
POLITECNICO DI TORINO

FACOLTÀ DI INGEGNERIA

MASTER’S DEGREE

in Mechatronic Engineering

Application of Enhanced Model

Reference Adaptive Control (EMRAC)

algorithms to the tracking problem of

Space Robotic Manipulators

Candidate:

Simone Martini

Supervisor:

Prof. Massimo Violante

Main co-supervisor:

Dott. Umberto Montanaro

Co-supervisor:

Prof. Aldo Sorniotti

a.a 2019/2020

to my family, friends and girlfriend

Abstract

This master thesis proposes the application of the Enhanced Model Reference

Adaptive Control (EMRAC) to a space robotic manipulator. The EMRAC

aims to be an improvement of the more generic Model Reference Adaptive Con-

trol (MRAC) by adding an adaptive integral action and an adaptive switching

term to compensate for slow and rapid changing disturbances. Further robust-

ness is achieved by the adoption of the σ-modification strategy that prevents

the drifting of the adaptive gains. The robotic arm will replicate a realistic

space mission of rescuing a faulty non cooperative micro-satellite. To the best

of the author’s knowledge, this project application is a novel implementation of

the EMRAC controller with σ-modification to a MIMO space robotic system.

Simulations show that the EMRAC is capable of controlling highly nonlinear

systems affected by parameter uncertainties and unmodelled dynamics, fur-

thermore, the algorithm is robust against disturbances. The thesis presents

experimental data from computer simulations of four different implementa-

tions of the EMRAC performed using ROS and Gazebo. From simulations

data a set of performance indexes are computed, showing that the four EM-

RAC strategies outperform benchmark controllers equipped with a full-state

feedback linearisation control action including two standard controllers (PD

and PI strategies) and a robust controller.

Contents

1 Introduction & State of the Art 1

1.1 Robotic Manipulators in Space Industry 1

1.2 Space Manipulator’s Control Architectures 2

1.3 Project’s Objective and Thesis Structure 3

2 Environment 4

2.1 Programming Environment . 4

2.1.1 ROS . 4

2.1.2 Gazebo . 5

2.1.3 MATLAB & Simulink 5

2.2 Workflow . 5

3 Case study: 3DOF Manipulator 7

3.1 Mathematical Modelling . 8

3.1.1 Forward Kinematics . 8

3.1.2 Inverse Kinematics . 10

3.1.3 Dynamics . 13

3.2 URDF Modelling . 19

3.2.1 Code Explanation . 19

3.2.2 Non Cooperative Target Disturbance 22

3.3 Model Validation . 23

3.3.1 MATLAB Simulink URDF Import 23

3.3.2 Mathematical Simulink Model 24

3.3.3 Model Comparison . 24

4 The Enhanced Model Reference Adaptive Control (EMRAC) 29

4.1 The EMRAC Algorithm . 29

4.2 Problem Formulation . 30

4.2.1 EMRAC-EW . 32

i

4.2.2 EMRAC-UV . 32

4.2.3 σ-Modification . 33

5 Application of the EMRAC to Space Manipulators: Four Ap-

proaches 35

5.1 Inverse Dynamics . 35

5.2 EMRAC Controllers . 36

6 Simulations & Analysis 38

6.1 Simulation . 38

6.1.1 Trajectory Generation 38

6.1.2 Benchmarks Controllers 40

6.1.3 Tuning of the EMRAC Controllers 42

6.2 Simulation Figures . 43

6.3 Data Analysis . 55

6.3.1 Performance Indexes . 55

6.3.2 Results . 56

7 Conclusion and future work 58

7.1 Conclusion . 58

7.1.1 Consideration on the EMRAC 59

7.1.2 Decentralised EMRAC 59

7.2 Future Work . 61

7.2.1 Improvements . 61

7.2.2 Future Projects . 61

A Code 62

A.1 surrey 3dof space arm efmass.urdf.xacro 62

A.2 surrey 3dof space arm efmass.gazebo 67

A.3 empty world.world . 68

A.4 my controller.cpp . 69

B Performance Indexes Tables 71

B.1 Maximum Error Performance Index 71

B.2 RMSE Performance Index . 75

B.3 IACA Performance Index . 78

C Simulations Figures 80

C.1 EMRAC-EW-FL . 80

ii

C.2 EMRAC-UV-NFL . 84

C.3 EMRAC-UV-FL . 87

C.4 PD . 90

C.5 Robust . 92

C.6 PI . 95

Bibliography 98

iii

1

Introduction & State of the Art

1.1 Robotic Manipulators in Space Industry

Over the ages, human curiosity and exploration instinct has led us to push the

boundaries of what we know. Space exploration is one of the most fascinating

and complex challenges for mankind that helps addressing the question of our

place in the universe. The growth of the space industry has being vital to

advance scientific progress and to boost the development of many areas such

as telecommunications, navigation and Earth observation [1].

The increasing number of space missions comes with a growing range of

space applications, many of which involve robotics. Space robotics is widely

used to assist or replace humans activities, reducing the high risk associated

to space tasks [2].

Some of the main tasks for a space manipulator are:

� Debris removal

� Space infrastructure assembly

� On-orbit spacecraft refuelling [3]

All these tasks result in very complex operations due to the harsh challenges

of space such as:

� Unpredictable environment

� Unknown and non-cooperative targets

� Microgravity

� Communication delay

1

To overcome these challenges, high robustness and autonomy of the space

manipulator are required.

1.2 Space Manipulator’s Control Architectures

The control system is essential for guaranteeing the execution of the command

tasks. As today, the state of the art of the control techniques for control-

ling robotic arms can be summarised by three main categories: Proportional-

Integral-Derivative (PID) design, Robust Control and Adaptive algorithm [4].

Even though a lot of advancement and modification have being done from

the standard PID, its primary disadvantage is to be a constant gain feed-

back system without any direct knowledge of the plant, this, combined with

its linear behaviour, makes it an unreliable option for controlling a non-linear

system affected by noise like a robotic manipulator. More sophisticated control

laws to be considered can be found in Robust and non-linear controllers such

as Sliding Mode Control (SMC) and Model Predictive Control (MPC), these

control strategies are able to ensure stability and performance with bounded

uncertainties. Another powerful control approach is the adaptive one, its main

benefit is being able to change the control gains to compensate time vary-

ing behaviour of the system [4]. Adaptive control is generally divided into

three branches: gain scheduling, self tuning and model reference [5]. Adaptive

strategies (especially Model Reference adaptive control) are a very worthy can-

didate to control highly complex and non-linear system because, unlike robust

control, they do not require a priori knowledge of the system parameters [4].

The Model Reference Adaptive Control (MRAC) is an adaptive algorithm

that allows to impose a reference model dynamics to a system affected by pa-

rameter uncertainties, its ability to adapt the control gains allows for achiev-

ing good tracking performances and compensating for model mismatches and

unknown dynamics [6]. The foundamental property of the MRAC is the pos-

sibility to achieve asymptotic tracking of the reference model [7]. Although, in

theory, the MRAC algorithm should be able to achieve promising performance,

it is very difficult to guarantee stability for highly non-linear system. Usually

the MRAC strategy is widely used for controlling quasi-linear system and only

few recent articles can be found on the application to robotics. However, as

reported in Refs [5] many of this studies showed promising results for the ap-

plication of the MRAC to robotic manipulators. Many variation of the MRAC

have been proposed but in this report, the focus is brought to the Enhanced

2

Model Reference Adaptive Control (EMRAC).

The EMRAC scheme is an improvement with respect to the standard

MRAC thanks to the implementation of:

� An adaptive integral action able to reduce steady states disturbances

� An adaptive switching term able to compensate for the rapid changing

behaviour of the disturbances dynamics

The resulting controller is able to achieve higher tracking performances while

guaranteeing greater robustness and autonomy [8, 9, 10, 11, 12, 13]. To the best

of the author’s knowledge, there is no presence in literature of the application

of the Enhanced Model Reference Adaptive Control with adaptive integral

action and adaptive switching term to the tracking error problem of space

robotic manipulator.

1.3 Project’s Objective and Thesis Structure

The aim of this project is the design and deployment of the Enhanced Model

Reference Adaptive Controller to a space robotic manipulator. The control

algorithm will be able to compensate for unmodelled dynamics (such as un-

known target mass) and disturbances in the space environment. In particular,

the unmodelled disturbance is simulated by an unknown end effector mass

representing a non cooperative target. The design has to be scalable to higher

degree of freedom manipulators and the real time feasibility of the adaptive

controller is shown through the use of an advanced robotic simulation environ-

ment.

In the next chapters, first the simulation environment and the adopted

workflow for the deployment to a real time system will be presented, second,

the description of the space robot manipulator employed for the application

will be given. More specifically, Chapter 3 will illustrate the modelling of the

robot and the respective model validation. Then, a more in depth analysis of

the EMRAC control algorithm will be given, followed by its application. The

final chapters will report the data analysis of the simulations’ results and final

conclusions. Some further development ideas are also introduced at the end of

the last chapter.

3

2

Environment

In order to show the real time feasibility of the adaptive control, the imple-

mentation has to be done in an advance robotic simulation environment such

as ROS and Gazebo. However, since the EMRAC architecture is not trivial,

implementing the controller directly as C++ code would be quite time con-

suming and inefficient for a preliminary testing phase. For this reason, the

controller implementation will be achieved exploiting Simulink graphical in-

terface and, later on, deployed in ROS as C++ code. This Chapter describes

the programming environment and the workflow adopted for performing the

simulations.

2.1 Programming Environment

2.1.1 ROS

Robot Operating System (ROS) is one of the most popular open source frame-

work for writing robot software. Despite its name, ROS is a meta-operating

system that currently runs only on Unix-based platforms such as Ubuntu [14].

Even if, technically, it is not a real time operating system (OS), ROS is pro-

vided with its own system clock and communication pipeline [15] and is widely

used for testing real time applications thanks to the possibility to integrate it

with real time code [14]. ROS provides a set of tools, libraries and conventions

that help writing robust robot software [16].

Figure 2.1: ROS logo [17]

4

2.1.2 Gazebo

Gazebo is a free complex 3D indoor and outdoor multi-robot simulator [18],

it comes with robust physics engines such as Open Dynamics Engine (ODE)

[19]. Gazebo can easily integrate with ROS through a set of Gazebo plugins

that have the same ROS message interface, this allows to highly facilitate the

deployment of the physical robot and the application development [18].

Figure 2.2: Gazebo logo [20]

2.1.3 MATLAB & Simulink

MATLAB is a programming platform that can be used for data analysis, algo-

rithm development and model and application creation. It uses the MATLAB

matrix-based language, useful for computational mathematics. MATLAB is

widely used among engineers for numerous applications, including control sys-

tem design [21]. Thanks to the integration with Simulink, it is possible to

incorporate MATLAB algorithms into models and perform multidomain sim-

ulations. Simulink is a block diagram environment that, among its many fea-

tures, allows for modelling and simulating dynamic systems and for automatic

code generation [22]. These two features are very useful for this project’ pur-

pose, allowing to design and test the controller in an user friendly environment

and, only after, deploy the code in the ROS environment as C++ code.

2.2 Workflow

In this section, a more comprehensive explanation of the adopted workflow is

given. In order to integrate MATLAB and Simulink with ROS, the ROS Tool-

box add on needs to be installed. This toolbox allows to generate a network

of ROS nodes and it is provided with ’Publish’ [23] and ’Subscribe’ [24] blocks

that are used to send and receive messages from ROS topics [25]. The main

steps of the workflow are described as follow:

5

� Tune the Controller in Simulink

� Create an equivalent control system for code generation (using the Sub-

scribe and Publish blocks)

� Automatic code generation using Simulink Coder and Embedded Coder

� Build the code in the ROS environment

After the deployment in ROS, it is necessary to establish a communication

between the robot in Gazebo and the generated controller. This communica-

tion can be established by creating a C++ controller that subscribes to the

deployed controller’ topic and uses an interface called ’EffortJointInterface’ to

send commands to the robot. An example of C++ controller template can be

found in [26] and the used ’my controller.cpp’ code is attached in appendix

A.4.

6

3

Case study: 3DOF Manipulator

A robot manipulator can be described as a connection of rigid body called links

through a set of joints. It is often referred as a kinematic chain due to the

fact that the end effector position and velocity are computed by a combination

of the motion of each link with respect to the previous one [27]. Two of the

most known space robotic arms are the Canadarm (attached to the space

shuttle and returned to earth) and the Canadarm2 (permanently attached to

the International Space Station) that are respectively six and seven degrees

of freedom manipulators composed by shoulder, elbow and wrist similar to a

human arm [28].

Figure 3.1: Astronaut Jerry Ross secured on a foot restraint device connected

to the Canadarm aboard the Earth orbiting Atlantis, Nov, 1985

7

Even though the EMRAC controller can be applied to higher degree of

freedom, for this project, a simple three degree of freedom anthropomorphic

arm is used. The anthropomorphic arm is composed by two revolute joints

in the shoulder and one revolute joint in the elbow. For simplicity, no wrist

is attached to the end effector. The robot is modelled by means of the Uni-

fied Robotic Description format (URDF) and by means of a set of ordinary

differential equation derived from the lagrangian of the system.

3.1 Mathematical Modelling

The following subsections are a synthesis of the ”Kinematics”, ”Differential

Kinematics and Statics” and ”Dynamics” chapters of [27] adapted to the an-

thropomorphic space robotic arm used in this project.

3.1.1 Forward Kinematics

The pose of the manipulator is given by its position and orientation with re-

spect to a reference frame. The base of the robotic arm is considered static

during the command activity and is chosen as the fixed reference frame. Also,

to the end of each link of the arm is associated a frame. Given this struc-

ture, the open kinematic chain can be solved recursively as a product between

homogeneous transform matrices, each of which is a function of a single joint

variable q [27]. To compute the direct kinematic equation, a systematic ap-

proach such as the Denavit-Hartenberg convention is used. The following two

tables report the Denavit-Hartenberg parameter and the dimension parameters

for the three degrees of freedom anthropomorphic manipulator respectively.

