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Abstract

Securing Smart Environment applications is a huge concern nowadays. The use of small, embed-
ded devices to connect the physical to the digital world is a big challenge in terms of security, due
to the limited hardware resources available and the real-time constraints the system must ensure.
As an example, a paper released in 2018 by the US Department of Homeland Security highlights
numerous, potential issues and threats regarding the use of new Internet of Things (IoT) tech-
nologies in Precision Agriculture and Smart Farming.

To address this problem, the concept of Authentic Execution was proposed in 2017 by Noor-
man et al., which described a secure framework for a distributed, event-driven application. This
solution relied on the use of Trusted Computing (TC) and Trusted Execution Environments
(TEE) to achieve strong security properties such as confidentiality, integrity and authenticity of
software and data. An implementation of this approach was provided for Sancus, an embedded
TEE that extends the TI MSP430 CPU.

However, this solution is not sufficient in a real scenario: in fact, most IoT systems need
a cloud backend, to gather data and perform expensive computation. Hence, an heterogeneous
system is needed in such applications, composed by both embedded devices and remote servers.

Therefore, this Master’s Thesis describes an implementation of the Authentic Execution ap-
proach for Software Guard eXtensions (SGX), a TEE included in recent Intel processors. We
developed a framework that allows a developer to write only the logic of his own application,
as well as providing a high-level description of the system (e.g., to specify how the modules are
connected to each other). The framework implicitly handles the execution of a module inside an
isolated, trusted environment (called enclave) and the communication between different mod-
ules. Moreover, the framework is entirely written in Rust, a modern, fast programming language
that provides by design numerous features to enhance security, such as protection against many
memory-management vulnerabilities (e.g., buffer overflows), as well as a safe use of threads and
concurrency. Along with the SGX implementation, we provide tools to easily deploy a heteroge-
neous, distributed application on a shared infrastructure.

In addition to the Trusted Execution of their modules, Sancus and SGX can bring further
advantages if used together: while the former is able to perform Secure I/O, the latter provides
a feature called data sealing, to securely store data on disk. Particularly, Secure I/O is used to
establish trusted paths between high-end computation nodes and I/O devices.

Finally, we prove the effectiveness of Authentic Execution by implementing a prototype for
a smart irrigation system. A security evaluation shows that this approach ensures strong confi-
dentiality and integrity guarantees. From a performance point of view, instead, tests reveal that
our solution is widely acceptable for an irrigation system, whereas it might not be feasible for
applications with stricter real-time constraints.

Keywords: IoT, Authentic Execution, Trusted Computing, TEE, Sancus, Intel SGX, Rust,
Smart Environments, Precision Agriculture, Smart Farming
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Chapter 1

Introduction

In recent years, more and more applications have been developed to connect the physical to the
digital world, with the purpose to improve human’s everyday activities. These applications rely
on input/output (I/O) devices to interact with the real world in both directions: input periph-
erals (sensors) are used to get information from the environment (e.g., light, temperature, etc.),
whereas output devices (actuators) perform actions on it (e.g., moving a robot). Systems that
use this kind of technologies are called Smart Environments [1]. A Smart Environment applica-
tion consists of several components ranging from low-end I/O devices to high-end computation
systems. All of them work together, exchanging information to each other. Hence, they must be
part of the same local network, which can be either wireless or wired. The running application
is then distributed, as it is scattered among multiple components.

These applications may bring huge benefits for their stakeholders, e.g., an improved quality
of life or financial profits. However, from a security point of view there are some challenges
to be addressed. Since the application is distributed, each component needs to be reachable
through well-defined interfaces, which might be exploited by an adversary to take control of the
system. In addition, some systems require an Internet connection to work, making these interfaces
accessible even from a remote location, increasing the risk of illegal accesses. Moreover, attackers
might tamper with the communication channel between two components, causing malfunctions
or improper behavior. Providing security guarantees in a Smart Environment application is
essential, as a successful attack might cause huge damages to the physical world. For instance,
an improper use of a robot might harm not only the environment, but human lives as well.

To solve these issues, several security strategies can be applied. The ultimate goal is to provide
confidentiality, integrity and authenticity guarantees of (1) the execution of every component of
an application, (2) the communication between two different components and (3) the interaction
between a component and an I/O device. Regarding (1), a software on a platform must be run
in an isolated context, which should protect code and data from being accessed or modified by
other entities. Besides, the software needs to be authenticated at runtime by a remote party
(e.g., the developer or another software), to prove its trustworthiness. Finally, an effort must
be made to minimize the Trusted Computing Base (TCB), which is the set of all the hardware
and software that is considered critical to an application from a security perspective. Usually, an
application needs to trust its own code, the underlying Operating System (OS) and the hardware.
In this situation, a vulnerability found anywhere in the platform might affect the execution of
the application, if exploited by an attacker. Hence, it is essential to reduce the attack surface as
much as possible; a smaller TCB makes also easier to check for vulnerabilities. Concerning (2),
instead, cryptographic operations can be used to secure the communication between two entities
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Introduction

on a network. Similarly, sensitive data must be protected in (3) as well. Moreover, an I/O device
should be accessed and/or controlled only by authorized software on the same platform.

Basing on these security requirements, a framework called Authentic Execution was proposed
in 2017 by Noorman et al. [2], to provide strong assurance of the secure execution of a distributed,
event-driven application. The framework implements the principles of Trusted Computing (TC)
[3]: each component of the distributed application runs inside an isolated portion of memory
called enclave, which resides in a secure area of the processor called Trusted Execution Envi-
ronment (TEE) [4]. Thanks to the hardware support, code and data inside the enclave are
not accessible from the outside and the execution of a software cannot be modified at runtime.
Furthermore, the owner of the application can obtain a proof of authenticity of each component
by performing the Remote Attestation (RA) process [5]. If RA succeeds, the owner has the
guarantee that the application is running untampered and the isolation mechanisms of the TEE
are in place. The Authentic Execution framework also protects the communication channel with
encryption techniques and supports Secure I/O.

The Authentic Execution concepts can be applied to a generic TEE; however, the implemen-
tation provided by Noorman et al. only includes support for Sancus, an embedded TEE that
extends the TI MSP430 CPU [6], limiting the applicability of the framework in a real scenario.
In fact, a Smart Environment is often made of heterogeneous components, as discussed above.
High-end nodes are essential in most applications, as they provide the hardware and software re-
sources needed to perform highly expensive tasks, such as running a machine learning algorithm
or storing huge quantities of sensor data. An application composed of only embedded devices
might work on small systems, but is likely to be infeasible on more sophisticated scenarios.

Therefore, this Master’s Thesis aims to remove this limitation by providing the Authentic
Execution framework support for SGX, a TEE included in recent Intel processors [7]. By com-
bining Sancus and SGX together, the framework becomes able to support a much higher number
of real-world applications: in particular, this Thesis focuses on Smart Farming [8], developing a
prototype for a secure smart irrigation system. Smart Farming applications are critical from a
security point of view; a study conducted by the US Department of Homeland Security [9] shows
that many threats are related to the adoption of new digital technologies in Precision Agricul-
ture (PA). Hence, a secure infrastructure is essential to deploy an application that is robust and
resilient to attacks.

1.1 Contributions

The main contributions we provide in this Master’s Thesis work are:

1. An implementation of the Authentic Execution framework for Intel SGX, along with mod-
ifications of the existing Sancus code to provide compatibility between the two TEEs.

2. The development of a prototype for a secure smart irrigation system, implemented using
the upgraded Authentic Execution framework.

3. An evaluation of performance, size and security aspects of our prototype implementation.

All source code and documentation are available at https://github.com/gianlu33/authentic-
execution.

1.2 Outline

The remainder of this Master’s Thesis is structured as follows:

2
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Introduction

Chapter 2: Background. This chapter gives preliminary information about the key topics
of this work. Firstly, it discusses technical details of Trusted Computing and TEEs. Secondly,
it introduces Smart Farming.

Chapter 3: Problem Statement. This chapter defines the system model, the attacker model
and the security properties we aim for. In addition, we provide an extensive description of the
Authentic Execution framework.

Chapter 4: Implementation. This chapter focuses on the technical aspects of our work,
describing how we implemented the Authentic Execution framework in Intel SGX and what
changes we made on the existing Sancus implementation and the tools to deploy and manage a
system. Furthermore, it shows a design of the application-layer protocol that the components of
our system use to communicate to each other.

Chapter 5: Prototype. This chapter presents the prototype we developed, which is based on
the architecture illustrated in the previous chapters. It also includes an evaluation of both size
and performance of the prototype based on experimental results, along with a discussion about
its security properties and feasibility in a real-world scenario.

Chapter 6: Conclusion. This chapter summarizes the Thesis and introduces similar work in
the research world. Moreover, it points out potential future improvements of our solution.
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Chapter 2

Background and related work

This chapter aims to provide background information about the most important topics of this
Master’s Thesis and introduces similar work in the research world. It is structured as follows:
Section 2.1 introduces the concepts of Trusted Computing (TC). Section 2.2 describes what is a
Trusted Execution Environment (TEE) and how it works, with a special focus on Intel Software
Guard eXtensions (SGX) and Sancus. Section 2.3, instead, discusses about Smart Farming
applications and their security threats. Finally, section 2.4 concerns related work.

2.1 Trusted Computing

Trusted Computing (TC) [3, 10, 11] is a technology developed by the Trusted Computing Group
(TCG) [12]. Its goal is to provide strong guarantees that a software always behaves in the
expected way, as specified in the source code and regardless of other untrusted software in the
system (e.g., the OS and other processes). Hardware extensions are introduced to enforce this
behavior and to provide cryptographic capabilities, protecting the software against unexpected
changes and attacks.

The key concepts of TC are the following:

• Endorsement key. The endorsement key is an unique, private key that is stored on a
dedicated chip called Trusted Platform Module (TPM) [13] and never leaves it. Neither
the OS nor any other software can obtain the key from the TPM. It is created randomly
at manufacture time and cannot be changed. The corresponding public key is used for
either attestation (i.e., to verify the integrity and authenticity of a software) or encryption
of sensitive data sent to the chip.

• Memory curtaining. Memory curtaining ensures strong isolation of sensitive areas of mem-
ory, e.g., locations of cryptographic keys. This isolation is enforced by the hardware.
Unauthorized accesses of this memory are not possible.

• Secure I/O. Secure input/output (I/O) ensures the confidentiality and integrity of I/O
peripherals connected to the hardware. This feature rules out a wide variety of threats,
such as keyloggers (i.e., hardware or software that records what the user types on the
keyboard), introduction of fake data, manipulation of input data, record or alteration of
the content displayed on the screen, etc.

• Sealed storage. The sealing feature allows a device or software to store securely private
information on disk. The stored data is encrypted with a sealing key, which is included in
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Background and related work

the TPM along with the endorsement key. The data is bound to the sealer (e.g., the device
or a software), which is the only entity able to access it.

• Remote attestation. Remote Attestation (RA) [5] is the process in which an entity is au-
thenticated to a remote host. For instance, a vendor might want to attest his software
running on a remote machine. During the process, the software sends to the vendor a cer-
tificate, which is generated by the hardware and provides information about the software’s
current status. The certificate is digitally signed with the endorsement key, so that the
vendor has a guarantee of its authenticity and can verify that the software is running un-
tampered on the machine. During RA, a symmetric key might also be established between
the vendor and the software, to protect future communications between the two.

• Trusted third party. RA does not provide anonymity, i.e., the attested entity needs to be
identified in order for the attestant to verify its authenticity. This is not an issue in the
case explained above, where a vendor wants to attest his own software. However, for a
communication between two remote users this might be a problem, since one of them (or
both) might want to remain anonymous. In these situations, a trusted third party can be
used to guarantee anonymity on the network. In this scenario, the users are attested by
the trusted third party itself: for each user, it performs the RA process and generates a
signed certificate saying that the user is running untampered, without revealing his real
identity. Then, this certificate is used by a user to prove his authenticity to the others.

From this model, different architectures have been designed in recent years, which implement
a subset of these concepts. In the next section, we focus on a particular technology: Trusted
Execution Environments.

2.2 Trusted Execution Environments

A Trusted Execution Environment (TEE) is a secure area of the processor. An application that
runs inside a TEE is protected with respect to confidentiality and integrity. Code and data of
an application are loaded inside an enclave, which is a container that isolates the application
from the rest of the world. As such, an external entity cannot access nor modify the memory
inside the enclave. This behavior is enforced by the hardware (and, in some cases, the software
as well): each TEE uses different mechanisms to achieve this goal.

One of the main benefits of a TEE is the reduction of the TCB, which is the set of all the
hardware and software that is considered critical to an application from a security perspective.
Normally, an application needs to trust all the infrastructure in which is executed: hardware, OS
and other software such as system utilities. In this scenario the attack surface is huge, because
a vulnerability found anywhere in the infrastructure might potentially affect the application, if
exploited by an attacker. Thanks to the enclaved execution inside a TEE, instead, the application
need not trust any other component except for its code and the hardware that enforces the
isolation mechanisms. This results in a reduction of the TCB, which might be more or less
significant depending on the infrastructure and the size of the application. For instance, the
Linux kernel is estimated to have around 27.8 million lines of code1: in this case, the TCB
reduction would be enormous. Although the TEE protects an enclave from the rest of the world,
it cannot protect from vulnerabilities found in the enclave itself. Thus, it is critical from a

1https://www.theregister.com/2020/01/06/linux_2020_kernel_systemd_code
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security point of view to write code that is bug-free, using safe programming languages and/or
formal verification tools to ensure its correctness.

Depending on the TEE, additional features from the Trusted Computing model may be
provided, such as secure I/O and data sealing. A feature common to all TEEs, instead, is RA,
which is a key concept of this Master’s Thesis work. In the next sub-sections we introduce Sancus
and SGX, describing which features they provide and how RA is achieved in each of them.

2.2.1 Sancus

Sancus [6] is a TEE designed for low-cost and low-power embedded systems. Its implementation
is based on the TI MSP430 processor, which uses a Von Neumann architecture with a single
address space for instructions and data. Sancus offers a hardware-only TCB, which means that
a protected software needs only to trust the hardware and its own code.

