that is

lower with respect to the one of the normal transistors.

36

4 — Test flow variants

This is required for high-speed system, because if V};, is low the voltage required to
switch-on the transistor is achieved in less time and so the time decreases but the
drawback is that the leakages increase.

This is according to the formula:

Vgs—Vth —Vds

Ly =CONST -Vt* - e mvi -(1—evi)

The leakage contributions are very effective for memories, because when we select
a cell to be read; erased or programmed there is a huge number of other cells that
are inactive and their leakage contributions are added to the current needed by the
selected cell. The final effect is an increasing in the overall current requested.

Summarizing the effect of changing V;;, in these two graphs, it is possible to see that
decreasing V};, the delay decreases (first graph) while Ioff, which is the current when

Vgs=0V, increases (second graph):

Delay] Iﬂ'|=Cl:5 W

=1

Vih=03 WV ".";h=1 "

V=l V=il Ves

Figure 4.4: V};, dependencies

In the FF chip the current requested during the execution of the erase test is
~ 100mA bigger with respect the one requested by the normal device due to these
extra leakages contributions.

Moreover repeating the measurements of Icore with the nominal (1.25; 3.3; 5)V and

the highest eligible value (1.36; 3.63; 5.5)V for the power supply, we measure an

37

4 — Test flow variants

increasing in the current level as observed also for the normal chip, but this time
the induced variation is bigger.
The difference between the two current waveforms at nominal and maximum voltage

supplies is better highlighted with this Python plot:

ring erase @125°C at nominal voltage supply (1.25; 3.3; 5)V.
ring erase @125°C at maximum voltage supply (1.36; 3.63; 5.5)V

o W o WO

J
J

§ 035

0.00 0.05 0.10 01s 020 025 030 035 0.40
time [s]

Figure 4.5: Icore during erase test for FF device at different supply values

As expected the 2TC3Exx FF acts differently with respect the TC38EVOx, in
fact for the TCx38evo a voltage variation brings to a current variations of 13mA
while for the FF device the current variation is about 50 mA.

In conclusion, as expected, increasing the temperature the current requested during
test execution increases and so the power.

Moreover, the FF-chips with respect to the normal are faster but consumes more
power, in fact if we focus on the level of current demand, we see that the normal
chip with high temperature and a nominal supply voltage asks for 260mA, instead

the FF for 360mA. This is due the leakages contributions, as explained before.

38

4 — Test flow variants

4.2 Operating frequency

The Phase Locked Loop (PLL) is an hardware circuit embedded in the DUT which
function is generated an output frequency (foyr) whose phase is related to the phase
of the input frequency (f;ny). The fry is the one of the internal oscillator equal to
20MHz and from it we can derive the wanted operating frequency by changing the
value of the K2-Divider. This has a direct coupling to the power consumption of
the device, therefore this must be done carefully.

The output frequency of the PLL is given by this formula:

_ N-fin
fOUT — P.K2

Where f;xy = 20MHz.
For example if we want the output frequency from the PLL equal to 180Mhz the
right values to set are: P = 02 , K = 03 and N = 36 . These are the values in

hexadecimal, which correspondingly are 2, 3 and 54 in decimal.

four = 180M Hz = 24 JinC20MHz)

To communicate the wanted frequency at the system, it has to be written into this
register: ”0x7000090C” the value we want, that in this example is: ”0x36020302”
because N = 0x36; P = 0x02 and K = 0x03. The resulting test code that we have

inserted in JAZZ is:

RW32, 0x7000090C, 0x36020302 , OxFFFFFFFF

And these are the results:

39

4 — Test flow variants

ent |A]

5 0.20

0.25 4 ‘

— at215 MHz
—— at 180 MHz
—— at 110 MHz

1l

77 mA

50 mA

~25 mA

0.004

0.006

0.008 0.010
time [s]

0.012

Figure 4.6: Icore during verify test at different operating frequency

As it is possible to see:

JrPLL 110MHz | 180MHz | 215MHz

Icore nominal | 115mA | 225mA | 275mA

Icore peak 25mA 50mA TTmA
Table 4.1: Icore values changing fpr .,

40

Chapter 5

NVM tests characterisation and

power estimation

Every memory tests is characterized by a certain level of current and in some tests
are present peaks superimposed at this level. To understand what generates these
peaks it is investigated inside the test codes. The codes are written in C and they
are part of a project developed by Infineon Technologies AG. Once all the tests
are compiled, they are built together to generate the executable (file.hex) that is a
machine code file that will be then uploaded in the JAZZ flow in one of the first test
executed: devcfg t_b_ta_ld.

The first thing is to understand at what the power peaks refer to and to do so, we
have insert in the scripts some signals that toggle when it is executed that particular

part of the code in order to make easier the debug process. These signals have been

mapped on the board in the ANALOG VTP CONNECTOR and they are:

41

5 — NVM tests characterisation and power estimation

PIN CONNECTOR INSTRUCTION RISE
P20 14 X33 (1) P20 OUT.B.P14=0xl;:
P20 11 X33 (3) P20 OUT.B.P11=0xl;
Pll 2 X33 (5) P11 OUT.B.P2=0xl;
P11 12 X33 (e) P11 OUT.B.P12=0x1;
P11 11 X33(11) P11l OUT.B.P11=0x1;
P20 8 X33 (1le) P20 OUT.B.P8=0x1;
P11 3 X33(17) P11 OUT.B.P3=0x1;
P11 6 X33(19) P11 OUT.B.P6&6=0x1;
P11 12 X33 (20) P11 OUT.B.P12=0xl:
P11 9 X33 (21) P11 OUT.B.P9=0xl;
P20 9 X33(22) P20 _OUT.B.P9=0xl;
P11 10 X33(23) P11 OUT.B.P10=0x1;

Figure 5.1: Pin map

The probes can be connected at every pin of the ANALOG VTP CONNECTOR,

which has this structure on the board:

ANALOG VTP CONNECTOR

P20 14 1 2 P339
P20 113 7 P33 8
51125 5 Pll_I2
502 47 8
50250 0
S1L_1L_11 72
502013 T
P02 215 16~ P20 8
FIL3 17 IS P02 6
11 610 20__PIL 12
511921 22__P20 0
51110 23 23
35 6
X33 i
GND GND

Figure 5.2: Analog VTP connector

The signals are added in the scripts of the erase, verify and program test.
Thanks to these modifications in the test code, it is possible to characterise every
test, and even if the main target of this project is the verify test, also the erase and
program test have been characterised. In the table below it is reported the test time

of each of them:

42

5 — NVM tests characterisation and power estimation

Verify test | Erase test | Program test
test time | 34 ms 384 ms 9,38

Table 5.1: Test time of erase, verify, program test

Now it is shown the current profile requested during the each test execution.

e ERASE TEST

0.301

current [A]

0.241

0201

T

— lcore
— banks
—— ext_sectors

| = sectors

polling
— Ivdd3

96 ms

0.00 0.05 0.10 015 0.20 0.25 030 035 0.40
time [s]

Figure 5.3: Structure of the erase test

The erase test is organized in four parts, each part corresponds to a bank
which is erased separately. As seen from the image to erase a bank are spent
96 ms. Every 96 ms there is a jump in the current Icore (blue curve) and a
quicker and more sudden jump on 3.3V domain (green curve). These jumps
are due to the operations of the arithmetic circuits inside the microprocessor
that are needed for switching from one bank to another.

If it is considered the current during the execution of the erase itself, so from

43

5 — NVM tests characterisation and power estimation

current [A]

when it is selected a bank until it is completely erased, it is possible to see that
the current on the 3.3V do not have variations while the Icore has a stepped
shape.

There are three different values for the current Icore, at the begging a narrow
pick that reaches 320mA, then a value of 300mA that lasts for 50ms and then

the current returns to its nominal value (287mA).

e PROGRAM TEST

0.25

0.20

time [s]

Figure 5.4: Structure of the program test

The program test lasts for 5.3s and principally it is organized such that it is
firstly selected the bank and then the sector that has to be programmed, in
particular there are three sectors for each bank. Once that three sectors of a
banks have been programmed it is switched bank till all the memory has been
programmed.

