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Chapter 1

Introduction

At the beginning of Cloud the concept of “monolithic” application was
the predominant development pattern for web services; applications were
developed and distributed as a single entity, self-contained, and indepen-
dent from other computing applications.

Over the last decade we have noticed a deep change in the develop-
ment of web based application; developers now can benefit of the massive
computational power of data-centers and cloud environment by leverag-
ing on microservices and containerization.

Now if we consider the modern world of microservices we deal with
two kind of users:

• end-users, which expect applications to be available 24/7

• developers, which deploy new versions of their applications several
times a day in order to make their service as reliable as possible

In this scenario containerization helps to package software, enabling ap-
plications to run unmodified in a wide range of Linux distributions and to
be released and updated in an easy and fast way without downtime. Ku-
bernetes, as a microservice orchestrator, helps developers to make sure
those containerized applications run in cloud environment, providing all
the resources and tools they need to work properly.

With the advent of 5G and Edge Computing a lot of solutions are
gaining more and more popularity every day by extending Kubernetes
behaviour also to the edge of the network. In this “new” concept of
datacenter a lot of new challenges need to be addressed in order to
provide the best possible performance for the end user; this happens
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1.1 – Goal of the thesis

because there are a lot of additional constraints to take in account.

1.1 Goal of the thesis

This new paradigm of containerization and microservices while reducing
the effort for developers, it increased the complexity for Cloud providers
and in particular for Cloud orchestration platforms.

Dealing with microservice life-cycle is very complex, this is why over
the last decade a big effort has been put in research for solutions aiming
to reduce the managing complexity of this development framework.

Within the context of the Computer Networks Group at Politecnico di
Torino and the Liqo project [9] a big effort has been put in the develop-
ment of a custom Kubernetes scheduler, capable of better performance
in certain scenarios (compared to Kubernetes default one). The work
of this thesis is meant to operate close to that custom scheduler by
providing it a set of concise information, which describes the expected
behaviour of a given microservice (this concept will be hereafter referred
as Profiling). In this context profiling means infer the requirement and
the communication pattern of a given microservice based on his previous
executions in order to take the best scheduling decisions. The final goal
of the profiling system is to improve as much as possible the Quality of
Service perceived by the end user.

This thesis is structured as follows:

• CH1-Introduction. This chapter provides a brief introduction
on both the current scenario for microservice orchestration and the
reasons behind the decision to develop this thesis

• CH2-Kubernetes. This chapter is an introduction to Kubernetes
as a container orchestrator, focusing mainly on the features that will
be exploited in the work of this thesis, providing a general back-
ground for the concepts that will be presented afterwards

• CH3-Profiling in cloud environment. This chapter describes
what is the state of the art for what concerns the profiling of mi-
croservices. It briefly introduce the most relevant papers, which
already faced this research topic. This thesis is meant to be a part
of the Liqo project, so the final section of this chapter will introduce
it
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• CH4-Job profiling design. This chapter describes the design
choices behind the profiler developed in this thesis, analyzing first
microservices common behaviour in production datacenter, moving
then to the actual logical design of the system

• CH5-Job profiling implementation. This chapter starts from
the logical implementation described in the previous chapter and
provides a more practical description of the actual implementation
of the algorithm

• CH6-Experimental evaluation. This chapter evaluates the per-
formance of the profiling algorithm described previously in a real
scenario

• CH7-Conclusion and future work. This final chapter starts
from the results obtained in the previous chapter and evaluates
them, providing a critical analysis of the algorithm and some possi-
ble improvements

8



Chapter 2

Kubernetes

In this chapter we provide a brief introduction of containerization and
Kubernetes as the leading solution for container orchestration. In par-
ticular we will focus our attention both on:

• Kubernetes architecture, describing the main components of the
control plane

• Kubernetes resources, explaining the abstractions that the orches-
trator can provide to developers

The chapter ends with an introduction of the main Service Mesh so-
lutions that will be exploited for the purpose of this thesis.

Kubernetes is a huge and complex framework, so this chapter is not
meant to be a complete description of all its functionalities, but we
will focus mainly on the features that we consider the most relevant to
understand properly the work of the thesis. For further details please
refer to the official documentation [8].

2.1 Introduction

The story of Kubernetes began at Google: like no other, the company
needed a huge infrastructure to make its search engine and the associated
advertising available to all people. The enormous growth was a challenge
for which various ideas arose. Virtualization of hardware, site reliability
engineering and container technologies represent three essential pillars,
which are vital for the subsequent solution.
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Kubernetes

Figure 2.1. Kubernetes adoption (2019)

Google at the end relied on containers and their advantages in many
ways. In order to manage (or orchestrate) containers sensibly, the em-
ployees developed the “Borg” project. Borg was an undisputed compet-
itive advantage of Google because it utilized the machines much better
than purely virtualized operations. Google strengthened its market po-
sition by being able to provide huge infrastructure landscapes at a much
lower cost.

The big hit for the general public was the idea of making Borg avail-
able as an open-source solution. Kubernetes (Greek for helmsman; short:
K8 or K8s) was born.

Containers are a good way to bundle and run applications. In a
production environment, there is the need to manage the containers that
run the applications and ensure that there is no downtime. For example,
if a container goes down, another container needs to start, replacing it.

That is how Kubernetes comes to the rescue, providing a framework to
run distributed systems resiliently. It takes care of scaling and possible
fail-over for applications, provides deployment patterns, and more.

