
POLITECNICO DI TORINO
Master’s Degree in Computer engineering

Master’s Degree Thesis

Seamless Network Connectivity across
Different Kubernetes Clusters

Supervisors

Prof. Fulvio RISSO

Dott. Alex PALESANDRO

Candidate

Aldo LACUKU

Academic year 2019-2020

Summary

In the last two decades the cloud has gained a lot of importance, indeed the current
trend is to engineer the new web applications to be cloud native, thus to be split
up in loosely-coupled micro-services, each one containerized and deployed as a part
of a bigger application. The use of containers allows to cut oneself off the hosting
physical hardware and operating system, letting to focus on the main purposes of a
web application: to be widespread and high-available. The cloud allows to achieve
this goal, by gathering the infrastructure control under the cloud provider tenants
and implementing the IaaS (Infrastructure as a Service) and PaaS (Platform as
a Service) paradigms: the computational, networking and storage resources are
provided on demand to the cloud provider’s customers as if they were services. A
technology that broke through the cloud market is Kubernetes, a project kicked off
by Google in 2014 that allows to automate deployment, scaling, and management
of containerized applications. Beside the cloud, in recent years the edge computing
has gained a lot of importance: it is a distributed computing paradigm that brings
the computational and storage resources close to the final user, in order to improve
the QoS standards in terms of latency and bandwidth.

The goal of the project in which this thesis is involved is to create a federation
of Kubernetes clusters that cooperate at the network edge: many different tenants
are connected together to cooperate in creating a federation of clusters with
computational, storage and networking resources shared between them. In this
scenario every tenant can make its own resource cluster available to the federation
by sharing or leasing them out in a federated environment.

This solution needs a network model able to install a seamless network connec-
tivity across different Kubernetes clusters. This work proposes a solution with
minimal dependencies, which could be installed in a running cluster without bring-
ing changes to the configuration of the local environment. Permitting micro-services
to consume other services independently from the location where they are deployed.

ii

Table of Contents

1 Introduction 1
1.1 Goal of the thesis . 2

2 Kubernetes 3
2.1 Kubernetes: a bit of history . 3
2.2 Applications deployment evolution 4
2.3 Container orchestrators . 5
2.4 Kubernetes architecture . 6

2.4.1 Control plane components 7
2.4.2 Node components . 9

2.5 Kubernetes objects . 10
2.5.1 Label & Selector . 11
2.5.2 Namespace . 11
2.5.3 Pod . 11
2.5.4 ReplicaSet . 12
2.5.5 Deployment . 12
2.5.6 DaemonSet . 13
2.5.7 Service . 14

2.6 Kubernetes network architecture . 15
2.6.1 Container communication within same pod 16
2.6.2 Pod communication within the same node 16
2.6.3 Pod communication on different nodes 17
2.6.4 CNI (Container Network Interface) 17
2.6.5 Pod to service networking 18

2.7 Virtual-Kubelet . 18
2.8 Kubebuilder . 19

3 Multi-Cluster networking: state of the art 21
3.1 Submariner . 21

3.1.1 Broker . 21
3.1.2 Gateway engine . 22

iv

3.1.3 Route agent . 23
3.2 Cilium cluster mesh . 23

3.2.1 Control plane . 24
3.2.2 Pod IP routing . 25

4 Multi-Cluster networking: design 27
4.1 The problem . 27

4.1.1 Compatibility with running clusters 29
4.2 Architecture . 30

5 Multi-Cluster networking: implementation 35
5.1 Kubernetes programming interface 36
5.2 CRDReplicator . 37

5.2.1 Labels and Selectors . 37
5.2.2 Watching Resources . 39
5.2.3 Watching Local Resources 39

5.3 Watching Remote Resources . 42
5.3.1 Network Parameters Exchange 43

5.4 TunnelEndpointCreator . 45
5.4.1 TunnelEndpoint API . 45
5.4.2 IPAM . 47
5.4.3 Network API Management 50

5.5 Tunnel-Operator . 52
5.5.1 GRE Tunneling Protocol . 53

5.6 Route-Operator . 54
5.6.1 VxLAN overlay network . 55
5.6.2 Routes . 57
5.6.3 IPtables rules . 59

6 Experimental evaluation 62
6.1 Functional Tests . 62

6.1.1 Test environment . 62
6.1.2 Tests . 63
6.1.3 Functional tests results . 65

6.2 Performance and scalability tests 65
6.2.1 Tests . 66
6.2.2 Performance test results . 67

6.3 Test limitations . 69

7 Conclusions and future work 70

Bibliography 71

v

Chapter 1

Introduction

In the last several years, ICT world has seen an incredible innovation with the
introduction of virtualization first, then with containerization and finally with
orchestrators. In this last field, one of the main actors is Kubernetes, an open
source system for managing containerized applications in a clustered environment.
The spread of Kubernetes is rapidly increasing; in cloud providers such as Google
Cloud Platform and Microsoft Azure it is the most popular choice [1] and many
companies and organizations have started to set up their own clusters in order to
migrate their applications on it. With the advent of 5G and edge computing also
telecommunications companies are moving towards a Kubernetes solution [2].

The growing demand for edge computing resources, particularly due to increasing
popularity of Internet of Things (IoT), and distributed machine/deep learning
applications poses a significant challenge. In a similar scenario, if we could share
resources between clusters this would open many use cases:

• different users with their small clusters (for example Minikube [3]) can partially
or totally offload their applications to others;

• different companies could interconnect and get payed for hosting others’
applications;

• in an IoT scenario, edge nodes (which typically have limited resources) can
send requests to more powerful ones;

• in an edge computing scenario, an application can be scheduled on the best
cluster in order to reduce latency.

1

Introduction

1.1 Goal of the thesis
Kubernetes does not support natively this sharing of resources among clusters: a
concept of “Federation” has been defined and is being developed, but the project is
relatively new and not very mature (it is still alpha [4]).

This work, carried out by the Computer Networks Group at Politecnico di Torino
proposes a network plug-in able to extend the network connection of a Kubernetes
cluster to services hosted by remote clusters. It is a control plane that configures
Kubernetes clusters to have a seamless network connectivity between them.

This thesis is structured as follows:

• Chapter 2 provides an extensive presentation of Kubernetes, its architecture
and concepts;

• Chapter 3 describes the state of the art of multi-cluster networking;

• Chapter 4 formalizes the global design of the network plug-in and its logical
parts;

• Chapter 5 provides an implementation of the network plug-in by means of
Kubernetes operators;

• Chapter 6 analyzes the compatibility of the implementation with the existing
container network interfaces;

• Chapter 7 is the thesis conclusion and enunciation of future work directions.

2

Chapter 2

Kubernetes

In this chapter we analyse Kubernetes architecture, showing also its history and
evolution through time, in order to lay the foundations for all the work which will
be exposed later on. Kubernetes (often shortened as K8s) is a huge framework
and a deep examination of it would require much more time and discussion, hence
we only provide here a description of its main concepts and components. Further
details can be found in the official documentation [5].

The chapter continues with an introduction to other technologies and tools used
to develop the solution, in particular Virtual-Kubelet [6], a project which allows
to create virtual nodes with a particular behaviour, and Kubebuilder [7], a tool
to build custom resources.

2.1 Kubernetes: a bit of history
Around 2004, Google created the Borg [8] system, a small project with less than
5 people initially working on it. The project was developed as a collaboration
with a new version of Google’s search engine. Borg was a large-scale internal
cluster management system, which “ran hundreds of thousands of jobs, from many
thousands of different applications, across many clusters, each with up to tens of
thousands of machines” [8].

In 2013 Google announced Omega [9], a flexible and scalable scheduler for large
compute clusters. Omega provided a “parallel scheduler architecture built around
shared state, using lock-free optimistic concurrency control, in order to achieve
both implementation extensibility and performance scalability”.

In the middle of 2014, Google presented Kubernetes as on open-source version
of Borg. Kubernetes was created by Joe Beda, Brendan Burns, and Craig McLuckie,
and other engineers at Google. Its development and design were heavily influenced
by Borg and many of its initial contributors previously used to work on it. The

3

Kubernetes

original Borg project was written in C++, whereas for Kubernetes the Go language
was chosen.

In 2015 Kubernetes v1.0 was released. Along with the release, Google set up a
partnership with the Linux Foundation to form the Cloud Native Computing
Foundation (CNCF) [10]. Since then, Kubernetes has significantly grown, achiev-
ing the CNCF graduated status and being adopted by nearly every big company.
Nowadays it has become the de-facto standard for container orchestration [11, 12].

2.2 Applications deployment evolution
Kubernetes is a portable, extensible, open-source platform for running and coordi-
nating containerized applications across a cluster of machines. It is designed to
completely manage the life cycle of applications and services using methods that
provide consistency, scalability, and high availability.

What does “containerized applications” means? In the last decades, the deploy-
ment of applications has seen significant changes, which are illustrated in figure
2.1.

Figure 2.1: Evolution in applications deployment.

Traditionally, organizations used to run their applications on physical servers.
One of the problems of this approach was that resource boundaries between
applications could not be applied in a physical server, leading to resource allocation
issues. For example, if multiple applications run on a physical server, one of them
could take up most of the resources, and as a result, the other applications would
starve. A possibility to solve this problem would be to run each application on
a different physical server, but clearly it is not feasible: the solution could not
scale, would lead to resources under-utilization and would be very expensive for
organizations to maintain many physical servers.

The first real solution has been virtualization. Virtualization allows to run

4

Kubernetes

multiple Virtual Machines on a single physical server. It grants isolation of the
applications between VMs providing a high level of security, as the information of
one application cannot be freely accessed by another application. Virtualization
enables better utilization of resources in a physical server, improves scalability,
because an application can be added or updated very easily, reduces hardware
costs, and much more. With virtualization it is possible to group together a set
of physical resources and expose it as a cluster of disposable virtual machines.
Isolation certainly brings many advantages, but it requires a quite ‘heavy’ overhead:
each VM is a full machine running all the components, including its own operating
system, on top of the virtualized hardware.

A second solution which has been proposed recently is containerization. Con-
tainers are similar to VMs, but they share the operating system with the host
machine, relaxing isolation properties. Therefore, containers are considered a
lightweight form of virtualization. Similarly to a VM, a container has its own
filesystem, CPU, memory, process space etc. One of the key features of containers
is that they are portable: as they are decoupled from the underlying infrastructure,
they are totally portable across clouds and OS distributions. This property is
particularly relevant nowadays with cloud computing: a container can be easily
moved across different machines. Moreover, being “lightweight”, containers are
much faster than virtual machines: they can be booted, started, run and stopped
with little effort and in a short time.

2.3 Container orchestrators
When hundreds or thousands of containers are created, the need of a way to manage
them becomes essential; container orchestrators serve this purpose. A container
orchestrator is a system designed to easily manage complex containerization de-
ployments across multiple machines from one central location. As depicted in
figure 2.2, Kubernetes is by far the most used container orchestrator. We provide
a description of such system in the following.

Kubernetes provides many services, including:

• Service discovery and load balancing A container can be exposed using
the DNS name or using its own IP address. If traffic to a container is high, a
load balancer able to distribute the network traffic is provided.

• Storage orchestration A storage system can be automatically mounted,
such as local storages, public cloud providers, and more.

• Automated rollouts and rollbacks The desired state for the deployed
containers can be described, and the actual state can be changed to the
desired state at a controlled rate. For example, it is possible to automate the

5

Kubernetes

Figure 2.2: Container orchestrators use [13].

creation of new containers of a deployment, remove existing containers and
adopt all their resources to the new container.

• Automatic bin packing Kubernetes is provided with a cluster of nodes that
can be used to run containerized tasks. It is possible to set how much CPU
and memory (RAM) each container needs, and automatically the containers
are sized to fit in the nodes to make the best use of the resources.

• Secret and configuration management It is possible to store and man-
age sensitive information in Kubernetes, such as passwords, OAuth tokens,
and SSH keys. It is possible to deploy and update secrets and application
configuration without rebuilding the container images, and without exposing
secrets in the stack configuration.

2.4 Kubernetes architecture
When Kubernetes is deployed, a cluster is created. A Kubernetes cluster consists of
a set of machines, called nodes, that run containerized applications. At least one
of the nodes hosts the control plane and is called master. Its role is to manage the
cluster and expose an interface to the user. The worker node(s) host the pods
that are the components of the application. The master manages the worker nodes
and the pods in the cluster. In production environments, the control plane usually
runs across multiple machines and a cluster runs on multiple nodes, providing
fault-tolerance and high availability.

Figure 2.3 shows the diagram of a Kubernetes cluster with all the components
linked together.

6

Kubernetes

Figure 2.3: Kubernetes architecture

2.4.1 Control plane components
The control plane’s components make global decisions about the cluster (for example,
scheduling), as well as detecting and responding to cluster events (for example,
starting up a new pod). Although they can be run on any machine in the cluster,
for simplicity, they are typically executed all together on the same machine, which
does not run user containers.

API server

The API server is the component of the Kubernetes control plane that exposes the
Kubernetes REST API, and constitites the front end for the Kubernetes control
plane. Its function is to intercept REST request, validate and process them. The
main implementation of a Kubernetes API server is kube-apiserver. It is designed
to scale horizontally, which means it scales by deploying more instances. Moreover,
it can be easily redounded to run several instances of it and balance traffic among
them.

etcd

etcd is a distributed, consistent and highly-available key value store used as
Kubernetes’ backing store for all cluster data. It is based on the Raft consensus
algorithm [raft_algorithm], which allows different machines to work as a coherent
group and survive to the breakdown of one of its members. etcd can be stacked in
the master node or external, installed on dedicated host. Only the API server can
communicate with it.

7

Kubernetes

Scheduler

The scheduler is the control plane component responsible of assigning the pods to
the nodes. The one provided by Kubernetes is called kube-scheduler, but it can
be customized by adding new schedulers and indicating in the pods to use them.
kube-scheduler watches for newly created pods not assigned to a node yet, and
selects one for them to run on. To make its decisions, it considers singular and
collective resource requirements, hardware/software/policy constraints, affinity and
anti-affinity specifications, data locality, inter-workload interference and deadlines.

kube-controller-manager

Component that runs controller processes. It continuously compares the desired
state of the cluster (given by the objects specifications) with the current one
(read from etcd). Logically, each controller is a separate process, but to reduce
complexity, they are all compiled into a single binary and run in a single process.
These controllers include:

• Node Controller: responsible for noticing and reacting when nodes go down.

• Replication Controller: in charge of maintaining the correct number of pods
for every replica object in the system.

• Endpoints Controller: populates the Endpoint objects (which links Services
and Pods).