In the figure above the peaks of the red and the violet curves should have the

44

5 — NVM tests characterisation and power estimation

same amplitude, however even with the maximum sampling frequency set on
the oscilloscope, the instrument was not able to sample correctly all the peaks
in the curves, because they toggle to fast, but in reality they have the same
amplitude.

If it is zoomed on the core current curve (green), it is possible to analyze its

shape. It is characterized by giving peaks of 24mA each every 41ms.

24 mAT"“
41 ms

sssssssssssssssssssssssssssssssss

Figure 5.5: Zoom into the program test

45

5 — NVM tests characterisation and power estimation

current [A]

e VERIFY TEST

0.25

0.15

0.10

— Icore

— banks

— ext_sectors

— sectors

— zonaAB
polling

0.000 0.005 0.010 0.015 0.020 0.025 0.030
time [s]

Figure 5.6: Structure of the verify test

The verify test is organized such that firstly it is performed the access to the
sector, then to the zone and then to the minisector and it is started the verify
process.

After that 66 minisectors are verified, it is possible to switch zone and then
when the two zones of a sector are verified it is possible to switch also sector.
The blue curve is the Icore, which has an initial peak of about 200mA due to
the locking of the PLL and then other peaks of 77mA each. Counting them
with Python the result is that for every zone there are 66 peaks and then two
final peaks that corresponds to the part of the memory for the redundancy.
Every peak of 77mA corresponds to the verify of a minisector.

If we zoom inside the verify test, considering Icore and the polling signal we

have this shape:

46

5 — NVM tests characterisation and power estimation

Figure 5.7: Zoom into the verify of two minisectors

From the measurements, it seems to be a strong correlation between Icore and
the polling activity because Icore increases when the verify of a minisector
begins and it reaches its maximum when the polling has finished, and so the

test.

Polling is an operation in which it is repeatedly checked into a register the status
of an operation, this means accessing the register several times and reading a bit
written in it. This activity lasts until in this register is not read that the operation
has finished correctly.

Every time that a register is read, it is called the function ”ftlib_sfr read()” which in
turn invokes other functions, this requires a significant number of context switches.
With the debugger it is analysed deeper the test code and it is discovered that there
are three main functions that are called an infinitive numbers of times and in turn
they require to invoke other 4/5 functions to be executed. For debugging it is used
Universal Debug Engine (UDE) 5.0.

The three functions are: ftlib_sfr_read() and ftlib_sfr_verify() and ftlib_sfr write()

47

5 — NVM tests characterisation and power estimation

which simply read, verify and write respectively at a certain specified address.

From here, we started to do the main hypothesis that the power spikes come from the
fact that calling a function so often causes very fast and repeated context switches
and this require extra time and power. The following three software solutions found

to decrease the amount of power consumption are based on the above assumption.

e Reducing the frequency of the polling activity.
When we want to monitor if a certain operation has finished, frequent accesses
to a register are performed. Decreasing the number of times in which it is
asking if a certain operation has finished also the current requested by the
DUT decreases. More it is delayed the polling activity and lower is the amount

of current requested

e Using a new version of ftlib_sfr write() function.
This is a function that simply writes in a specified address of a memory. Inside
its code there are other functions which have only the scope of monitoring if
the writing operation has finished correctly or not, but have no others func-
tionalities. They in turns invoke other functions, if they are not executed there

are less context switches and we save a certain amount of power

e Using a specific low level function named MEMS8() by Infineon.
It directly loads/stores into memory at a specified address. With this solution

all the contest switched are bypassed and so a great amount of power is saved.

All these three techniques are explained in detail below.

48

5 — NVM tests characterisation and power estimation

5.1 Reduction of the frequency of the polling ac-

tivity

A reduction in the polling activity means a reduction in the frequency at which
we control the "ready-bit” inside a register that tell us if the operation we were
controlled is concluded or not. To decrease this activity it is inserted a for loop in
the code. In this section two analysis are reported: one on the verify and one on
the erase test.

Starting with the analysis on the verify test, it is delayed the polling activity that
checks if the verify of a minisector has ended or not.

In the previous paragraph we have seen that to verify every minisector, 77mA are
required and also thanks to the probes inserted in the test code we have noticed
that the maximum of 77mA is in proximity of the end of the polling activity. As it
is shown in Figure 5.7 . The part of the test code for the verify in which the delay of
the polling has been inserted is in in the ”ftlib_verify_sse_mnsec.c” and in particular

in the branch else:

49

5 — NVM tests characterisation and power estimation

while (TRUE == continueloop)
{

P11_0UT.B.P6=0x1;
P11_0UT.B.P6=0x@;

ftlib_sfr_read(SFR_COMM_1, &commlcontents);

if (FTLIB_VERIFY_SSE_HALTED_HANDSHAKE == (FTLIB_VERIFY_SSE_HALTED_HMANDSHAKE &8 commlcontents))

{
/* ASB read back */
FTLIB_ASSEMBLY_BUFFER_STORE(pbuffer, FTLIB_ASSEMBLY_BUFFER_SIZE);
ftlib_sfr_write(SFR_COMM1, ¶ml);
ftlib_sfr_write(SFR_CCTRL, ¶m2);
processSseReadout(pparams, presults, pbuffer };

}

/* check if SSE is over */
if (ftlib_sfr_verify(SFR_COMM_2 , &endCommand) == TRUE)
{

}

else

continueloop = FALSE;

/* nothing to do */

Figure 5.8: ftlib_verify_sse_mnsec.c with polling delay added into the TC

Depending on how much the polling is delayed, the current consumption changes,

more the polling is delayed and lower is the current requested.

— Kore
— banks
ext_sectors
—— Sectors
—— zonaAB
polling

56,5 mA

0.01634 0.01636 0.01638
time [s]

Figure 5.9: Icore during the verify of two minisectors with polling delayed of 100

50

5 — NVM tests characterisation and power estimation

25 us

IOTEE 0.00770 0.00772

Figure 5.10: Icore during the verify of two minisectors with polling delayed of 2000

As expected with a delay of 100,the current decreases from 77mA to 56,5mA,

so there are 20,5mA of difference, instead with a delay of 2000 the difference is 22mA.

The analysis is repeated for the erase test. During the erase test it is enabled
the Pump Monitor, which monitors the states of the pumps to evaluate if faults have
occurred. For example if the pumps are working on their 100% of capacity means
that a short circuit is present in the system. There is a polling to understand if this
action has finished or it is still running, in the file ” ftlib_pump.c”, and this polling

activity is delayed as shown below:

51

5 — NVM tests characterisation and power estimation

VOID ftlib_pump_run(
UINT32 address,
UINT32 mask,
UINT32 value)

{
register UINT32 running = @;
FTLib_PumpFunction_p pmeasure = NULL;
/* Initialize Pump Monitor function pointer */
pmeasure = FTLib_PumpParameters.psetting;
/* Polling execution term */
do
{
if (pmeasure != NULL)
/* Call measure function */
pmeasure[FTLib_PumpParameters.setting].pfunction();
¥
UINT32 time;
running = FTLIB_PUMP_POLL(address, mask };
for (int 1 = @ ; i<500; i++) ; /[/debug
} while { running != value);
return;
¥

Figure 5.11: Ftlib_pump_run()

The polling in this case is executed to evaluate if the pump monitor has finished
to monitor the pumps. Delaying the polling activity it is observed a decreasing in
the Icore requested and also a change in its shape, moreover more the polling is
delayed and lower is the current requested.

In the image below are plotted three curves of Icore, one is the original one(green
curve), one is measured with a polling delayed of 100 (red curve) and one with a

polling delayed of 500 (yellow curve).