More in detail the main features that made Kubernetes the leading
solution for container orchestrator are:

• Service discovery and load balancing; Kubernetes can expose
a container using the DNS name or using their own IP address. If
traffic to a container is high, Kubernetes is able to load balance and
distribute the network traffic so that the deployment is stable.

10



2.2 – From Virtualization to Containerization

• Storage orchestration; Kubernetes allows developers to automat-
ically mount a storage system of many different kind, such as local
storages, public cloud providers, and more.

• Automated rollouts and rollbacks; Kubernetes allows to de-
scribe the desired state for deployed containers, and the framework
takes care of changing the actual state to the desired state at a
controlled rate.

• Automatic bin packing; it is possible to provide Kubernetes with
a cluster of nodes that it can use to run containerized tasks. It is
also possible to specify Kubernetes how much CPU and memory
(RAM) each container needs. Kubernetes can fit containers onto
nodes to make the best use of their resources.

• Self-healing; Kubernetes restarts containers that fail, replaces con-
tainers, kills containers that do not respond to user-defined health
check, and does not advertise them to clients until they are ready
to serve.

• Secret and configuration management; Kubernetes lets store
and manage sensitive information, such as passwords, OAuth to-
kens, and SSH keys. It is possible to deploy and update secrets and
application configuration without rebuilding container images, and
without exposing secrets.

2.2 From Virtualization to Containeriza-
tion

Kubernetes is a portable, extensible, open-source platform for managing
containerized workloads and services, that facilitates both declarative
configuration and automation. It has a large, rapidly growing ecosystem.
Kubernetes services, support, and tools are widely available.

Containerization is just the last step for servers resource management
solutions. In the early days of what we now call Cloud, the main idea
for application deployment was the “One application per server” rule,
meaning that each server was meant to be used by a single application;
this approach had indisputably some advantages but a the same time it
showed a lot of disadvantages.
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Kubernetes

Figure 2.2. Application hosting technologies

This is why, over the years, many solutions were born and many
other disappeared, trying to solve this problem of managing datacenters
resources efficiently. In the following sections we will discuss briefly
about the main families of solutions that over the years were introduced.

2.2.1 Pre-Virtualization Era

Early on, organizations ran applications on physical servers. There was
no way to define resource boundaries for applications in a physical server,
and this caused resource allocation issues. For example, if multiple ap-
plications run on a physical server, there can be instances where one
application would take up most of the resources, and as a result, the
other applications would under perform. A solution for this would be to
run each application on a different physical server. But this did not scale
as resources were underutilized, and it was expensive for organizations
to maintain many physical servers.

2.2.2 Hypervisor-Based Era

As a solution, virtualization was introduced. It allows to run multiple
Virtual Machines (VMs) on a single physical server’s CPU. Virtualiza-
tion allows applications to be isolated between VMs and provides a level
of security as the information of one application cannot be freely accessed
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2.3 – Kubernetes Architecture

by another application.
Virtualization allows better utilization of resources in a physical server

and allows better scalability because an application can be added or up-
dated easily, reduces hardware costs, and much more. With virtualiza-
tion it is possible to present a set of physical resources as a cluster of
disposable virtual machines.

Each VM is a full machine running all the components, including its
own operating system, on top of the virtualized hardware.

2.2.3 Container-Based Era

Containers are similar to VMs, but they have relaxed isolation properties
to share the Operating System (OS) among the applications; therefore,
containers are considered lightweight. Similar to a VM, a container has
its own filesystem, CPU, memory, process space, and more. As they are
decoupled from the underlying infrastructure, they are portable across
clouds and OS distributions.

2.3 Kubernetes Architecture

A Kubernetes cluster consists of a set of worker machines, called nodes,
that run containerized applications. Every cluster has at least one worker
node.

The worker node(s) host the Pods that are the components of the ap-
plication workload. The control plane manages the worker nodes and the
Pods in the cluster. In production environments, the control plane usu-
ally runs across multiple computers and a cluster usually runs multiple
nodes, providing fault-tolerance and high availability.

This section outlines the main components of Kubernetes control
plane.

The control plane’s components make global decisions about the clus-
ter (for example, scheduling), as well as detecting and responding to
cluster events (for example, starting up a new pod when a deployment’s
replicas field is unsatisfied).

Control plane components can be run on any machine in the cluster.
However, for simplicity, set up scripts typically start all control plane
components on the same machine, and do not run user containers on
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Kubernetes

Figure 2.3. Kubernetes control plane

this machine.

2.3.1 Kube API-Server

The API server is a component of the Kubernetes control plane that
exposes the Kubernetes API. The Kubernetes API is the front end of
the Kubernetes control plane, handling internal and external requests.
The API server determines if a request is valid and, if it is, processes it.
It is possible to access the API through REST calls, through the kubectl
command-line interface (that internally translate the request into REST
calls).

The main implementation of a Kubernetes API server is kube-apiserver.
kube-apiserver is designed to scale horizontally—that is, it scales by
deploying more instances. It is possible to run several instances of
kube-apiserver and balance traffic between those instances.

2.3.2 Kube-scheduler

Control plane component that watches for newly created Pods with no
assigned node, and selects a node for them to run on.
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2.3 – Kubernetes Architecture

Factors taken into account for scheduling decisions include: indi-
vidual and collective resource requirements, hardware/software/policy
constraints, affinity and anti-affinity specifications, data locality, inter-
workload interference, and deadlines.