• Service Account & Token Controllers: create default accounts and API access
tokens for new namespaces.

cloud-controller-manager

This component runs controllers that interact with the underlying cloud providers.
The cloud-controller-manager binary is a beta feature introduced in Kubernetes
1.6. It only runs cloud-provider-specific controller loops. You can disable these
controller loops in the kube-controller-manager.

cloud-controller-manager allows the cloud vendor’s code and the Kubernetes
code to evolve independently of each other. In prior releases, the core Kubernetes
code was dependent upon cloud-provider-specific code for functionality. In future
releases, code specific to cloud vendors should be maintained by the cloud vendor
themselves, and linked to cloud-controller-manager while running Kubernetes.
Some examples of controllers with cloud provider dependencies are:

• Node Controller: checks the cloud provider to update or delete Kubernetes
nodes using cloud APIs.

8

Kubernetes

• Route Controller: responsible for setting up network routes in the cloud
infrastructure.

• Service Controller: for creating, updating and deleting cloud provider load
balancers.

• Volume Controller: creates, attaches, and mounts volumes, interacting with
the cloud provider to orchestrate them.

2.4.2 Node components
Node components run on every node, maintaining running pods and providing the
Kubernetes runtime environment.

Container Runtime

The container runtime is the software that is responsible for running containers.
Kubernetes supports several container runtimes: Docker, containerd, CRI-O, and
any implementation of the Kubernetes CRI (Container Runtime Interface).

kubelet

An agent that runs on each node in the cluster, making sure that containers are
running in a pod. The kubelet receives from the API server the specifications of
the Pods and interacts with the container runtime to run them, monitoring their
state and assuring that the containers are running and healthy. The connection with
the container runtime is established through the Container Runtime Interface
and is based on gRPC.

kube-proxy

kube-proxy is a network agent that runs on each node in your cluster, implementing
part of the Kubernetes Service concept. It maintains network rules on nodes, which
allow network communication to your Pods from inside or outside of the cluster.
If the operating system is providing a packet filtering layer, kube-proxy uses it,
otherwise it forwards the traffic itself.

Addons

Features and functionalities not yet available natively in Kubernetes, but imple-
mented by third parties pods. Some examples are DNS, dashboard (a web gui),
monitoring and logging.

9

Kubernetes

Figure 2.4: Kubernetes master and worker nodes [5].

2.5 Kubernetes objects
Kubernetes defines several types of objects, which constitutes its building blocks.
Usually, a K8s resource object contains the following fields [k8s_api_doc]:

• apiVersion: the versioned schema of this representation of the object;

• kind: a string value representing the REST resource this object represents;

• ObjectMeta: metadata about the object, such as its name, annotations, labels
etc.;

• ResourceSpec: defined by the user, it describes the desired state of the object;

• ResourceStatus: filled in by the server, it reports the current state of the
resource.

The allowed operations on these resources are the typical CRUD actions:

• Create: create the resource in the storage backend; once a resource is created,
the system applies the desired state.

• Read: comes with 3 variants

– Get: retrieve a specific resource object by name;
– List: retrieve all resource objects of a specific type within a namespace,
and the results can be restricted to resources matching a selector query;

– Watch: stream results for an object(s) as it is updated.

10

Kubernetes

• Update: comes with 2 forms

– Replace: replace the existing spec with the provided one;
– Patch: apply a change to a specific field.

• Delete: delete a resource; depending on the specific resource, child objects
may or may not be garbage collected by the server.

In the following we illustrate the main objects needed in the next chapters.

2.5.1 Label & Selector
Labels are key-value pairs attached to a K8s object and used to organize and mark
a subset of objects. Selectors are the grouping primitives which allow to select a
set of objects with the same label.

2.5.2 Namespace
Namespaces are virtual partitions of the cluster. By default, Kubernetes creates 4
Namespaces:

• kube-system: it contains objects created by K8s system, mainly control-plane
agents;

• default: it contains objects and resources created by users and it is the one
used by default;

• kube-public: readable by everyone (even not authenticated users), it is used
for special purposes like exposing cluster public information;

• kube-node-lease: it maintains objects for heartbeat data from nodes.

It is a good practice to split the cluster into many Namespaces in order to better
virtualize the cluster.

2.5.3 Pod
Pods are the basic processing units in Kubernetes. A pod is a logic collection of one
or more containers which share the same network and storage, and are scheduled
together on the same pod. Pods are ephemeral and have no auto-repair capacities:
for this reason they are usually managed by a controller which handles replication,
fault-tolerance, self-healing etc.

11

Kubernetes

Figure 2.5: Kubernetes pods [5].

2.5.4 ReplicaSet
ReplicaSets control a set of pods allowing to scale the number of pods currently in
execution. If a pod in the set is deleted, the ReplicaSet notices that the current
number of replicas (read from the Status) is different from the desired one (specified
in the Spec) and creates a new pod. Usually ReplicaSets are not used directly: a
higher-level concept is provided by Kubernetes, called Deployment.

2.5.5 Deployment
Deployments manage the creation, update and deletion of pods. A Deployment
automatically creates a ReplicaSet, which then creates the desired number of pods.
For this reason an application is typically executed within a Deployment and not
in a single pod. The listing 2.1 is an example of deployment.

Listing 2.1: Basic example of Kubernetes Deployment [5].
1 ap iVers ion : apps/v1
2 kind : Deployment
3 metadata :
4 name : nginx−deployment
5 l a b e l s :
6 app : nginx
7 spec :
8 r e p l i c a s : 3
9 s e l e c t o r :

10 matchLabels :
11 app : nginx
12 template :
13 metadata :
14 l a b e l s :
15 app : nginx
16 spec :
17 c on t a i n e r s :

12

Kubernetes

18 − name : nginx
19 image : nginx : 1 . 7 . 9
20 por t s :
21 − conta ine rPort : 80

The code above allows to create a Deployment with name nginx-deployment and
a label app, with value nginx. It creates three replicated pods and, as defined in
the selector field, manages all the pods labelled as app:nginx. The template
field shows the information of the created pods: they are labelled app:nginx and
launch one container which runs the nginx DockerHub image at version 1.7.9 on
port 80.

2.5.6 DaemonSet
A DaemonSet ensures that all (or some) Nodes run a copy of a Pod. As nodes
are added to the cluster, Pods are added to them. As nodes are removed from the
cluster, those Pods are garbage collected. Deleting a DaemonSet will clean up the
Pods it created [5]. Some typical uses of a DaemonSet are:

• running a cluster storage daemon on every node;

• running a logs collection daemon on every node;

• running a node monitoring daemon on every node.

Listing 2.2: Basic example of Kubernetes daemonset [5].
1 ap iVers ion : apps/v1
2 kind : DaemonSet
3 metadata :
4 name : f luentd −e l a s t i c s e a r c h
5 namespace : kube−system
6 l a b e l s :
7 k8s−app : f luentd −l o gg ing
8 spec :
9 s e l e c t o r :

10 matchLabels :
11 name : f luentd −e l a s t i c s e a r c h
12 template :
13 metadata :
14 l a b e l s :
15 name : f luentd −e l a s t i c s e a r c h
16 spec :
17 t o l e r a t i o n s :
18 − key : node−r o l e . kubernetes . i o / master
19 e f f e c t : NoSchedule
20 c on t a i n e r s :

13

Kubernetes

21 − name : f luentd −e l a s t i c s e a r c h
22 image : quay . i o / f l u e n t d _ e l a s t i c s e a r c h / f l u en td : v2 . 5 . 2

2.5.7 Service
A Service is an abstract way to expose an application running on a set of Pods as a
network service. It can have different access scopes depending on its ServiceType:

• ClusterIP: Service accessible only from within the cluster, it is the default
type;

• NodePort: exposes the Service on a static port of each Node’s IP; the
NodePort Service can be accessed, from outside the cluster, by contacting
<NodeIP>:<NodePort>;

• LoadBalancer: exposes the Service externally using a cloud provider’s load
balancer;

• ExternalName: maps the Service to an external one so that local apps can
access it.

Pod

Node

Figure 2.6: Kubernetes Services [5].

The following Service is named my-service and redirects requests coming from
TCP port 80 to port 9376 of any Pod with the app=MyApp label.

14

Kubernetes

Listing 2.3: Basic example of Kubernetes Service [5].
1 ap iVers ion : v1
2 kind : S e rv i c e
3 metadata :
4 name : my−s e r v i c e
5 spec :
6 s e l e c t o r :
7 app : myApp
8 por t s :
9 − pro to co l : TCP

10 port : 80
11 ta rge tPor t : 9376

2.6 Kubernetes network architecture
Kubernetes defines a network model that helps provide simplicity and consistency
across a range of networking environments and network implementations. The
Kubernetes network model provides the foundation for understanding how contain-
ers, pods, and services within Kubernetes communicate with each other [14]. The
Kubernetes network model specifies:

1. Every pod gets its own IP address;

2. Containers within a pod share the pod IP address and can communicate freely
with each other;

3. Pods can communicate with all other pods in the cluster using pod IP addresses
(without NAT);

4. Agents on a node (e.g. system daemons, kubelet) can communicate with all
pods on that node;

5. Pods in the host network of a node can communicate with all pods on all
nodes (without NAT);

6. Isolation (restricting what each pod can communicate with) is defined using
network policies.

As a result, pods can be treated much like VMs or hosts (they all have unique IP
addresses), and the containers within pods very much like processes running within
a VM or host (they run in the same network namespace and share an IP address).
This model makes it easier for applications to be migrated from VMs and hosts
to pods managed by Kubernetes. In addition, because isolation is defined using
network policies rather than the structure of the network, the network remains

15

Kubernetes

simple to understand. This style of network is sometimes referred to as a “flat
network”.

2.6.1 Container communication within same pod
Containers in a Pod are accessible via localhost, they use the same network
namespace. For containers, the observable host name is a Pod’s name. Since
containers share the same IP address and port space, different ports in containers
for incoming connections must be used. Because of this, applications in a Pod must
coordinate their usage of ports.

2.6.2 Pod communication within the same node
Before the infrastructure container is started, a virtual Ethernet interface pair (a
veth pair) is created for the container. One interface of the veth pair stays in
the host’s namespace (it tagged with vethxxx) while the other interface is moved
into the container’s network namespace and renamed to eth0. These two virtual
interfaces are like two ends of a pipe that everything goes in one side, comes
out on the other.The interface in the host’s network namespace is attached to a
network bridge that container runtime is configured to use. The eth0 interface in
the container is assigned an IP address from the bridge’s address range. Anything
that application running inside the container sends to the eth0 network interface
and comes out at the other veth Interface in host’s namespace and is sent to bridge.
So, any network connected to the bridge can receive it.

Figure 2.7: Pod to pod communication within same node.

16

Kubernetes

2.6.3 Pod communication on different nodes
Pod IP addresses must be unique across the whole cluster, so the bridges across
the nodes must use non-overlapping address ranges to prevent pods from different
nodes from getting the same IP address. There are many methods for connecting
the bridges on different nodes. This can be done with overlay or underlay networks
or by regular layer 3 routing(direct routing).

Figure 2.8: Pod to pod communication across different nodes.

2.6.4 CNI (Container Network Interface)
CNI (Container Network Interface) is a Cloud Native Computing Foundation
project consisting of a specification and libraries for writing plugins to configure
network interfaces in Linux containers. CNI concerns itself only with network
connectivity of containers and removing allocated resources when the container
is deleted. Kubernetes uses the CNI specifications and plug-ins to orchestrate
networking. Also, it can address other container’s IP addresses without using the
Network Address Translation (NAT). Every time a Pod is initialized or removed,
the default CNI plug- in is called with the default configuration, which this CNI
plug-in creates a pseudo interface, attaches it to the underlay network, sets IP
Address, routes, and maps it to the Pod namespace. It should be passed –network-
plugin = cni to the Kubelete when launching it for using the CNI plugin. If the
environment is not using the default configuration directory (/etc/cni.net.d), the
CNI plugin passes the correct configuration directory as a value to –cni-conf-dir.

17

Kubernetes

Moreover, the Kubelet looks for the CNI plugin binary at /opt/cni/bin, but it
can be specified an alternative location with –cni-bin-dir.

Figure 2.9: Container network interface [15]

2.6.5 Pod to service networking
Pod IP addresses are not durable and will appear and disappear in response to
scaling up or down, application crashes, or node reboots. Each of these events
can make the Pod IP address change without warning. Services were built into
Kubernetes to address this problem. The Kubernetes service manages the state of
Pods, allowing us to track a set of the pod IP address that dynamically changes
over time. Services act as an abstraction over Pods and assign a single virtual IP
address to a group of Pod IP addresses. Any traffic addressed to the virtual IP of
the service will be routed to the set of Pods that are associated with the virtual IP.
This allows the set of Pods associated with a service to change at any time clients
only need to know the service’s virtual IP, which does not change [16].

2.7 Virtual-Kubelet
Two Kubernetes-based tools which have been used during the development of this
project are Virtual-Kubelet and Kubebuilder. Virtual Kubelet is an open source
Kubernetes kubelet implementation that masquerades a cluster as a kubelet for the
purposes of connecting Kubernetes to other APIs [6]. Virtual Kubelet is a Cloud
Native Computing Foundation sandbox project.

The project offers a provider interface that developers need to implement in
order to use it. The official documentation [6] says that “providers must provide

18

Kubernetes

the following functionality to be considered a supported integration with Virtual
Kubelet:

1. Provides the back-end plumbing necessary to support the lifecycle management
of pods, containers and supporting resources in the context of Kubernetes.

2. Conforms to the current API provided by Virtual Kubelet.

3. Does not have access to the Kubernetes API Server and has a well-defined
callback mechanism for getting data like secrets or configmaps”.

Figure 2.10: Virtual-Kubelet concept [6].

2.8 Kubebuilder
Kubebuilder is a framework for building Kubernetes APIs using Custom Resource
Definitions (CRDs) [7].

CustomResourceDefinition is an API resource offered by Kubernetes which
allows to define Custom Resources (CRs) with a name and schema specified by
the user. When a new CustomResourceDefinition is created, the Kubernetes API
server creates a new RESTful resource path; the CRD can be either namespaced or
cluster-scoped. The name of a CRD object must be a valid DNS subdomain name.

A Custom Resource is an endpoint in the Kubernetes API that is not available
in a default Kubernetes installation and which frees users from writing their own

19

Kubernetes

API server to handle them [5]. On their own, custom resources simply let you store
and retrieve structured data. In order to have a more powerful management, you
also need to provide a custom controller which executes a control loop over the
custom resource it watches: this behaviour is called Operator pattern [17].