Table 3.1: Denavit-Hartenberg parameter for the three degrees of freedom

manipulator

Link ai αi di θi

1 0 π/2 L1 q1

2 L2 0 0 q2

3 L3 0 0 q3

8

Table 3.2: Three degrees of freedom manipulator’s parameters

Link Length(m) Mass(Kg) Diameter(m)

1 L1 = 0.5 m`1 = 50 2r = 0.4

2 L2 = 4 m`2 = 200 2r = 0.4

3 L3 = 4 m`3 = 200 2r = 0.4

Figure 3.2: Denavit–Hartenberg kinematic parameters [27]

Where:

� ai is the distance between Oi and Oi′ along xi-axis

� di is the distance between Oi and Oi′ along zi-axis

� θ is the angle between zi and zi−1 about the xi-axis

� α is the angle between xi and xi−1 about the zi-axis

The generic homogeneous matrix between two link can be computed as follow:

Ai−1i (qi) =

cθi −sθicαi sθisαi aicθi

sθi cθicαi −cθisαi aisθi

0 sαi cαi di

0 0 0 1

 (3.1)

9

Considering θi as the genetic joint variable qi it follows that:

A0
1(q1) =

c1 0 s1 0

s1 0 −c1 0

0 1 0 L1

0 0 0 1

Ai−1i (qi) =

ci −si 0 Lici

si ci 0 Lisi

0 0 1 0

0 0 0 1

 i = 2, 3.

(3.2)

Finally, the direct forward kinematic function can be computed as:

T 0
3 (q) = A0

1A
1
2A

2
3 =

c1c23 −c1s23 s1 c1(L2c2 + L3c23)

s1c23 −s1s23 −c1 s1(L2c2 + L3c23)

s23 c23 0 L1 + L2s2 + L3s23

0 0 0 1

 (3.3)

Through the matrix T 0
3 (q) it is possible to compute the end effector position

as a function of the joint variable [27].

3.1.2 Inverse Kinematics

Since the main goal of the manipulator is to track a desired trajectory, it is

necessary to use an inverse kinematic model in order to associate a desired mo-

tion of the end effector to the each joint variable’ motion. Finding this model

is not an easy task due to the inverse kinematic problem. The complexity of

the kinematic problem is due to the fact that:

� The equation to solve are usually nonlinear and thus it might not be

possible to find the inverse analytically.

� Numerical approach might also fail in case of multiple or infinite solution

(the same end effector position might be achievable through different

joint configurations)

� there might not be any admissible solution e.g point outside the manip-

ulator dexterous workspace.

10

By using the differential kinematic equation it is possible to invert the kine-

matic.

ẋe =

[
ṗe

φ̇e

]
=

[
Jp(q)

Jφ(q)

]
q̇ = JA(q)q̇ (3.4)

The motion trajectory in terms of position, velocity and acceleration can be

inverted into the equivalent joint position, velocity and acceleration exploiting

the Analytical Jacobian JA. Since the end-effector of the anthropomorphic

arm is a point, for simplicity, its orientation is not taken into consideration.

The differential kinematic equation to be considered becomes the following

ṗe =
∂pe
∂q

q̇ = JP (q)q̇ (3.5)

Where JP is the (3 × n) matrix that relate the joint velocities q̇ to the end

effector linear velocity ṗe

JP =
[
jP1 . . . jPn

]
(3.6)

jPi is the generic component of JP and, for revolute joints, can be computed

as follow

jPi = zi−1 × (pe − pi−1) (3.7)

Being

� n the degrees of freedom of the manipulator

� zi−1 the unit vector of joint i− 1 axis

� zi−1 and zi are the position vectors of the origins Oi−1 and Oi

� pe the position vector of the end effector that for the anthropomorphic

manipulator coincides with p3

11

The resulting matrix is

JP =
[
z0 × (p3 − p0) z1 × (p3 − p1) z2 × (p3 − p2)

]
=

=

 −s1(L2c2 + L3c23) −c1(L2s2 + L3s23) −L3c1s23

c1(L2c2 + L3c23) −s1(L2s2 + L3s23) −L3s1s23

0 L2c2 + L3c23 L3c23

 (3.8)

By doing the time differentiation of the differential kinematic equation, we

obtain the operational space acceleration as function of the joint acceleration

p̈e = JP (q)q̈ + J̇P (q, q̇)q̇ (3.9)

The determinant of JP is

|JP | = −L2L3(L2c2s3 − L3s2 + L3s2c
2
3 + L3c2c3s3) (3.10)

Assuming q2 and q3 such that |JP | 6= 0, the matrix JP is square and non-

singular. Therefore, the second order kinematic equation can be inverted.

q̈ = J−1P (q)(p̈e − J̇P (q, q̇)q̇) (3.11)

Considering the drift due to the integration of 3.5 and 3.11, it is worth intro-

ducing the position error and its first and second order time derivative

e = pd − pe
ė = ṗd − ṗe
ë = p̈d − p̈e

(3.12)

Substituting into 3.9 leads to

ë = p̈d − JP (q)q̈ − J̇P (q, q̇)q̇ (3.13)

In order to ensure convergence, of the error it is possible to create a closed-loop

inverse kinematic model choosing the joint acceleration vector as

q̈ = J−1P (q)(p̈d +KDė+KP e− J̇P (q, q̇)q̇) (3.14)

12

Finally, the equation 3.13 becomes

ë+KDė+KP e = 0 (3.15)

The obtained linear error system is asymptotically stable. KP and KD are

positive definite diagonal matrix that determine the speed of convergence of

the error to zero [27].

The equivalent block scheme of the second order inverse kinematic algorithm

is shown in Fig.3.3

Figure 3.3: Block scheme of the second-order inverse kinematic algorithm [27]

3.1.3 Dynamics

The dynamic model of the manipulator is useful for preliminary simulation

of motion and for designing the control algorithm. The joint space dynamic

model for a space manipulator can be described by the equation of motion:

B(q)q̈ + C(q, q̇)q̇ + Fv q̇ = τ (3.16)

where:

� B(q) ∈ Rn×n is the inertia matrix

� C(q, q̇) ∈ Rn×n is the Christoffel matrix accounting for centrifugal and

Coriolis effect

13

� Fv ∈ Rn×n is the diagonal matrix of viscous friction coefficients

� τ ∈ Rn is the vector of joint torques.

The absence of the gravitational term is due to the fact that the space ma-

nipulator is supposed to work in a microgravity environment, therefore, the

gravitational acceleration is approximated to be null. For simplicity, also no

Coulomb friction torques and end effector’ contact forces are considered.

The equation of motion 3.16 can be derived through a systematic method

based on the Lagrangian Formulation. The Lagrangian of the mechanical

system is:

L = T − U (3.17)

T and U are the kinetic energy and potential energy respectively.

The Lagrange equation is given by

d

dt

(
∂L
∂q̇

)T
−
(
∂L
∂q

)T
= ξ (3.18)

and sets the relationship between the generalized forces applied to the manip-

ulator ξ and the joint positions q, velocities q̇ and accelerations q̈ [27].

So, the dynamical model can be derive through the computation of the kinetic

energy. Note that, by not considering the gravitational term, the potential

mechanical energy is considered to be null as well.

Kinematic Energy

For a robotic arm with n rigid links the total kinetic energy is given by the

following equation

T =
n∑
i=1

(T`i + Tmi) (3.19)

with T`i being the contribution of kinetic energy of Link i and Tmi being the

contribution of kinetic energy relative to the motor actuating joint i.

T`i can be computed by considering the kinetic energy contribution of each

link i.

By defining:

14

� p`i the position vector of centre of mass of Link i

� pj−1 the position vector of the origin of the frame j − 1

� zj−1 the unit vector of axis z of frame j − 1

� m`i the mass of the Link i

� I i
`i

the constant inertia tensor of Link i

it is possible to apply the Jacobian computation to the intermediate link,

leading to

J `iP =
[
j`iP1

. . . j`iPn 0 . . . 0
]

J `iO =
[
j`iO1

. . . j`iOn 0 . . . 0
] (3.20)

where, for revolute joints

j
`i
Pj

= zj−1 × (p`i − pj−1)
j
`i
Oj

= zj−1
(3.21)

The kinetic energy contribution of each link i is given by

T`i =
1

2
m`i q̇

TJ
`i
T

P J
`i
P q̇ +

1

2
q̇TJ

`i
T

O RiI
i
`i
RT
i J

`i
O q̇ (3.22)

A similar procedure can be used for finding Tmi
By defining:

� pmi the position vector of centre of mass of the rotor moving joint i

� pj−1 the position vector of the origin of the frame j − 1

� zj−1 the unit vector of axis z of frame j − 1

� kri the gear reduction ratio

� zmi unit vector of joint rotation axis

� mmi the mass of the rotor moving joint i

� Imimi
the constant inertia tensor of the rotor moving joint i relative to its

centre of mass

15

The Jacobian to be computed are

JmiP =
[
jmiP1

. . . jmiPn
0 . . . 0

]
JmiO =

[
jmiO1

. . . jmiOn
0 . . . 0

] (3.23)

where, for revolute joints

j
mi
Pj

= zj−1 × (pmi − pj−1)

j
mi
Oj

=

{
j
`i
Oj

krizmi

j = 1, . . . , i− 1

j = i

(3.24)

The kinetic energy contribution of each Rotor i is given by

Tmi =
1

2
mmi q̇

TJ
miT

P J
mi
P q̇ +

1

2
q̇TJ

miT

O RmiI
mi
mi
RT
mi
J
mi
O q̇ (3.25)

Having computed the kinematic energy of the manipulator, it is possible to

proceed the derivation of the equation of motion by applying 3.18

Inertia Matrix

The inertia matrix represent the contribution of the moment of inertia at each

joint axis and the coupling acceleration effect of each joint with respect to each

other. From the previous section the kinematic energy can be written in the

quadratic form

T =
1

2
q̇TB(q)q̇ (3.26)

Therefore, the inertia matrix can be defined as

B(q) =
n∑
i=1

(m`iJ
`i
T

P J
`i
P + J

`i
T

O RiI
i
`i
RT
i J

`i
O+

+mmiJ
miT

P J
mi
P + J

miT

O RmiI
mi
mi
RT
mi
J
mi
O)

(3.27)

leading, for the anthropomorphic space manipulator, to a (3× 3) matrix with

components:

16

b11 = Iy`1 + Iy`2 + Iy`3 + Iym2
+ Iym3

+ Iym1
k2r1 +m`3(l3c23 + L2c2)

2+

+ Ix`3s
2
23 − I

y
`3
s223 + Ixm3

s223 − Iym3
s223 + Ix`2s

2
2 − I

y
`2
s22+

+ Ixm2
s22 − Iym2

s22 − L2
2mm3(s

2
2 − 1)− l22m`2(s

2
2 − 1);

b12 = 0;

b13 = 0;

b21 = 0;

b22 = Iz`2 + Iz`3 + Izm3
+ Izm2

k2r2 + L2
2mm3 + l22m`2 +m`3(L

2
2 + 2c3L2l3 + l23);

b23 = Iz`3 + Izm3
kr3 +m`3(l

2
3 + c3L2l3);

b31 = 0;

b32 = Iz`3 + Izm3
kr3 +m`3(l

2
3 + c3L2l3);

b33 = Iz`3 + Izm3
k2r3 +m`3l

2
3;

(3.28)

Christoffel Matrix

The Christoffel matrix C is represent the contribution of the centrifugal effect

and Coriolis effect induced by each joint with respect to the other.

The Christoffel symbols of the first type are defined as

cijk =
1

2

(
∂bij
∂qk

+
∂bik
∂qj
− ∂bjk

∂qi

)
(3.29)

and allow for the computation of the element of the Christoffel matrix

cij =
n∑
k=1

cijkq̇k (3.30)

For the case of the robotic arm used in this project, the C-matrix has compo-

nents

c11 = q̇2h1 + q̇3h2;

c12 = q̇1h1;

c13 = q̇1h2;

c21 = −q̇1h1;
c22 = q̇3h3;

c23 = (q̇2 + q̇3)h3;

c31 = −q̇1h2;
c32 = −q̇2h3;
c33 = 0;

(3.31)

17

with

h1 = (Ix`3 − I
y
`3

+ Ixm3
− Iym3

− l23m`3)
sin(2q2+2q3)

2
+

+ (+Ix`2 − I
y
`2

+ Ixm2
− Iym2

− L2
2m`3 − L2

2mm3 − l22m`2)
sin(2q2)

2
+

− L2l3m`3
sin(2q2+q3)

2
;

h2 = (+Ix`3 − I
y
`3

+ Ixm3
− Iym3

− l23m`3)
sin(2q2+2q3)

2
− L2l3m`3

(
sin(q3)+sin(2q2+q3)

2

)
;

h3 = −L2l3m`3s3;

(3.32)

Dynamic Parameters

In this section the parameters value chosen for the simulation of the space

robotic arm will be listed.

The damping coefficient matrix is

Fv =

 f 0 0

0 f 0

0 0 f

 (3.33)

where f = 2Ns/m.

For the model simplicity, all rotor mass are considered to be null (mmi = 0Kg)

and all gear reduction ratio are chosen unitary (kri = 1). Therefore, Ixmi =

Iymi = Izmi = 0Kgm2.

With reference to Tab 3.2, the centre of mass of each link is located at the

link’s half length (li = Li/2).

For Link 1 the inertia tensor is given by the cylinder inertia tensor

I`1 =

 Ix`1 0 0

0 Iy`1 0

0 0 Iz`1

 =

1
12
m`1(3r

2 + L2
1) 0 0

0 1
12
m`1(3r

2 + L2
1) 0

0 0 1
2
m`1r

2

(3.34)

For Link 1 and Link 2, being the longitudinal dimension much bigger with

respect to the cylinder radius, the inertia tensor can be approximated to the

18

rod inertia tensor

I`i =

 Ix`i 0 0

0 Iy`i 0

0 0 Iz`i

 =

 0 0 0

0 1
2
m`iL

2
i 0

0 0 1
2
m`iL

2
i

 i = 2, 3. (3.35)

3.2 URDF Modelling

In order to perform the simulation in ROS and Gazebo, the robot has to be

modelled in a way that the simulation environment can interpret. The URDF

is an XML format for representing a robot model. ROS can parse the URDF

through a C++ parser contained in the “urdf” package [29]. In particular, for

this project, the format used is the “urdf.xacro”, with Xacro being a XML

macro language that allow for constructing shorter and more readable XML

files through the use of macros [30]. The parameters used for the manipulator

dimensions are the same as the previous section, by doing so, the generated

URDF file will describe a robot model equivalent to the mathematical one.

