
POLITECNICO DI TORINO
Master’s Degree in Computer Science Engineering -

Data Science

Master’s Degree Thesis

Monitoring COVID-19 prevention
measures on CCTV cameras using Deep

Learning

Supervisors

Prof. Hélio Côrtes Vieira LOPESa

Prof. Paolo GARZAb

aPUC Rio de Janeiro
bPolitecnico di Torino

Candidate

Davide Antonio Maria COTA

October 2020

Summary
With the unfortunate rise of COVID-19 disease the whole world is in
search of a way to stop the spreading of the virus. New restrictions
in everyday life came up, like quarantine, social distancing, wearing
masks, washing hands more frequently, limited number of people in
closed places and more. This project is dedicated to monitor, through
CCTV cameras videos, three of major prevention measures: social
distancing, wearing masks, counting the number of people in a closed
place. Besides being three different problems distant from each others,
they share the possibility of being analyzed through camera images.
The need of having some indicators in real time that these measures
are being respected in an area of interest is more current than ever.
Moreover, in these days CCTV cameras can be found anywhere, from
public places such as airports, hospitals, schools, museums to shops,
retail stores, houses. It makes the perfect instrument to reliably have
real time images with no further installations. With the improvements
in the last years in the field of GPU computing, Machine Learning
algorithms became the first candidates to address this kind of problems.
Different kinds of models in this work are used and presented to offer a
reliable instrument to counteract the spreading of the virus.

ii

Acknowledgements
This thesis marks the end of my studies at Politecnico di Torino, to
whom I need to say thanks to let me overcome obstacles that I thought
being bigger than me, like this work.
Since day one, I’ve been welcomed and made to feel at home from this
beautiful city, that I immediately felt in love with. During this long
journey I met wonderful people: Danny, Maps, Giovanni, Sara, Luca,
Dario, Nicola and many others. We had unforgettable moments during
this path, even if sometimes the path was lost.
I wish to say thankw to the awesome people met during my exchange in
Rio de Janeiro. Even if our trip was short, I have lots of memories with
each of you: Giacomo, Marta, Julia, Natalie and my three brazilian
mothers Ana, Nadja, and Angela.
I would like to thank Marco, Ruben and all my Social Club basketball
teammates, that taught me how to rejoice in defeats (lots).
A big thank also goes to my PolitOcean friends, we faced lots of
challenges together.
Thanks to Renato and Pier, I’m looking forward for the next falfest.
Finally, I need to say thanks to my family. My uncles Licio and
Francesco, my aunt Patrizia, my grandmothers Emma and Marisa.
Thanks to my mom and dad that always supported me, they always
believed in my successes and never in my failures. Thanks to my sister,
Carlotta, and my brother, Andrea, we have so many great moments
ahead.
Thanks to Chiara, we were just two lost lovers when the universe
reconnected the points, you’ve always been at my side.
Last but not least, Davide, this is for you.

iii

“And I knew exactly what to do. But in a much more real sense, I had
no idea what to do.”

- Michael Scott

v

Table of Contents

List of Tables ix

List of Figures x

Acronyms xiv

1 Introduction 1
1.1 COVID-19 . 1

1.1.1 Prevention measures 3
1.1.2 Social distancing 3
1.1.3 Face masks . 4

1.2 Input data and problem specification 5
1.3 Project structure . 7

2 Background and Related Works 9
2.1 Machine Learning . 9

2.1.1 Supervised learning 10
2.1.2 Unsupervised learning 11
2.1.3 Machine Learning approaches 11
2.1.4 Deep Learning 14

2.2 Related Works . 17
2.2.1 People counting 17
2.2.2 Monitoring social distancing 23
2.2.3 Detecting people wearing masks 30

vii

3 Proposed Methodology 34
3.1 People counting . 35
3.2 Monitoring social distancing 36
3.3 Detecting people wearing masks 39
3.4 Tools . 43

4 Experimental Results 44
4.1 People counting . 45
4.2 Monitoring social distancing 48
4.3 Detecting people wearing masks 52

4.3.1 Object detection 53
4.3.2 Image classifier 57

5 Conclusions and Future Works 59

Bibliography 61

viii

List of Tables

2.1 Score from 1 to 10 (the higher the better) for the pre-
sented Machine Learning models. 14

2.2 Examples of activation functions 16
2.3 LRCN-RetailNet vs YOLOv3 22

3.1 YOLOv4 performance varying the network size 35

4.1 RootNet validation measures 50
4.2 RootNet with tracking validation measures 51
4.3 BiT-M R101x1 validation measures 58

ix

List of Figures

1.1 Number of total cases at 03/09/2020, source Worldometer. 2
1.2 Number of active cases at 08/09/2020, source Worldometer. 2
1.3 Risk of SARS-CoV-2 transmission 4
1.4 People wearing medical masks and a doctor with a N95

mask on. 5
1.5 Examples of images coming from PUC CCTV cameras. 6
1.6 Frame coming from online webcam 6
1.7 No mask and mask sample images 7

2.1 GPU vs CPU comparison [3] 10
2.2 4-Nearest Neighbors 12
2.3 SVM classifier separates the two classes by the largest

margin. 13
2.4 Decision tree for predicting mortality on the Titanic. . 13
2.5 Basic neural network 15
2.6 Gradients computation for each of the the three nodes 17
2.7 How YOLO detects and estimates the class object . . . 19
2.8 YOLOv4 performances against other popular object de-

tectors . 19
2.9 Architecture of an object detector [9] 20
2.10 Comparison of the speed and accuracy of different ob-

ject detectors on the MS COCO dataset (test-dev 2017).
(Real-time detectors with FPS 30 or higher are high-
lighted) [9] . 21

2.11 Inaccurate predictions from YOLO [23] 23

x

2.12 On the left, video frames output with ROI. On the right,
how the BEV looks like. [33] 25

2.13 Example of 2D pose estimation 27
2.14 Example of 3D human pose estimation obtained with

PoseNet [50]. 30
2.15 Examples images from SMFD dataset. 31
2.16 RetinaFaceMask results 32
2.17 SRCNet outputs, each class is represented. CFW = cor-

rect facemask-wearing (green), IFW= incorrect facemask-
wearing (yellow), NFW = no facemask-wearing (red) [56]. 33

3.1 Four different stages of our approach 35
3.2 DeepSort tracks the people during the video assigning

them a unique ID . 37
3.3 RootNet architecture 38
3.4 COCO Keypoints joints set 39
3.5 Face detection using HPE 40
3.6 Training and validation loss during epochs 41
3.7 Training and validation accuracy during epochs 42
3.8 Face mask detection with N = 31 and k = 3. 43

4.1 Oxford Town Centre frame 44
4.2 Ground-truth vs. predicted number of people 45
4.3 Medium FPS for several YOLO detectors 46
4.4 MAE for different YOLO detectors 47
4.5 MAE for low, normal and high density regions 48
4.6 Confusion matrix . 49
4.7 RootNet confusion matrix 51
4.8 RootNet with tracking confusion matrix 52
4.9 Examples of images coming from Kaggle dataset 53
4.10 Intersection over Union 54
4.11 Precision vs Recall YOLOv4 on Face mask dataset . . 55
4.12 Precision vs Recall our model on Face mask dataset . . 55
4.13 mAP and lamr for YOLOv4 on surveillance footage . . 56
4.14 mAP and lamr for our model on surveillance footage . 56
4.15 Mask classifier confusion matrix 57

xi

4.16 Wrong predictions . 58

xii

Acronyms
AI

Artificial Intelligence

AP
Average Precision

CCTV
Closed Circuit TeleVision

COVID-19
COrona Virus Infection Disease, 2019

FPS
Frames Per Second

GPU
Graphics Processing Unit

ML
Machine Learning

PUC
Pontifícia Universidade Católica (do Rio de Janeiro)

SVM
Support Vector Machine

xiv

WHO
World Health Organization

xv

Chapter 1

Introduction
The project presented in this thesis is intended to build a robust system
to monitor the COVID-19 prevention measures using Deep Learning
algorithm, analysing data coming from surveillance camera. One chal-
lenging goal of this work consists in analysing low resolution CCTV
camera frames and giving in output accurate predictions. Most of the
data collected comes from Pontifícia Universidade Católica do Rio de
Janeiro surveillance camera.

The following chapter is organised in three parts: the first one presents
a description of the COVID-19 outbreak, the second one explains the
data source and the problem specification and the the last one describes
the project structure.

1.1 COVID-19
COVID-19 is the acronym for COronaVirus Disease 19, it is an infec-
tive disease caused from SARS-CoV-2 virus, belonging to coronavirus
family. The citizens of Wuhan, Hubei, China, in the late 2019, were
the first to face the new virus, that resulted in an ongoing pandemic.
As of 9 September 2020, more than 27.4 million cases, with nearly
18.4 million people recovered and more than 896,000 deaths have been
reported across the globe.

General symptoms can be cough, fever, breathing difficulties, fatigue,

1

Introduction

Figure 1.1: Number of total cases at 03/09/2020, source Worldometer.

Figure 1.2: Number of active cases at 08/09/2020, source Worldome-
ter.

and loss of smell and taste. In any severe case, some individuals develop
acute respiratory distress syndrome (ARDS). In these particular cases,

2

Introduction

longer-term damage to organs has been observed and some patients who
have recovered continue to experience a range of effects including muscle
weakness, memory loss and other symptoms for months afterwards.
The virus transmits mostly via respiratory tract through small droplets
from talking, coughing, sneezing with an higher transmission factor in
closed and poorly ventilated places. People may also become infected
by touching contaminated objects and then touching their face.

1.1.1 Prevention measures
The prevention strategies suggested by WHO consists in washing hands
frequently, avoiding touching the face with unwashed hands, and cough-
ing or sneezing into a tissue. Wearing masks is also suggested in public
and crowded place such as bus, trains or hospitals. Physical distancing
measures are also recommended to slow the disease transmission.

1.1.2 Social distancing
Social distancing (also known as physical distancing) includes infec-
tion control actions aiming to slow the spread of the virus by minimising
close contact between people. Social distancing, is a set of measures
adopted to prevent the spread of a contagious disease by reducing the
occurrences people come into contact with each other and maintaining a
physical distance between individuals. Some examples to be considered
as examples of social distancing can be: isolation, closing of public
places such as schools, stadiums, cinemas, remote work and keeping
a distance from other people higher than 1 meter. Different nations
adopted an higher distance threshold. In South Korea the prescribed
physical distance is 2 meters, the same recommended by the USA,
Canada and United Kingdom. According tho WHO, the right distance
to respect is "at least one meter" [1]. This indication relies on the
fact that air droplets, when talking, can’t fall at a distance higher
than 1 meter. Instead, if coughing or sneezing, the indicated distance
isn’t enough anymore. In any case, the prescribed distance can vary
with different scenarios, as shown by a study from Qureshi et al.[2]

3

Introduction

summarized in Fig. 1.3

Figure 1.3: Risk of SARS-CoV-2 transmission

Fig. 1.3 shows how transmission risk may vary with different kind
of situations. In high risk situations (especially in poorly ventilated
areas) physical distancing beyond 2 meters should be considered. Less
stringent distancing is likely to be adequate in low risk scenarios. People
with symptoms (who should in any case be self-isolating) tend to have
high viral load and more frequent violent respiratory exhalations [2].