Kubebuilder helps a developer in defining his Custom Resource, taking auto-
matically basic decisions and writing a lot of boilerplate code. These are the main
actions operated by Kubebuilder [7]:

1. Create a new project directory.

2. Create one or more resource APIs as CRDs and then add fields to the resources.

3. Implement reconcile loops in controllers and watch additional resources.

4. Test by running against a cluster (self-installs CRDs and starts controllers
automatically).

5. Update bootstrapped integration tests to test new fields and business logic.

6. Build and publish a container from the provided Dockerfile.

20

Chapter 3

Multi-Cluster networking:
state of the art

Emerging capabilities of networks have enabled cloud to successfully provide on-
demand services which can unilaterally provision computing capabilities such as
servers, network, OS and storage. The network has possibly the highest impact
on a cloud deployment’s success because users need to access applications and
data residing in the cloud from remote locations. For this reason, cloud computing
requires a holistic approach to designing networks. A cloud network infrastructure
must support the dynamic volatility of network traffic and its inherent charac-
teristics, which includes not only performance, throughput, and latency, but also
security, and availability.

3.1 Submariner
Submariner consists of several main components that work in conjunction to
securely connect workloads across multiple Kubernetes clusters.

3.1.1 Broker
Submariner uses a central Broker component to facilitate the exchange of metadata
information between Gateway Engines deployed in participating clusters. The
Broker is basically a set of Custom Resource Definitions (CRDs) backed by the
Kubernetes datastore. The Broker also defines a ServiceAccount and RBAC
components to enable other Submariner components to securely access the Broker’s
API. There are no Pods or Services deployed with the Broker [18].

Submariner defines two CRDs that are exchanged via the Broker: Endpoint and
Cluster. The Endpoint CRD contains the information about the active Gateway

21

Multi-Cluster networking: state of the art

Figure 3.1: Basic architecture of Submariner [18]

Engine in a cluster, such as its IP, needed for clusters to connect to one another.
The Cluster CRD contains static information about the originating cluster, such
as its Service and Pod CIDRs.

The Broker is a singleton component that is deployed on a cluster whose
Kubernetes API must be accessible by all of the participating clusters. If there
is a mix of on-premises and public clusters, the Broker can be deployed on a
public cluster. The Broker cluster may be one of the participating clusters or
a standalone cluster without the other Submariner components deployed. The
Gateway Engine components deployed in each participating cluster are configured
with the information to securely connect to the Broker cluster’s API.

3.1.2 Gateway engine
The Gateway Engine component is deployed in each participating cluster and is
responsible for establishing secure tunnels to other clusters [18]. It has a pluggable
architecture for the cable engine component that maintains the tunnels. The
following implementations are available:

1. IPsec implementation using strongSwan (via the goStrongswanVici library);
this is currently the default;

2. IPsec implementation using Libreswan;

3. implementation for WireGuard.

Instances of the Gateway Engine run on specifically designated nodes in a cluster
of which there may be more than one for fault tolerance. Submariner supports
active/passive High Availability for the Gateway Engine component, which means
that there is only one active Gateway Engine instance at a time in a cluster. They
perform a leader election process to determine the active instance and the others
await in standby mode ready to take over should the active instance fail.

22

Multi-Cluster networking: state of the art

The active Gateway Engine communicates with the central Broker to advertise
its Endpoint and Cluster resources to the other clusters connected to the Broker,
also ensuring that it is the sole Endpoint for its cluster.

3.1.3 Route agent
The Route Agent component runs on every worker node in each participating cluster.
It is responsible for setting up VXLAN tunnels and routing the cross cluster traffic
from the node to the cluster’s active Gateway Engine which subsequently sends
the traffic to the destination cluster [18].

When running on the same node as the active Gateway Engine, Route Agent
creates a VXLAN VTEP interface to which Route Agent instances running on
the other worker nodes in the local cluster connect by establishing a VXLAN
tunnel with the VTEP of the active Gateway Engine node. The MTU of the
VXLANtunnel is configured based on the MTU of the default interface on the
host minus theVXLAN overhead.

Route Agents use Endpoint resources synced from other clusters to configure
routes and to program the necessary IP table rules to enable full cross-cluster
connectivity.

When the active Gateway Engine fails and a new Gateway Engine takes over,
Route Agents will automatically update the route tables on each node to point to
the new active Gateway Engine node.

3.2 Cilium cluster mesh
Cilium is open source software for providing and transparently securing network
connectivity and load-balancing between application workloads such as application
containers or processes. Cilium operates at Layer 3/4 to provide traditional
networking and security services as well as Layer 7 to protect and secure use of
modern application protocols such as HTTP, gRPC and Kafka. Cilium is integrated
into common orchestration frameworks such as Kubernetes and Mesos [19].

A new Linux kernel technology called eBPF is at the foundation of Cilium. It
supports dynamic insertion of eBPF bytecode into the Linux kernel at various
integration points such as: network IO, application sockets, and trace-points to
implement security, networking and visibility logic. eBPF is highly efficient and
flexible.

Cluster Mesh, Cilium’s multi-cluster implementation provides:

1. Pod IP routing across multiple Kubernetes clusters at native performance via
tunneling or direct-routing without requiring any gateways or proxies;

23

Multi-Cluster networking: state of the art

2. Transparent service discovery with standard Kubernetes services and coredns/kube-
dns;

3. Network policy enforcement spanning multiple clusters. Policies can be speci-
fied as Kubernetes NetworkPolicy resource or the extended CiliumNetworkPol-
icy CRD;

4. Transparent encryption for all communication between nodes in the local
cluster as well as across cluster boundaries.

Figure 3.2: Basic architecture of Cilium [19]

3.2.1 Control plane
In order for the solution to work some requirements have to be met by the existing
clusters where it is deployed:

• All Kubernetes worker nodes must be assigned a unique IP address and all
worker nodes must have IP connectivity between each other;

• All clusters must be assigned unique PodCIDR ranges;

• Cilium must be configured to use etcd as the kvstore;

• The network between clusters must allow the inter-cluster communication.

The control plane is based on etcd and kept as minimalistic as possible. Each
Kubernetes cluster maintains its own etcd cluster which contains the state of that
cluster. State from multiple clusters is never mixed in etcd itself. The etcd is
exposed via a set of etcd proxies. Cilium agents running in other clusters connect

24

Multi-Cluster networking: state of the art

Figure 3.3: Control Plane of Cilium [20]

to the etcd proxies to watch for changes and replicate the multi-cluster relevant
state into their own cluster. Use of etcd proxies ensures scalability of etcd watchers.
Access is protected with TLS certificates. The access from one cluster into another
is always read-only. This ensures that the failure domain remains unchanged, i.e.
failures in one cluster never propagate into other clusters. The configuration is done
via a simple Kubernetes secrets resource that contains the addressing information
of the remote etcd proxies along with the cluster name and the certificates required
to access the etcd proxies.

3.2.2 Pod IP routing
The pod IP routing is the foundation of the multi-cluster ability. It allows pods
across clusters to reach each other via their pod IPs. Cilium can operate in several
modes to perform pod IP routing. All of them are capable to perform multi-cluster
pod IP routing.

Tunneling mode

Tunneling mode encapsulates all network packets emitted by pods in a so-called
encapsulation header. The encapsulation header can consist of a VXLAN or
Geneve frame. This encapsulation frame is then transmitted via a standard UDP
packet header. The concept is similar to a VPN tunnel.

• The pod IPs are never visible on the underlying network. The network only
sees the IP addresses of the worker nodes. This can simplify installation and
firewall rules.

• The additional network headers required will reduce the theoretical maximum
throughput of the network. The exact cost will depend on the configured
MTU and will be more noticeable when using a traditional MTU of 1500
compared to the use of jumbo frames at MTU 9000.

25

Multi-Cluster networking: state of the art

Figure 3.4: Cilium tunneling mode [20]

• In order to not cause excessive CPU, the entire networking stack including
the underlying hardware has to support checksum and segmentation offload
to calculate the checksum and perform the segmentation in hardware just as
it is done for "regular" network packets.

Direct-routing mode

In the direct routing mode, all network packets are routed directly to the network.
This requires the network to be capable of routing pod IPs.When a point is reached
where the network no longer understands pod IPs, network packet addresses need
to be masqueraded.

Figure 3.5: Cilium direct-routing mode [20]

26

Chapter 4

Multi-Cluster networking:
design

Some organizations have multiple Kubernetes clusters. Usually the number of
clusters is quiet static but the number of nodes in a cluster and the number of pods
in a service may change frequently according to load and growth. The reasons to
have multiple clusters include:

• strict security policies requiring isolation of one class of work from another;

• location, placing services in specific locations to address availability, latency,
and locality needs;

• test clusters to canary new Kubernetes releases or other cluster software.

When the resources in one clusters are not enough, usually new hardware is
made available and installed in the existing clusters. It is not an acceptable solution
when the heavy load peaks are transitory causing the new hardware not to be used
most of the time.

Here comes Liqo, an open source project started at Politecnico of Turin that
allows Kubernetes to seamlessly and securely share resources and services, so
you can run your tasks on any other cluster available nearby.

4.1 The problem
When a cluster offloads some jobs on another cluster there comes some dependencies
that have to be satisfied. Considering a micro-services application such the one
depicted in figure 4.1:

• Micro-service A consumes micro-service C;

27

Multi-Cluster networking: design

UI
Microservice A

Microservice B Microservice C Microservice D

Application Architecture

The arrows indicate the dependency of each microservice

Figure 4.1: Micro-services dependencies

• Micro-service C consumes micro-service B and D;

• Micros-service D consumes micro-service C.

Picturing this application in multi-cluster environment it could be something
like figure 4.2 The two micro-services C and D can communicate with each other

CLUSTER

Microservice A Microservice B

CLUSTER

Microservice C Microservice D

Figure 4.2: Micro-services deployed in two clusters

since they are in the same cluster, but C can not consume B and the same is for A
depending on C.

By default the Kubernetes ecosystem does not offer solutions for inter-cluster
networking. Each cluster ends up by having its own network meaning that overlay
networks, pods, services are routable and reachable only from inside the cluster itself.
The aim of this work is to design and implement a network plug-in for Kubernetes
in order to inter-connect multiple clusters. Once two clusters discovers each other
and exchanges the network parameters the plug-in configures the required resources
to allow the pod-to-pod and node-to-pod communication across the clusters.

28

Multi-Cluster networking: design

Another scenario figure 4.2 could be that a cluster called Cluster1 has peering
sessions with clusters:

• Cluster2;

• Cluster3;

• Cluster4.

An actor deploys its application in Cluster1 made up by four micro-services
called:

• A: running in Cluster1

• B: running in Cluster4

• C: running in Cluster2

• D: running in cluster3

In order for the application to work, there should be also a network connection
established between Cluster2 and Cluster3, and also between Cluster2 and Cluster4.
But this clusters could not be in an active session peering and hence no network
connection between them.

4.1.1 Compatibility with running clusters
The aim of the Liqo project is to create dynamic, opportunistic data centers
including also commodity desktops computers, laptops, single boards, other than
powerful server machines. The clusters participating to this “peering” model,
without any central point of control, establish dynamic and automatic relationships
among them.

Since this peering model takes per granted that the clusters participating in a
“peering” session are not necessarily under the administration of the same entity
than the network plug-in has to be flexible and run on top of existing network
configurations. It supports the main CNI such as:

• Calico: an open source networking and network security solution for contain-
ers, virtual machines, and native host-based workloads;

• Flannel: a simple and easy way to configure a layer 3 network fabric designed
for Kubernetes;

• Canal: an integration of Calico and Flannel

The network inter-connection between the peering clusters is established only if
necessary, when resources and services are shared between them.

29

Multi-Cluster networking: design

cluster1

cluster2

cluster4

cluster3

Request to deploy an
Aplication

Actor

A

C

D

B

Application deployed in multiple clusters

Connection between the Source Cluster to Host Cluster

Connection required by the micro-services' dependencies

App/Microservice deployed in a cluster

Cluster with a peering session

Figure 4.3: Micro-services deployed in multiple clusters

4.2 Architecture
Here we describe the general architecture of the network plug-in. The components
that realize the plug-in functionalities are:

• IPAM-Module

• Route-Agent

• Tunnel-Agent

A general overview of this components is displayed in figure 4.4
Given two Kubernetes clusters here called Cluster1 and Cluster2 in order share

resources among them all the Pods running in Cluster1 have to reach the Pods

30

Multi-Cluster networking: design

Datacenter
Network

Cluster 2

Worker Node 1

Route-Agent

Pod1 Pod2 Pod3

IPAM-Module

Worker Node 3

Route-Agent

Pod1 Pod2 Pod3

Worker Node 2

Route-Agent

Pod1 Pod2 Pod3

Gateway(Active)

Route-Agent

Tunnel-Agent

Pod1 Pod2 Pod3

Datacenter
Network

Cluster 1

Worker Node 1

Route-Agent

Pod1 Pod2 Pod3

IPAM-Module

Worker Node 3

Route-Agent

Pod1 Pod2 Pod3

Worker Node 2

Route-Agent

Pod1 Pod2 Pod3

Gateway(Active)

Route-Agent

Tunnel-Agent

Pod1 Pod2 Pod3

Gateway

Route-Agent

Tunnel-Agent

Pod1 Pod2 Pod3

Gateway

Route-Agent

Tunnel-Agent

Pod1 Pod2 Pod3

VPN Tunnel

Figure 4.4: Network plug-in architecture

running in Cluster2 and vice-versa. But that is not enough, because Pods could
be behind Kubernetes services such as a NodePort which implies that also the
Nodes should be able to reach all the Pods, in this case the remote ones.

The first step is to have a point-to-point connection between the two clusters.
That can be accomplished by establishing a VPN connection using two Nodes as
endpoints, one residing in Cluster1 and the other in Cluster2. Such Nodes act as
gateways for the resources that lives outside them. All the Nodes of a cluster
needs to be configured how to route the traffic for a remote peering cluster to the
gateway node.

IPAM-Module

Our solution supports clusters with overlapping networks, automatically resolving
conflicts and assigning new network address spaces when necessary. The IPAM-
module (IP address management) manages the assignment and use of IP address
spaces for the peering clusters. The network address spaces that could be a source
of conflicts are the PodCIDR and ServiceCIDR. The former is the IP pool
used to assign to each pod an IP address and the later is used for the services
created in Kubernetes. Usually this address spaces belong to the private IP address
ranges, routable and reachable only from inside the data center. Other than the
two mentioned networks there could be IP address spaces already in use inside the
data center which could have conflicts with the PodCIDR and ServiceCIDR of
the peering clusters.

The module needs to know in advance what are the IP address spaces used
by the own cluster and the possible networks already used in the data center
such as overlay networks. Having a new peering cluster that wants to establish a
peering session, it has to make available his network configuration specifying his
own network address spaces. The flow chart in figure 4.5 describes the main logic

31

Multi-Cluster networking: design

behind this module.