52

5 — NVM tests characterisation and power estimation

—— PM enabled
PM enabled and delayed of 500
—— PM enabled and delayed of 10

0.20

o
&

current [A)

o
&

0.00 0.05 010 015 020 025 030 0.35 040
time [s]

Figure 5.12: Impact of polling delayed on the Icore during the erase test

Also for the erase test, more the polling is delayed and better it is in terms of

power consumption because the current decrease.

53

5 — NVM tests characterisation and power estimation

5.2 Modified version of ftlib_sfr write()

Another finding to reduce the power consumed is that by changing just the code
of the ftlib_sfr_write() function it is saved a bit of power. This function it is
called many times during the execution of the test code, so it is important try
to understand how to decrease the power that it requested to be executed. Look-
ing inside the function code it is possible to notice that there are two functions:
FTLIB.SFR_-TRACE_ENABLE(sfr) and FTLIB.SFR_TRACE_DISABLE() that are
used just for a debug purpose, because they are needed to understand if it has been
written or not inside the sfr-registers.

The new ftlib_sfr_write() function is:

inline VOID ftlib_sfr_write(

UINT32 sfr,
UINT32 mask,
UINT32 bitShift,
PUINT32 pvalue)

UINT32 sfr_value = @;

UINT32 address = @;

//FTLIB_SFR_TRACE_ENABLE(sfr); // commented

address = calculateAddress(sfr);
shiftvalue(&sfr_value, pvalue, bitShift);

/* Write register */
ftlib_register_sfr_write(address, mask, &sfr_value);

//FTLIB_SFR_TRACE_DISABLE(); // commented
return;

H

Figure 5.13: New test code of the ftlib_sfr_write()

Doing that, without substituting anything else in the code but just doing this
changing in the ftlib_sfr_write() there is a reduction in the current requested during

the execution of all the tests.

e FErase test

54

5 — NVM tests characterisation and power estimation

t[al

curre:

As it possible to see in the figure below, the current decreases of 8mA, a

— Icore normal
—— Icore modified

Tl hemn bomm |

8 mA

0.275

0.250

0.225

0.200

0.05 0.0 015 020 025 0.30 035
time [s]

Figure 5.14: Icore during erase test with new version of ftlib_sfr_write()

e Verify test

Maintaining the usage of ftlib_sfr_veriy(), ftlib_sfr_read() but with the new

version of ftlib_sfr_write() the result is:

55

5 — NVM tests characterisation and power estimation

current [A]

0.35

030

o
o
i

=
=3

— lcore normal
— Icore modified

N\

— kareromal
— Kore mosibed

77 mA

8 mA

o
imels)

0.03

Figure 5.15: Icore during verify test with new version of ftlib_sfr_write()

56

5 — NVM tests characterisation and power estimation

5.3 Directly load/store into the memory using MEMS()

As it is explained before, during the test execution there are few functions called
several times that simply write, read or verify a certain location in memory and
correspondingly they are ftlib_sfr write() , ftlib_sfr_read() and ftlib_sfr_verify().
Every time one of these function is called, in turn they call others 4/5 functions
and this requires extra time and power. These functions can be substituted with
MEMS(), which is a function that Infineon Technology has implemented with the
aim of loading/storing instruction depending if it is needed to read or write into a
memory location.

At the beginning to study which is the effect of this substitution it is done an
experiment just on the verify test and in particular it is performed a substitution in

the ftlib_verify_sse_mnsec.c code as shown below:

/* poll for command completion */
while (TRUE == continueloop)

{
P11_0UT.B.P6=0x1;
P11_0UT.B.P6=0x0;
//ftlib_sfr_read(SFR_COMM_1, &commlcontents); //translated into a inline function
commlcontents= MEM3(0xf8030004); //replace previous instruction
if (FTLIB_VERIFY_SSE_HALTED_HANDSHAKE == (FTLIB_VERIFY_SSE_HALTED_HANDSHAKE & commlcontents))
{
/* ASB read back */
FTLIB_ASSEMBLY_BUFFER_STORE(pbuffer, FTLIB_ASSEMBLY_BUFFER_SIZE);
ftlib_sfr_write(SFR_COMM1, ¶ml);
ftlib_sfr_write(SFR_CCTRL, ¶m2);
processSseReadout(pparams, presults, pbuffer);
}
/* check if SSE is over */
//if (ftlib_sfr_verify(SFR_COMM_2 , &endCommand) == TRUE)
if (MEMB(0xf8030005) == FTLIB_VERIFY_SSE_TM_COMMAND) // replace previous instruction
{
continueloop = FALSE;
}
else
/* nothing to do */
}
}

Figure 5.16: ftlib_verify_sse_mnsec.c

57

5 — NVM tests characterisation and power estimation

Where:
ftlib_sfr read(SFR_COMM_1, &comm1lcontents);
is substituted with
commlcontents= MEMS8(0xf8030004);
and

ftlib_sfr_verify (SFR_COMM 2, &endCommand)==TRUE
with

MEMS8(0xf8030005) == FTLIB_VERIFY_SSE_ TM_COMMAND

To explain how to calculate the address that must be specified inside the MEMS()
function it is reported the example of the ftlib_sfr read(SFR_.COMM_1, &commlcontents)
that it is used in the test code reported above. This functions is substituted with
commlcontents = MEMS8(0xf8030004); where the address ”0xf8030004” has been
calculated as specified in the file " ftlib_sfr_tc3xx.h”:

#define SFR_COMM_1 4, 0xFF, 0

In this example the address of SFR_COMM _1 is 4 in hexadecimal masked with OxFF,

therefore it is not specified in the code because it is a mask of all 1s.

58

5 — NVM tests characterisation and power estimation

>
< 2

63 polling

0.00616 0.00618 000620 0.00622 000624 0.00626 000628
time [s]

Figure 5.17: Icore(blue) during the verify of two mnsec using MEMS()

To see if mixing the usage of MEMS8() and delaying the polling activity there is a
reduction in the current consumption it is inserted a ”for loop” with 2000 iterations
inside the else branch.

The final result is the one reported below:

— kore
polling

-

0.00422 0.00424 0.00426 0.00428 0.00430 0.00432 0.00434
time [s]

Figure 5.18: Icore during the verify of two mnsec using MEMS8() with delay of 2000

59

5 — NVM tests characterisation and power estimation

Unfortunately, combining the delay of the polling activity and MEMS(), the cur-
rent does not decrease but instead increases. This can be explained by for delaying
the polling we have to insert a ” for-loop” and this requires that the ALU increases
by one the variable of the loop, and so this becomes the main contribution of the
current requested.

So at the end, it is verified that using MEMS() brings to a strong reduction in the
current request during the verify test and to prove that it is beneficial for all the tests,
it is created a new project in Tasking in which all the functions ftlib_sfr_read() and
ftlib_sfr_verify() are substituted with MEMS() specifying the proper addresses and
masks. It is important to highlight that for every ftlib_sfr function substituted we
must specify the right address and mask, but this makes the code no more reusable
for all the families of products because every family has its own addresses.

Once all the ftlib_sfr functions are substituted it is built another file.hex which is
then updated in the JAZZ flow. With this new executable all the tests are measured
again and it is done a comparison with the previous measures. For the erase, the
verify and the program tests there is a variation in terms of current Icore and below

are reported the results.

60

5 — NVM tests characterisation and power estimation

Erase test

time [s]

Figure 5.19: Erase test with MEMS()

The current Icore decreases of 16mA if it used MEMS() instead of the ftlib_sfr

functions and moreover it seems that the high level of the Icore-step lasts for more.

61

5 — NVM tests characterisation and power estimation

Verify test

= Icore normal
— Icore modified

035

030

025

rrent [A]

020

4 ms

015

mm—
010

0.000 0.005 0010 0015 0,020 0025 0,030 0035
2020-06-29 restricted time [s]

Figure 5.20: Verify test with MEMS()

The current decreases from 77mA to 14,5mA as shown before and also the test
time is reduced. This delay is present in every test where we have substituting the
sfr_functions with MEMS(), but in the verify is more evident because it seems that
in this test there are more sfr_functions with respect to the other tests. The time is
reduced due to the function MEMS() lasts less than ftlib_sfr functions, as reported

below:

62

5 — NVM tests characterisation and power estimation

> MEMBS() duration
> 180ns 180ns 400 ns

> Ftlib_sfr_read() duration
> 550ns

3 times the time execution of
MEMS().