2.3.3 Kube-controller-manager

Controllers take care of actually running the cluster, and the Kubernetes
controller-manager contains several controller functions in one. One
controller consults the scheduler and makes sure the correct number of
pods is running. If a pod goes down, another controller notices and
responds. A controller connects services to pods, so requests go to the
right endpoints.

These controllers include:

• Node controller: Responsible for noticing and responding when nodes
go down.

• Replication controller: Responsible for maintaining the correct num-
ber of pods for every replication controller object in the system.

• Endpoints controller: Populates the Endpoints object (that is, joins
Services and Pods).

• Service Account and Token controllers: Create default accounts and
API access tokens for new namespaces.

2.3.4 Kubelet

An agent that runs on each node in the cluster. It is an application
that communicates with Kubernetes control plane. The kubelet makes
sure containers are running in a pod and when the control plane needs
something to happen in a node, the kubelet executes the action.

The kubelet takes a set of PodSpecs that are provided through vari-
ous mechanisms and ensures that the containers described in those Pod-
Specs are running and healthy. The kubelet does not manage containers
that were not created by Kubernetes.
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2.3.5 Kube-proxy

kube-proxy is a network proxy that runs on each node of the clus-
ter, implementing part of the Kubernetes Service concept. kube-proxy
maintains network rules on nodes, allowing network communication to
Pods from network sessions inside or outside of the cluster.

kube-proxy uses the operating system packet filtering layer if there
is one and it is available, otherwise forwards the traffic itself.

2.3.6 Container Runtime

The container runtime is the software that is responsible for running con-
tainers. Kubernetes supports several container runtimes: Docker, con-
tainerd, CRI-O, and any implementation of the Kubernetes CRI (Con-
tainer Runtime Interface).

2.4 Kubernetes Resources

Kubernetes objects are persistent entities in the Kubernetes system. Ku-
bernetes uses these entities to represent the state of the cluster; specifi-
cally, they can describe:

• what containerized applications are running (and on which nodes)

• the resources available to those applications

• the policies around how those applications behave, such as restart
policies, upgrades, and fault-tolerance

A Kubernetes object is a “record of intent”, once an object is created,
the Kubernetes system will constantly work to ensure that object exists.
By creating an object, we’re effectively telling the Kubernetes system
what we want our cluster’s workload to look like; this is the cluster’s
desired state.

Almost every Kubernetes object includes two nested object fields that
govern the object’s configuration: the object spec and the object status.
For objects that have a spec, it is mandatory to set this at creation time,
providing a description of the desired characteristics the resource should
have: its desired state.
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2.4 – Kubernetes Resources

The status describes the current state of the object, supplied and
updated by the Kubernetes system and its components. The Kuber-
netes control plane continually and actively manages every object’s ac-
tual state to match the desired supplied state.

For example: in Kubernetes, a Deployment is an object that can rep-
resent an application running on the cluster. When a Deployment is
created, it is possible to set the Deployment spec to specify that three
replicas of the application to be running are required. The Kubernetes
system reads the Deployment spec and starts three instances of the de-
sired application–updating the status to match the spec. If any of those
instances should fail (a status change), the Kubernetes system responds
to the difference between spec and status by making a correction–in this
case, starting a replacement instance.

In the following sections we will present the most relevant Kubernetes
objects.

2.4.1 Namespace

Namespaces are intended for use in environments with many users spread
across multiple teams, or projects. Namespaces provide a scope for
names, because resources names need to be unique within a namespace,
but not across namespaces. Namespaces cannot be nested inside one
another and each Kubernetes resource can only be in one namespace.

Namespaces are a way to divide cluster resources between multiple
users (via resource quota).

2.4.2 Pod

Pods are the smallest deployable units of computing that is possible to
create and manage in Kubernetes.

A Pod (as in a pod of whales or pea pod) is a group of one or more
containers, with shared storage/network resources, and a specification
for how to run the containers. A Pod’s contents are always co-located and
co-scheduled, and run in a shared context. A Pod models an application-
specific “logical host”: it contains one or more application containers,
which are relatively tightly coupled. In non-cloud contexts, applications
executed on the same physical or virtual machine are analogous to cloud
applications executed on the same logical host.
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Kubernetes

Figure 2.4. Kubernetes Pod

2.4.3 Replicaset

A ReplicaSet’s purpose is to maintain a stable set of replica Pods running
at any given time. As such, it is often used to guarantee the availability
of a specified number of identical Pods.

A ReplicaSet is defined with fields, including a selector that specifies
how to identify Pods it can acquire, a number of replicas indicating how
many Pods it should be maintaining, and a pod template specifying the
data of new Pods it should create to meet the number of replicas criteria.
A ReplicaSet then fulfills its purpose by creating and deleting Pods as
needed to reach the desired number. When a ReplicaSet needs to create
new Pods, it uses its Pod template.

A ReplicaSet is linked to its Pods via the Pods’ metadata.ownerReferences
field, which specifies what resource the current object is owned by. All
Pods acquired by a ReplicaSet have their owning ReplicaSet’s identifying
information within their ownerReferences field. It is through this link
that the ReplicaSet knows of the state of the Pods it is maintaining and
plans accordingly.

2.4.4 Deployment

A Kubernetes deployment is a resource object in Kubernetes that pro-
vides declarative updates to applications. A deployment allows to de-
scribe an application’s life cycle, such as which images to use for the app,
the number of pods there should be, and the way in which they should

18



2.4 – Kubernetes Resources

be updated.
The process of manually updating containerized applications can be

time consuming and tedious. Upgrading a service to the next version
requires starting the new version of the pod, stopping the old version of
a pod, waiting and verifying that the new version has launched success-
fully, and sometimes rolling it all back to a previous version in the case
of failure. Performing these steps manually can lead to human errors,
and scripting properly can require a significant amount of effort, both of
which can turn the release process into a bottleneck.