Subnet

NoOverlaps with any
reserved subnet? Reserve subnet

Reserve new subnet

Remap it to a new
subnet

Yes

Figure 4.5: IPAM flow chart

Tunnel-Agent

The Tunnel-Agent is responsible to establish secure tunnels to the other peering
clusters. It maintains the VPN tunnels and is in charge to configure them through
a plug-able architecture supporting different technologies such as:

• IPSec

32

Multi-Cluster networking: design

• OpenVPN

• Wireguard

The plug-able architecture is flexible and permits to support new VPN tech-
nologies just by implementing the interfaces required by the Southbound driver.
It exports two interfaces:

• InstallTunnel(configuration): it takes an opaque structure holding the
configuration required based on the technology used;

• RemoveTunnel(interfaceName): given the name of the network interface it
takes care to bring down the VPN connection and clean up the resources.

Driver VPN Provider

Tunnel-Agent

Devices

IPsecWirerguard OpenVPN

Configuration
Parameters

Install

Calls

Figure 4.6: Southbound Driver Interface

The Gateway node is a single point of failure being it the only point of
connection to the remote clusters. To overcome this limitation the Tunnel-Agent
is deployed on multiple nodes, but only one instance is active managing the traffic
for remote services. In case of failure of the active Gateway another node will
change its status from Idle to Active configuring the VPN tunnels to the peering
clusters.

33

Multi-Cluster networking: design

Route-Agent

Pods running in nodes that are not the Active Gateway needs to know how
to reach the Gateway in order to consume remote services. The Route-Agent
is in charge of configuring the routing tables on each node to send all the traffic
to the right node acting as the Active Gateway. A VXLAN overlay network
is created. The traffic destined to a remote peering cluster is routed through the
overlay network in order to reach the Gateway. The traffic for remote clusters is
separated from east-west traffic. The Route-Agent handles only the outgoing
traffic for a peering cluster such as depicted in figure 4.7. The packets are routed
through the VPN tunnel and reach the remote cluster, where they are handled by
the local CNI and routed to the correct node where the requested POD is running.
Doing so we do not need to handle the traffic originated from a peering cluster, but
it is treated the same as east-west and north-south traffic by the local CNI.

t

WorkerNode2

MasterNode

Cluster 1 Cluster 2

WorkerNode1-EP

MasterNode

WorkerNode1-EP WorkerNode2

WorkerNode3 WorkerNodeN WorkerNode3 WorkerNodeN

Internet

VPN Traffic
Traffic for cluster 2
Traffic for cluster 1

VPN Tunnel

Overlay NetworkOverlay Network

Figure 4.7: VXLAN overlay network

The Route-Agent also manages the iptables-rules in all the nodes in order
to prevent SNAT(source natting) when the PODS communicate with IP addresses
that are outside the PodCIDR. When the Agent is running in the Gateway it
inserts the rules to perform:

• Single NAT: when one of the two clusters have remapped the Pod CIDR
of the other in to a new network address space;

• Double NAT: when the two clusters have remapped the each others’ Pod
CIDR to new network address spaces.

The NAT rules are needed only when the network address spaces used by the
clusters overlaps.

34

Chapter 5

Multi-Cluster networking:
implementation

This chapter will present the implementation of the software solution discussed in
the previous chapter. The developed code has been written in Go, which is the
language in which Kubernetes and all related projects are written. The modules
implemented in this work are the following:

• CRDReplicator: an operator that connects to a peering cluster’s API server
and replicates local CRDs on it. Labels and Selectors are used to design
which CRDs to replicate and on which cluster.

• TunnelEndpointCreator: this operator is in charge to get the network
parameters received from a peering cluster and create a resource instance of
kind tunnelendpoints.net.liqo.io. More information on this component
in the next sections. It implements the IPAM-Module presented in section
4.2

• Tunnel-Operator: the component runs on the designated Gateway Node
and consumes a resource of type tunnelendpoints.net.liqo.io and brings
up a point to point VPN connection with a peering cluster. It implements
some of the ideas of the tunnel-agent discussed in section 4.2.

• Route-Operator: this operator is deployed as a Daemonset and runs on each
node of the cluster. It ensures that the correct routes and iptables rules have
been installed to make remote services reachable. All the information needed by
the operator are found on the resource of kind tunnelendpoints.net.liqo.io
that represents a specific peering cluster. This operator is the software
implementation of the route-agent presented in section 4.2.

35

Multi-Cluster networking: implementation

5.1 Kubernetes programming interface
The Kubernetes programming interface in Go mainly consists of the k8s.io/client-go
library. Client-go is a typical web service client library that supports all API
types that are officially part of Kubernetes. It eases the creation of a Kubernetes
client object used to access resources in a Kubernetes cluster. Here we are going to
describe some concepts used to implement our solution.

Dynamic client

The dynamic client in k8s.io/client-go/dynamic is totally agnostic to known
resources. It does not use any Go types other than unstructured.Unstructured,
which is a straightforward representation of YAML/JSON object in Go. Doing so
the CRDRepicator supports third party CRDs and the core resources of
Kubernetes.

Watches

Clients offer a method called Watch. It gives an event interface for all changes (adds,
removes, and updates) to objects. The use of the watch.interface is discouraged
in favor of informers.

Informers

Informers give a higher-level programming interface for the most common use
case for watches: in-memory caching and fast, indexed lookup of objects by name
or other properties in-memory. They can react to changes of objects nearly in
real-time instead of requiring polling requests. Specifically, they:

• Get input from the API server as events.

• Offer a client-like interface called Lister to get and list objects from the
in-memory cache.

• Register event handlers for adds, removes, and updates.

• Implement the in-memory cache using a store.

They also have advanced error behavior: when the long-running watch connection
breaks down, they recover from it by trying another watch request, picking up
the event stream without losing any events. If the outage is long, and the API
server lost events because etcd purged them from its database before the new
watch request was successful, the informer will relist all objects.

36

Multi-Cluster networking: implementation

5.2 CRDReplicator
The exchange of information between two peering clusters is crucial in order to
enable the sharing of resources and services. A way could be a domain-specific proto-
col to exchange network parameters and configuration. This could be cumbersome
to maintain and operate:

• extension of the protocol when new parameters need to be exchanged;

• converting the messages to the CRD api consumed by the Kubernetes opera-
tors;

The CRDReplicator leverages declarative API server mechanisms of Kuber-
netes to exchange configurations and general messages through CRDs. The operator
could handle every type of CRD, it only needs to know the GVR (Group, Ver-
sion, Resource). The GVR is a tuple that uniquely identifies a type of resource.
Replicating a new CRD is as simple as adding its GVR to the configuration of the
operator. Now we will describe how the CRDReplicator manages the connection
to a peering cluster and how does it decide which instances of a given resource
need to be replicated and where.

5.2.1 Labels and Selectors
Each peering cluster that participates to a peering session has a unique ClusterID.
The operator uses this parameter to determine the replication destination of a
given resource. For each resource that we want to replicate to a specific peering
cluster we have to add two labels:

• liqo.io/replication=true: the operator uses this label to know if a re-
source has to be replicated;

• liqo.io/remodeID=’clusterID of destination peering cluster’: the
label tells the operator which is the destination cluster and the right API
server where to create the resource.

It is not enough just to replicate a local resource to a peering cluster we have
to keep track of the resources replicated and to reflect changes that are made to
them by the services consuming them. So the the replicated resources present the
following labels:

• liqo.io/originID=’clusterID of the origin cluster: the label holds
the ClusterID of the cluster that replicated the resource. This is needed for
the services that consumes the resource to know who sent that configuration.

37

Multi-Cluster networking: implementation

• liqo.io/replicated=true: it says that the resource is a replicated one and
it is ready to be consumed by the operators running in the local cluster.

• liqo.io/replication=false: needed for the the instances of the CRDRepli-
cator running in the peering cluster where the resource has been replicated.
It knows that it does need to process and replicate the resource because it is
already a replicated one.

CRDReplicator
(OriginCluster)

Settings

OriginCluster

CustomResource1

CustomResource2

PeeringCluster1

CustomResource1

PeeringCluster2

CustomResource2

Figure 5.1: Replicating local resources to peering clusters

Referring to figure 5.1, the resource named CustomResource1 in order to be
replicated to the peering cluster with ClusterID ’PeeringCluster1’ it should have
the following labels:

• liqo.io/replication=true;

• liqo.io/remoteID=PeeringCluster1.

38

Multi-Cluster networking: implementation

And the instance of the resource living in the peering cluster will present the
labels:

• liqo.io/originID=OriginCluster;

• liqo.io/replicated=true;

• liqo.io/replication=false.

5.2.2 Watching Resources
Each resource to be replicated on remote peering clusters is given to the operator
through a configurationCRD. The configuration is just a list of GVRs, an example
si showed in listing 5.1

Listing 5.1: CRDReplicator configuration.
1 c rdRep l i ca to rCon f i g :
2 r e source sToRep l i ca t e :
3 − group : net . l i q o . i o
4 ve r s i on : v1alpha1
5 r e s ou r c e : networkcon f ig s
6 − group : net . l i q o . i o
7 ve r s i on : v1alpha1
8 r e s ou r c e : tunne lendpo int s

The operator creates a dynamic client to the API servers of the peering
cluster and also a client to connect to the API server of the local cluster. A
shared informer factory is instantiated for each dynamic client. The shared
factory is then used to start the informers for the registered resources. For
a better understanding in figure 5.2 is shown the relationship of the informers,
factories, and clients.

5.2.3 Watching Local Resources
The operator needs to watch the instances for each registered resource denoted by its
GVR. That is accomplished by using a dynamic client and shared informers.
As shown in listing 5.2 the operator at startup time creates a dynamic client
to interact with the local API server. After that a dynamic shared informer
factory is instantiated, used to create the informers for each resource that we
need to watch.

Listing 5.2: Creation of local informer shared factory.
1 dynClient := dynamic . NewForConfigOrDie (c f g)
2 dynFac := dynamicinformer . NewFilteredDynamicSharedInformerFactory (

dynClient , c rdRep l i c a to r . ResyncPeriod , metav1 . NamespaceAll ,
c rdRep l i c a to r . SetLabe l sForLoca lResources)

39

Multi-Cluster networking: implementation

CRDReplicator

LocalDynamicClient RemoteDynamicClient 1 RemoteDynamicClient N

SharedFactory SharedFactory SharedFactory

Registered Resouces

W
at

ch
er

 R
es

 N

W
at

ch
er

 R
es

 1
 C

lu
st

er
 1

W
at

ch
er

 R
es

 N
 C

lu
st

er
 1

W
at

ch
er

 R
es

 N
 C

lu
st

er
 N

W
at

ch
er

 R
es

 1
 C

lu
st

er
 N

W
at

ch
er

 R
es

 1

W
at

ch
er

 R
es

 1

W
at

ch
er

 R
es

 N
Figure 5.2: Informers, factories, and clients

A function shown in listing 5.3 is passed at creation time of the shared factory
in order to filter only the resources that need to be replicated on a remote cluster.

Listing 5.3: Local selectors.
1 func SetLabe l sForLoca lResources (opt ions ∗metav1 . L i s tOpt ions) {
2 //we want to watch only the r e s o u r c e s that should be r e p l i c a t e d

on a remote c l u s t e r
3 i f opt i ons . Labe lS e l e c t o r == " " {
4 newLabe lSe lector := [] s t r i n g { Loca lLabe lSe l e c to r , "=" , " t rue "}
5 opt ions . Labe lS e l e c t o r = s t r i n g s . Join (newLabelSe lector , " ")
6 } e l s e {
7 newLabe lSe lector := [] s t r i n g { opt ions . Labe lSe l e c to r ,

Loca lLabe lSe l e c to r , "=" , " t rue "}
8 opt ions . Labe lS e l e c t o r = s t r i n g s . Join (newLabelSe lector , " ")
9 }

10 }

While new peering clusters are discovered and a peering session is established
the operator starts local watchers for the registered resources. For each remote

40

Multi-Cluster networking: implementation

peering cluster and each registered resource to be replicated:

1. check if a local watcher is running and if not start a new one;

2. register event handlers for adds, removes, and updates;

3. save the stop channel passed to the watcher, which is used to track and
stop, when needed, the running watcher.

Listing 5.4: Starting local watchers.
1 . . .
2 // f o r each remote c l u s t e r check i f the l o c a l watchers are running f o r

each r e g i s t e r e d r e sou r c e
3 f o r remCluster := range d . RemoteDynClients {
4 watchers := d . LocalWatchers [remCluster]
5 i f watchers == n i l {
6 watchers = make(map [s t r i n g] chan s t r u c t {})
7 }
8 f o r _, r e s := range d . Reg i s t e redResources {
9 // i f the re i s not a running l o c a l watcher then s t a r t one

10 i f _, ok := watchers [r e s . S t r ing ()] ; ! ok {
11 stopCh := make(chan s t r u c t {})
12 watchers [r e s . S t r ing ()] = stopCh
13 go d . Watcher (d . LocalDynSharedInformerFactory , res ,

cache . ResourceEventHandlerFuncs {
14 AddFunc : d . AddFunc ,
15 UpdateFunc : d . UpdateFunc ,
16 DeleteFunc : d . DeleteFunc ,
17 } , stopCh)
18 klog . I n f o f ("% s −> s t a r t i n g l o c a l watcher f o r r e s ou r c e

: %s " , remCluster , r e s . S t r ing ())
19 }
20 }
21 d . LocalWatchers [remCluster] = watchers
22 }
23 . . .

Add handler

The d.AddFunc showed in listing 5.4 is invoked each time a new resource is created.
It checks if a dynamic client connected to the API server of the peering cluster,
to which the resource has to be replicated, already exists. After that a the resource
is created on the peering cluster if it does not exist.

41

Multi-Cluster networking: implementation

Update handler

The d.UpdateFunc is called when modifications are performed on a local resource.
It checks if the a copy of the modified resource exists on the peering cluster and if
it is not present then creates a new one. Other wise it gets the remote instances
and performs a diffs between the two instances. If there are differences than this
changes are applied to the remote resource.

Delete handler

When a local resource is deleted it is also deleted on the peering clusters where it
has been replicated. This is performed by the d.DeleteFunc.

5.3 Watching Remote Resources
Once a resource is replicated on a peering cluster, it is consumed hence modified.
So the operator has to watch the replicated resources and reflect the changes to
their status on the origin cluster. After that a dynamic client and a shared
informer factory have been created the remote watchers are started as shown in
listing 5.5

Listing 5.5: Starting remote watchers.
1 // f o r each remote c l u s t e r check i f the remote watchers are running

f o r each r e g i s t e r e d r e sou r c e
2 f o r remCluster , remDynFac := range d .

RemoteDynSharedInformerFactory {
3 watchers := d . RemoteWatchers [remCluster]
4 i f watchers == n i l {
5 watchers = make(map [s t r i n g] chan s t r u c t {})
6 }
7 f o r _, r e s := range d . Reg i s t e redResources {
8 // i f the re i s not then s t a r t one
9 i f _, ok := watchers [r e s . S t r ing ()] ; ! ok {

10 stopCh := make(chan s t r u c t {})
11 watchers [r e s . S t r ing ()] = stopCh
12 go d . Watcher (remDynFac , res , cache .