Figure 5.21: MEMS8() VS ftlib_sfr read() duration

Program test

In the program test there is a reduction of about 14mA.

= lcore normal
= Icore with MEM (nosfr RD/WR)

0.350

0.325

0.300

w0 — warama 400 s

0275

current [A]

[E

0250 28 mA

LETS

0225 o

LES

0.200

1147 11480 148 pEtE L1483 L1484 LuEs L1486
time [5)

0 1 2 3 4 5
time [s]

Figure 5.22: Program test with MEMS8()

63

5 — NVM tests characterisation and power estimation

In conclusion the use of MEMS() is convenient for all the tests, and for some of
them there is also a test time reduction. This is explained by the fact that using
directly MEMS() several calling functions are avoided and so the context switches,
this brings to a reduction in the current requested and also in the test time execution.

The gain in terms of current saved of all the exposed techniques are summarized in

this table:
Verify test (of a mnsec) | Erase test
Technique: Original Icore level Original Icore level
Delayed polling -20,5mA -9mA
MEMS() -62,5mA -16mA
New ftlib_sfr_write() | -9mA -8mA

Table 5.2: Results

64

5 — NVM tests characterisation and power estimation

5.4 Analysis on the portability of the test code

The test codes in Tasking are organized such that they are portable on any family of
devices and this is an advantage because the skeleton of the project is the same for
every DUT and what it is changed is just the file.h where the addresses of the single
device are specified. The file ftos_fsist_tricore.h includes all the families usable, as
reported in part below:

#elif defined(DERIVATIVE_TC33xAED)
#include <ftos_fsist tc33xAED.h>
#elif defined(DERIVATIVE TC37xA_EDPD)
#include <ftos_fsist tc37xA.h>
#elif defined(DERIVATIVE_TC38xA)
#include <ftos_fsist tc38xA.h>
#elif defined(DERIVATIVE_TC3ExA)
#include <ftos_fsist tc3ExA.h>
#elif defined(DERIVATIVE_TC39x)
#include <ftos_fsist tc39x.h>
#elif defined(DERIVATIVE_TC39xB)
#include <ftos_fsist tc39xB.h>
#else
#endif

Figure 5.23: Choice of the right family device

The family of chip analyzed is the TC3ExA.

The system is portable thanks to the fact that every family of devices uses the same
name for the variables that have the same function, every family of devices has a
specific "file.h” where are defined these variables with their own values.

This solution is very attractive because has few advantages: high reuse and shorter
time to market but the disadvantages is a higher energetic cost. An example of that
is the use of MEMS(), in fact as shown in the section before if it is used the flexible
structure of the system written in JAZZ the current is much higher with respect to
the dedicated solution in which it is used the function MEMS().

The reason is that the usage of MEMS8() requires to specify an exact address and

mask and every family of device has its own addresses and masks whose values are

65

5 — NVM tests characterisation and power estimation

taken from file_family.h . If the goal is to maintain the portability of the code it

must be use other solutions to combine flexibility and efficiency, and the alternative

solutions found in this project are:
e Delaying the polling activity
e Modifying the ftlib_sfr_write() commenting the ftlib_sfr_trace_anable()/disable()

e Modifying the ftlib_sfr_write() commenting the ftlib_sfr_trace_anable()/disable()
and using MEMS() just in the ftlib_verify_sse_mnsec.c code

With these methods the flexibility of code is maintained but in the same time also

the power consumed by every test decreases.

66

Chapter 6

Voltage droops

As explained in the previous chapters, to evaluate the power consumption we have
measured the current that flows from the power supply to the device. From the
measurements it is possible to see how this current has big and quick variations,
that are called jumps.

Until now we have assumed that the level of the voltage supply remains stable, but
this is unreal because the current jumps present during the execution of tests cause
voltage droops. The phenomena is that if the current required by the DUT suddenly
increases, all the physical elements such as capacitances, inductances and resistances
affect the voltage that supplies the device [12]. The effect on the power supply is

better shown below:

Zeit

Figure 6.1: Voltage peaks due to current jumps

The droops on Vcore are dangerous because if the current jump is big, the
corresponding voltage droop could exceed the acceptable dynamic and this could

bring into a failure.[14]

67

6 — Voltage droops

VNOM

Vi /\

Guard band required \ /

VFAIL \/

Figure 6.2: Vcore droops and possible fail

As it is possible to see from the image, if we set the nominal value for Vcore on
the power supply and we have this kind of droop nothing happens. Instead if we
set on the power supply the minimum value for Vcore and we have the same droop,
the test will fail.

After having tested with few measurements that higher is the current jump and
bigger is the correspondent voltage droop, we have verified that the techniques to
reduce Icore explained in Chapter 5 are valid also to decrease the voltage droops.
To measure Vcore we have applied some modifications at the board, as shown in

the figure below:

68

6 — Voltage droops

VCAP_VDD_SNS g—[JRI6S
VoD o

Y 4
Power (1) crl o

Place power rails TP's close to DUT/Socket.
Power

, ewle Jenlosleslesloslen
VCAP_GNI SNS | Trou [ooaiom]iomio0a]to0m]io0a]100n|

VDD Core Monitoring
St @ e
O

VDD_SENSE

GND L

Power ™l

Power
PL1S WDDP3

Vss

VDDP3
VDDP3
VDDP3
VDDP3

2
O 5N ENEE,

220 10w Jioon]100n] 1000
[

VDDSE
o

P32_L/VGATEIP/VCAPI
VDDSB/VDD P32 0'VGATEIN/VCAPO

VFLEX

VSSEXT

100m]1 Odim 1 Odim 1 Oim |1 O0m |1 00m |1 00m.

VEBL

GND

VFLEX/VEXT TPI0

5 - 25
100101 O] 1 O0a]1O0a]1O0n]Cs |
ERTVITE

T

TP

GND

[=
GND RIS6 yGaTEIP

&
Note 1

Mount C158, Unmow
for TC33x PD device

Figure 6.3: Board schematic

VDDSBADD CAPregulator
NC/VGATEIP el
YT - VGATEIN [
- By default board is cc
OTF-BGAS16-08-30A oo DE-DC Regulator
4
- 3T
[axo—H}, |1 cl__ 3 L a2 L L I L Ol I VT _-;I L CI5_
[&1]
vEvgss OND! T00m o o o o - B
1W63Vde 1w63Vad lub.3vdc| w63V 1w63Ve] w63V
1600
GND| GND

The resistance with the red crosses have been removed while the ones with the

green circles have been soldered on the board.

69

6 — Voltage droops

6.1 Software solutions

As said before the current jumps are directly proportional to the voltage droops
that we observed on the voltage, as a matter of fact the same techniques used to
decrease Icore, have impact also on the droops of Vcore.

To prove that, it is reported the comparison between the verify test performed with
the original test code versus the one performed with the test code with MEMS().
As excepted, considering the most effective low-power solution that consists in sub-
stituting ftlib_sfr_read() and ftlib_sfr_verify() with MEMS8() we have a reduction of

the Vcore droops, as shown in the next figure:

7mv 20mv 4 ms

voltage [v]
K

0.015
time [s]

Figure 6.4: Vcore reduction during the verify test with the original test code (blue)
and with the modified one(red)

The voltage peak for verifying a minisector decreases from 20mV to 7TmV each
and there is a decrease also in the test time, about 4ms.

