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Abstract

Only recently have experimentalists been able to detect and measure the incidence of various types
of knots in eukaryotic DNA, and specifically in yeast minichromosomes. Both the abundance and
the complexity of these knots have a precise dependence on intrinsic properties of the DNA (such
as its length) as well as on extrinsic ones, such as the degree of supercoiling that can be introduced
by tighty-regulated molecular machines, or enzymes. Interestingly, it has also been shown that the
same supercoiling level affects to varying degrees the electrophoretic migration velocity of two chiral
enantiomers of the same knot species. The aim of this thesis is to use coarse-grained structural
models and simulations to advance our understanding of how knotting and supercoiling affect the
properties of yeast minichromosomes. In particular, we developed a minimalistic coarse-grained
model of circular DNA filament as an elastic rod, and set up Monte Carlo simulations to sample
the configurational space populated at canonical equilibrium. We considered both knotted and
unknotted filaments, with and without supercoiling, or nicked. For each combination of topological
(knotting) or geometrical (supercoiling, nicking) entanglement, we systematically profiled various
observables, such as the gyration radius, asphericity, anisotropy, twist and writhe and used them
to clarify the extent to which minimalistic physical models can account for the recent experimental
measurements, and illuminate their interpretation.
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Introduction

DNA is an extremely important biological macromolecule (bio-polymer) that represents the hered-
itary material and codes the genetic information of every living being. In eukaryotes, DNA is
contained inside the nucleus, where it reaches a high packing ratio thanks to an articulate hierar-
chical spatial arrangement, referred to as eukaryotic chromatin. In particular, the DNA double helix
is wrapped around histones to form DNA-protein complexes called nucleosomes. Such nucleosomal
fibers further condense in more packed structures, and the architectural complexity increases all
the way up to chromosome scale. Even though the genomic DNA is linear, some extrachromosomal
circular DNA (eccDNA) are found in all eukaryotes (e.g. in yeast cells).
Differently, the prokaryotic genetic material freely moves in the so-called nucleoid region of the
cytoplasm, its architecture is much less complex and it is generally naked (not associated with pro-
teins). Prokaryotic organisms, e.g. bacteria, contain also small circular extrachromosomal DNA
called plasmids.

The spatial arrangement and conformational complexity of closed DNA molecules can be better
understood by also paying attention to their topological and geometrical constraints. In particular,
closed DNA duplexes can assume knotted conformations of various topological complexity, from the
trivial knot (unknot) or the simple trefoil knot, up to more entangled configurations. Strand pas-
sages are the only way to vary the topology of a closed DNA molecule. At the same time, torsional
strains due to either over-twisting or under-twisting of the double helix can affect the molecular
compaction. DNA molecules which are not torsionally relaxed are said to be supercoiled. Both
knotting/unknotting activity and supercoiling level regulation in vivo are performed by specialized
enzymes called topoisomerases (type I and type II). If knots occurrence in bacterial plasmids has
been documented since few decades [23, 12], only recently experimentalists have been able to assess
the incidence of various types of knots in eukaryotic DNA (e.g. yeast minichromosomes) [28, 27].

In this work, we implemented a coarse-grained model of a closed DNA filament that takes into
account both bending and torsional rigidity, and we set up Monte Carlo simulations to sample
its configurational space at canonical equilibrium. We characterized both knotted and unknotted
DNA closed chains, with and without supercoiling, and we estimated the molecular compaction
and shape by analyzing some relevant geometrical observables (as gyration radius, asphericity, etc).
The aim of this project is to give a direct insight into how knotting and supercoiling affects the
geometrical conformation and spatial arrangement of closed DNA molecules, in the attempt to
advance our understanding of the recent experimental evidences resulting from gel electrophoresis
measurements, and illuminate their interpretation.
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In particular, the work is organized in the following chapters:

Chapter 1: This chapter is intended to briefly introduce the main concepts of Knot Theory.
Starting from the mathematical definition of knot and how to diagrammatically represent it, we
then provided a description of some of the most common quantities used to characterize knot species.
Then, we explained what it means to compose two knots and we listed the main knot families. To
conclude, we mentioned an important class of knot invariants known as knot polynomials.

Chapter 2: This chapter is devoted to the DNA description from a biological point of view. The
DNA chemical composition, structural features and elastic properties are presented, together with
a rather simplified characterization of the eukaryotic chromatin architecture. Then, we focused on
supercoiling and its effects on molecules’ spatial arrangement. We proceeded by describing some
enzymes called topoisomerases, whose activity can alter the supercoiling level and/or the molecules
topology. Finally, we summarized some of the biological roles of the DNA.

Chapter 3: Some of the concepts already introduced in the previous chapters are mathematically
formalized. We defined twist Tw and writhe Wr, and we described the White-Călugăreanu-Fuller
relation that relates them to the conserved topological descriptor called linking number Lk. Then
we explained how to take advantage of the aforementioned quantities to quantify the supercoiling
level and the topoisomerase action.

Chapter 4: Here, we reported some of the more recent experimental evidences regarding the
migration velocities of molecules with various supercoiling levels and topologies during gel elec-
trophoresis. In particular, we recalled how the knot complexity and the interplay between chirality
and supercoiling have been shown to affect the gel migration velocity.

Chapter 5: This chapter contains the information about the model and the methods that we used
to carried out our simulations and try to reproduce what has been obtained experimentally. We
also described the geometrical observables that we profiled to characterize compaction and shape
of both knotted and unknotted molecules, with and without supercoiling. We finally explained how
we tuned the parameters and how we validated our model.

Chapter 6: Here, we presented our results and we made a comparison with the experimental
findings described in chapter 4.
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Chapter 1

A brief introduction to Knot Theory

1.1 Definition of Knot

Everyday life leads us to consider as knots open strings that have been previously tied in a way
similar to shoelaces. However, this intuition of the knot concept is slightly different to the one
suggested by Knot Theory, which expects the two ends of the string to be glued together. So, as a
first elementary attempt to define a knot, one may resort to an operational approach: imagine to
take a piece of rope, tying a knot in it and finally joining the two free extremities (see Figure 1.1).
This requisite of dealing with a closed string paves the way for a more rigorous description and
classification based on a topological approach. Already at this point it is immediate to see that the
simplest knot (also called trivial knot or unknot) is nothing else than a ring.

Figure 1.1: Illustration of the knot operational definition. Image from [1].

By reproducing the series of steps described in the Figure 1.1 one ends up with a knotted
configuration which exhibits a well defined topology. Such a configuration cannot be disentangled
(recast into the unknot) unless one cuts the rope, allows for a passage of a rope portion through
the broken part, and finally reseals it. Any other continuous deformation (which does not involve
any breaking) of the knotted rope will leave its topology unaltered. This statement can be made
mathematically more precise by introducing the concept of homeomorphism.
An homeomorphism is a function h : S1 → S2 between two topological spaces S1, S2 which satisfies
the following properties:

1. h is bijective

2. h is continuous

3. the inverse h−1 is continuous
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If such a transformation exists, S1 and S2 are said to be homeomorphic.
Differently from the knotted rope used in the operational definition, which has a finite thickness,
the mathematical knot is defined as a simple closed curve K : [0, 1] → R3. The function K is
continuous and its only ”non-injectivity” is K(0) = K(1) (closure condition).
Two knots K1,K2 are said to be equivalent if there exists an orientation-preserving homeomor-
phism h : R3 → R3 such that h(K1) = K2. This equivalence relation based on homeomorphic
transformations suggests to extend the knot definition to the equivalence class containing all the
homemorphic realizations with a certain topology. Note that the homeomorphism is defined on
the whole space R3 in which the curve is embedded, and any attempt to define the equivalence
relation by deforming only a subset of the space may lead to erroneous equivalences (e.g. a knotted
configuration could be transformed into the unknot by pulling the curve tighter and tighter until
the knot shrinks to a point and disappears, as represented in the Figure 1.2).

Figure 1.2: Knot disappearance with a continuous transformation which does not involve the
ambient space. Image from [16].

In particular if two knotsK1 andK2 are equivalent, it is natural to require also the 3-dimensional
manifolds defined by their complements in R3 to be homeomorphic.
Another transformation suitable for defining knots while preventing the occurrence of such singu-
larities is the ambient isotopy, which is a set of homeomorphisms

{ht : R3 → R3, t ∈ [0, 1]}

parametrized by t, such that at the end of the transformation K1 is mapped into K2. According
to the equivalence relation based on the ambient isotopy one can say that K1 is equivalent to K2

if there exists a continuous H : R3 × [0, 1]→ R3 such that:

1. ∀t ∈ [0, 1], Ht is an homeomorphism of R3 onto itself.

2. ∀x ∈ R3, H(x, 0) = x

3. H(K1, 1) = K2

1.2 Knot diagram and Reidemeister moves

Thus, different knot types belong to different equivalence classes, built on the basis of the ambient
isotopy. But how can one practically distinguish them? A useful representation is obtained by
looking at the knot from a certain point of view and depicting the closed curve in two dimensions
specifying under- and over-passages whenever a crossing is encountered. In particular, discontinuous
segments represent under-passing strands in a crossing, whereas continuous segments are used for
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the over-passing ones. The representation obtained by following this procedure is the so called knot
diagram. Clearly, very different knot diagrams may result from different viewing perspectives and
the 2D drawings can be rather complicated. Nonetheless, since both diagrams are obtained from
the same knot, there should exists a series of continuous manipulations that leads from a diagram to
the other. Analogously one could think to perform an arbitrary ambient isotopy while keeping fixed
the point of view, and look how the knot diagram varies during the transformation. It has been
shown by the mathematician Reidemeister that all the possible diagram changes resulting from the
application of an ambient isotopy can be encoded and reproduced by means of a series of planar
isotopies and a set of three basic moves (reported in Figures 1.3, 1.4, 1.5), called Reidemeister
moves.

Figure 1.3: Type I Reidemeister move

Figure 1.4: Type II Reidemeister move

Figure 1.5: Type III Reidemeister move

The type I Reidemeister move either adds or removes a crossing from a region of the diagram,
while keeping unchanged all the rest. The type II Reidemeister move can increase/decrease the
number of crossings by 2, and the type III Reidemeister move let one strand slide from one side of
a crossing to the other, without changing the overall number of crossings. Since every continuous
deformation can be decomposed in a sequence of planar isotopies and Reidemeister moves, these
elementary transformations can in principle be used to simplify the 2D projection by getting rid
of some redundant crossings.
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1.3 Crossing number and unknotting number

As highlighted in the previous section, the number of projected crossings of a knotted curve depends
in general on the particular point of view chosen to perform the projection. Among all possible
diagrams, there is a subset containing those which exhibit the minimum number of crossings com-
patible with the knot topology. This quantity is called crossing number and for a knot K it will
be denoted with c(K). All the diagrams presenting c(K) crossings are called minimal knot diagrams.

A crucial aspect in Knot Theory is to find some quantities or mathematical descriptors through
which knots can be properly classified. Such descriptors are called knot invariants because their
value or expression should not depend on the particular knot realization and diagram. Some of
them are obtained by simply taking the minimum value of an integer function defined on the space
of knot diagrams: the crossing number is an instance of this kind of quantities, and is the first
knot invariant encountered so far. The importance of the crossing number c(K) lies also in the

Figure 1.6: Table of knots up to crossing number c(K) = 7.

fact that it appears in the knot nomenclature, as represented in Figure 1.6. The label ci is as-
signed to the ith knot with crossing number c(K) = c. As the crossing number and the topological
complexity increase, there will be more and more knot species for a fixed c(K). The unknot (also
indicated as 01) has the lowest possible crossing number c(01) = 0, followed by the so-called trefoil
knot c(31) = 3, and so on. There are 21 knot species with crossing number c(K) = 8, 165 with
c(K) = 10 and 552 with c(K) = 11, suggesting a rather steep increasing trend. The difficulty to
recognize a knot species from a complex non-minimal diagram encouraged the research of more
complete and efficient invariants, like the knot polynomials which will be briefly treated in the
Section 1.9.
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A similar descriptor (invariant) is given by the unknotting number , i.e. the minimum number
of crossing changes required to turn K into the unknot, and it will be denoted with u(K). More ex-
plicitly, having unknotting number u(K) means that there exists at least a knot diagram which can
be unknotted with u(K) cross inversions, and there are no other diagrams requiring less crossing
changes to become unknotted. Despite their similar definition, the unknotting number u(K) and
the crossing number c(K) are not identical, and some knot species with a fair amount of crossings
are characterized by a low value of u(K) (see Figure 1.7).

Figure 1.7: The knot 72 can be unknotted performing a single strand passage where denoted by
the dashed circle. Image from [1].

To determine the unknotting number of an arbitrary knot species is generally not trivial: it
has been found for all the knots with c(K) ≤ 9, but it is still unknown for more complex cases like
the 1011. For some knot families (as twist knots and torus knots) which will be presented in the
Section 1.7, the computation of the unknotting number u(k) is extremely facilitated.

1.4 Average crossing number

A physically relevant quantity related to the crossing number c(K) is the so called average crossing
number (ACN). The way to compute it is to collect the number of crossings emerging from the knot
diagrams obtained by looking at the knot from all the possible viewing perspectives, and finally
averaging over them. A bit more formally, imagine to call v the unit vector defining the direction
along which the knot is looked to produce the knot diagram. Such a diagram has a number of
crossings equal to n(v). The average crossing number ACN can be found by solving the following
surface integral

ACN(K) =
1

4π

∫
Ω
n(v) dS

where the domain of integration is the unit sphere

Ω = {x ∈ R3 |x2
1 + x2

2 + x2
3 = 1}

Note that not all the directions produce a meaningful knot diagram, but the pathological ones
are a set of zero measure with respect to the integration domain, hence they don’t affect the
integral. Moreover, the average crossing number value is strictly correlated to the knot geometrical
realization, and for that reason it cannot be considered a knot invariant.
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1.5 Chirality

The crossing number alone is not sufficient to completely characterize knots, and often their nomen-
clature requires an information regarding their handedness. Indeed, the minimal diagram of the
vast majority of knots is not equivalent to its mirror image, in the sense that there does not exist
an ambient isotopy which brings one into the other. All the knots with this property are called
chiral, and their left- and right-handed realizations enantiomers. Conversely, whenever a knot can
be superimposed to its mirror image, it is said to be achiral (or amphichiral). The first and sim-
plest chiral knot is the trefoil knot 31, whose enantiomers are reported in Figure 1.8: the simplicity
of this case make intuitively clear the lack of an ambient isotopy mapping one enantiomer into
the other. For the sake of clarity, the notation of the two enantiomers will be equipped with a
superscript describing the knot handedness (e.g. 3L1 and 3R1 ).

Figure 1.8: Left- and right-handed version of the trefoil knot

For relatively simple knots (c(K) ≤ 8) the handedness can be computed in a rather direct way:
the minimal diagrammatic representation of the knot needs to be endowed with an orientation, and
each crossing labeled with +1 or −1 according to the right-hand rule (as sketched in the Figure
1.9). Once that the labels have been assigned to the crossings, one performs their algebraic sum,
whose sign will define the knot handedness (e.g. for the two enantiomers of the trefoil knot the
sums will be −3 for the left-handed and +3 for the right-handed one).

Figure 1.9: Right-hand rule to establish the sign of a crossing

Note that the amphichirality concept described so far completely disregards whether the knot
orientation is preserved or not at the end of the ambient isotopy.

The knot chirality classification can be improved by introducing the concept of invertibility. In
particular, an oriented-knot is said to be invertible if there exists an ambient isotopy which maps
the curve image to itself, but reverses its orientation. In other words an oriented knot is invertible
if it is equivalent to its inverse. If a knot is both chiral and invertible, it is called reversible. A chiral
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knot which is not invertible is called fully chiral. Note that the fully chiral knots are quite rare
for species with low crossing number, the first instance being the 932. What about the amphicaral
knots? If a knot is equivalent to both its mirror image and its inverse it is called fully amphichiral.
Otherwise, if an amphichiral knot is not invertible, either it preserves its orientation in the mapping
to its mirror image (positive amphichirality) or it reverses its orientation (negative amphichirality,
which corresponds to the equivalence with the inverse mirror image).