ResourceEventHandlerFuncs {
13 UpdateFunc : d . remoteModifiedWrapper ,
14 } , stopCh)
15 klog . I n f o f ("% s −> s t a r t i n g remote watcher f o r

r e s ou r c e : %s " , remCluster , r e s . S t r ing ())
16 }
17 }
18 d . RemoteWatchers [remCluster] = watchers
19 }

42

Multi-Cluster networking: implementation

Only the update handler is registered because we are interested only in updates
of the status field of a replicated resource.

5.3.1 Network Parameters Exchange
Now we will see a real application of the CRDReplicator. It is used to exchange
network parameters between two peering clusters. Before diving in the workflow
we present the networkconfigs.net.liqo.io API.

NetworkConfigs

The network parameters are exchanged using a Custom Resource. Kubebuilder
has been used to implement the operators and define the CRD API.

A NetworkConfig contains the four fields:

1. metav1.TypedMeda and metav1.ObjectMeta: the metadata object;

2. Spec: the desired state of the object;

3. Status: the observed state of the object.

Listing 5.6 shows how the custom resource is defined in golang.

Listing 5.6: NetworConfig API schema.
1 // NetworkConfig i s the Schema f o r the networkcon f ig s API
2 type NetworkConfig s t r u c t {
3 metav1 . TypeMeta ‘ j son : " , i n l i n e " ‘
4 metav1 . ObjectMeta ‘ j son : " metadata , omitempty " ‘
5

6 Spec NetworkConfigSpec ‘ j son : " spec , omitempty " ‘
7 Status NetworkConfigStatus ‘ j son : " s tatus , omitempty " ‘
8 }
9

10 type NetworkConfigSpec s t r u c t {
11 ClusterID s t r i n g ‘ j son : " c l u s t e r ID " ‘
12 PodCIDR s t r i n g ‘ j son : " podCIDR" ‘
13 TunnelPublicIP s t r i n g ‘ j son : " tunne lPubl i c IP " ‘
14 }
15

16 type NetworkConfigStatus s t r u c t {
17 NATEnabled s t r i n g ‘ j son : " natEnabled , omitempty " ‘
18 PodCIDRNAT s t r i n g ‘ j son : " podCIDRNAT, omitempty " ‘
19 }

NetworkConfigSpec holds the network parameters of the local cluster. The
ClusterID is the ID of the peering cluster to whom we sent the parameters. The

43

Multi-Cluster networking: implementation

PodCIDR is the address space of the Pods. And the TunnelPublicIP is the IP
address of the node where the VPN tunnel will be created.

NetworkConfigStatus is reserved to be populated by the peering cluster. It
has the NATEnabled field which says if the local cluster has been NATed by the
remote one. The PodCIDRNAT holds the new address spaces used by the remote
cluster to remap the original PodCIDR of the local cluster.

This way we have a protocol where the sender owns the spec field of a resource
and is allowed to modify only this part. The receiver owns the status field and
used it to give a feedback or communicate back the results of a request.

Workflow

Using the NetworkConfig custom resources and the CRDReplicator we are now
able to exchange the parameters needed to establish a VPN connection.

CRDReplicator
(Cluster 1)

TEP
Operator

Settings

CRDReplicator
(Cluster 2)

Settings

Cluster 1

NCFG
1->2

NCFG
2->1

3

TEP
1-2

2

2

4

4

2

2

1

4

4

Cluster 2

NCFG
2->1

TEP
Operator

NCFG
1->2

3
1

55

5
5

TEP
2-1

Figure 5.3: Exchanging network parameters

After that a two clusters start a peering session with each other they need to
mutually exchange the network parameters. For the sake of clarity we will refer
to figure 5.3 in order to explain all the steps involved in the process:

44

Multi-Cluster networking: implementation

1. The network configuration of Cluster1 is saved in a local custom resource
(NCFG 1->2) containing the ClusterID of the remote cluster to whom is
destined. Same step done in Cluster2;

2. NCFG is replicated to the remote cluster by the CRDReplicator, running
inCluster1 who knows how to interact with the API server of Cluster2.
Same step done in Cluster2;

3. In Cluster2 the custom resource NCFG (1->2) is processed and its status
updated with the NAT information if any. She same is done with NCFG
(2->1) in Cluster1.

4. The CRDReplicator running in reflects this changes in the local resource
NCFG(1->2). Same step done in Cluster2;

5. The TunnelEndpointCreator in Cluster1 combining the status of NCFG
(1->2) and the spec of NCFG (2->1) it has all the needed information to
create the custom resource TEP (1-2) of type tunnelendpoints.net.liqo.io.
More on the TunnelEndpointCreator and tunnelendpoints resource in
the next section.

The blue arrows indicates that the connection handles only the spec field and
the red arrows stands for the connection handling the status fields.

5.4 TunnelEndpointCreator
The TunnelEndpointCreator is an operator that manages the creation of the
networkconfigs custom resources for the remote clusters. It also processes the
networkconfigs received from the remote clusters remapping the remote Pod-
CIDRs if they overlap with any of the address spaces used in the local cluster. And
when the networkconfigs exchanged by the two clusters are ready the Tunne-
lEndpointCreator creates a new resource of type tunnelendpoints.net.liqo.io
which models the network interconnection between the two clusters.

5.4.1 TunnelEndpoint API
TunnelEndpoint custom resource is used to model the point-to-point connection
among the clusters. It is the resource consumed by the Route-Operator and
Tunnel-Operator. As shown in listing 5.7 it has the same spec values as the
networconfig API (section 5.3.1).

Listing 5.7: TunnelEndpoint API schema.
1 // TunnelEndpoint i s the Schema f o r the endpoints API

45

Multi-Cluster networking: implementation

2 type TunnelEndpoint s t r u c t {
3 metav1 . TypeMeta ‘ j son : " , i n l i n e " ‘
4 metav1 . ObjectMeta ‘ j son : " metadata , omitempty " ‘
5

6 Spec TunnelEndpointSpec ‘ j son : " spec , omitempty " ‘
7 Status TunnelEndpointStatus ‘ j son : " s tatus , omitempty " ‘
8 }
9

10 // TunnelEndpointSpec d e f i n e s the d e s i r e d s t a t e o f TunnelEndpoint
11 type TunnelEndpointSpec s t r u c t {
12 ClusterID s t r i n g ‘ j son : " c l u s t e r ID " ‘
13 PodCIDR s t r i n g ‘ j son : " podCIDR" ‘
14 TunnelPublicIP s t r i n g ‘ j son : " tunne lPubl i c IP " ‘
15 }
16

17 // TunnelEndpointStatus d e f i n e s the observed s t a t e o f TunnelEndpoint
18 type TunnelEndpointStatus s t r u c t {
19 Phase s t r i n g ‘ j son : " phase , omitempty " ‘
20 LocalRemappedPodCIDR s t r i n g ‘ j son : " localRemappedPodCIDR ,

omitempty " ‘
21 RemoteRemappedPodCIDR s t r i n g ‘ j son : " remoteRemappedPodCIDR ,

omitempty " ‘
22 RemoteTunnelPublicIP s t r i n g ‘ j son : " remoteTunnelPublicIP ,

omitempty " ‘
23 LocalTunnelPubl icIP s t r i n g ‘ j son : " loca lTunne lPubl ic IP , omitempty

" ‘
24 TunnelIFaceIndex i n t ‘ j son : " tunnelIFaceIndex , omitempty " ‘
25 TunnelIFaceName s t r i n g ‘ j son : " tunnelIFaceName , omitempty " ‘
26 }

The TunnelEndpointStatus is made up by the following fields:

• Phase: when set the values is Ready. Used by the Route-Operator to know
then the tunnel network interface has been installed and configured;

• LocalRemappedPodCIDR: the address space used by the peering cluster
to remap the local PodCIDR;

• RemoteRemappedPodCIDR: the address space used by the local cluster
to remap the PodCIDR of the peering cluster;

• RemoteTunnelPublicIP: the IP address of the node that has the role of
Gateway on the peering cluster;

• LocalTunnelPublicIP: the IP address of the node that has the role of
Gateway on the local cluster;

• TunnelIFaceIndex: the index value of the tunnel network interface which is
a unique identifying number for a physical or logical network device;

46

Multi-Cluster networking: implementation

• TunnelIfaceName: name of the tunnel network interface.

5.4.2 IPAM
The TunnelEndpointCreator implements a simple IPAM used to manage peer-
ing clusters that have overlapping PodCIDR address spaces. The IPAM is
defined as a golang interface. The interface declaration is shown in listing 5.8.

Listing 5.8: IPAM interface.
1 type Ipam i n t e r f a c e {
2 I n i t () e r r o r
3 GetNewSubnetPerCluster (network ∗ net . IPNet , c l u s t e r ID s t r i n g) (∗

net . IPNet , e r r o r)
4 RemoveReservedSubnet (c l u s t e r ID s t r i n g)
5 }

Now we will consider how this interface has been implemented in the operator.
A golang struct of type IpManager has been declared with different nested fields:

• UsedSubnets: a map which contains all the currently used networks;

• FreeSubnets: a map containing all the subnets derived from the network
10.0.0.0/8. The free networks has as netmask 255.255.255.0;

• ConflictingSubnets: it contains all the networks that ovelaps with any of the
address spaces present in the UsedSubnet map;

• SubnetPerCluster: for each peering cluster it contains the subnet assigned to
it. It could be the original PodCIDR or a new value assigned by the IPAM.

Listing 5.9: IPAM Implementation.
1 type IpManager s t r u c t {
2 UsedSubnets map [s t r i n g] ∗ net . IPNet
3 FreeSubnets map [s t r i n g] ∗ net . IPNet
4 Con f l i c t i ngSubne t s map [s t r i n g] ∗ net . IPNet
5 SubnetPerCluster map [s t r i n g] ∗ net . IPNet
6 }

Init method

The Init() function divides the CIDR block 10.0.0.0/8 in 256 subnets and saves
them in the FreeSubnets map. It initializes the IPAM at start-up time.

47

Multi-Cluster networking: implementation

Listing 5.10: Init function.
1 func (ip IpManager) I n i t () e r r o r {
2 CIDRBlock := " 1 0 . 0 . 0 . 0 / 1 6 "
3 _, subnet , e r r := net . ParseCIDR (" 1 0 . 0 . 0 . 0 / 1 6 ")
4 i f e r r != n i l {
5 klog . Er ro r f (" unable to parse the f i r s t subnet %s : %s " ,

CIDRBlock , e r r)
6 re turn e r r
7 }
8 //The f i r s t subnet /16 i s added to the FreeSubnets
9 ip . FreeSubnets [subnet . S t r ing ()] = subnet

10 // here we d iv id e the CIDRBlock 1 0 . 0 . 0 . 0 / 8 in 256 /16 subnets
11 f o r i := 0 ; i < 255 ; i++ {
12 subnet , _ = c i d r . NextSubnet (subnet , 16)
13 ip . FreeSubnets [subnet . S t r ing ()] = subnet
14 }
15 re turn n i l
16 }

GetNewSubnetPerCluster method

GetNewSubnetPerCluster() function is called when a new peering cluster sends
its network parameters. It gets as input the ClusterID and PodCIDR of the
remote cluster. First it checks if it has already assigned an subnet to remote cluster.
If so, it returns the allocated subnet, and a nil for the error. If the remote cluster
is a new one, then it checks that its PodCIDR does not overlaps with any of the
subnets saved in UsedSubnets map and remove from the free pool all the address
spaces that overlaps with cluster’s PodCIDR. The conflicting subnets are added
to the ConflictingSubnets map. If there are no conflicts the original PodCIDR
is returned and reserved. Otherwise it will get a new subnet from the free pool,
return it and add the original network address space to the ConflictingSubnets

Listing 5.11: GetNewSubnetPerCluster function.
1 func (ip IpManager) GetNewSubnetPerCluster (network ∗ net . IPNet ,

c l u s t e r ID s t r i n g) (∗ net . IPNet , e r r o r) {
2 // f i r s t check i f we a l r eady have as s i gned a subnet to the c l u s t e r
3 i f _, ok := ip . SubnetPerCluster [c l u s t e r ID] ; ok {
4 re turn ip . SubnetPerCluster [c l u s t e r ID] , n i l
5 }
6 // check i f the g iven network has c o n f l i c t s with any o f the used

subnets
7 i f f l a g := VerifyNoOverlap (ip . UsedSubnets , network) ; f l a g {
8 // i f the re are c o n f l i c t s then get a f r e e subnet from the pool

and return i t
9 // return a l s o a " t rue " va lue f o r the bool

10 i f subnet , e r r := ip . getNextSubnet () ; e r r != n i l {

48

Multi-Cluster networking: implementation

11 re turn n i l , e r r
12 } e l s e {
13 ip . re serveSubnet (subnet , c l u s t e r ID)
14 klog . I n f o f ("% s −> NAT enabled , remapping o r i g i n a l subnet

%s to new subnet %s " , c lus te r ID , network . S t r ing () , subnet . S t r ing ()
)

15 re turn subnet , n i l
16 }
17 }
18 ip . re serveSubnet (network , c l u s t e r ID)
19 klog . I n f o f ("% s −> NAT not needed , us ing o r i g i n a l subnet %s " ,

c lus te r ID , network . S t r ing ())
20 re turn network , n i l
21 }

RemoveReservedSubnet method

RemoveReservedSubnet() function is used to free the network resources allocated
for a remote cluster. The input is the ClusterID of the remote cluster that is leav-
ing a peering session. The function checks if a subnet has been assigned to the cluster
by getting it from the SubnetsPerCluster. If no subnet is found for the given
ClusterID then it does need to free any resource. In the other case the method
removes the reserved network address space from UsedSubnets and SubnetPer-
Cluster maps. Then if any of the address spaces in the ConflictinSubnets map
does not have any more conflicts with the subnets in the UsedSubnets is moved to
the FreeSubnets map.