1.1.3 Face masks
The WHO encourages people to wear face coverings as it can protect
people wearing it from getting infected, as well as can prevent those
who have symptoms from spreading the disease. Medical masks are

4

Introduction

recommended for different kind of people such as health workers, anyone
with symptoms of COVID-19, at-risk people (people aged 60 or over or
people with underlying health conditions) when they are in crowded
areas. Fabric masks are not so effective as medical masks and WHO
does not recommend their use to contrast the virus outbreak. However,
in places when physical distancing is not possible, WHO encourage
the general public to use non medical fabric masks. To effectively
counteract the spreading of the virus, other types of medical devices are
suggested to use. They are named Respirators, also known as Filtering
Facepiece Respirator - FFP with different filtering capacities such as
FFP2, FFP3, N95, N99. Those are indicated for healthcare workers that
are at strict contact with COVID-19 patients.

Figure 1.4: People wearing medical masks and a doctor with a N95
mask on.

1.2 Input data and problem specification
The aim of this project can be subdivided into three macro-areas:
counting the number of people, monitoring if a person is respecting
the prescribed distance threshold from each individual and detecting
people wearing or not face masks. Our input data are the surveillance
camera footage, in particular our dataset is composed of videos coming
from CCTV camera installed at PUC and online real-time web cameras

5

Introduction

situated on the streets. The final dataset consists of a wide variety
of angulation and perspectives, crowd places, occlusions and different
illumination spots. During the designing process dealing with this par-
ticular kind of images had a vital importance in building a suited model
for CCTV camera images, especially because of their low-resolution
characteristic and because of the presence of individual far away from
the camera. No other public dataset has the afore mentioned features.

Figure 1.5: Examples of images coming from PUC CCTV cameras.

Figure 1.6: Frame coming from online webcam

The process to obtain the faces to train the face mask detector is
detailed described in section 3.3. Here we will show just a few training
samples. We collected 7543 training samples, 3588 with masks and

6

Introduction

Figure 1.7: No mask and mask sample images

3955 faces without mask.

1.3 Project structure
The project structure is the following:

• Background and Related Works: here are presented all the
works addressing problems related to proximity monitoring, mask
detection and people counting. In particular for social distancing
monitoring, being a task never accounted before, it is described
solutions originally thought for different kind of problems that can
be adopted and re-adjusted for our purposes, such as human pose
estimation.

• Proposed Methodology: in this chapter it is detailed described
the model pipeline and its core parts. It is explained the motivation
behind each block and in which manner it affects the system. Some
demo images of the final outputs are also showed.

• Experimental Results: for each type of tasks are presented the
results obtained with our approach and how it performs compared
to previous ones.

7

Introduction

• Conclusions and Future Works

8

Chapter 2

Background and
Related Works
In this chapter, after a first presentation about Machine Learning
themes, are reported all the previous works dealing with the three main
problems treated in this project: counting the number of people,
monitoring the social distancing and detecting people wearing
masks.
Please keep in mind that most of the solutions presented in the next
sections were originally thought for addressing different type of prob-
lems, such as human pose estimation; this can be explained by the fact
that it is the first time, in modern history, that the world has to face a
global pandemic.

The next section will give a general introduction about what Ma-
chine Learning and Deep Learning is. After that, for each of the three
task, will be reported all the related works.

2.1 Machine Learning
In the last ten years we assisted at a revolution in the theme of Ma-
chine Learning, that occurred for different reasons; first, the volume of
data and computing power exploded thanks to the developing of Big

9

Background and Related Works

Data frameworks and the studies regarding parallel GPU computing.
Artificial Intelligence (AI) is the set of theory and algorithms that

Figure 2.1: GPU vs CPU comparison [3]

enable computers to mimic human intelligence. Machine Learning
is a subset of AI that includes statistical techniques enabling machines
to improve at tasks with experience. Machine learning algorithms
exploits some sort of sample data, known as training set, in order to
make decisions or predictions without being explicitly programmed to
perform the task. Machine Learning problems can be divided into two
main branches: supervised learning and unsupervised learning.

2.1.1 Supervised learning
Supervised learning is a way of learning that aims to calculate a
function that maps an input x, which is the sample data, to an output
y, which is the label, based on example input-output pairs. It infers a

10

Background and Related Works

function f from labeled training data, consisting of a set of training
examples. Types of problems that can be solved through supervised
learning are:

• binary classification, such as detection problems: given x find
y ∈ 0,1

• multiclass classification, such as animal classification: given x
find y ∈ 1, ..., k with k ∈ N

• regression, that aims to estimate a continuous function: given x
find y ∈ R

2.1.2 Unsupervised learning
Unsupervised learning is a type of machine learning procedure
that doesn’t need data that has been labeled, classified or categorized.
Instead of responding to feedback, unsupervised learning searches for
similarities in the data and gives a feedback respect to the the presence
or absence of such similarities in each new item of data.
Problem prototypes solved with unsupervised learning are:

• Clustering: is the problem of grouping points by similarity, de-
tecting similar patterns in the data distribution. Patterns on a
two-dimensional dot plot are generally fairly easy to see, but we
often deal with higher-dimensional data that humans cannot effec-
tively visualize.

• Principal Component Analysis (PCA): is a technique for re-
ducing the dimensionality of the dataset. The goal is finding a
subspace representing the data, in which the data can be projected.

2.1.3 Machine Learning approaches
In literature, several type of approaches has been proposed to solve
different type of problems. There isn’t a shotgun model, since each
kind of algorithm can be best suited for particular type of data or

11

Background and Related Works

problems. Here we briefly list and describe the principal Machine
Learning approaches and their pros and cons:

• Nearest Neighbor: the Nearest Neighbor Search is the optimiza-
tion problem of finding the point in a given set that is closest,
or most similar, to a given point. The algorithm computes the
distance from all the training samples and take the class of the
most frequent k-Nearest Neighbors. This approach does not need
many parameters and it is easy to implement for small amounts
of data. The problem is that, for a huge training set, it requires
much memory and computational resources.

Figure 2.2: 4-Nearest Neighbors

• Support Vector Machine (SVM): Support Vector Machines are
a way to build non-linear classifiers. The purpose of this algorithm
is to find the hyperplane best separating points with two classes of
labels, by seeking maximum margin linear separators between the
two classes. This is due to that the larger the margin, the farther
any of the training points are from being misclassified. Despite
being an accurate technique, non-linear SVMs does not scale over
millions of data and they aren’t the most interpretable model.

• Decision Trees: A decision tree is a binary branching structure
used to classify an arbitrary input vector X. Each node in the

12

Background and Related Works

Figure 2.3: SVM classifier separates the two classes by the largest
margin.

tree contains a simple feature comparison against some field. The
result of each such comparison is either true or false, determining
whether we should proceed along to the left or right child of the
given node. This type of approach is suited when using a large
number of categorical features and when intrepretabilty is asked.

Figure 2.4: Decision tree for predicting mortality on the Titanic.

• Naive Bayes: a Naive Bayes classifier relies on the probabilis-
tic Bayes’ Theorem with strong naive independence assumptions
between the features, assuming that any of the features Xi are
independent given the class label Y . This model is highly scalable,

13

Background and Related Works

since it requires a number of parameters linear in the number of
features and it is easy to update with new data (online model). In
contrary, the accuracy decreases if there are correlations among
features.

2.1.4 Deep Learning
The afore mentioned Machine Learning algorithms do not scale well
to big datasets, generally because they have few parameters and have
difficulties to deal with a huge number of training samples.
Deep Learning is part of a broader family of Machine Learning meth-
ods based on learning data representations. Deep Learning architectures,
such as neural networks, have been applied to fields including computer
vision, natural language processing, speech recognition and more. The
“deep” term refers to the number of layers through which the data
is transformed. In Deep Learning, each level learns to transform its
input data into a more abstract representation. For example, in an
image recognition task, the input is the pixel matrix: the first layer
may encode borders and edges, the second layer may represent nose
and eyes and the third one may recognize a whole face. There isn’t

Method Accuracy Interpretability Training Speed Prediction Speed
Nearest Neighbor 5 9 10 2

Naive Bayes 4 8 9 8
Decision Trees 7 8 7 8

Support Vector Machines 8 6 6 7
Deep Learning 10 3 3 7

Table 2.1: Score from 1 to 10 (the higher the better) for the presented
Machine Learning models.

only one type of neural network, since for different tasks exist different
architectures. For image understanding and computer vision tasks,
Convolutional Neural Network (CNN) are the most appropriate, while
Recurrent Neural Network are the ones used for Natural Language
Processing. Here we will briefly describe a standard neural network
and its basic concepts. Fig. 2.5 shows how a neural network it’s made.
Each node of the graph represents a neuron, that calculates the value

14

Background and Related Works

Figure 2.5: Basic neural network

of a function f(x) with given inputs. Each edge (x, y) connects the
output of node x to the input of a node y in a further layer in the
network. Moreover, each edge has an associated multiplier coefficient
wx,y called weight. The input of y is the wx,y · f(x), meaning node y
calculates a weighted sum of its inputs. The first layer is the input
layer that is made by a number of nodes equals to the input features.
The last layer is the output layer, where the prediction score will show
up. For a binary classification problem the network will have only one
output node, representing the True or False prediction; for a multiclass
classification problem, instead, the number of output nodes will be the
same as the number of different classes that the we aim to predict (e.g.
a neural network that predicts the sex of a person has only one output
node, while a classifier that predicts the breeds of dogs will have a N
outputs nodes, with N equal to the number of dog breeds present in
the training set). Between these input and output layers there are some
hidden layers of nodes that compute the values of the lowest level in
the network, propagate them forward, and repeat from the next layer
until the last one. The learning process consists in setting the weights

15

Background and Related Works

of the coefficient parameters wx,y. The more edges there are, the more
parameters the net has to learn and adjust to get an output similar
to yi when fed input xi. The disadvantages of deeper networks is that
they become harder to train the larger and deeper they get since it
increases the number of parameters to estimate. Moreover, networks
get more computationally expensive to make predictions as the depth
increases, since the computation takes time linear in the number of
edges in the network.
To take advantage of depth we need non-linear node activation functions
φ(υ), they operates on a weighted sum of the inputs x where

υi = β +
Ø
i

wixi

β is the bias of the node because it defines the function in the absence
of other inputs and has to be learned during training. During past
few years some interesting non-linear activation functions have been
used in building networks. The simplest and widely used non-linear
activation function is the so called ReLU Rectified Linear Unit, which
just takes the maximum between zero and the input value. Beyond
its simplicity, the advantages are that the ReLU function remains
differentiable, increasing monotonically and being unbounded on one
side (this is alleviates the problem of the vanishing gradient).

ReLU f(x) =
0 for x ≤ 0

x for x > 0

Softmax fi(þx) = exiqJ
j=1 exj

i = 1, ..., J

tanh f(x) = tanh(x) = (ex − e−x)
(ex + e−x)

Table 2.2: Examples of activation functions

The goal during the training stage is to minimize the training error,
or loss. The loss function states how costly each action taken is, and,

16

Background and Related Works

by designing this function, we guide the model evolving in the desired
direction during training. Backpropagation is a method used to train
neural networks by calculating a gradient that is needed in order to
update the weights of the neural network: the error (loss) is calculated
at the final nodes and distributed backwards through the network’s
layers.