1.6 Knot composition

Imagine to have the diagrammatic representation of two knots K1 and K2, to remove an arc from
both of them and finally bridge the free endpoints by means of two new arcs, in such a way to end
up with a single knot K3 (see Figure 1.10). Note that the added arcs must not introduce any other
crossings by overlapping with each other or with a pre-existing arc. What can be said about the
resulting knot type?

Figure 1.10: Connected sum of two left-handed trefoils. The resulting knot is called granny knot.
See Other sources.

This procedure can be formalized through the notion of connected sum (indicated by #). The
knot K3 = K1#K2 is called composite knot and K1,K2 are its factors. Already from this op-
erative construction, it’s evident that composing an arbitrary K with the unknot gives K itself
(K# 01 = K): in other words, the trivial knot 01 is the neutral element of the connected sum
operation.

Whenever a knot cannot be written as the connected sum of two non trivial knots, it is said to
be a prime knot. The analogy with the natural number, as suggested also by the nomenclature, is
straightforward: as they can be factorized in a product of prime numbers, in the same way every
knot admits a decomposition into prime knots (knot factorization).
If it is clear that 1 cannot be expressed as a multiplication of two positive integers greater than 1,
it is much less intuitive that the unknot 01 cannot result from the composition of two non trivial
knots. The non existence of the ”anti-knot” can be formally proven introducing the Seifert surfaces
and other geometrical techniques. Since the number of prime knots exponentially increases with
the crossing number c(k), they have been completely tabulated only up to 16 crossings by Hoste et
al. [10].

Another interesting aspect is how the handedness of a composite knot is influenced by that
of its factors. Let us focus on the simple examples in Figures 1.10 and 1.11, where the factors’

9



handedness can be determined with the method of the Section 1.5 since their crossing number is 3.
In this case the chirality of the composite knot can be evinced by the sign of the crossings algebraic
sum: so 3L1 #3L1 and 3R1 #3R1 are respectively the left- and right- handed enantiomers of the granny
knot, whereas the square knot 3L1 #3R1 is amphichiral being the sum of its signed crossing equal to
0.

Figure 1.11: Square knot, obtained by doing the connected sum of two trefoils with different
handedness.

1.7 Main knot families

It has been noted that among all the possible knots, there are some subsets whose elements share
certain characteristics or topological properties. For this reasons knots have been classified in some
main families, some of which are introduced in the following.

Alternating knots are an important category whose prime elements have been enumerated up
to 22 crossings. A knot is said alternating if there exists a minimal diagrammatic representation
where the crossing signs alternate along the path. However, even if a knot is alternating, there
could be several diagrams in which the previous requisite is not satisfied. The alternating knots are
common when the crossing number value is . 10 (the first instance of prime non-alternating knot
being the 819), but there’s a conjecture stating that as the crossing number increases, the fraction
of alternating knots decreases exponentially to 0.

Figure 1.12: Examples of alternating knots: 41 (figure-8-knot) on the left and 5R2 on the right

The unique knot that can be obtained by drawing a simple closed curve on the surface of a
sphere without self-intersections is the unknot 01. Even if all the other non trivial knots don’t have
this property, it turns out that some of them can lie on the surface of an unknotted torus. For
this reason the are called torus knots. To better describe a torus knot, let’s introduce two more
concepts: if a circle wraps the torus the short way (passing through the hole) it is called meridian,
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otherwise if it does it the long way it is called longitude. Each torus knot can be characterized by a
pair of integer numbers p, q, which inform of how many times the knot is wound around the torus
respectively longitudinally and meridionally. In particular, to determine p and q, one can draw the
knot together with a meridian and a longitude on the torus surface, and count how many times it
crosses both of them. For a torus knot p and q are always coprime, and a torus knot is not trivial
(different from the unknot) if and only if neither p nor q are ±1, the sign standing for the winding
direction. Some other properties are summarized in the following:

1. (p, q) is equivalent to (q, p).

2. (p, q) and (−p,−q) have the same image but reversed orientation.

3. (p, q) and (p,−q) are mirror images, meaning that a torus knot is always chiral.

4. for a torus knot K = (p, q) with both p, q > 0, the crossing number is equal to c(K) =
min{q(p− 1), p(q − 1)}.

5. for a torus knot K = (p, q) with both p, q > 0, the unknotting number is equal to u(K) =
1
2(p− 1)(q − 1).

Figure 1.13: On the left: the trefoil 31 is the easiest torus knot. On the right: sketch of meridians
and longitudes. Image from [1].

Another important family is that of twist knots: they can be obtained starting from a loop,
adding some twist and finally clasping together the arcs at the two extremities. This construction
makes immediately clear that the unknotting number u(K) of a twist knot is always 1. Moreover,
if a twist knot has n half twists, its crossing number is simply c(K) = n + 2. A part from the
figure-eight-knot 42 and the 01, all the others twist knots are chiral.

1.8 Dowker notation

This section is not strictly necessary to understand the rest of the thesis

The Dowker notation is a sequence of even integer numbers which can be assigned to a knot
diagram according to the following steps:

1. Move along the curve and add an increasing natural number to the sequence (starting from 1)
each time that a crossing is encountered. Whenever an even label 2n is added while traveling
on a crossing understrand, it should be replaced by −2n. At the end of this procedure each
crossing will have both an even and odd label.
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Figure 1.14: Example of a twist knot with 6 half twists (81). See Other sources.

2. Arrange this label pairs in increasing order of their odd component and finally retain only
the even one. This will give a sequence of signed even number representing the Dawker code.

Figure 1.15: Example of crossings numbering for the Dawker code computation (in this case
6, −14, 16, −12, 2, −4, −8, 10). Image from [1].

The Dowker code, which is supposed to be like a fingerprint for a knot species, is actually
inappropriate in some circumstances: indeed, in general, composite knots cannot be unambiguously
determined by this notation, as well as the two topological enantiomers of a chiral knot. For that
reason, more efficient knot invariants are presented in the following.

1.9 Polynomials

This section is not strictly necessary to understand the rest of the thesis

Another approach used for knot classification is that of computing from the diagrammatic
representation a polynomial whose coefficients encode the information about the knot. Several
polynomials have been developed during the last century as they turned out to be really powerful
knot invariants. The key idea is to find a mathematical descriptors which does not vary if one
performs a topology-preserving geometrical deformation. Even though more precise invariants are
known, the knot polynomials strength lies in the fact that they are more suited for numerical
computations.
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1.9.1 Alexander polynomial

Historically the first to have been introduced, the Alexander polynomial ∆ is a single variable t
polynomial which can be computed from the knot diagram according to the following sequence of
steps:

1. An orientation should be assigned to the diagram as well as a sign to each crossing, according
to the right-hand rule.

2. Following the curve orientation, crossings and arcs are numbered from 1 to n.

3. A square matrix Mn×n is defined: its rows are relative to the crossings, while its columns to
the arcs. For each crossing, the only non negative matrix elements are located in columns
corresponding to the arcs involved in the crossing. Let’s call ic, jc, kc respectively the arc
above the crossing c and the ones below, so that the only non negative entries of the row c
will be M(c, ic), M(c, jc) and M(c, kc). In particular:

(a) if the crossing c is positive M(c, ic) = 1− t, M(c, jc) = −1 and M(c, kc) = t.

(b) if the crossing c is negative M(c, ic) = 1− t, M(c, jc) = t and M(c, kc) = −1.

4. The Alexander matrix is obtained by removing arbitrarily a row and a column from M , and
the Alexander polynomial by computing the determinant of the Alexander matrix.

Figure 1.16: Crossings and arcs numbering for the 5L1 Alexander matrix computation.

The Alexander polynomial computation for the knot 5L1 is reported in the following as an
example of the described procedure (the knot diagram is sketched in the Figure 1.16). Notice that
all the crossings in the diagram are negative.∣∣∣∣∣∣∣∣∣∣

−1 0 1− t 0 t
1− t 0 t −1 0
t −1 0 1− t 0
0 1− t 0 t −1
0 t −1 0 1− t

∣∣∣∣∣∣∣∣∣∣
−→

∣∣∣∣∣∣∣∣
0 t −1 0
−1 0 1− t 0

1− t 0 t −1
t −1 0 1− t

∣∣∣∣∣∣∣∣ =

=

∣∣∣∣∣∣
0 t −1
−1 0 1− t
t −1 0

∣∣∣∣∣∣+ (1− t)

∣∣∣∣∣∣
0 t −1
−1 0 1− t

1− t 0 t

∣∣∣∣∣∣ = −1 + t− t2 + t3 − t4
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But what happens if one considers an arbitrary diagrammatic representation in place of the
minimal one? As soon as the number of crossings increases, one would expect to have a bigger
matrix size and so an higher polynomial degree. It seems that this behavior violates the polynomial
requisite to be unaffected by geometric manipulations which preserve the knot topology. However, it
can be shown that the Alexander polynomials resulting from different knot diagrams can only differ
by a factor ±tk with k ∈ Z. By removing such a factor one ends up with the so called irreducible
Alexander polynomial, which does not depend on the particular diagrammatic representation. Some
other properties of the Alexander polynomial are listed in the following:

1. For an arbitrary knot K, ∆K(t = 1) = ±1.

2. The Alexander polynomials ∆K(t) and ∆K(t−1) are equals up to a factor tk with k ∈ Z.

3. The Alexander polynomial of a composite knot is equal to the product of the Alexander
polynomials of its factor knots, i.e. ∆K1#K2(t) = ∆K1(t)∆K2(t).

However, there are some pair of different knots which cannot be distinguished by means of the
Alexander polynomial (e.g. the 820 and the granny knot have the same polynomial, and there are
some species with ∆(t) = 1 as the trivial knot). Another drawback of the Alexander polynomial is
its incapability to discern the handedness of two enantiomers. Some other polynomials, such as the
HOMFLY or the Jones polynomial, have been devised at a later time to overcome this ambiguities:
although they can distinguish the knot chirality, there are still some knot species which cannot be
discriminated.
Since the algorithms to extract one of the previous polynomials from the knot diagram can rapidly
increase their computational cost with the number of crossings, it is recommended to simplify as
much as possible the knot geometry before to run them (notice however that such a simplification
is already not trivial).
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Chapter 2

An overview of DNA biology

2.1 DNA structure

DNA is a large polymeric macromolecule with a double helical shape (experimentally discovered
by Watson and Crick in 1953 [29] with the help of X-ray diffraction data furnished by Gosling
and Franklin), whose backbones consist of an alternation of deoxyribose and phospate residues and
whose internal part is occupied by four types of nitrogenous bases: adenine, thymine, cytosine,
guanine. Such bases belong to two different classes of chemical species: indeed the adenine (A) and
the guanine (G) are purines, while thymine (T) and cytosine (C) are pyramidines. The nitrogenous
ring of both purines and pyramidines is linked to the DNA filaments by means of a covalent
bond with the carbon-1 of the pentose sugar (deoxyribose). The nitrogenous bases together with
the sugar are called nucleosides, that once linked to a phosphate group become nucleotides, the
building blocks of DNA.

Figure 2.1: Nitrogenous bases structure, with IUPAC numbering for purines and pyramidines.
Image from [3].

In addition to their biological importance, the nitrogenous bases have also the structural role
of holding the two backbones together by means of hydrogen bonds. In doing that, they are
characterized by a precise complementarity: in fact the adenine can establish a bond only with the
thymine and the cytosine only with the guanine (no other pairings are allowed). Moreover, the
strength of the chemical interactions AT and CG is slightly different in that they involve respectively
2 and 3 hydrogen bonds, a difference which may lead to sequence dependent effects in some physical
phenomena. Still from the molecular shape point of view, the nitrogenous bases planes are found
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to be approximately perpendicular to the helical axis direction. Notice that the hydrogen bonds
help also the molecule stabilization in water, by constraining the hydrophobic bases to stay in the
internal region of the helix and exposing the polar residues along the backbones to the solvent.

Figure 2.2: On the left: B-form DNA representation. The minor and major grooves are indicated
on the left and the perpendicularity between nitrogenous bases and helical axis can be appreciated
from this point of view. Image from [32] .On the right: chemical structure of AT and CG pairings,
with hydrogen bonds indicated by the dashed lines.

Depending on the values and interplay of some parameters like humidity, salt concentration,
etc, the DNA double helix can take on different arrangements. However, we will not enter into the
details of the DNA structural polymorphism, and we will mainly focus on the so called B-form. The
double helix has a width of 23.7Å, the distance between two nitrogenous bases along the backbones
is 3.4Å and 10.4 base pairs are required for the two filaments to complete a full turn around the
double helix axis (pitch of 3.53 nm). Minor and major grooves (explicitly pointed out in the Figure
2.2) alternate along the DNA duplex and their difference is biologically relevant: in fact, because of
the backbones architectural disposition, the major groove side can more easily accommodate some
DNA binding proteins which interact with the nitrogenous bases.

The DNA thickness given above is only due to the chemical structure of the macromolecule
(bonds length) and does not take into account the fact that DNA is a polyelectrolyte. Indeed, the
phospates along the backbones are negatively charged in solution because of the hydroxyl groups
deprotonations. This leads to the development of an electric potential felt by the charged particles
in the neighborhood. A lot of DNA binding proteins with a positively charged residues exploit
such potential to bind the double helix. On the other hand, every negatively charged object tends
to be repelled and feels the DNA presence as if it was effectively thicker. This effective radius
consequence can be tuned by varying the salt concentration: indeed the counterions can screen the
long range potential producing an exponential decay of the latter.
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Figure 2.3: DNA chemical structure. The phosphates groups with their negatively charged residues
are highlighted with yellow circles. The deoxyriboses are colored in orange, the adenines in green,
the thymines in purple, the guanines in blue and the cytosines in red. See Other sources.

Antiparallelism As highlighted in Figure 2.3, the two ends of each strand are characterized by
an asymmetry due to the fact that either the 3rd or 5th carbon of the deoxyribose rings on the two
chain extremities miss the phosphodiester bond which would have linked them to the subsequent
sugar residue. That’s the reason why the two extremities are called 3′ and 5′ ends. The 5′ extremity
usually ends with a phosphate linked to the deoxyribose 5-carbon, while the 3′ one ends with the
-OH group of the deoxyribose 3-carbon. In the DNA double helix the two complementary strands
always anneal in such a way to have opposite direction, and for that reason they are said to be
antiparallel. A portion of genetic code or a DNA strand related structure developed toward the 5′

end is called upstream (conversely, it is said downstream if it’s toward the 3′ end).

Elastic properties Both the chemical architecture and salt concentration in the solution are
responsible for the elastic properties of the DNA. An idea of the molecule resistance to bending can
be given by the bending persistence length lp, which expresses the polymer orientation memory as
one travels along the chain and which will be mathematically described in the Chapter 5. Whenever
the salt concentration is low, the screening effect is less intense and the chain self avoidance due to
the negative charges is more pronounced. In this case the chain is more rigid and its persistence
length lp is higher. Conversely, as the salt concentration increases the chain flexibility gets larger
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and the lp is lower. A typical value of lp for a salt concentration of the order of ∼ 100 mM which
disregards the particular bases sequence is lp ≈ 50 nm.

Figure 2.4: Some configurations of neighboring base-pairs: the tilt and roll angles θ1 and θ2 describe
the local molecule bending, while θ3 refers to the local torsion. Image from [18].

However, in some circumstances, sequence dependent effects can be quite important since they
affect the elastic DNA properties. In fact, a part from the hydrogen bonds strength difference
between AT and CG, it has been shown that sequence differences lead to a base stacking variation.
As already said, the nitrogenous bases are hydrophobic, so that they try to minimize their water
exposure to lower the energy by getting closer to each other. Usually this can be achieved by
rotating of ≈ 30◦ about the helical axis the plane of two paired bases with respect to that of the
underlying ones, in such a way to reinforce their hydrophobic and Van der Waals interactions. In
some cases the particular sequence can influence the DNA mechanical properties by favoring tilted
or rolled neighboring base-pairs as described in the Figure 2.4, and so it can affect the molecule
bending persistence length.

Figure 2.5: Electron micrograph of nucleosomal fibers and their “beads on a string” appearance.
The nucleosomes are indicated by the black arrows. The size marker on the top-right correspond
to 30 nm. Image taken from [17].