Listing 5.12: RemoveReservedSubnet function.
1 func (ip IpManager) RemoveReservedSubnet (c l u s t e r ID s t r i n g) {
2 subnet , ok := ip . SubnetPerCluster [c l u s t e r ID]
3 i f ! ok {
4 re turn
5 }
6 //remove the subnet from the used ones
7 d e l e t e (ip . UsedSubnets , subnet . S t r ing ())
8 d e l e t e (ip . SubnetPerCluster , c l u s t e r ID)
9 // check i f the re are subnets in the c o n f l i c t i n g map that can be

made a v a i l a b l e in to the f r e e pool
10 f o r _, net := range ip . Con f l i c t i ngSubne t s {
11 i f over lap := VerifyNoOverlap (ip . UsedSubnets , net) ; ! over lap

{
12 d e l e t e (ip . Con f l i c t ingSubnet s , net . S t r ing ())
13 ip . FreeSubnets [net . S t r ing ()] = net
14 }
15 }
16 }

49

Multi-Cluster networking: implementation

5.4.3 Network API Management
The operator manages the networkconfig and tunnelendpoint resources, the
former is used to exchange the network parameters and the later to model the
interconnection between two clusters. We are going to describe how this resources
are processed:

1. creation of a local networkconfig;

2. processing of a received networkconfig;

3. creation of a tunnelendpoint based on the exchanged network parameters.

Local networkconfigs

Given a peering cluster the operator creates a networkconfig. It sets the spec
fields with the local ClusterID, PodCIDR and GatewayIP. Then it waits for
the remote cluster to set the status of the resource as shown in section 5.3.1

Listing 5.13: Hetworkconfig spec.
1 . . .
2

3 Spec : netv1alpha1 . NetworkConfigSpec{
4 ClusterID : l o ca lC lu s t e r ID ,
5 PodCIDR : localPodCIDR ,
6 TunnelPublicIP : localGatewayIP ,
7 }
8

9 . . .

Remote networkconfigs

When a networkconfig is received by a remote cluster the operator processes it.
It takes the remote PodCIDR and using the IPAM implementation seen in
section 5.4.2 reserves the subnet. If the remote PodCIDR has not bee remapped
then the status of the the netwoconfig resource is set to:

• .Status.PodCIDRNAT = None

• .Status.NATEnabled = "false"

in the other hand if present conflicts with used subnets the status is set to:

• .Status.PodCIDRNAT = newSubnet

• .Status.NATEnabled = "true"

50

Multi-Cluster networking: implementation

Listing 5.14 shows the function in charge of processing a remote networkconfig.

Listing 5.14: ProcessRemoteNetConfig function.
1 func (r ∗ TunnelEndpointCreator) processRemoteNetConfig (netConf ig ∗

netv1alpha1) e r r o r {
2 . . .
3 newSubnet , e r r := r . IPManager . GetNewSubnetPerCluster (

c lus te rSubnet , netConf ig . Labe ls [c rdRep l i c a to r . RemoteLabelSe lector
])

4 i f e r r != n i l {
5 klog . Er ro r f (" an e r r o r occurred whi l e g e t t i n g a new subnet f o r

r e s ou r c e %s : %s " , netConf ig .Name, e r r)
6 re turn e r r
7 }
8 i f newSubnet . S t r ing () != c lu s t e rSubnet . S t r ing () {
9 i f newSubnet . S t r ing () != netConf ig . Status .PodCIDRNAT {

10 // update netConf ig s t a tu s
11 netConf ig . Status .PodCIDRNAT = newSubnet . S t r ing ()
12 netConf ig . Status . NATEnabled = " true "
13 e r r := r . Status () . Update (context . Background () , netConf ig)
14 i f e r r != n i l {
15 klog . Er ro r f (" an e r r o r occurred whi l e updating the

s t a tu s o f r e s ou r c e %s : %s " , netConf ig .Name, e r r)
16 re turn e r r
17 }
18 }
19 re turn n i l
20 }
21 i f netConf ig . Status .PodCIDRNAT != defaultPodCIDRValue {
22 // update netConf ig s t a tu s
23 netConf ig . Status .PodCIDRNAT = defaultPodCIDRValue
24 netConf ig . Status . NATEnabled = " f a l s e "
25 e r r := r . Status () . Update (context . Background () , netConf ig)
26 i f e r r != n i l {
27 klog . Er ro r f (" an e r r o r occurred whi l e updating the s t a tu s

o f r e s ou r c e %s : %s " , netConf ig .Name, e r r)
28 re turn e r r
29 }
30 re turn n i l
31 }
32 re turn n i l
33 }

Tunnelendpoints creation

A tunnelendpoint resource is the result of two networkconfigs resources. The
first is the one that carries the network parameters of a local cluster and the second

51

Multi-Cluster networking: implementation

carries the information of a remote cluster. The life-cycle of a tunnelendpoints
endpoints instance is directly related to the netwoconfigs instances exchanged by
the two clusters that wants to establish a point-to-point network connection. It
is created only when the network parameters have been exchanged, and removed
when the local instance of networkconfigs is removed.

An auxiliary data structure expressed in golang as type networkParam struct
is used to save all the information needed to create a tunnelendpoint instance.
The fields are the same described in section 5.4.1

Listing 5.15: Networkparam data structure.
1 type networkParam s t r u c t {
2 remoteClusterID s t r i n g
3 remoteGatewayIP s t r i n g
4 remotePodCIDR s t r i n g
5 remoteNatPodCIDR s t r i n g
6 localGatewayIP s t r i n g
7 localNatPodCIDR s t r i n g
8 }

For each local networkconfigs instance the operator performs the following
actions:

1. check if the resources has been processed by the remote cluster, if not re-queue
the resource and try later;

2. get the remote networkconfigs instance, if it is not present it retries later;

3. check if the remote instance is ready, otherwise retries later starting from step
1;

4. fill the networkParam data structure;

5. check if already exists a tunnelendpoints instance. If already present updates
the fields that are different that the one in the networkparam object. If not
found, then create the resource.

5.5 Tunnel-Operator
The tunnel-operator implements some of the features described in section 4.2.
It reconciles the tunnelendpoints resources and for each of them it creates point-
to-point connection with the remote peering cluster.

52

Multi-Cluster networking: implementation

5.5.1 GRE Tunneling Protocol
So far the operator supports only the GRE protocol as technology to establish VPN
tunnel between two clusters. Generic function has been implemented to manage
the network interfaces on the Gateway Node where the operator is deployed.

The configuration parameters to know in order to create the tunnel network
interface are displayed in listing 5.16

Listing 5.16: GRE configuration.
1 type gre tunAtt r ibute s s t r u c t {
2 name s t r i n g
3 l o c a l net . IP
4 remote net . IP
5 t t l u int8
6 }

The local field is the IP address of the local Gateway Node and the remote
is the one of the remote Gateway Node. Both are found on the tunnelendpoint
resource.

The InstallGreTunnel() function requires as argument an instance of tunne-
lendpoints and return the interface index, name or an error if something goes
wrong. It creates a network interface of type GRE and configures it to be up and
running.

Listing 5.17: InstallGreTunnel function.
1 func Insta l lGreTunne l (endpoint ∗ netv1alpha1 . TunnelEndpoint) (int ,

s t r i ng , e r r o r) {
2 name := tunnelNamePrefix
3 l o c a l , e r r := GetLocalTunnelPublicIP ()
4 i f e r r != n i l {
5 re turn 0 , " " , e r r
6 }
7 remote := net . ParseIP (endpoint . Spec . TunnelPublicIP)
8 t t l := tunne lTt l
9 a t t r := gre tunAtt r ibute s {

10 name : name ,
11 l o c a l : l o c a l ,
12 remote : remote ,
13 t t l : u int8 (t t l) ,
14 }
15 gretunne l , e r r := newGretunInter face(& a t t r)
16 i f e r r != n i l {
17 re turn 0 , " " , e r r
18 }
19 i f e r r != n i l {
20 re turn 0 , " " , e r r
21 }

53

Multi-Cluster networking: implementation

22 i f e r r = gre tunne l . setUp () ; e r r != n i l {
23 re turn 0 , " " , e r r
24 }
25 re turn gre tunne l . l i n k . Index , g re tunne l . l i n k .Name, n i l
26 }

Another function called RemoveGreTunnel() is used to remove the network
interface when two peering clusters ends a peering session. As the previous
methods this one also takes a tunnelendpoints instance as argument. It checks if
a network interface has been installed for the remote cluster, and if so it manages
to remove it.

Listing 5.18: RemoveGreTunnel function.
1 func RemoveGreTunnel (endpoint ∗ netv1alpha1 . TunnelEndpoint) e r r o r {
2 // check i f the i n t e r f a c e index i s s e t
3 i f endpoint . Status . TunnelIFaceIndex == 0 {
4 l og . In f o (" no tunne l i n s t a l l e d . Do nothing ")
5 re turn n i l
6 } e l s e {
7 e x i s t i n g I f a c e , e r r := GetIfaceByIndex (endpoint . Status .

TunnelIFaceIndex)
8

9 i f e r r != n i l {
10 i f e r r . Error () == " Link not found " {
11 l og . Error (err , " I n t e r f a c e not found ")
12 re turn n i l
13 }
14 l og . Error (err , " unable to r e t r i e v e tunne l i n t e r f a c e ")
15 re turn e r r
16 }
17 //Remove the e x i s t i n g gre i n t e r f a c e
18 i f e r r = n e t l i n k . LinkDel (e x i s t i n g I f a c e) ; e r r != n i l {
19 l og . Error (err , " unable to d e l e t e the tunne l a f t e r the

tunnelEndpoint CR has been removed ")
20 re turn e r r
21 }
22 }
23 re turn n i l
24 }

5.6 Route-Operator
The Route-Operator is the implementation of the route-agent presented in
section 4.2. It is deployed as daemonset in order to run on every node of the
Kubernetes cluster. The operator coordinates the setup of all the routes that allow

54

Multi-Cluster networking: implementation

each local pod/node to communicate with the pods of the peering cluster, through
the elected gateway node. It will ensure state and react on tunnelendpoints
custorm resources changes, which means that it is able to add/remove routes as
soon as a new cluster peers/de-peers with the local cluster.

5.6.1 VxLAN overlay network
Each instance of the Route-Operator creates a VXLAN network interfaces. Doing
so an overlay network is created inside the cluster. Every node is part of it. At
start-up time the CreateVxLANInterface() function is called by the operator. It
performs the following steps:

1. retrieve the Node IP address where the operator is running;

2. automatically generate an IP address for the VXLAN interface;

3. set the configuration for the network interface. The configuration can be
passed to the operator, if not a default values will be used;

4. create the VXLAN network interface;

5. get all the nodes running in the cluster, generates their IP address used in the
overlay network and adds them to the Forwarding database.

Listing 5.19: CreateVxLANInterface() function.
1 func CreateVxLANInterface (c l i e n t s e t ∗ kubernetes . C l i en t s e t ,

vxlanConf ig VxlanNetConfig) e r r o r {
2 podIPAddr , e r r := getPodIP ()
3 i f e r r != n i l {
4 re turn e r r
5 }
6 token := s t r i n g s . S p l i t (vxlanConf ig . Network , " / ")
7 vxlanNet := token [0]
8 mtu , e r r := getDefaultIfaceMTU ()
9 i f e r r != n i l {

10 re turn e r r
11 }
12 temp := s t r i n g s . S p l i t (podIPAddr . S t r ing () , " . ")
13 temp1 := s t r i n g s . S p l i t (vxlanNet , " . ")
14 vx lanIPStr ing := temp1 [0] + " . " + temp1 [1] + " . " + temp1 [2] + " . "

+ temp [3]
15 vxlanIP := net . ParseIP (vx lanIPStr ing)
16

17 vxlanMTU := mtu − vxlanOverhead
18 vni , e r r := st rconv . Atoi (vxlanConf ig . Vni)
19 i f e r r != n i l {

55

Multi-Cluster networking: implementation

20 re turn fmt . Er ro r f (" unable to convert vxlan vni \"%s \" from
s t r i n g to i n t : %v " , vxlanConf ig . Vni , e r r)

21 }
22 port , e r r := st rconv . Atoi (vxlanConf ig . Port)
23 i f e r r != n i l {
24 re turn fmt . Er ro r f (" unable to convert vxlan port \"%s \" from

s t r i n g to i n t : %v " , vxlanConf ig . Port , e r r)
25 }
26 a t t r := &VxlanDeviceAttrs {
27 Vni : u int32 (vni) ,
28 Name : vxlanConf ig . DeviceName ,
29 VtepPort : port ,
30 VtepAddr : podIPAddr ,
31 Mtu : vxlanMTU ,
32 }
33 vxlanDev , e r r := NewVXLANDevice(a t t r)
34 i f e r r != n i l {
35 re turn fmt . Er ro r f (" f a i l e d to c r e a t e vxlan i n t e r f a c e on node

with ip −> %s : %v " , podIPAddr . S t r ing () , e r r)
36 }
37 e r r = vxlanDev . Conf igureIPAddress (vxlanIP , net . IPv4Mask (255 , 255 ,

255 , 0))
38 i f e r r != n i l {
39 re turn fmt . Er ro r f (" f a i l e d to c o n f i g u r e ip in vxlan i n t e r f a c e

on node with ip −> %s : %v " , podIPAddr . S t r ing () , e r r)
40 }
41 remoteVETPs , e r r := getRemoteVTEPS(c l i e n t s e t)
42 i f e r r != n i l {
43 re turn e r r
44 }
45 f o r _, vtep := range remoteVETPs {
46 macAddr , e r r := net . ParseMAC (" 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 ")
47 i f e r r != n i l {
48 re turn fmt . Er ro r f (" unable to parse mac address . %v " , e r r)
49 }
50 fdbEntry := Neighbor {
51 MAC: macAddr ,
52 IP : net . ParseIP (vtep) ,
53 }
54 e r r = vxlanDev .AddFDB(fdbEntry)
55 i f e r r != n i l {
56 re turn fmt . Er ro r f (" an e r r o r occured whi l e adding an fdb

entry : %v " , e r r)
57 }
58 }
59 re turn n i l
60 }

56

Multi-Cluster networking: implementation

5.6.2 Routes
When a tunnelendpoints resource is created and configured theRoute-Operator
instances running on the nodes are triggered and configures the routing tables
of each node to enable the communication between the pods and nodes of the
local cluster with remote pods running on the remote cluster. The configuration is
different if the node is a Gateway or not.