3.2.1 Code Explanation

In order for the URDF file to be parse correctly, a namespace must be specified

[31]. For a xacro file the following lines are needed

<?xml version="1.0"?>

<robot name="space_arm"

xmlns:xacro="http://www.ros.org/wiki/xacro">

The space robot model is built connecting a series of link to each other using

joints. URDF allows to use a series of tag to describe these objects. First,

since the robot will have a fixed base while performing the simulations, the

robot needs to be permanently attached to the world frame. To achieve this,

the base link is attached to a reference link called ‘world’ by means of a ‘fixed’

joint type [32]. The ‘joint’ and ‘link’ tags allow to specify the properties of the

robot such as mass and spawn position of each link. The base is a box shape

fixed link with high mass and inertia, representing the spacecraft to which the

manipulator is attached. Since the mathematical model doesn’t have a base

link, in order to have coherence within the two robots, the base link is spawned

underneath the ground level. In this way, the robotic arm has the first link

starting at the origin of the world frame. The resulting lines of code are

19

<link name="world"/>

<joint name="world_joint" type="fixed">

<parent link="world"/>

<child link="base_link"/>

<origin rpy="0 0 0" xyz="0 0 0"/>

</joint>

<link name="base_link">

<visual>

<origin rpy="0 0 0" xyz="0 0 -0.5"/>

<geometry>

<box size="1 1 1"/>

</geometry>

</visual>

<collision>

<origin rpy="0 0 0" xyz="0 0 -0.5"/>

<geometry>

<box size="1 1 1"/>

</geometry>

</collision>

<inertial>

<origin rpy="0 0 0" xyz="0 0 -0.5"/>

<mass value="300"/>

<inertia ixx="300" ixy="0.0" ixz="0.0"

iyy="300" iyz="0.0" izz="300"/>

</inertial>

</link>

The rest of the robotic arm in modelled by connecting a series of links with

continuous type joint (Full code in appendix A.1)[33]. The ‘continuous’ joint is

the equivalent of a revolute joint without speed and angle limitations. Since the

geometry tag ‘cylinder’ creates a cylinder which has the longitudinal dimension

on the z-axis, it cannot be used for the second and third link of the manipulator

which, from the mathematical model, require the longitudinal dimension on

the x-axis. For this reason, the second and third link will be modelled as a rod-

20

like hyperrectangle using the ‘box’ tag that allows to choose the the length for

each axes (Fig 3.4). By using xacro, it is possible to include other files inside

our URDF Xacro file. With the following line of code

<xacro:include filename=

"$(find surrey_space_arm_description)/

urdf/surrey_3dof_space_arm.gazebo"/>

a ‘.gazebo’ file is included. This file (Full code in appendix A.2) add some

graphical customization and the ‘gazebo ros control’ plugin that will be used

to simulate the robot’s controller in gazebo.

A ‘transmission’ block with ‘hardware interface::EffortJointInterface’ ros control

interface needs to be added for each joint that the controller has to actuate

[34]. This segment of the code also allows to set the mechanical reduction ratio

of the motor equal to the mathematical model (kri = 1).

<transmission name="tran1">

<type>transmission_interface/SimpleTransmission</type>

<joint name="joint_1">

<hardwareInterface>hardware_interface/EffortJointInterface

</hardwareInterface>

</joint>

<actuator name="motor1">

<hardwareInterface>hardware_interface/EffortJointInterface

</hardwareInterface>

<mechanicalReduction>1</mechanicalReduction>

</actuator>

</transmission>

Figure 3.4: URDF file opened in Gazebo

21

3.2.2 Non Cooperative Target Disturbance

A second version of the URDF file with an end-effector mass will be needed

for simulating the response of the controller to a non cooperative target at-

tached to the end-effector the manipulator. The goal is to replicate a realistic

scenario of faulty micro-satellite rescued by the manipulator. The satellite

thrusters try to counteract the trajectory imposed by the space robotic arm.

The micro-satellite body is modelled as an additional link with a 1m radius

spherical shape. The disturbance is applied to the body through the ‘ap-

ply body wrench’ service [35] with the help of a ‘IMU’ plugin sensor [36].

<link name="imu_link">

<visual>

<origin rpy="0 0 0" xyz="0 0 0"/>

<geometry>

<sphere radius="1.0"/>

</geometry>

</visual>

<inertial>

<origin rpy="0 0 0" xyz="0 0 0"/>

<mass value="100"/>

<inertia ixx="40" ixy="0.0" ixz="0.0"

iyy="40" iyz="0.0" izz="40"/>

</inertial>

</link>

<!-- IMU Plug-in -->

<gazebo reference="imu_link">

<gravity>true</gravity>

<sensor name="imu_sensor" type="imu">

<always_on>true</always_on>

<update_rate>100</update_rate>

<visualize>true</visualize>

<topic>__default_topic__</topic>

<plugin filename="libgazebo_ros_imu_sensor.so"

name="imu_plugin">

<topicName>imu</topicName>

<bodyName>imu_link</bodyName>

22

<updateRateHZ>100.0</updateRateHZ>

<gaussianNoise>0.0</gaussianNoise>

<xyzOffset>0 0 0</xyzOffset>

<rpyOffset>0 0 0</rpyOffset>

<frameName>imu_link</frameName>

<initialOrientationAsReference>false

</initialOrientationAsReference>

</plugin>

<pose>0 0 0 0 0 0</pose>

</sensor>

</gazebo>

The disturbance model used to simulate the thruster force to oppose the move-

ment is

η = −ka (3.36)

where k is the proportional thruster gain and a is the linear acceleration of the

end-effector mass. The IMU sensor sends the acceleration data to a python

script that communicate the computed force to the ‘apply body wrench’ ser-

vice.

3.3 Model Validation

Before using the mathematical model of the robot for control purposes, the

model has to be validated to ensure that the dynamic behaviour is comparable

to the one of the URDF model used for simulations. In order to compare the

two models, they need to be simulated in the same environment.

3.3.1 MATLAB Simulink URDF Import

Exploiting the MathWorks Simscape Multibody environment, it is possible to

import the URDF file using the command

smimport(‘model.urdf’)

in MATLAB command prompt. This command maps the URDF ‘robot’ el-

ement into a Simscape Multibody model [37]. The Robot model placed in-

side a Simulink file and can be used in simulation through the ‘Simulink-PS

Converter’ and ‘PS-Simulink Converter’ blocks. The ‘gravity’ option in the

23

‘Mechanism Configuration’ block has to be set null in order to match the ab-

sence of the gravitational term of the mathematical model. Fig 3.5 displays

the resulting Simulink block scheme of the space manipulaotr.

Figure 3.5: Imported URDF Robot in MATLAB Simulink.

3.3.2 Mathematical Simulink Model

The Simulink Mathematical model derivation is a straight forward implemen-

tation of the equation of motion (3.16) into a Simulink block scheme like shown

in Fig 3.6. The ‘State-Space’ block, associated with the proper matrices, func-

tion as a double integrator.

Figure 3.6: MATLAB Simulink equivalent mathematical model.

3.3.3 Model Comparison

Having both of the models into the same environment, the model validation is

done providing them with the same open loop input torque and comparing the

respective joint positions and velocities. The torque inputs used for the model

validation are sinusoidal signals with characteristic described in Tab 3.3. With

the naming ‘Normal’ and ‘Strong’ referring to a real-like scenario and a higher,

24

more conservative torque amplitude respectively.

Table 3.3: Sinusoidal open loop input torques

Amplitude(Nm) Frequency(rad/s) Phase(rad)

Normal 100

 1

0.7

0.4

 2π/20 0

Strong 500

 1

0.7

0.4

 2π/20 0

Three different simulation over a time period of 40s are performed:

� Mathematical model vs URDF imported model with ‘Normal’ Input

� Mathematical model vs URDF imported model with ‘Strong’ Input

� Mathematical model vs URDF with a 100Kg end-effector mass imported

model with ‘Normal’ Input

The simulation results are displayed in Fig 3.7, 3.8, 3.9 and the resulting data

are analysed using the following performance indexes

� The maximum absolute (ME) value of error

ME = max (|rref (t)− r(t)|) (3.37)

where rref (t) and r(t) are the reference and actual variable respectively.

� The root mean square error (RMSE) value

RMSE =

√
1

tf − ti

∫ tf

ti

(rref (t)− r(t))2dt (3.38)

where tf and ti are the initial and final times of the simulation [38].

Even with relatively high input torque, the dynamics of the URDF robot are

well captured by the model derived from the equation of motion 3.16. As

expected, the behaviour of the robot with a 100Kg end effector mass is fairly

different from the mathematical model.

25

(a) (b) (c)

(d) (e) (f)

Figure 3.7: Mathematical model vs URDF imported model with ’Normal’

Input

(a) (b) (c)

(d) (e) (f)

Figure 3.8: Mathematical model vs URDF imported model with ’Strong’ Input

26

(a) (b) (c)

(d) (e) (f)

Figure 3.9: Mathematical model vs URDF with a 100Kg end-effector mass

imported model with ’Normal’ Input

Table 3.4: Maximum Joint Position Error

q1 q2 q3

Normal 0,010105521 0,007430467 0,016122063

Strong 0,075311286 0,060438488 0,292418505

100Kg 1,222905338 0,812475789 2,171963564

Table 3.5: Maximum Joint Velocity Error

q̇1 q̇2 q̇3

Normal 0,001194227 0,001762023 0,004694169

Strong 0,037854994 0,062042062 0,177007495

100Kg 0,086172991 0,102883352 0,371941761

27

Table 3.6: Maximum Joint Position and Velocity Norms Error

‖q‖ ‖q̇‖
Normal 0,018625014 0,00501444

Strong 0,301846216 0,188075226

100Kg 2,484489971 0,384370474

Table 3.7: RMSE: Joint Position

q1 q2 q3

Normal 0,005570571 0,002907044 0,009255633

Strong 0,022069766 0,016381556 0,085754679

100Kg 0,766167075 0,448607565 1,154543109

Table 3.8: RMSE: Joint Velocity

q̇1 q̇2 q̇3

Normal 0,00042585 0,000698071 0,001938762

Strong 0,010412544 0,016592983 0,052484388

100Kg 0,040995032 0,0544968 0,157085593

Table 3.9: RMSE: Joint Position and Velocity Norms

‖q‖ ‖q̇‖
Normal 0,011186998 0,002104151

Strong 0,090051624 0,05602106

100Kg 1,45644448 0,171249459

28

4

The Enhanced Model Reference

Adaptive Control (EMRAC)

Adaptive controller, such as the MRAC, are widely researched especially for

system with intense dynamics and parameter uncertainties. In this chapter,

an in-depth description of the Enhanced Model Reference Adaptive Control

(EMRAC) used for this Project will be presented.

4.1 The EMRAC Algorithm

Model Reference Adaptive Control (MRAC) aims at imposing the dynamic

of a reference model to a plant. It has a strong theoretical foundation and

has proven to be a worthy solution for controlling system affected by un-

modelled dynamics and unknown real time parameters . To further improve

the MRAC performance when facing intense nonlinearities and rapid chang-

ing disturbances, an adaptive integral action and an adaptive switching term

are added to the standard control law like in [8]. The resulting controller

is known in literature as the Enhanced MRAC (EMRAC). The EMRAC has

been previously used for Single Input Single Output (SISO) systems affected

by uncertainties and disturbances showing promising results [8, 10, 11]. Ro-

bustness of the EMRAC can also be enhanced by using methods such as,

parameter projection and σ-modification, for stopping the unbounded drifting

of the adaptive gains [12]. In this thesis, a Multi Input Multi Output (MIMO)

extension of the EMRAC (control scheme in Fig 4.1) is adopted for controlling

the space robotic manipulator. In order to prevent the drifting of the control

gains and guaranteeing ultimate boundedness of the closed loop system, a σ-

modification framework is exploited. To the best of the author’s knowledge,

29

Figure 4.1: EMRAC Control Scheme, modified from [9].

this project application is a novel implementation of the EMRAC controller

with σ-modification to a MIMO space robotic system. More specifically, in

the following sections, two different extension of the EMRAC algorithm to the

MIMO case will be introduced.

4.2 Problem Formulation

The problem formulation presented in this section is a MIMO extension of the

EMRAC algorithm proposed in [8], referring to the notation adopted in [12]

Considering a plant with n-degrees of freedom of order l in the following form:

ẋ = Ax+Bu+Beδ, (4.1)

where x ∈ Rnl and u ∈ Rn are the state vector and the system input respec-

tively, A ∈ Rnl×nl and B ∈ Rnl×n are the system matrices defined as:

A =

[
0(l−1)n,n I(l−1)n

−A1 · · · −Al

]
,

Be =

[
0(l−1)n,n

In

]
, B = BeBcG,

(4.2)

30

with Ai being the matrix coefficients of the dynamic matrix, Bc and G are a

positive matrix and a positive diagonal matrix respectively. t0 ∈ R is the initial

time instant. δ = δ(t) is the scalar disturbance acting on the plant dynamics

and belongs either to L2 ∩ L∞ or C ∩ L∞, where C is the set of continuous

scalar functions. While the definite positiveness of the matrices Bc and G is

assumed, all the entries of the plant are supposed to be unknown.

The control objective of the EMRAC algorithm consists in imposing the

dynamics of a reference model to system 4.1 while keeping all the closed-loop

signals bounded. The reference model is a LTI system with asymptotic stability

properties

ẋm = Amxm +Bmr (4.3)

xm ∈ Rnl is the reference model state. The reference input r ∈ Rn is bounded

and the matrices Am ∈ Rnl×nl and Bm ∈ Rnl×n are of the same form of the

plant matrices

Am =

[
0(l−1)n,n I(l−1)n

−Am1 · · · −Aml

]
, Bm = BeBmc, (4.4)

Bmc ∈ Rn×n is a given positive matrix and Ami ∈ Rn×n are the matrix coeffi-

cients giving Am Hurwitz.

The control action of the EMRAC is given by

u(t) = uMCS(t) + uI(t) + uN(t), (4.5)

with

uMCS(t) = KX(t)x(t) +KR(t)r(t), (4.6a)

uI(t) = KI(t)xI(t), (4.6b)

where ẋI = xe + fe, giving xi as the integral of the racking error: xe = xm−x.