Chromatin architecture From an architectural point of view, it’s quite interesting how long
DNA macromolecules can fit into the nucleus of eukaryotic cells. In the case of human genome,
which is made by ∼ 7, 8 · 109 bps, the genetic material total length is about 2 m: this suggests that
a high level of spatial and structural organization is reached in eukaryotic cells. Indeed the DNA
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duplex is extremely well arranged to attain a suitable compaction, and in order for the packing
ratio to become fairly high a hierarchical organization is realized. Such architecture goes under
the name of chromatin. As a first step, the genetic material appears as a series of subunits, the
nucleosomes, composed by DNA duplex wrapped around a bunch of 8 histone proteins in a left-
handed superhelical fashion, for a total of approximately 1.7 turns. Two subsequent nucleosomes
are joined by means of linker DNA, a spacer portion of DNA duplex whose length varies according to
the species (30÷40 bps on average). An electron micrograph of the “beads on a string” nucleosomes
disposition from [17] is reported in Figure 2.5. Although already at this stage the fibers length is
reduced by a factor of ∼ 7, the chromatin needs a further processing to be properly accommodated
into the nucleus (whose diameter is usually of the order of 10 µm). When the salt concentration
in vitro is high enough (order of 100 mM), the nucleosomal fibers have been observed to condense
in solenoids, whose packing ratio can reach 40 (it is still unclear if they form also in vivo). The
structural complexity keeps increasing, up to reach the chromosomes formation. During the cell

Figure 2.6: Representation of the chromatin hierarchical organization. From left to right: a simple
DNA duplex, a nucleosomal fiber, a solenoidal structure, some supercoiled loops of a decondensed
interphase chromosome. Image from [19].

cycle, the genetic material experiences different degrees of condensation. In particular, when the
mytotic phase begins the chromosomes can be more easily microscopically visualized. The described
organization is crucial to allow the regular implementation of the DNA biological roles (e.g. the
DNA replication) and to prevent dangerous entanglements.

2.2 Supercoiling

As already mentioned, the DNA has a pitch of 10.4 bps in its torsionally relaxed state. However
it has been shown that bacterial plasmids are dynamically kept, by means of the action of some
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enzymes, slightly underwound in vivo. This condition is said to be of negative supercoiling. Con-
versely, whenever the DNA is twisted more tightly, it is positively supercoiled. To get a glimpse of
the supercoiling implications on the molecule geometrical conformation, imagine to start with an
energetically relaxed linear fragment of DNA. In order to minimize the torsional energy, the number
of helical turns should be given by

Nbps
10.4 , where Nbps is the number of base pairs of the linear DNA

fragment. The bending energy is clearly minimized being the molecule in a straight configuration.
Suppose that the number of helical turns is an integer, and imagine to circularize the chain without
introducing any further twisting. The molecule will be stable in the configuration of planar ring,
since the torsional level didn’t change during the closure procedure and the circular shape is the
one which minimizes the bending energy among all the closed configurations. Now, suppose to
start again from the same linear configuration as before, and to add an extra integer number of
helical turns by keeping fixed one end and twisting the other. If one of the two extremities is freed,
the molecule will untwist to relax the torsional strain and will come back to the initial configura-
tion. If instead the molecule is circularized with the extra twist and then freed, it won’t be able

Figure 2.7: (A): energetically relaxed linear DNA fragment, with 8 helical turns. (B): circular chain
obtained by closing the linear one without introducing any twist (still torsionally relaxed). (C):
circular chain obtained by under-winding of one turn the linear fragment and then circularizing the
molecule. This configuration is not torsionally relaxed and it will evolve in (D), where the balance
between bending and twisting stiffness results in a figure-eight contorted conformation. Image from
[32].

to completely get rid of the torsional stress and it will arrange into a more compact shape called
supercoil. The particular geometry assumed by the macromolecule in a supercoiled state, and so
the compaction itself, is strongly affected by the balance between bending and twisting stiffness.
The supercoiling fingerprint is the emergence of helically wrapped structures called plectonemes
(predominant in prokaryotic organisms with small circular chromosomes) or solenoidal supercoils
particularly suitable for packaging the eukaryotic chromatin. A part from the genome packaging,
the supercoiling is involved in several other biological processes such as DNA synthesis, transcrip-
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tion, replication, etc. A more quantitative description of supercoiling and superhelical density will
be given in Chapter 3.

2.3 Topoisomerases

During biological processes such as transcription or replication, which will be more precisely treated
in Section 2.4, the DNA can locally accumulate some torsional stress. If these strain excesses
are not promptly removed, they could alter the normal course of the processes (e.g. they can
block DNA or RNA polymerases moving along a strand). Topoisomerases are enzymes able to
underwind/overwind the DNA thanks to their capacity to break the phospate backbones and reseal
them, and they have the task of tuning the supercoiling level wherever is needed. Moreover, they
are responsible to tune the entanglement degree of the genetic material, which can be regulated
thanks to topological operations as catenation/decatenation or knotting/unknotting.
Depending on the number of strands they work on, topoisomerases are divided in two main families:
type I and type II topoisomerases.

2.3.1 Type I topoisomerases

This family of topoisomerases has the ability to change the supercoiling level of the chain through
a single strand breaking and re-ligation. The cleavage mechanism involves the formation of a
phosphodiester bond between a strand extremity and the enzyme. Once that the cleavage has
occurred, the unwinding process happens either by rotating the duplex around its intact strand or
by letting the intact strand pass through the temporary break. This mechanisms are respectively
called swiveling and strand passage. A further classification requires to pay more attention to the

Figure 2.8: From left to right: a closed DNA duplex chain is characterized by 3 negative supercoils.
A type IA topoisomerase cleave to one strand of the duplex and it forms a phopshotyrosine bond
with the 5′ end of the red filament. The blue backbone passes through the break, decreasing the
number of negative supercoils by 1. See Other sources.

exact position of the cleavage: the subfamily IA enzymes form a bond with a 5′ phosphate, whereas
those which link to the 3′ phosphate belong to the IB subfamily. Moreover, type IA topoisomerases
adopt the strand passage mechanism to accomplish their task, while those of type IB under-wind
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the chain through the swiveling. A difference between these two mechanisms is that with the former
the number of helical turns can only change by one unit, whereas the latter allows for a variation
of helical turns also greater than one.

2.3.2 Type II topoisomerases

At difference with the type I family, the torsional energy is dissipated by the type II topoisomerases
with a double strand break. Once the backbones are cut, another duplex portion passes through
the opening and then the original duplex is resealed. This mechanism is called cross inversion
and it allows the type II topoisomerases to change the chain topology. At difference from the
type I enzymes, which are monomers, the type II topoisomerases have a dimeric structure since
they cleave both the duplex backbones. In this case, the cleavage involves the formation of two
phosphotyrosine bonds (one for each dimer sub-unit) with the 5′ DNA ends. Depending on their
structure and biochemistry, type II topoisomerases are specialized in two main sub-classes: type
IIA, which includes bacterial gyrase, topo IV and eukaryotic topo II, and type IIB including topo
VI. Thanks to their ability to disentangle intertwined duplexes or chromosomes by means of both
inter- and intra- molecular double strand passages, type II topoisomerases regulate the genetic
material topological complexity. Furthermore, they can help also the supercoiling level tuning by
changing the supercoils number by 2 units. Again, a more rigorous mathematical treatment of
topoisomerases action on the supercoiling level will be developed in Chapther 3.

Figure 2.9: Cross inversion mechanism of the type IIA topoisomerase. The enzyme presents three
gates, called from top to bottom N-gate, DNA-gate, C-gate. They are mechanically coupled in
such a way that a gate can be open only if the other two are closed. The double strand which is
going to be gated (broken) is called G-segment, while the intact duplex which passes through the
gate is called T-segment. Image from [20].

2.4 Biological role

From a biological point of view, DNA carries the genetic information needed to all organisms in
order to properly carry out their vital functions, from gene expression to growth and reproduction.
The genes are the stretches of DNA where such information is stored. In the following, a brief
zoom on the principal processes which involve DNA is performed.
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2.4.1 Replication

DNA replication is the process through which new DNA macromolecules are synthesized starting
from a pre-existing one. The key aspect which allows a DNA molecule to form an exact duplicate
of itself is base pairing. The helicase enzyme opens the double helix into a replication fork in
such a way that each strand may serve as a template for a new filament. In doing that, the
helicase provokes a supercoiling accumulation in the parent duplex, which needs to be relieved
by topoisomerases in order for the replication fork to properly proceed. At this point, the new
strands synthesis occurs thanks to the enzyme DNA polymerase, which is able to elongate the new
filament by adding nucleotides through the formation of phosphodiester bonds, respecting the base
complementarity. However, the DNA polymerase is not able to initiate the synthesis process, and
it requires the presence of an already paired small strand portion to start its work. For that reason,
the enzyme primase (which belongs to the family of RNA polymerases) cleaves to the template
filament 3′ end and synthesizes a very short RNA strand called primer. At this stage, the DNA
polymerase reach the primer 3′ end and begins the DNA duplex elongation. Notice that, at the end
of this process, the product will be an RNA-DNA duplex, and the primer portion will be removed
by the action of a specialized enzyme called RNase H.

Figure 2.10: Sketch of replication process and main enzymes which come into play. Topoisomerases
relieves the supercoiling excess generated by the replication fork progression. DNA polymerases
elongate the duplex both in the leading and lagging strands. RNA primase and primer are present
every time that an Okazaki fragment is being synthesized on the lagging strand (and also at the
beginning of the leading strand). See Other sources.

Another DNA polymerase peculiarity is the fact that it can carry out its work only by reading the
template filament in 3′ → 5′ direction. However, since the two template strands are antiparallel,
only one of them can be readily copied, and it goes under the name of leading strand. Notice
that the complementary filament of the leading strand will be synthesized in 5′ → 3′ direction.
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For what concerns the 5′ → 3′ template filament, called lagging strand, it cannot be read in the
same direction of the replication fork progression because of its opposite orientation with respect
to the one required by DNA polymerase to proceed. To overcome this obstacle, the lagging strand
complementary filament will be synthesized from the replication fork toward the lagging strand
free extremity, in small series of ∼ 1000 nucleotides called Okasaki fragments. Similarly to the
leading strand complementary filament initiation, every Okasaki fragment starts with an RNA
primer. Once synthesized, the Okasaki fragments are joined up by the DNA polymerase I, which
is able to substitute the RNA primers with DNA, and by DNA ligase which adds the missing
phosphodiester bonds to complete the backbone. Since only the leading strand complementary
filament is synthesized in a continuous fashion, the replication process is called semi-discontinuous.
Moreover, in addition to being exact replicas of the parent, each daughter molecule contains one of
its strands, and the process is said to be semi-conservative. The replication ends whenever another
replication fork is encountered or when a telomere (the chromosome final part) is reached.

2.4.2 Transcription

The mechanism through which the genes can be expressed is so important that its explanation
goes under the name of central dogma of molecular biology. Transcription represents the first step
of this process, where the genetic information encoded in the DNA is copied into RNA thanks to
the action of the enzyme RNA polymerase. Even though both replication and transcription are
copying processes and use the same DNA as a template, they are at the same time quite different.
If in the replication the whole chromosomes have to be duplicated, only the regions containing a
gene needs to be transcribed during transcription. The transcription product can be mRNA if the
gene contains a sequence which encodes a protein, or it can be non-coding RNA (such as rRNA
or tRNA) otherwise: all of them are essential in order for the protein synthesis to properly occur.
Each cell transcribe different DNA segments, also called transcription units, on the basis of its
needs. Notice that only a small percentage of the genetic material is coding DNA, since in the
genes themselves a lot of non-coding sequence are present and the remaining part of the genome
contains a lot of nonfunctional repetitive segments.

Usually only one strand plays the role of template during transcription, and the newly synthe-
sized filament together with the template strand make a DNA-RNA hybrid duplex. Analogously
to DNA polymerase, also the RNA polymerase has the 3′ → 5′ as preferential direction to read the
template. The RNA strand built in accordance to the base complementarity rule is called primary
transcript. Since the transcript has direction 5′ → 3′, the DNA duplex nontemplate strand is often
called sense strand, while the template one is called antisense strand.
RNA polymerase is not able to start its activity by itself. For this reason the genes are usually pre-
ceded by short sequences which can be recognized by transcription factors. Their role is to anchor
the DNA in the region occupied by the promoter, usually located upstream of the coding sequence,
and activate the RNA polymerase. Once activated, the RNA polymerase-promoter complex starts
to open into a transcription bubble of about 14 nucleotides. In this region the DNA is practically
single stranded and the copying process can start. However, the local DNA unwinding necessary to
allow the transcription bubble formation produce an excess of positive supercoiling ahead as well
as of negative supercoiling behind. Analogously to the replication, the resolution of this side effect
is attributed to the topoisomerases.
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Figure 2.11: Transcription process representation. The RNA polymerase reads the 3′ → 5′ tem-
plate strand (the lighter one) and progressively adds the RNA nucleotides according to the base
complementarity rule. Remember that in RNA the thymine is substituted by the uracil. As soon
as the mRNA strand is synthesized, it detaches from the template strand. The DNA unwinding
and rewinding highlighted on the two sides of the transcription bubble are responsible for the
supercoiling accumulation in the rest of the duplex. See Other sources.

Once it has been synthesized, the RNA usually needs to be processed. Indeed the majority
of genes, both those encoding a protein and those which don’t, have only a small percentage of
meaningful sequences which require to be read. In particular, the primary transcript obtained by
copying the entire gene may be formed by both exons, which carry the genetic information, and
introns, which are usually discarded. The series of operations through which intronic parts are
removed and exons are joined up into a shorter RNA strand is called RNA splicing. Once that the
RNA product has been cleaned up by the intronic regions and the RNA splicing has been carried
out, one says that the precursor messenger RNA (pre-mRNA) has been turned into a mature
messenger RNA (mRNA).

2.4.3 Translation

In eukaryotic cells the mRNA resulting from the transcription process can leave the nucleus, where
it has been synthesized, passing through the nuclear pores. Once in the cytoplasm it reaches some
organelles called ribosomes, whose RNA processing is crucial for the proper genes expression to
happen. Indeed they are the agents where the protein “manufacturing” takes place. Differently, in
prokaryotic organisms the mRNA can couple to the ribosomes also when the transcription process
is still not completed, because of the absence of a nucleus-like structure. In this situation, the
translation process starts from the free mRNA 5′ end, which has already been synthesized, while
the 3′ is paired to the template DNA strand and it is still being processed (see the Figure 2.11).

Ribosomes consist of two main subunits (50S the bigger and 30S the smaller for prokaryotes,
60S and 40S for eukaryotes) composed by rRNA and ribosomal proteins. Notice that whenever
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they are not directly involved in the translation process, the two subunits are separated and free
to move in the cytoplasm (in alternative, few of them can be anchored to the endoplasmic retic-
ulum). Only when a newly transcribed mRNA is ready to be read, they join together to form a
functional RNA-protein complex. The ribosome catalytic function is due to the rRNA, whereas the
proteins, which mainly lies on the subunits surface, help to the organelle stabilization. The genetic
information stored in the mRNA is read in triplets called codons, whose sequences are related to
a particular amino acid. Notice that, since each nucleotide can be chosen among 4, we have a
total of 64 possible codons, but only 20 types of amino acids. This means that the genetic code is
degenerate, and each amino acid corresponds on average to 3 codons.

The translation process begins when the smaller subunit together with a tRNA linked to me-
thionine amino acid, encounter the starting codon AUG and recruit the bigger subunit. At this
stage the ribosome is activated and it is ready for protein synthesis, performed by moving along
the mRNA, which serves as a template, reading the codon triplets one by one and adding the
corresponding amino acid to the growing polypeptide chain with tRNA help. The tRNA molecules
are structured as follows: on one side they can bind to an amino acid (aminoacyl-tRNA) or to a
polypeptide chain (peptidyl-tRNA) and on the other they exhibit a 3-nucleotide sequence called
anticodon, complementary to the codon and crucial for the molecule recognition. The activated
ribosome present 3 sites between their subunits: the A-site, which host an aminoacyl-tRNA, the
P-site containing the peptidyl-tRNA with the polypeptide chain, and the exit E-site. Since the
mRNA reading is performed by the ribosomes in 5′ → 3′, the sites order is E-P-A 5′ to 3′. As

Figure 2.12: Translation process representation, with an active ribosome traversing the mRNA
in 5′ → 3′ direction. The exit E-site in correspondence of the right ribosome side is omitted,
and only empty leaving tRNA molecules are depicted. The amino acid on the A-site is forming a
peptide bond with the polypeptide chain, which is going to be transferred from P- to A-site. Other
aminoacyl-tRNA molecules are waiting to reach their corresponding codon. See Other sources.

long as the ribosome proceed along the mRNA, a new aminoacyl-tRNA lands on the A-site and its
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amino acid forms a peptide bond with the growing protein anchored to the P-site, so that the chain
is transferred to the A-site. Now empty, the P-site tRNA is ready to be expelled, and the whole
machinery is translocated toward mRNA 3′ end. The translation process ends when the A-site
moves in correspondence of a stop codon: in place of a charged tRNA molecule, such a codon binds
a release factor and the polypeptide chain is dissociated from the ribosome.