A Kubernetes deployment makes this process automated and repeat-
able. Deployments are entirely managed by the Kubernetes backend,
and the whole update process is performed on the server side without
client interaction. A deployment ensures the desired number of pods are
running and available at all times. The update process is also wholly
recorded, and versioned with options to pause, continue, and roll back
to previous versions.

2.4.5 Service

An abstract way to expose an application running on a set of Pods as
a network service. With Kubernetes there is no need to modify the ap-
plication to use an unfamiliar service discovery mechanism. Kubernetes
gives Pods their own IP addresses and a single DNS name for a set of
Pods, and can load-balance across them.

Kubernetes Pods are mortal, they are born and when they die, they
are not resurrected. If a Deployment is used to run an app, it can create
and destroy Pods dynamically.

Each Pod gets its own IP address, however in a Deployment, the set
of Pods running in one moment in time could be different from the set
of Pods running that application a moment later.

This leads to a problem: if some set of Pods (call them “backends”)
provides functionality to other Pods (call them “frontends”) inside the
cluster, how do the frontends find out and keep track of which IP address
to connect to, so that the frontend can use the backend part of the
workload?

Enter Services.
There are four types of Kubernetes services, each one designed for

different purposes:
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Figure 2.5. Kubernetes service

• ClusterIP. This default type exposes the service on a cluster-internal
IP. It is possible to reach the service only from within the cluster.

• NodePort. This type of service exposes the service on each node’s IP
at a static port. A ClusterIP service is created automatically, and
the NodePort service will route to it. From outside the cluster, it is
possible to contact the NodePort service by using “<NodeIP>:<NodePort>”.

• LoadBalancer. This service type exposes the service externally using
the load balancer of the cloud provider. The external load balancer
routes to NodePort and ClusterIP services, which are created auto-
matically.

• ExternalName. This type maps the service to the contents of the
externalName field (e.g., foo.bar.example.com). It does this by re-
turning a value for the CNAME record.

2.5 Service Mesh

A service mesh is a configurable, low-latency infrastructure layer de-
signed to handle a high volume of network-based interprocess communi-
cation among application infrastructure services using application pro-
gramming interfaces (APIs). A service mesh ensures that communica-
tion among containerized and often ephemeral application infrastructure
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2.5 – Service Mesh

Figure 2.6. Service mesh generic topology

services is fast, reliable, and secure. The mesh provides critical capabili-
ties including service discovery, load balancing, encryption, observability,
traceability, authentication and authorization, and support for the cir-
cuit breaker pattern.

The service mesh is usually implemented by providing a proxy in-
stance, called a sidecar, for each service instance. Sidecars handle inter-
service communications, monitoring, and security-related concerns – in-
deed, anything that can be abstracted away from the individual services.
This way, developers can handle development, support, and maintenance
for the application code in the services; operations teams can maintain
the service mesh and run the app.

Istio [6], backed by Google, IBM, and Lyft, is currently the best-known
service mesh architecture, but is not the only option, and other service
mesh implementations are also in development. The sidecar proxy pat-
tern is most popular, as illustrated by projects from Buoyant, HashiCorp,
Solo.io, and others. Alternative architectures exist as well: Netflix’s tech-
nology suite is one such approach where service mesh functionality is
provided by application libraries (Ribbon, Hysterix, Eureka, Archaius),
and platforms such as Azure Service Fabric embed service mesh-like func-
tionality into the application framework.

Service mesh comes with its own terminology for component services
and functions:
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• Container orchestration framework. As more and more con-
tainers are added to an application’s infrastructure, a separate tool
for monitoring and managing the set of containers – a container
orchestration framework – becomes essential. Kubernetes seems to
have cornered this market, with even its main competitors, Docker
Swarm and Mesosphere DC/OS, offering integration with Kuber-
netes as an alternative.

• Sidecar proxy. A sidecar proxy runs alongside a single instance
or pod. The purpose of the sidecar proxy is to route, or proxy,
traffic to and from the container it runs alongside. The sidecar
communicates with other sidecar proxies and is managed by the
orchestration framework. Many service mesh implementations use
a sidecar proxy to intercept and manage all ingress and egress traffic
to the instance or pod.

• Load balancing. Most orchestration frameworks already provide
Layer 4 (transport layer) load balancing. A service mesh imple-
ments more sophisticated Layer 7 (application layer) load balanc-
ing, with richer algorithms and more powerful traffic management.
Load-balancing parameters can be modified via API, making it pos-
sible to orchestrate blue-green or canary deployments.

• Support for the circuit breaker pattern. The service mesh
can support the circuit breaker pattern, which isolates unhealthy
instances, then gradually brings them back into the healthy instance
pool if warranted.
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Chapter 3

Profiling in Cloud
Environments: state of
the art

With the advent of containerization and Cloud orchestration platforms
the focus on the profiling problem has increasingly grown over the years.
The microservices approach provides a lot of advantages for developers
such as:

• ease of code build and maintenance

• flexibility and scalability in using technologies

• fault isolation

• faster deployment process

At the mean time, while reducing the effort for developers, it increased
the complexity for Cloud providers and in particular for Cloud orchestra-
tion platforms. This is why over the last decade a big effort has been put
in research for solutions aiming to reduce the complexity of this develop-
ment framework (profiling is indeed one of these previously mentioned
research topic).