Zooming on each minisector we see that:

70

6 — Voltage droops

— veore

1290

1285

20 mv

voltage [v]

1280

1275

45 ys

001716 001718 001720 001722 001724 001726
time (5]

Figure 6.5: Vcore during the verify of a mnsec

While using directly MEMS():

— wcore wi MEwS()

14 us

1286

5mv

12:2

2mvV

oot676 oolere oo1680 ool6m
times]

Figure 6.6: Vcore during the verify of a mnsec using directly MEMS()

71

6 — Voltage droops

6.2 Hardware solutions

Aside of acting via software there are other hardware possibilities to decrease the
voltage droops, in particular we can act on the board itself changing the way in
which it is supplied and soldered capacitances.

The board can be supplied into two different ways: with flat cables or with round
cables that make possible also the usage of the current probe.

They are shown below:

Figure 6.7: Round cables Figure 6.8: Flat cables

One end goes to the power supply and the other to the board.
Flat cables are "new” in the market and Infineon Technologies is using them for
many different reasons. First of all these cables have lower inductance and this is an
advantage for the power integrity. The inductance of a cable depends on the wire
diameter and the distance of the two conductors, this is why if there are X-inductor
pairs in parallel instead of just a bigger one cable, the inductance is reduced by a
factor X.

The flat cables are attached one with the other while the round cables are individual

72

6 — Voltage droops

and this makes possible to use the current probe that can wrap the cables for which
we want to measure the current that flows in.

The effect of flat cables is to make Vcore more stable and so they reduce the possible
peaks that are present on the signal.

Below it is reported the initial part of the verify, which is the more critical in terms
of Vcore droops, because the initial droop cause by the PLL locking is the biggest

one.

» With flat cables
» Without flat cables

Veore [V]

| oooos0 £0B0DS 000010 000015
time [5]

Figure 6.9: Vcore from the board supplied by flat cables during the initial part of
the verify test

Is it possible to notice that all the peaks on the blue curve (Vcore measure on
the board supplied with flat cables) are smaller with respect the ones on the red

curve (Vcore measured on the board supplied with round cables).

73

6 — Voltage droops

In particular zooming on the initial peak we see a reduction of 27mV that is around
the 50% of the initial peak.

Combining the effect of flat cables with the effect of the bulk capacitance we obtain
a more stable voltage supply signal, because the peaks are furthermore attenuated,

as it is possible to see below:

» With bulk capacitance and with flat cables
» Without bulk capacitance and with flat cables

vicore [V]

time [s]

Figure 6.10: Vcore from the board with bulk capacitance and flat cables during the
initial part of the verify test

As expected bulk capacitance make Vcore more stable, the peaks on the Vcore
are attenuated of about 15 mV.
If we mix the contributes of using MEMS(), flat cables and bulk capacitance, we
achieve a greater reduction of the Vcore droops.
In the following figure we show how the green curve (verify with MEMS()) is smaller

with respect the blue curve (normal version of the verify) and in particular how the

74

6 — Voltage droops

first figure has the minimum equal to 1,27V while in the second one the minimum

is equal to 1,24V.

1,27V

90 mV

Y

Figure 6.11: Vcore with MEMS8(), bulk C and flat cables

This 30mV of difference are due to in the first figure the measurements have
been collected after having plugged in the bulk capacitance and having supplied the
board with flat cables, while in the second image the measurements are taken from
the board supplied with round cables and without any capacitance.

This is a big advantage because the risk to exceed the voltage dynamic decreases.

75

Chapter 7

Wafer level

The wafer is a substrate of semiconductor which serves as the substrate for micro-
circuits (DIEs) built in and upon it. At the end of its fabrication each DIE is cut
from the others by dicing and then it is packaged as an integrated circuit.

The entire process is shown in the image below [15]:

: — i 0oooo]
- A :] o o e
> , Eiaecy

DoDaoDn oo .
i O oooo 0 .

B ma
00 000000

1/

. < 0000000
; goooo
) Manufacture of boeseee=eea-s msmmenomeenee e - ‘
Silicon wafer integrated circuits Dicing (separation) Packaging
(Wafer manufacturing process) (Assembly process)

= =

Figure 7.1: Manufacturing process of basic silicon wafers

The wafer fabrication is a sequential process where the wafer is many times
exposed to photolithography after every physical process (doping, ion implantation,
etching) during which the circuit is gradually created. Photolithography is a process
that transfers the geometric pattern from a photomask to a photoresist on the wafer

substrate.

76

7 — Wafer level

7.1 Wafer probe

Before dicing the wafer, the DIEs are tested. Test signals are transmitted to each
picopads of the single DIE via a proper probe card and then signals are collected
from the device and compared with the excepted ones.

Each probe card is composed by an amount of picoprobes of the same number of

the picopads of the DIE we are testing.

Probecard with Picoprobes Picopads and Picoprobe under microscope

Figure 7.2: Picoprobes and picopads

Once a DIE is tested, the microprobes are shifted on other DIE’s picopads until

all the DIEs of the wafer have been tested.

77

7 — Wafer level

Opening/closin -
Tester o 7 Kx
;‘ > £

Performance board

Test head

Spring contact pin Probe card

I
Waifer chuck

Measurement part Wafer handling part X, Y, Z, 8 travel mechanism
and stage travel part

Cable

Wafer probe

Figure 7.3: Wafer test system

The wafer test system is composed by different parts, as it shown in the figure
above, the wafer is allocated on the chuck and then it is docked the probe card on
the wafer which serves as a connector between the bonding pads of the DIE and the
tester.

The needles of the probe card contact the pads of the DIE to conduct the tests and
also with the auxiliary of external microprobes it is possible to choose the pad from
which we want to perform the measure in order to observe the behavior of specific

signal, in our case Vcore.

7.2 Measurements on the wafer

In this paragraph we want to highlight how the measurements taken on wafer level
are worst with respect the one taken at board level due to the microprobes are
directly contacting the virgin silicon of the DIE.

To have a reasonable comparison, we have using the same family of devices: A2G

78

7 — Wafer level

TC38xEVO and we have executed the same test flow (S1) with JAZZ that we have
used to test the chip on the board, but this time the executable file (the one obtained
with Tasking) is modified a little because we want to avoid the initial peak present

at the beginning of the verify test, caused by the PLL locking.

40
|
=
r_i

oooooo
xxxxxxxx

Figure 7.4: Verify w the initial locking of the PLL: Vcore (yellow) and Icore (green)

This peak is due to the PLL is locked/unlocked for every tes. To solve this
problem it is specified in the test codes to lock it just one time at the beginning
of the test flow and to maintain it locked for all the followed tests.This is a big
advantage because avoiding this enormous current jump we avoid also variations of
Vcore.

The new verify without the lock/unlock of the PLL has this shape, both for Icore

(green) and Vcore (yellow):

79

7 — Wafer level

current 4]

time [=

Figure 7.5: Verify w/o locking of the PLL: Vcore (yellow) and Icore (green)

All the next measurements on the wafer are done with this new executable file
and therefore they will be compared with the verify in figure Figure 8.4 , where we
lock the PLL just at the beginning of the flow and then it remains locked at that
frequency for all the next tests.

In this chapter we start comparing the "board-level” with the ”wafer-level” worst
case scenario and then we improve the setup inserting the feedback loop and also
capacitances.

The first comparison is done with the virgin DIE where are connected the micro-
probes on the Vcore pins and then with Python are plotted both the Vcore taken
from the board (yellow) and the one taken from the virgin DIE (red for Vcore and
black for Icore).

Firstly, even if from the power supply are set 1.30V in both cases, the measurements
done on the wafer seems to have it at 1.38V, but this shift is not real. This is just
due to the fact we are using active micro-probes that a resistance in series at the
end of the probe.

The peaks on the wafer level are much higher with respect the ones at the board

level, to improve this measurement setup we can solder some capacitances on the

80

7 — Wafer level

plug of the wafer probe and we have tried to do this experiment firstly with a very
small capacitance (6,8nF) and then with a bigger one (470uF).