Referring to figure 5.4 and to the cluster named Cluster1 we see that an overlay
network has been configured and all the nodes belong to it. The WorkerNode1 is
the Gateway node and its IP address for the tunnel interface is 192.168.100.1
and its VXLAN IP address is10.1.0.2/24. The PodCIDR of the peering cluster
is 10.244.0.0/16. For the Gateway node there will be a routing rule to send all
network traffic with destination the remote pods to the tunnel interface such
this one: 10.244.0.0/16 via 192.168.100.2 On the other nodes the overlay
network is used to send the network traffic to the Gateway node. In their routing
tables will be a rule like this 10.244.0.0/16 via 10.1.0.2.

t

WorkerNode2
IP: 192.168.1.11

MasterNode
IP: 192.168.1.10

Cluster 1 Cluster 2

Service-Cluster-IP-Range: 10.96.0.0/12
Pod-IP-Range: 10.16.0.0/16

Remote-Cluster-IP-Range: 10.244.0.0/16
Endpoint-Tun-Interface: 192.168.100.1/24

MasterNode-VxLan-IP: 10.1.0.1/24
WorkerNode1-VxLan-IP-: 10.1.0.2/24
WorkerNode2-VxLan-IP: 10.1.0.3/24

Service-Cluster-IP-Range: 10.96.0.0/12
Pod-IP-Range: 10.244.0.0/16

Remote-Cluster-IP-Range: 10.16.0.0/16
Endpoint-Tun-Interface: 192.168.100.2/24

MasterNode-VxLan-IP: 10.2.0.1/24
WorkerNode1-VxLan-IP-: 10.2.0.2/24
WorkerNode2-VxLan-IP: 10.2.0.3/24

IP: 192.168.1.12
WorkerNode1-EP

Payload

MasterNode
IP: 192.168.1.15

IP: 192.168.1.16
WorkerNode1-EP WorkerNode2

IP: 192.168.1.17

VxLan
Overlay
Network

VxLan
Overlay
Network

...
10.244.0.0/16 via 10.1.0.2

...

Routes

...
10.244.0.0/16 via 192.168.100.2

...

Routes

...
10.244.0.0/16 via 10.1.0.2

...

Routes

...
10.16.0.0/16 via 192.168.100.1

...

Routes

...
10.16.0.0/16 via 10.2.0.2

...

Routes

...
10.16.0.0/16 via 10.2.0.2

...

Routes

Figure 5.4: Route configuration

Dynamic convergence of the network

When one of the following parameters changes:

• VXLAN IP address of the Gateway Node;

• PodCIDR address space of the peering cluster;

• IP address of the remote Gateway node.

then the routing tables are dynamically updated by theRoute-Operator instances
running on each node of the cluster. As shown in listing 5.20 the operator checks

57

Multi-Cluster networking: implementation

if the route already exists. If it is already present then it is compared with the
current values in the tunnelendpoints instance. If they are the same then does
nothing, if they have changed then the existing route is removed and the new one
is inserted.

Listing 5.20: EnsureRoutesPerCluster function.
1 func (r ∗ RouteContro l l e r) ensureRoutesPerCluster (tep ∗ netv1alpha1 .

TunnelEndpoint) e r r o r {
2 . . .
3 i f r . IsGateway {
4 e x i s t i n g , ok := r . RoutesPerRemoteCluster [c l u s t e r ID]
5 i f ok {
6 i f e x i s t i n g . LinkIndex == tep . Status . TunnelIFaceIndex &&

e x i s t i n g .Gw. St r ing () == " " && e x i s t i n g . Dst . S t r ing () ==
remotePodCIDR {

7 re turn n i l
8 }
9 e r r := r . NetLink . DelRoute (e x i s t i n g)

10 i f e r r != n i l {
11 klog . Er ro r f ("% s −> unable to remove o ld route ’%s ’ : %

s " , c lus te r ID , remotePodCIDR , e r r)
12 re turn e r r
13 }
14 }
15 route , e r r := r . NetLink . AddRoute (remotePodCIDR , " " , tep .

Status . TunnelIFaceName , f a l s e)
16 . . .
17 r . RoutesPerRemoteCluster [c l u s t e r ID] = route
18 } e l s e {
19 e x i s t i n g , ok := r . RoutesPerRemoteCluster [c l u s t e r ID]
20 i f ok {
21 i f e x i s t i n g .Gw. St r ing () == r . GatewayVxlanIP && e x i s t i n g .

Dst . S t r ing () == remotePodCIDR {
22 re turn n i l
23 }
24 e r r := r . NetLink . DelRoute (e x i s t i n g)
25 . . .
26

27 route , e r r := r . NetLink . AddRoute (remotePodCIDR , r .
GatewayVxlanIP , r . VxlanIfaceName , f a l s e)

28 . . .
29 r . RoutesPerRemoteCluster [c l u s t e r ID] = route
30 }
31 re turn n i l
32 }

58

Multi-Cluster networking: implementation

5.6.3 IPtables rules
The IPtables rules are used for two reasons, the first one is to resolve the network
address spaces conflicts when the peering clusters’ PodCIDRs overlap. The second
one is to prevent the CNIs, for example such Calico to NAT the pod traffic when
the destination address does not belong to a local network. The operator manages
rules and chains only for the nat and filter tables. The chains involved are the
POSTROUTING, PREROUTING, INPUT and FORWARD. We distinct two kind of IPtables
rules: the generic ones, and the per cluster rules.

Generic rules and chains

At start-up time the operator executes a go-routing (listing 5.21) which creates the
chains listed below:

• LIQO-POSTROUTING;

• LIQO-PREROUTING;

• LIQO-FORWARD;

• LIQO-INPUT;

Listing 5.21: Go-routine that ensures generic rules.
1 go func () {
2 f o r {
3 i f e r r := r . CreateAndEnsureIPTablesChains () ; e r r != n i l {
4 klog . Error (e r r)
5 }
6 s e l e c t {
7 case <−qu i t :
8 klog . I n f o f (" s topping go rout ing that ensure l i q o i p t a b l e s

r u l e s ")
9 re turn

10 case <−time . After (l i qone tOpera to r s . ResyncPeriod) :
11 }
12 }
13 }()

The go routine creates also four rules that references the chains:

• -A INPUT -p udp -m udp -j LIQO-INPUT;

• -A FORWARD -j LIQO-FORWARD;

• -A PREROUTING -j LIQO-PREROUTING;

59

Multi-Cluster networking: implementation

• -A POSTROUTING -j LIQO-POSTROUTING

It checks periodically for the existence of the chains and that the rules referencing
them are at the first position. This is need to capture all the traffic and send it to
the rules inserted by the route-operator before the packets are processed by the
local CNI.

Per cluster rules and chains

Given a peering cluster the operator creates four chains one for each of the following
IPtables’s chains: INPUT and FORWARD in table filter and PREROUTING and
POSTROUTING in table nat. Those chains are then referenced by rules in the general
chains discussed above. The presence of the PREROUTING chain depends if the
PodCIDR of the local cluster has been remapped by the remote cluster. If so we
need to SNAT all the traffic received from the remote cluster. The same is valid for
the POSTROUTING chain, it is inserted only if the PodCIDR of the remote cluster
has been remapped by the local cluster. For more clarity we present the rules that
references the chains:

• -A LIQO-POSTROUTING -d remotePodCIDR -j LIQO-PSTRT-CLS-(clusterID)

• -A LIQO-PREROUTING -d localRemappedPodCIDR -j LIQO-PRRT-CLS-
(clusterID)

• -A LIQO-FORWARD -d remotePodCIDR -j LIQO-FRWD-CLS-(clusterID)

• -A LIQO-INPUT -d remotePodCIDR -j LIQO-INPT-CLS-(clusterID)

The chains are populated with rules that handles properly the outgoing and
incoming traffic for the specific remote cluster. The functions that manages the
life-cycle of these rules are showed in listing 5.22

Listing 5.22: Functions used to ensure IPtables rules for a remote cluster.
1 func (r ∗ RouteContro l l e r) ensurePost rout ingRule s (tep ∗ netv1alpha1 .

TunnelEndpoint) e r r o r {
2 . . .
3 ex i s t i ngRu l e s , e r r := r . ListRulesInChain (NatTable ,

postRoutingChain)
4 i f e r r != n i l {
5 klog . Er ro r f ("% s −> unable to l i s t r u l e s f o r chain %s in tab l e

%s : %s " , c lus te r ID , postRoutingChain , NatTable , e r r)
6 re turn e r r
7 }
8 re turn r . UpdateRulesPerChain (c lus te r ID , postRoutingChain ,

NatTable , ex i s t i ngRu l e s , r u l e s)
9 }

60

Multi-Cluster networking: implementation

10

11 func (r ∗ RouteContro l l e r) ensurePrerout ingRules (tep ∗ netv1alpha1 .
TunnelEndpoint) e r r o r {

12 // i f the node i s not a gateway node then return
13 i f ! r . IsGateway {
14 re turn n i l
15 }
16 localRemappedPodCIDR , _ := r . GetPodCIDRS(tep)
17 i f localRemappedPodCIDR == defaultPodCIDRValue {
18 re turn n i l
19 }
20 . . .
21 ex i s t i ngRu l e s , e r r := r . ListRulesInChain (NatTable ,

preRoutingChain)
22 . . .
23 r u l e s := [] s t r i n g {
24 s t r i n g s . Join ([] s t r i n g {"−d " , localRemappedPodCIDR , "− i " ,

tunnelIFace , "− j " , "NETMAP" , "−−to " , r . ClusterPodCIDR } , " ") ,
25 }
26 re turn r . UpdateRulesPerChain (c lus te r ID , preRoutingChain , NatTable

, ex i s t i ngRu l e s , r u l e s)
27 }
28

29 func (r ∗ RouteContro l l e r) ensureForwardRules (tep ∗ netv1alpha1 .
TunnelEndpoint) e r r o r {

30 . . .
31 ex i s t i ngRu l e s , e r r := r . ListRulesInChain (F i l t e rTab le ,

forwardChain)
32 . . .
33 r u l e s := [] s t r i n g {
34 s t r i n g s . Join ([] s t r i n g {"−d " , remotePodCIDR , "− j " , "ACCEPT"} , "

") ,
35 }
36 re turn r . UpdateRulesPerChain (c lus te r ID , forwardChain , F i l t e rTab le

, ex i s t i ngRu l e s , r u l e s)
37 }
38

39 func (r ∗ RouteContro l l e r) ensureInputRules (tep ∗ netv1alpha1 .
TunnelEndpoint) e r r o r {

40 . . .
41 ex i s t i ngRu l e s , e r r := r . ListRulesInChain (F i l t e rTab le , inputChain)
42 . . .
43 r u l e s := [] s t r i n g {
44 s t r i n g s . Join ([] s t r i n g {"− s " , r . ClusterPodCIDR , "−d " ,

remotePodCIDR , "− j " , "ACCEPT"} , " ") ,
45 }
46 re turn r . UpdateRulesPerChain (c lus te r ID , inputChain , F i l t e rTab le ,

ex i s t i ngRu l e s , r u l e s)
47 }

61

Chapter 6

Experimental evaluation

Now we will describe how the implementation presented in the previous chapter
has been tested.

6.1 Functional Tests
In order to check that the solution works as it should, end-to-end tests have been
written to check that the network connectivity is established between two peering
clusters where our solution is deployed.

6.1.1 Test environment

Ansible, which is an open source software provisioning, configuration management
and application deployment tool, has been used to provision the Kubernetes
clusters used to test the implementation.The virtual machines used to deploy the
Kubernetes ecosystem has been provisioned using Vagrant. It is a solution to
build and maintain portable virtual machines for development environments. Each
cluster consists on three nodes:

• one master node where the control plane of kubernetes is deployed;

• two worker nodes used to run the workloads.

Each virtual machine has 4 GB of RAM, 40 GB of disc storage and two CPU
cores.

After that the virtual machines have been configured and Kubernetes has been
installed the operators are deployed.

62

Experimental evaluation

6.1.2 Tests
Here are the steps we performed to test the implementation:

1. create two Kubernetes clusters having each one master and two worker nodes;

2. deploy our operators on both the clusters;

3. create two pods on one the two clusters. One to be deployed in the local
cluster, the other to be offloaded on the peering cluster;

4. create a NodePort service for the remote pod offloaded on the remote cluster;

5. check that all local nodes can reach the remote pod through the NodePort
service and that the local pod can also reach the offloaded one;

6. repeat the steps 3, 4 and 5 for the remaining cluster.

Pod to (remote)pod communication

The function listed in 6.1 does the following:

1. deploys an NGINX instance in the local cluster and another one in the
peering cluster;

2. waits for the pods to be ready;

3. checks if the local instance of NGINX can reach the remote one

This way we check that the pod to pod communication works fine between the two
peering clusters.

Listing 6.1: Function used to test pod-to-pod communication.
1 func ConnectivityCheckPodToPodCluster1ToCluster2 (con ∗ u t i l . Tester , t

∗ t e s t i n g .T) {
2 . . .
3 podRemote := DeployRemotePod (image , podTesterRemoteCl1 , ns .Name)
4 _, e r r = con . C l i ent1 . CoreV1 () . Pods (ns .Name) . Create (context .TODO()

, podRemote , metav1 . CreateOptions {})
5 i f e r r != n i l {
6 klog . Error (e r r)
7 t . Fa i l ()
8 }
9 podLocal := DeployLocalPod (image , podTesterLocalCl1 , ns .Name)

10 _, e r r = con . C l i ent1 . CoreV1 () . Pods (ns .Name) . Create (context .TODO()
, podLocal , metav1 . CreateOptions {})

11 i f e r r != n i l {
12 klog . Error (e r r)

63

Experimental evaluation

13 t . Fa i l ()
14 }
15 i f ! u t i l . WaitForPodToBeReady (con . Cl ient1 , waitTime , con .

ClusterID1 , podLocal . Namespace , podLocal .Name) {
16 t . Fa i l ()
17 }
18 i f ! u t i l . WaitForPodToBeReady (con . Cl ient1 , waitTime , con .

ClusterID1 , podRemote . Namespace , podRemote .Name) {
19 t . Fa i l ()
20 }
21 i f ! u t i l . WaitForPodToBeReady (con . Cl ient2 , waitTime , con .

ClusterID2 , re f lectedNamespace , podRemote .Name) {
22 t . Fa i l ()
23 }
24 . . .
25 a s s e r t . True (t , i sConta ined (remoteNodes , podRemoteUpdateCluster2 .

Spec . NodeName) , " remotepod should be running on one o f the l o c a l
nodes ")

26 a s s e r t . True (t , i sConta ined (loca lNodes , podLocalUpdate . Spec .
NodeName) , " l o ca lpod should be running on one o f the remote pods ")

27 cmd := command + podRemoteUpdateCluster1 . Status . PodIP
28 stdout , _, e r r := u t i l . ExecCmd(con . Config1 , con . Cl ient1 ,

podLocalUpdate .Name, podLocalUpdate . Namespace , cmd)
29 a s s e r t . Equal (t , " 200 " , stdout , " s t a tu s code should be 200")
30 i f e r r != n i l {
31 t . Fa i l ()
32 }
33 }

Node to (remote)pod communication

We need also to check that the local nodes can communicate with the remote instance
of NGINX. As shown by the code in listing 6.2 a service of type NodePort is
created for the pod running on the remote cluster. Then for each node on the
local cluster it checks that con reach the NGINX instance running on the peering
cluster.