The adaptive gains are composed by a proportional part and an integral adap-

tive contribution and are computed as

KX = φTX + yex
TβX and φ̇TX = yex

TαX + fTX , (4.7a)

KR = φTR + yer
TβR and φ̇TR = yer

TαR + fTR , (4.7b)

KI = φTI + yex
T
I βI and φ̇TI = yex

T
I αI + fTI , (4.7c)

31

αX , αR, αI , βX , βR and βI are strictly positive constant diagonal matrices that

determine the speed of the adaptation, while ye = Cexe, with Ce = BT
e P, and

PAm + ATmP = −Q, Q = QT > 0.

where Q ∈ Rnl×nl, P ∈ Rnl×nl, BT
e ∈ Rn×nl, CT

e ∈ Rnl×nl, and ye ∈ Rn. ye

represent the projection of the tracking error and has to be properly tuned for

guaranteeing closed loop stability of the system

Having assumed Am to be Hurwitz, it exists a solution of the Lyapunov Equa-

tion P . The functions fe, fX , fR and fI are used in the σ-modification strategy

for preventing the drifting of the adaptive gains in presence of disturbances.

Having extent the EMRAC controller to a multi input multi output system,

two different approaches for defining the adaptive switching term are used, a

first one where the components of ye are considered separately leading to an

element-wise tuning of the switching action, and a second one where the tuning

is performed directly on the unit vector of ye. From now on, these approaches

will be referred as EMRAC-EW and EMRAC-UV respectively.

4.2.1 EMRAC-EW

For this control strategy, the switching term of control action is defined as

uN(t) = KN(t)Ψ(ye(t)), (4.8)

where Ψ(·) is the function defined as

Ψ(ye) = [sgn(ye,1), sgn(ye,2), ..., sgn(ye,n)]. (4.9)

The related adaptive gain is computed as

KN = φN and φ̇N = γdiag(ȳe) + fN , (4.10)

with ȳe = [|ye,1|, |ye,2|, ..., |ye,n|], γ ∈ Rn×n is a constant positive diagonal matrix

and fN is the σ-modification term related to the switching action

4.2.2 EMRAC-UV

For this control strategy, the switching term of control action is defined as

uN(t) = KN(t)
ye(t)

‖ye(t)‖
, (4.11)

The related adaptive gain is computed as

KN = φN and φ̇N = γ‖ye‖H + fN (4.12)

32

with ‖ye‖H =
√
h1y2e,1 + h1y2e,2 + h1y2e,3 being the weighted norm of ye with

the generic weights hi, γ ∈ Rn×n is a constant positive scalar and fN is the

σ-modification term related to the switching action

4.2.3 σ-Modification

For both of the control architecture, a σ-modification strategy is used to pre-

vent the drifting of the adaptive gains.

Three diagonal matrices are defined for collecting the adaptive gains

Γα = diag(α̂1, α̂2, ..., α̂2nl+n), (4.13a)

Γβ = diag(β̂1, β̂2, ..., β̂2nl+n), (4.13b)

Γγ = diag(γ̂1, γ̂2, ..., γ̂n). (4.13c)

with (α̂i, β̂i) = (αX , βX), i = 1, ..., nl, (α̂i, β̂i) = (αR, βR), i = 1, ..., n, (α̂i, β̂i) =

(αI , βI), i = 1, ..., nl, (γ̂i) = (γi), i = 1, ..., n. Also, the integral adaptive part

of the adaptive gains is stacked in the vector φ

φT =
[
φ1 φ2 . . . φ2nl+n

]
=

= [φTX
... φTR

... φTI]
(4.14)

and the elements fX ,fR and fI are collected in the vector f

fT =
[
f1 f2 . . . f2nl+n

]
=

= [fTX
... fTR

... fTI].
(4.15)

with the σ-modification strategy, the adaptive gains of the EMRAC are com-

puted defining f as

fTX = −ρXσφ(||φ||)φTX , (4.16a)

fTR = −ρRσφ(||φ||)φTR, (4.16b)

fTI = −ρIσφ(||φ||)φTI . (4.16c)

with ρX ,ρR and ρI positive constants. The σ-function is

σφ(||φ||) =

0 if ||φ|| ≤ M̂φ,

ηφ(||φ||
M̂φ
− 1) ifM̂φ < ||φ|| ≤ 2M̂φ,

ηφ if ||φ|| > 2M̂φ,

(4.17)

33

where

M̂φ =

√
λmax(Γ−1α Γρ)

λmin(Γ−1α Γρ)
M (4.18)

with Γρ = diag(ρ̂1, ρ̂2, ..., ρ̂2nl+n), ρ̂i = ρX , i = 1, ..., nl, ρ̂i = ρR, i = 1, ..., n,

ρ̂i = ρI , i = 1, ..., nl λmin(H) and λmax(H) represent the minimum and

maximum eigenvalue of H matrix respectively.

Finally, ηφ is a positive constant that follow the relation

bηφλmin(Γ−1α Γρ) >
3

4
λmin(Q) (4.19)

σφ is a continuous, non-negative function that activates whenever ||φ|| exceeds

a pre-set threshold.

An analogue approach is used for defining the gain KN and xI with the σ-

modification (only the main equation are shown).

fN = −ρNσφN (||φN ||)φN (4.20)

For EMRAC-EW

σφNi (||φNi||) =

0 if ||φNi || ≤ M̂φNi

,

ηφNi (
||φNi ||
M̂φNi

− 1) ifM̂φNi
< ||φNi || ≤ 2M̂φNi

,

ηφNi if ||φNi || > 2M̂φNi
,

(4.21)

For EMRAC-UV

σφN (||φN ||) =

0 if ||φN || ≤ M̂φN ,

ηφN (||φN ||
M̂φN

− 1) ifM̂φN < ||φN || ≤ 2M̂φN ,

ηφN if ||φN || > 2M̂φN ,

(4.22)

M̂φN =

√
λmax(Γ−1γ ΓρN)

λmin(Γ−1γ ΓρN)
M (4.23)

fTe = −ρeσI(||xI ||)xTI (4.24)

σI(||xI ||) =

0 if ||xI || ≤ M̂I ,

ηI(
||xI ||
M̂I
− 1) ifM̂I < ||xI || ≤ 2M̂I ,

ηI if ||xI || > 2M̂I ,

(4.25)

34

5

Application of the EMRAC to

Space Manipulators: Four

Approaches

In this chapter the problem of motion control of the manipulator is discussed.

The control of a robotic arm is usually achieved by controlling the actuators

generalised forces i.e the control action is performed in the joint space. As

a consequence many control approaches can be utilised for controlling a ma-

nipulator, in particular, two main categories can be distinguished, joint space

control and operational space control. When the position of the end effec-

tor is known in the operational space (for example with optical sensor), the

operational space control is a better choice, even though, it requires higher

complexity due to the fact that the inverse kinematic has to be embedded in

the control algorithm [27]. Since this project involves a space robotic arm, the

end effector operational position usually cannot be exactly determined online

due to the lack of environment references in space. Therefore, a joint space

control algorithm is adopted and the trajectory in the operational space is

converted into the joint space trajectory offline through the inverse kinematic

algorithm.

5.1 Inverse Dynamics

As already discussed in in chapter 3, a robotic manipulator is a highly nonlinear

system and the dynamic model is described by equation 3.16. For simplicity

35

all the terms apart from B(q)q̈ are collected into n(q, q̇) giving

B(q)q̈ + n(q, q̇) = u (5.1)

Exploiting the nonlinear state feedback, it is possible to perform an exact

linearization of the system dynamics. The possibility is granted by the fact

that B(q)q̈ is invertible, as discussed in 3.

By defining the inverse dynamics control action u as

u = B(q)y + n(q, q̇) (5.2)

leading to

q̈ = y (5.3)

the resulting system (block scheme in Fig. 5.1) is linear and decoupled, mean-

ing that the generic component of the new input yi influences only the generic

joint variable qi, without being affected by induced dynamics of other joints

[27]. Furthermore, the relationship of the system 5.3 is a double integrator,

meaning that the linear system is unstable. Therefore, an additional control

action has to be employed to control the decoupled robotic manipulator.

Figure 5.1: Inverse Dynamics Control Scheme [27].

5.2 EMRAC Controllers

Even if the EMRAC controller is able to compensate for system nonlinearities,

having a feedback control law, could ease the control effort and allow for a

36

smaller tracking error. For this reason, for the application of the EMRAC-EW

and the EMRAC-UV, two different control architectures have been tested. A

first one, where the EMRAC control action is augmented through the feedback

linearization of the nonlinear terms of the robot, as shown in Fig 5.2. A

second approach, where the EMRAC is applied directly on the system with no

feedback linearization illustrated in Fig 5.3. These two control architectures

will be denoted with the extension ’-FL’ and ’-NFL’ respectively.

Figure 5.2: EMRAC Controller with Feedback Linearization.

Figure 5.3: EMRAC Controller with No Feedback Linearization.

This brings the total number of EMRAC control strategies to be tested to 4:

� EMRAC-EW-NFL

� EMRAC-EW-FL

� EMRAC-UV-NFL

� EMRAC-UV-FL

37

6

Simulations & Analysis

Showing the real time feasibility of a control algorithm helps to validate its

potential for real-life applications. This chapter reports the simulation data of

the space robotic manipulator controlled by the EMRAC controllers, presented

in chapter 5, preforming a desired trajectory in a real time environment (see

chapter 2). While tracking the trajectory, the robotic arm will hold an end

effector mass of 100Kg affected by a disturbance force (see chapter 3). This

simulation tries to replicate a real-like scenario where a space robotic manip-

ulator is acting on a non-cooperative micro-satellite. The simulation will be

replicated using well-known control architectures for performance comparison.

6.1 Simulation

6.1.1 Trajectory Generation

The chosen joint space trajectory is obtained through the interpolation of two

polynomials of order 5 and the application of a inverse kinematic algorithm,

similarly to the approach used in [27]. The resulting trajectory last 250s and

consist of two laps performed on an inclined circumference preceded by a first

stroke to reach the starting position. Within the trajectory, some steady state

interval are present. The time-line of the simulation can be resumed as follow:

� t0 = 0s start of the simulation (first steady state interval)

� t1 = 5s start of the first segment

� t2 = 55s end of the first stroke (second steady state interval)

� tc0 = 60s start of the first circumference lap

38

� tc1 = 150s start of the second circumference lap

� tc2 = 240s end of the second circumference lap (third steady state inter-

val)

� tf in = 250s end of the simulation

Fig 6.1 and Fig 6.2 show the trajectory in the operational space and in the

joint space, respectively.

Figure 6.1: Operational Space Trajectory

(a) (b) (c)

Figure 6.2: Joint Space Trajectory

39

Fig 6.3 shows that det J 6= 0 during the inclined circumference stroke,

implying that the trajectory is non-singular within that interval.

Figure 6.3: Determinant of the Jacobian during the inclined circumference

stroke

6.1.2 Benchmarks Controllers

In this section are presented the benchmarks controllers used for comparing the

obtained results. Some well known centralized control strategy for robot are

discussed in [27]. As a comparison for the EMRAC controller, a proportional

derivative (PD) controller with feedback nonlinear compensation and a robust

Controller are picked from [27], and also a Proportional Integral (PI) strategy

is used.

PD Control

This PD controller consist of a linear controller applied to the linearized system

discussed in chapter 5. The feedback control block scheme is illustrated in Fig

6.4

Robust Control

Due to an imperfect modelling of the mathematical model, it is possible to have

an imperfect compensation. The robust control of Fig 6.5 solves this problem

40

Figure 6.4: PD Controller [27]

by adding a robust contribution to the PD controller for counteracting the

uncertainty related to the nonlinear terms computation.

Figure 6.5: PD Robust Controller [27]

PI Control

The PI control scheme adopted is shown in Fig 6.6

41

Figure 6.6: PI Controller [27]

6.1.3 Tuning of the EMRAC Controllers

The tuning of the EMRAC controller is performed in MATLAB on the im-

ported URDF model of the robot considering an end effector mass of 10Kg,

and then, the tuned controller is deployed in ROS where the simulation are

performed setting the unknown target mass to 100Kg. The EMRAC controller

will run with sampling time at 5ms and the control parameters are tuned with

a trial and error procedure to find a good trade off between tracking perfor-

mance and command effort.

In Tab 6.1 the tuned control parameters are reported. Note that, in order to

have a fair comparison, same KP and KD (6.1) gain matrices were used for all

controllers.

KP = 10−3

 6.7 0 0

0 2 0

0 0 1

KD = 10−2

 16.67 0 0

0 9 0

0 0 6.19

(6.1)

Considering n = 3 and l = 2, Inl and In are defined as a (6× 6) and a (3× 3)

identity matrix, respectively. Be and P are computed as discussed in chapter

4.

Since the simulations in Simulink are not in real time, the performance will be

different from the simulations in Gazebo. For compensating this discrepancy,

a more conservative tuning of the controller has to be performed, otherwise the

real time simulation might require too much computational power and crash.

This behaviour is not predictable because it varies on the computer used for

42

Table 6.1: Tuned Control Parameters

EMRAC-EW-

NFL

EMRAC-EW-

FL

EMRAC-UV-

NFL

EMRAC-UV-

FL

αX 10−2Inl 10−4Inl 10−2Inl 10−4Inl

αR In 10−4In In 10−4In

αI 10−3Inl 10−4Inl 10−3Inl 10−4Inl

βX αX/20 αX/20 αX/20 αX/20

βR αR/20 αR/20 αR/20 αR/20

βI αI/20 αI/20 αI/20 αI/20

γ

 0.2 0 0

0 0.2 0

0 0 0.05

 5× 10−4In 10−1 5× 10−4

Ce 10BT
e P BT

e P 10BT
e P BT

e P

ε 103

 3

10

103

 15

 3

10

102

 103

 3

10

103

 15

 3

10

102

simulation and is due to the fact that ROS cannot guarantee a constant pub-

lishing rate of 5ms. Having a variable publishing rate could cause an incorrect

behaviour of the discrete time EMRAC controller leading to unbounded gains

and a consequent failure of the control system.

6.2 Simulation Figures

In this section, the figures of the simulations are reported. A more compre-

hensive illustration is reserved for the EMRAC-EW-NFL while only some of

the figures are reported for the other simulations (the remaining ones can be

found in appendix C).