In this chapter we will first introduce the concept of profiling, mov-
ing then to explore the most important papers that already faced this
research topic.
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Profiling in Cloud Environments: state of the art

3.1 The Concept of Profiling

In software engineering, profiling (“Program Profiling”, “Software Profil-
ing”) is a form of dynamic program analysis that measure, for example:

• the space (memory) or time complexity of a program

• the usage of particular instructions

• the frequency and duration of function calls

Most commonly, profiling information serves to aid program optimiza-
tion.

Program analysis tools are extremely important for understanding
program behaviour. Computer architects need such tool to evaluate how
well program will perform on new architecture, but also the same infor-
mation can be used by some automatic tool to take the best decisions
on the execution of the same application.

Profilers, which are also programs themselves, analyze target pro-
grams by collecting information on their execution. Based on their data
granularity, on how profilers collect information they are classified in:

• event based, the execution of the profiling algorithm is triggered
by some external event (i.e. system call, thread creation, etc)

• statistical, a sampling profiler probes the target program’s at reg-
ular intervals using operating system interrupts; are typically less
numerically accurate and specific, but allow the target program to
run at near full speed

Profilers not only differ by their data granularity, but also by their
degree of interaction with the code of the application they’re collecting
information from.

In some case the profiling process may require code instrumenta-
tion (see Figure 3.1), this technique effectively adds instructions to the
target program to collect the required information; to implement such
a behaviour it requires the use of specific libraries. Note that instru-
menting a program can cause performance changes, and may in some
cases lead to inaccurate results and/or heisenbugs (software bug that
seems to disappear or alter its behavior when one attempts to study it);
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Figure 3.1. Transparent profiling and instrumentation

the effect will depend on what information is being collected and on the
level of timing details reported. For example, adding code to count every
procedure/routine call will probably have less effect than counting how
many times each statement is obeyed. A few computers have special
hardware to collect information; in this case the impact on the program
is minimal.

Code instrumentation can definitely provide a wide range of informa-
tion but at the mean time it requires the developer to become confident
with these libraries and to use them in the proper way; this is probably
the main drawback of these kind of solutions.

For this reason over the years many other solutions has been developed
to overcome this limitation: the idea is to create profiling environment
able to work seamlessly with any kind of application and most impor-
tantly without requiring any change in the code. These kind of solutions
may seem better from the logical point of view, but actually they have
disadvantages too: the most relevant one is probably the fact that the
amount of information these solutions can extract from the execution of
an application is limited, so in this case the challenge is to being able to
generate some reliable profiling out of the limited information available.

3.2 Autopilot

In many public and private Cloud systems, users need to specify a limit
for the amount of resources (CPU and Memory) to provision for their
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workload. A job that exceed its limits might be throttled or killed,
resulting in delaying or dropping end-user requests, so human operators
naturally err on the side of caution and request a larger limit than the
job needs.

This behaviour from the developer point of view helps to improve the
reliability of the application, being sure that the application will work
in all possible scenarios, also the ones which have not been considered.
But at the same time this conservative approach, at a scale, results in
massive aggregate resource wastage for cloud providers.

Further studies from Google have shown that for these manually-
managed jobs the slack - the difference between the limit and the actual
resource usage - is about 46%.

This is why at Google - as a public Cloud provider - they had the
need to develop an automatic profiling system able to reduce this slack
while minimizing the risk that a task is killed with an out-of-memory
(OOM) error or its performance degraded because of CPU throttling.

Figure 3.2. Autopilot dataflow diagram

For this reason they developed Autopilot [7], which is a combination
of two different components:

• a recommendation component, in charge of computing the profil-
ing for each microservice

• an actuator, which actually takes these recommendations and re-
flect them in amount of resource assigned to the microservice

This technique of constantly compute and change resources associ-
ated to microservice execution is not new and goes under the name of
Vertical Scaling.

26



3.3 – Network Profiling

In particular for the recommendation component they developed two
different algorithms providing the same output. They tested both of
them with their datacenter workloads in order to understand their be-
haviour in a wide range of scenarios:

• the first algorithm computes the prediction by weighting the histor-
ical data of resource usage, extracting then different statistics out
of them to compute the profiling

• with the second algorithm they followed a slightly different approach
by implementing a profiling system based on Machine Learning tech-
niques able to optimize some custom defined cost functions

Both the algorithms perform similarly and they can reduce the dif-
ference between the limit and the actual resource usage of microservices
while minimizing the risk that a task is killed with an out-of-memory
(OOM) error or its performance degraded because of CPU throttling.

3.3 Network Profiling

Over the past decade, cloud computing adoption has seen explosive
growth, at both consumer and enterprise levels. Legacy software providers
such as Microsoft, Oracle and Adobe have all made huge, concerted ef-
forts to encourage users of their on-premises software offerings to upgrade
to their cloud equivalents, which are usually offered on a subscription
pay-as-you-go basis.

Over the course of the last ten years or so, cloud computing has
evolved from being something that service providers told companies they
should be adopting, to the very lifeblood that runs through most modern
enterprises [3]. As a consequence of this explosive growth the scalability
of modern data centers has become a practical concern and has attracted
significant attention in recent years.

The predominant architectural pattern for datacenter design is the so
called three-tier-architecture (see Figure 3.3): while providing some
interesting features like scalability and extensibility, it can experience
performance issues in the core of the network.