Sancus uses symmetric key cryptography to provide its security properties. Three main
primitives are implemented: firstly, a hash function to calculate digests of data. Secondly, a key
derivation function used to obtain a derived key KM,D from a master key KM and diversification
data D. Thirdly, an Authenticated Encryption with Associated Data (AEAD) primitive to
provide confidentiality, integrity and authenticity guarantees on the data. This primitive consists
of two functions, one for encryption and the other for decryption. The former takes as input a
key K, a plaintext P and associated data A and returns the ciphertext C and a tag T , which is
a Message Authentication Code (MAC) over the plaintext and associated data. The latter takes
as input K, C, A and T and, if the MAC is correct, returns the plaintext P . If the MAC is
not correct, instead, it produces a decryption error. The cryptographic functions are based on
the SpongeWrap authenticated encryption scheme [14], using SPONGENT as the underlying
sponge function [15].

Infrastructure and key derivation

The Sancus infrastructure consists of three categories of entities:

• Nodes. Nodes are the Sancus microcontrollers that are owned by an Infrastructure Provider
(IP). Each node shares with the IP an unique master key KN , which is stored in hardware
inside a protected storage and is not directly accessible to software.

• Software Providers. A Software Provider (SP) is an entity that can deploy software on
the IP nodes and is identified by a public ID. The IP uses the key derivation function to
compute KN,SP from a node’s key KN , and it is used to derive future symmetric keys
shared between the SP and his software deployed on N , as described below.

• Software Modules. A Software Module (SM) is the terminology Sancus uses to describe
an enclave. It is a software developed by a SP and executed on a node N . Its binary file
contains at least a text section and a data section, which is zero-initialized before execution.
Each SM has an identity called layout : the layout of a SM is the hash of the text section
and the start/end addresses of the text and data sections. That is, two SMs compiled from
the same code would have different identities. The layout of a SM is used as diversification
data to derive the module key KN,SP,SM from the SP key KN,SP . This key is computed
by the node and stored in the protected storage. Additionally, the SP can also derive this
key on his own, since he knows the identity of the SM as well. Hence, the SP can use this
key to attest a SM and to secure the communications with it.
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Isolation and memory access control

Sancus uses a program counter-based memory access control [16] to protect a module inside a
node. In short, this design makes sure that the data of a module is accessible only if the Program
Counter (PC) is on the text section of the same module. That is, other modules cannot access
that data because the access control system would block every illegal behavior. Furthermore,
the cryptographic instructions that rely on KN,SP,SM depend on the value of the PC to retrieve
the module key from the protected storage.

The text section of a module is read-only and can be accessed only through a well-defined entry
point. This design choice was implemented to prevent Return-Oriented Programming (ROP)
attacks [17]. However, multiple logical entry points can be defined in a module’s code: the
compiler implements them on top of the single physical entry point, by means of a jump table.
To enable the memory access control on a module, the instruction protect layout, SP needs to
be called. This instruction checks the layout of a module to be sure that it does not overlap with
other modules, then enables the memory access control and finally creates the KN,SP,SM key,
storing it in the protected storage together with the layout of the module and its ID. There is an
alternative version of this instruction, which accepts an encrypted layout (encrypted with KN,SP )
along with a MAC to provide integrity. This procedure is also called Confidential Loading, as the
text section of a module is not exposed during the deployment. To disable the memory access
control, the instruction unprotect continuation is issued, which also clears the code and data
sections of the module to avoid leaks.

Remote Attestation

RA in Sancus is a simple process that does not require particular effort from the involved parties
(the SP and his module). Since the KN,SP,SM key is only known by the module and the SP, the
latter can be sure that the former is running untampered on node N if a message sent from the
module and encrypted with its master key can be successfully decrypted by the SP. Of course,
the SP needs to trust the Sancus architecture, which must make sure that the key KN,SP,SM

cannot be used by any other module. To prevent replay attacks, the RA process should use a
nonce to provide freshness. The procedure is similar to a challenge-response protocol: the SP
sends a fresh nonce to the module, which calls the encrypting function to compute a MAC of the
nonce. Then, the MAC is sent back to the SP, which performs the integrity check that attests
the module.

Secure I/O

An important feature provided by Sancus is Secure I/O. Sancus uses Memory-Mapped I/O
(MMIO) to communicate with its devices, which means that the same address space is used for
both memory and I/O devices. Hence, to gain exclusive access to a device, it is sufficient to
map the data section of a module over the MMIO region of the device. As specified above, the
memory access control makes sure that the data section of the module can only be accessed if
the PC is on its text section. Thus, nobody except for the module itself would be able to access
the I/O device.

However, this implementation contains a drawback: since the data section needs to be con-
tiguous and the MMIO region is fixed, a module can use its private data section either for MMIO
or data but not for both. As a consequence, if the data section is mapped on the MMIO re-
gion, the module cannot use any memory, including the stack. [2] proposes a solution of this
issue, by using two separate modules: a MMIO module that is connected to the device (using
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the method discussed above) and a driver module that implements the logic to use the device.
When a module’s entry point is called, the hardware provides information about the ID of the
caller module; hence, the MMIO module is able to accept only requests coming from the driver
module, discarding all the others.

2.2.2 Intel SGX

Software Guard eXtensions (SGX) [7, 18] is a TEE introduced in 2015 with the sixth generation
of the Intel Core microprocessors based on the Skylake architecture. It consists of a set of of
instructions added in the Intel Instruction Set Architecture (ISA), along with some hardware
modifications. The key concept of SGX is the enclave, a protected area in the application’s
address space which provides confidentiality and integrity guarantees. The new instructions
manage enclaves, including procedures to create an enclave, to load the enclave inside protected
memory, to enter/exit the enclave, to perform security operations such as the generation of
symmetric keys and to do other activities such as debugging or paging.

Isolation

A portion of the main memory called Processor Reserved Memory (PRM) is reserved for the
enclaves and protected from external hardware or software accesses. This memory includes the
Enclave Page Cache (EPC), which is the region where enclaves are loaded and is divided in
chunks of four kilobytes (pages). An enclave might reserve one or more pages in the EPC.
Additionally, the Enclave Page Cache Map (EPCM) is a data structure inside the PRM that
contains metadata attached to each EPC page. This information is needed by the hardware to
protect enclave memory accesses: among the other fields, it includes the identity of the enclave
that owns the page and a value that shows whether the page is valid or not. Since the EPC has
limited size (typically between 64 and 128 MB), there are mechanisms to evict and reload pages
to/from memory outside the PRM. Naturally, the pages stored outside the PRM are encrypted
to to preserve confidentiality and integrity of enclaves’ code and data. Furthermore, the traffic
between EPC and processor needs to be protected as well: this operation is performed by another
hardware unit called Memory Encryption Engine (MEE).

Enclave identities

The SGX architecture provides each enclave two measurement registers, called MRENCLAVE
and MRSIGNER. MRENCLAVE is a SHA-256 digest computed over the code and data of the
enclave, the relative position of the pages in the enclave and the security properties of each page.
MRSIGNER is a hash of the public key of the Sealing Authority, which is the entity that signs
the enclave before distribution (normally, the enclave builder). If multiple enclaves are signed
by the same Sealing Authority, they will have the same MRSIGNER value. This is particularly
important for data sealing (as explained below), allowing multiple enclaves to share sealed data.

Local Attestation

Local Attestation is the process in which two enclaves on the same platform can attest each
other. It requires a particular structure called REPORT, which can be issued by the hardware
using the EREPORT instruction. A REPORT contains the two identities of the enclaves and their
attributes (which are properties established at loading time), additional data to be sent to the
target enclave, a proof of trustworthiness of the hardware and a MAC over the whole structure.
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The MAC is computed using the Report Key, which is a key known only by the target enclave
and the EREPORT instruction. The target enclave can retrieve this key by calling EGETKEY, the
instruction that provides an enclave symmetric keys for encryption and authentication.

Attestation between two enclaves A and B involves three steps: the following procedure shows
a scenario in which B sends the first message, however the process is symmetric. In the first step,
B sends its MRENCLAVE value to A in clear. The second step requires A to invoke EREPORT,
passing B’s MRENCLAVE as parameter. The REPORT generated is then sent to B. In the
third step, B verifies the REPORT by computing a MAC over the structure (using the Report
Key obtained with EGETKEY) and comparing it with the provided MAC inside the REPORT. If
the MACs are the same, B obtains a proof that A is an enclave running untampered on the
same platform. Then, B requests a REPORT destined to A, which attests B using the same
procedure.

Remote Attestation

RA allows a remote provider to acquire the proof that a software is running untampered inside an
enclave, on an updated SGX system. After the enclave is attested, an encrypted communication
channel can be established between it and the provider, to protect future transmissions of sensi-
tive data. There are currently two types of RA supported by Intel: a service that uses Intel SGX
Enhanced Privacy ID (EPID) and an Elliptic Curve Digital Signature Algorithm (ECDSA)-
based RA that uses third-party attestation with Intel SGX Data Center Attestation Primi-
tives (DCAP). In our work we used the former, hence only this technology is explained in this
section.

Intel EPID is a group signature scheme that allows a platform to cryptographically sign
objects without losing its privacy. With Intel EPID, each platform (also called signer) belongs
to a group; the signer uses its own private key for signing, but a remote verifier uses the group’s
public key to verify a signature. Therefore, a verifier cannot associate a signature to a specific
member of the group, which as a consequence remains anonymous.

A fundamental component of the RA process is the Quoting Enclave (QE), which is a trusted
enclave provided by Intel that resides on the same platform as the target enclave. The QE
verifies REPORTs created with its MRENCLAVE value, attesting (locally) the enclaves who
generated them. Additionally, it converts and signs each REPORT with the asymmetric EPID
key, creating a QUOTE. Only the QE has access to the EPID key, hence the QUOTE can be
seen to be issued by the processor itself.

In short, the RA process works in the following way: the service provider (i.e., the attestant)
sends a challenge to the enclave, containing a nonce for liveness purposes. Then, the enclave calls
the EREPORT instruction to generate a REPORT destined to the QE, which includes the response
to the challenge and optionally an ephemerally generated public key which might be used later
by the provider to transmit secrets to the enclave. The QE attests the enclave, generating a
QUOTE as described above, which is sent back to the provider. Finally, the provider validates
the signature of the QUOTE, either directly with the EPID public key or using an external EPID
verification service to perform the validation, such as the Intel SGX Attestation Service (IAS)
[19]. RA succeeds if the QUOTE validation passes and the response to the challenge is correct.

Data Sealing

Sealing [20] is a particular SGX feature that allows data to be stored on disk in a secure way. In
essence, an enclave can use the EGETKEY instruction to obtain a seal key, which is used to encrypt
and authenticate the data before storing it. There are two different policies that can be used:
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Sealing to the Enclave Identity and Sealing to the Sealing Identity. In the former case, EGETKEY
returns a key based on the enclave’s MRENCLAVE value. This results in a different key for each
enclave. Additionally, different versions of the same enclave will have different seal keys. This
policy might be used to store enclave’s sensitive data such as symmetric keys. In the latter case,
EGETKEY returns a key based on the enclave’s MRSIGNER value. Since the MRSIGNER value
depends on the Sealing Authority, it is possible for multiple enclaves (or different versions of the
same enclave) to retrieve the same seal key. This policy might be used to share data between
enclaves or to allow offline migration of sealed data between enclave versions.

2.3 Smart Farming

According to [8], Smart Farming Technologies (SFTs) are technologies used in Precision Agri-
culture (PA) [21] for data acquisition, data analysis and evaluation, and precision application.
Benefits of SFTs are: a more efficient application of inputs (seeds, fertilizers, water, etc.), an
increased work speed and a reduced human intervention. This leads to an improved quality and
quantity of the production (which means more profits), while at the same time enhancing the
farmer’s comfort and lifestyle.

SFTs are divided into three main categories:

• Data acquisition technologies. This category includes all surveying, mapping, navigation
and sensing technologies. Their purpose is to gain knowledge about the field, crop or
livestock. Applications might include soil mapping, RGB or thermal cameras, soil moisture
sensors, etc.

• Data analysis and evaluation technologies. These SFTs are used to analyze the data ob-
tained from the data acquisition SFTs, to compute statistics and make decisions. These
technologies range from simple decision support systems to complex farm management and
information systems.

• Precision application technologies. This category contains the SFTs used to apply the
decisions taken using the other two categories. Applications might include automatic fer-
tilization of fields, smart planting/seeding, precision irrigation systems, etc.

Essentially, a Smart Farming application consists of many different SFTs connected to the
same (mainly wireless) network, each of which responsible to perform a specific task. The infras-
tructure is heterogeneous, as sensors/actuators are deployed on low-power embedded systems,
whereas data analysis and evaluation SFTs run on high-end platforms. The system needs to be
robust, as a Smart Farming application is meant to be used for many years under harsh outside
conditions. There are also real-time constraints, which are more or less strict according to the
task that needs to be done. For instance, piloting a fly surveillance drone has much stricter
real-time requirements than fertilizing a field.

2.3.1 Security threats

In 2018, the US Department of Homeland Security released a paper called Threats to Precision
Agriculture [9]. This paper contains a study about potential issues and threats regarding the use
of new IoT technologies in crop and livestock production. As a matter of fact, these SFTs need to
be connected together on the same local network (which, in some cases, is also connected to the
Internet), which inevitably increases the attack surface for threat actors. The paper distinguish
between three categories of threats:
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• Threats to Confidentiality. This category covers data privacy and includes attacks aimed to
access and steal sensitive data from data acquisition SFTs or data analysis and evaluation
SFTs. For instance, an attacker might intercept sensitive data sent from a sensor to another
SFT.

• Threats to Integrity. Integrity threats concerns the authenticity of software and data.
Potential attacks include falsification of sensor data, introduction of rogue data on the
network and manipulation of decision support systems. All of these attacks result in wrong
decisions taken by the data analysis and evaluation SFTs which, as a consequence, cause
an improper use of precision application technologies. Attacks that directly tamper with
the application SFTs are possible as well.

• Threats to Availability. This category includes attacks aimed to affect the availability of
the SFTs and/or the network. For instance, if an adversary wants to disrupt the water
supply of the crop, he might perform different kinds of attacks, ranging from disabling the
irrigation system to intercepting and dropping all messages exchanged on the network.

These threats can cause a dramatic impact on the farmer, not only financial but also reputa-
tional and emotional. Additionally, a Smart Farming application is also critical from a national
security perspective. [9] highlights the fact that foreign governments could take an advantage
over a country by exploiting these vulnerabilities, which might cause disruption of food/water
supplies, identification of critical infrastructures, etc. Hence, countermeasures need to be adopted
in order to drastically reduce the attack surface. The paper also describes in detail eight threat
scenarios that might affect a Smart Farming system: these scenarios are analyzed and discussed
in Section 5.6, during the security evaluation of the prototype we developed in this Master’s
Thesis work.