43

(a) (b) (c)

Figure 6.7: EMRAC-EW-NFL Joint Position

(a) (b) (c)

Figure 6.8: EMRAC-EW-NFL-NOFL Joint Velocity

(a) (b) (c)

Figure 6.9: EMRAC-EW-NFL Joint Position Error

(a) (b) (c)

Figure 6.10: EMRAC-EW-NFL Joint Velocity Error

44

(a) (b)

Figure 6.11: EMRAC-EW-NFL Joint Position and Velocity

(a) (b)

Figure 6.12: EMRAC-EW-NFL Joint Position and Velocity Error

(a) (b) (c)

Figure 6.13: EMRAC-EW-NFL Operational Space Position

45

(a) (b) (c)

Figure 6.14: EMRAC-EW-NFL Operational Space Velocity

(a) (b) (c)

Figure 6.15: EMRAC-EW-NFL Operational Space Position Error

(a) (b) (c)

Figure 6.16: EMRAC-EW-NFL Operational Space Velocity Error

46

(a) (b)

Figure 6.17: EMRAC-EW-NFL Operational Space Position and Velocity Error

Figure 6.18: EMRAC-EW-NFL Operational Space Trajectory

(a) (b)

Figure 6.19: EMRAC-EW-NFL Control Actions and Disturbance Force

47

(a) (b)

Figure 6.20: EMRAC-EW-NFL ||φ|| and ||φN ||

(a) (b) (c)

Figure 6.21: EMRAC-EW-NFL Control Gains

From Fig 6.12 and Fig 6.17 it can be noticed how even a relatively small

error in the joint space results in a results in a relatively large error in the

operational space. For this reason a precise joint tracking performance (i.e

Fig 6.11) are needed to ensure an acceptable tracking of the trajectory in the

operational space (Fig 6.18).

Considering the gain evolution, the boundedness of the gains can be verified

from Fig 6.21 and also from the boundedness of ||φ|| and ||φN || (Fig 6.20)

aided by the σ-modification strategy.

By comparing Fig 6.19a , Fig 6.22b , Fig 6.23b and Fig 6.24b , it noticeable

how the joint command action presents slight signs of chattering in the case of

EMRAC with feedback compensation. This slightly difference does not seems

to impact the overall good performances of all four EMRAC controllers.

From Fig 6.25 it is evident that the PD controller is not able to perform

the complete trajectory. After ∼ 102s the control action diverges and the

following data are to be considered meaningless. The divergence occur during

the inclined circumference stroke so, due to the considerations from Fig 6.3, it

is not caused by the presence of singularity.

48

(a)

(b) (c)

(d) (e)

(f) (g)

Figure 6.22: EMRAC-EW-FL

49

(a)

(b) (c)

(d) (e)

(f) (g)

Figure 6.23: EMRAC-UV-NFL

50

(a)

(b) (c)

(d) (e)

(f) (g)

Figure 6.24: EMRAC-UV-FL

51

(a)

(b) (c)

(d) (e)

(f) (g)

Figure 6.25: PD

52

(a)

(b) (c)

(d) (e)

(f) (g)

Figure 6.26: ROBUST

53

(a)

(b) (c)

(d) (e)

(f) (g)

Figure 6.27: PI

54

Finally, from all the joint error figures above, we can notice that the EM-

RAC controllers tend to have a slightly worse behaviour in the first 100s of

the trajectory with respect to the robust and PI controllers. However, for the

rest of the trajectory the EMRACs outperform the benchmarks controllers. Is

good to notice that the disturbances in Fig 6.19b , Fig 6.22c , Fig 6.23c , Fig

6.24c , Fig 6.25c , Fig 6.26c and Fig 6.27c are not the same signal due to the

fact that it depends on the linear acceleration of the robot’s end effector (that

might be different in each simulation).

6.3 Data Analysis

Through the simulations’ figures, it is noticeable that the EMRAC controller

presents good tracking performance, also, it can be seen that the PD controller

without the robust contribution crashes in the middle of the simulation due to

a divergence of the control gains. A more in-depth analysis can be performed

by examining the data collected from the simulations. In this view, three

performance indexes are exploited and presented in the following section.

6.3.1 Performance Indexes

Two of the performance indexes adopted for data analysis have already been

introduced in chapter 3 and allow for a study on the tracking error, while

the third one is used to measure the control effort [38]. These performance

indexes were computed for different time intervals using the time-line presented

in section 6.1.1 and are defined as:

� The maximum absolute value of error (ME)

ME = max (|rref (t)− r(t)|) (6.2)

where rref (t) and r(t) are the reference and actual variable respectively.

� The root mean square error (RMSE) value

RMSE =

√
1

tf − ti

∫ tf

ti

(rref (t)− r(t))2dt (6.3)

where tf and ti are the initial and final times tested time interval.

55

� The integral of the absolute value of the control action normalised with

time (IACA)

IACA =
1

tf − ti

∫ tf

ti

|u(t)| dt (6.4)

where |u(t)| is the L2 norm of the command effort [38].

6.3.2 Results

In this section, some of the performance indexes computed for the EMRAC and

benchmark controller simulations are reported. The complete indexes tables

of all time intervals are listed in appendix B.

Table 6.2: t0 − tfin Maximum Joint Position and Velocity Norms Error

‖q‖ ‖q̇‖
EMRAC-EW-FL 0,035496 0,005621

EMRAC-EW-NFL 0,042292 0,00648

EMRAC-UV-FL 0,020052 0,003781

EMRAC-UV-NFL 0,070448 0,009261

ROBUST 0,097596 0,01138

PI 0,099321 0,067176

PD1 0,391446 0,01786

Table 6.3: t0 − tfin RMSE: Joint Position and Velocity Norms

‖q‖ ‖q̇‖
EMRAC-EW-FL 0,010634 0,00163

EMRAC-EW-NFL 0,008832 0,00124

EMRAC-UV-FL 0,006445 0,000959

EMRAC-UV-NFL 0,013967 0,002009

ROBUST 0,03073 0,003446

PI 0,036952 0,023243

PD1 0,261434 0,008198

1Performance index computed before the controller crash ∼ 102s

56

Table 6.4: t0 − tfin IACA: Command Activity Norm

‖u‖
EMRAC-EW-FL 23,33846

EMRAC-EW-NFL 20,816

EMRAC-UV-FL 23,80465

EMRAC-UV-NFL 20,4665

ROBUST 19,15357

PI 49,02533

PD1 8.2979

57

7

Conclusion and future work

7.1 Conclusion

From the performance indexes computed in section 6.3, it can be inferred that

the EMRAC-EW-NFL and, more in general, all the EMRAC controllers out-

perform, for the most part, the benchmark control architectures, proving the

feasibility of adopting these control strategies on real time nonlinear systems

affected by parameter uncertainty and unmodelled dynamics such as space

robotic manipulators. The behaviour of each controller can be summarized as:

� The PI controller is not able to ensure zero steady state tracking error

and an overall acceptable tracking of the trajectory, also, the IACA value

shows a relatively high command effort related to the controller’s attempt

to compensate for the oscillation induced by the disturbance.

� The PD controller crashes after around 102s of performing the trajectory

due to a divergence of the control gains. Considering the performance

indexes before the crash, the control effort and the tracking performances

are the highest and worse, respectively, out of all controllers.

� The robust is the only one, out of the benchmark controllers, that pro-

vides acceptable tracking performance performance but, even if it re-

quires a lowest command effort, the tracking performances tend to de-

grade throughout the simulation ending with a relatively high steady

state tracking error (especially on the third joint).

� The EMRAC controllers trade a reasonably small worsening of the com-

mand effort with a fairly overall improvement of the tracking perfor-

mances. In particular, is quite evident the adapting behaviour of the

58

EMRAC controller by the fact that, after the first segment of the tra-

jectory (t1 − t2) where the tracking is worse than the Robust controller

(see appendix B), the control gains are able to adapt and improve the

tracking performance finishing with ∼ 0 steady state error.

7.1.1 Consideration on the EMRAC

The application of the EMRAC has shown promising result for controlling

a space robotic manipulator. Simulations show that, even without nonlinear

compensation, the EMRAC controller is able to compensate the nonlinearities

of the robot, furthermore, the feedback linearization lead to an increase of the

command effort. In fact, even though the EMRAC-UV-FL has shown the best

results from a tracking performance point of view, it is the most demanding

in terms of command effort. The EMRAC-EW-NFL on the other hand, seems

to be the best trade off between command activity and tracking performance.

Finally, it is possible that with a even more refined tuning of the controllers,

the behaviour could further improve.

7.1.2 Decentralised EMRAC

All the controller tested until now follow a centralized control approach. It

would be interesting to test an additional decentralised version of the EM-

RAC for comparison. Since this is outside of the scope of the project, only a

preliminary testing has been done, without fine tuning of the controller. The

following figures and performance indexes show the feasibility of this approach

and promising results in terms of performance, similar to the centralised ap-

proach.

Table 7.1: t0 − tfin Performance Indexes

ME RMSE IACA

‖q‖ ‖q̇‖ ‖q‖ ‖q̇‖ ‖u‖
EMRAC-DEC 0,0253 0,0051 0,0050 0,0010 22,5061

59

(a)

(b) (c)

(d) (e)

(f) (g)

Figure 7.1: EMRAC-DEC

60

7.2 Future Work

Out of this project, many improvement and future application idea have emerged.

7.2.1 Improvements

A first improvement could be the introduction of more disturbances and ele-

ments related to the space environment such as solar radiation, aerodynamic

drag and so on. A more extensive parametric analysis with higher unknown

target masses could also show even further the capability of the EMRAC and

enlarge the range of applications. Since out of the benchmark control strategies

the only acceptable behaviour was the one of the robust control, it could be

useful to have a comparison with a more comprehensive set of benchmark con-

trollers including, for instance, the ROS standard PID. Another improvement

that would validate real life application even further would be the study of the

computational complexity that characterise the EMRAC with respect to the

benchmark controllers. Finally, a more in-depth analysis of the decentralized

approach could be held.

7.2.2 Future Projects

An interesting future project could be the application of the EMRAC for sta-

bilizing the base of a space robotic manipulator in a free flying case (base-link

is not fixed and has no restriction) using a similar approach of [39].

61

Appendix A

Code

A.1 surrey 3dof space arm efmass.urdf.xacro

<?xml version="1.0"?>

<!-- Simone Martini, supervisor: Dr Umberto Montanaro.

Martini’s Master Thesis Project: Design & Application of the Enhanced

Model Reference Adaptive Control to Robotic Manipulator

Surrey University, Department of Mechanical Engineering Sciences,

May 2020 -->

<robot xmlns:xacro="http://www.ros.org/wiki/xacro" name="space_arm">

<!-- Import all Gazebo-customization elements, including Gazebo colors -->

<xacro:include filename="$(find surrey_space_arm_description)/urdf/

surrey_3dof_space_arm_efmass.gazebo"/>

<link name="world"/>

<joint name="world_joint" type="fixed">

<parent link="world"/>

<child link="base_link"/>

<origin rpy="0 0 0" xyz="0 0 0"/>

</joint>

<link name="base_link">

<visual>

<origin rpy="0 0 0" xyz="0 0 -0.5"/>

<geometry>

<box size="1 1 1"/>

</geometry>

62

</visual>

<collision>

<origin rpy="0 0 0" xyz="0 0 -0.5"/>

<geometry>

<box size="1 1 1"/>

</geometry>

</collision>

<inertial>

<origin rpy="0 0 0" xyz="0 0 -0.5"/>

<mass value="300"/>

<inertia ixx="300" ixy="0.0" ixz="0.0" iyy="300" iyz="0.0" izz="300"/>

</inertial>

</link>

<joint name="joint_1" type="continuous">

<axis xyz="0 0 1" />

<origin rpy="0 0 0" xyz="0 0 0"/>

<parent link="base_link"/>

<child link="link_1"/>

<dynamics damping="2"/>

</joint>

<link name="link_1">

<visual>

<origin rpy="0 0 0" xyz="0 0 0.25"/>

<geometry>

<cylinder radius="0.2" length="0.5"/>

</geometry>

</visual>

<collision>

<origin rpy="0 0 0" xyz="0 0 0.25"/>

<geometry>

<cylinder radius="0.2" length="0.5"/>

</geometry>

</collision>

<inertial>

<origin rpy="0 0 0" xyz="0 0 0.25"/>

<mass value="50"/>

<inertia ixx="1.5417" ixy="0.0" ixz="0.0" iyy="1.5417" iyz="0.0"

izz="1"/>

</inertial>

</link>

<joint name="joint_2" type="continuous">

<axis xyz="0 0 1" />

63

<origin rpy="1.57 0 0" xyz="0 0 0.5"/>

<parent link="link_1"/>

<child link="link_2"/>

<dynamics damping="2"/>

</joint>

<link name="link_2">

<visual>

<origin rpy="0 0 0" xyz="2 0 0"/>

<geometry>

<box size="4 0.2 0.2"/>

</geometry>

</visual>

<collision>

<origin rpy="0 0 0" xyz="2 0 0"/>

<geometry>

<box size="4 0.2 0.2"/>

</geometry>

</collision>

<inertial>

<origin rpy="0 0 0" xyz="2 0 0"/>

<mass value="200"/>

<inertia ixx="0.1" ixy="0.0" ixz="0.0" iyy="268.667" iyz="0.0"

izz="268.667"/>

</inertial>

</link>

<joint name="joint_3" type="continuous">

<axis xyz="0 0 1" />

<origin rpy="0 0 0" xyz="4 0 0"/>

<parent link="link_2"/>

<child link="link_3"/>

<dynamics damping="2"/>

</joint>

<link name="link_3">

<visual>

<origin rpy="0 0 0" xyz="2 0 0"/>

<geometry>

<box size="4 0.2 0.2"/>

</geometry>

</visual>

<collision>

<origin rpy="0 0 0" xyz="2 0 0"/>

<geometry>

64

<box size="4 0.2 0.2"/>

</geometry>

</collision>

<inertial>

<origin rpy="0 0 0" xyz="2 0 0"/>

<mass value="200"/>

<inertia ixx="0.1" ixy="0.0" ixz="0.0" iyy="268.667" iyz="0.0"