27



Chapter 3

DNA geometry and topology

In order to characterize DNA geometrical and topological aspects, its strands can be modeled as a
pair of helical curves φ, ϕ : R→ R3 wound in a right handed manner around a cylindrical surface
with axis defined by the curve α : R → R3. Both prokaryotic and eukaryotic organisms present
examples of DNA molecules constituted by circular closed chains (e.g. bacterial plasmids and yeast
minichromosomes), which require the imposition of proper boundary conditions to be modeled, in
such a way to match the curve extremities. A deeper understanding of the DNA geometrical and
topological quantities and a mathematical formalization of the relationships to which they undergo,
might shed new light on some biological phenomena explanation and elucidate their mechanisms.

3.1 Geometrical descriptors

A rigorous study of supercoiling is encouraged by its wide presence in many DNA biological pro-
cesses and the possibility to give a further insight into problems inherent to transcription, repli-
cation, DNA packaging and compaction, criteria behind some enzymes action and more. For that
reason, an appropriate geometrical treatment of DNA requires the introduction of twist and writhe
as the main actors involved in the supercoiling quantification.

3.1.1 Twist

DNA twist, Tw, describes the winding of a backbone strand, e.g. φ, around the helical axis α
(or equivalently around the other filament ϕ). Although for closed chains it may be tempting to
believe Tw to be an integer, it is actually a real number as shown by configurations whose helical
axis α is not planar but curved in R3.

To define Tw, imagine to consider a cross section of the cylindrical surface representing the DNA
duplex: this will determine a point α(t) on the axis, and a point φ(t) on the backbone strand
φ. Let us denote the vector lying on the cross section which goes from the axis to the backbone

with zα→φ(t) = φ(t) − α(t) and its versor with vα→φ(t) =
zα→φ(t)
|zα→φ(t)| (see Figure 3.1). Intuitively,

Tw corresponds to the number of full turns that vα→φ(t) makes rotating about the helical axis
α(t) as the curve parameter t increases. Let’s define the unit vector tangent to the helical axis at
the point α(t) as u(t). Since u(t) is perpendicular to the whole cross-section individuated by the
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parameter t, it must also be perpendicular to vα→φ(t). The local contribution to the rotation of

Figure 3.1: Sketch of the φ backbone around the curved cylinder and its helical axis α. At the
cross-section level parametrized by t, the unit vector tangent to the helical axis u(t) and vα→φ(t)
are represented. Image adapted from [9].

vα→φ(t) around the helical axis is obtained by projecting the variation dvα→φ(t) along the direction
perpendicular to both vα→φ(t) and u(t). So,

dTw(t) = dvα→φ(t) · [u(t) ∧ vα→φ(t)]

The total twist Tw can be obtained by integrating the previous expression along the curve α (the
normalization 1

2π converts the unit of measurement from radians to number of turns):

Tw =
1

2π

∫
α
dTw(t) =

1

2π

∫
α

[u(t) ∧ vα→φ(t)] · dvα→φ(t)

Example: open helix with straight axis Consider a fragment of linear DNA with n turns
around its straight axis of length L (which for simplicity corresponds to the z-axis). The curve φ
describing one strand is parametrized by the curvilinear variable t in the following way:

φ(t) = (ρ cos
(2πt

p

)
, ρ sin

(2πt

p

)
, t)

with t ∈ [0, L], ρ the helical radius and p = L
n the helical pitch. Since the cross-section lies in the

xy-plane for all value of t, the vector vα→φ(t) can be easily computed:

vα→φ(t) = (cos
(2πt

p

)
, sin

(2πt

p

)
, 0)

29



In order to compute the integral one needs the vector product

u(t) ∧ vα→φ(t) =

∣∣∣∣∣∣∣
x y z
0 0 1

cos
(

2πt
p

)
sin
(

2πt
p

)
0

∣∣∣∣∣∣∣ = (− sin
(2πt

p

)
, cos

(2πt

p

)
, 0)

and the derivative with respect to the curvilinear variable of vα→φ(t):

∂vα→φ(t)

∂t
= (−2π

p
sin
(2πt

p

)
,
2π

p
cos
(2πt

p

)
, 0)

Finally, substituting the previous expressions in the twist integral:

Tw =
1

2π

∫
α

[u(t) ∧ vα→φ(t)] · dvα→φ(t) =
1

2π

∫ L

0
[u(t) ∧ vα→φ(t)] ·

∂vα→φ(t)

∂t
dt

=
1

2π

∫ L

0

2π

p
[sin2

(2πt

p

)
+ cos2

(2πt

p

)
]dt = n

Thus, the complete calculation yields the expected result Tw = n. Similar calculations for more
articulated helical axis configurations are reported in full detail in a paper by White and Bauer
[31].

3.1.2 Writhe

As proved by Călugăreanu in 1961 [8], the writhe Wr is an observable that can be defined for a
single curve, which in our case is the DNA duplex helical axis α. Qualitatively, the writhe captures
to what extent a curve is coiled in the 3-dimensional space. Thus, it can be a good candidate to
characterize the DNA supercoiling level. Analogously to what has been done for knot diagrams in
Chapter 1, a 2D diagram can be extracted from an oriented curve by projecting it onto a plane
while preserving the information regarding over- and under-passes by drawing in discontinuous way
the under-strand in correspondence of each crossing. Moreover, all the crossings should be labeled
with a + or − sign according to the right hand rule. This 2D diagram could be thought of as an
almost planar realization of a curve which exploits the third dimension to a perturbative extent
and only in correspondence of a strands juxtaposition. Its writhe, which can also be interpreted
as the projected writhe of the original curve with the appropriate observation direction, is equal to
the algebraic sum of the signed crossings. In general, to compute the writhe Wr of an arbitrary
curve living in R3, one needs to average over the projected writhing numbers obtained from all
the possible observation points. If one defines with Wrproj(v) the projected writhe relative to the
observation direction v, the Wr will be given by:

Wr =
1

4π

∫
Ω
Wrproj(v) dS

with integration domain
Ω = {x ∈ R3 |x2

1 + x2
2 + x2

3 = 1}

Notice that although for certain curves there may be some unitary vectors v for which Wrproj(v)
is not properly defined, they are a zero measure set with respect to Ω. Intuitively, if two different
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DNA duplex are almost juxtaposed to each other, they will contribute ≈ ±1 to the writhe Wr,
since a crossing will result from almost all the projections. Similarly, every planar configuration
will have Wr = 0 since all non singular projections do not originate apparent crossings.
An equivalent method to compute the writhe is resorting to the following Gauss integral:

Wr =
1

4π

∫
α

∫
α

r2 − r1

||r2 − r1||3
· (dr2 ∧ dr1)

where r1 and r2 are two points on the integration curve α. However, the numerical evaluation of this
kind of integral can be pretty expensive from a computational point of view, and approximated
expressions have been devised to accelerate the calculations. In particular, some of them take
advantage of the fact that in many numerical simulations coarse grained models are exploited to
deal with DNA, which is often represented by a series of straight segments (polygonal closed chain).
Some methods to compute the Wr of supercoiled DNA are discussed in full detail in a paper of 2000
by Klenin and Langowski [14]. Since one of them has been used in the Monte Carlo simulations
presented in Chapter 5, its description is reported in the Appendix A.

3.2 Topological descriptor: Linking number

The linking number Lk is a topological quantity which can be defined for a pair of closed curves
(e.g. the two edges of a ribbon or φ and ϕ representing the two strands in the case of DNA). It
assumes only integer values if the curves live in R3 and it can be intuitively thought as the number
of times that a curve is wound around the other. Analogously to the writhe Wr, the linking number
Lk of two curves φ and ϕ admits a description in terms of a Gauss integral (also called linking
integral):

Lk =
1

4π

∫
φ

∫
ϕ

r2 − r1

||r2 − r1||3
· (dr2 ∧ dr1)

where r1 and r2 are points respectively on φ and ϕ.
Surprisingly, as long as the two curves are deformed in a way which does not involve any break,
their linking number does not change. In principle, in the case of DNA, each strand could be
continuously deformed into the helical axis α. This means that the same Lk value is found if one
substitutes a backbone with the helical axis in the Lk definition given above:

Lk =
1

4π

∫
φ

∫
ϕ

r2 − r1

||r2 − r1||3
· (dr2 ∧ dr1) =

1

4π

∫
α

∫
ϕ

r2 − r1

||r2 − r1||3
· (dr2 ∧ dr1)

=
1

4π

∫
φ

∫
α

r2 − r1

||r2 − r1||3
· (dr2 ∧ dr1)

3.2.1 White-Călugăreanu-Fuller relation

One of the main results of the so called ribbon theory, is the White-Călugăreanu-Fuller equation

Lk = Tw +Wr

which establishes a relation between the two geometrical descriptors previously introduced and the
linking number [11, 7, 30]. The crucial observation is that every DNA duplex deformation which
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disallows strands breaks, affects Tw and Wr in such a way that their sum remains unaltered. For
this reason, the linking number Lk is said to be a topological invariant.

For a more intuitive explanation, let us consider some examples. Imagine to have a torsionally
relaxed DNA linear fragment (with n helical turns) and to circularize it into a planar ring. Since
the Wr of a planar configuration is always 0, one has that in this case the linking number coincides
with the twist, Lk = Tw = n.
Suppose now that some extra turns are added/removed from the linear DNA fragment. The planar
circular configuration immediately after the closure will have again Lk = Tw = n + nextra. How-
ever, as soon as the DNA duplex is freed, it starts to evolve in order to distribute its mechanical
stress between bending and twisting. In doing that, it acquires a 3 dimensional shape that makes
its writhe Wr 6= 0. In particular, Wr will increase in case of an initial over-twisting, and viceversa
it will decrease in case of under-twisting. However, the DNA twist variation will compensate the
writhe one, thus keeping the linking number constant and equal to Lk = n+ nextra.

Figure 3.2: On the left: an under-wound DNA duplex which has just been circularized (nextra =
−1). The linking number Lk initially corresponds to the twist Tw (Lk = Tw = n− 1). During its
evolution, the DNA duplex will release a bit of torsional strain by increasing its bending energy.
In particular, on the right, it reaches a “figure-of-eight” arrangement. Since the two double strand
portions are extremely close in correspondence of the crossing, one may estimate the following
values for the final configuration: Wr ≈ −1, Tw ≈ n such that Lk is exactly n− 1. Image adapted
from [32].

Another way to compute the linking number Lk is the modified projection method. The pro-
cedure to obtain the link diagram is similar to the one described in Section 3.1.2 for the writhe,
except for the following differences:

1. the link diagram contains 2 distinct curves;

2. only the crossings which involve two different curves require a sign. The crossings result-
ing from the intersection of a curve with itself must not be taken into account for the Lk
determination.

The algebraic sum of the signed crossings will give twice the linking number value. An interesting
point is that the Lk value obtained from this procedure does not depend on the particular plane
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chosen for the projection. Thanks to this peculiarity, the modified projection method is a powerful
tool to numerically compute the Lk.

The link diagram representation makes immediately understandable some more linking number
properties:

1. two chiral enantiomers have opposite Lk;

2. every time that a curve orientation is reversed, the linking number changes its sign.

3. Whenever two curves are not entangled, their Lk is 0. However, this is not a necessary
condition: there exist also intertwined curves whose Lk = 0.

Figure 3.3: On the left: the Whitehead link is an example of intertwined curves whose Lk = 0.
The crossings signs has been assigned according to the usual right hand rule. On the right: two
chiral enantiomers with opposite linking number ±2. In both images the crossings of a curve with
itself (irrelevant for Lk calculation) are indicated with red arrows. Images adapted from [4, 9].

3.2.2 Superhelical density

The descriptors previously introduced can be used to quantify the supercoiling level of DNA. As
already mentioned in Chapter 2, the DNA double helix makes a full turn around its own axis
every 10.4 base pairs when it is torsionally relaxed. Moreover, for closed chains, the configuration
which minimizes also the bending energy is the circular planar one. Such energetically relaxed
configuration could be taken as reference for the supercoiling characterization, and its linking
number is denoted as Lk0 (if the molecule length is an integer multiple of 10.4). Given another
arbitrary unknotted configuration with linking number Lk, we define the quantity

∆Lk = Lk − Lk0 = Lk − Tw0

and the so-called superhelical density

σ =
∆Lk

Lk0

For DNA modeling, one usually adopts the convention for which the two strands are oriented in a
parallel fashion. In this way, the linking number Lk is always positive, and the supercoiling sign
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corresponds to that of ∆Lk. In particular, coming back to the example of the previous subsection,
under-twisting (nextra < 0) will produce negative supercoiling σ = − |nextra|n (as in Figure 3.2, where
σ = − 1

n). Viceversa, positive supercoiling σ = nextra
n will result from over-twisting (nextra > 0).

3.3 Supercoiled knotted configurations

The examples presented so far involved DNA duplex configurations with an helical axis topologically
equivalent to the unknot 01, i.e. that can be flattened into a planar ring. In this case, the
reference Lk0 refers to a planar configuration with Wr0 = 0, so that Lk0 = Tw0. The supercoiling
level evaluation for knotted conformations requires more care. Before dealing with the proper
supercoiling quantification, the ideal knot concept should be introduced.

3.3.1 Ideal knots

The ideal knot is a particular geometrical realization of a knot species which can be obtained by
replacing the knot curve with a cylindrical tube, and increasing its thickness while keeping the axial
length constant. The axial shape will be deformed in order to allow the maximal uniform inflation
of the cylindrical tube without making the surface singular, or self-intersecting. In this way, one
gets the knotted tube configuration which maximizes the volume-to-surface ratio. Moreover, the
ideal shape does not depend on the spatial scale, and ideal knots of different axial length share the
same axial length to tube diameter ratio.

Figure 3.4: On the left: representation of an ideal knots selection. All the knots are characterized
by the same axial length and it is immediate to notice that their compaction decreases with the knot
complexity. These ideal configurations have been obtained by means of Monte Carlo simulations
[13]. On the right: a table summarizing some of the ideal conformations main properties, like axis
length to tube diameter ratio, writhe and ACN. Image and table adapted from [13].
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The writhe of an ideal configuration, sometimes called intrinsic writhe of the knot, is a crucial
quantity to be taken into account for the supercoiling quantification of a knotted DNA duplex,
as better explained in the next subsection. Notice from Figure 3.4 that almost all knot species
have a non zero intrinsic writhe due to the presence of topologically intrinsic crossings in all the
projections.

3.3.2 Supercoiling evaluation

A way to assign the Lk excess due to supercoiling to an arbitrary closed double stranded DNA
configuration is explained in what follows. This quantity does not change during the dynamical
evolution: indeed, due to self-avoidance, the molecule topology is preserved.
Consider the case of a torsionally relaxed chain, which can be modeled with a WLC (worm-like-
chain) Hamiltonian with excluded volume. The torsionally relaxed ensemble is characterized by an
average writhe equal to that of the ideal configuration with the corresponding topology. For this
reason, to evaluate the supercoiling level of an arbitrary knot species (included the unknot) it is
reasonable to consider the torsionally relaxed chain with ideal geometry as a reference configuration.
As already mentioned, being the 01 ideal writhe Wr0 = 0, for arbitrary unknotted geometries one
has

∆Lk = Lk − Tw0 = Lk − L

p
(3.1)

with L the DNA length and p the DNA pitch. Notice that for a planar ring whose length is not
multiple of 10.4 base pairs, it is necessary to add a deficit/excess of twist to close the molecule,
since the Lk must be an integer. For non trivial knots, the intrinsic writhe (see Figure 3.4) comes
into play as described in the following example.