Figure 2.6: Gradients computation for each of the the three nodes

2.2 Related Works
In this section it will be illustrated the works proposed in literature
and the state-of-art techniques for each of the main problems that this
project is intend to solve: counting the numbers of people, monitoring
social distancing and detecting people wearing masks.

2.2.1 People counting
The problem of People Counting, or Crowd Counting, is a task to count
people in image. It is mainly used in real-life for automated public
monitoring such as surveillance and traffic control. Different from object
detection, Crowd Counting puts its goal at recognizing arbitrarily sized
targets in various situations including cluttering and sparse scenes at the

17

Background and Related Works

same time. Like any other computer vision problem, people counting
has to face many non-trivial challenges such as non-uniform distribution
of people, non-uniform illumination, occlusions, different perspective
making the problem not easy solve and pushing the researchers, in the
last few years, to propose several works addressing this kind of problem.
Crowd analysis can be applied in many field of critical importance, such
as safety monitoring in places such as museums, stadiums, airports
to perform related tasks like congestion analysis or anomaly detection.
Another important application can be found during the design of public
spaces, especially the ones predicted to be areas of public gathering
with high risk of congestion. Last but not least, this kind of solutions
can be really helpful in forensic search and disaster management in
order to search for missing people or victims in events such as bombing,
shooting or large accidents.
In literature exist several approaches facing people counting tasks that
can be divided into three main branches: Detection-based approaches,
Regression-based approaches and Density estimation-based approaches.

Detection-based approaches In Detection-based approaches the al-
gorithms relies on a backbone network that is a detector which purpose
is to detect people in the scene [4] and its output represents the number
of people [5]. The classifier can be a monolithic one [6], i.e. extract
features from a full body, or a parts-based classifier [7] where the aim
is finding specific body parts such as head and shoulder to predict the
people count in a given area. These methods works well in low density
crowd scenes, since high density areas disturbs the prediction and the
model cannot discriminate anymore from the different body parts of
each person in the image.

Here we present a wide adopted model in our project and the state-of-
the-art one-stage object detector: YOLO (You Only Look Once),
originally from Redmon et al.[8]. The basic idea behind YOLO is to
divide the image into an SxS grid. Each grid cell predicts only one
object and a fixed number of boundary boxes. For each grid cell:

1. it predicts B boundary boxes with a confidence score

18

Background and Related Works

2. it detects one object only

3. it predicts C conditional class probabilities, one per class. The
highest score represents the predict class.

Figure 2.7: How YOLO detects and estimates the class object

Today this algorithm evolved to its 4th version with YOLOv4 [9]
that achieves state-of-the-art results at a real time speed on the MS
COCO dataset [10]. As we can see from Fig. 2.8, YOLOv4 improves

Figure 2.8: YOLOv4 performances against other popular object
detectors

YOLOv3 AP and FPS by 10% and 12%, respectively. Even if Efficient-
Det D4-D3 [11] achieves better AP than YOLOv4 model, it runs at a

19

Background and Related Works

lower speed, less than 30 FPS, crucial point if we want to adopt this
kind of analysis in a real-time system.
YOLOv4 isn’t a model made up from scratch, but it includes existing
implementations with new features. A modern detector is generally
made up of two parts, a backbone which is pre-trained on ImageNet
[12] and a head which is used to predict the output labels and estimate
the bounding boxes. The head part usually can be of two kinds, i.e. a
two-stage object detector, such as R-CNN [13], or a one-stage object
detector such as YOLO [8], SSD [14] or RetinaNet [15]. In the last
few years modern object detectors often insert between backbone and
head some layers generally used to collect feature maps from different
stages, and we can call them the neck of the network. To go more in
the specific YOLOv4 consists of:

• Backbone: CSPDarknet53 [16]

• Neck: SPP [17], PAN [18]

• Head: YOLOv3 [19]

Figure 2.9: Architecture of an object detector [9]

As it can be seen from Fig. 2.10, YOLOv4 shows outstanding perfor-
mances both for accuracy and speed, making it the perfect candidate
for tasks dealing with real-time people counting in restricted areas.

Regression-based approaches The afore mentioned detection-based
approaches suffered problems of occlusions and extremely dense crowds.

20

Background and Related Works

Figure 2.10: Comparison of the speed and accuracy of different
object detectors on the MS COCO dataset (test-dev 2017). (Real-time
detectors with FPS 30 or higher are highlighted) [9]

To overcome these issues, a new strategy was born that consisted in
counting by regression with the aim of learning a mapping between
features extracted from the input image [20]. This method has the big
advantage of being independent from a detector, that adds complexity
to the model. Instead, this model is made up of two major components:
low-level feature extraction and regression modelling.
Foreground and local features are extracted from the input image in a
video using standard background subtraction techniques (e.g. histogram
oriented gradients (HOG)). Once these features are extracted, several
regression techniques such as linear regression [21, 22, 23] or ridge
regression [24] are used to learn the mapping low-level feature to the
people count.
In particular, in the work proposed by Massa et al. [23], the goal
is estimating, from video surveillance camera frames, the real-time
people count in small indoor environments, and particularly in retail

21

Background and Related Works

stores, where there is a mix of moving and stationary people and sev-
eral occlusions from furniture and walls. They employ a supervised
learning approach based on a Long-term Recurrent Convolutional Net-
work (LRCN) regression model combined with a foreground detection
method, by taking advantage of the spatio-temporal coherence between
the scenes. They compared their approach with a YOLOv3 model
pre-trained with COCO dataset, with the standard threshold of 25% for
detection confidence. The number of people for each image is the num-
ber of objects classified as a person from YOLO. We can see from table
2.3 that LRCN-RetailNet accomplishes its task with a very low Mean
Absolute Error (MAE)1. They visually examinated some predicted
images and found cases where YOLO missed many visible people and
cases where it predicted non-existing ones, Fig. 2.11. This can be due
to the fact that, first, YOLO is not trained to cope with non-standard
poses and occluded people, which is quite common in a shop scenario.
Second, YOLO utilizes only one image to make its prediction, and
doesn’t have the spatio-temporal knowledge that LRCN-RetailNet got.
On the other hand, YOLOv3 makes a huge gap in terms of prediction

network MAE prediction time
LRCN-RetailNet 0.384 159.73ms

YOLOv3 6.241 52.1ms

Table 2.3: LRCN-RetailNet vs YOLOv3

time. If the final model has to be used in real-time applications, this
feature that cannot be excluded and it has to be considered to sacrifice
accuracy for a faster response time.

Density estimation-based approaches If the regression methods
resulted good in addressing the problems of occlusion and clutter, most
of them ignored the spatial information. A first work proposed by

1MAE = 1
n

q
i |yi − ∧

yi| with yi representing the groundtruth and ∧
yi the predicted

output

22

Background and Related Works

Figure 2.11: Inaccurate predictions from YOLO [23]

Lempitsky et al. [25], suggested to learn a linear mapping between local
patch features and corresponding object density maps, by including
spatial information in the learning process. In this way, it isn’t necessary
anymore detect and localize individual object or parts of them, since it
requires only to estimate image density whose integral over any region
in the density map gives the people counting. The entire problem is
posed as a convex optimization task. Wang and Zou [26], identified that
despite this method being effective, it was slow from computational
complexity point of view. They proposed a fast method for density
estimation based on subspace learning. Xu and Qiu in 2016 [27], noticed
that the past crowd density estimation methods used a smaller set of
features that limited their accuracy. They proposed to enhance the
performances by using a richer set of features, retrieving them through
random forest as the regression model, being faster and more scalable
respect to previous methods (based on ridge regression or Gaussian
process regression).

2.2.2 Monitoring social distancing
Monitoring social distancing is a problem as timely as ever, there
aren’t many the publications, in the Computer Vision field, regarding
the issue of monitoring the distance between people on video frames.
The majority researches for this type of issue fall into past works of
object detection (in particular pedestrian detection) and human pose

23

Background and Related Works

estimation.

Direct approaches Specific social distancing monitoring works are
the one proposed that make use of different sensor, such as LiDAR
[28] or stereo camera systems [29]. Another solution making use of
sensors, that doesn’t utilize Machine Learning algorithms, is the one
proposed by Bian et al. [30]. They built a wearable, oscillating magnetic
field-based proximity sensing system to monitor social distancing. The
wearable system owns a detection range of beyond 2 meters and it
could efficiently track the individual’s social distancing in real-time.
Another approach is the one from Sathyamoorthy et al. [31], whom
exploit a mobile robot with commodity sensors, an RGB camera and a
2-D lidar to perform collision-free navigation and estimate the distance
between all detected people. For tracking and detecting pedestrians
they use a YOLOv3 implementation. They presented a novel real-time
method to estimate distances between people by using a homography
transformation, transforming the camera’s angled view of the ground
plane by applying a homography transformation to four points manually
selected on the ground plane in the angled view. Other works [32, 33]
used the homography transformation to obtain an estimate of the 3D
coordinates of the people in the space. In particular Yang et al. [33]
confronted the performances of the two main object detectors, YOLOv4
and Faster R-CNN [34], to detect the individuals inside the scene.
Once predicted the bounding boxes, they adopted a well-known inverse
homography transformation called Bird’s-Eye-View (BEV):

pbev = M−1pim

where M ∈ R3x3 is a transformation matrix describing the rotation
and traslation from world coordinates to image coordinates, pim =
[pÍ
x, pÍ

y, 1] is the homogeneous representation of pÍ = [pÍ
x, pÍ

y] in image
coordinates, and pbev = [pbevx , pbevy , 1] is the homogeneous representation
of the mapped pose vector. The world pose vector p is derived from
pbev with p = [pbevx , pbevy]. Computing the distance between each pair
of people is trivial, since the distance di,j for person i and person j is

24

Background and Related Works

calculated by taking the Euclidean distance between their pose vectors:

di,j = ||pi − pj||

The disadvantage of adopting this particular transformation is that
it requires the user calibration to set the area of interest or ROI
(Region Of Interest). The polygon shaped ROI is then warped into a
rectangle which becomes the so called Bird’s-Eye-View. The BEV has
the property of points being equidistant independently of their position.
Homography transformation appears to be a wide used technique to

Figure 2.12: On the left, video frames output with ROI. On the right,
how the BEV looks like. [33]

estimate the individual coordinates, Khandelwal et al. [35] uses the
same approach on CCTV cameras monitoring the workplaces to send
real-time voice alerts to the workers not respecting the distancing.
Using an object detection algorithm as backbone revealed to be a great
choice addressing this kind of problem, infact Punn et al. [36] inserted
in their pipeline a fine-tuned YOLOv3 detector, that showed up to be
the best trade off in terms of speed and accuracy compared against
other classifier, alongside with a tracking algorithm. To summarize
their workflow, it consisted in:

1. Fine-tune YOLOv3 on the Google Open Image Dataset (OID),
consisting in images containing or not people.

2. Perform the inference on the frame to retrieve the bounding boxes

25

Background and Related Works

of each detected person and a unique person ID from the tracking
algorithm.