izz="268.667"/>

</inertial>

</link>

<joint name="joint_4" type="revolute">

<axis xyz="0 0 1" />

<limit effort="10" lower="0" upper="0" velocity="3" />

<origin rpy="0 0 0" xyz="4 0 0"/>

<parent link="link_3"/>

<child link="imu_link"/>

</joint>

<link name="imu_link">

<visual>

<origin rpy="0 0 0" xyz="0 0 0"/>

<geometry>

<sphere radius="1.0"/>

</geometry>

</visual>

<inertial>

<origin rpy="0 0 0" xyz="0 0 0"/>

<mass value="200"/>

<inertia ixx="80" ixy="0.0" ixz="0.0" iyy="80" iyz="0.0" izz="80"/>

</inertial>

</link>

<!-- IMU Plug-in -->

<gazebo reference="imu_link">

<gravity>true</gravity>

<sensor name="imu_sensor" type="imu">

<always_on>true</always_on>

<update_rate>100</update_rate>

<visualize>true</visualize>

<topic>__default_topic__</topic>

<plugin filename="libgazebo_ros_imu_sensor.so" name="imu_plugin">

<topicName>imu</topicName>

65

<bodyName>imu_link</bodyName>

<updateRateHZ>100.0</updateRateHZ>

<gaussianNoise>0.0</gaussianNoise>

<xyzOffset>0 0 0</xyzOffset>

<rpyOffset>0 0 0</rpyOffset>

<frameName>imu_link</frameName>

<initialOrientationAsReference>false</initialOrientationAsReference>

</plugin>

<pose>0 0 0 0 0 0</pose>

</sensor>

</gazebo>

<!-- Transmissions -->

<transmission name="tran1">

<type>transmission_interface/SimpleTransmission</type>

<joint name="joint_1">

<hardwareInterface>hardware_interface/EffortJointInterface

</hardwareInterface>

</joint>

<actuator name="motor1">

<hardwareInterface>hardware_interface/EffortJointInterface

</hardwareInterface>

<mechanicalReduction>1</mechanicalReduction>

</actuator>

</transmission>

<transmission name="tran2">

<type>transmission_interface/SimpleTransmission</type>

<joint name="joint_2">

<hardwareInterface>hardware_interface/EffortJointInterface

</hardwareInterface>

</joint>

<actuator name="motor2">

<hardwareInterface>hardware_interface/EffortJointInterface

</hardwareInterface>

<mechanicalReduction>1</mechanicalReduction>

</actuator>

</transmission>

<transmission name="tran3">

<type>transmission_interface/SimpleTransmission</type>

<joint name="joint_3">

<hardwareInterface>hardware_interface/EffortJointInterface

66

</hardwareInterface>

</joint>

<actuator name="motor3">

<hardwareInterface>hardware_interface/EffortJointInterface

</hardwareInterface>

<mechanicalReduction>1</mechanicalReduction>

</actuator>

</transmission>

</robot>

A.2 surrey 3dof space arm efmass.gazebo

<!-- Simone Martini, supervisor: Dr Umberto Montanaro.

Martini’s Master Thesis Project: Design & Application of the Enhanced

Model Reference Adaptive Control to Robotic Manipulator

Surrey University, Department of Mechanical Engineering Sciences,

May 2020 -->

<robot>

<!-- ros_control plugin -->

<gazebo>

<plugin name="gazebo_ros_control" filename="libgazebo_ros_control.so">

<robotNamespace>/space_arm</robotNamespace>

<robotSimType>gazebo_ros_control/DefaultRobotHWSim</robotSimType>

<legacyModeNS>true</legacyModeNS>

</plugin>

</gazebo>

<!-- base_link -->

<gazebo reference="base_link">

<material>Gazebo/Orange</material>

<selfCollide>false</selfCollide>

</gazebo>

<!-- link_1 -->

<gazebo reference="link_1">

<material>Gazebo/Orange</material>

<selfCollide>false</selfCollide>

</gazebo>

<!-- link_2 -->

<gazebo reference="link_2">

67

<material>Gazebo/Black</material>

<selfCollide>false</selfCollide>

</gazebo>

<!-- link_3 -->

<gazebo reference="link_3">

<material>Gazebo/Orange</material>

<selfCollide>false</selfCollide>

</gazebo>

<!-- link_4 -->

<gazebo reference="imu_link">

<material>Gazebo/Blue</material>

<selfCollide>false</selfCollide>

</gazebo>

</robot>

A.3 empty world.world

<?xml version="1.0" ?>

<!-- Simone Martini, supervisor: Dr Umberto Montanaro.

Martini’s Master Thesis Project: Design & Application of the Enhanced

Model Reference Adaptive Control to Robotic Manipulator

Surrey University, Department of Mechanical Engineering Sciences,

May 2020 -->

<sdf version="1.4">

<world name="default">

<include>

<uri>model://ground_plane</uri>

</include>

<include>

<uri>model://sun</uri>

</include>

<gravity>0 0 0</gravity>

</world>

</sdf>

68

A.4 my controller.cpp

// Simone Martini, supervisor: Dr Umberto Montanaro.

// Martini’s Master Thesis Project: Design & Application of the Enhanced

// Model Reference Adaptive Control to Robotic Manipulator

// Surrey University, Department of Mechanical Engineering Sciences,

// May 2020

#include <controller_interface/controller.h>

#include <hardware_interface/joint_command_interface.h>

#include <pluginlib/class_list_macros.h>

#include <std_msgs/Float64.h>

namespace my_controller_ns

{

class MyPositionController : public

controller_interface::Controller<hardware_interface::EffortJointInterface>

{

public:

bool init(hardware_interface::EffortJointInterface* hw,

ros::NodeHandle &n)

{

// get joint name from the parameter server

std::string my_joint;

if (!n.getParam("joint", my_joint))

{

ROS_ERROR("Could not find joint name");

return false;

}

// get the joint object to use in the realtime loop

joint_ = hw->getHandle(my_joint); // throws on failure

command_ = joint_.getEffort(); // set the current joint goal

po_ = joint_.getPosition();

// Start command subscriber

sub_command_ = n.subscribe<std_msgs::Float64>("command", 1,

&MyPositionController::setCommandCB, this);

pub_po_ = n.advertise<std_msgs::Float64>("po",1);

return true;

}

void update(const ros::Time& time, const ros::Duration& period)

{

joint_.setCommand(command_);

69

}

void setCommandCB(const std_msgs::Float64ConstPtr& msg)

{

command_ = msg->data;

}

void starting(const ros::Time& time) { }

void stopping(const ros::Time& time) { }

private:

hardware_interface::JointHandle joint_;

double command_;

double po_;

ros::Subscriber sub_command_;

ros::Publisher pub_po_;

};

PLUGINLIB_EXPORT_CLASS(my_controller_ns::MyPositionController,

controller_interface::ControllerBase);