Listing 6.2: Function used to test node-to-pod communication.
1 func ConnectivityCheckNodeToPodCluster1ToCluster2 (con ∗ u t i l . Tester , t

∗ t e s t i n g .T) {
2 nodePort , e r r := u t i l . CreateNodePort (con . Cl ient1 , con . ClusterID1 ,

podTesterRemoteCl1 , " nodeport−c l 1 " , namespaceNameCl1)
3 i f e r r != n i l {
4 t . Fa i l ()
5 }
6 loca lNodes , e r r := u t i l . GetNodes (con . Cl ient1 , con . ClusterID1 ,

l ab e lS e l e c t o rNode s)

64

Experimental evaluation

7 i f e r r != n i l {
8 t . Fa i l ()
9 }

10 time . S leep (10 ∗ time . Second)
11 f o r _, node := range loca lNodes . Items {
12 cmd := command + node . Status . Addresses [0] . Address + " : " +

strconv . I toa (i n t (nodePort . Spec . Ports [0] . NodePort))
13 c := exec .Command(" sh " , "−c " , cmd)
14 output := &bytes . Buf f e r {}
15 er rput := &bytes . Buf f e r {}
16 c . Stdout = output
17 c . Stder r = errput
18 klog . I n f o f (" running command %s " , cmd)
19 e r r := c . Run()
20 i f e r r != n i l {
21 klog . Error (e r r)
22 klog . I n f o f (e r rput . S t r ing ())
23 t . Fa i l ()
24 }
25 a s s e r t . N i l (t , err , " e r r o r should be n i l ")
26 a s s e r t . Equal (t , " 200 " , output . S t r ing () , " s t a tu s code should

be 200")
27 }
28 }

6.1.3 Functional tests results

Three different CNIs: Calico, Flannel and Canal have been tested. The clusters
has been configured in order to test each combination of the CNIs cited above.
The values used for the PodCIDRs of the clusters has permit to test the following
configurations:

• no NAT configured between the two clusters;

• SNAT when one of the clusters is remapped by the other one;

• double NAT when both the clusters need to remap the remote one.

6.2 Performance and scalability tests
The aim of the tests presented in this section is show how the solution behaves
when it has to handle multiple peering session with remote clusters.

65

Experimental evaluation

Test environment

We could not run tests on real clusters because of the difficulties in the setup
of the required hardware. Even using Kind clusters, which is an easy way and
resource efficient to create Kubernetes ecosystems, it would require a huge amount
of hardware resources. Each node requires 2 CPU cores and 1 GB of RAM.
Kubebuilder offers envtest a package that helps write tests for the controllers by
setting up and starting an instance of etcd and the Kubernetes API server. The
envtest and the operators has been setted up in a machine with Intel® Core
i7-4770 CPU @ 3.40GHz × 8 processor and 32 GB of RAM.

6.2.1 Tests
We want to test how the operators behaves under heavy load. We simulate the
scenario where the network has to be configured for multiple peering clusters,
and the number of the clusters changes. We want to measure the time that each
component shown in figure 6.1 takes to perform his task:

• for the TunnelEndpointCreator we measure the time it spends processing
the remote NetworkConfig and the time to create the TunnelEndpoint resource
for a remote cluster;

• for the Tunnel-Operator we measure the time needed to install the GRE
tunnel for a remote cluster;

• for the Route-Operator we are interested to know how much time does it
take to configure the routing tables and the iptables rules.

We simulate five scenarios with number of remote clusters set to: 10, 50, 100,
150 and 200. The steps are the following:
1. set the number of remote clusters;

2. create local NetworkConfigs for each remote cluster;

3. create remote NetworkConfigs for each remote cluster;

4. each operator measures the time it takes to perform his task for each remote
cluster(figure 6.1;

5. for each operator the time measures are save to a file.
The network parameters for the remote clusters has been forged in such a way
that their PodCIDR has to be always remapped and the Double NAT has to
be configured by the Route-Operator. At the same time the Route-Operator
has been configured as it should run in a Gateway node, in order to simulate the
scenario that stresses it the most.

66

Experimental evaluation

TunnelEndpointCreator

Remote
Netconfig

TunnelEndpoint
Resource

Resolves possible IP
conflicts between the
two clusters and creates
the TunnelEndpoint
Resoure

Tunnel-Operator

TunnelEndpoint
Resource

Creates the GRE tunnel
between the two clusters
and sets the status of
the TEP resource to
"Ready"

Route-Operator

Configures the routes
and iptables rules in
order to reach pods
running on the remote
cluster

Network configured

Figure 6.1: Processing chain.

6.2.2 Performance test results
The first bar plot in figure 6.2 shows the time required by each operator to process
the network information coming from the remote clusters and to configure the
required resources.

67

Experimental evaluation

Checking the case with 200 clusters the TunnelEndpointCreator requires less
than 1 second to process all the network parameters for the remote clusters. The
average time to process a remote cluster is 3.7 milliseconds. The Tunnel-Operator
requires 0.73 seconds to create and configure 200 hundred GRE network interfaces
and to update the status of TunnelEndponts resources. Looking at the times
for the Route-Operator we see that is the slowest one. That is because it has to
create multiple IPtables chains and to populate them with rulespecs. Doing so,
it makes multiple calls to the IPtables kernel module, and the context switching
adds a considerable overhead. The average time required to configure the routes
and IPtables rules is 90.86 milliseconds.

10 50 100 150 200
Number of clusters

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ti
m

e
(s

ec
on

ds
)

0.02 0.18 0.4 0.6 0.93
0.03 0.19 0.35 0.61 0.73

1.23

4.88

10.16

16.68

18.17
Processing time for operator

tep-operator
tunnel-operator
route-operator

Figure 6.2: Processing time for each operator.

The figure 6.3 shows the total processing time required to configure the network
connection on a cluster that has peering sessions with 10, 50, 100, 150, 200
clusters. The average time to establish a network connection with a remote cluster
when receiving multiple peering requests is given by dividing the overall processing
time by the number of the clusters:

averageT ime = totalProcessingT ime/numberOfClusters

In the case of 200 hundred cluster it takes in average 99.15 milliseconds to configure
the network for each peering cluster.

The tests shows that our implementation scales in the number of peering clusters
that want to establish a peering session.

68

Experimental evaluation

10 50 100 150 200
Number of clusters

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ti
m

e
(s

ec
on

ds
)

1.28

5.25

10.91

17.89

19.83
Overall processing time

tep-operator
tunnel-operator
route-operator

Figure 6.3: Time required to establish network connections.

6.3 Test limitations
The tests described as “scalability tests” are limited. The operators have not
been containerized and deployed on a real Kubernetes cluster. The API server
used for the tests is only used by the tested operators and cannot be compared
to the Kubernetes’ API server which has to handle the API requests of the
control plane operators. The time required to exchange the network parameters
by the peering clusters have been not accounted by the tests described above. The
operators interacts with API server: the time to configure and establish a network
connection between two clusters could be severely impacted by the load on the
server. But we can say that these tests are a first achievement and show that the
business logic of the operators does scale.

69

Chapter 7

Conclusions and future
work

This work aims at proposing a network plug-in to extend the network connectivity
of Kubernetes cluster to other remote clusters. In the first implementation we
succeeded to:

• implement an operator which by extending the API exposed by Kubernetes
using Custom Resource Definition, allows to exchange network parameters
between two clusters;

• implement a solution to automatically detect and resolve network address
spaces conflicts between clusters.

• implement a control plane that configures the nodes and pods of a cluster to
communicate with remote resources running on a remote cluster.

In chapter 6 we evaluated the compatibility of our solution with the most used
CNIs. And also obtained some results showing how the operators performs when
processing multiple peering requests from remote clusters.

In the future work on the network plugin we aim to:

• implement the southbound driver described in section 4.2;

• improve the Route-Operator to make reachable only the resources deployed
by a local cluster on a remote cluster and not all the PodCIDR network
address space;

• support the CNI based on the eBPF technology such as Cilium;

70

Bibliography

[1] 8 facts about real-world container use. url: https://www.datadoghq.com/
container-report/ (cit. on p. 1).

[2] Joan Engebretson. Will Kubernetes Be the Operating System for 5G? AT&T
News Suggests Yes. Feb. 2019. url: https://www.telecompetitor.com/wil
l-kubernetes-be-the-operating-system-for-5g-att-news-suggests-
yes/ (cit. on p. 1).

[3] Minikube project git repository. url: https://github.com/kubernetes/
minikube (cit. on p. 1).

[4] Kubernetes Federation git repository. url: https://github.com/kubernete
s-sigs/kubefed (cit. on p. 2).

[5] Kubernetes official documentation. url: https://kubernetes.io/docs/
home/ (cit. on pp. 3, 10, 12–15, 20).

[6] Virtual-kubelet git repository. url: https://github.com/virtual-kubelet/
virtual-kubelet (cit. on pp. 3, 18, 19).

[7] Kubebuilder git repository. url: https://github.com/kubernetes-sigs/
kubebuilder (cit. on pp. 3, 19, 20).

[8] Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu, David Oppenheimer,
Eric Tune, and John Wilkes. «Large-scale cluster management at Google with
Borg». In: Proceedings of the European Conference on Computer Systems
(EuroSys). Bordeaux, France, 2015 (cit. on p. 3).

[9] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and John Wilkes.
«Omega: flexible, scalable schedulers for large compute clusters». In: SIGOPS
European Conference on Computer Systems (EuroSys). Prague, Czech Re-
public, 2013, pp. 351–364. url: http://eurosys2013.tudos.org/wp-
content/uploads/2013/paper/Schwarzkopf.pdf (cit. on p. 3).

[10] Ferenc Hámori. The History of Kubernetes on a Timeline. June 2018. url:
https://blog.risingstack.com/the-history-of-kubernetes/ (cit. on
p. 4).

71

https://www.datadoghq.com/container-report/
https://www.datadoghq.com/container-report/
https://www.telecompetitor.com/will-kubernetes-be-the-operating-system-for-5g-att-news-suggests-yes/
https://www.telecompetitor.com/will-kubernetes-be-the-operating-system-for-5g-att-news-suggests-yes/
https://www.telecompetitor.com/will-kubernetes-be-the-operating-system-for-5g-att-news-suggests-yes/
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes-sigs/kubefed
https://github.com/kubernetes-sigs/kubefed
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://github.com/virtual-kubelet/virtual-kubelet
https://github.com/virtual-kubelet/virtual-kubelet
https://github.com/kubernetes-sigs/kubebuilder
https://github.com/kubernetes-sigs/kubebuilder
http://eurosys2013.tudos.org/wp-content/uploads/2013/paper/Schwarzkopf.pdf
http://eurosys2013.tudos.org/wp-content/uploads/2013/paper/Schwarzkopf.pdf
https://blog.risingstack.com/the-history-of-kubernetes/

BIBLIOGRAPHY

[11] Steven J. Vaughan-Nichols. The five reasons Kubernetes won the container
orchestration wars. Jan. 2019. url: https://blogs.dxc.technology/
2019 / 01 / 28 / the - five - reasons - kubernetes - won - the - container -
orchestration-wars/ (cit. on p. 4).

[12] Kalyan Ramanathan. 5 business reasons why every CIO should consider
Kubernetes. Oct. 2019. url: https://www.sumologic.com/blog/why-use-
kubernetes/ (cit. on p. 4).

[13] Eric Carter. Sysdig 2019 Container Usage Report: New Kubernetes and se-
curity insights. Oct. 2019. url: https://sysdig.com/blog/sysdig-2019-
container-usage-report/ (cit. on p. 6).

[14] k8s Network Model. url: https://kubernetes.io/docs/concepts/cl
uster-administration/networking/#the-kubernetes-network-model
(cit. on p. 15).

[15] k8s CNI. url: https://kubernetes.io/docs/concepts/extend-kuberne
tes/compute-storage-net/network-plugins/ (cit. on p. 18).

[16] k8s Services. url: https://sookocheff.com/post/kubernetes/understa
nding-kubernetes-networking-model/ (cit. on p. 18).

[17] Kubernetes Operator pattern. url: https://kubernetes.io/docs/concept
s/extend-kubernetes/operator/ (cit. on p. 20).

[18] submariner architecture. url: https://submariner.io/architecture/
(cit. on pp. 21–23).

[19] cilium github page. url: https://github.com/cilium/cilium (cit. on
pp. 23, 24).

[20] cilimublogpost. url: https://cilium.io/blog/2019/03/12/clustermesh/
(cit. on pp. 25, 26).

72

https://blogs.dxc.technology/2019/01/28/the-five-reasons-kubernetes-won-the-container-orchestration-wars/
https://blogs.dxc.technology/2019/01/28/the-five-reasons-kubernetes-won-the-container-orchestration-wars/
https://blogs.dxc.technology/2019/01/28/the-five-reasons-kubernetes-won-the-container-orchestration-wars/
https://www.sumologic.com/blog/why-use-kubernetes/
https://www.sumologic.com/blog/why-use-kubernetes/
https://sysdig.com/blog/sysdig-2019-container-usage-report/
https://sysdig.com/blog/sysdig-2019-container-usage-report/
https://kubernetes.io/docs/concepts/cluster-administration/networking/#the-kubernetes-network-model
https://kubernetes.io/docs/concepts/cluster-administration/networking/#the-kubernetes-network-model
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/network-plugins/
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/network-plugins/
https://sookocheff.com/post/kubernetes/understanding-kubernetes-networking-model/
https://sookocheff.com/post/kubernetes/understanding-kubernetes-networking-model/
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://submariner.io/architecture/
https://github.com/cilium/cilium
https://cilium.io/blog/2019/03/12/clustermesh/

	Introduction
	Goal of the thesis

	Kubernetes
	Kubernetes: a bit of history
	Applications deployment evolution
	Container orchestrators
	Kubernetes architecture
	Control plane components
	Node components

	Kubernetes objects
	Label & Selector
	Namespace
	Pod
	ReplicaSet
	Deployment
	DaemonSet
	Service

	Kubernetes network architecture
	Container communication within same pod
	Pod communication within the same node
	Pod communication on different nodes
	CNI (Container Network Interface)
	Pod to service networking

	Virtual-Kubelet
	Kubebuilder

	Multi-Cluster networking: state of the art
	Submariner
	Broker
	Gateway engine
	Route agent

	Cilium cluster mesh
	Control plane
	Pod IP routing

	Multi-Cluster networking: design
	The problem
	Compatibility with running clusters

	Architecture

	Multi-Cluster networking: implementation
	Kubernetes programming interface
	CRDReplicator
	Labels and Selectors
	Watching Resources
	Watching Local Resources

	Watching Remote Resources
	Network Parameters Exchange

	TunnelEndpointCreator
	TunnelEndpoint API
	IPAM
	Network API Management

	Tunnel-Operator
	GRE Tunneling Protocol

	Route-Operator
	VxLAN overlay network
	Routes
	IPtables rules

	Experimental evaluation
	Functional Tests
	Test environment
	Tests
	Functional tests results

	Performance and scalability tests
	Tests
	Performance test results

	Test limitations

	Conclusions and future work
	Bibliography