2.4 Related work

Several solutions exist in the research world, aimed to establish a trusted path between high-end
nodes and I/O devices. BitE [22] provides confidentiality and integrity of the communication
between the host platform and I/O devices, with mobile clients placed in between that perform
cryptographic operations and attestation. However, data inside the host platform is not isolated,
hence the OS kernel must be part of the TCB. Bumpy [23], a subsequent work from the same
research group, removes this limitation by relying on the Flicker TEE [24] and using encryption-
capable I/O devices to establish secure paths with an application. More recently, research has
been made to provide support for Secure I/O in SGX. SGXIO [25] offers a solution of this problem
by using a trusted hypervisor and secure I/O drivers. A similar approach was adopted in [26],
with the implementation of a security microkernel called seL4. SGX-USB [27], instead, places
a proxy device between the host and an I/O peripheral connected through USB, to establish a
secure path to a SGX enclave. Unlike the two other approaches, SGX-USB does not rely on
software modifications in the host platform.

In the next sub-section we focus on Fidelius, the most recent approach that is comparable to
our work.

2.4.1 Fidelius

In 2019, Eskandarian et al. presented Fidelius [28], a solution to protect user secrets during web
browsing sessions, using Trusted Computing. Fidelius aims to build a trusted path between a user
and a remote server, while minimizing the TCB. Its ultimate goal is to provide confidentiality,

11



Background and related work

integrity and authenticity guarantees over some input fields of a web page, in which sensitive
data needs to be inserted by the user, such as credit card information.

Figure 2.1: Overview of Fidelius. The web enclave, embedded in a malicious browser and OS,
communicates with the user through a trusted I/O path and securely sends data to a remote
server.

The solution adopted by Fidelius consists of hardware and software components implemented
in the client. Firstly, a web enclave, which is an enclave built on top of the SGX architecture, run-
ning a minimalistic browser engine. Secondly, hardware dongles (e.g., microcontrollers) mounted
between the I/O devices and the PC to protect sensitive input data (e.g., text inserted on the
keyboard) and to send trusted output to the user (e.g., content displayed on screen). On the
client’s side, only these components are considered trusted, whereas the OS and browser might
be maliciously controlled by an attacker. Figure 2.1 shows the Fidelius architecture. Input data
such as a keystroke is captured by a dongle, which encrypts and sends it to the web enclave.
Then, the web enclave manages the encrypted data, eventually forwarding it to the remote server.
Output data, instead, goes in the opposite direction. The trusted path between a dongle and
the web enclave is established through pre-shared symmetric keys. Conversely, web enclave and
remote server perform RA to attest each other and protect the communication channel.

Fidelius can be enabled on specific HTML fields, which are <script>, <form> and <input>.
A developer can protect these fields by specifying the secure attribute, along with a signature
made with the server’s private key, for integrity checks. When the focus goes to a secure HTML
field, the mechanisms of Fidelius are put in place, transferring the control to the web enclave
and enabling the secure paths to the I/O devices. A particular effort is made to inform the user
about whether Fidelius is active at a particular moment or not. As a matter of fact, users must
be assured that the trusted paths have been correctly established before inserting any sensitive
data. To address this problem, two mechanisms are used: firstly, an LED is mounted on each
dongle, which is turned on if the communication with the web enclave is secure. Secondly, a
trusted region of the screen is used to inform the user about the current status of Fidelius, the
identity of the remote server and the HTML field that is currently focused.

Although it was designed for a completely different use case, the work done by Eskandarian
et al. has a lot of similarities with the Authentic Execution framework. In both cases, a trusted
path needs to be established between high-end systems and I/O peripherals. The main difference
resides in the attacker model: Fidelius considers trusted the dongles placed between the PC and
the I/O devices, hence software and data in a dongle need not be protected (e.g., symmetric
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keys can be stored in clear). Our framework, instead, ensures the isolation mechanisms and the
attestation of every single component of the system.
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Chapter 3

Problem Statement

This chapter looks into the general architecture of a distributed, event-driven application, outlin-
ing the risks and issues that might arise in such context and introducing an approach to achieve
strong security guarantees in presence of attackers.

An illustration of the system is provided in section 3.1, which describes in detail all the
involved parties and how they interact to each other. Section 3.2 presents the attacker model,
defining what a malicious actor can and cannot do on the system. Finally, section 3.3 highlights
the concepts of Authentic Execution, the approach used in this Master’s Thesis to deploy a secure
infrastructure.

3.1 System model

The System Model describes a distributed, event-driven application. Distributed means that
the application is not deployed as a standalone unit, but rather is scattered among different
components: in this Thesis, they are called Software Modules (SMs). Each SM is responsible to
implement a specific functionality. Besides, modules are connected, meaning that they are able
not only to exchange information with each other, but also to communicate with external entities.
A SM resides inside a node, which is a component that provides to the SMs hardware and software
resources. Usually, a node is identified as a ”physical” component such as a high-end server or
an embedded device; however, in this description a node is more a ”logical” component. This
means that, for instance, two nodes might be part of the same machine or, in more convoluted
implementations, the same node might also be deployed on multiple machines.

An event-driven application, instead, is an application that reacts to external inputs, called
events [29]. An event can be triggered by a user (e.g., a click of the mouse) or the system (e.g.,
an interrupt). Normally, an event is a message that contains some information, such as the
identity of the source and custom data (e.g., which button of the keyboard was pressed). A key
component of the application is the Event Manager (EM), which is responsible for receiving and
processing external events, as well as executing the logic associated to them. Usually, an event-
driven application does not run any main logic by itself (except for some background tasks),
but rather continuously wait for external events. For instance, this is the case of many GUI
applications, when the user directly interacts with them by sending events through input sources
(e.g., mouse, keyboard). After an event is received, a function (called handler) is executed;
handlers can be associated to a specific event both at compile time and at runtime. Then, after
the code is executed, the application returns back to a waiting state, until a new event arrives.
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Figure 3.1: Overview of the system. Blue rectangles are considered trusted components.

Figure 3.1 shows an overview of the System Model. As described above, the system is
composed by nodes, each of which includes an EM and zero or more SMs. A SM is not directly
accessible from outside the node, as it is only connected to its local EM, which manages events
to and from the SM. It follows that two SM never communicate directly, even in the case that
they are both in the same node. The EM in this case acts as a ”bridge”, forwarding the event
from the source to the destination SM. Instead, if the two SMs are on different nodes, the EM
in the source node sends the event to the EM in the destination node, which then delivers the
event to the destination SM.

In addition, external entities might interact to the system: the figure distinguishes between
the Deployer and the User. The former is the entity responsible of managing the system. This
involves tasks such as sending a SM to a node, establishing connections between SMs, setting
encryption keys and so on. The latter is a more generic user, which can theoretically be anyone
that is able to connect to the system (e.g., by being on the same network). Both entities should
only be able to directly communicate with the EMs since, as explained above, the SMs are
normally inaccessible from outside their own node. However, events can be delivered to them
to trigger specific entry points (Section 3.3.3). Certainly, a SM needs to distinguish between an
event sent by either another SM, the Deployer or the User, especially considering the fact that
the latter might be a malicious entity. Hence, mechanisms that enforce integrity and authenticity
of the events need to be implemented, as described in the next paragraphs.

The figure shows in blue the components that are considered trusted : first of all, the Deployer
is expected to be trusted, since he is the entity responsible for setting up the distributed appli-
cation. Considering that he is external to the system, it is also assumed that his own software
and hardware are not compromised. In addition, all the SMs are trusted, since they are directly
developed by the Deployer and run inside a protected environment called enclave (Section 2.2).

The main limitation of this model is that there are no availability guarantees: for instance,
if the EMs are controlled by the attacker, they might drop all the events they receive, meaning
that the SMs would be isolated from the rest of the world, even if they are correctly loaded and
attested. There are many other ways to take out the system (e.g., by controlling the network,
the OS of the machines where the nodes reside, etc.), hence availability is explicitly left out of
scope of this model.

Finally, two important aspects need to be emphasised: firstly, that the system is heteroge-
neous, meaning that the SMs might be developed for different architectures, according to their
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functionalities. For instance, a SM that needs to perform highly-expensive computation is likely
to be deployed on a high-end platform, whereas a SM responsible to read sensor data would
be positioned on a low-end node (e.g., a microcontroller). The second significant aspect is that
the Deployer is not necessarily the owner of the infrastructure. The application, in fact, might
be deployed on someone else’s hardware. Similarly, many applications from different Deployers
might potentially run on the same infrastructure.

3.2 Attacker model

Attackers have multiple capabilities. First of all, attackers can manipulate all the software of the
nodes. This includes the EMs and any other software running on the nodes, including the OS.
They can also deploy their own applications on the infrastructure. Secondly, attackers can control
the communication network used by the nodes to communicate to each other. This includes
sniffing the network, modifying traffic, and mounting man-on-the-middle attacks. Finally, with
respect to the cryptographic capabilities of the attacker, the Dolev-Yao model is followed [30].

Attacks against the hardware are considered to be out of scope. It is assumed that an
attacker is not able to have physical access to any component of the system. In addition, side-
channel attacks are not contemplated. Although protection to these kind of attacks is essential,
it is considered to be orthogonal and complementary to the security properties offered by the
approach described in this work.

3.3 Authentic Execution

In 2017, Noorman et al. introduced Authentic Execution [2], a framework for distributed, event-
driven applications with strong emphasis on integrity. In this Master’s Thesis work, the same
notions have been applied to provide security on the System Model. This section summarizes
the content of the original paper, highlighting its key concepts.

3.3.1 The concept of Authentic Execution

Figure 3.2: Example of Authentic Execution between two SMs. Only an authentic button press
can trigger the increment of the counter shown in the LCD display.

According to the paper, the notion of Authentic Execution is described as follows:
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”(...) if the application produces a physical output event (e.g., turns on an LED),
then there must have happened a sequence of physical input events such that that
sequence, when processed by the application (as specified in the high-level source
code), produces that output event.”

Figure 3.2 shows a more practical example of this concept. Two SMs are part of a system:
SM1 and SM2. For the sake of simplicity, it is assumed that they reside on the same node, hence
events exchanged between the two are handled only by the local EM. Both the SMs are connected
to I/O devices: SM1 is connected to a button (input), SM2 to a LCD display (output). In
addition, these devices cannot be tampered with, which means that it is not possible to generate
fake button events, nor to control the LCD display outside of SM2’s code. This means that their
drivers are protected using Secure I/O. Therefore, if SM1 is notified that the button has been
pressed, it is certain that someone has physically triggered the button. Similarly, if the LCD
display changes its content, it has to be due to some logic implemented in SM2.

The behavior of this small system is straightforward. The LCD display shows a number
(initially zero), which is increased every time the button is pressed. At deployment time, the
Deployer establishes a connection between SM1 and SM2: the output function buttonPressed of
SM1 is connected to the input handler incrementCounter of SM2. Hence, after buttonPressed
is called due to an external physical input (1), an event is generated and sent from SM1 to SM2
through the EM (2). SM2, once the event is received, calls incrementCounter, which updates
the value of the number shown in the LCD display (3).

Authentic Execution means that, if the value shown in the LCD display has changed, the
execution can be traced back to the physical event that triggered buttonPressed. In other
words, if the counter is incremented by one, an external observer can deduce with certainty that
the button was physically pressed before, because it is impossible to update the value of the
counter otherwise. It is noteworthy that the opposite, instead, is not true: even if the button
is pressed, the counter might not be incremented, because there is no guarantee that the event
will be delivered to SM2, as all the components of the system except for the two SMs are not
trusted. For instance, the event might be dropped, lost, or intercepted by an attacker.

3.3.2 Security properties

As the example in the previous section shows, Authentic Execution places particular emphasis on
integrity and authenticity of data. The trace that brings the LCD display to update its content
must be authentic. This notion precludes a wide variety of threats, including attacks where an
adversary tampers with the transmission of events or injects fake ones on the network, as well
as other attacks aimed to manipulate the execution of SMs.

Although this framework is not primarily focused on offering confidentiality of data, it still
provides protection of the application’s state, as well as the content of events. However, an
attacker is still able to observe the system and deduce information such as the identities of
sender and recipient of an event.

Finally, and as already mentioned before, this implementation does not provide any avail-
ability guarantees: for instance, an attacker might suppress the network communication or ma-
nipulate the EM to drop all received events.

3.3.3 Technical implementation details

Software Modules
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A SM runs in an isolated, protected domain called Trusted Execution Environment (TEE) (Sec-
tion 2.2). Each SM runs inside an enclave, which protects its code and data from the outside
world. In addition, a SM can be attested, meaning that the Deployer is able to verify its au-
thenticity at runtime, using Remote Attestation (RA). Furthermore, each SM comes with a
symmetric Master Key (which might be obtained during the RA process), known only by the
module itself and the Deployer, that can be used to establish a secure communication channel
to exchange sensitive data.

For each SM, the Deployer specifies a set of entry points, which are essentially functions that
can be called from outside the SM. There are no restrictions about the identity of the caller, it
follows that for some critical entry points mechanisms to preserve confidentiality, integrity and
authenticity of data need to be implemented, e.g., by using the Master Key. Moreover, in the
context of Authentic Execution a SM can also have inputs and outputs, special private functions
that are used to create connections between two or more SMs.

Connections

A connection links the output of a SM with the input of another. Each connection is identified
by an ID and uses a symmetric key to protect the event data. A nonce is also used to provide
freshness and avoid replay attacks. Connections are established by the Deployer, calling a special
entry point of the two involved SMs: setKey. For each of them, the Deployer encrypts and
authenticates all the sensitive information needed to establish the connection (connection key,
connection ID, input/output ID of the SM), then calls the setKey entry point passing such
data as argument. Then, the SM verifies the correctness of the content and, if the verification
succeeds, sets up the new connection. At the same time, the Deployer notifies the source EM
that a new connection has been established, providing all the information needed to correctly
deliver events from source to destination.

Figure 3.3: Example of a connection between two SMs. The event is encrypted and authenticated
during the transmission.