}

70

Appendix B

Performance Indexes Tables

B.1 Maximum Error Performance Index

Table B.1: t0 − tfin Maximum Joint Position and Velocity Error

q1 q2 q2 q̇1 q̇2 q̇3

EMRAC-EW-FL 0,033726 0,008375 0,018488 0,005575 0,00131 0,002947

EMRAC-EW-NFL 0,029516 0,008867 0,029216 0,004365 0,001006 0,004724

EMRAC-UV-FL 0,019915 0,008673 0,012171 0,00377 0,001277 0,00181

EMRAC-UV-NFL 0,057193 0,021079 0,035668 0,006618 0,002203 0,00632

EMRAC-DEC 0,020669 0,013846 0,008348 0,003826 0,002927 0,001844

ROBUST 0,096551 0,01837 0,022452 0,011369 0,001453 0,001818

PI 0,094752 0,024412 0,066065 0,066299 0,020104 0,03996

PD1 0,067411 0,06312 0,386688 0,005919 0,004797 0,017309

Table B.2: t0 − tfin Maximum Joint Position and Velocity Norm Error

‖q‖ ‖q̇‖
EMRAC-EW-FL 0,035496 0,005621

EMRAC-EW-NFL 0,042292 0,00648

EMRAC-UV-FL 0,020052 0,003781

EMRAC-UV-NFL 0,070448 0,009261

EMRAC-DEC 0,025315 0,005057

ROBUST 0,097596 0,01138

PI 0,099321 0,067176

PD1 0,391446 0,01786

1Performance index computed before the controller crash ∼ 102s

71

Table B.3: t1 − t2 Maximum Joint Position and Velocity Error

q1 q2 q2 q̇1 q̇2 q̇3

EMRAC-EW-FL 0,033726 0,001728 0,011326 0,00452 0,000668 0,002026

EMRAC-EW-NFL 0,029516 0,008867 0,029216 0,004365 0,001006 0,004724

EMRAC-UV-FL 0,017938 0,003087 0,004705 0,002534 0,000668 0,001775

EMRAC-UV-NFL 0,057193 0,021079 0,035668 0,006618 0,002203 0,00632

EMRAC-DEC 0,020669 0,013846 0,005156 0,003826 0,002927 0,001844

ROBUST 0,012925 0,005826 0,009103 0,001181 0,000758 0,00105

PI 0,007735 0,010845 0,023428 0,006273 0,013247 0,021817

PD 0,067411 0,039314 0,269348 0,005919 0,004797 0,017309

Table B.4: t1 − t2 Maximum Joint Position and Velocity Norm Error

‖q‖ ‖q̇‖
EMRAC-EW-FL 0,035496 0,004573

EMRAC-EW-NFL 0,042292 0,00648

EMRAC-UV-FL 0,018195 0,002643

EMRAC-UV-NFL 0,070448 0,009261

EMRAC-DEC 0,025315 0,005057

ROBUST 0,014573 0,001415

PI 0,02524 0,025869

PD 0,27171 0,01786

Table B.5: t2 − tc0 Maximum Joint Position and Velocity Error

q1 q2 q2 q̇1 q̇2 q̇3

EMRAC-EW-FL 0,001006 0,000322 0,000584 0,000422 3,53E-05 7,51E-05

EMRAC-EW-NFL 0,00257 0,00087 0,002044 0,000168 0,000108 0,00016

EMRAC-UV-FL 0,001046 0,000305 0,001016 0,000306 8,52E-05 0,000134

EMRAC-UV-NFL 0,002495 0,001389 0,003495 0,000197 0,000113 0,00023

EMRAC-DEC 0,000429 0,001273 0,000135 0,000126 0,000415 0,000437

ROBUST 0,00966 0,003319 0,003256 0,001193 0,000234 0,000319

PI 0,007411 0,006274 0,007188 0,004464 0,004776 0,003255

Table B.6: t2 − tc0 Maximum Joint Position and Velocity Norm Error

‖q‖ ‖q̇‖
EMRAC-EW-FL 0,001175 0,000424

EMRAC-EW-NFL 0,003287 0,000255

EMRAC-UV-FL 0,00142 0,000311

EMRAC-UV-NFL 0,004353 0,00032

EMRAC-DEC 0,001338 0,000543

ROBUST 0,010721 0,001243

PI 0,009286 0,005992

72

Table B.7: tc0 − tc1 Maximum Joint Position and Velocity Error

q1 q2 q2 q̇1 q̇2 q̇3

EMRAC-EW-FL 0,028218 0,005387 0,013094 0,005575 0,000587 0,001591

EMRAC-EW-NFL 0,004094 0,002194 0,001498 0,001527 0,000787 0,000242

EMRAC-UV-FL 0,019915 0,003688 0,004167 0,00377 0,000598 0,000774

EMRAC-UV-NFL 0,004755 0,003924 0,002731 0,001866 0,001061 0,000333

EMRAC-DEC 0,003239 0,010675 0,006673 0,000806 0,002485 0,000919

ROBUST 0,091367 0,01837 0,022452 0,011369 0,001453 0,001818

PI 0,058569 0,024412 0,049398 0,033929 0,020104 0,027831

Table B.8: tc0 − tc1 Maximum Joint Position and Velocity Norm Error

‖q‖ ‖q̇‖
EMRAC-EW-FL 0,028316 0,005621

EMRAC-EW-NFL 0,004105 0,001528

EMRAC-UV-FL 0,020052 0,003781

EMRAC-UV-NFL 0,006319 0,001876

EMRAC-DEC 0,010779 0,002599

ROBUST 0,093783 0,01138

PI 0,061955 0,035148

Table B.9: tc1 − tc2 Maximum Joint Position and Velocity Error

q1 q2 q2 q̇1 q̇2 q̇3

EMRAC-EW-FL 0,009304 0,008375 0,018488 0,002448 0,00131 0,002947

EMRAC-EW-NFL 0,005731 0,00236 0,001443 0,000789 0,000739 0,000207

EMRAC-UV-FL 0,009026 0,008673 0,012171 0,001641 0,001277 0,00181

EMRAC-UV-NFL 0,007419 0,004593 0,002102 0,001099 0,001667 0,000276

EMRAC-DEC 0,003628 0,002195 0,008348 0,000562 0,000522 0,001379

ROBUST 0,096551 0,015084 0,01618 0,008768 0,001141 0,001489

PI 0,094752 0,018918 0,066065 0,066299 0,01645 0,03996

Table B.10: tc1 − tc2 Maximum Joint Position and Velocity Norm Error

‖q‖ ‖q̇‖
EMRAC-EW-FL 0,020756 0,003271

EMRAC-EW-NFL 0,005796 0,000938

EMRAC-UV-FL 0,015415 0,002234

EMRAC-UV-NFL 0,008568 0,001934

EMRAC-DEC 0,008352 0,001435

ROBUST 0,097596 0,008872

PI 0,099321 0,067176

73

Table B.11: tc2 − tfin Maximum Joint Position and Velocity Error

q1 q2 q2 q̇1 q̇2 q̇3

EMRAC-EW-FL 0,000118 5,63E-05 0,00018 5,05E-05 5,97E-06 2,8E-05

EMRAC-EW-NFL 0,000103 0,000121 0,000128 3,02E-05 9,18E-06 1,48E-05

EMRAC-UV-FL 0,00019 7,09E-05 0,00043 0,000173 1,63E-05 0,000289

EMRAC-UV-NFL 0,000144 0,000116 0,000167 1,08E-05 1,02E-05 1,57E-05

EMRAC-DEC 3,95E-05 1,28E-05 1,65E-05 1,39E-05 1,17E-05 1,9E-05

ROBUST 0,001139 0,000923 0,00529 0,000114 0,000116 0,000294

PI 0,057954 0,012057 0,053494 0,036705 0,009599 0,031788

Table B.12: tc2 − tfin Maximum Joint Position and Velocity Norm Error

‖q‖ ‖q̇‖
EMRAC-EW-FL 0,000215 5,07E-05

EMRAC-EW-NFL 0,000185 3,09E-05

EMRAC-UV-FL 0,000449 0,0003

EMRAC-UV-NFL 0,000241 1,92E-05

EMRAC-DEC 4,22E-05 2,29E-05

ROBUST 0,005403 0,000335

PI 0,072244 0,044997

74

B.2 RMSE Performance Index

Table B.13: t0 − tfin RMSE: Joint Position and Velocity

q1 q2 q2 q̇1 q̇2 q̇3

EMRAC-EW-FL 0,008354 0,002264 0,006178 0,001472 0,000274 0,000643

EMRAC-EW-NFL 0,006108 0,00224 0,005973 0,000915 0,000282 0,000788

EMRAC-UV-FL 0,005325 0,002 0,003029 0,000862 0,000229 0,000354

EMRAC-UV-NFL 0,010966 0,004889 0,007136 0,001595 0,000552 0,00109

EMRAC-DEC 0,003486 0,002798 0,002311 0,000688 0,000623 0,000442

ROBUST 0,028849 0,006266 0,008534 0,003372 0,00044 0,000557

PI 0,028928 0,0081 0,021518 0,017905 0,006682 0,013228

PD1 0,037583 0,035796 0,25623 0,003269 0,002288 0,007161

Table B.14: t0 − tfin RMSE: Joint Position and Velocity Norms

‖q‖ ‖q̇‖
EMRAC-EW-FL 0,010634 0,00163

EMRAC-EW-NFL 0,008832 0,00124

EMRAC-UV-FL 0,006445 0,000959

EMRAC-UV-NFL 0,013967 0,002009

EMRAC-DEC 0,005032 0,001028

ROBUST 0,03073 0,003446

PI 0,036952 0,023243

PD1 0,261434 0,008198

Table B.15: t1 − t2 RMSE: Joint Position and Velocity

q1 q2 q2 q̇1 q̇2 q̇3

EMRAC-EW-FL 0,014875 0,000946 0,005273 0,002053 0,000163 0,00076

EMRAC-EW-NFL 0,013135 0,004501 0,013152 0,001936 0,000473 0,001741

EMRAC-UV-FL 0,008058 0,001561 0,001571 0,001023 0,000176 0,000539

EMRAC-UV-NFL 0,023945 0,010306 0,015698 0,003449 0,001076 0,002409

EMRAC-DEC 0,007535 0,005277 0,001963 0,001485 0,001064 0,00069

ROBUST 0,007766 0,002935 0,00393 0,000678 0,000266 0,000418

PI 0,003487 0,004702 0,008273 0,002903 0,005146 0,007529

PD 0,039569 0,020231 0,123968 0,003692 0,00267 0,0096

75

Table B.16: t1 − t2 RMSE: Joint Position and Velocity Norms

‖q‖ ‖q̇‖
EMRAC-EW-FL 0,01581 0,002195

EMRAC-EW-NFL 0,019125 0,002647

EMRAC-UV-FL 0,008357 0,00117

EMRAC-UV-NFL 0,03043 0,004342

EMRAC-DEC 0,009406 0,001952

ROBUST 0,009185 0,00084

PI 0,010134 0,00957

PD 0,131693 0,010626

Table B.17: t2 − tc0 RMSE: Joint Position and Velocity

q1 q2 q2 q̇1 q̇2 q̇3

EMRAC-EW-FL 0,000717 0,000286 0,000497 0,000303 2,1E-05 3,42E-05

EMRAC-EW-NFL 0,002499 0,000835 0,001764 8,97E-05 4,9E-05 0,000111

EMRAC-UV-FL 0,000836 0,000223 0,000846 0,000183 3,12E-05 6,72E-05

EMRAC-UV-NFL 0,002393 0,001275 0,003016 0,000127 8,67E-05 0,000188

EMRAC-DEC 0,000318 0,000703 4,74E-05 7,67E-05 0,000247 0,000153

ROBUST 0,006851 0,002787 0,00255 0,001116 0,000194 0,000265

PI 0,005444 0,004644 0,00476 0,003058 0,003209 0,002297

Table B.18: t2 − tc0 RMSE: Joint Position and Velocity Norms

‖q‖ ‖q̇‖
EMRAC-EW-FL 0,000918 0,000305

EMRAC-EW-NFL 0,003171 0,000151

EMRAC-UV-FL 0,00121 0,000198

EMRAC-UV-NFL 0,004055 0,000243

EMRAC-DEC 0,000772 0,000301

ROBUST 0,007824 0,001163

PI 0,008595 0,004992

Table B.19: tc0 − tc1 RMSE: Joint Position and Velocity

q1 q2 q2 q̇1 q̇2 q̇3

EMRAC-EW-FL 0,007712 0,002073 0,00565 0,001768 0,000248 0,0005

EMRAC-EW-NFL 0,001378 0,000984 0,000723 0,000313 0,000228 6,15E-05

EMRAC-UV-FL 0,005918 0,001157 0,001569 0,001097 0,000174 0,000194

EMRAC-UV-NFL 0,00181 0,001684 0,00104 0,000402 0,000268 7,44E-05

EMRAC-DEC 0,000783 0,002333 0,002086 0,000191 0,000635 0,000294

ROBUST 0,030004 0,006647 0,010673 0,003965 0,000521 0,00065

PI 0,017125 0,008669 0,017447 0,00905 0,006873 0,011038

76

Table B.20: tc0 − tc1 RMSE: Joint Position and Velocity Norms

‖q‖ ‖q̇‖
EMRAC-EW-FL 0,009782 0,001854

EMRAC-EW-NFL 0,001842 0,000392

EMRAC-UV-FL 0,00623 0,001127

EMRAC-UV-NFL 0,002682 0,000488

EMRAC-DEC 0,003226 0,000726

ROBUST 0,032532 0,004052

PI 0,025938 0,015842

Table B.21: tc1 − tc2 RMSE: Joint Position and Velocity

q1 q2 q2 q̇1 q̇2 q̇3

EMRAC-EW-FL 0,002747 0,003025 0,007518 0,000653 0,000358 0,000745

EMRAC-EW-NFL 0,001856 0,001181 0,000582 0,000312 0,000198 4,82E-05

EMRAC-UV-FL 0,002464 0,002862 0,004594 0,000485 0,000309 0,000376

EMRAC-UV-NFL 0,002282 0,001771 0,000362 0,000394 0,000339 4,49E-05

EMRAC-DEC 0,000958 0,000612 0,002837 0,000163 0,000141 0,000425

ROBUST 0,036458 0,007579 0,008617 0,003861 0,000462 0,000563

PI 0,043423 0,009288 0,028902 0,02733 0,007509 0,017173

Table B.22: tc1 − tc2 RMSE: Joint Position and Velocity Norms

‖q‖ ‖q̇‖
EMRAC-EW-FL 0,008556 0,001054

EMRAC-EW-NFL 0,002276 0,000373

EMRAC-UV-FL 0,005947 0,000687

EMRAC-UV-NFL 0,002912 0,000522

EMRAC-DEC 0,003056 0,000477

ROBUST 0,038221 0,003929

PI 0,052983 0,033139

Table B.23: tc2 − tfin RMSE: Joint Position and Velocity

q1 q2 q2 q̇1 q̇2 q̇3

EMRAC-EW-FL 8,15E-05 4,82E-05 0,000154 2,9E-05 3,86E-06 1,26E-05

EMRAC-EW-NFL 9,29E-05 0,000105 0,00011 1,44E-05 6,75E-06 7,42E-06

EMRAC-UV-FL 0,00014 6,14E-05 0,000297 9,16E-05 6,77E-06 0,000107

EMRAC-UV-NFL 0,000138 9,81E-05 0,000144 7,42E-06 7,91E-06 9,23E-06

EMRAC-DEC 3,11E-05 7,66E-06 7,18E-06 5,96E-06 4,79E-06 6,93E-06

ROBUST 0,000895 0,000678 0,004606 0,000102 9,32E-05 0,000253

PI 0,040441 0,00818 0,038288 0,026396 0,00688 0,02239

77

Table B.24: tc2 − tfin RMSE: Joint Position and Velocity Norms

‖q‖ ‖q̇‖
EMRAC-EW-FL 0,000181 3,18E-05

EMRAC-EW-NFL 0,000178 1,75E-05

EMRAC-UV-FL 0,000334 0,000141

EMRAC-UV-NFL 0,000222 1,42E-05

EMRAC-DEC 3,28E-05 1,03E-05

ROBUST 0,004741 0,000289

PI 0,056288 0,03529

B.3 IACA Performance Index

Table B.25: t0 − tfin IACA: Command Activity

u1 u1 u1 ‖u‖
EMRAC-EW-FL 10,0083 17,58968 6,718147 23,33846

EMRAC-EW-NFL 8,313878 15,98405 5,140425 20,816

EMRAC-UV-FL 11,92473 16,15269 6,226673 23,80465

EMRAC-UV-NFL 8,003725 16,23979 5,383781 20,4665

EMRAC-DEC 7,791614 17,07115 9,066284 22,5061

ROBUST 7,795469 15,04397 5,138355 19,15357

PI 29,2915 28,96 13,16318 49,02533

PD1 5.9278 5.2993 1.2778 8.2979

Table B.26: t1 − t2 IACA: Command Activity

u1 u1 u1 ‖u‖
EMRAC-EW-FL 16,00021 16,15562 4,553587 24,56047

EMRAC-EW-NFL 16,41405 8,219845 3,01922 19,42327

EMRAC-UV-FL 17,81794 11,15986 3,719923 23,37016

EMRAC-UV-NFL 14,86408 11,4975 3,723625 20,01349

EMRAC-DEC 11,89894 17,69691 8,029068 24,13037

ROBUST 12,13427 10,21595 2,952094 16,7074

PI 17,52426 16,37346 4,401358 26,40749

PD 9,510323 8,058526 1,803333 12,79238

78

Table B.27: t2 − tc0 IACA: Command Activity

u1 u1 u1 ‖u‖
EMRAC-EW-FL 7,229367 10,07138 4,109146 13,12047

EMRAC-EW-NFL 2,937161 1,887366 0,239152 3,507339

EMRAC-UV-FL 12,25873 1,631375 3,811622 12,95363

EMRAC-UV-NFL 1,243814 1,101323 0,54009 1,793705

EMRAC-DEC 0,586401 13,00954 8,829047 15,75658

ROBUST 0,544812 2,32941 1,554067 2,865435

PI 10,79698 16,84366 4,484654 21,53736

Table B.28: tc0 − tc1 IACA: Command Activity

u1 u1 u1 ‖u‖
EMRAC-EW-FL 10,39469 21,17269 9,259708 27,12243

EMRAC-EW-NFL 6,35315 19,84855 6,972342 23,29346

EMRAC-UV-FL 13,56824 18,40942 8,742023 27,87334

EMRAC-UV-NFL 7,336347 18,94393 6,895071 22,73575

EMRAC-DEC 7,570509 20,88341 10,70157 26,54072

ROBUST 7,561509 17,32165 6,393706 21,37318

PI 16,56648 31,23956 11,02125 40,65419

Table B.29: tc1 − tc2 IACA: Command Activity

u1 u1 u1 ‖u‖
EMRAC-EW-FL 7,306096 17,06251 6,087292 21,70388

EMRAC-EW-NFL 6,814355 18,90287 5,312098 22,18262

EMRAC-UV-FL 8,02212 19,15212 5,860326 22,88905

EMRAC-UV-NFL 6,107811 18,75688 5,628555 21,69057

EMRAC-DEC 6,835852 14,64653 8,829952 19,98113

ROBUST 6,859662 17,76757 5,839068 21,2547

PI 48,18928 37,12627 20,76485 71,90708

Table B.30: tc2 − tfin IACA: Command Activity

u1 u1 u1 ‖u‖
EMRAC-EW-FL 4,561011 2,0331 3,298205 5,985726

EMRAC-EW-NFL 3,287261 1,606843 0,32956 3,674158

EMRAC-UV-FL 5,246983 2,143993 1,253816 6,04961

EMRAC-UV-NFL 0,303041 1,05895 0,603691 1,256167

EMRAC-DEC 2,898763 6,96869 3,56074 8,345409

ROBUST 0,509391 1,059388 0,514441 1,283499

PI 83,63999 7,876947 24,34779 90,52605

79

Appendix C

Simulations Figures

C.1 EMRAC-EW-FL

(a) (b) (c)

Figure C.1: EMRAC-EW-FL Joint Position

(a) (b) (c)

Figure C.2: EMRAC-EW-FL Joint Velocity

80

(a) (b) (c)

Figure C.3: EMRAC-EW-FL Joint Position Error

(a) (b) (c)

Figure C.4: EMRAC-EW-FL Joint Velocity Error

(a) (b)

Figure C.5: EMRAC-EW-FL Joint Position and Velocity

(a) (b) (c)

Figure C.6: EMRAC-EW-FL Operational Space Position

81

(a) (b) (c)

Figure C.7: EMRAC-EW-FL Operational Space Velocity

(a) (b) (c)

Figure C.8: EMRAC-EW-FL Operational Space Position Error

(a) (b) (c)

Figure C.9: EMRAC-EW-FL Operational Space Velocity Error

(a) (b)

Figure C.10: EMRAC-EW-FL ||φ|| and ||φN ||

82

(a) (b) (c)

Figure C.11: EMRAC-EW-FL Control Gains

83

C.2 EMRAC-UV-NFL

(a) (b) (c)

Figure C.12: EMRAC-UV-NFL Joint Position

(a) (b) (c)

Figure C.13: EMRAC-UV-NFL Joint Velocity

(a) (b) (c)

Figure C.14: EMRAC-UV-NFL Joint Position Error

84

(a) (b) (c)

Figure C.15: EMRAC-UV-NFL Joint Velocity Error

(a) (b)

Figure C.16: EMRAC-UV-NFL Joint Position and Velocity

(a) (b) (c)

Figure C.17: EMRAC-UV-NFL Operational Space Position

(a) (b) (c)

Figure C.18: EMRAC-UV-NFL Operational Space Velocity

85

(a) (b) (c)

Figure C.19: EMRAC-UV-NFL Operational Space Position Error

(a) (b) (c)