To have a more stable voltage supply it is inserted a feedback loop between the
power supply and the Vcore’s pin of the wafer, but the result is that the amplitude
of Vcore remains unchanged while there is a shift of +20mV in its mean value, as

shown below:

‘l’ I ""l "1’ o : r|"| LI ‘rm“urer]' e In-ll-- LR B ’q |’| o N
125

0.000 0.005 0010 0015 0.020 0025 0030
time [s]

Figure 7.6: Vcore during the verify w/ and w/o feedback measured from the board
(yellow) and from the wafer (red and blue)

Soldering the capacitance on the Vcore domain:

81

7 — Walfer level

~ Vcore on board with C=470uF
~— Vcore on board

0.000 0.005 0.010 0.015 0.020 0.025
time [s]

Figure 7.7: Vcore during the verify with C' = 470uF": Vcore from the board (yellow)
and from the wafer(pink)

If we focus on the verify of every single minisector, the effect of capacitances:

Figure 7.8: Mnsec measured on the board

82

7 — Wafer level

Figure 7.9: Mnsec measured on the wafer w/ and w/o feedback loop

142 mV

anatos
time (3

Figure 7.10: Mnsec measured on the wafer with C' = 470uF

To summarize the results obtained at board and wafer level, it is reported below
a table filled with the amplitude of the voltage droop that occurs when it is verified

a minisector. As it is better highlighted in the table, there is a big variation in terms

Vcore droops for a mnsec

On board 6,5mV
On wafer 165mV
On wafer with C=6,8nF | 155mV
On wafer with C=470uF | 142mV

Table 7.1: Vcore droops for verifying a minisector

of amplitude for every voltage droop, even if the test are exactly the same and the

83

7 — Wafer level

devices used are of the same family (AURIX2G TC38xEVO). This is due to the
presence of extra-resistances between picopads and picoprobes. This contribution
is big considering also the small dimension we are working with, as a matter of
fact each picopads is 9um - 9um, and the value of a R for an object is indirectly
proportional to the dimension of the object itself. The presence of these resistances

causes a bigger amplitude for each voltage droop.

84

Chapter 8

Deepening

In this paragraph is reported a parallel analysis done to further understand the

power consumption during the test execution.

8.1 Pump Monitor effect

There is a contribution for the power consumption coming from the Pump Monitor
(PM), which has the function to evaluate the state of the pumps and so understands
if there are problems in the circuit or not, for example if a pump is working at 100%
means that a short-circuit has occurred.

The PM can be enabled/disabled and this has an impact on the power consumed
during the execution of the erase and program tests, in particular contrary to what
expected if the PM is disabled the current requested increases otherwise decreases.
To better understand the reason why this happens it is analyzed the test code more

in detailed. In the interface of the different commands there is the function :

ftlib_pump_init(pinter face— >

analysis.bit.pump_monitor,params.pumpM onitor Scheme):

85

8 — Deepening

VOID ftlib_pump_init(
BOOL enable,
FTLIB_PUMP_OPERATION T operation)

/* Set TestMode Pump Load monitor flag */
ftlib_testmode setPumpload(enable);

/* Clear histogram data */

ftlib_pump histogramInit();

if (enable == TRUE)

{
initializePumpOperation(operation);
#if defined(DERIVATIVE AURIX)
readPumplLimitFromlWorkbook(operation);
readVDNTicksFromWorkbook () ;
#elif defined(DERIVATIVE_AURIX2G)
readPumplLimitFromWorkbook();

#alse
#arror Not supported derivative - File: ftlib pump.c
#endif
FTLIB_PUMP_START 0SC();
FTLIB_PUMP_START MEASURE(FTLIB PUMP_MONITOR RESTART);
}
else
{
setInvalidOperation();
}
return;
}

Figure 8.1: ftlib_pump_init()

At the ftlib_pump_init(pinterface— >analysis.bit.pump_monitor, params.pumpMonitorScheme)
function is passed the bit of the Pump Monitor (PM) and here it is decided to dis-
able or enable it. To set this bit (0 = disable, 1 = enable) must written in the
register 70x70000614” the second LSB equal to '1’ or ’0’ depending if the PM must
be enabled or disabled.
If it the PM is disabled we finish in the ”else” branch, where this function is exe-

cuted:

86

8 — Deepening

STATIC INLINE VOID setInvalidOperation(VOID)

{
/* Set invalid operation */
FTLib_PumpParameters.operation = FTLIB NUM OF PUMP_OPERATION;
/* Reset pointer */
FTLib_PumpParameters.psetting = NULL;
/* Disable Pump Log */
ftlib_testmode_setPumplLoad(FALSE);
return;
}

Figure 8.2: setInvalidOperation()

In FTLib_PumpParameters.psetting is evaluated to decide if the state machine
must start evaluating the pump’s measures that are: measure Vpp VdpPumpMoni-
tor(), measure Vpp VpnPumpMonitor() , measure Vpp Vdp PumpMonitorDisturb() and
all of these functions require to read from few SFRs registers.

As written before to disable the PM we must specify at the function : ftlib_pump_init(
pinterface-analysis.bit. pump_monitor, params.pumpMonitorScheme) that the bit.pump_monitor
is ’0’. In order to do so it is added a new test in the JAZZ flow named: ”dis-
abled_PM.spt”, it is inserted before the erase test.

The test code is the following:

RW32, 0x70000614, 0x00000000, 0x00000010

Below are reported the measurements of the erase test, in particular the current Icore

when the Pump monitor is enabled (green curve) and when it is disabled (yellow

curve) Icore:

87

8 — Deepening

— lcore with PM enabled
Icore with PM disabled
0350

0.325

10 mA 25 mA

| L,__..J .,.,‘._,_J .,_i,_J L,,..._J

0.275

current [A]

0.250 r‘"

0225

0.200

0.00 0.05 0.10 015 020 025 030 035 040
time [s]

Figure 8.3: Icore on board level with PM enabled(green)/disabled(yellow) during
erase test

Disabling the PM causes a variation in the current shape and an increasing in
the current consumption of maximum 25mA but this is contrary to what is expected
because without the PM the pumps are no more measured.

As anticipated before, also in the program test the disabling/enabling of the pumps
implies a change in the current request both concerning its amplitude and shape.
Below it is reported part of the program test executed both with the PM disabled

(black curve) and the PM enabled (yellow curve):

88

8 — Deepening

Icore without pump

current [4]

Figure 8.4: Icore on board level with PM enabled (green)/disabled (yellow) during
program test

As for the erase test also in the program test we have the same effects: Icore
changes shape and increases, of about 7mA.
To be sure that what we have discovered does not depends on some hardware on
the ROVACS board, it is done the some analysis also on the wafer.
Below it is shown the erase test performed with the PM enabled and disabled and

in both cases without the initial locking of the PLL:

89

8 — Deepening

aaaaaaaaaaaaaaaaaaaaaa

I TmA

10mA

35mA

- i

time (5]

Figure 8.5: Icore on wafer level with PM enabled (green)/disabled (yellow) during
erase test

If we compare this figure with the figure9.2 we see that the effect of disabling
the PM is the same: the current increases and change shapes, but on the wafer level
Icore increases more and on the waveforms there are 10mV of superimposed noise.
What is the main cause of this current increasing remain not completely clear,
however it could be attributed to the fact that when the Pump Monitor is disabled

its circuitries are used for other purposes that consume more.

90

Chapter 9

Conclusion

In conclusion, testing memories is crucial in order to assure the functionality of an
IC. A big variety of faults can affect the memory cell and, in order to test all of them,
it is essential to choose a good test algorithm. The test algorithm is implemented in
the form of test codes and each test code is characterised by having a certain power
profile and TT.

With the aim of characterising each NVM test code, we have found three techniques
for decreasing the power consumed by the IC during the test execution. All of them
are based on the assumption that, the greater is the number of context switches,
the higher is the amount of consumed power. Below it is an overview of the results

obtained:

e Direct use of MEMS()
MEMS() is a low level instruction which is used to load/store data from/to the
specified memory location. It causes an important decreasing of the requested

current.

e Modified version of ftlib_sfr_write():
By commenting just two functions inside the original ftlib_sfr_write(), we can
observe a decreasing of the current. These two functions are not essential for

the tests, but they simply verify if the ftlib_sfr_write() has been done correctly

91

9 — Conclusion

or not.

e Reduction of the frequency of the polling activity:
Every time we need to monitor if an operation is finished, so repetitive ac-
cesses to the registers are performed. This activity requires a certain amount
of power. By decreasing the number of accesses at these registers, also the

requested current decreases.