3. Calculate the 3D coordinates (x, y, d) for each individual, where
(x, y) are the centroid coordinates of the bounding box and d defines
the depth of the person from the camera computed as follows:

d = (2 · 3.14 · 180)/(w + h · 360) · 1000 + 3

where w represents the width of the box and h its height.

4. Compute the Euclidean distance for each pair of 3D coordinates.

This approach has on its pros the fact of being calibration independent,
since no BEV transformation is computed. On the other hand the
distance d computed represent a general estimate of the real depth,
surely further away from the groundtruth than the ones obtained using
an homography transformation.

Human pose estimation Human pose estimation (HPE) aims to
obtain posture of the human body from input images or video se-
quences. In recent years, with the rise of new GPU parallelization
techniques, HPE also achieved remarkable improvements by employing
deep learning technology. HPE methods can have different structures
and characteristics:

• Human body model-based (generative) vs human body
model-free (discriminative): the difference is whether a method
uses human body models or not. Discriminative methods learn a
mapping between input sources and human pose space, without
the needs of a human body model, contrary to the generative
methods. Human body model-free methods are usually faster but
less accurate then generative ones.

• Top-down vs bottom-up: top-down approach means that the
human pose estimator requires as input the person location in
bounding boxes. This usually translates in having a first stage
detector separated from the model estimating the pose. In contrast,

26

Background and Related Works

bottom-up methods first predict all body parts of every individual
and then group them either by human body model fitting.

• Regression-based vs detection-based: the regression-based
approach tries to directly map the input image to the coordinates
of body joints. The detection-based methods aims to detect person
based on two main representations: joint location heatmaps or
image patches. Direct mapping from images to joint coordinates
isn’t an easy task due to the fact that it’s a highly nonlinear
problem.

• One-stage vs multi-stage: one-stage methods uses a monolithic
network or end-to-end network with the goal of directly map the
input image to human poses, while multi-stage methods takes
intermediate steps to process and predict human pose.

• 3D vs 2D: also the goal can be different. The majority of the
models can predict only the 2D coordinates of the human joints,
while others can obtain also the depth in the space of each body
part, that is also the most challenging task when using monocular
images.

Figure 2.13: Example of 2D pose estimation

27

Background and Related Works

2D multi-person pose estimation In multi-person pose estima-
tion tasks the goal isn’t exclusively estimating the human pose, but it
is required to detect and localize the individuals inside the scene. For
this kind of problem the models are divided mainly according if they
use a top-down or bottom-up approach.

The top-down models are made up of a robust person detector and a
single person pose estimator. The most adopted human detector in
literature for this kind of problem are Faster R-CNN, YOLO, Detectron
[37], Mask R-CNN [38]. Fang et al. [39] used spatial transformer net-
work [40], Hourglass network and Non Maximum Suppression (NMS)
to retrieve pose estimation in presence of innacurate bounding boxes.
Xiao et al. [41] implemented different deconvolutional layers before the
last convolutional layer of ResNet [42] to generate heatmaps. Chen
et al. [43] first introduced a cascade pyramid network (CPN) by using
multi scale feature maps from different layers. A recent work from Sun
et al. [44] had great success in HPE field. They proposed a new network
as backbone, called HRNet, that learns high-resolution representations
through the whole training process by connecting high-to-low resolution
convolutions in parallel. Top-down models are the easier to implement
and customize since it requires only to connect a human detector to
a human pose single estimator. The majority of top-down approaches
achieved state-of-the-art performance in almost all benchmark datasets.

For what concerns the bottom-up HPE methods the main compo-
nents usually are a body joint detection and joint candidate grouping.
DeepCut from Pishchulin et al. [45] used a Fast R-CNN network as
body part detector to detect all the joint candidates and then assembled
these parts with integer linear programming (ILP) to the complete
skeleton. A more advanced implementation of DeepCut is DeeperCut
[46], that used a stronger and more robust part detector based on
ResNet. A wide used human pose detector in the computer vision field
is OpenPose [47], that is the first both 2D and 3D open-source real-time
system for multi-person detection. The proposed implementation uses
a non-parametric representation called Part Affinity Fields to learn to

28

Background and Related Works

associate joints with person in the image. Currently, the bottom-up
methods reach important speeds and some can run in real-time (like
OpenPose), while top-down speed performance is limited by the number
of detected people.

3D multi-person pose estimation 3D human pose estimation
means estimate the coordinates in the space for each person body
part from images or video. Despite commercial products have been
used for 3D pose estimation, such as Kinect with depth sensor, they
work in constrained areas and only with the equipment of extra hard-
ware or sensors. It is important to find a way to predict human pose
from monocular images, like the ones coming from CCTV cameras.
Deep neural network nowadays has the possibility to predict joint depths
from single images, even though this research field is pretty recent and
only few methods has been proposed. LCR-Net [48] (Localization-
Classification-Regression Network) divided the process in three stages:
the first one is the detection stage where Faster R-CNN is employed
to retrieve the bounding box locations. Second, each pose proposal
is assigned with the closest anchor-pose scored by a classifier. Third,
the pose are adjusted with a regressor. Mehta et al. [49] proposed a
novel single-shot method for multi-person 3D pose estimation. Their
approach uses novel occlusion-robust pose-maps (ORPM) in order to
have the whole body prediction even under occlusions by other people or
objects in the scene. Their work cames with MuCo-3DHP, the the first
open-source large scale training data set showing real images of complex
multi-person interactions and occlusions. Recently published, PoseNet
from Moon et al. [50] represents the state-of-the-art 3D multi-person
pose estimation on the MuCo-3DHP dataset. Their work consists in
a top-down approach in three stages: first, a detector estimates the
bounding boxes. Then, a deep neural network, called RootNet, gives
in output the 3D center coordinates for each person detected. Finally,
PoseNet estimates the root-relative 3D pose.

29

Background and Related Works

Figure 2.14: Example of 3D human pose estimation obtained with
PoseNet [50].

2.2.3 Detecting people wearing masks
The problem of detecting face masks, contrary for the social distancing
task, is a problem well studied in the past with different aims. Face
mask detection systems came alongside automatic face recognition
technologies. The first publication [51] (2005) dealing with this problem
had in its intention the goal of preventing bank robberies at ATMs, since
criminals that wanted to withdraw illegal money from ATM usually
hide their face with masks or helmets. They proposed a model for
mask detection based upon automatic face recognition methods (such
as Gabor filters to generate facial features and geometric analysis for
mask detection, due to the lack of valid machine learning algorithms).
In 2015 Nieto et al. [52] proposed a system to be used in operating
rooms to detect the presence of medical masks on the operators. The
whole model was composed by two detectors: one for the face itself,
and the other one for the medical mask. The system was reliable with
detections performed up to 5 meters from the camera. In 2019, Sabbir
et al. [53] used the Principal Component Analysis (PCA) on the masked
and unmasked images to recognize a person. They found out that, when
using PCA, the recognition rate is higher for unmasked face compared
to masked ones because of missing features.
With the COVID-19 outbreak, we assisted at a rise of researches in
the theme of mask detection on video surveillance cameras. Loey et
al. [54] proposed a model made up of a first component (ResNet50)

30

Background and Related Works

to perform the features extraction from the input image and a second
component to perform the classification composed by one of three
machine learning models such as decision tree, SVM and ensemble.
They tested their model on three different datasets: the Real-World
Masked Face Dataset (RMFD) that consists of 5000 masked faces and
90000 unmasked faces, the Simulated Masked Face Dataset (SMFD) that
consists of 785 unmasked faces and 785 simulated masked faces and the
Labeled Faces in the Wild (LFW) made up of 13000 simulated masked
faces of celebrities. The SVM classifier outperformed the other two

Figure 2.15: Examples images from SMFD dataset.

approaches by scoring a testing accuracy of 99.64%, 99.49% and 100%
on RMFD, SMFD and LFW respectively. Mingjie et al. [55] proposed a
one-stage detector, called RetinaFaceMask, which consists of a feature
pyramid network to fuse high-level semantic information with multiple
feature maps, and a novel context attention module to focus on detecting
face masks. Parts of the network are pretrained on a larger dataset,
WiderFace, consisting of 32203 images and 393703 annotated faces or
on Imagenet. The whole network is then trained on FaceMaskDataset
(with 7959 images) and tested on a combination of FaceMaskDataset +
WiderFace + MAskedFAces dataset (MAFA), for a total of nearly 70000
images. They also used ResNet and MobileNet as different backbones
for comparison, the last one is used to have faster predictions sacrificing

31

Background and Related Works

accuracy. MobileNet has been used as light backbone also in a work

Figure 2.16: RetinaFaceMask results

regarding the safety distancing in workplaces from Khandelwal et al.
[35]. They trained a MobileNetV2 architecture on a custom dataset
made of 4225 annotated images with 1900 labeled as ’mask’ and 2300
as ’no mask’ obtaining 97% score for both recall and precision. An
interesting work from Bosheng and Dongxiao [56] implemented a system
capable of classifying three types of classes: no mask wore, mask wore
correctly and mask wore incorrectly. The data was collected from
the open-source dataset called "Medical Masks Dataset", made up of
3835 images with 671 images of no mask, 134 images of wrong mask-
wearing, and 3030 images of people wearing masks. They proposed
a novel facemask identification and classification algorithm, with a
classification network called SRCNet, divided in four steps: image
pre-processing, face detection and crop, image super-resolution, and
facemask-wearing conditions identification. Finally, SRCNet obtained
98.7% accuracy and outperformed traditional classification methods by
over 1.5%.

32

Background and Related Works

Figure 2.17: SRCNet outputs, each class is represented. CFW =
correct facemask-wearing (green), IFW = incorrect facemask-wearing
(yellow), NFW = no facemask-wearing (red) [56].

33

Chapter 3

Proposed Methodology
Our approach isn’t made of a single network, but it is a top-down
approach that can be subdivided in four main blocks:

1. Detector: the whole system relies on the YOLOv4 [9] algorithm for
the human detection and localization. Thanks to its performances
in terms of speed and accuracy represents the best candidate for
our purposes.

2. Tracker: our system needs to store some statistics about each
person during the whole time it appears in the video sequence. To
do so we choose the state-of-the-art tracking algorithm, DeepSort
[57].

3. Human root estimator: monitoring social distancing is possible
thanks to RootNet [50] that takes in input the YOLOv4 bounding
boxes and gives in output the human root 3D coordinates. RootNet
is a neural network coming from PoseNet project [50] , whose we
cut out the last block since we are not interested in the space
coordinates of each human joint.

4. Face mask detector and classifier: we implements a novel
approach to detect human faces bounding boxes by using a 2D
human pose estimator, HRNet [44]. The image inside the box is
predicted by a binary classifier having as backbone ResNet.

34

Proposed Methodology

Figure 3.1: Four different stages of our approach

3.1 People counting

For our approach we choose YOLOv4 as human detection algorithm.
The model has been trained on the MS COCO dataset, which is a
benchmark dataset for object detection/image segmentation. The data
we will use contains 117000 images containing objects belonging to
80 classes. The number of people in the scene is simply obtained by
counting the number of bounding boxes detected in the image.