Figure 3.3 illustrates how events are passed from one SM to another. When the output in the
source SM is generated, the event is created and sent to a private function called handleOutput.
There, the event is encrypted and authenticated using the connection’s key and nonce, then
sent to the EM (not displayed in the figure). To deliver the event, a special entry point of the
destination SM is called: handleInput. The data passed as argument is decrypted and, if the
decryption succeeds, the SM calls the corresponding input function.

Deployment

The Deployer uses his own (trusted) infrastructure to compile the SMs, whose binaries are
then sent to the corresponding nodes. The deployment of a SM is an untrusted operation, as the
binary might be tampered with either during the transmission or the loading process. In this
situation, RA becomes essential to ensure that the execution of a SM is authentic.
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To set up the system, the Deployer uses a special file called deployment descriptor : here,
he specifies the configuration of the system, declaring nodes, modules and connections. Nodes
are identified by a name, and include information such as type (i.e., the underlying hardware
architecture) and address. Modules are the SMs, which are identified by a name and assigned to
a specific node. Additional fields might be included in a module’s entry, depending on its type.
Finally, connections are declared, each of which specifies: the source module, the source output,
the destination module and the destination input. Listing 3.1 shows an example of a deployment
descriptor, which describes the infrastructure presented in Figures 3.2 and 3.3. For simplicity,
some fields have been omitted, such as the type of the modules and nodes.

To deploy the system, the deployment descriptor is parsed by a special tool, which builds the
modules, loads them on the nodes, and finally establishes connections between them.

{
"nodes": [

{
"name": "node1"

}
],

"modules" : [

{
"name": "sm1",

"files": ["sm1.c"],

"node": "node1"

},
{

"name": "sm2",

"files": ["sm2.c"],

"node": "node1"

}
],

"connections": [

{
"from_module": "sm1",

"from_output": "buttonPressed",

"to_module": "sm2",

"to_input": "incrementCounter"

}
]

}

Listing 3.1: Example of a deployment descriptor.
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Chapter 4

Design and Implementation

This chapter shows the implementation details of this Master’s Thesis work. It is structured
as follows: Section 4.1 gives an overview on the main contributions of this Thesis, with respect
to previous work on Authentic Execution. Section 4.2 describes in detail the application-level
protocol we designed for the communication between the components of a system, illustrating the
structure of each type of message. Section 4.3 introduces the details of the Authentic Execution
framework we developed for Intel SGX, whereas Section 4.4 reveals the modifications we made
on the already existing Sancus implementation. Finally, section 4.5 describes the tool that
we implemented to automatically deploy an Authentic Execution system, given a deployment
descriptor as input.

4.1 Extending the Authentic Execution implementation

The main goal of this Master’s Thesis was to continue the work carried out by Noorman et al.
on the Authentic Execution framework [2], by providing extensions and new features to support
the deployment of a distributed application on a real use case. This section presents the most
important ones.

4.1.1 Support for Intel SGX

The major limitation of the previous work concerns the number of supported TEEs. In fact, even
though the principles of Authentic Execution can be applied to any TEE, only support for Sancus
was actually implemented. However, a system of only embedded devices is not sufficient in many
applications: high-end nodes are often needed to perform tasks that are unsuitable for low-end
embedded systems, because of the limited resources at their disposal. These tasks include both
computation (e.g., to execute the logic to move a robot, or to compute statistics using Machine
Learning) and storage (e.g., to store and aggregate sensor data). Thus, we addressed this issue
by providing Authentic Execution support for Intel SGX. Full details of its implementation are
presented in Section 4.3.

4.1.2 Many-to-many relationships

Regarding Authentic Execution, a connection establishes a secure channel between the output of
a SM and the input of another (Section 3.3). The implementation described in the paper allows
an output to be connected only to a single input, and vice versa. In other words, inputs and
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outputs have an one-to-one relationship. Even though this results to a simpler implementation,
it is a limitation: in some cases it is useful to link an output to multiple inputs (e.g., to deliver
the same sensor data to different SMs in order to perform different tasks, such as computation
and storage), or different outputs to the same input (e.g., to send data from different sensors to
the same ”aggregator” SM).

We solved this problem in this Thesis work by introducing slight modifications in the frame-
work, to support many-to-many relationships between inputs and outputs. In the Authentic
Execution paper, a connection identifier is a number that identifies the input/output of a SM.
It is local to a SM, meaning that different inputs/outputs in different SMs might have the same
identifier. When the handleInput function of a SM is called, it is immediate to retrieve the
connection data (encryption key, nonce), since only one connection can be associated with the
requested input/output ID. This does not work with many-to-many relationships: given an in-
put/output ID, there might be many connections associated to it. To solve this issue, it is
sufficient to consider the connection identifier as an unique, global identifier of a specific connec-
tion, rather than an input/output ID. As a consequence, the two SMs of a particular connection
will share the same identifier, which will be used to retrieve the connection data. Besides, on
each SM the connection identifier needs to be associated with the corresponding input/output,
e.g., by using a data structure such as a map. When an output is generated, the handleOutput

function retrieves all the connection IDs associated to that output (by accessing the data struc-
ture), and sends a separate event for each connection. In contrast, handleInput has to perform
the opposite procedure, to retrieve the input associated to the connection identifier passed as
argument.

The introduction of this feature certainly brings some advantages. In general, the total
number of inputs and outputs is reduced, as shown in Figure 4.1. Example (a) illustrates a
scenario where three sensors send their data to an aggregator. If, with one-to-one relationships,
different sensor outputs need to be connected to different inputs of the aggregator SM, with
many-to-many relationships it is sufficient to have a single input that receives all the data. The
main benefit obtained by the latter implementation is that the overall size of the aggregator
module is reduced, by avoiding code duplication. Similarly, in Example (b) a sensor needs to
send its data to both a computation and a storage SMs: with one-to-one relationships the sensor
needs two distinct outputs, whereas the same output can be used for both the recipients with
many-to-many relationships. Again, a reduction of the code size can be observed. Furthermore,
it is evident that this solution is also simpler for the Deployer to implement, which only needs to
write one single instruction to trigger both the events, resulting in prettier and more manageable
code.

However, there are some drawbacks in the implementation of many-to-many relationships that
must be mentioned. In order to associate a connection identifier to an input/output, more infor-
mation needs to be stored on each SM: the size overhead depends on the size of the identifiers and
on the data structures used in a particular implementation (e.g., Authentic Execution framework
for Sancus uses simple arrays, whereas the SGX version uses hash maps). Other inconveniences
concern performance: with one-to-one relationships, both handleInput and handleOutput have
a O(1) complexity, because it is immediate to deduce the input given a connection identifier, and
the connection identifier given an output. With many-to-many relationships, instead, the situa-
tion is different: the complexity of each of those handlers varies from O(1) to O(n), depending
on the data structures used. In handleOutput, for instance, all the connections associated to a
specific output need to be retrieved: this operation might be performed with a simple iteration
over all the connections (complexity O(n)), or with a direct access to a hash map that, given the
output ID as a key, returns the list of all the connections associated to that output (complex-
ity O(1)). Each TEE implementation might use a different strategy, to find the best trade-off
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Figure 4.1: Difference between one-to-one relationships and many-to-many relationships between
inputs/outputs of a connection.

between performance and memory used.

4.1.3 Periodic events

This sub-section describes a convenience feature that we implemented in order to automatize a
periodic task. As described below, it is an untrusted feature implemented into an EM. There are
no security guarantees in this implementation: on the contrary, an attacker might easily exploit
it to affect the availability of a node. Furthermore, developers don’t have any guarantees that
a task is actually executed with the specified frequency. Availability in TEEs is an orthogonal
work and there is active research in this direction [31].

For certain applications, it is necessary to perform some tasks periodically (e.g., reading data
from a sensor every second). In the context of Authentic Execution, a task can be triggered either
by an external input (e.g., an I/O device such as a button) or an external entity (e.g., a user
that wants to compute the average temperature over the last hour). Particularly, the latter case
can be generated by calling a specific entry point of a SM, as described in Section 3.3. Hence,
to set up a periodic task, it is sufficient to call an entry point periodically, from outside the SM.
Naturally, this is impractical to be performed manually; nonetheless, a user might easily create a
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script that does the job automatically. The drawback of this solution is that the script needs to
run inside the user’s PC and, in order for the script to work, the PC needs to be always turned
on and connected to the same network as the system. To solve this issue, the user might want
to run the script on a node (e.g., an high-end SGX server). However, it is not always possible to
do so, firstly because the user might not be able to control the node, and secondly because the
script might not be compatible with its architecture (e.g., in the case of an embedded Sancus
node). Thus, we addressed this problem by implementing a new feature on the EM to support
the automatic establishment of periodic events.

{
"periodic -events" : [

{
"module" : "sm1",

"entry" : "read_from_sensor",

"frequency" : 500

}
]

}

Listing 4.1: Deployment descriptor extension for periodic events.

The implementation of periodic events works as follows. The Deployer configures the periodic
events in the deployment descriptor (as illustrated in Listing 4.1) by specifying, for each event:
the SM name, the entry point to call and the frequency (in milliseconds). Then, for each of
the entries in the descriptor, a special RegisterEntrypoint message (Section 4.2.8) is sent to the
EM where the SM resides, which updates the list of active periodic events. From that moment,
and with the specified frequency, an event to call the specified entry point will be generated
automatically. This work is done by a secondary thread of the EM, which uses timers to ensure
that the entry points are called at the right time. The events, once generated, are sent to the
main thread, which processes them as any other event.

Some considerations need to be taken into account. Firstly, a little to no overhead is added to a
node when periodic events are not actually used. The actual cost depends on the implementation
of this feature. An optimized version of the EM would allocate the list of active periodic events
and run the secondary thread only if at least one periodic event is present on that node. Secondly,
the implementation of periodic events is local to each node, which means that each node acts on
its own. Compared to the case where a single, external, event generator is present somewhere
in the system, this solution reduces the traffic on the network and allows periodic events to
work even with loss of connectivity between components. Regarding the latter, periodic events
offer also an opportunity to deal with availability issues: for example, a periodic event might be
scheduled to control an actuator autonomously, if the SM does not receive any commands for a
long time (which might be an indicator that either the network or the controller are down).

Another important consideration is that this feature, since it is included inside the EM, is
untrusted. There are no guarantees that events will be generated, especially in the case that an
attacker takes over the node. Similarly, an attacker might tamper with the frequency of which
the entry points are called. For a sensor reading it might not be a huge problem if the event
is triggered more or less frequently, however this might have an impact on other tasks. The
Deployer should be aware of the risks that might occur when such feature is enabled.
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4.2 Application-level protocol

In a distributed application, the SMs need to communicate with each other to exchange infor-
mation. In an Authentic Execution system, a SM’s output can be connected to another SM’s
input: if they belong to different nodes, it is necessary that the EMs of the two nodes establish
a connection to exchange events. Furthermore, another kind of communication is needed to
interact with the system, e.g., to call an entry point or to deploy a SM to a node.

In this work, we designed a basic application-layer protocol to handle all of these needs. The
details of this protocol are accurately described in the next sub-sections. It is noteworthy that
there is little to no mention about the underlying layers, as they strongly depend on the system.
For instance, in an automotive environment a protocol called Controlled Area Network (CAN)
is widely used [32], whereas in a different context (e.g., Smart Farming) a wireless technology
such as WiFi, ZigBee or Bluetooth would be more suited [33]. In this implementation, we used
a TCP/IP stack for each component of the system.

We identified two main types of messages: a Command and a Result. A Command handles
all the possible interactions between nodes, and between a node and an external entity (e.g., the
Deployer). A Result, instead, is the response to a Command, which contains a result code and
optional data. The former is used to inform the sender whether the command has succeeded or
not, while the latter contains information, e.g., return values of entry points. A fully detailed
description of these messages is provided in the next sub-sections.

class ReactiveCommand(IntEnum):

Connect = 0x0

Call = 0x1

RemoteOutput = 0x2

Load = 0x3

Ping = 0x4

RegisterEntrypoint = 0x5

class ReactiveResult(IntEnum):

Ok = 0x0

IllegalCommand = 0x1

IllegalPayload = 0x2

InternalError = 0x3

BadRequest = 0x4

CryptoError = 0x5

GenericError = 0x6

Listing 4.2: Command and Result codes.

4.2.1 Command

0 8 24

Code Length Payload

The general format of a Command consists of a 8-bit field indicating the code, a 16-bit field for
the length of the payload and the payload itself. Given the size of the Length field, the payload
can be at most 65535 bytes long, which is widely acceptable for almost all types of commands.
The only exception is the Load command: as described in detail later, this kind of event needs
a different consideration, hence the format of such message differs from the others. Listing 4.2
shows all the command codes used in this implementation.
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4.2.2 Result

0 8 24

Code Length Payload

The format of a Result message is the same as a Command message. The code in this case
reports whether the Command has succeeded or not. A result code of zero, as usual, implies
that everything went well. If the code is different from zero, instead, it means that an error
occurred. Listing 4.2 shows the result codes used in this implementation and to which kind of
error are associated. It is worth mentioning that not every Command type requires this response.

4.2.3 Connect

0 8 24 40 56 72 104

0x0 0xA
Conn.

ID
DST

SM ID
DST
Port

DST
IP

A Connect message is sent from the Deployer to an EM to establish a connection between an
output and an input of two SMs. It is sufficient to send this message only to the EM of the node
where the source SM is installed: the information contained in this message is only needed to
correctly deliver an event to the destination node, which does not even need to know that such
connection exists.

The format of a Connect message is the following:

• Conn. ID (16 bits): Unique identifier of the connection.

• DST SM ID (16 bits): Identifier of the destination SM.

• DST Port (16 bits): TCP port used by the destination EM.

• DST IP (32 bits): IPv4 address of the destination EM.

Connection identifiers are globally unique within the system. SM identifiers are locally unique
inside a node, and they are assigned by either the Deployer or the node when a SM is loaded.
Input/output identifiers, instead, are locally unique within a SM and they are assigned at compile
time.

The format of this message is strongly dependent on the protocols used at lower levels. In our
implementation, a TCP/IP stack is used, making this format acceptable. However, future work
might be needed to overcome this limitation, allowing different protocols. A possible solution
might be adding a field to specify the type of the connection, followed by an address and any
other information needed to communicate with the destination EM. This way, the source EM
would exactly know which media it has to use for each connection.

Result

A Result message in this case is expected, to notify the Deployer whether the Command has
succeeded or not. That is, the response contains only the result code, without payload. Hence,
the Length field is set to zero.
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4.2.4 Call

0 8 24 40 56

0x1 Length SM ID Entry ID Args

A Call message is sent from the Deployer to an EM to trigger the execution of a specific entry
point.