In order to have an immediate idea of the efficiency of these techniques, it is reported
a table with the values of the current Icore needed for the verification of a single
minisector. Originally, verifying a minisector required 77mA. Instead, by using the
above techniques, the requested current decreases according to the type of technique

we are implementing.

Icore required by a mnsec | Gain
Original test code (TC) TTmA
TC with the new_ftlib_sfr_write() | 68 mA 9 mA
TC with polling delayed of 100 56,5mA 20,5 mA
TC with MEMS() 14,5 mA 62,5 mA

Table 9.1: Icore peaks for verifying a minisector

As it is better highlighted by the table, the most efficient technique is the one
with MEMS8(). However, this technique makes the test code dedicated for the specific
family of device we are testing and it is not suitable if the aim is having a reusable
test code.

Moreover, it has been proved that, by using these techniques, we have advantages
both on the power consumption and on the voltage supply droops that could cause

failures. These voltage droops can be decreased also by using flat cables instead of

92

9 — Conclusion

round cables and, furthermore, by soldering capacitance on the power supply.
Additionally, the comparison between the tests executed at the wafer, on the one
hand, and at the board level, on the other, shows that in the latter the measurements
are more accurate. In every test that has been repeated in both environments, the
test time is the same and also the peaks occur at the exact same moment. However,
the shape and the amplitude of every current peak change. In particular, from the
wafer probe these peaks are much higher than the one measured from the board, on
the IC. This result demonstrates how bad it is the wafer probe environment with
respect to the board level environment in terms of measurement quality.

Future directions could be structured in the attempt of a better understanding of
what is behind the remaining quantity of power. As an example we recall the 14.5mA
measured even in the case that the low level instruction MEMS() is directly used.
Another possible step could be the developing of a test code that takes advantage

of the usage of MEMS() but remains reusable as much as possible.

93

Appendix A

Python scripts

Before_test.py

This is the code that must be inserted before the test we want to measure, in order

to set properly the oscilloscope basing on the characteristics of that test itself.

#BEFORE_TEST . py
import Ic_helper
from pverify.drivers.Scope.lcscope import IIviScope

from pverify.drivers.SimplifiedLabInstruments import SimpleScope

scope = SimpleScope(IIviScope()) #definition of oscilloscope object
resourcename = ’USBO::0xO05FF::0x1023::2801N55814::INSTR’ #ID of the oscilloscope used

scope.Initialize(ResourceName=resourcename, IdQuery=True, Reset=False, OptionString=’’)

Setting sample_rate and time/DIV : ((XX s/DIV)*10 , MAXIMUM SAMPLE POINTS)

scope.ScopeSetup (0.6, 25e6) #1ms/DIV

#CH2 used as trigger

scope.Trigger_Edge(Level=0.5, Slope=’RISE’, Position=1, Coupling=’DC’, ChannelIndex=2)

#SETTING EACH CHANNEL OF THE OSCILLOSCOPE:

scope.chl = scope.GetChannel (1)

94

A — Python scripts

scope.chl.ProbeSetup(Coupling="DC’, Bandwidth=20e6, Vrange=0.160,
Offset=-0.199, Position=0, Probe_Attn=1,

Probe_Type=’voltage’, Impedance=50)

scope.ch2 = scope.GetChannel(2)
scope.ch2.ProbeSetup(Coupling="DC’, Bandwidth=200e6, Vrange=8,
Offset=-3.8, Position=0, Probe_Attn=1,

Probe_Type=’voltage’, Impedance=50)

scope.ch3 = scope.GetChannel (3)
scope.ch3.ProbeSetup(Coupling="DC’, Bandwidth=200e6, Vrange=0.4,
Offset=-1.147, Position=0, Probe_Attn=1,

Probe_Type=’voltage’, Impedance=50)

scope.ch4 = scope.GetChannel (4)
scope.ch4.ProbeSetup(Coupling="DC’, Bandwidth=200e6, Vrange=0.160,
Offset=-0.101, Position=0, Probe_Attn=1,

Probe_Type=’voltage’, Impedance=50)

Arm scope waiting for the trigger

scope.Arm(Continuous=True)

95

A — Python scripts

After_test.py

Below it is shown the code of the script that must be inserted in the JAZZ flow
after the test we want to analyse. This script is composed of a first part that simply
defines the object "scope” to specify the oscilloscope we are using. Then a second
part, in which are defined the two power supplies, one for the Vcore (1.3V) and one
for Vext(5V) and Vddp3(3.3V). Depending on the value of the power supply we save
the waveform with a different name, for example if we are analysing the situation
in which the values on the supplies are maximum, the waveform of the Icore will
be named: "ICORE_maximum.npz”. Every time we want to save a waveform it is
necessary to specify an existing path on the computer and if the waveform already

exists with that name, it will be overwritten.

#AFTER_TEST.py
from pverify.drivers.Scope.lcscope import IIviScope

from pverify.drivers.SimplifiedLabInstruments import SimpleScope

scope = SimpleScope(IIviScope()) #definition of oscilloscope object
resourcename = ’USBO::0x05FF::0x1023::2801N55814: :INSTR’ #ID oscilloscope
scope.Initialize(ResourceName=resourcename, IdQuery=True, Reset=False,

OptionString=’"’)

#EACH CHANNEL OF THE OSCILLOSCOPE:

scope.chl = scope.GetChannel(1)

scope.ch2 = scope.GetChannel(2)
scope.ch3 = scope.GetChannel(3)
scope.ch4 = scope.GetChannel (4)

96

A — Python scripts

dataOfCH1 = scope.chl.GetProbeWaveform()

data0fCH1.save_to_file(r’C:\Users\lavignia\Desktop\results\erase\signall.npz’)

dataOfCH2 = scope.ch2.GetProbeWaveform()

dataOfCH2.save_to_file(r’C:\Users\lavignia\Desktop\results\erase\signal2.npz’)

dataOfCH3 = scope.ch3.GetProbeWaveform()

dataOfCH3.save_to_file(r’C:\Users\lavignia\Desktop\results\erase\signal3.npz’)

dataOfCH4 = scope.ch4.GetProbeWaveform()

dataOfCH4.save_to_file(r’C:\Users\lavignia\Desktop\results\erase\signal4.npz’)

#control also on the power supply:

from pverify.drivers.DCPwr.hpe364xa import IIviDCPwr

from pverify.drivers.SimplifiedLabInstruments import SimpleDCSource

initialization

PWR_CORE = SimpleDCSource(IIviDCPwr()) #definition of pwr supply(l), Vcore

resourcename_core = ’GPIBO::5::INSTR’ #ID of pwrl

PWR_CORE.Initialize(ResourceName=resourcename_core, IdQuery=True, Reset=False,
OptionString=’simulate=False’)

PWR_CORE.chcore = PWR_CORE.GetChannel(1)

PWR_ExtVddp = SimpleDCSource(IIviDCPwr()) #definition of pwr supply(2) (Vext and Vddp)
resourcename_ext_ddp3 = ’GPIBO::4::INSTR’ #ID of pwr2
PWR_ExtVddp.Initialize(ResourceName=resourcename_ext_ddp3, IdQuery=True, Reset=False,

OptionString=’simulate=False’)

PWR_ExtVddp.ch1l = PWR_ExtVddp.GetChannel (1)

PWR_ExtVddp.ch2

PWR_ExtVddp.GetChannel (2)

97

A — Python scripts

actualVcore = round(PWR_ExtVddp.ch2.Measure_Voltage(), 1) #only one decimal value after the comma
if actualVcore == 5.0:
now, change voltage for next iteration