Network size FPS AP

320 100 40.8%
416 82 41.2%
512 69 43.0%
608 53 43.5%

Table 3.1: YOLOv4 performance varying the network size

35

Proposed Methodology

3.2 Monitoring social distancing
The intermediate step between RootNet and the human detector, is
the tracking algorithm. The basic idea is storing the last 3 positions
for each detected person to compute the mean, in order to mitigate
the error done by RootNet during a single shot human root estimation.
To do this, we need a robust and reliable tracker such as DeepSort.
DeepSort adopt a conventional single hypothesis tracking methodology
with the so called Kalman filter.

Tracking problem The tracking algorithm takes into account 8
variables of interest: (u, v, γ, h, ẋ, ẋ, γ̇, ḣ). In order, respectively, (u, v)
represents the bounding box center coordinates, γ is the aspect ratio, h
is the object height, and ẋ, ẋ, γ̇, ḣ represent their respective velocities.
The Kalman filter assumes that position and velocities are random and
Gaussian distributed. A linear Kalman filter with constant velocity is
adopted and the observations of the object state are represented by
the variables (u, v, γ, h). The algorithm looks at the number of frames
of each track k since the last successful measurement association ak,
that represents also the moment when this counter is set to 0. Tracks
older than a threshold age Amax will be marked as disappeared from
the image and are erased from the track list.
The Hungarian algorithm help the algorithm to associate the predicted
Kalman states and newly arrived tracks, by solving a so called assign-
ment problem. Finally, to make the tracking algorithm more robust to
switching and occlusions, it is applied a convolutional neural network
that has been trained to discriminate pedestrians on a large scale person
re-identification dataset.

RootNet The RootNet part estimates the camera-centered coordi-
nates of the human root R = (xR, yR, ZR), i.e. its center of gravity,
from a cropped human image. RootNet first estimates the 2D image
coordinates (xR, yR) and then predicts the depth value (i.e. the dis-
tance from the camera ZR) of the human root. Localizing the position
(xR, yR) it’s the easiest task for RootNet, but when it takes to estimate

36

Proposed Methodology

Figure 3.2: DeepSort tracks the people during the video assigning
them a unique ID

the depth value ZR the model is required to do some assumptions in
order to have a reliable prediction. In particular, we introduce a new
distance measure, k, which is defined as follows:

k =
öõõôαxαy

Areal

Aimg

, where αx, αy, Areal, Aimg are focal lengths divided by the per-pixel
distance factors (pixel) of x and y-axes, area of the human in real space
(mm2), and image space (pixel2), respectively. The actual distance d
(mm) between the camera and object can be computed in the following
way:

d = αx
lx,real
lx,img

= αy
ly,real
ly,img

, where lx,real, lx,img, ly,real, ly,img are the lengths of an object in real space
(mm) and in image space (pixel), on the x and y-axes, respectively.
For what concerns the network architecture of RootNet, it consists of
a backbone (ResNet) to retrieve the global feature of the input image
and some deconvolutional layers to produce a 2D heatmap of the root.

37

Proposed Methodology

The final component is the depth estimation part, which outputs a
single scalar value σ. The final absolute depth value ZR is obtained
by multiplying k with 1√

σ
. It is then straightforward calculating the

Figure 3.3: RootNet architecture

distance between each pair of person by computing the Euclidean
distance between each pair of 3D root coordinates pi and qj:

di,j = ||pi − pj||

A big advantage of RootNet is that it estimates the 3D coordinates
without needing any user calibration, contrary to homography transfor-
mation approaches seen before.
At this point we propose a slightly different methodology that consists
in joining the tracking algorithm with RootNet, in the following way:

1. for each person pi detected by the tracking algorithm we calculate
through RootNet his 3D coordinates Ci(t) at time t.

2. for each person pi, we store the coordinates into a circular buffer
Bi of size N , representing the person position during the last N
frames.

3. at time T , when the buffer Bi is full, i.e. contains exactly N coordi-
nates, we compute the arithmetic mean of the Ci(T − N), ..., Ci(T)
coordinates. This value represents the estimated position at time
T .

This kind of methodology allows us to alleviate the error made by the
net when it predicts the estimated position using only a single frame.

38

Proposed Methodology

We obtained good results with circular buffers of length 3, i.e. taking
the mean of the last 3 frames. The risk of setting larger buffer size is
losing the actual person position by considering frames too distant in
time from the moment we need to predict his 3D coordinates.

3.3 Detecting people wearing masks
We propose a novel approach, similar to the one proposed here [58],
for what regards the face detection of each individual inside the scene:
the 2D human pose estimator HRNet, trained on COCO Keypoints
dataset estimate the posture for each person. We detect a valid face in

Figure 3.4: COCO Keypoints joints set

the following manner:

1. we calculate the euclidean distance from right hip to right shoulder
(points 11 - 5 in Fig. 3.4. Please note that there isn’t any particular
reason by choosing the right part).

2. the 80% of the previous calculated distance represents the length
of each side constructing the box that includes the face

39

Proposed Methodology

3. we set the center of the box in the same coordinates of the nose
(point 0 in Fig. 3.4)

4. we consider as valid faces only the ones in which HRNet predicts
both eyes (points 14 - 15) with a confidence higher than 80% and
the one which dimension is higher or equal than 20x20 pixels (in
this way we don’t try to predict faces that are too far from the
camera).

A visual demo of the afore mentioned process can be seen in Fig. 3.5.
In this way is also easy collect a dataset in order to train the classifier.

Figure 3.5: Face detection using HPE

In particular we saved all the valid faces by skipping 10 frames at a
time, in order to have a wider variety of expressions and positions.
Now we can train our network on the custom dataset; the classifier
chosen is the one that best performed on the CIFAR-10 [59] competi-
tion, BiT-L from Google [60]. CIFAR-10 and CIFAR-100 are dataset
containing small images with a very low resolution, just like the ones
coming from the CCTV camera frames. BiT-L stands for Big Transfer -
Large, that makes part of a wider project from Google called Big Trans-
fer (BiT): General Visual Representation Learning. They proposed a

40

Proposed Methodology

novel way to do transfer learning, starting from different architecture of
ResNet. The architecture that we utilize is ResNet-101x1 architecture,
originally trained to perform multi-label classification on ImageNet-21k
[12], a dataset with 14 million images. ResNet-101x1 consists in a good
tradeoff between speed and reliable predictions.
The hyperparameters are chosen following the BiT-HyperRule, a heuris-
tic rule from [60]. We used the 20% of the dataset as validation set
and we used data augmentation pretty hard, using random jittering,
rotation, translation and crop, in order to help the model generalize
better. Once the classifier does its prediction, we update each person

Figure 3.6: Training and validation loss during epochs

information in the following way:

1. for each person-ID we create a circular buffer of dimension N

41

Proposed Methodology

Figure 3.7: Training and validation accuracy during epochs

2. if the prediction has a score higher than 80% (independently by its
class), we insert the predicted label in the buffer

3. only when the circular buffer has more than k votes, the person
is estimated with the most frequent label in the buffer (majority
voting mechanism)

In this way the system is robust against mispredictions, also because
it makes use of the temporal information about each person. It isn’t
common that an individual switches from mask to no mask in a few
frames period. In this way, the correct label is preserved even in
presence of strong confidence mispredictions. On the other way, if a
person appears to take off its mask and then changing its real label,
the system reacts rapidly as the buffer fills with correct estimations. In

42

Proposed Methodology

Fig. 3.8 we can see the final output of our approach.

Figure 3.8: Face mask detection with N = 31 and k = 3.

3.4 Tools
The whole project has been tested on Windows 10 and written in
Python [61], the most used programming language for Data Science
and Machine Learning tasks. Alongside with it, Tensorflow [62] and
PyTorch [63] are the frameworks used to build the deep learning models
and making them run on GPU. For the image processing, OpenCV [64]
has been intensively adopted.
Making the ground-truth annotations in order to validate the object
detectors has been possible thanks to OpenLabeling [65].

43

Chapter 4

Experimental Results
In this chapter will be presented the numerical results regarding the
performance of each classifier. The benchmark for the YOLO classifier
and the RootNet part are done using a popular open-source dataset
called Oxford Town Centre dataset [66], consisting in a 5 minutes video
of a crowded street, with a number of people varying from 10 to 32.
The whole system has been tested on a 4GB NVIDIA GeForce GTX
1650 Max-Q, a mobile graphics card thought for laptops and power
saving environments. Despite being a GPU not expressly projected for
ML computing tasks, we obtained pretty good results. Unfortunately,

Figure 4.1: Oxford Town Centre frame

this dataset isn’t suited for validating our mask classifier, since there
aren’t any people wearing masks. To do so we used a PUC camera
surveillance footage, where both classes are present.

44

Experimental Results

4.1 People counting
The counting people problem is addressed by the YOLO classifier, that
can receive as input images of different size. YOLO accepts only a fixed
size range of dimension, such as:

d = 320 + 96 · k where k in {0, 1, 2, ...}

Varying the dimension of the images (i.e. varying the dimension of the
net) consists in a variation of the performance. The trade off is, as
usual, between having a greater accuracy versus having faster speed
(measured in FPS). Fig. 4.2 shows the accuracy, during the whole five

(a) 320 x 320 (b) 416 x 416

(c) 512 x 512 (d) 608 x 608

Figure 4.2: Ground-truth vs. predicted number of people

minutes of video, of the classifier taking in input images of different size.

45

Experimental Results

When the resolution is low Fig. 4.2 (a), the predicted output (yellow
line) shows a consisting gap respect to the ground-truth (blue line).
This gap becomes close to 0 with higher values of resolution Fig. 4.2
(d).
We then take a look of the medium FPS for each detector during the
whole process, Fig. 4.3. The faster model, as easily predictable, is the
one with the lowest resolution, achieving a mean of 15.7 FPS. This
could be easily explained by the fact that a lower number of weights
in a neural network leads to a lower number of computations that the
system is asked to process. Our slowest model runs on nearly 6 FPS.
The dimension we choose for our following experiment is the one with
size (416, 416). It is important to show the other side of the medal by

Figure 4.3: Medium FPS for several YOLO detectors

computing the Mean Absolute Error (MAE) to get a numerical value
showing the error made by each detector. It is clear from Fig. 4.4 that
using a better resolution leads to better detections; the best performing
model (the one with net size (608, 608)) has a Mean Absolute Error
equal to 1.74, while the worst one scores a MAE of 4.89. It could be

46

Experimental Results

Figure 4.4: MAE for different YOLO detectors

worth analysing the error made by the model for each bucket of range
of people inside the frame. In other words, we want to see how good
is the detector when we have a low, medium or high density of people
inside the image. To do so we divided the data distribution into three
buckets:

• less than or equal than 15, corresponding to low density.

• a value between 16 and 20, corresponding to normal density.

• higher than 20, corresponding to high density, i.e. a crowded
area.

The result is showed up in Fig. 4.5. It is interesting noticing that the
detector fails to give an accurate estimate in high density crowded areas.
This can be explained by the fact that, when the number of individuals
increase, there is an higher chance that people can overlap on each
other, creating occlusions, making the prediction unreliable.