Figure 3.5: A DNA duplex whose helical axis geometry is the one of an ideal left-handed trefoil 3L1 .
Image adapted from [33].

Consider a DNA double strand whose helical axis assumes an arbitrary geometry topologically
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equivalent to 3L1 trefoil knot and whose axial length is n times the DNA pitch. Its supercoiling level
can be quantified with the effective ∆Lk (∆Lke) [5], which is the difference between the actual
molecule Lk and (Tw0 +Wr0) of the reference configuration:

∆Lke = Lk − Tw0 −Wr0 = ∆Lk −Wr0

The corresponding superhelical density will be:

σ =
∆Lke
Tw0

Notice that we did not call Tw0 +Wr0 of the reference configuration a proper linking number since
it may be a non integer value (in particular, in our example Tw0+Wr0 = n−3.41). This means that
a DNA duplex of length L = np, with an ideal left-handed trefoil geometry and minimum torsional
energy cannot be exactly torsionally relaxed, and a deficit/excess of supercoiling is necessary to
close the molecule. However, one may find in principle an appropriate length such that the ideal
knotted configuration with the minimum twisting energy is perfectly torsionally relaxed. Such a
length varies with the knot species because of their different intrinsic writhe Wr0. So, the possibility
to have an ideal torsionally relaxed DNA duplex depends on the interplay between intrinsic writhe
of the correspondent topology and axial length.

3.4 Topoisomerases action

With the formalism described in the previous sections the topoisomerases action can be better
quantified. The swiveling mechanism induced by type IB topoisomerases corresponds to take a
point φ(t0) on the curve representing one backbone, imagine to cut the curve in that point and let
it rotate around the axis α before to reseal it in the same point φ(t0). This process results in a
twist variation ∆Tw equal to the number of turns occurred, and it leaves the writhe Wr unaltered
since the helical axis α does not undergo any appreciable deformation, so ∆Lk = ∆Tw.
The typeIA topoisomerases action, which releases torsional strain thanks to the strand passage
mechanism, results in an increasing/decreasing of the helical turns number by 1 unit. Again, the
molecule writhe is practically unchanged at the end of this process, and ∆Lk = ∆Tw = ±1.

Conversely, the cross inversion mechanism typical of type II topoisomerases changes the writhe
by approximately 2 units (∆Wr ≈ ±2), whereas the twist stays almost still (∆Tw ≈ 0). This
happens because after a double strand passage a positive crossing is replaced by a negative one or
viceversa. The linking number variation is given by ∆Lk = ±2.
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Chapter 4

Supercoiled knotted DNA: recent
experimental findings

4.1 Experimental assessment of DNA knots presence

As already said in the previous chapters, the activity of type II topoisomerases is not only able to
modify the molecule supercoiling level, but also the topology of closed DNA chains. In particular,
whenever a strand-passage involves two different molecules, they can be catenated (or decatenated,
as often happens for newly replicated DNA chains). Instead, in case of intra-molecular DNA pas-
sages, a closed DNA molecule can be knotted/unknotted.

Only recently this knotting/unknotting activity of type-2A topoisomerases has been studied
in vivo in eukaryotic organisms, particularly in yeast circular minichromosomes [28]. It turned
out that a steady state fraction of DNA molecules is kept in knotted configurations. The role of
topoisomerase IIA and its regular activity is thought to be a crucial element in the preservation
of such a steady state fraction. This belief is corroborated by some previous experiments with
bacterial plasmids from Escherichia coli strains carrying gyrase gene mutations, which showed an
increased production of knotted chains [23, 12].

Electrophoretic characterization A common experimental method to separate DNA molecules
on the basis of their size is the gel electrophoresis. DNA samples are loaded in some wells placed at
one extremity of a gel (usually agarose) and an electric field is turned on. Since DNA molecules are
negatively charged, they start to migrate along the gel (passing through its pores) with a velocity
correlated to their size: in particular, smaller DNA molecules will move faster. At the end of this
procedure, the DNA chains will be divided in bands. The addition of a DNA-binding dye allows
the visualization of such bands when they are exposed to UV radiation.

4.2 Knots complexity and migration velocity

The electrophoresis technique can be used to assess the presence of knots in circular DNA molecules.
Indeed, knots are expected to make the DNA chains more compact, favoring their passage through
the agarose gel pores and so increasing their migration velocity. Electrophoretic characterizations
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of knotted circular DNA (prepared in vitro) have been done for bacterial plasmids of length 4.4
kbp after their reaction with an excess of topoisomerase II [28]. However, in order to get a merely
topological information, one has to get rid of the effects introduced by the supercoiling: for that
reason all the samples have been also reacted with nicking endonuclease. In this way the molecules
can dissipate all the torsional energy, thanks to a rotation of the broken strand around the intact
one.

Figure 4.1: On the left: one-dimensional gel electrophoresis with nicked bacterial plasmids of 4.4
kbp. Before the reaction with a molar excess of topo II, only unknotted (N) and linear (L) molecules
are present (lane 1). After the reaction (lane 2), a knots ladder (Kn) appears. As can be evinced
from the bands thickness and brightness, the population of a certain knot type decreases with its
complexity. Moreover, since a low voltage is applied, the distance in the gel is proportional to the
knot complexity and compaction. On the right: high resolution two-dimensional electrophoresis on
the same samples. A higher voltage is applied in the left-to-right direction in order to retard the
knot species compared to the linear fragments. The crossing number of each knot type is reported
on the right. Image adapted from [28].

The application of a low voltage in the top-to-bottom direction causes the desired separation,
and a knots ladder appears in the gel (see the left part of Figure 4.1). This suggests that the migra-
tion velocity of a knot species depends on its topological complexity. In particular, as the average
crossing number of a knot species increases, it will move faster along the gel. This behavior has
been further confirmed by numerical Monte Carlo simulations that show a linear relation between
ACN and migration velocity [24].

However, with a simple one dimensional electrophoresis, the knot identification might be a
bit difficult for samples made by DNA mixtures containing also linear DNA fragments. In this
case, the band corresponding to the linear molecules may overlap with those of the various knot
species. To solve this ambiguity, a higher voltage can be applied in the horizontal direction to help
the knots bands identification (see the right part of Figure 4.1 representing the two-dimensional
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electrophoresis result). This strategy is based on the fact that when knotted molecules undergo
a higher electric field, they can migrate more slowly than the linear ones, despite their greater
complexity and compaction [26] (see Figure 4.2). Probably, this is due to the linear fragments
higher flexibility and capability to adapt their shape to pass through the gel pores, which favor
reptation effects and consequently the molecules migration.

Figure 4.2: Effect of the applied electric field on the electrophoretic migration of DNA samples
obtained by bacteriophage P4 capsid. Lane 1: sample with no additional treatment after the
extraction. Lane 2: sample heated to 75◦C. Lane 3: sample treated with nicking endonuclease.
Lane 4: sample treated with topoisomerases II. The one-dimensional electrophoresis on the left has
been performed at low voltage (25V for 20h), whereas the one on the right at high voltage (100V
for 1h). From a comparison of the two cases it emerges that, despite their greater compaction,
knotted configurations can migrate more slowly than linear fragments when the applied voltage is
high. Image adapted from [26].

4.3 Knots occurence in eukaryotic chromatin

Various circular minichromosomes of different length present in yeast cells have been analyzed to
evaluate their knotting probability (e.g. the 4.4 kbp YRp4) [28]. In order to avoid topological vari-
ation during their extraction and manipulations, the minichromosomes topology has been fixed in
vivo before the harvest by inhibiting the topoisomerases action. A further treatment with nicking
endonuclease allowed the DNA molecules to relax their supercoiling before to be loaded in the gel.
A high resolution two-dimensional electrophoresis with low-high voltage showed a bands separation
similar to that of the bacterial plasmids characterization described in the previous subsection. To
confirm that the bands ladder was populated by knots of increasing complexity, the same sample
has been treated separately with topo I and topo II and the same experiment has been conducted
a second time (see Figure 4.3). In the first case, no appreciable differences emerged. Conversely,
the reaction with topo II simplified the knot topology and most of the original bands disappeared
from the gel.
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An interesting aspect that has been examined is the knotting probability scaling with the
chromatin length. Numerical simulations and knots occurrence in bacterial plasmids due to the
topo II activity in vitro suggested that the knotting probability should increase with the DNA
molecule length. On the other hand, the curve obtained from the electrophoretic experiments with
yeast circular minichromosomes shows a saturation of the knotting probability to a value between
0.02 and 0.03 (see Figure 4.3). Tentative explanations for this phenomenon are related to variations
in topo II unknotting efficiency and/or in chromatin packaging as the nucleosomal fibers length
increases.

Figure 4.3: On the left: high resolution two-dimensional electrophoresis at low-high voltage with
yeast minichromosomes YRp4 (4.4 kbp) after their reaction with topo I (lane 1) and topo II (lane
2). The bands disappearance in the lane 2 confirmed that the ladder was populated by knot species
(labeled with their crossing number). Central plot: knotting probability vs DNA length profiles
relative to trefoils (green), more complex knots with crossing number > 3 (red) and their sum
(black). As the chromatin length increases, the curves saturate to a stationary value. On the
right: knot probability for various knot species. A colors legend is reported to distinguish the
minichromosomes types. Image adapted from [28].

4.4 DNA knots chirality

As described in the previous section, nicked DNA molecules with different topology can be sep-
arated during gel electrophoresis experiments since their compaction is strictly related to their
topological complexity. However, the same method is not suitable to distinguish chiral enantiomers
of the same knot type. Indeed, once nicked, they become mirror images and thus they exhibit the
same compaction.

Chiral enantiomers can be experimentally recognized by means of two main techniques. The
first one uses electron microscopy to visualize the crossings sign, a delicate procedure which is often
not viable because it requires the sample purification and coating with proteins [15]. Alternatively,
Shaw and Wang [22] found that, for trefoil knots, a coupling between knot handedness and super-
coiling can result in a slightly different gel migration velocity for the positive- and negative-noded
forms. Also this analysis needs the nicked molecules to be purified before the supercoiling addi-
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tion and resealing, making the processing of samples with a reduced knotted fraction more difficult.

Figure 4.4: Trefoils doublets separation with one-dimensional gel electrophoresis. On the left:
knotted supercoiled configuration of a 5.6 kbp DNA plasmid obtained by cyclization in diverse
reaction conditions (lanes 1 and 2) or after a treatment with molar excess of topo II (lane 3).
Image from [22]. On the right: trefoil enantiomers separation obtained with YRp4 plasmid (4.4
kbp). Image from [27].

More recently, Roca et al. [27] improved the method proposed by Shaw and Wang perform-
ing high resolution two-dimensional electrophoresis on supercoiled molecules. The top to bottom
direction is used to separate the various species according to their supercoiling level. Although at
this stage the two enantiomers are already resolved into doublets, they are masked by other DNA
molecules presents in the mixture (e.g. supercoiled unknotted circles). To tackle this problem,
an appropriate concentration of chloroquine can been added in the left to right direction. The
intercalator positioning between base pairs induces a double helix unwinding (twist reduction) that
is compensated by a writhe increasing. In this way, the molecular compaction effect induced by
negative supercoiling can be reduced, but not that due to the knotting. Thus, after the chloro-
quine addition, unknots and trefoils change their migration velocity to different extents, and the
enantiomers doublets can be properly isolated.
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Chapter 5

Methodology and Statistical Physics
model

5.1 DNA Coarse Grained Model

The purpose of this section is to present the coarse grained model we implemented to study the
systems involved in the phenomenology presented in Chapter 4. In particular, we aimed to describe
4.4 kbp circular dsDNA molecules (for a better comparison with the experimental results in [28, 27]).
The DNA filament has been treated as an elastic rod, modeled with a chain of N = 150 beads
connected by cylindrical segments. Beads positions will be denoted with the vectors {ri}i=1...N

and the segments between them with {bi = ri+1 − ri}i=1...N . Notice that in order to fulfill the
closed chain boundary conditions, we need to enforce rN+1 ≡ r1. With the coarse graining level we
chose, each segment is supposed to represent the equivalent of ≈ 30 nucleotides. Moreover, since
no information regarding the nitrogenous basis has been added, the model is not able to capture
any sequence dependent effect.

Figure 5.1: Closed DNA molecule modeled as an elastic rod made by N = 150 cylindrical segments.

To simulate the system mechanical properties, the following contributions to the Hamiltonian
have been taken into account: stretching energy Hs, bending energy Hb, excluded volume interac-
tions Hev, torsional energy Ht. Thus, the total Hamiltonian of our model reads:

Htot = Hs +Hb +Hev +Ht (5.1)
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The expression (as reduced Hamiltonian βH that directly appears in the Boltzmann weight) and
description of each term are given in the following subsections.

5.1.1 Stretching

With the stretching term Hs we regulated the extent to which each segment was able to change
its length when subject to thermal fluctuations. Being the distance between consecutive base pairs
0.34 nm, the segment length at rest is given by 0.34 · 4400

150 ≈ 10 nm. We denote this length with
b0. In order to prevent too pronounced contour length and segments variations, a FENE potential
with both quadratic and quartic terms has been used. If we indicate with

ρi =
||ri+1 − ri|| − b0

∆b0
=
||bi|| − b0

∆b0
(5.2)

the relative bond fluctuation, our stretching energy Hs is described by the following expression:

βHs({ri}i=1...N ) = κs

N∑
i=1

(ρ2
i + ρ4

i ) (5.3)

with κs the stretching stiffness, β = 1
KbT

the inverse temperature and ∆b0 the bond fluctuation
parameter. We looked at [6] to set these phenomenological parameters, and we finally assigned the
values κs = 10 and ∆b0 = 0.1b0.

5.1.2 Bending

A bending potential has been introduced to take into account the semi-flexible behavior of DNA.
For each couple of consecutive segments i and i + 1, the bending energy depends on the angle θi
between bi and bi+1. If we denote with ui (called bond in the following) the normalized versor
along bi, the bending energy reads

βHb({ri}i=1...N ) = −κb
N∑
i=1

ui · ui+1 = −κb
N∑
i=1

cos(θi) (5.4)

with κb the bending stiffness. For semi-flexible chains the angles θi are usually quite small, and
expanding cos(θi) to second order is a good approximation. In that case, one obtains the harmonic
potential

βHb({ri}i=1...N ) = −κb
N∑
i=1

(1− θ2
i

2
) = −κbN +

κb
2

N∑
i=1

θ2
i (5.5)

with the constant term usually omitted. The bending stiffness parameter has been set to κb = 5 in
such away to reproduce the DNA bending persistence length (which is estimated to be around ≈ 50
nm at 0.1 M salt concentration). The relation between bending persistence length and stiffness
parameter is given in Appendix B.
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5.1.3 Excluded volume

To avoid configurations in which two portions of the chain overlap with each other, we added an
excluded volume contribution Hev to the Hamiltonian, assigning infinite energy to all the forbidden
configurations and zero energy to the admitted ones. Explicitly,

βHev({ri}i=1...N ) =

{
0 if

∑N−1
j=3 I[d(b1, bj) > σ] +

∑N−2
i=2

∑N
j=i+2 I[d(bi, bj) > σ] = (N−3)N

2

+∞ if
∑N−1

j=3 I[d(b1, bj) > σ] +
∑N−2

i=2

∑N
j=i+2 I[d(bi, bj) > σ] < (N−3)N

2

(5.6)
where d(bi, bj) is the distance between the segments i and j, σ is the DNA duplex thickness and
I[·] the indicator function that returns 1 if the condition is true and 0 otherwise.

5.1.4 Torsion

Taking into account the torsion is a bit more delicate and requires the introduction of new degrees
of freedom. As already done by Allison et al.[2], Chirico and Langowski [6], we associated to
each bead i a body fixed coordinate system (bfc) Σi = {fi,vi,ui}. The vectors {ui}i=1...N are
the bonds previously described, whereas {fi}i=1...N and {vi}i=1...N are perpendicular unit vectors
called respectively normals and binormals. In this way, a molecular configuration will involve 9N
variables: 3N are given by {ri}i=1...N and 6N by {fi,vi,ui}i=1...N since they are all unit vectors.
At the same time, they must satisfy the following constraint equations

ui = ri+1−ri
||ri+1−ri|| 2N constraints

vi = ui ∧ fi 2N constraints

fi · ui = 0 N constraints

(5.7)

so that the number of degrees of freedom reduces to 9N − 5N = 4N . The new N d.o.f. are related
to the twisting of each body fixed coordinate system around its bond ui, and will be described in
the following by the set of angles {φi}i=1...N .