In this scenario the placement of VMs become crucial. Let’s suppose,
as a Cloud provider, we are asked to create two VMs, which need to
communicate a lot one another: if we place them in two server in the
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Figure 3.3. Three tier architecture

same rack we will experience that the traffic between them will never
cross the backbone; on the contrary if we place them “far apart” we will
experience that their traffic will always cross the backbone, reducing the
available bandwidth of the connection.

For this reason is crucial to create a representation of the network
communications between VMs (the same concept can be applied to con-
tainers) [12]. The paper proposes a simple approach to solve this problem
by defining a suitable traffic matrix to represent the traffic exchanged
between each pair of virtual machines where the entries are the sum of
all the traffic, the uplink plus the downlink of each virtual machine.

3.4 Vertical Pod Autoscaler

The idea of using Kubernetes is to pack as many containers as possible in
the least infrastructure. Developers and system administrators struggled
to find the optimum value of resource requests and limits; tuning them
required a fair amount of monitoring and understanding the utilisation
of both, through a benchmark testing or through general observation of
production utilisation and traffic.

With the growth of containers in a microservices architecture, it be-
came more and more challenging to understand the resource utilisation
patterns as system admins focused more on stability and ended up us-
ing a resource request far above what was actually needed. Kubernetes
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came up with a solution to tackle this problem with the Vertical Pod
Autoscaler.

The Vertical Pod Autoscaler uses three main components to make the
autoscaling work. Here’s the algorithm:

• VPA admission hook. Every pod submitted to the cluster goes
through this webhook automatically, which checks whether a Verti-
calPodAutoscaler object is referencing this pod or one of its parents
(a ReplicaSet, a Deployment, etc.)

• VPA recommender. Connects to the metrics-server application
in the cluster, fetches historical data (CPU and memory) for each
VPA-enabled pod and generates recommendations for scaling up or
down the requests and limits of these pods.

• VPA updater. Runs every 1 minute. If a pod is not running in
the calculated recommendation range, it evicts the currently run-
ning version of this pod, so it can restart and go through the VPA
admission webhook, which will change the CPU and memory set-
tings for it, before it can start.

Vertical Pod Autoscaler comes with a lot of nice feature for developers
but also with quite a long list of limitations:

• the development is still in beta stage. This means that the use of
the Vertical Pod Autoscaler is strongly discouraged in production
datacenters

• it requires at least two healthy pod replicas to work. This kind
of defeats its purpose in the first place and is the reason why it
isn’t used extensively. As a VPA destroys a pod and recreates it to
vertically autoscale it, it requires at least two healthy pod replicas
to ensure there’s no service outage.

3.5 Liqo

Liqo is an open source project started at Politecnico of Turin that al-
lows Kubernetes to seamlessly and securely share resources and services,
enabling to run tasks on any other cluster available nearby.
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Thanks to the support for K3s, also single machines can join a Liqo
domain, creating dynamic, opportunistic data centers that include also
commodity desktop computers and laptops.

Differently from existing federation mechanisms, Liqo leverages the
same highly successful “peering” model of the Internet, without any
central point of control, nor any “master” cluster. New peering relation-
ships can be established dynamically, whenever needed, even automat-
ically. In this respect, Liqo supports automatic discovery of local and
remote clusters, to further simplify the peering process.

Sharing and peering operations are strictly enforced by policies: each
cluster retains full control of its infrastructure, deciding what to share,
how much, with whom. Each cluster can advertise the resources allo-
cated for sharing to other peers, which may accept that offer. In that
case, a contract is signed and both parties are requested to fulfill their
obligations. Each cluster can control exactly the amount of shared re-
sources, which can be differentiated for each peer.

Security is very important in Liqo. In this respect, Liqo leverages all
the features available in Kubernetes, such as Role-Based Access Control
(RBAC), Pod Security Policies (PSP), hardened Container Runtimes
Interfaces (CRI) implementations.

Figure 3.4. Liqo architecture

Kubernetes users will experience the usual environment also after
starting Liqo: all administrative tasks are the same, performed in the
usual way and with the well-known tools (e.g. kubectl). The only dif-
ference is that the cluster can become more powerful, as resources and
services can be borrowed from the other clusters.

With Liqo, it is possible to leverage an unlimited amount of resources
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by simply peering with other clusters. Similarly, resource providers can
leverage their infrastructure by selling their resources to many different
peers, in a highly dynamic way.
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Chapter 4

Job Profiling Design

This thesis aims to design a profiling algorithm, able to work in combina-
tion with the scheduler in order to improve scheduling decision not only
on standard datacenter scenario, bu also in the Liqo resource sharing
scenario.

The designing phase of the profiling algorithm cannot start from
scratch: we first need to understand how microservices usually behaves
in production datacenters; in the fist section of this chapter we will show
two reports analyzing microservices common behaviour.

After this introduction part we will evaluate the design choices for the
profiling algorithm.

4.1 Introduction

Before starting to develop any kind of profiling algorithm it is interest-
ing to understand what are the kind of microservices usually hosted by
cloud infrastructure and also what are their patterns for what concerns
resource usage.

Many papers and reports already analyzed this concept [1] [5] [2]. In
this wide scenario Google is probably one of the most interesting source
of information; periodically they release reports about the behaviour of
their datacenters and the workload they deal with, enabling researchers
to explore how scheduling works in large-scale production compute clus-
ters.