47

Experimental Results

Figure 4.5: MAE for low, normal and high density regions

4.2 Monitoring social distancing
In order to validate the RootNet performance we used the Oxford Town
Centre video as test set. The configuration of the model consisted
in using YOLOv4 as person detector with input size of (416, 416), a
distance threshold of 2 meters (i.e. an individual is classified at risk
when is closer to another than the indicated distance) and a buffer
size of 3. We compared the architecture with and without the tracking
algorithm running.
First of all, we need to define some performance measures for binary
classification problems. Our specific case, infact, consists of two classes:
people that are close to each other, i.e. at risk, and people distant from
each other. Fig. 4.6 contains a popular layout that allows visualization
of the performance of a classifier, called confusion matrix :

• True Positive (TP): are the number of cases when the predicted
positive class matches with the actual class (positive)

• False Positive (FP): are the number of cases when the predicted

48

Experimental Results

class is positive but the actual class is negative

• False Negative (FN): are the number of cases when the the
predicted class is negative but the actual class is positive

• True Negative (TN): are the number of cases when the predicted
negative class matches with the actual class (negative)

Figure 4.6: Confusion matrix

In our problem the positive class are the people distant from each
other, while the negative class are the people close to each other.
Now we can define some useful performance measures:

• Recall or Sensitivity or True Positive Rate: is the proportion
of positives that are correctly identified

TPR = TP

TP + FN

• Precision: is the fraction of positives among all items identified
as positives

PRE = TP

TP + FP

49

Experimental Results

• Specificity or Selectivity or True Negative Rate: is the
proportion of negatives that are correctly identified

TNR = TN

TN + FP

• Accuracy: is the proportion of correct predictions among the total
number of instances

ACC = TP + TN

TP + TN + FP + FN

• F1 score: is the harmonic mean of recall and precision

F1 = 2 · PRE · TPR

PRE + TPR

It is worth taking into account all of this measures since each of them
contains some weak sides. For example, accuracy can lead to misleading
results when the classes are unbalanced while F1-score ignores the True
Negatives.
Now we can take a look at the results of our model. In particular, Fig.
4.7 shows the confusion matrix for our classifier without the tracking
running (i.e. the prediction has been made by considering the single
frame).

As we can see from table 4.1, the model has a pretty good hit rate for
both classes but associated with a poor precision. The overall accuracy
of the model is 0.70.

Measure Close Distant
Precision 0.65 0.61
Recall 0.80 0.77
F1 score 0.71 0.68

Table 4.1: RootNet validation measures

We should now compare the performances of the architecture when
the tracking algorithm is on. We can clearly see in Fig. 4.8 that the

50

Experimental Results

Figure 4.7: RootNet confusion matrix

number of correct predictions for both classes increased. Investigating
deeply in the numbers we obtain the results in table 4.2. Both recall and
precision increased, scoring an overall accuracy of 0.75. Apparently,
the adoption of the tracking system improves the classifier performance
by gaining 5% in terms of accuracy.

Measure Close Distant
Precision 0.72 0.68
Recall 0.82 0.79
F1 score 0.76 0.73

Table 4.2: RootNet with tracking validation measures

51

Experimental Results

Figure 4.8: RootNet with tracking confusion matrix

4.3 Detecting people wearing masks

The Oxford Town Centre dataset isn’t a good test set for this kind of
task, since it does not contain any person wearing mask. In order to
have a valid test set we used a video coming from PUC surveillance
camera where a mixture of people with and without mask are present.
Since our approach is multi-stage, we decided to divide this paragraph
in a section where we test the object detection system (i.e. the Human
pose estimator detecting faces) and a section to evaluate only the mask
classifier.
We propose also a comparison between the YOLOv4 model fine-tuned
on a mask training set and our model.

52

Experimental Results

4.3.1 Object detection

In order to give a reliable comparison with another popular approach,
we trained a YOLOv4 model on 1370 images containing people wearing
or not wearing face masks. The dataset comes from an open-source
Kaggle dataset called Face mask dataset YOLO format [67], that stores
both images and annotations in YOLO format. In Fig. 4.9 we can see
samples of pictures contained in the dataset. As we can clearly notice,
the quality and resolution of these images are quite good, much different
from the one coming from CCTV sources. In order to validate this

Figure 4.9: Examples of images coming from Kaggle dataset

approach we choose another public face mask annotated dataset with
nearly 900 images, available on Kaggle, called "Face mask detection"
[68]. The type of images collected coming from this source reflects the
ones present in the YOLOv4 training set, that let us think that the
model will perform pretty well on this task.
To measure the performances of an object detection model we use the
so called Intersection over Union (IoU), that represents the intersection
over the union of the real bounding boxes and the predicted ones. An
IoU of 1 represents perfectly overlapped bounding boxes. We can set
different threshold values for the IoU to decide if the prediction is valid
or not. The most common value for accepting a valid detection is 0.5,
in this case we have a True Positive. If the IoU is lower than 0.5, we
have a False Positive and, finally, if an object is present in the frame
but the model doesn’t detect it we have a False Negative. The next
step is calculating Precision and Recall for all the objects detected, that

53

Experimental Results

Figure 4.10: Intersection over Union

are associated with a confidence score. The final measure we want to
obtain is called mean Average Precision (mAP), and it is calculated
using 11 equally spaced recall levels and taking, for each point, the
interpolated precision pinterp. The final formula to calculate the AP is
the following:

AP = 1
11

Ø
r∈{0,0.1,...,1}

pinterp(r)

Fig. shows the relationships between the values of precision and recall
for different thresholds for the YOLOv4 model. An high area under
the curve represents both high recall and high precision, where high
precision relates to a low false positive rate, and high recall relates to
a low false negative rate. This model reached an optimum AP value
for mask and no mask class of 90.29% and 81.55% respectively. The
overall mAP is of 85.92%, a pretty good results.

Our model, specifically trained on low resolution and small size
images, do not perform well on this kind of dataset. Infact, the mAP is
of 40.3%. It is also worth to pinpoint the fact that, despite the images
contained well shown faces, a lot of False Negatives, i.e. cases when
the face was present but the model failed to detect it, were triggered

54

Experimental Results

Figure 4.11: Precision vs Recall YOLOv4 on Face mask dataset

because the Human Pose estimator struggled to estimate the entire
skeleton when only half body or only the face was showed. Another
important factor to be considered is that we’re now evaluating the
model on raw images, without the possibility of using the tracking
utilities only possible on video frame, that, as we will see, gives to the
system a huge boost in terms of accuracy. Now is the turn to evaluate

Figure 4.12: Precision vs Recall our model on Face mask dataset

both approaches on the original data sources that the projects was
thought for: surveillance camera footage.
The YOLOv4 Average Precision collapse when it takes to detect small
objects on low resolution frames. The mask AP, that before reached
a value of 90%, now dropped to 15%, while the AP for the no mask
class scored an AP of 58%. The mean Average Precision has a value of
just 36.34%. The image on the right represents the log average miss

55

Experimental Results

rate, i.e. the fraction of mispredicted objects per class, that reaches its
highest value with the mask class with a rate of 0.88. Our model on the

Figure 4.13: mAP and lamr for YOLOv4 on surveillance footage

video with the tracking enabled outperforms the YOLOv4 architecture,
as we can clearly see in Fig. 4.14. Both classes scores an AP higher
than 70%, with 77% and 73% for mask and no mask respectively. The
mean Average Precision for the whole model is of 75.07%. The log
average miss rate drops to 0.39 and 0.23 respectively for mask and no
mask. Our approach, by considering the temporal related informations,
achieves to correctly classify also tiny challenging objects, that other
methods struggled to detect.

Figure 4.14: mAP and lamr for our model on surveillance footage

56

Experimental Results

4.3.2 Image classifier
Since our approach consists in a multi stage classifier, it is important
evaluate each single component independently. We decided to test our
fine-tuned mask classifier, the BiT-M R101x1, on a huge dataset to
see if it generalizes well. The chosen dataset is another open-source
Kaggle dataset, called "Face mask 12k images dataset" [69], with 10000
images in the training set (divided equally as mask and no mask) and
2000 for the validation set. We used the training set as our test set.
The important difference between this dataset and the previous ones is
that each image represents a face (so we don’t need any face detector),
different from the others that in each picture could have been present
several people.
By running our classifier on this test set we achieved a very good result,
as clearly showed in Fig. 4.15. Being the two classes balanced (5000

Figure 4.15: Mask classifier confusion matrix

images each), we can reliably taking into consideration the accuracy as
performance measure, that reaches a value of 98,58%. It is also worth
calculating the other test measures, separately for each class. We can

57

Experimental Results

be satisfied by the classifier performance since the final F1-score for
both classes reaches a value of nearly 99%. The following figure shows

Measure mask no mask
Precision 0.97 0.9972
Recall 0.997 0.975
F1 score 0.985 0.988

Table 4.3: BiT-M R101x1 validation measures

samples of wrong prediction made by the classifier for each of the two
classes. The mispredictions made on the images on the first row can be
explained by the fact that those are very uncommon types of mask that
the classifier was never trained on, while the error made on the second
row are due to occlusion, traslated images and person with beard, that
makes the task more challenging.

Figure 4.16: Wrong predictions

58

Chapter 5

Conclusions and Future
Works
The approach proposed in this work tries to solve three problems that
are going to become crucial in every day life. The solutions proposed in
the previous pages provide a reliable way to address each task, supplying
a system that can be used in an everyday scenario. Hospitals, airports,
schools, shops are the first candidates where our model can be deployed.
This type of technology can be mixed and powered with alarms and
monitor systems, providing, not only a visualization tool, but also a
concrete way to protect lives in this particular historical moment. In
this case, the need of having a real-time system can lead a modification
in the basic structure of our approach by choosing less computationally
expensive parts, such as a lightweight Human Pose Estimation network.
The alternative to speed-up the process is using a head-detector instead
of having a whole Human Pose Estimator.
Different type of tracking algorithm can be tried, such as KCF Tracker
or MedianFlow tracker. Also the human detector can be switched to
faster model, for example choosing to sacrifice accuracy by picking
the Tiny version of YOLO, or switching to a complete different object
detector such as Detectron2. An interesting choice could be the one
of having a dedicated network for each task, using only single stage
block to speed up the predictions. In this way the re-utilization and
dependency of parts from each other can be eliminated during the

59

Conclusions and Future Works

whole pipeline. This type of modifications would facilitate running the
model on a embededd platform, such as Jetson Nano.
On the other side, in order to get a boost in accuracy, it could be worth
collecting a greater number of training images, from heterogeneous
surveillance cameras installed at different angles and perspective to
the ground. If having available enough computing power, the mask
classifier can be switched to the most performing BiT network, the
BiT-L R152x4, a ResNet model 4 times wider than the one used in our
approach.
With accurate classifiers, we can perform two extra steps:

• resolve the problem of beards: people with beard will be always
classified as masked. This is due also to a low number of training
images containing people with beard

• the problem can become a 3-class classification problem, where the
extra class can be "mask wore incorrectly", that adds an extra level
of difficulty to the problem, especially on low resolution images

60

Bibliography
[1] Coronavirus disease (COVID-19) advice for the public. 2020. url:

https://www.who.int/emergencies/diseases/novel-corona
virus-2019/advice-for-public (cit. on p. 3).