The format of this message is the following:

• Length (16 bits): Total length of the subsequent fields.

• SM ID (16 bits): Identifier of the SM.

• Entry ID (16 bits): Identifier of the entry point to be called.

• Args (variable size): Optional arguments to be passed as input to the entry point.

The size of Args can be retrieved from the Length field of the Command. In fact, it is
sufficient to subtract four bytes to its value: two bytes for the SM ID and two bytes for the
Entry ID.

Any entity (e.g., an attacker) is capable of calling a SM’s entry point. Indeed, it is sufficient
to know the identifiers of the SM and the entry point, as well as the address of the node where
the SM is loaded. For this reason, the Deployer should take extremely care of the logic of the
entry points, for instance by preventing them to return sensitive data in clear. Input parameters
need the same considerations to be taken into account: this is, for instance, the case of setKey
and handleInput, the two entry points defined in Authentic Execution (Section 3.3.3).

setKey

After a connection is established, a symmetric key to protect the communication is used. This
key must then be transmitted to the two SMs of the connection in a secure way. For this purpose,
the Deployer calls the setKey entry point on each SM.

The format of this message slightly differs, depending on the type of the SM. The content,
instead, is the same: the connection’s symmetric key encrypted with the SM’s Master Key, using
AEAD. As associated data the connection ID, the input/output ID and a nonce are provided.
The SM, when this entry point is called, decrypts and authenticates the payload and, if the
operation succeeds, sets the key of that connection. Additionally, if the SM supports different
encryption algorithms an additional field needs to be provided.

handleInput

handleInput is the entry point called by the EM to trigger a specific input of a SM. It is the
consequence of a RemoteOutput event (Section 4.2.5). In order to secure the communication
between the two SMs, data sent from the output to the input is encrypted and authenticated
using the AEAD algorithm specified for that connection in the deployment phase. The symmetric
connection key and a 16-bit nonce are used to encrypt and authenticate the event.
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Result

A Result message is usually expected after a Call command. Payload is optional but might
be included in most cases, especially for user-defined entry points.

4.2.5 RemoteOutput

0 8 24 40 56

0x2 Length SM ID Conn. ID Data

A RemoteOutput message is sent from an EM to another in order to post an event. This happens
when the two SMs of the same connection are in separate nodes, after the output is emitted by the
source SM. The source EM, then, uses the information provided in the Connect message to open
a connection with the destination EM which, after receiving the message, calls the handleInput
entry point of the destination module.

The format of this message is the following:

• Length (16 bits): Total length of the subsequent fields.

• SM ID (16 bits): Identifier of the SM.

• Conn. ID (16 bits): Identifier of the connection.

• Data (variable size): Payload, encrypted and authenticated using AEAD. The payload
usually includes the encrypted data attached by the source SM, as well as a MAC used for
authentication, which has a fixed length according to the encryption algorithm used.

Result

A Result message is not expected in this case.

4.2.6 Load

The Load command is sent by the Deployer to an EM to install a SM inside a node. Each TEE
needs different information to do this operation, hence there is no fixed format for this kind of mes-
sage. The only field common to all TEEs is the command code, which is ReactiveCommand.Load
(Listing 4.2). Below, details about the packet format are provided for Sancus and SGX.

Sancus

0x03 Length Name Vendor ID ELF

The format of a Load packet for a Sancus SM is the following:

• Length (16 bits): Total length of the subsequent fields.
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• Name (variable size): Name of the SM, null-terminated.

• Vendor ID (16 bits): ID of the Deployer, used to derive the SM’s Master Key.

• ELF (variable size): Binary of the SM.

During the loading process, the ELF binary is updated with the correct addresses of sections
and symbols. These addresses need to be sent back to the Deployer (inside the Result message),
which updates his local copy of the ELF file, to be able to derive the Master Key by himself and
attest the SM (Section 2.2.1).

SGX

0x03 SGXS length SGXS SIG length SIG

The format of a Load packet for a SGX SM is the following:

• SGXS length (32 bits): Length of the SGXS field.

• SGXS (variable size): Binary of the SM, in the processor’s native enclave format (SGXS).

• SIG length (32 bits): Length of the SIG field.

• SIG (variable size): Signature of the SM, made with the Deployer’s private key.

As Result message, the EM sends only the result code, indicating whether the loading process
has succeeded or not.

4.2.7 Ping

0 8 24

0x4 0x0

A Ping message might be used to assess the state of a node. It does not contain any information;
if an EM receives this event, it replies with a Result message to inform that it is currently active
on the node. However, the Deployer cannot be confident that the response is actually sent by the
EM, as anyone on the network can forge this message. Knowing whether an EM is running or
not would require the hardware support of a TEE and attestation mechanisms to be executed.
Hence, this message should be used only for debug purposes.

Result

A Result message contains only the result code (which has to be zero, for obvious reasons),
without payload.
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4.2.8 RegisterEntrypoint

0 8 24 40 56 88

0x5 0x8 SM ID Entry ID Frequency

A RegisterEntrypoint message is sent from the Deployer to an EM in order to register a periodic
event (Section 4.1.3).

The format of this message is the following:

• SM ID (16 bits): Identifier of the SM.

• Entry ID (16 bits): Identifier of the entry point to register.

• Frequency (32 bits): Integer representing the frequency of which the entry point will be
called, in milliseconds.

The EM stores this information inside a data structure, which is accessed by the secondary
thread in order to create the events that are delivered to the main thread, with the specified
frequency.

Result

A Result message in this case is expected, to notify the Deployer whether the Command has
succeeded or not.

4.3 Authentic Execution in Intel SGX

Our implementation of the Authentic Execution framework for Intel SGX is characterized by
one, fundamental aspect: the use of Rust as programming language [34], which is a modern
solution to develop secure applications. Section 4.3.1 provides a short description of this language,
highlighting its key concepts. This choice ruled out the use of the framework developed by Intel
to write SGX applications (SGX SDK [35]), as it was designed for enclaves written in C/C++.
However, in recent years new solutions came up, allowing developers to write enclaves entirely
in Rust. Two main frameworks need to be mentioned: Rust SGX SDK [36] and Fortanix
Enclave Development Platform (EDP) [37]. This Master’s Thesis used the latter, which provides
a simpler and more efficient way to write SGX enclaves. Section 4.3.2 gives an overview of
its characteristics. The remaining sections, instead, focus on the actual implementation of the
Authentic Execution framework.

4.3.1 Rust

Rust appeared for the first time in 2010 from a group of employees at Mozilla Research. It was
only in 2015 that the first stable version (Rust 1.0) was published. Following that, new stable
releases have been periodically released every six weeks. A major update came out in 2018 (called
Rust 2018), which provided a huge number of improvements and new features. At the time of
writing, the language reached version 1.44.1.

The key concepts of this language are the following:
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• Performance. The goal of Rust is to be ”as fast as C++ for most things”1. Rust uses the
zero-cost abstractions paradigm, trying to provide high-level constructs and functionalities
without incurring in unnecessary overheads. However, due to the runtime safety checks
mentioned below, it is not always possible to obtain the same performance as C/C++
applications.

• Reliability. Rust does not use a garbage collector, as this would have gone in contrast
with the performance requirements mentioned above. Instead, it exploits the concept of
ownership and borrowing to keep track of the memory used. In short, memory and other
resources belong to a scope (e.g., a function). After the execution changes scope, all the
memory that was associated with the old scope is released, except for returned values.
This is also known as Resource Acquisition Is Initialization (RAII) convention. A resource
can also be borrowed, meaning that it might be used outside of its scope, which still keeps
ownership of it. The borrowed object can either be immutable or mutable.

The compiler plays a huge role on this approach. It knows when a resource goes out of
scope and should then be destroyed, therefore produces a compiler error whenever an illegal
access is made, e.g., through NULL or dangling pointers. Additionally, it also forbids that
multiple references of the same resource exist at the same time, if at least one of them is
mutable: this prevents data races. Hence, many memory management vulnerabilities are
detected during the compilation process. Furthermore, runtime checks are performed to
deal with vulnerabilities that cannot be identified by the compiler (e.g., runtime bounds
checks).

Rust also provides the developers a functionality called Unsafe Rust, to circumvent these
restrictions to allow low-level tasks. However, it should be noted that all the memory safety
checks described before are not enforced in this case. Hence, a developer should use this
feature carefully and for limited operations.

• Productivity. Rust is relatively easy to learn and it includes plenty of modern programming
techniques taken from other languages. It provides a complete and extensive documenta-
tion, called The Book2. Its compiler is friendly, with useful error messages. Besides, tools
are included to easily manage projects, to import external libraries into a project and to
write tests and documentation in a simple and fast way. For all of these reasons, Rust has
become one of the most loved programming languages by developers3.

In conclusion, we chose Rust in this Master’s Thesis to provide additional security to our
framework. As a matter of fact, even though an application is isolated inside an enclave, if the
code is bugged the system still remains exposed to attackers. Thanks to Rust, instead, a huge
number of memory management vulnerabilities is avoided at the root, making the system more
robust.

4.3.2 Fortanix EDP

In 2019, Fortanix released Enclave Development Platform (EDP), a framework to write SGX
applications using Rust. Its main approach is, unlike Rust SGX SDK, to be fully integrated

1https://doc.rust-lang.org/1.0.0/complement-lang-faq.html#how-fast-is-rust?

2https://doc.rust-lang.org/book/

3https://insights.stackoverflow.com/survey/2020#technology-most-loved-dreaded-and-wanted-

languages-loved
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with the Rust compiler, allowing developers to immediately use new features as soon as they
are released. It is straightforward to write EDP applications, because they look like native ones
(Listing 4.3): they, too, contain a main function and may have multiple threads and network
connections. No additional code is required to run the application inside an enclave. The
magic happens at compile time, where the target x86 64-fortanix-unknown-sgx is passed as
parameter and the compiler automatically builds the SGX application, adding the abstractions
and interfaces provided by EDP to manage the enclave.

fn main() {

println!("Hello , world!");

}

Listing 4.3: Hello world application, written to be run inside an enclave using Fortanix EDP. As
can be noted, there is no difference in terms of code with a native application.

Figure 4.2: Overview of the main components in Fortanix EDP.

Figure 4.2 shows the main architecture of an EDP application: the program written by the de-
veloper resides inside an enclave and it is integrated with the Rust standard library (std). Outside
the enclave runs enclave-runner, a crate responsible for loading the enclave and communicating
with it through the usercall interface, which is the equivalent of the ECALLs/OCALLs in SGX
SDK. In short, the enclave uses this interface to communicate to the external world, in both
directions. The figure shows that enclave-runner resides into ftxsgx-runner, which is the
default executable provided by EDP. However, a developer might want to write his own runner,
if he needs particular functionalities. Finally, enclave-runner communicates with the kernel
with the usual syscall interface.

In terms of security functionalities, EDP applications are not different from SGX enclaves
written with Intel’s official SDK. Naturally, the enclave is fully isolated from the rest of the
system and it can provide proof of its identity using Remote Attestation (RA). Also, data can
be persistently stored in a secure way using the SGX’s sealing feature [20]. As already mentioned
before, enclaves are able to use the Rust standard library. Nevertheless, not all functionalities
work as usual inside the enclave: for security reasons, some primitives are slightly different (for
instance, environment variables cannot be passed into the enclave, or hostname resolution is not
available for network communications), whereas some others are not provided at all (e.g., file
system management and timeouts).

Van Bulck et al. investigated the implementation of various TEE runtime libraries to assess
the security w.r.t. a set of low-level vulnerabilities [38]. The analysis shows that EDP is a
solid choice as it offers protection to almost all the vulnerabilities, thanks also to the use of the
safe Rust as programming language. The few weaknesses found in EDP have been reported to
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Fortanix and patches have been issued.

4.3.3 General Overview

A node is a subsystem that contains an EM, the untrusted component that manages SMs assigned
to the same node. All of these entities are reachable through a well-defined interface, which is a
TCP socket where they listen for connections. That is, each component is associated to a specific
port and reachable through it. The EM port is passed as command line argument, whereas a
SM is assigned to a port at compile time, which is the sum of the EM port and the SM ID. For
instance, if the EM listens to port 5000, SM1 listens to 5001, SM2 to 5002, and so forth.

This behavior was decided for the sake of simplicity. Since, at the time of writing, it is not
yet possible to pass arguments to an enclave in Fortanix EDP4, we chose to hardcode the port
in the SM code at compile time. Given that, defining the SM port in this way does not require
extra efforts, as it is simply a sum of two numbers. Similarly, there is no need to store additional
information in the EM about the SMs, since their port can be easily derived as explained before.

On the other hand, this design choice leads to a few limitations: if a port is not available in a
machine for some reason (e.g., it is already used by another service), the SM fails to initialize and
will not be reachable. Other issues might happen if two nodes are placed on the same machine.
For instance, if the two EMs listen to two adjacent ports such as 5000 and 5001, SM1 loaded
on the first node cannot work, because its port would be 5001 as well. A possible solution for
these problems might require the implementation of some logic to find an available port before
loading a SM. The EM might scan for an usable one (e.g., by trying to listen to a specific port:
if the instruction succeeds, it means that the port is available) and inform the Deployer, which
will hardcode its value in the code. The implementation of a more advanced solution for this
problem is left as future work. In this application, we assumed that all the ports in a machine
are available, and all the EMs loaded in the same machine listen to ports far away from each
other (e.g., 5000 and 6000).

Figure 4.3: Overview of an Authentic Execution system with Intel SGX.

Figure 4.3 shows an overview of an Authentic Execution system in this configuration. The

4https://github.com/fortanix/rust-sgx/issues/136
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SMs listen for connections on the loopback interface (except for the initial RA phase, where they
need to directly communicate with the Deployer). In this way, an external entity cannot open a
connection with the SM directly, but only through the EM of the same node. This is not true if
the entity lies on the same machine as the SM: in this case, since the loopback interface is the
same for both of them, they might communicate directly. However, this is not an issue at all, as
the entity would not gain additional powers over the SM by doing so. Instead, it would be only
able to call its entry points, just as the EM.