To analyze the different orientation of two consecutive coordinate systems we considered the
Euler transformations defined by the three angles (αi, βi, γi) (see Figure 5.2). In particular, given
the coordinate system Σi written as a matrix whose columns are the vectors {fi,vi,ui} represented
in the canonical basis {ex, ey, ez} of the laboratory reference frame, we have

Σi+1 = Σi ·E(αi, βi, γi) (5.8)

with E(αi, βi, γi) the matrix representation of the Euler transformation

E(αi, βi, γi) =

∣∣∣∣∣∣
c(αi)c(βi)c(γi)− s(αi)s(γi) −c(αi)c(βi)s(γi)− s(αi)c(γi) c(αi)s(βi)
s(αi)c(βi)c(γi) + c(αi)s(γi) −s(αi)c(βi)s(γi) + c(αi)c(γi) s(αi)s(βi)

−s(βi)c(γi) s(γi)s(βi) c(βi)

∣∣∣∣∣∣ (5.9)

where c(·) and s(·) are just a shortcut notation for cos(·) and sin(·) functions. By looking at the
Figure 5.2 one can readily see that the Euler angle βi is nothing else than the bending angle that
we called θi in the subsection 5.1.2. On the other hand, the angle αi + γi quantifies how much

44



Figure 5.2: Euler transformation bringing the coordinate system xyz into coincidence with XY Z.
The transformation can be decomposed into three elementary steps. First, xyz is rotated by α
around the z axis. Then, the new coordinate system is rotated by β around N = z ∧ Z, the
common perpendicular to z and Z. Finally, the obtained system is rotated by γ around Z. See
‘Other sources’ for the image reference.

the coordinate system Σi has been twisted around its own bond ui before to coincide with Σi+1.
Given a molecular configuration with known vectors {ri,fi,vi,ui}i=1...N , such twisting angle can
be computed from {

cos(αi + γi) cos2(βi2 ) = 1
2(fi+1 · fi + vi+1 · vi)

sin(αi + γi) cos2(βi2 ) = 1
2(fi+1 · vi − vi+1 · fi)

(5.10)

To conclude, we modeled the torsional energy contribution Ht({αi, γi}i=1...N ) as that of an harmonic
potential

βHt({αi, γi}i=1...N ) =
κt
2

N∑
i=1

(αi + γi)
2 (5.11)

with κt the torsional stiffness parameter. After a comparison with [6] we set κt = 6.

5.2 Geometric observables

To attempt a better quantification of the phenomenology presented in Chapter 4, we decided to
assess the compaction and shape of both knotted and unknotted molecules, with and without
supercoiling. To do that, we focus our attention on the geometrical observables described in what
follows.
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5.2.1 Gyration radius and tensor

The gyration radius is a rather common quantity in polymer physics, and it is supposed to give an
idea of a polymer typical spatial size. It is defined as

R2
g =

1

N

N∑
i=1

(ri − rCM )2 (5.12)

where rCM is the center of mass position (all beads are assumed to have unitary mass):

rCM =
1

N

N∑
i=1

ri (5.13)

The gyration radius is proportional to the root mean square distance between two monomers, as
shown by the alternative formula

R2
g =

1

2N2

N∑
i=1

N∑
j=1

(ri − rj)2 (5.14)

proved in the Appendix B. A more general quantity to describe the molecule spatial arrangement
is the gyration tensor S, defined as

Smn =
1

N

N∑
i=1

(ri,m − rCM,m)(ri,n − rCM,n) (5.15)

with m,n ∈ {x, y, z} and ri,m the component along the m axis of ri. Since the gyration tensor S
is real and symmetric, it can always be diagonalized

S = RΛRT (5.16)

with R orthogonal and Λ the diagonal matrix

Λ =

λ2
1 0 0

0 λ2
2 0

0 0 λ2
3

 (5.17)

The columns of R provide the principal axis of the molecule, while the eigenvalues λ2
1 ≥ λ2

2 ≥ λ2
3

are its principal moments. Moreover, since the tensor trace is invariant under change of basis, the
eigenvalues sum gives the molecule gyration radius

R2
g = λ2

1 + λ2
2 + λ2

3 (5.18)

5.2.2 Anisotropy and asphericity

To characterize polymer asphericity b and anisotropy κ we used shape measures proposed by [25].
In particular, both of them are defined as a function of the molecule principal moments. The
asphericity

b = λ2
1 −

1

2
(λ2

2 + λ2
3) (5.19)
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assumes low values whenever the beads spatial distribution is symmetric with respect to the prin-
cipal axis. The relative shape anisotropy, instead, is bounded between [0, 1] and is defined as

κ =
3

2

λ4
1 + λ4

2 + λ4
3

(λ2
1 + λ2

2 + λ2
3)2
− 1

2
(5.20)

5.3 Monte Carlo Sampling

The configurational space of our DNA closed chain at canonical equilibrium has been sampled
through Monte Carlo simulations. Once initialized in a starting configuration γ0, the system un-
dergoes a state transition at each time step, defining a stochastic markovian process. The transition
probability from a state γi ∈ Γ to a state γj ∈ Γ is given by the matrix element Πγi→γj , with Γ the
set of all possible system configurations. Let us define with

p(t) =



p(γ1, t)
p(γ2, t)

.

.

.
p(γ|Γ|, t)




|Γ| elements (5.21)

the vectors whose ith element is the probability to find the system in γi at time t and with

Π|Γ|×|Γ| =



Πγ1→γ1 Πγ2→γ1 . . . Πγ|Γ|→γ1

Πγ1→γ2 Πγ2→γ2 .
. . .
. . .
. . .

Πγ1→γ|Γ| . . . . Πγ|Γ|→γ|Γ|

 (5.22)

the stochastic matrix (normalized along the columns) containing the transition probabilities. In
this way, the probability vector evolution with time can be simply expressed in matrix form

pt+1 = Π · pt = Πt+1 · p0 (5.23)

From this equation, one can write

p(γ, t+ 1) =
∑
α∈Γ

p(α, t)Πα→γ =
∑
α 6=γ

p(α, t)Πα→γ + p(γ, t)Πγ→γ =

=
∑
α 6=γ

p(α, t)Πα→γ + p(γ, t)−
∑
α 6=γ

p(γ, t)Πγ→α
(5.24)

As the time increases, the state probabilities p(γ, t) tend to reach a stationary value pst(γ) if the
following balance condition holds∑

α∈Γ

pst(α)Πα→γ =
∑
α∈Γ

pst(γ)Πγ→α (5.25)
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One way to fulfill this equation is to separately equate the probability fluxes of each couple of states
involved in the sum, namely

pst(α)Πα→γ = pst(γ)Πγ→α ∀α (5.26)

This more restrictive condition, satisfied for system at equilibrium, is called detailed balance.
Usually, the transition probability Πγ→α is expressed as the product of a proposal term Tγ→α and
an acceptance term Aγ→α. Being our target equilibrium distribution the Boltzmann one

pst(γ) =
e−βH(γ)

Z
(5.27)

the Eq. 5.26 can be rewritten as:

Aα→γ
Aγ→α

=
Tγ→α
Tα→γ

e−β(H(γ)−H(α)) (5.28)

A common choice to verify Eq. 5.28, and so the detailed balance condition, is the well known
Metropolis-Hastings criterion. This corresponds to choose the acceptance probabilities in the fol-
lowing way

Aγ→α = min

(
1,
Tα→γ
Tγ→α

e−β(H(α)−H(γ))

)
(5.29)

In the particular case of symmetric proposals, the previous expression reduces to

Aγ→α = min

(
1, e−β(H(α)−H(γ))

)
(5.30)

From the algorithmic point of view, the sampling is performed by stochastically proposing a tran-
sition from the actual configuration γold to a trial configuration γtrial, drawing a random number
x ∈ [0, 1] and accepting γtrial only if

x <
Tγtrial→γold
Tγold→γtrial

e−β(H(γtrial)−H(γold)) (5.31)

Whenever this inequality is not satisfied, the trial configuration is discarded and the system stays
in γold.

5.3.1 Type of moves

The trial configuration proposal has been divided in two steps: a local cartesian displacement δri
of a randomly chosen bead i and the subsequent rotation δφi of its body fixed coordinate system
around its bond. Both δri and δφi are stochastically extracted from a uniform distribution with
a suitably tuned support, and the way they affect the molecular configuration is described in the
following. For clarity, they are treated separately.
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Cartesian displacement δri: Let us denote with (ri,fi,vi,ui) the vectors relative to the ith

bead in the actual state, and with (r
(1)
i ,f

(1)
i ,v

(1)
i ,u

(1)
i ) the same vectors after the first step of the

trial transition. In particular r
(1)
i and u

(1)
i can be readily computedr

(1)
i = ri + δri

u
(1)
i =

ri+1−r
(1)
i

||ri+1−r
(1)
i ||

(5.32)

To update the remaining vectors, let us define the angle σ as

cos(σ) = ui · u(1)
i (5.33)

and the unit vector k̂ perpendicular to both ui and u
(1)
i :

k̂ =
ui ∧ u(1)

i

||ui ∧ u(1)
i ||

(5.34)

The vectors f
(1)
i and v

(1)
i can be obtained by rotating fi and vi about k̂ by the angle σ. To do so,

one can build the matrix

K =

 0 −kz ky
kz 0 −kx
−ky kx 0

 (5.35)

and apply the Rodrigues’ rotation formula

f
(1)
i =

(
I + sin(σ)K + (1− cos(σ))K2

)
fi (5.36)

The vector v
(1)
i can be computed either by applying the same transformation to vi or, more simply,

from the external product v
(1)
i = u

(1)
i ∧ f

(1)
i . An equivalent formula to perform the same rotation

is given by

f
(1)
i = cos(σ)fi + (1− cos(σ))(k̂ · fi)k̂ + sin(σ)(k̂ ∧ fi) (5.37)

Notice that even though we did not perform the rotation of Σ
(1)
i around u

(1)
i yet, the ith and (i+1)th

twisting angles may already be changed at this stage.

Rotation δφi: As anticipated, the second step involve a rotation of the ith bfc about the bond

u
(1)
i by a randomly extracted angle δφi. The vectors corresponding to the final trial configuration,

indicated with (r
(2)
i ,f

(2)
i ,v

(2)
i ,u

(2)
i ), can be computed in this way

r
(2)
i = r

(1)
i

u
(2)
i = u

(1)
i

f
(2)
i = cos(δφi)f

(1)
i + (1− cos(δφi))(u

(1)
i · f

(1)
i )u

(1)
i + sin(δφi)(u

(1)
i ∧ f

(1)
i )

v
(2)
i = u

(2)
i ∧ f

(2)
i

(5.38)

where the Rodrigues’ rotation formula has been applied again to find f
(2)
i . Notice that since the

rotation axis k̂ and u
(1)
i are perpendicular to each other, the moves proposal is symmetric and the
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Eq. 5.30 holds.
Alternatively to the cartesian displacement, one could implement the so called crankshaft move to
vary the molecule geometry. It consists in randomly selecting two beads i and j and rotating the
sub-chain in between about the axis determined by rj − ri by a stochastic angle. Although this
global approach would allow to propose significantly modified trial configurations, it may result in
an excessively high rejection ratio.

Figure 5.3: Supercoiled unknotted configuration with three clearly visible plectonemic structures.

The main reason that leads us to prefer local cartesian displacements is that the mentioned
drawback would be enhanced by the fact that we deals with supercoiled molecules that exhibits
plectonemes (see Figure 5.3). These highly wound superhelical structures are quite compact and
crankshaft moves would be very likely rejected because of excluded volume interaction violations.

5.3.2 Autocorrelation time

In general, analysis involving Monte Carlo Markov Chains (MCMC) can help the expectation value
computation of observables relevant to the problem under study. Given a certain observable f , its
statistical average corresponds to

< f >p=

∫
Γ
f(γ)p(γ) dγ (5.39)

with Γ the system configurational space and p(γ) the statistical weight of γ. If one was able to
sample a sequence of independent configurations γ1, γ2, ..., γN from p(γ), the statistical average
< f >p would be approximated by the estimator

f̂ =
1

N

N∑
i=1

f(γi) (5.40)

Indeed, the random variable f̂ has average < f >p and variance that decreases as N gets larger.
However, since the MCMC provides a sequence of correlated states, one needs to evaluate how many
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steps are required to consider the random variables f(γi) and f(γi+t) as practically independent.
To address this problem, one can compute the autocorrelation function

C(t) =< (fi− < f >p(γi))(fi+t− < f >p(γi+t)) >p(γi,γi+t) (5.41)

which, at equilibrium, is actually independent of i due to the time translational invariance. The
autocorrelation function asymptotic behavior for large t is usually given by an exponential decay

C(t)
t→∞∼ exp

(
− t

τ

)
(5.42)

where τ is called the autocorrelation time. From an algorithmic point of view, a fist approximation
of the autocorrelation function can be given by the estimator

Ĉ1(t) =
1

N − t

N−t∑
i=1

(fi − f̂)(fi+t − f̂) (5.43)

This expression relies on the previously mentioned time translational invariance but it does not
take into account the initial burn-in required by the MCMC to reach the equilibrium distribution.
So, as a rule of thumb, one can discard a number of initial configurations comparable to the
autocorrelation time τ1 found with Ĉ1(t), and compute again the estimator

Ĉ(t) =
1

N − t− τ1

N−t∑
i=τ1+1

(fi − f̂)(fi+t − f̂) (5.44)

Figure 5.4: Gyration radius autocorrelation functions ĈRg(t) of knotted/unknotted super-
coiled/nicked configurations. A unit in the lag time axis corresponds to 107 Monte Carlo steps.
As the lag time increases, oscillations become wider due to the reduced number of elements in the
sum 5.44.
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5.3.3 Tuning the moves amplitude

To perform the cartesian displacement δri we uniformly extracted a random point from a cube
centered in ri with edges length A. The A magnitude has been established by considering the two
following aspects:

1. If big A values would enlarge the configurational space region potentially reachable from a
certain state γold with a single move, they could also considerably increase the rejection ratio
because of the higher (on average) energy difference between γold and γtrial. For this reason,
too high A values would induce an increasing of the autocorrelation time. On the other hand,
although generally accepted, too small variations between γold and γtrial would also slow down
the system decorrelation. Thus, the autocorrelation time minimum has been obtained with
the compromise value A = 0.1 · b0.

2. Fortunately, the same moves amplitude that minimized the system autocorrelation was al-
ready suitable to prevent strand passages to occur. In this way, chain topology variations
were disallowed and the Lk conservation was guaranteed.

5.4 Validation of the model

Tangent-tangent correlation for planar rings Let us consider a DNA planar ring confined
in two dimensions characterized by a low flexibility ratio χ = L

lp
. In these conditions, an analytical

expression for the tangent-tangent correlation function G(s) (see Appendix B for G(s) definition)
has been derived by Sakaue et al. [21]:

Figure 5.5: Comparison between the tangent-tangent correlation G(s) obtained with our model
(green marker) and the one predicted by the analytical expression 5.45 (blue curve), for a DNA
two-dimensional closed ring with flexibility ratio χ = 4. The curvilinear coordinate s is expressed
in simulation units, obtained dividing every length measure by b0 = 10 nm.
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G(s) =

[
1 +

L

2π2lp

(
g

(
2πs

L

)
− g(0)

)]
cos

(
2πs

L

)
(5.45)

with

g(z) =
(π − z)2

4
− π2

12
− cos(z) (5.46)

As one approaches the infinitely stiff regime χ = 0, the function G(s) tends to

G(s)
χ→0−−−→ cos

(
2πs

L

)
(5.47)

which is indeed the case of a perfectly circular molecule. Increasing the DNA flexibility, the ex-
pression has shown to be in excellent agreement with the numerical simulations and experiments
up to χ ' 6, but then it lose its precision. Notice that the G(s) function no longer depends on the
index i because of the translational invariance introduced by the curve closure.