PWR_CORE. chcore.Configure_VoltageLevel (Level=1.33, CurrentLimit=1)
PWR_ExtVddp.chl.Configure_VoltageLevel(Level=3.63, CurrentLimit=1)
PWR_ExtVddp.ch2.Configure_VoltageLevel(Level=5.5, CurrentLimit=1)
PWR_CORE. chcore.Enable (Enabled=True)
PWR_ExtVddp.chl.Enable(Enabled=True)
PWR_ExtVddp.ch2.Enable (Enabled=True)

elif actualVcore == 5.5:
save waveform at maximum voltage
now, change voltage for next iteration
PWR_CORE. chcore.Configure_VoltageLevel(Level=1.14, CurrentLimit=1)
PWR_ExtVddp.chl.Configure_VoltageLevel (Level=3, CurrentLimit=1)
PWR_ExtVddp.ch2.Configure_VoltageLevel(Level=4, CurrentLimit=1)
PWR_CORE. chcore.Enable (Enabled=True)
PWR_ExtVddp.chl.Enable(Enabled=True)
PWR_ExtVddp.ch2.Enable (Enabled=True)

elif actualVcore ==4.0:

save waveform at minimum voltage
now, set the nominal voltage
PWR_CORE. chcore.Configure_VoltageLevel (Level=1.25, CurrentLimit=1)
PWR_ExtVddp.chl.Configure_VoltageLevel (Level=3.3, CurrentLimit=1)
PWR_ExtVddp.ch2.Configure_VoltageLevel(Level=5, CurrentLimit=1)
PWR_CORE. chcore.Enable (Enabled=True)
PWR_ExtVddp.chl.Enable(Enabled=True)
PWR_ExtVddp.ch2.Enable (Enabled=True)

Arm scope waiting for the trigger

scope.Arm(Continuous=True)

98

A — Python scripts

Manipulate _data.py

This script is executing a part from JAZZ and it simply opens the waveforms that
have been previously saved, then from every waveform extrapolates its data and

time and plot again the waveforms.

#MANIPULATE_DATA.py
from pverify.postproc.signals import Waveform

import matplotlib.pyplot as plt

wavel = Waveform.load_from_file(filepath="C:/Users/lavignia/Desktop/results/erase/signall.npz")
wave2 = Waveform.load_from_file(filepath="C:/Users/lavignia/Desktop/results/erase/signal2.npz")
wave3 = Waveform.load_from_file(filepath="C:/Users/lavignia/Desktop/results/erase/signal3.npz")

wave4 = Waveform.load_from_file(filepath="C:/Users/lavignia/Desktop/results/erase/signal4.npz")

datal = wavel.data
timel = wavel.time
data2 = wave2.data
time2 = wave2.time
data3d = wave3.data
time3 = wave3.time
datad4 = wave4.data

time4 = waved.time

plt.plot(timel, datal, ’r’, label=’Signal 1°’)
plt.plot(time2, data2, ’y’, label=’Signal 2°’)
plt.plot(time3, data3, ’b’, label=’Signal 3°’)
plt.plot(time4, data4, ’g’, label=’Signal 4°’)

plt.legend(loc=2)

99

A — Python scripts

plt.xlabel(’time [s]’)
plt.ylabel(’ [A] or [V]’)

plt.show()

100

Bibliography

1]

8]

Microcontroller Division Applications, INTRODUCTION TO SEMICON-
DUCTOR TECHNOLOGY, STMicroelectronics.

Einfochips PES, Memory Testing: MBIST, BIRA & BISR. An Insight into
Algorithms and Self Repair Mechanism,
https://www.einfochips.com/blog/memory-testing-an-insight-into-

algorithms-and-self-repair-mechanism/

Michel Linder, Test Set Optimization for Industrial SRAM Testing, Master
thesis TUM

Akshay Pai, Testing on Emulators vs Simulators vs Real Devices, Browser-

Stack

T. Windbache, Flash Memory,
https://www.iue.tuwien.ac.at/phd /windbacher /nodel4.html

Vatajelu Zambelli, Nonvolatile Memories: Present and Future Challenges ,
http://ishare.infineon.com /sites/ EFE_Aurix3G /Shared%20Documents/xRAM/
Vatajelu_Zambelli NVM_Challenges_DATE_2014.pdfsearch=flash%20architecture%z20cell
Aya Fukami, NAND Flash Memory Forensic Analysis and the Growing

Challenge of Bit Errors,

https://www.semanticscholar.org/paper/NAND-Flash-
Memory-Forensic-Analysis-and-the-Growing-Zandwijk-

Fukami/311b34befb3c13dc49cc12049f3fc299bc5098fc/figure /0

FTOS -FSIST Interface,

101

Bibliography

[10]

[12]
[13]

[14]

[15]

https://envm.drs.infineon.com/envm/FTOS/Documents/gl/125933-
td.html

CURRENT PROBE TEKTRONIX MANUAL,

https://ishare.infineon.com /sites/ TD-Lab/Manuals/Measurement%20device
/English /Tektronix_%20Current%20Probe%20TCP312.pdf

Dan Harmon, Choose the Right Current-Measurement Technique for Your
Application,

https://www.electronicdesign.com /technologies/test-measurement /article
/21800806 /choose-the-right-currentmeasurement-technique-for-your-
application

#:~:text=Indirect%20current-measurement %20techniques%20are,
Maxwell% %A2%E2%82% AC%E2%84% A2s%20Equations. & tex
Thermonics T-2500SE Temperature Forcing Systems,
https://www.atecorp.com/products/thermonics/t-2500se

Konstantin Root, Charakterisierung und Modellierung

Dan Harmon, Choose the Right Current-Measurement Technique for Your
Application,

%https://www.atecorp.com/products/thermonics/t-2500se

Martin Huck, Voltage droop,
http://ishare.infineon.com/sites/PTEam_Site/PTEUniversity /PTE_University
/2019_10_08_Voltage_ DROOP /2019_10_08_Voltage DROOP.pptx

Hafiz Zafar Nazir, Robust adaptive exponentially weighted moving average
control charts with applications of manufacturing processes,
https://www.researchgate.net /figure/Manufacturing-process-of-basic-

silicon-wafers_figd_335174577

102

Bibliography

[16]

[17]

[18]

[19]

[20]

ELINFOR, The Differences Between Flash Memory and Memory,
https://www.elinfor.com /knowledge /the-differences-between-flash-memory
-and-memory-p-11191

Paul Zandbergen, What is Random-Access Memory?,
https://study.com/academy /lesson /what-is-random-access-memory-ram
-definition-history-quiz.html#:~:text=RAM%20is%20considered
%20volatile%20memory,not%20store%20any %20information%20permanently
Paul Zandbergen, What is Random-Access Memory?,
https://www.geeksforgeeks.org/classification-and-programming-of-
read-only-memory-rom /:~:text=It%20consists%200f%20two%20basic,
will%20represent %20its%20decimal %20equivalent %20.

MBIST (Memory Built-In Self Test),
https://vlsiuniverse.blogspot.com/2013/05/mbist.html

Arunkumar Krishnan, SRAM and DRAM,
https://medium.com/@emailarunkumar /sram-and-dram-sdram-

9b6d01£09eb7

103

	Acknowledgments
	Introduction
	Volatile and Non Volatile Memories
	Flash memories architecture
	Flash memories testing

	Working setup
	Busy signal used as trigger
	Interface for measurements automation
	Current measurements

	Test flow variants
	Temperature and voltage supply
	Operating frequency

	NVM tests characterisation and power estimation
	Reduction of the frequency of the polling activity
	Modified version of ftlib_sfr_write()
	Directly load/store into the memory using MEM8()
	Analysis on the portability of the test code

	Voltage droops
	Software solutions
	Hardware solutions

	Wafer level
	Wafer probe
	Measurements on the wafer

	Deepening
	Pump Monitor effect

	Conclusion
	Python scripts
	Bibliography