Figure C.20: EMRAC-UV-NFL Operational Space Velocity Error

(a) (b)

Figure C.21: EMRAC-UV-NFL ||φ|| and ||φN ||

(a) (b) (c)

Figure C.22: EMRAC-UV-NFL Control Gains

86

C.3 EMRAC-UV-FL

(a) (b) (c)

Figure C.23: EMRAC-UV-FL Joint Position

(a) (b) (c)

Figure C.24: EMRAC-UV-FL Joint Velocity

(a) (b) (c)

Figure C.25: EMRAC-UV-FL Joint Position Error

87

(a) (b) (c)

Figure C.26: EMRAC-UV-FL Joint Velocity Error

(a) (b)

Figure C.27: EMRAC-UV-FL Joint Position and Velocity

(a) (b) (c)

Figure C.28: EMRAC-UV-FL Operational Space Position

(a) (b) (c)

Figure C.29: EMRAC-UV-FL Operational Space Velocity

88

(a) (b) (c)

Figure C.30: EMRAC-UV-FL Operational Space Position Error

(a) (b) (c)

Figure C.31: EMRAC-UV-FL Operational Space Velocity Error

(a) (b)

Figure C.32: EMRAC-UV-FL ||φ|| and ||φN ||

(a) (b) (c)

Figure C.33: EMRAC-UV-FL Control Gains

89

C.4 PD

(a) (b) (c)

Figure C.34: PD Joint Position

(a) (b) (c)

Figure C.35: PD Joint Velocity

(a) (b) (c)

Figure C.36: PD Joint Position Error

90

(a) (b) (c)

Figure C.37: PD Joint Velocity Error

(a) (b)

Figure C.38: PD Joint Position and Velocity

(a) (b) (c)

Figure C.39: PD Operational Space Position

(a) (b) (c)

Figure C.40: PD Operational Space Velocity

91

(a) (b) (c)

Figure C.41: PD Operational Space Position Error

(a) (b) (c)

Figure C.42: PD Operational Space Velocity Error

C.5 Robust

(a) (b) (c)

Figure C.43: Robust Joint Position

92

(a) (b) (c)

Figure C.44: Robust Joint Velocity

(a) (b) (c)

Figure C.45: Robust Joint Position Error

(a) (b) (c)

Figure C.46: Robust Joint Velocity Error

(a) (b)

Figure C.47: Robust Joint Position and Velocity

93

(a) (b) (c)

Figure C.48: Robust Operational Space Position

(a) (b) (c)

Figure C.49: Robust Operational Space Velocity

(a) (b) (c)

Figure C.50: Robust Operational Space Position Error

(a) (b) (c)

Figure C.51: Robust Operational Space Velocity Error

94

C.6 PI

(a) (b) (c)

Figure C.52: PI Joint Position

(a) (b) (c)

Figure C.53: PI Joint Velocity

(a) (b) (c)

Figure C.54: PI Joint Position Error

95

(a) (b) (c)

Figure C.55: PI Joint Velocity Error

(a) (b)

Figure C.56: PI Joint Position and Velocity

(a) (b) (c)

Figure C.57: PI Operational Space Position

(a) (b) (c)

Figure C.58: PI Operational Space Velocity

96

(a) (b) (c)

Figure C.59: PI Operational Space Position Error

(a) (b) (c)

Figure C.60: PI Operational Space Velocity Error

97

Bibliography

[1] European Commission. Communication From the Commission to the Eu-

ropean Parliament, the Council, the European Economic and Social Com-

mittee and the Committee of the Regions Eu Space Industrial Policy Re-

leasing the Potential for Economic Growth in the Space Sector. 0108 final.

COM, Brussels, 2013.

[2] Kazuya Yoshida, Brian Wilcox, Gerd Hirzinger, and Roberto Lampar-

iello. Space robotics. In Springer Handbook of Robotics, pages 1423–1462.

Springer, 2016.

[3] Yang Gao and Steve Chien. Review on space robotics: Toward top-level

science through space exploration. Science Robotics, 2(7), 2017.

[4] Syed Ali Ajwad, Jamshed Iqbal, Muhammad Imran Ullah, and Adeel

Mehmood. A systematic review of current and emergent manipulator

control approaches. Frontiers of mechanical engineering, 10(2):198–210,

2015.

[5] Dan Zhang and Bin Wei. A review on model reference adaptive control

of robotic manipulators. Annual Reviews in Control, 43:188–198, 2017.

[6] Umberto Montanaro. Multi-input model reference adaptive control via the

feedback of the reference state and minimal control synthesis. Automation,

Under Revision.

[7] Nhan T Nguyen. Model-reference adaptive control. In Model-Reference

Adaptive Control, pages 83–123. Springer, 2018.

[8] Mario Di Bernardo, Alessandro Di Gaeta, Umberto Montanaro, and Ste-

fania Santini. Synthesis and experimental validation of the novel lq-nemcsi

adaptive strategy on an electronic throttle valve. IEEE Transactions on

Control Systems Technology, 18(6):1325–1337, 2010.

98

[9] Annamaria Buonomano, Umberto Montanaro, Adolfo Palombo, and Ste-

fania Santini. Building temperature control using an enhanced mrac ap-

proach. In 2015 European Control Conference (ECC), pages 3629–3634.

IEEE, 2015.

[10] Umberto Montanaro, Alessandro di Gaeta, and Veniero Giglio. An mrac

approach for tracking and ripple attenuation of the common rail pressure

for gdi engines. In Proceedings of the 18th IFAC World Congress, pages

4173–4180, 2011.

[11] Annamaria Buonomano, Umberto Montanaro, Adolfo Palombo, and Ste-

fania Santini. Dynamic building energy performance analysis: A new

adaptive control strategy for stringent thermohygrometric indoor air re-

quirements. Applied Energy, 163:361–386, 2016.

[12] Umberto Montanaro and Josep M Olm. Integral mrac with minimal con-

troller synthesis and bounded adaptive gains: The continuous-time case.

Journal of the Franklin Institute, 353(18):5040–5067, 2016.

[13] Annamaria Buonomano, Umberto Montanaro, Adolfo Palombo, and Ste-

fania Santini. Temperature and humidity adaptive control in multi-

enclosed thermal zones under unexpected external disturbances. Energy

and Buildings, 135:263–285, 2017.

[14] ROS.org. Introduction, 2018. http://wiki.ros.org/ROS/Introduction.

[15] ROS.org. Core Components. https://www.ros.org/core-components/.

[16] ROS.org. About ROS. https://www.ros.org/about-ros/.

[17] ROS.org. ROS Brand Guidelines. https://www.ros.org/press-kit/.

[18] ROS.org. Integration with Other Libraries. https://www.ros.org/

integration/.

[19] gazebosim.org. Why Gazebo? http://gazebosim.org/.

[20] gazebosim.org. Logos, 2014. http://gazebosim.org/media#logos.

[21] MathWorks. What is MATLAB? https://it.mathworks.com/

discovery/what-is-matlab.html.

[22] MathWorks. Simulink. https://it.mathworks.com/help/simulink/.

99

http://wiki.ros.org/ROS/Introduction
https://www.ros.org/core-components/
https://www.ros.org/about-ros/
https://www.ros.org/press-kit/
https://www.ros.org/integration/
https://www.ros.org/integration/
http://gazebosim.org/
http://gazebosim.org/media#logos
https://it.mathworks.com/discovery/what-is-matlab.html
https://it.mathworks.com/discovery/what-is-matlab.html
https://it.mathworks.com/help/simulink/

[23] MathWorks. Publish. https://www.mathworks.com/help/ros/ref/

publish.html.

[24] MathWorks. Subscribe. https://www.mathworks.com/help/ros/ref/

subscribe.html.

[25] ROS.org. Understanding ROS Topics, 2019. http://wiki.ros.org/ROS/

Tutorials/UnderstandingTopics.

[26] bduffany. Writing a new controller, 2014. https://github.com/

ros-controls/ros_control/wiki/controller_interface.

[27] Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, and Giuseppe Oriolo.

Robotics: modelling, planning and control. Springer Science & Business

Media, 2010.

[28] Canadian Space Agency. Canadarm, Canadarm2, and Canadarm3 – A

comparative table, 2020. https://asc-csa.gc.ca/eng/iss/canadarm2/

canadarm-canadarm2-canadarm3-comparative-table.asp.

[29] ROS.org. urdf, 2019. http://wiki.ros.org/urdf.

[30] ROS.org. xacro, 2020. http://wiki.ros.org/xacro.

[31] ROS.org. Using Xacro to Clean Up a URDF File, 2018.

http://wiki.ros.org/urdf/Tutorials/Using%20Xacro%20to%

20Clean%20Up%20a%20URDF%20File.

[32] gazebosim.org. Tutorial: Using a URDF in Gazebo, 2014. http:

//gazebosim.org/tutorials?tut=ros_urdf.

[33] ROS.org. Building a Visual Robot Model with URDF from

Scratch, 2019. http://wiki.ros.org/urdf/Tutorials/Building%20a%

20Visual%20Robot%20Model%20with%20URDF%20from%20Scratch.

[34] gazebosim.org. Tutorial: ROS Control, 2014. http://gazebosim.org/

tutorials/?tut=ros_control.

[35] gazebosim.org. Tutorial: ROS Communication, 2014. http://

gazebosim.org/tutorials/?tut=ros_comm.

[36] gazebosim.org. Tutorial: Using Gazebo plugins with ROS, 2014. http:

//gazebosim.org/tutorials?tut=ros_gzplugins.

100

https://www.mathworks.com/help/ros/ref/publish.html
https://www.mathworks.com/help/ros/ref/publish.html
https://www.mathworks.com/help/ros/ref/subscribe.html
https://www.mathworks.com/help/ros/ref/subscribe.html
http://wiki.ros.org/ROS/Tutorials/UnderstandingTopics
http://wiki.ros.org/ROS/Tutorials/UnderstandingTopics
https://github.com/ros-controls/ros_control/wiki/controller_interface
https://github.com/ros-controls/ros_control/wiki/controller_interface
https://asc-csa.gc.ca/eng/iss/canadarm2/canadarm-canadarm2-canadarm3-comparative-table.asp
https://asc-csa.gc.ca/eng/iss/canadarm2/canadarm-canadarm2-canadarm3-comparative-table.asp
http://wiki.ros.org/urdf
http://wiki.ros.org/xacro
http://wiki.ros.org/urdf/Tutorials/Using%20Xacro%20to%20Clean%20Up%20a%20URDF%20File
http://wiki.ros.org/urdf/Tutorials/Using%20Xacro%20to%20Clean%20Up%20a%20URDF%20File
http://gazebosim.org/tutorials?tut=ros_urdf
http://gazebosim.org/tutorials?tut=ros_urdf
http://wiki.ros.org/urdf/Tutorials/Building%20a%20Visual%20Robot%20Model%20with%20URDF%20from%20Scratch
http://wiki.ros.org/urdf/Tutorials/Building%20a%20Visual%20Robot%20Model%20with%20URDF%20from%20Scratch
http://gazebosim.org/tutorials/?tut=ros_control
http://gazebosim.org/tutorials/?tut=ros_control
http://gazebosim.org/tutorials/?tut=ros_comm
http://gazebosim.org/tutorials/?tut=ros_comm
http://gazebosim.org/tutorials?tut=ros_gzplugins
http://gazebosim.org/tutorials?tut=ros_gzplugins

[37] MathWorks. URDF Import, 2020. https://it.mathworks.com/

help/physmod/sm/ug/urdf-import.html#:~:text=Imported%20CAD%

20models%20have%20their,a%20separate%20MATLAB%20data%20file.

[38] Zhengyuan Wang, Umberto Montanaro, Saber Fallah, Aldo Sorniotti, and

Basilio Lenzo. A gain scheduled robust linear quadratic regulator for

vehicle direct yaw moment control. Mechatronics, 51:31–45, 2018.

[39] Yoji Umetani, Kazuya Yoshida, et al. Resolved motion rate control of

space manipulators with generalized jacobian matrix. IEEE Transactions

on robotics and automation, 5(3):303–314, 1989.

101

https://it.mathworks.com/help/physmod/sm/ug/urdf-import.html#:~:text=Imported%20CAD%20models%20have%20their,a%20separate%20MATLAB%20data%20file.
https://it.mathworks.com/help/physmod/sm/ug/urdf-import.html#:~:text=Imported%20CAD%20models%20have%20their,a%20separate%20MATLAB%20data%20file.
https://it.mathworks.com/help/physmod/sm/ug/urdf-import.html#:~:text=Imported%20CAD%20models%20have%20their,a%20separate%20MATLAB%20data%20file.

	Introduction & State of the Art
	Robotic Manipulators in Space Industry
	Space Manipulator’s Control Architectures
	Project's Objective and Thesis Structure

	Environment
	Programming Environment
	ROS
	Gazebo
	MATLAB & Simulink

	Workflow

	Case study: 3DOF Manipulator
	Mathematical Modelling
	Forward Kinematics
	Inverse Kinematics
	Dynamics

	URDF Modelling
	Code Explanation
	Non Cooperative Target Disturbance

	Model Validation
	MATLAB Simulink URDF Import
	Mathematical Simulink Model
	Model Comparison

	The Enhanced Model Reference Adaptive Control (EMRAC)
	The EMRAC Algorithm
	Problem Formulation
	EMRAC-EW
	EMRAC-UV
	-Modification

	Application of the EMRAC to Space Manipulators: Four Approaches
	Inverse Dynamics
	EMRAC Controllers

	Simulations & Analysis
	Simulation
	Trajectory Generation
	Benchmarks Controllers
	Tuning of the EMRAC Controllers

	Simulation Figures
	Data Analysis
	Performance Indexes
	Results

	Conclusion and future work
	Conclusion
	Consideration on the EMRAC
	Decentralised EMRAC

	Future Work
	Improvements
	Future Projects

	Code
	surrey_3dof_space_arm_efmass.urdf.xacro
	surrey_3dof_space_arm_efmass.gazebo
	empty_world.world
	my_controller.cpp

	Performance Indexes Tables
	Maximum Error Performance Index
	RMSE Performance Index
	IACA Performance Index

	Simulations Figures
	EMRAC-EW-FL
	EMRAC-UV-NFL
	EMRAC-UV-FL
	PD
	Robust
	PI

	Bibliography