[2] Nicholas R Jones, Zeshan U Qureshi, Robert J Temple, Jessica
P J Larwood, Trisha Greenhalgh, and Lydia Bourouiba. «Two
metres or one: what is the evidence for physical distancing in
covid-19?» In: BMJ 370 (2020). doi: 10.1136/bmj.m3223. eprint:
https://www.bmj.com/content/370/bmj.m3223.full.pdf.
url: https://www.bmj.com/content/370/bmj.m3223 (cit. on
pp. 3, 4).

[3] Joshua Payne. «Report on the Feasibility of Implementing PIC
Codes on a GPU». In: (May 2012) (cit. on p. 10).

[4] P. Dollar, C. Wojek, B. Schiele, and P. Perona. «Pedestrian De-
tection: An Evaluation of the State of the Art». In: IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 34.4 (2012),
pp. 743–761 (cit. on p. 18).

[5] M. Li, Z. Zhang, K. Huang, and T. Tan. «Estimating the number
of people in crowded scenes by MID based foreground segmenta-
tion and head-shoulder detection». In: 2008 19th International
Conference on Pattern Recognition. 2008, pp. 1–4 (cit. on p. 18).

[6] N. Dalal and B. Triggs. «Histograms of oriented gradients for
human detection». In: 2005 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’05). Vol. 1.
2005, 886–893 vol. 1 (cit. on p. 18).

61

https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public
https://doi.org/10.1136/bmj.m3223
https://www.bmj.com/content/370/bmj.m3223.full.pdf
https://www.bmj.com/content/370/bmj.m3223

BIBLIOGRAPHY

[7] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-
manan. «Object Detection with Discriminatively Trained Part-
Based Models». In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 32.9 (2010), pp. 1627–1645 (cit. on p. 18).

[8] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi.
You Only Look Once: Unified, Real-Time Object Detection. 2015.
arXiv: 1506.02640 [cs.CV] (cit. on pp. 18, 20).

[9] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao.
YOLOv4: Optimal Speed and Accuracy of Object Detection. 2020.
arXiv: 2004.10934 [cs.CV] (cit. on pp. 19–21, 34).

[10] Tsung-Yi Lin et al. Microsoft COCO: Common Objects in Context.
2014. arXiv: 1405.0312 [cs.CV] (cit. on p. 19).

[11] Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet:
Scalable and Efficient Object Detection. 2019. arXiv: 1911.09070
[cs.CV] (cit. on p. 19).

[12] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. «Ima-
geNet: A Large-Scale Hierarchical Image Database». In: CVPR09.
2009 (cit. on pp. 20, 41).

[13] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik.
Rich feature hierarchies for accurate object detection and semantic
segmentation. 2013. arXiv: 1311.2524 [cs.CV] (cit. on p. 20).

[14] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy,
Scott Reed, Cheng-Yang Fu, and Alexander C. Berg. «SSD: Single
Shot MultiBox Detector». In: Lecture Notes in Computer Science
(2016), pp. 21–37. issn: 1611-3349. doi: 10.1007/978-3-319-
46448-0_2. url: http://dx.doi.org/10.1007/978-3-319-
46448-0_2 (cit. on p. 20).

[15] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr
Dollár. Focal Loss for Dense Object Detection. 2017. arXiv: 1708.
02002 [cs.CV] (cit. on p. 20).

62

https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/2004.10934
https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/1911.09070
https://arxiv.org/abs/1911.09070
https://arxiv.org/abs/1311.2524
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1007/978-3-319-46448-0_2
http://dx.doi.org/10.1007/978-3-319-46448-0_2
http://dx.doi.org/10.1007/978-3-319-46448-0_2
https://arxiv.org/abs/1708.02002
https://arxiv.org/abs/1708.02002

BIBLIOGRAPHY

[16] Chien-Yao Wang, Hong-Yuan Mark Liao, I-Hau Yeh, Yueh-Hua
Wu, Ping-Yang Chen, and Jun-Wei Hsieh. CSPNet: A New Back-
bone that can Enhance Learning Capability of CNN. 2019. arXiv:
1911.11929 [cs.CV] (cit. on p. 20).

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. «Spa-
tial Pyramid Pooling in Deep Convolutional Networks for Vi-
sual Recognition». In: Lecture Notes in Computer Science (2014),
pp. 346–361. issn: 1611-3349. doi: 10.1007/978-3-319-10578-
9_23. url: http://dx.doi.org/10.1007/978-3-319-10578-
9_23 (cit. on p. 20).

[18] Shu Liu, Lu Qi, Haifang Qin, Jianping Shi, and Jiaya Jia. Path
Aggregation Network for Instance Segmentation. 2018. arXiv: 1803.
01534 [cs.CV] (cit. on p. 20).

[19] Joseph Redmon and Ali Farhadi. YOLOv3: An Incremental Im-
provement. 2018. arXiv: 1804.02767 [cs.CV] (cit. on p. 20).

[20] Antoni Chan and Nuno Vasconcelos. «Bayesian Poisson Regression
for Crowd Counting». In: Nov. 2009, pp. 545–551. doi: 10.1109/
ICCV.2009.5459191 (cit. on p. 21).

[21] Nikos Paragios. «A MRF-based Approach for Real-Time Subway
Monitoring». In: (Jan. 2001) (cit. on p. 21).

[22] Valério Nogueira, Hugo Oliveira, José Silva, Thales Vieira, and
Krerley Oliveira. «RetailNet: A Deep Learning Approach for Peo-
ple Counting and Hot Spots Detection in Retail Stores». In: July
2019. doi: 10.1109/SIBGRAPI.2019.00029 (cit. on p. 21).

[23] Lucas Massa, Adriano Barbosa, Krerley Oliveira, and Thales
Vieira. «LRCN-RetailNet: A recurrent neural network architecture
for accurate people counting». In: Apr. 2020 (cit. on pp. 21, 23).

[24] Ke Chen, Chen Change Loy, Shaogang Gong, and Tao Xiang.
«Feature Mining for Localised Crowd Counting». In: Jan. 2012.
doi: 10.5244/C.26.21 (cit. on p. 21).

[25] Victor Lempitsky and Andrew Zisserman. «Learning To Count
Objects in Images.» In: Jan. 2010, pp. 1324–1332 (cit. on p. 23).

63

https://arxiv.org/abs/1911.11929
https://doi.org/10.1007/978-3-319-10578-9_23
https://doi.org/10.1007/978-3-319-10578-9_23
http://dx.doi.org/10.1007/978-3-319-10578-9_23
http://dx.doi.org/10.1007/978-3-319-10578-9_23
https://arxiv.org/abs/1803.01534
https://arxiv.org/abs/1803.01534
https://arxiv.org/abs/1804.02767
https://doi.org/10.1109/ICCV.2009.5459191
https://doi.org/10.1109/ICCV.2009.5459191
https://doi.org/10.1109/SIBGRAPI.2019.00029
https://doi.org/10.5244/C.26.21

BIBLIOGRAPHY

[26] Y. Wang and Y. Zou. «Fast visual object counting via example-
based density estimation». In: 2016 IEEE International Confer-
ence on Image Processing (ICIP). 2016, pp. 3653–3657 (cit. on
p. 23).

[27] Bolei Xu and Guoping Qiu. «Crowd density estimation based
on rich features and random projection forest». In: Mar. 2016,
pp. 1–8. doi: 10.1109/WACV.2016.7477682 (cit. on p. 23).

[28] J. Hall. Social Distance Monitoring. 2020. url: https://leve
lfivesupplies.com/social-distance-monitoring/ (cit. on
p. 24).

[29] StereoLabs. Using 3D Cameras to Monitor Social Dis-tancing.
2020. url: https://www.stereolabs.com/blog/using- 3d-
cameras-to-monitor-social-distancing/ (cit. on p. 24).

[30] Sizhen Bian, Bo Zhou, Hymalai Bello, and Paul Lukowicz. «A
Wearable Magnetic Field Based Proximity Sensing System for
Monitoring COVID-19 Social Distancing». In: Proceedings of the
2020 International Symposium on Wearable Computers. ISWC
’20. Virtual Event, Mexico: Association for Computing Machinery,
2020, pp. 22–26. isbn: 9781450380775. doi: 10.1145/3410531.
3414313. url: https://doi.org/10.1145/3410531.3414313
(cit. on p. 24).

[31] Adarsh Jagan Sathyamoorthy, Utsav Patel, Yash Ajay Savle,
Moumita Paul, and Dinesh Manocha. COVID-Robot: Monitoring
Social Distancing Constraints in Crowded Scenarios. 2020. arXiv:
2008.06585 [cs.RO] (cit. on p. 24).

[32] LandingAI. Landing AI Creates an AI Tool to Help Customers
Monitor Social Distancing in the Workplace. 2020. url: https:
//landing.ai/landing-ai-creates-an-ai-tool-to-help-
customers-monitor-social-distancing-in-the-workplace/
(cit. on p. 24).

64

https://doi.org/10.1109/WACV.2016.7477682
https://levelfivesupplies.com/social-distance-monitoring/
https://levelfivesupplies.com/social-distance-monitoring/
https://www.stereolabs.com/blog/using-3d-cameras-to-monitor-social-distancing/
https://www.stereolabs.com/blog/using-3d-cameras-to-monitor-social-distancing/
https://doi.org/10.1145/3410531.3414313
https://doi.org/10.1145/3410531.3414313
https://doi.org/10.1145/3410531.3414313
https://arxiv.org/abs/2008.06585
https://landing.ai/landing-ai-creates-an-ai-tool-to-help-customers-monitor-social-distancing-in-the-workplace/
https://landing.ai/landing-ai-creates-an-ai-tool-to-help-customers-monitor-social-distancing-in-the-workplace/
https://landing.ai/landing-ai-creates-an-ai-tool-to-help-customers-monitor-social-distancing-in-the-workplace/

BIBLIOGRAPHY

[33] Dongfang Yang, Ekim Yurtsever, Vishnu Renganathan, Keith A.
Redmill, and Ümit Özgüner. A Vision-based Social Distancing
and Critical Density Detection System for COVID-19. 2020. arXiv:
2007.03578 [eess.IV] (cit. on pp. 24, 25).

[34] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-
CNN: Towards Real-Time Object Detection with Region Proposal
Networks. 2015. arXiv: 1506.01497 [cs.CV] (cit. on p. 24).

[35] Prateek Khandelwal, Anuj Khandelwal, Snigdha Agarwal, Deep
Thomas, Naveen Xavier, and Arun Raghuraman. Using Computer
Vision to enhance Safety of Workforce in Manufacturing in a Post
COVID World. 2020. arXiv: 2005.05287 [cs.CV] (cit. on pp. 25,
32).

[36] Narinder Singh Punn, Sanjay Kumar Sonbhadra, and Sonali Agar-
wal. Monitoring COVID-19 social distancing with person detection
and tracking via fine-tuned YOLO v3 and Deepsort techniques.
2020. arXiv: 2005.01385 [cs.CV] (cit. on p. 25).