According to their last report “the compute and memory consumption
of jobs are extremely variable, with squared coefficients of variation over
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23000. Both compute and memory consumption follow power-law Pareto
distributions with very heavy tails: the top 1% of jobs (“resource hogs”)
consume over 99% of all resources, which has major implications on
scheduler design: care is needed to insulate the bottom 99% of jobs (the
“mice”) from the hogs to keep queueing times under control” [10].

It worth noticing that there is not only a difference in resource con-
sumption between different jobs but there are also differences considering
the same job: the resource consumption pattern may vary a lot during
the time.

When we deal with microservices having a knowledge of what will be
their resource consumption in most of the case is not enough to have a
complete overview of what will be the general behaviour of the system;
in fact if we split an application into microservices, we replace function
calls with network calls. So, if we want to improve our profiling choices
(and the scheduling decision accordingly), we must also analyze what is
the communication pattern between microservices.

In this case the paper [12] helps us to have a better understanding
of what is the common scenario in production datacenters (the paper
focuses on VMs instead of containers but the results are still very inter-
esting).

“While 80% of VMs have average rate less than 800 KBytes/min,
4% of them have a rate ten times higher. The inter-VM traffic rate
indeed varies significantly. [...] Although the average traffic rates are
divergent among VMs, the rate for a large proportion of VMs are found
to be relatively stable when the rate is computed at large time intervals
(an interval is labeled as stable if the rate within it is no more than
one standard deviation away from the mean in the entire measurement
period). It shows that for the majority of VMs (82%), the standard
deviation of their traffic rates is no more than two times of the mean.
Finally we experience that for 82%-92% of VMs, no less than 80% of the
entire set of time intervals are stable” [12].

After having analyzed these results we started to develop logically the
profiler trying to address all these requirements.

4.2 Connection Profiling

The Liqo project is trying to define the concept of cluster resource shar-
ing; each cluster shares some computational resources (servers) with
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other clusters. The idea is that a cluster can decide whether to schedule
a given job in his infrastructure or offload it to another one. The project
has been developed leveraging on functionalities offered by an already
existing container orchestrator, Kubernetes, extending it with additional
features.

Extending an existing orchestrator solution means that we can focus
mainly on additional features but at the mean time we need to deal
with it’s control plane components, originally developed with different
mindsets and objective.

This is the case, for instance, of the component in charge of making
scheduling decisions for new incoming microservices; originally default
Kubernetes scheduler was meant to make decisions considering servers
hosted in the same datacenter. The Liqo project tries to overcome this
kind of limitation by providing the resource sharing feature previously
mentioned.

Figure 4.1. Microservice application example

When we deal with applications developed as a set of microservices in
most of the cases we have a set of logically connected components (like
the ones depicted in figure 4.1), which communicate through the net-
work; in the Liqo scenario we are dealing with a more flexible datacenter
architecture, where servers can be distributed geographically apart one
another; so if we consider microservices we have a set of jobs that need
to communicate through the network and this is why having a detailed
knowledge of what is the communication pattern between them is cru-
cial to handle their execution properly. The combination of Profiler +
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Scheduler aims to overcome these series of limitation that we previously
discussed.

4.3 Resource Profiling

The knowledge of the communication pattern between microservices pro-
vides to the scheduler a lot of useful information in the decision process
of finding the “best” server to host a given job; but there are also some
other information, such as job expected RAM and CPU consumption,
which can enlarge the amount of data we have about the system of mi-
croservices, allowing us to improve their execution policies.

When we deal with production datacenters usually it is not a good
practice to have microservices that can require as many resource as they
want (in term of CPU and RAM); this happens because since the infras-
tructure is shared among a wide range of other microservices we do not
want that the misbehaviour of one job can affect the execution of the
others (i.e. if a job for some reason starts to request all the available core
of the CPU, the other jobs hosted by the same server will starve because
of lack of resources). And this problem is amplified in case of public
cloud providers, which “rent” their resources to multiple customers.

This is why it is always a good practice to specify the execution bound-
aries of any microservice in order to avoid these kind of situations. The
problem is that developers in many cases do not know how to quantify
properly these boundaries in advance, ending up in two common errors:

• over-commitment, defining boundaries that are way higher than the
actual needs of the microservice, in order to be sure that it will
always work

• under-commitment, defining boundaries that are lower than the ac-
tual needs, because of some consideration error

Both these errors leads to different problems:

• in the first case for the cloud provider it will result in poor physical
resources utilization: in Google datacenter they estimate an average
over-commitment for microservice requests of almost 50%

• in the second case it will end up in sub-optimal executions for the
microservice
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4.4 Architecture

Given the complexity and the heterogeneity of microservices behaviour
we designed the profiling algorithm with two different components, in
order to adapt to a wide range of scenarios:

• OTP (One Time Profiler), performed one time at the beginning
of job execution

• CP (Continuous Profiler), performed periodically on any run-
ning job, in order to fit the output of the algorithm to the actual
behaviour of the microservice

Exploiting this two layer profiling algorithm we have a proactive compo-
nent (OTP), which tries to predict the future behaviour of a microservice
based on historical data about its previous executions; and a reactive
component (CP), which constantly watches the microservice and tries
to refine the profiling decision based on information about its execu-
tion (detailed information about the two components will be provided
in sections 4.5 and 4.6).