4.3.4 Event Manager implementation

The EM was implemented using Rust. It provides two working modes: the difference relies
on the loading process of the SMs. The default mode handles SGX enclaves, which are loaded
using ftxsgx-runner, the default runner provided by Fortanix EDP. A runner is responsible for
executing the SGX SM inside an enclave, as well as granting it the ability to communicate with
the external world (Section 4.3.2). In the alternative mode, the SMs are not executed inside
enclaves, but as normal applications. This operating mode was called NoSGX and does not
provide any support for isolated execution and RA. Hence, it should only be used for testing
purposes. More details are provided in Section 4.3.5.

The implementation of the EM is straightforward. A TcpListener waits for connections on
the port passed as argument; when a new TCP connection is established, data is read and the
event processed according to the protocol described in 4.2. Then, a response is sent back to the
sender, if that event expected one. Finally, the connection is closed. Hence, each TCP connection
carries only one event. The EM is single threaded: this choice was made for simplicity, as each
TCP connection has a very short life and for this reason it was not really necessary to introduce
parallelism to improve performance. However, it is effortless to make the EM multithreaded, if
necessary.

4.3.5 SM implementation

One of our main contributions is the implementation of a framework to easily develop SGX SMs
in the context of Authentic Execution, using Rust as programming language. The framework
was called rust-sgx-gen, a Python module that allows a developer to define a SM by simply
implementing its main logic: inputs, outputs, entry points, and other user-defined functions and
data structures. The code needed to implement the Authentic Execution framework, including
the management of events and the RA process, is automatically injected. rust-sgx-gen expects
as input a Rust Cargo library (created with the command cargo new <name> --lib). Being a
library means that the main() function does not exist, as it is added by the framework itself.

Inputs, outputs and entry points are detected by means of annotations in the code. In prac-
tice, such annotations are nothing more than comments with the format //@ <keyword>. The
framework only searches for annotations in the lib.rs file of the input project: this limitation
was introduced not only for simplicity, but also in order to keep all the annotations in the same
file.

// Imports and other stuff

//@ sm_output(button_pressed)

//@ sm_output(output1)

//@ sm_entry

pub fn press_button(data : &[u8]) -> ResultMessage {
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debug!("ENTRYPOINT: press_button");

if data.len() > 0 {

return failure(ResultCode :: IllegalPayload , None);

}

button_pressed (&[]);

success(None)

}

//@ sm_input

pub fn input1(data : &[u8]) {

info!("INPUT: input1");

output1(data);

}

// User -defined functions and other stuff

Listing 4.4: Example of a possible lib.rs file provided as input to rust-sgx-gen

pub fn {name}(data : &[u8]) {{

debug!("OUTPUT: {name}");

let id : u16 = {id};

handle_output(id, data);

}}

Listing 4.5: Stub of the output functions used by rust-sgx-gen

Listing 4.4 shows an example of a lib.rs file passed as input to rust-sgx-gen. As shown
in the code, there are some helper functions and macros available to the developer: the func-
tions success and failure create the ResultMessage5 object, given a result code (for success
messages the Ok code is implicit) and data (Section 4.2.2). In addition, simple macros for
printing messages to standard output are provided. Outputs are declared with the annotation
//@ sm output(<name>): no code needs to be provided, as the implementation of outputs is
predefined. Listing 4.5 illustrates the stub that is parsed and then injected for each output
annotation. Except for the debug! instruction, the output function simply works as a wrapper
around handle output, which encrypts data using the appropriate connection key and sends
the payload to the EM as a RemoteOutput event (Sections 3.3 and 4.2.5). {name} and {id}
are replaced by rust-sgx-gen with the actual name and ID of the output. Inputs are declared
with the annotation //@ sm input, which has to be placed right above the target function. Such
function requires a specific signature: a slice6 of u8 elements as input and no return value. Entry
points are declared with the annotation //@ sm entry. The requirements are the same as inputs,
except that the return value of the function in this case must be a ResultMessage. Each input,
output and entry point is automatically assigned to a 16-bit ID, which is used internally by the

5https://github.com/gianlu33/rust-sgx-libs/blob/master/reactive_net/src/result_message.rs

6https://doc.rust-lang.org/book/ch04-03-slices.html
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framework. Input/output IDs are used to map a certain input/output to a specific connection,
while entry point IDs are used to identify the entry points when a user wants to call one of them
remotely.

rust-sgx-gen allows two different working modes for a SM, called NoSGX and SGX. One
could be misled by their name: the difference between the two only relies on how the Master
Key is obtained, rather than whether the SM is executed inside an enclave or not. In the former
case, the key is hardcoded inside the SM code, whereas in the latter case the key is obtained
through RA. Notice that even if SGX mode is chosen, it does not mean that the SM cannot run
as a native application. However, if the SM does not run inside an enclave, RA fails and the
SM cannot work. On the other hand, if NoSGX mode is chosen and the SM is run inside an
Enclave, the Deployer cannot attest it, even if the SM runs correctly and under the SGX TEE.
The NoSGX mode was intended mainly for testing purposes. Building and running a SM in
this way is much faster and it can significantly speed up the development process, as the code
written by the Deployer is exactly the same for either working modes.

To provide the confidentiality and integrity guarantees needed for Authentic Execution (Sec-
tion 3.3), SMs deployed as SGX enclaves use AES [39] in the Galois/Counter Mode (GCM)
[40], an authenticated encryption algorithm which is widely adopted for its performance. In this
implementation, 128-bit symmetric keys are used. Encryption is needed to secure setKey events
between the Deployer and a SM, as well as connections between two SMs. About the latter, to
provide compatibility between a SGX and a Sancus SM, support for SPONGENT cryptographic
functions was included as well. When setting up a connection between two SMs, the Deployer
can choose which algorithm to use between the supported ones (at the moment of writing, either
AES or SPONGENT). The implementation of the Rust SPONGENT library used in this work
was developed in a previous Master’s Thesis [41].

Remote Attestation

RA is performed as soon as a SM compiled in SGX mode is loaded on a node. The SM, once
it is executed, listens for a connection coming from the Deployer: this is the only time the two
entities communicate directly (i.e., without going through the EM). We used in this Master’s
Thesis an existing implementation of RA for EDP enclaves [42], which is based on the official
example provided by Intel [43].

The full RA process is the same described in Section 2.2.2, hence it is not explained again
in this section. In this RA implementation, the verification of the QUOTE generated by the
QE is done by the IAS. Therefore, the Deployer needs to provide his API keys from the Intel
SGX Attestation Service Utilizing Enhanced Privacy ID (EPID) [44], as well as the IAS root
certificate.

4.4 Authentic Execution in Sancus

The Authentic Execution framework for Sancus was implemented in previous work [2]. Never-
theless, some changes have been made, as described in the next sub-sections.

4.4.1 Event Manager implementation

The previous implementation of the untrusted components of the framework is based on Contiki
[45]. However, support for the Sancus Microcontroller Unit (MCU) in Riot OS [46] is currently
under development, hence we decided to port the EM implementation to this platform. Com-
pared to Contiki, Riot offers several advantages, such as less resources used, full support to
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multithreading and real-time capabilities. A thorough comparison of the two OSes is out of
scope of this Master’s Thesis, however it was already made in other research, such as [47].

Although the underlying operating system is different, the behavior of the EM remains the
same in terms of offered functionalities. In the new implementation, three threads are used:

• Main Thread. This thread processes the events, which are read from a queue. Events are
sent to the queue by the other threads. Hence, the main thread is independent of the media
by which events are sent from other EMs.

• UART Reader. This thread reads for events received from the Universal Asynchronous
Receiver-Transmitter (UART) interface. Each received event is then stored in the Main
Thread’s queue.

• Event Generator. This thread implements the periodic events feature (Section 4.1.3). If
the feature is enabled and a SM has an entry point subscribed for periodic events, the
Event Generator is responsible to generate and send the proper event to the Main Thread,
with the specified frequency.

Since the Sancus version of Riot is currently in a development state, not all features were
available or properly working at the time of the EM implementation. Particularly, we noticed
issues with the xtimer module, used to switch threads and keep track of time. Hence, conditional
compilation was used to either use or not xtimer in the EM code. Without this module, threads
are switched with thread yield and the Event Generator is disabled, as it would not be possible
to deliver events with precise timing. The implementation of the prototype (Chapter 5) suffers
from this limitation.

Events from the outside world, as already mentioned above, come only from the UART
serial interface. Future work would be needed to use wireless technologies instead (e.g., Wi-Fi,
Bluetooth), as Smart Environment applications typically use a wireless network to connect the
components of a system. In this implementation, an abstraction layer over the UART was used
to connect two different Sancus nodes (or a Sancus with a SGX node), using a TCP/IP stack.
In essence, we developed a Python script called reactive-uart2ip, which is responsible for
managing events to/from the board, running on the ”host” machine where the Sancus MCU is
connected through UART. The script takes as argument the path of the UART interface (e.g.,
/dev/ttyUSB1), a port (e.g., 5000) and the baud rate of the serial communication (e.g., 115200
bps). Events addressed to the host machine at the specified port (through TCP connections)
are sent to the specified UART interface. Similarly, events coming from the UART interface are
sent to the destination address indicated in the event header.

The implementation of reactive-uart2ip follows the same application-level protocol spec-
ified in Section 4.2. However, the script and the Sancus board exchange additional information
to ensure that events are correctly handled, e.g., by providing IP address and port in events
coming from Sancus that need to be sent to another node. The software also makes sure to
avoid overlaps by sending events to the board one at a time, using synchronization techniques
to manage multiple concurrent TCP connections.

4.4.2 SM implementation

The implementation of a SM was subject to a few changes in its stub code (i.e., the code injected
by sancus-compiler7), mainly to implement many-to-many relationships (Section 4.1). As a

7https://github.com/sancus-tee/sancus-compiler
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matter of fact, each entry in the connections array was changed to contain three additional
16-bit fields beside the connection key: the connection identifier, the input/output identifier and
an unique nonce. Furthermore, handleInput and handleOutput were modified accordingly, to
find the correct input given a connection ID in the former, and all the connection IDs given an
output in the latter.

Other modifications in the stubs concerned the use of nonces: no checks on them were included
in the initial code, making the implementation vulnerable to replay attacks. For instance, Listing
4.6 shows the original handleInput stub, which presents this vulnerability. If the same Remo-
teOutput event (Section 4.2.5) is sent multiple times (e.g., by an attacker that intercepted the
original packet), the corresponding input of the recipient SM would be triggered multiple times,
because sancus unwrap with key is called without a prior control on the content of payload.
To avoid this issue, the corrected version of handleInput added a check on the nonce (which is
part of payload), to verify whether the same event was already processed or not.

void SM_ENTRY(SM_NAME) __sm_handle_input(uint16_t conn_id ,

const void* payload , size_t len)

{

if (conn_id >= SM_NUM_INPUTS)

return;

const size_t data_len = len - AD_SIZE - SANCUS_TAG_SIZE;

const uint8_t* cipher = (uint8_t *) payload + AD_SIZE;

const uint8_t* tag = cipher + data_len;

// TODO check for stack overflow!

uint8_t* input_buffer = alloca(data_len);

if (sancus_unwrap_with_key(__sm_io_keys[conn_id],

payload , AD_SIZE , cipher , data_len , tag , input_buffer))

{

__sm_input_callbacks[conn_id ]( input_buffer , data_len);

}

}

Listing 4.6: Vulnerable handleInput original stub: no checks on the nonce (which is part of the
associated data) are performed, hence an attacker might perform a replay attack to trigger the
same input multiple times.

Remote Attestation

As discussed in Section 2.2.1, RA in Sancus requires a challenge-response protocol where the
SM produces a MAC using its master key KN,SP,SM over a fresh nonce sent by the Deployer,
which then checks on his platform if the MAC is correct. In Authentic Execution, this procedure
is executed during the establishment of a connection in a SM, with the setKey event. During
this communication, the Deployer not only attests the SM, but also obtains a proof that the
connection has been correctly established. If the SM has no connections, instead, it is never
attested. However, the SM in this case would not provide any utility to the system, therefore
RA is not needed in this case.
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4.5 Deploying the system

To deploy an Authentic Execution system, a script called reactive-tools8 was designed in
previous work. This software takes as input a deployment descriptor (Section 3.3.3) and auto-
matically configures the whole system. Three main steps are taken:

• Deployment. All the SMs are built and sent to the nodes where they belong to.

• Remote Attestation. Depending on the TEE, the RA process is explicit (e.g., Intel SGX,
Section 4.3.5), or implicit (e.g., Sancus, Section 4.4.2).

• Establishment of connections. For each connection, a Connect message (Section 4.2.3) is
sent to the source EM and setKey input is called on each of the two SMs.

These procedures are not strictly sequential, e.g., the Connect message of a connection might
be sent to the EM before the deployment of the two involved SMs. However, setKey cannot
clearly be called on a SM if it is not yet deployed. The implementation of reactive-tools is
made using asynchronous tasks9, with special constructs (async/await) to satisfy all the rules
of precedence such as the ones just mentioned.

Due to the modifications introduced in this Master’s Thesis, we updated reactive-tools to
handle new information coming from the deployment descriptor:

• SGX SMs and nodes. SGX components are marked with "type": "sgx" in the deploy-
ment descriptor. Functions have been implemented to handle this TEE. Additionally,
"nosgx" type can be also specified to deploy a SM as a native application instead of an
enclave (Section 4.3.5).

• Periodic events. A task responsible for registering periodic events on the nodes was im-
plemented (Section 4.1.3). This task is executed after all the connections have been estab-
lished.

• Different encryption algorithms. Information about the encryption algorithm to use is
added to each connection entry (e.g., "encryption": "aes"). The software checks whether
the encryption algorithm is supported by both modules or not, generating an error in the
latter case.

8https://github.com/sancus-tee/reactive-tools

9https://docs.python.org/3/library/asyncio.html
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Chapter 5

Prototype

In this Master’s Thesis, we developed a prototype to evaluate the framework described in the
previous chapters. This chapter covers this part and it is structured as follows: Section 5.1
introduces the use case, pointing out its critical aspects and the benefits that our framework would
bring in terms of security. Section 5.2 shows an abstract view of the components of the distributed
application, along with their connections. Section 5.3 provides a concrete implementation of the
prototype, given the abstract model, in three different variants. Section 5.4 gives an evaluation
of the prototype’s code, whereas Section 5.5 discusses about its performance. Finally, Section
5.6 presents a security discussion about the main possible threats of our use case, explaining
whether our solution offers protection to such threats or not.