[37] Ross Girshick, Ilija Radosavovic, Georgia Gkioxari, Piotr Dollár,
and Kaiming He. Detectron. https://github.com/facebookres
earch/detectron. 2018 (cit. on p. 28).

[38] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick.
Mask R-CNN. 2017. arXiv: 1703.06870 [cs.CV] (cit. on p. 28).

[39] Hao-Shu Fang, Shuqin Xie, Yu-Wing Tai, and Cewu Lu. RMPE:
Regional Multi-person Pose Estimation. 2016. arXiv: 1612.00137
[cs.CV] (cit. on p. 28).

[40] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and Koray
Kavukcuoglu. Spatial Transformer Networks. 2015. arXiv: 1506.
02025 [cs.CV] (cit. on p. 28).

[41] Bin Xiao, Haiping Wu, and Yichen Wei. «Simple Baselines for
Human Pose Estimation and Tracking». In: Apr. 2018. isbn: 978-
3-030-01230-4. doi: 10.1007/978-3-030-01231-1_29 (cit. on
p. 28).

65

https://arxiv.org/abs/2007.03578
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/2005.05287
https://arxiv.org/abs/2005.01385
https://github.com/facebookresearch/detectron
https://github.com/facebookresearch/detectron
https://arxiv.org/abs/1703.06870
https://arxiv.org/abs/1612.00137
https://arxiv.org/abs/1612.00137
https://arxiv.org/abs/1506.02025
https://arxiv.org/abs/1506.02025
https://doi.org/10.1007/978-3-030-01231-1_29

BIBLIOGRAPHY

[42] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
Residual Learning for Image Recognition. 2015. arXiv: 1512.03385
[cs.CV] (cit. on p. 28).

[43] Yilun Chen, Zhicheng Wang, Yuxiang Peng, Zhiqiang Zhang, Gang
Yu, and Jian Sun. Cascaded Pyramid Network for Multi-Person
Pose Estimation. 2017. arXiv: 1711.07319 [cs.CV] (cit. on p. 28).

[44] Ke Sun et al. High-Resolution Representations for Labeling Pixels
and Regions. 2019. arXiv: 1904.04514 [cs.CV] (cit. on pp. 28,
34).

[45] Leonid Pishchulin, Eldar Insafutdinov, Siyu Tang, Bjoern Andres,
Mykhaylo Andriluka, Peter Gehler, and Bernt Schiele. DeepCut:
Joint Subset Partition and Labeling for Multi Person Pose Esti-
mation. 2015. arXiv: 1511.06645 [cs.CV] (cit. on p. 28).

[46] Eldar Insafutdinov, Leonid Pishchulin, Bjoern Andres, Mykhaylo
Andriluka, and Bernt Schiele. DeeperCut: A Deeper, Stronger,
and Faster Multi-Person Pose Estimation Model. 2016. arXiv:
1605.03170 [cs.CV] (cit. on p. 28).

[47] Zhe Cao, Gines Hidalgo, Tomas Simon, Shih-En Wei, and Yaser
Sheikh. OpenPose: Realtime Multi-Person 2D Pose Estimation
using Part Affinity Fields. 2018. arXiv: 1812.08008 [cs.CV] (cit.
on p. 28).

[48] G. Rogez, P. Weinzaepfel, and C. Schmid. «LCR-Net: Localization-
Classification-Regression for Human Pose». In: 2017 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR).
2017, pp. 1216–1224 (cit. on p. 29).

[49] Dushyant Mehta, Oleksandr Sotnychenko, Franziska Mueller, Weipeng
Xu, Srinath Sridhar, Gerard Pons-Moll, and Christian Theobalt.
«Single-Shot Multi-Person 3D Pose Estimation From Monocular
RGB». In: 3D Vision (3DV), 2018 Sixth International Conference
on. IEEE. Sept. 2018. url: http://gvv.mpi- inf.mpg.de/
projects/SingleShotMultiPerson (cit. on p. 29).

66

https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1711.07319
https://arxiv.org/abs/1904.04514
https://arxiv.org/abs/1511.06645
https://arxiv.org/abs/1605.03170
https://arxiv.org/abs/1812.08008
http://gvv.mpi-inf.mpg.de/projects/SingleShotMultiPerson
http://gvv.mpi-inf.mpg.de/projects/SingleShotMultiPerson

BIBLIOGRAPHY

[50] Gyeongsik Moon, Ju Yong Chang, and Kyoung Mu Lee. Camera
Distance-aware Top-down Approach for 3D Multi-person Pose
Estimation from a Single RGB Image. 2019. arXiv: 1907.11346
[cs.CV] (cit. on pp. 29, 30, 34).

[51] Che-Yen Wen, Shih-Hsuan Chiu, Yi-Ren Tseng, and Chuan-Pin
Lu. «The Mask Detection Technology for Occluded Face Analysis
in the Surveillance System». In: Journal of forensic sciences 50
(June 2005), pp. 593–601. doi: 10.1520/JFS2004409 (cit. on
p. 30).

[52] A. Nieto-Rodríguez, Manuel Mucientes, and Victor Brea. «System
for Medical Mask Detection in the Operating Room Through
Facial Attributes». In: June 2015, pp. 138–145. isbn: 978-3-319-
19389-2. doi: 10.1007/978-3-319-19390-8_16 (cit. on p. 30).

[53] M. S. Ejaz, M. R. Islam, M. Sifatullah, and A. Sarker. «Im-
plementation of Principal Component Analysis on Masked and
Non-masked Face Recognition». In: 2019 1st International Confer-
ence on Advances in Science, Engineering and Robotics Technology
(ICASERT). 2019, pp. 1–5 (cit. on p. 30).

[54] Mohamed Loey, Gunasekaran Manogaran, Mohamed Taha, and
Nour Eldeen Khalifa. «A Hybrid Deep Transfer Learning Model
with Machine Learning Methods for Face Mask Detection in the
Era of the COVID-19 Pandemic». In: Measurement 167 (July
2020), p. 108288. doi: 10.1016/j.measurement.2020.108288
(cit. on p. 30).

[55] Mingjie Jiang, Xinqi Fan, and Hong Yan. RetinaMask: A Face
Mask detector. 2020. arXiv: 2005.03950 [cs.CV] (cit. on p. 31).

[56] Dongxiao Li Bosheng Qin. Identifying Facemask-wearing Condi-
tion Using Image Super-Resolution with Classification Network to
Prevent COVID-19. 2020 (cit. on pp. 32, 33).

[57] Nicolai Wojke, Alex Bewley, and Dietrich Paulus. Simple Online
and Realtime Tracking with a Deep Association Metric. 2017. arXiv:
1703.07402 [cs.CV] (cit. on p. 34).

67

https://arxiv.org/abs/1907.11346
https://arxiv.org/abs/1907.11346
https://doi.org/10.1520/JFS2004409
https://doi.org/10.1007/978-3-319-19390-8_16
https://doi.org/10.1016/j.measurement.2020.108288
https://arxiv.org/abs/2005.03950
https://arxiv.org/abs/1703.07402

BIBLIOGRAPHY

[58] Face mask detection in street camera video streams using AI behind
the curtain. 2020. url: https://tryolabs.com/blog/2020/
07 / 09 / face - mask - detection - in - street - camera - video -
streams-using-ai-behind-the-curtain/ (cit. on p. 39).

[59] Alex Krizhevsky. Learning multiple layers of features from tiny
images. Tech. rep. 2009 (cit. on p. 40).

[60] Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver,
Jessica Yung, Sylvain Gelly, and Neil Houlsby. Big Transfer (BiT):
General Visual Representation Learning. 2019. arXiv: 1912.11370
[cs.CV] (cit. on pp. 40, 41).

[61] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual.
Scotts Valley, CA: CreateSpace, 2009. isbn: 1441412697 (cit. on
p. 43).

[62] Martın Abadi et al. «Tensorflow: A system for large-scale machine
learning». In: 12th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 16). 2016, pp. 265–283 (cit.
on p. 43).

[63] Adam Paszke et al. «PyTorch: An Imperative Style, High-Performance
Deep Learning Library». In: Advances in Neural Information
Processing Systems 32. Ed. by H. Wallach, H. Larochelle, A.
Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett. Curran
Associates, Inc., 2019, pp. 8024–8035. url: http : / / papers .
neurips.cc/paper/9015- pytorch- an- imperative- style-
high - performance - deep - learning - library . pdf (cit. on
p. 43).

[64] G. Bradski. «The OpenCV Library». In: Dr. Dobb’s Journal of
Software Tools (2000) (cit. on p. 43).

[65] J. Cartucho, R. Ventura, and M. Veloso. «Robust Object Recog-
nition Through Symbiotic Deep Learning In Mobile Robots». In:
2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). 2018, pp. 2336–2341 (cit. on p. 43).

68

https://tryolabs.com/blog/2020/07/09/face-mask-detection-in-street-camera-video-streams-using-ai-behind-the-curtain/
https://tryolabs.com/blog/2020/07/09/face-mask-detection-in-street-camera-video-streams-using-ai-behind-the-curtain/
https://tryolabs.com/blog/2020/07/09/face-mask-detection-in-street-camera-video-streams-using-ai-behind-the-curtain/
https://arxiv.org/abs/1912.11370
https://arxiv.org/abs/1912.11370
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

BIBLIOGRAPHY

[66] Jules. Harvey Adam. LaPlace. MegaPixels.cc: Origins, Ethics,
and Privacy Implications of Publicly Available Face Recognition
Image Datasets. 2019. url: https://megapixels.cc/ (visited
on 04/18/2019) (cit. on p. 44).

[67] Face mask dataset yolo format. 2020. url: https://www.kaggle.
com/aditya276/face- mask- dataset- yolo- format (cit. on
p. 53).

[68] Face mask detection. 2020. url: https://www.kaggle.com/
andrewmvd/face-mask-detection (cit. on p. 53).

[69] Face mask 12k images dataset. 2020. url: https://www.kaggle.
com/ashishjangra27/face-mask-12k-images-dataset (cit. on
p. 57).

69

https://megapixels.cc/
https://www.kaggle.com/aditya276/face-mask-dataset-yolo-format
https://www.kaggle.com/aditya276/face-mask-dataset-yolo-format
https://www.kaggle.com/andrewmvd/face-mask-detection
https://www.kaggle.com/andrewmvd/face-mask-detection
https://www.kaggle.com/ashishjangra27/face-mask-12k-images-dataset
https://www.kaggle.com/ashishjangra27/face-mask-12k-images-dataset

	List of Tables
	List of Figures
	Acronyms
	Introduction
	COVID-19
	Prevention measures
	Social distancing
	Face masks

	Input data and problem specification
	Project structure

	Background and Related Works
	Machine Learning
	Supervised learning
	Unsupervised learning
	Machine Learning approaches
	Deep Learning

	Related Works
	People counting
	Monitoring social distancing
	Detecting people wearing masks

	Proposed Methodology
	People counting
	Monitoring social distancing
	Detecting people wearing masks
	Tools

	Experimental Results
	People counting
	Monitoring social distancing
	Detecting people wearing masks
	Object detection
	Image classifier

	Conclusions and Future Works
	Bibliography