To validate our model, we simulated a two-dimensional ring in stiff regime χ = 4 with the torsional
contribution turned off, and we compared the numerically obtained tangent-tangent correlation to
the one predicted by Eq. 5.45 (see Figure 5.5).

Torsional stiffness in planar rings To further validate our model and methods we simulated
a rigid circular planar ring at canonical equilibrium with only twisting energy, and we computed
its f -vectors correlation

Figure 5.6: f -vectors correlation for different values of the torsional stiffness parameter κt. The
characteristic length of the initial decay is related to the torsional persistence length. The curvi-
linear coordinate is expressed in simulation unit.

Ti(s) =< fi · fi+s > (5.48)

For moderate values of torsional stiffness, the ring local behavior (in terms of f -vectors orientation
memory) cannot differ too much from that of a rigid linear chain. For that reason, to derive a
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relationship between the stiffness parameter κt and the characteristic length of the curves decay in
Figure 5.6, we use the following model

H({fi}i=1...N ) = −κt
β

N−1∑
i=1

fi · fi+1 (5.49)

For calculations convenience, let the couplings temporarily depend on the chain sites. The partition
function reads:

Z =

N∏
i=1

∫ π

−π
dωi

N−1∏
j=1

eβJj cos(ωj) = 2π

N−1∏
i=1

2π I0(βJi) (5.50)

with

I0(x) =
1

2π

∫ π

−π
ex cos θdθ (5.51)

the first kind modified Bessel function of order 0. Similarly to the tangent-tangent correlation in
Appendix B, we can compute T (s) as

Ti(1) =
1

β

∂ lnZ

∂Ji
=

1

I0(βJi)

∂I0(βJi)

∂(βJi)

Ti(s) =
i+s−1∏
k=i

Tk(1) =
i+s−1∏
k=i

1

I0(βJk)

∂I0(βJk)

∂(βJk)

(5.52)

Imposing again Ji = κt
β ∀i, rearranging Ti(s) in exponential form and defining the modified Bessel

Figure 5.7: Relation between torsional persistence length lp,t and torsional stiffness parameter κt.
The persistence length is expressed in simulation unit.
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function of first kind and first order I1(x) = ∂I0(x)
∂x , we obtain the so called torsional persistence

length

lp,t =
b0

ln

(
I0(κt)
I1(κt)

) ' b0

ln(1 + 1
2κt

)
' 2b0κt

(5.53)

This relation has been found to be in very good agreement with the numerical data provided by
the simulations (as shown in Figure 5.7).
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Chapter 6

Results and open challenges

In recent experiments, both yeast minichromosomes and bacterial plasmids have been used to
estimate the incidence of various knot types in vivo [28, 27]. Thanks to high resolution two-
dimensional electrophoresis, different species have been separated in the gel according to their
topological complexity and chirality. Indeed, it has been shown that the molecules’ migration
velocity in the gel is affected by the knot complexity and the interplay between handedness and
supercoiling (see Figure 6.1).

Figure 6.1: High resolution two-dimensional electrophoretic characterization of 4.4 kbp bacterial
plasmids in vitro. On the left: knots separation on the basis of their topological complexity. On
the right: bands splitting into doublets due to the different migration velocity of supercoiled trefoil
enantiomers. Images from [28, 27].

In particular, the following main aspects emerged:

1. As the knot crossing number increases, the molecules migrate faster. By suitably tuning the
electric fields in vertical and horizontal directions, knotted molecules can be isolated from
linear fragments, and the knots ladder in Figure 6.1 can be obtained.

2. Trefoil knots of different handedness and approximately same supercoiling level split into
doublets. Conversely, nicked enantiomers concentrates in a single band. This means that
the coupling between chirality and supercoiling can play a role in the molecules migration
velocity.
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3. As the supercoiling level increases, molecules acquire greater migration velocities in the gel
(see the separation between different doublets in Figure 6.1).

Model and simulations With this work, we intended to give an interpretation to the set of
measurements just mentioned. Even though it is a very common experimental technique, the elec-
trophoretic migration is still not completely understood from a theoretical point of view. Indeed,
the phenomenology provided by electrophoresis experiments does not give a direct insight into the
way knotting and supercoiling affect the migration velocity and into their separated effects, which
we were able to better control with our model.
To investigate such phenomenology without simulating the molecules dynamics with an electric
field during the electrophoresis, we sampled the configurational space of molecules in bulk (outside
the gel) and we tried to ascribe the differences in migration velocities to the systems conformational
properties. In particular, we systematically profiled geometric observables as gyration radius, as-
phericity, writhe and average crossing number to characterize the molecular compaction and shape.

The species reported in Table 6.1 have been analyzed, and by properly comparing them we were
able to separately evaluate the extent to which knotting and supercoiling affect the molecule confor-
mational properties. Being mirror images of each other, only one of the nicked trefoil enantiomers

Species Number of runs Snapshots per run Dump interval Independent samples

Nicked 01 5 ≈ 38.000 107 ≈ 1300

Supercoiled 01 5 ≈ 70.000 107 ≈ 2300

Nicked 3R1 5 ≈ 30.000 107 ≈ 1000

Supercoiled 3R1 5 ≈ 46.000 107 ≈ 1500

Supercoiled 3L1 5 ≈ 38.000 107 ≈ 1300

Table 6.1: The simulated species are listed in this table, together with the duration of each run,
the number of Monte Carlo steps after which we saved a configuration (dump interval) and the
number of independent samples acquired.

Figure 6.2: Initialization of supercoiled unknot and right handed trefoil. The {fi}i=1...N , repre-
sented in blue, give the idea of how much the molecule has been twisted to obtained the desired
supercoiling level.
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has been simulated. To initialize the supercoiled species, we started from the planar ring and
the (almost) ideal trefoil configurations and we gradually twisted them by rotating the body fixed
coordinate systems along the chain up to reach the target Lk (see Figure 6.2, where also the
{fi}i=1...N vectors have been represented). For the nicked molecules, we simply removed the tor-
sional energy contribution coming from the last twisting angle αN +γN . To get a feeling of how the
various species evolved during the Monte Carlo simulations, some snapshots sequences are reported.

Supercoiled 01 (red) and nicked 01 (green):

Figure 6.3: Gyration radius time series relative to supercoiled (red) and nicked (green) 01 with
some snapshots taken at the Monte Carlo time steps corresponding to the arrows positions.
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Supercoiled 3R1 (red), supercoiled 3L1 (orange):

Figure 6.4: Gyration radius time series relative to supercoiled 3R1 with some snapshots taken at the
Monte Carlo time steps (in units of dump interval) corresponding to the arrows positions.

Figure 6.5: Gyration radius time series relative to supercoiled 3L1 with some snapshots taken at the
Monte Carlo time steps (in units of dump interval) corresponding to the arrows positions.
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Nicked 3R1 :

Figure 6.6: Gyration radius time series relative to nicked 3R1 with some snapshots taken at the
Monte Carlo time steps (in units of dump interval) corresponding to the arrows positions.

6.1 Purely topological effects

To isolate the topological contribution to the molecular compaction and shape, we compared the
nicked unknot and trefoil (as in Figure 6.1). Indeed, these species are free to dissipate their torsional
stress, which consequently does not come into play in their spatial arrangement.

Figure 6.7: Gyration radius and asphericity distributions of nicked unknot (green) and right-handed
trefoil (blue). Two typical configurations give an idea of why the knot constraint prevents the trefoil
to elongate as the unknot.

As expected, the unknotted chain can more easily assume elongated configurations with higher
Rg since it lacks the topological constraint due to the knot presence. For this reason, also its
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asphericity distribution decays much more slowly than the trefoil one, which tends to concentrate
on more compact conformations.

Figure 6.8: Writhe and average crossing number distributions of nicked unknot (green) and right-
handed trefoil (blue).

The writhe and ACN difference between the two species induced by the knot intrinsic crossings,
is reported in Figure 6.8. The constraint imposed by the knot presence affects also the distributions
variance, reducing the range of variability of Rg, asphericity and writhe for the trefoil. The analysis
of these geometrical observables is in agreement with the experimental results that show a greater
gel migration velocity for knotted DNA rings (see Figure 6.1).

6.2 Supercoiling effects

To evaluate the extent to which supercoiling affects molecular compaction and shape, we compared
both the results of nicked and supercoiled chains at fixed topology, and those of supercoiled unknot
and trefoil. The superhelical density of all species has been set to ≈ −2%, namely the value at
which experimentalists found a clearer separation between the doublet bands corresponding to
trefoil enantiomers [27]. More precisely, the ∆Lke of the various species were

∆Lke(01) = −10

∆Lke(3
L
1 ) ' −9.6

∆Lke(3
R
1 ) ' −10.4

(6.1)

where the difference between the trefoil enantiomers is due to the extra-twisting that we added to
satisfy the closure conditions.

6.2.1 Unknot topology

The plectonemic structures that appear when supercoiling is added, induce a reduction of the
molecule effective size as shown in Figure 6.9. Because of this compaction, the DNA ring tends
to populate microstates with higher spherical symmetry and the asphericity distribution becomes
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more peaked. The plectonemes superhelical arrangement and the high entanglement degree due to
supercoiling substantially contribute to increase the average crossing number (see the net separation
of the ACN distributions in Figure 6.10).

Figure 6.9: Gyration radius and asphericity distributions of nicked unknot (green) and supercoiled
unknot (blue).

Figure 6.10: Writhe and average crossing number distributions of nicked unknot (green) and su-
percoiled unknot (blue).

6.2.2 Trefoil topology

An analogous behavior has been observed for knotted molecules. The energy excess introduced
in the inizialization by twisting the chain is subsequently distributed into torsional and bending
contributions, accordingly to their stiffness parameters. The ratio between κt and κb is a key
aspect for determining the extent to which supercoiling is able to make molecules more compact.
In our case, the gyration radius distributions relative to the nicked and supercoiled trefoils can
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be clearly distinguished (see plot on the left in Figure 6.11). This conformational difference is in
agreement with the clear doublets separation obtained with high resolution two dimensional gel
electrophoresis [27]. Moreover, configurations with high values of asphericity are further penalized
by the supercoiling, as can be evinced by comparing the distribution decays in the right part of
Figure 6.11.

Figure 6.11: Gyration radius and asphericity distributions of nicked trefoil (green), supercoiled
right handed trefoil (blue) and supercoiled left handed trefoil (orange).

However, we did not find structural elements with which we could justify the different gel
migration velocity for the two supercoiled enantiomers. Indeed, we observed an almost perfect
overlap of their gyration radius and asphericity distributions. A part from the writhe, whose
average values are perfectly distinguishable due to the opposite sign of the enantiomers intrinsic
crossings, the only observable that exhibited some difference is the average crossing number (see
right part of Figure 6.12).

Figure 6.12: Writhe and average crossing number distributions of nicked trefoil (green), supercoiled
right handed trefoil (blue) and supercoiled left handed trefoil (orange).
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However, we attributed the ACN distributions shift to the fact that the two enantiomers do not
present exactly the same supercoiling level for reasons explained at the beginning of this section.
In particular, their ∆Lke differ by almost one unit: being the positive-noded trefoil a bit more
supercoiled, its tendency to assume higher ACN value is justified.

6.2.3 Comparing supercoiled 01 and 31

Finally we compared the results for molecule with different topology and, approximately, the same
supercoiling level. Also in this case, the gyration radius distributions confirm the compaction
induced by the knot presence. From the shape point of view, we observed that trefoils favored
more spherically symmetric configurations than the unknot. Moreover, as expected, the intrinsic
crossings due to the knotting provoked an increasing of the average crossing number with respect
to the unknotted chain.

Figure 6.13: Gyration radius, asphericity, writhe and average crossing number distributions of
supercoiled unknot (green), supercoiled right handed trefoil (blue) and supercoiled left handed
trefoil (orange).
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6.3 Conclusions

In this work, we developed a coarse grained model to describe closed DNA chains with different
topology and supercoiling levels, and we carried out Monte Carlo simulations to sample their
configurational space at canonical equilibrium.
Through the analysis of geometric observables we gave an insight into how knotting and supercoiling
can affect the molecular compaction and shape. In particular, our results support the following
experimental evidences resulting from agarose gel electrophoresis [28, 27]:

1. Knotted molecules acquire a greater gel migration velocity with respect to unknotted ones
(see left part of Figure 6.1).

2. At fixed topology, the more DNA chains are supercoiled, the faster they migrate through the
gel pores.

Open challenge: We found that the phenomenology relative to the splitting of electrophoretic
bands corresponding to supercoiled trefoil enantiomers (see Figure 6.1) cannot be elucidated by the
conformational properties we studied. We hypothesized that the static geometrical quantities we
looked at are not enough to capture the key aspect behind such bands splitting and that it could
be worth to consider how the gel architecture interfere with the DNA chain dynamics. We will
further investigate the appearance of trefoil doublets in electrophoretic measurements by trying to
improve our model in such a way that it takes into account the interplay between system and gel
structure during the migration.
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Appendix A

As reported in Chapter 3, the writhe Wr of an arbitrary curve γ : R → R3 can be computed by
means of the Gauss integral

Wr =
1

4π

∫
γ

∫
γ

r2 − r1

||r2 − r1||3
· (dr2 ∧ dr1)

where r1 and r2 are two points on γ. In the case of a polygonal closed curve with N segments
γ =

⋃N
i=1 γi, the latter expression can be rewritten as a finite sum

Wr =
1

4π

∫
⋃N
i=1 γi

∫
⋃N
j=1 γj

r2 − r1

||r2 − r1||3
· (dr2 ∧ dr1) =

1

4π

N∑
i=1

N∑
j=1

∫
γi

∫
γj

r2 − r1

||r2 − r1||3
· (dr2 ∧ dr1)

= 2
N∑
i=2

∑
j<i

Ωij

4π

with Ωij the Gauss integral contribution coming from the segments i and j. Notice that Ωii = 0
because dr1 and dr2 would be parallel and so (dr2∧dr1) = 0 over the whole domain, and Ωi,i+1 = 0
since (dr2 ∧ dr1) and r2 − r1 would be perpendicular. At this stage, an analytical expression for

Figure 6.14: On the left: sketch of the observation directions which limit the solid angle needed to
compute the Gauss integral Ωij . On the right: the quadrangle whose area gives Ω̃ij . Image from
[14].
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Ωij has to be found. Let’s call 1, 2 the ends of the segment i, and 3, 4 the ones of j. In this way
the two segments will correspond to the vectors r12 and r34. The Gauss integral absolute value Ω̃ij

is given by the solid angle which includes all the observation directions such that r12 and r34 form
an apparent crossing, with r12 closer to the observation point. By looking at the Figure 6.14, one
can evince that such a solid angle is delimited by the planes (3, 4, 1), (3, 4, 2), (1, 2, 4) and (1, 2, 3),
and can be built by letting the lines (32), (31), (42) and (41) pass through the origin and taking
their intersection with the unitary sphere. In this way, the solid angle value corresponds with the
quadrangle area depicted on the right of Figure 6.14:

Ω̃ij = α+ β + γ + δ − 2π

To compute these angles one define the following versors:

n1 =
r13 ∧ r14

|r13 ∧ r14|
n2 =

r14 ∧ r24

|r14 ∧ r24|
n3 =

r24 ∧ r23

|r24 ∧ r23|
n4 =

r23 ∧ r13

|r23 ∧ r13|

So, one has: 
α = π

2 + arcsin(n1 · n2)

β = π
2 + arcsin(n2 · n3)

γ = π
2 + arcsin(n3 · n4)

δ = π
2 + arcsin(n4 · n1)

and
Ω̃ij = arcsin(n1 · n2) + arcsin(n2 · n3) + arcsin(n3 · n4) + arcsin(n4 · n1)

At this point the crossing sign should be introduced to get Ωij . In particular, a right handed
crossing occurs whenever (r34 ∧ r12) · r13 > 0, so that

Ωij = Ω̃ij sign
(
(r34 ∧ r12) · r13

)
Other alternatives to evaluate the writhe of a closed polygonal curve are proposed in [14].
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Appendix B

Tangent-tangent correlation function and bending persistence length

A relation between bending persistence length and κb can be found by evaluating the extent to
which the bonds directionality is influenced by the bending energy in a linear DNA chain. For
doing that, we consider the Kratky-Porod model