5.1 Motivation

The prototype implements an application for a simple smart irrigation system. In the field of
agriculture, proper irrigation of the crop is an important task, as each product needs a different
timetable and amount of water. This requires a large effort from the farmer if the irrigation is
performed manually. Besides, a manual supply of water might lead to additional issues: firstly,
a wrong supply of water (e.g., incorrect quantity or improper time of the day) might damage the
crop, causing economic loss. Secondly, if the supplied quantity of water is higher than needed,
there is a waste of resources: this is particularly critical in places where water is scarce.

For all of these reasons, different kinds of automatic irrigation systems have been proposed in
recent years. There are essentially two types of smart irrigation controllers: weather-based and
sensor-based1. Particularly, research has shown that it is possible to build simple and effective
sensor-based systems that partially or totally solve the problems mentioned before.

For small systems, it is possible to use a single microcontroller that includes the sensing
peripherals, the logic to start/stop the irrigation and the irrigation actuator itself [48, 49]. That
is, each microcontroller works on its own and does not depend on external entities. This brings
an advantage from a security point of view, because an attacker has a very low attack surface in
this scenario, as his only option is to physically tamper with the device.

However, in bigger systems this solution is not enough: for instance, in wide areas it might
be needed to have sensors placed in different positions. Some scenarios also require different
types of sensors. All data from the various sensors needs to be gathered together and processed

1https://www.hydropoint.com/what-is-smart-irrigation/
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by a centralized controller, which is responsible for sending the commands to actuate one or
more output devices. All the components of the system are connected together, usually using a
wireless network [50, 51].

Unlike the previous one, this implementation is much more attractive for an adversary. If no
security mechanisms are implemented, an attacker might intercept and alter messages exchanged
over the network, as well as providing forged ones. This way, the attacker might be able to
control the irrigation system either directly (e.g., by controlling the actuator) or indirectly (e.g.,
by providing fake sensor data to trick the controller to enable/disable the water supply). Of
course, this is a very high threat which might cause significant financial and reputational loss to
the farmer. For this reason, a secure implementation of such applications is needed. Hence, our
prototype tries to achieve this goal.

5.2 Building blocks

Figure 5.1: Abstract view of the components of the prototype and their connections.

The abstract model of the prototype is shown in Figure 5.1. It is composed of four Software
Modules (SMs):

• Sensor (SM S). This SM should be directly connected to a soil moisture sensor connected
to the ground, which provides information about the current moisture level of the soil. The
SM provides sensor data on demand, triggered by SM C .

• Actuator (SM A). This SM is directly connected to the irrigation system, which is turned
on or off according to the controls received from SM C .

• Controller (SM C). This SM includes the main logic of the application. Periodically, it
requests sensor data from SM S . As soon as the value is received, it is compared to two
predefined thresholds: if the value is above the upper threshold, it means that the soil is
too moist, therefore the irrigation system needs to be turned off. On the other hand, if the
value is below the lower threshold, the soil is too dry: hence, the irrigation system needs
to be turned on. In both cases, a command is sent to SM A. If the value is between the
two thresholds, nothing happens.

• Dashboard (SM D). This is an optional SM, to allow interaction between the system and
an external user (e.g., the farmer). In this prototype implementation, it only provides
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information about the value of the last sensor data read and the current state of the
irrigation system. However, more advanced implementations could allow the user to directly
control the system through specific entry points.

As shown in Figure 5.1, connections are established between the SMs, to implement the
logic of the application as described above: get sensor value and value read between SM C

and SM S , sensor data received from SM C to SM D, actuate tap from SM C to SM A and
tap changed from SM A to SM D. In addition, the soil moisture sensor and the irrigation actuator
need to be connected to the system so that only SM S must be able to read data from the soil
moisture sensor and, more importantly, only SM A must be able to control the irrigation system.
How this functionality is implemented depends on the architectures chosen.

5.3 Implementation

In the prototype, we implemented SM S to simulate a soil moisture sensor: rather than reading
values from a physical device, it produces ”random” values that simulate the conditions of the
soil over time. In practice, SM S keeps a counter that is updated every time a sensor reading is
requested. It is incremented if the irrigation system is on (over time, the soil becomes more and
more wet), and decremented otherwise (over time, the soil becomes more and more dry). This
is a very simple implementation that does not take into account external conditions (e.g., rain);
however, it is sufficient to evaluate the prototype. Additionally, the irrigation system has been
replaced by a simple LED, connected to a Sancus board using Secure I/O (Section 2.2.1). The
LED is piloted by a SM called LED MMIO, whose data section is mapped on the LED’s MMIO
region, gaining exclusive access to it. An additional SM (called LED driver) was used to control
LED MMIO, to add a separation layer between the physical device and SM A. In this way, if the
device changes (e.g., from an LED to a real irrigation system), SM A’s code remains unchanged.

SM C uses the periodic events feature (Section 4.1.3) to request sensor data from SM S every
second. That is, the registered entry point simply generates the get sensor value output,
initiating the exchange of events between the SMs.

5.3.1 Configurations

The prototype was implemented and evaluated using three different configurations, as shown in
Figure 5.2:

• Distributed, wide (Conf W ). SM S and SM A are deployed to two different Sancus nodes,
whereas SM C and SM D are deployed to the same SGX node. This is a possible solution for
big systems, where the input and output physical devices are not necessarily close to each
other, or where numerous sensors and actuators are used to cover all the area. Furthermore,
the SGX node provides enough hardware and software resources to allow additional tasks:
it might be used as a storage unit or also to perform expensive computation (e.g., to
compute statistics using Machine Learning, in order to find the optimal values of the two
thresholds).

• Distributed, narrow (Conf N ). This configuration is similar to Conf W , but SM S and SM A

are deployed on the same Sancus node. This might be for instance the case of an irrigation
system of a flowerpot, where the system is small enough that the physical devices are
spatially close to each other.
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Figure 5.2: Deployment of the prototype SMs in three different configurations.

• Local (Conf L). If the system is simple enough, SM C ’s logic might be included in SM S .
Benefits are that the whole system is deployed on the same Sancus node, which means faster
transmission of events and less resources used (no SGX nodes are needed). Furthermore,
another advantage is that the system is more resilient: if the network is down, due to either
a malfunction or an attack, the prototype can still continue to work. However, due to the
constraints in Sancus mentioned in Section 4.4.1, it is not possible to use the periodic events
feature, hence an external SM was used to trigger sensor readings. For simplicity, SM D is
not present in this configuration.

With respect to the encryption algorithms used, AES-128 is used between two SGX SMs,
whereas in all the other cases (Sancus-SGX and Sancus-Sancus) SPONGENT with 128 bits of
security is used.

5.4 Code evaluation

This section discusses the implementation details of each component of the prototype, considering
both the Source Lines of Code (SLOC) and the binary size. The former are calculated using
cloc2, considering .rs and .toml files in Rust applications, and source and header files (.c and
.h) in C code. The latter, instead, is computed using size3.

2https://github.com/AlDanial/cloc

3http://manpages.ubuntu.com/manpages/bionic/man1/arm-none-eabi-size.1.html

42

https://github.com/AlDanial/cloc
http://manpages.ubuntu.com/manpages/bionic/man1/arm-none-eabi-size.1.html


Prototype

Furthermore, we assessed the TCB size for each architecture (Intel SGX, Sancus), and com-
pared with the untrusted software. Reducing the TCB size as much as possible is a major
objective of this Thesis work: the smaller it is, the lesser attack surface an adversary has. Thus,
it is easier to check and verify the security of such systems.

5.4.1 Intel SGX implementation

Module SLOC Binary size (KB)

EM 531 1316

SM C 33 4507

SM D 53 4467

Table 5.1: Source Lines of Code (SLOC) and binary size of the Rust implementation of the Event
Manager (EM) and the two SM of the prototype, SM C and SM D.

Table 5.1 shows the size of the SGX components of the prototype. The SGX’s Event Manager
(EM), which is the untrusted component that processes the events (as described in Section 3.1),
required 531 SLOC (external dependencies excluded), generating a binary file of 1316 KB. On
the other hand, the trusted units SM C and SM D required only 33 and 53 SLOC respectively. Yet
the binary size is not so small, 4507 and 4467 KB, due to the stub code injected by rust-sgx-gen

with its external dependencies and the overhead for running the SMs inside an enclave. However,
such sizes widely fit into the EPC, the protected region of memory that contains SGX enclaves
(Section 2.2.2).

It is worth noting that the biggest impact derives from the Remote Attestation (RA) process
(Section 4.3.5), which is not caused by the RA code itself, but rather by the huge number of the
external dependencies that it needs for executing. In fact, as shown in Table 5.2, the actual RA
code (without considering the dependencies) only consists of 678 SLOC.

This table also reveals another important aspect: the code we wrote for each component of
the prototype is very tiny compared to the total size of a SM. For instance, SM C ’s logic is only
9% of the main code (logic + stub code), and less than 0.5% of the total SLOC.

5.4.2 Sancus implementation

Table 5.3 shows a comparison between trusted and untrusted components of the Sancus imple-
mentation. In terms of lines of code, the untrusted part (10761 SLOC) is dominant compared to
the trusted one (108 SLOC): the latter is only 1% of the total code. However, it must be con-
sidered that the SLOC of the trusted components do not include stub code and other libraries.
In fact, the binary size comparison is less prominent, with respectively 34794 and 8428 bytes,
making the trusted part 19,5% of the total size. Nevertheless, the TCB reduction is still relevant,
which results in a more limited attack surface on each node.

It is noteworthy that having a separate driver for the LED (LED driver), instead of includ-
ing the code in SM A, is not the most efficient choice: as a matter of fact, an additional SM
means more memory used (both RAM and ROM) and a higher performance overhead due to the
transmission of events from SM A to LED driver.
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Module Source SLOC

Stub code Thesis work 320

reactive crypto Thesis work 144

reactive net Thesis work 262

lazy static1 Open source library 163

base642 Open source library 4452*

aes gcm3 Open source library 263

spongent rs4 External code 316

rust sgx remote attestation5 External code 678

TOTAL 6598

* this number includes about 1000 SLOC of test code, and 2000
SLOC of tables.

1 https://docs.rs/lazy_static/1.4.0/lazy_static/
2 https://docs.rs/base64/0.12.3/base64/
3 https://docs.rs/aes-gcm/0.6.0/aes_gcm/
4 https://github.com/stenverbois/spongent-rs
5 https://github.com/ndokmai/rust-sgx-remote-

attestation

Table 5.2: Source Lines of Code (SLOC) of the SGX’s Authentic Execution framework implemen-
tation, with its main dependencies. External dependencies of these modules were not considered
in the computation.

5.5 Performance evaluation

To evaluate the performance of the prototype, we collected time measurements to determine
the responsiveness of the system. We tested all the three configurations introduced in Section
5.3. In particular, we calculated the elapsed time (called Round-Trip Time (RTT)) from when
a sensor value is requested by SM C (generating get sensor value) to when SM A activates the
LED. Due to the issues with timers in Sancus, all the time measurements were carried out on the
SGX’s side. Therefore, the end time does not match with the exact moment when the LED is
turned on or off, but rather with the moment when SM D receives tap changed, which includes
the transmission time of that event and its processing.

Table 5.4 shows the average RTT calculated over 15 measurements for each of the three con-
figurations. Conf W and Conf N share almost the same RTT: 379.5 ms and 371.7 ms respectively.
Indeed, these two configurations do not differ from a performance point of view: the two Sancus
nodes are connected using the same media to the SGX node, hence it does not matter where
SM S and SM A are actually located from the two SGX SMs’ perspective. Furthermore, SM S

and SM A do not exchange events each other. On the other hand, Conf L is, as expected, more
efficient: with an average RTT of 108 ms, it is more than three times faster than the other two
configurations.

In addition to measuring the performance of the prototype, other experiments were conducted,
in order to understand what are the most critical components in terms of performance and give
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Module SLOC Binary size (B)

Untrusted components

Riot OS 9713 -

EM 1048 -

TOTAL 10761 34794

Trusted components

SM S 25 2925

SM A 24 2916

LED driver 30 2471

LED MMIO 29 116

TOTAL 108 8428

Table 5.3: Source Lines of Code (SLOC) and binary size of the Sancus trusted and untrusted
components.

Configuration Average RTT (ms)

Conf W 379.6

Conf N 371.7

Conf L 108

Table 5.4: Average RTT measured for the three configurations of the prototype. Start time is
when a sensor data is requested by SM C , end time is when SM D is notified by an LED state
change.

some hints for future optimizations.

5.5.1 Intel SGX impact

The first additional experiment was carried out in order to measure the impact of Intel SGX
on the overall performance of the prototype. In particular, we made the same measurements
explained previously for Conf W and Conf N , with the only difference that SM C and SM D are
deployed as native applications instead of SGX enclaves (using the NoSGX mode).

Table 5.5 shows the average RTT computed over 15 measurements. In both configurations,
there is a substantial improvement on the performance of the system: in fact, the average RTT
is 272.8 ms for Conf W and 272.47 ms for Conf N . Compared to these numbers, the protection
offered by Intel SGX in the prototype worsen the performance by respectively 39% and 36%.
Indeed, we expected a performance degradation caused by Intel SGX. The calculated overhead
is a result of two main aspects: first of all, the actual overhead of executing CPU instructions
and accessing encrypted memory in an enclave. Secondly, the cost associated with entering and
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Configuration Average RTT (ms)

Conf W 272.8

Conf N 272.47

Table 5.5: Average RTT measured for Conf W and Conf N , where SM C and SM D are deployed
as native applications (NoSGX mode).

exiting the enclave (through the so-called ECALLs/OCALLs). A thorough analysis of the SGX
performance is out of the scope of this Master’s Thesis, however it is well researched [52, 53, 54].

5.5.2 Authentic Execution impact

We made an effort to measure the impact of the Authentic Execution framework. We paid
particular attention to compare the two encryption algorithms used, AES and SPONGENT.

Figure 5.3: Toy example used to evaluate the impact of the Authentic Execution framework.

Figure 5.3 shows the example used for these measurements. Two SMs are involved, called
Sender and Receiver, which are connected to each other by two different connections: query,
from Sender to Receiver, and response, from Receiver to Sender. The example works in the
following way: An entry point in Sender triggers the emission of query, whose event is sent to
Receiver which, as a consequence, generates response. Experiments measured the RTT between
the two SMs: from the moment when Sender’s entry point is called to the moment when the
same SM receives the response event. No data is exchanged between the two SMs, in both
connections. Two outputs and two inputs are present in the example: this means that a total of
two encryptions and two decryptions are computed for each query-response cycle.

This example was tested in three different configurations:

• SGX, using AES (Conf AES). Sender and Receiver are two SGX SMs deployed on the same
node, using AES-128 as encryption algorithm.

• SGX, using SPONGENT (Conf SPONGENT ). Similar to Conf AES , but SPONGENT is
used instead of AES, with 128 bits of security.

• Hybrid (Conf Hybrid). Sender is a SGX SM, Deployer is a Sancus SM. Naturally, SPONGENT-
128 is used for encryption, since it is the only algorithm supported by both architectures.

Table 5.6 shows the average RTT calculated over 15 measures for each of the three configu-
rations. First of all, Conf AES ’s results show an average RTT of only 9.73 milliseconds: thanks
to the hardware support, in fact, AES operations are very fast in a SGX platform. Different
is the case of SPONGENT, which is completely implemented in software. Results show that
Conf SPONGENT executed 36 times slower, with an average RTT of 354.47 ms. The encryption
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Configuration Average RTT (ms)

Conf AES 9.73

Conf SPONGENT 354.47

Conf Hybrid 244.07

Table 5.6: Average Round-Trip Time (RTT) between two SMs deployed in three different con-
figurations, to assess the performance of AES and SPONGENT encryption algorithms.

overhead in this case is not negligible and hugely affects the overall performance of the system.
Fortunately, there is no need to use SPONGENT between two SGX SMs, however this encryption
algorithm must be used when the connection is established with a Sancus SM. As a consequence,
performance issues arise in those applications. Conf Hybrid, in fact, results with an average RTT
of 244.07 ms, which is 25 times slower than Conf AES , but 45% faster than Conf SPONGENT ,
even if the measurements include also the transmission time of events between SGX and Sancus
nodes. This suggests that SPONGENT operations are faster on Sancus’s side: in fact, they are
performed in hardware.

5.5.3 Transmission time

Additional tests analyzed the performance of the transmission channel between a Sancus node
and a SGX node. Recall from Section 4.4.1 that, in this Master’s Thesis work, Sancus boards
are connected to the SGX machine using UART as a communication media, and that events
from different nodes are exchanged through TCP/IP packets, running reactive-uart2ip tool
for each Sancus device to map the UART connection with a TCP/IP socket. Additionally, the
UART baud rate is set to 57600 bps.

The tests measured the average RTT of a communication between sample Sancus and SGX
endpoints (without using the Authentic Execution framework), in two different cases: firstly
using TCP/IP, then using the serial port directly, without any other abstraction layer. The total
length of the payload is 23 bytes in both cases: this number was not randomly chosen, in fact
it is the length of an Authentic Execution RemoteOutput event with no attached data (Section
4.2.5), using 128 bits of security (total length: 7 bytes header + 16 bytes MAC). This allows to
deduce the transmission time of the events exchanged during the Conf Hybrid tests in the previous
section, as the size of packets is the same.

Configuration Average RTT (ms)

TCP/IP 28.15

Bare UART 16.19

Table 5.7: Average Round-Trip Time (RTT) between a SGX and a Sancus node, to measure the
transmission time.

Results are shown in Table 5.7: the average RTT over 15 measurements using TCP/IP is
28.15 ms, 74% slower than using bare UART (16.19 ms). Two main aspects can be observed:
first of all, that the serial communication is, in general, pretty slow. Due to the very low baud
rate, in fact, even a transmission of a handful of bytes takes some milliseconds. Secondly, that
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the TCP/IP abstraction over the UART introduces a not insignificant overhead. Indeed, the
tests have shown that, for 23 bytes of data, a single transmission is almost 6 ms slower.

5.5.4 Discussion

Some conclusions can be drawn from these experiments. Firstly, the actual implementation of
the prototype might be already capable of satisfying the performance requirements of a smart
irrigation system: the real time constraints in this case are not so stringent, as the response
time of the system might be acceptable if it is equal or smaller than a second. The measured
performance of the prototype largely satisfies these restrictions, hence it is expected that a real-
world implementation of this prototype would still be feasible for this scenario.

Secondly, for applications where the response time needs to be smaller (in the order of mil-
liseconds), the actual implementation might not be feasible anymore. However, the experiments
carried out in this work revealed which are the most critical tasks in terms of performance: the
overhead caused by the enclaved execution in Intel SGX and the software implementation of
cryptographic algorithms (SPONGENT, in this case). This is a starting point for future re-
search, which might come up with optimizations that would improve the overall responsiveness
of the system.

In summary, we can conclude that this prototype is feasible for a smart irrigation application,
because the time constraints of such use case are widely affordable for our implementation.

5.6 Security evaluation

In this section, we assess the security properties of the prototype. As it implements a smart
irrigation system, the evaluation takes into account some hypothetical threat scenarios of a
generic Smart Farming application, as described in [9]. The paper highlights eight different cases
under the CIA triad (Confidentiality, Integrity, Availability). Table 5.8 shows a summary of these
scenarios, each of which is analyzed thoroughly in the next sub-sections. All the security aspects
of our implementation derive from the Authentic Execution framework, described in Section 3.3.

Table 5.8: Security analysis of the prototype, given eight hypothetical threat scenarios. For each
scenario, the table shows its type (Confidentiality, Integrity or Availability) and whether the
prototype offers protection against such threat or not.

No. Scenario CIA Support

1
Confidential data stored on a server is leaked or
stolen

C Yes

2
Confidential data stored on foreign cloud ser-
vices is accessed by foreign governments

C Yes

3
Attackers introduce fake data on the system or
modify existing data

I Yes

4
Fake sensor data is introduced on the system to
influence decision support systems or machine
learning software

I Yes
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No. Scenario CIA Support

5
Sensor data or algorithms are altered by an at-
tacker

I Yes

6
Software does not work properly, due to a bad
update or a pirated version that contains a back-
door used to turn off the system

A Partial

7
Foreign agricultural equipment does not work
properly, due remote tampering

A No

8
External events (e.g., natural disasters) bring
down the communication systems

A Minimal

5.6.1 Confidentiality scenarios

Scenario 1 describes a situation where confidential data is leaked or stolen from a storage unit
(e.g., a database). Our implementation offers protection against this threat, since sensitive data
can be encrypted using a SM’s Master Key. This process is also known as sealing, particularly
used by Intel SGX (Section 2.2.2).

Scenario 2 is similar to the first, however in this case data is stored on foreign cloud services.
In these circumstances, the foreign government might want to access such data, e.g., to assess
the agricultural yields of its competitors. The solution is the same as Scenario 1: confidential
data can be encrypted, meaning that no one except the owner of the system would be able to
access it.

5.6.2 Integrity scenarios

Scenarios 3 and 4 describe the situation where data is manipulated: either fake data is intro-
duced on the system (e.g., forged sensor readings), or original data is altered (e.g., during the
transmission of information between two SMs). This might cause several issues to the system,
e.g., fake sensor data might influence decision support systems such as the logic to enable or
disable an actuator. Fortunately, our solution strongly focuses on data integrity, as every event
is authenticated using the connection key, known only by the two SMs that participate in the
communication and the Deployer. Any alteration of this data results in a decryption failure and
the event is discarded. Physical attacks on sensors, instead, might succeed. However, this kind
of attacks is explicitly out of scope for our system, i.e., an attacker cannot tamper with the
hardware.

Scenario 5 illustrates the case where, in addition to the manipulation of data, algorithms or
software are tampered with. Indeed, in our implementation a SM might be altered either during
the transmission of the binary to a node or during the loading process. However, RA is used to
obtain a proof of authenticity of the SM at runtime. Additionally, the SM runs in a protected
environment, therefore it cannot be manipulated during its execution.

5.6.3 Availability scenarios

Scenario 6 reveals possible issues related to the software installed on the system. Software might
not work properly, due to a bad update which might introduce a bug or a pirated version of
the same software, that might contain malicious code. Our solution offers partial protection in
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this case: it is not possible to install a modified version of a SM, because RA would fail if the
software is not authentic. Nevertheless, if the code written by the Deployer himself contains bugs
or backdoors, the system would be unavoidably exposed.

In Scenario 7, foreign agricultural equipment (i.e., the hardware) is compromised by foreign
governments, to cause damage during specific periods (e.g., planting, harvesting). Our imple-
mentation does not offer any kind of protection in this case: nodes are untrusted components
and there is no guarantee that a SM installed on a node is actually executed.

Finally, Scenario 8 considers the case where the communication systems are broken due to
external events (e.g., natural disasters). By being a distributed application, our solution is
hugely affected if the network is down, as all events exchanged by two SMs in different nodes are
inevitably lost. However, an application entirely deployed on the same node (e.g., Conf L of our
prototype) might still be able to work.

5.6.4 Discussion

As shown in this analysis, the framework provides strong confidentiality and integrity guarantees.
On the other hand, there is little to no support to availability. However, this is not a surprise,
as availability was ruled out of scope of this Master’s Thesis work from the beginning (Section
3.3.2).
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Conclusion

In this Master’s Thesis, we extended the Authentic Execution framework in order to support a
real Smart Environment application. The most important contribution of our work is the support
for Intel SGX TEE, which allows the deployment of a heterogeneous system composed by both
low-end embedded systems and high-end computation systems. We revised the implementation of
Authentic Execution for Sancus to provide compatibility with SGX. Furthermore, we enriched
the tools to automatically deploy a system, reducing the developer’s effort to the minimum
necessary. Finally, we designed and evaluated a prototype for a secure smart irrigation system.

The security evaluation showed that the prototype provides strong confidentiality and in-
tegrity guarantees. The isolation mechanisms of a TEE prevents code and data to be leaked
and altered inside a platform. Remote Attestation, instead, ensures the authenticity of every
module in the system. Additionally, encryption techniques protect the communication between
two modules, whereas Sancus’ Secure I/O functionality establishes a trusted path between a
Sancus module and an I/O device. The implementation of the Authentic Execution framework
for SGX was made entirely in Rust, a modern and secure programming language that prevents
many low-level attacks such as buffer overflows.

On the other hand, experimental tests to measure its performance revealed mixed results:
our implementation should be largely feasible for a smart irrigation system, which does not have
strict real time requirements. For other applications, instead, our solution might not meet these
constraints, as our tests showed the weaknesses of our prototype from a performance point of
view. We believe that future optimizations can improve the performance of our implementation,
allowing the Authentic Execution framework to be feasible in more scenarios.

6.1 Limitations and future work

This section discusses the limitations of our implementation and provides some hints for future
work.

Improving the performance

The performance evaluation in Section 5.4 revealed that our implementation, in general, is not
suited for applications with strict real time constraints. Our tests showed that the bottleneck
of our solution is the software implementation of the SPONGENT cryptographic library, used
by SGX SMs to communicate with Sancus SMs. Indeed, past work already proved the poor
performance of a SPONGENT software implementation [55]. Hence, a different approach is
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needed to improve the performance of the whole system. Since cryptographic functions are
computationally expensive, the ideal solution would be executing them in hardware. Further
research is needed to develop a feasible solution of this issue. A possible one would be the
implementation of a crypto unit based on AES in Sancus.

A complete prototype

The prototype we developed for a smart irrigation system and discussed in Chapter 5 does not use
real I/O devices, except for an LED to show whether the irrigation needs to be turned on or off at
a particular time. The soil moisture sensor is emulated in software, by means of a simple logic.
Furthermore, the Sancus devices are connected to the SGX backend through UART (Section
4.4) instead of a wireless connection. Additional work might be carried out in future to extend
the current implementation of the prototype in order to remove these limitations and support a
real application (e.g., watering a flowerpot). In such scenario, a performance evaluation would
certainly be more accurate.

Different communication media

All the components of our system use a TCP/IP stack. This might be acceptable for high-end
nodes, however embedded systems do not always use these protocols to communicate with the
external world. There are many different wireless technologies that a microcontroller can adopt,
such as Wi-Fi, Bluetooth, ZigBee, LoRa, etc. Therefore, the Authentic Execution framework
should support different media to provide compatibility with as much devices as possible. In
particular, modifications are needed in the application-level protocol for the Connect message
(Section 4.2.3), as well as in the SGX and Sancus implementations to receive events from multiple
media.

SGX extensions

The SGX implementation of the Authentic Execution framework might be improved not only
to support different communication media (as described above), but also to provide new features.
A SGX SM, to be initialized correctly, needs to perform Remote Attestation with the Deployer:
in the current implementation, the process must be repeated for every execution of the SM, to
re-establish a secure channel between the two entities. Additionally, also the symmetric keys of
the connections have to be sent to the SM every time. To mitigate this problem, the sealing
feature (Section 2.2.2) might be used to securely store all the keys on disk. With data sealing,
the SM could retrieve the keys at startup, without the need of exchanging further messages with
the Deployer.

Data sealing might be used for storing additional information as well, such as sensor data.
Alternatively, encrypted databases implemented with Intel SGX might be used for this purpose,
such as EnclaveDB [56] and StealthDB [57].

The prototype used a very basic dashboard to interact with the system (Section 5.2). The
dashboard was implemented as a regular SM that provides entry points to get information about
the irrigation system. However, more sophisticated interfaces might be implemented, e.g., a
website that dynamically shows the current status of the system, as well as some statistics about
the data collected and an interface to send commands. This might be achieved by having a
SGX SM which additionally implements a web server, with TLS termination inside the enclave
[58, 59]. The owner of the system could then connect to the web server using his browser.
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Naturally, authentication mechanisms should be implemented to identify a client that wants to
access sensitive data or send commands.

Dealing with availability

As stated in Section 3.3.2, availability is not in the scope of this Master’s Thesis work. Neverthe-
less, some improvements might be taken into account to improve the robustness of the system.
Firstly, the Authentic Execution framework uses nonces to provide freshness and avoid replay
attacks. In our implementation, if an event is lost or intercepted on the network, the two SMs of
the connection would not be able to communicate anymore, because their nonces would be out
of sync from that moment (the destination SM, by not receiving the event, would not increase
its nonce). Hence, recovery mechanisms might be implemented to deal with this issue. A second
improvement might be the introduction of some backup logic on each SM to be executed when
the system is not working as expected. For instance, if an actuator (e.g., the irrigation system)
does not receive events for a very long time, it might be an indicator that either the network
or the controller is not working properly. In this case, code might be executed on the SM to
activate/deactivate the actuator autonomously, e.g., every few hours.
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