HKP = −κb
β

N−1∑
i=1

ui · ui+1 (6.2)

with {ui}i=1...N−1 the bond vectors already defined in subsection 5.1.2, and we compute the tangent-
tangent correlation

Gi(s) =< ui · ui+s > (6.3)

For calculation convenience let us temporarily suppose to have a site dependent coupling

HKP = −
N−1∑
i=1

Ji ui · ui+1 (6.4)

Being the partition function

Z =

( N∏
i=1

∫
dΩi

)
exp(β

N−1∑
j=1

Jj uj · uj+1) =

( N∏
i=1

∫
dΩi

)N−1∏
j=1

exp(βJj uj · uj+1) =

= 4π
N−1∏
j=1

4π
sinh(βJj)

βJj

(6.5)

we can readily find

Gi(s = 1) =
1

β

∂ lnZ

∂Ji
= coth(βJi)−

1

βJi
= L(βJi) (6.6)

where L(x) stands for Langevin function. The tangent-tangent correlation Gi(s) with s > 1,
instead, can be calculated by taking advantage of the following symmetry argument. Let us take
< ui · ui+2 >: the two bonds could be decomposed into their parallel and normal component to
ui+1

Gi(2) =< ui · ui+2 >=< ui,//ui+2,// > + < ui,⊥ui+2,⊥ > (6.7)
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For each set of bonds {ui}i=1...N−1, let us build {u′i}i=1...N−1 as
u′j,// = uj,// ∀j
u′j,⊥ = uj,⊥ if j ≤ i+ 1

u′j,⊥ = −uj,⊥ if j > i+ 1

(6.8)

Since these two configurations have same energy but opposite ui,⊥ui+2,⊥ = −u′i,⊥u′i+2,⊥, we have
< ui,⊥ui+2,⊥ >= 0. Thus

Gi(2) =< ui,//ui+2,// >=< (ui · ui+1)(ui+1 · ui+2) >=
1

β2Z

∂Z

∂Ji∂Ji+1
=

= L(βJi)L(βJi+1) =< ui · ui+1 >< ui+1 · ui+2 >=

= Gi(1)Gi+1(1)

(6.9)

The same reasoning can be iterated to get

Gi(s) =
i+s−1∏
k=i

Gk(1) =
i+s−1∏
k=i

L(βJk) (6.10)

Finally, imposing Jk = κb
β ∀k again, we have:

Gi(s) = Ls(κb) = es ln(L(κb)) (6.11)

By rearranging the previous expression, the characteristic length lp of the tangent-tangent correla-
tion decay can be evaluated

lp = − b0
ln(L(κb))

(6.12)

This quantity is called bending persistence length. For small bending angles, the lp expression can
be expanded as

lp ' −
b0

ln(1− 1
κb

)
' b0 κb (6.13)

Alternative R2
g formula

As anticipated in Chapter 5, the gyration radius R2
g can be described by the equivalent formula

R2
g =

1

2N2

N∑
i=1

N∑
j=1

(ri − rj)2 (6.14)

To prove it, let us start from the original definition

R2
g =

1

N

N∑
i=1

(ri − rCM )2 =
1

N

N∑
i=1

(r2
i − 2ri · rCM + r2

CM ) =
1

N

N∑
i=1

(r2
i − r2

CM ) =

=
1

N2

∑
i,j

(r2
i − ri · rj) =

1

2N2

∑
i,j

(ri − rj)2

(6.15)
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G(s) for a two-dimensional ring

To prove the expression 5.45 we start from the Kratky-Porod Hamiltonian for a two-dimensional
planar ring

HKP = −κb
β

N∑
i=1

ui · ui+1 =
κb
β

N∑
i=1

(1

2
(ui+1 − ui)2 − 1

)
= −κbN

β
+
lp
2β

N∑
i=1

(ui+1 − ui)2

b20
b0 (6.16)

and we take the continuum limit (the constant part can be discarded)

HWLC =
kBT lp

2

∫ L

0

(
∂u(s)

∂s

)2

ds (6.17)

to obtain a worm-like-chain Hamiltonian, with s ∈ [0, L] the curvilinear coordinate that indicates
the position along the molecule. A perfectly circular chain will be described by

r(s) =
(

cos θ0(s), sin θ0(s)
)

u(s) =
(
− sin θ0(s), cos θ0(s)

)
θ0(s) = 2πs

L

(6.18)

Since we would like to focus on the stiff regime, we will characterize molecule configurations by
means of small deviation δθ(s) = θ(s)−θ0(s) from the ideal angle θ0(s). The Hamiltonian becomes

HWLC =
kBT lp

2

∫ L

0

(
∂u(s)

∂s

)2

ds =
kBT lp

2

∫ L

0

(
∂θ(s)

∂s

)2

ds

=
kBT lp

2

(2π)2

L
+
kBT lp

2

∫ L

0

(
∂δθ(s)

∂s

)2

ds

(6.19)

where we used δθ(0) = δθ(L). Again, the constant term can be discarded. The quantity δθ(s) can
be decomposed in its Fourier components

δθ(s) =
1

L

+∞∑
n=−∞

θ̃ne
2πins
L (6.20)

where θ̃0 = θ̃±1 = 0 to satisfy the closure condition. So

HWLC = −kBT lp
2L2

∫ L

0

+∞∑
n=−∞

+∞∑
m=−∞

2πn

L

2πm

L
θ̃nθ̃me

2πnis
L e

2πims
L =

=
kBT lp (2π)2

2L3

+∞∑
n=−∞

n2|θ̃n|2 =
kBT lp (2π)2

L3

+∞∑
n=2

n2|θ̃n|2
(6.21)

The average value < |θ̃n|2 > can be computed by applying the equipartition theorem:

< |θ̃n|2 >=
L3

lp(2π)2n2
|n| ≥ 2 (6.22)
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At this point, we are ready to evaluate the tangent-tangent correlation function

G(s) =< u(s) · u(0) >= sin θ(s) sin θ(0) + cos θ(s) cos θ(0) =

= cos
(
θ0(s) + [δθ(s)− δθ(0)]

) (6.23)

Expanding the cosine to second order we find

G(s) ' cos θ0(s)− 1

2
< [δθ(s)− δθ(0)]2 >= cos θ0(s)

[
1− < (δθ(s))2 > + < δθ(s)δθ(0) >

]
(6.24)

where the translational invariance < (δθ(s))2 >=< (δθ(0))2 > has been used. To evaluate these
averages we write

< δθ(s)δθ(r) >=
1

L2

+∞∑
n=−∞

+∞∑
m=−∞

< θ̃nθ̃m > e
2πins
L e

2πimr
L =

L

lp(2π)2

+∞∑
n=−∞

1

n2
e

2πin(s−r)
L (6.25)

which specializes in

<
(
δθ(s)

)2
>=

L

lp2π2

+∞∑
n=2

1

n2
(6.26)

and

< δθ(s)δθ(0) >=
L

lp2π2

+∞∑
n=2

1

n2
cos

(
2πns

L

)
(6.27)

Defining

g(z) =
+∞∑
n=2

cos(nz)

n2
(6.28)

and putting all together we finally find

G(s) =

[
1 +

L

2π2lp

(
g

(
2πs

L

)
− g(0)

)]
cos

(
2πs

L

)
(6.29)
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2.11 Transcription process representation. The RNA polymerase reads the 3′ → 5′ tem-
plate strand (the lighter one) and progressively adds the RNA nucleotides according
to the base complementarity rule. Remember that in RNA the thymine is substi-
tuted by the uracil. As soon as the mRNA strand is synthesized, it detaches from
the template strand. The DNA unwinding and rewinding highlighted on the two
sides of the transcription bubble are responsible for the supercoiling accumulation
in the rest of the duplex. See Other sources. . . . . . . . . . . . . . . . . . . . . . . . 25

2.12 Translation process representation, with an active ribosome traversing the mRNA
in 5′ → 3′ direction. The exit E-site in correspondence of the right ribosome side is
omitted, and only empty leaving tRNA molecules are depicted. The amino acid on
the A-site is forming a peptide bond with the polypeptide chain, which is going to
be transferred from P- to A-site. Other aminoacyl-tRNA molecules are waiting to
reach their corresponding codon. See Other sources. . . . . . . . . . . . . . . . . . . 26
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3.1 Sketch of the φ backbone around the curved cylinder and its helical axis α. At the
cross-section level parametrized by t, the unit vector tangent to the helical axis u(t)
and vα→φ(t) are represented. Image adapted from [9]. . . . . . . . . . . . . . . . . . 29

3.2 On the left: an under-wound DNA duplex which has just been circularized (nextra =
−1). The linking number Lk initially corresponds to the twist Tw (Lk = Tw =
n − 1). During its evolution, the DNA duplex will release a bit of torsional strain
by increasing its bending energy. In particular, on the right, it reaches a “figure-
of-eight” arrangement. Since the two double strand portions are extremely close in
correspondence of the crossing, one may estimate the following values for the final
configuration: Wr ≈ −1, Tw ≈ n such that Lk is exactly n − 1. Image adapted
from [32]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 On the left: the Whitehead link is an example of intertwined curves whose Lk = 0.
The crossings signs has been assigned according to the usual right hand rule. On
the right: two chiral enantiomers with opposite linking number ±2. In both images
the crossings of a curve with itself (irrelevant for Lk calculation) are indicated with
red arrows. Images adapted from [4, 9]. . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 On the left: representation of an ideal knots selection. All the knots are characterized
by the same axial length and it is immediate to notice that their compaction decreases
with the knot complexity. These ideal configurations have been obtained by means
of Monte Carlo simulations [13]. On the right: a table summarizing some of the
ideal conformations main properties, like axis length to tube diameter ratio, writhe
and ACN. Image and table adapted from [13]. . . . . . . . . . . . . . . . . . . . . . . 34

3.5 A DNA duplex whose helical axis geometry is the one of an ideal left-handed trefoil
3L1 . Image adapted from [33]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 On the left: one-dimensional gel electrophoresis with nicked bacterial plasmids of
4.4 kbp. Before the reaction with a molar excess of topo II, only unknotted (N)
and linear (L) molecules are present (lane 1). After the reaction (lane 2), a knots
ladder (Kn) appears. As can be evinced from the bands thickness and brightness,
the population of a certain knot type decreases with its complexity. Moreover, since
a low voltage is applied, the distance in the gel is proportional to the knot complexity
and compaction. On the right: high resolution two-dimensional electrophoresis on
the same samples. A higher voltage is applied in the left-to-right direction in order
to retard the knot species compared to the linear fragments. The crossing number
of each knot type is reported on the right. Image adapted from [28]. . . . . . . . . . 38

4.2 Effect of the applied electric field on the electrophoretic migration of DNA samples
obtained by bacteriophage P4 capsid. Lane 1: sample with no additional treatment
after the extraction. Lane 2: sample heated to 75◦C. Lane 3: sample treated with
nicking endonuclease. Lane 4: sample treated with topoisomerases II. The one-
dimensional electrophoresis on the left has been performed at low voltage (25V for
20h), whereas the one on the right at high voltage (100V for 1h). From a comparison
of the two cases it emerges that, despite their greater compaction, knotted configu-
rations can migrate more slowly than linear fragments when the applied voltage is
high. Image adapted from [26]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

74



4.3 On the left: high resolution two-dimensional electrophoresis at low-high voltage with
yeast minichromosomes YRp4 (4.4 kbp) after their reaction with topo I (lane 1) and
topo II (lane 2). The bands disappearance in the lane 2 confirmed that the ladder
was populated by knot species (labeled with their crossing number). Central plot:
knotting probability vs DNA length profiles relative to trefoils (green), more complex
knots with crossing number > 3 (red) and their sum (black). As the chromatin length
increases, the curves saturate to a stationary value. On the right: knot probability for
various knot species. A colors legend is reported to distinguish the minichromosomes
types. Image adapted from [28]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4 Trefoils doublets separation with one-dimensional gel electrophoresis. On the left:
knotted supercoiled configuration of a 5.6 kbp DNA plasmid obtained by cyclization
in diverse reaction conditions (lanes 1 and 2) or after a treatment with molar excess
of topo II (lane 3). Image from [22]. On the right: trefoil enantiomers separation
obtained with YRp4 plasmid (4.4 kbp). Image from [27]. . . . . . . . . . . . . . . . 41

5.1 Closed DNA molecule modeled as an elastic rod made by N = 150 cylindrical segments. 42
5.2 Euler transformation bringing the coordinate system xyz into coincidence withXY Z.

The transformation can be decomposed into three elementary steps. First, xyz is
rotated by α around the z axis. Then, the new coordinate system is rotated by β
around N = z ∧ Z, the common perpendicular to z and Z. Finally, the obtained
system is rotated by γ around Z. See ‘Other sources’ for the image reference. . . . . 45

5.3 Supercoiled unknotted configuration with three clearly visible plectonemic struc-
tures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.4 Gyration radius autocorrelation functions ĈRg(t) of knotted/unknotted supercoiled/nicked
configurations. A unit in the lag time axis corresponds to 107 Monte Carlo steps.
As the lag time increases, oscillations become wider due to the reduced number of
elements in the sum 5.44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.5 Comparison between the tangent-tangent correlation G(s) obtained with our model
(green marker) and the one predicted by the analytical expression 5.45 (blue curve),
for a DNA two-dimensional closed ring with flexibility ratio χ = 4. The curvilinear
coordinate s is expressed in simulation units, obtained dividing every length measure
by b0 = 10 nm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.6 f -vectors correlation for different values of the torsional stiffness parameter κt. The
characteristic length of the initial decay is related to the torsional persistence length.
The curvilinear coordinate is expressed in simulation unit. . . . . . . . . . . . . . . . 53

5.7 Relation between torsional persistence length lp,t and torsional stiffness parameter
κt. The persistence length is expressed in simulation unit. . . . . . . . . . . . . . . . 54

6.1 High resolution two-dimensional electrophoretic characterization of 4.4 kbp bacterial
plasmids in vitro. On the left: knots separation on the basis of their topological
complexity. On the right: bands splitting into doublets due to the different migration
velocity of supercoiled trefoil enantiomers. Images from [28, 27]. . . . . . . . . . . . 56

6.2 Initialization of supercoiled unknot and right handed trefoil. The {fi}i=1...N , repre-
sented in blue, give the idea of how much the molecule has been twisted to obtained
the desired supercoiling level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
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6.3 Gyration radius time series relative to supercoiled (red) and nicked (green) 01 with
some snapshots taken at the Monte Carlo time steps corresponding to the arrows
positions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.4 Gyration radius time series relative to supercoiled 3R1 with some snapshots taken at
the Monte Carlo time steps (in unit of dump interval) corresponding to the arrows
positions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.5 Gyration radius time series relative to supercoiled 3L1 with some snapshots taken at
the Monte Carlo time steps (in unit of dump interval) corresponding to the arrows
positions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.6 Gyration radius time series relative to nicked 3R1 with some snapshots taken at
the Monte Carlo time steps (in unit of dump interval) corresponding to the arrows
positions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.7 Gyration radius and asphericity distributions of nicked unknot (green) and right-
handed trefoil (blue). Two typical configurations give an idea of why the knot
constraint prevents the trefoil to elongate as the unknot. . . . . . . . . . . . . . . . 60

6.8 Writhe and average crossing number distributions of nicked unknot (green) and right-
handed trefoil (blue). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.9 Gyration radius and asphericity distributions of nicked unknot (green) and super-
coiled unknot (blue). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.10 Writhe and average crossing number distributions of nicked unknot (green) and su-
percoiled unknot (blue). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.11 Gyration radius and asphericity distributions of nicked trefoil (green), supercoiled
right handed trefoil (blue) and supercoiled left handed trefoil (orange). . . . . . . . . 63

6.12 Writhe and average crossing number distributions of nicked trefoil (green), super-
coiled right handed trefoil (blue) and supercoiled left handed trefoil (orange). . . . 63

6.13 Gyration radius, asphericity, writhe and average crossing number distributions of
supercoiled unknot (green), supercoiled right handed trefoil (blue) and supercoiled
left handed trefoil (orange). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.14 On the left: sketch of the observation directions which limit the solid angle needed
to compute the Gauss integral Ωij . On the right: the quadrangle whose area gives
Ω̃ij . Image from [14]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
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