As we saw in the introduction section of this chapter, in order to have a
complete overview of microservices behaviour we need to consider many
different information about their execution. The output of both profiling
components provide a knowledge about:

• job connections, what is the communication pattern of a microser-
vice towards other microservices

• job resources, what is the resource usage of a microservice in term
of:

– Memory usage
– CPU usage

As we saw in the introduction of this chapter there is not only a dif-
ference in resource consumption between different jobs but there are also
differences considering the same job: the resource consumption pattern
may vary a lot during the time. Let’s think for example of a web server
scenario: during the daytime we can assume that the number of po-
tential clients is higher than the one during the night hours; this will
result in a much higher pressure for the system during the day. In order
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to adapt the profiling algorithm also to these kind of applications we
introduced the concept of timeslot: we logically divided the daily 24
hours into smaller chunks (called timeslot), exploiting then not all the
possible information about job execution, but only the ones belonging
to the same timeslots in the past.

4.5 OTP - One Time Profiler

As we can see from the reports of the previously cited papers in most
cases resource consumption pattern of microservices can be considered
stable over the time. This means that we can expect that in the future
the behaviour of a given microservice will be the same of the one in the
past; the OTP (One Time Profiler) has been designed having this
key concept in mind.

The OTP (see figure 4.2 for a visual representation):

• collects information about microservice previous executions

• extract some key features from the historical data

• uses these key features to compute the profiling

Figure 4.2. OTP architecture

The default behaviour of an orchestrator (and Kubernetes as such)
whenever a request for the deployment of new job arises is to intercept
it with the scheduler, which is the component in charge of finding a server
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Figure 4.3. Visualization of moduled data

with enough free resources to host it. In this scenario the scheduler takes
a decision only based on the boundaries defined by the developer for that
job and the amount of available resources in the cluster (as we saw in
section 4.3 these boundaries may not be reliable).

Within the context of the Liqo project a custom scheduler has been
developed, capable of receiving as input not only the job but also a set
of additional information in the form of profiling.

So whenever a request for a job deployment arises, it is intercepted in
this case by the profiling system. The first task is to collect information
about the job previous executions: if we are about to perform the profil-
ing of the memory usage for that particular job, we will collect historical
data about its memory consumption (the same concept is applied also
to CPU and connections).

After having collected these information, the historical data are pro-
cessed; in particular the historical data are weighted by the function
w[t]:

w[t] = 2−t/τ

where τ is the half life: the time after which the weight drops by half.
The historical data are weighted to smooth the response to a load spike
and to give more relevance to samples closer in time (Figure 4.3 helps
to visualize the difference between the original signal and the weighed
one).

Starting from the weighted signal, some key features are extracted
depending on the resource to profile an then they are used to compute
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Figure 4.4. Historical data feature extraction

the profiling (see subsections 4.5.1 and 4.5.2 for the description of these
features). Finally the profiling is linked to the job so that the scheduler
can use it in its decision making process.

4.5.1 Resources (RAM and CPU)

The output of the profiler is the definition of the boundaries in term of
RAM and CPU usage for a job. This section aims to describe the features
to extract from weighted historical data to compute such a prediction,
but first it is interesting to understand how too low boundaries can affect
the execution of a given job.

Let’s consider the two resources:

• CPU: in case a microservice exceeds its CPU limits the orchestrator
reacts by imposing some throttling cycles

• RAM: in case a microservice exceeds its Memory limits the orches-
trator reacts by killing the microservice, sending an out-of-memory
(OOM) error

This is why RAM profiling is far more critical than CPU and hence
the profiling of the first one must be much more conservative than the
second one. For this reason, following the work started by Google [7],
starting from the weighted historical data we extract the 98TH percentile
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to compute the profiling of the CPU, while in case of RAM we consider
the peaks of the weighed samples (see Figure 4.4).

This section and also the following one about connection profiling are
meant to be just an introduction, more details will be presented in the
next chapter about the implementation of the algorithm.

4.5.2 Connections

The profiling of the connections is less critical than resource one because
it does not reflect on any particular constraint for the microservice exe-
cution. In fact the main purpose for the connection profiling is to provide
to the scheduler an high level abstraction of the web application and the
degree of interaction between the microservices.

For this reason starting from the weighted historical data we compute
the average of bytes sent/received between each couple of microservice,
using this value to compute the profiling.

4.6 CP - Continuous Profiler

The other concept that emerges from the previously cited papers is that
for some microservices is not possible to profile their future behaviour
in term of resource consumption because of their unpredictability. The
OTP in these cases can’t fit our requirements, because it is not possible
to identify reliable patterns on historical data.

As the name suggests the CP (Continuous Profiling) aims to:

• constantly monitor different metrics, which describe microservice
execution

• tune the profiling created by the OTP to the actual current needs
of the microservice

• updates the profiling, making it available to the scheduler

The metrics used by the CP, which provide information about jobs
current executions, are processed in a different way; the CP does not
work on a single microservice level, but with the group of microservices
that compose the whole application.
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Figure 4.5. CP Architecture

We decided to follow this approach because updating the profiling for
each microservice independently leads to two different problems:

• by simply watching the execution of a single microservice is difficult
to estimate the quality of its execution unless a certain threshold is
defined. Let’s say if a given parameter of the job execution exceed
this threshold we can say that it is behaving correctly or not. The
problem is that this threshold is difficult to define a priori or at
execution time (this value is no longer needed if we consider the
whole group of microservices)

• considering one microservice at a time we lose the big picture of
the entire application. The main goal for the CP is to identify
the microservices whose execution can affect the overall quality of
service offered by the application, the bottleneck of the system, and
improve the profiling only for them
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Chapter 5

Job Profiling
Implementation

The code of the profiler has been developed in Golang [4] mainly for two
reasons:

• Kubernetes framework has been developed in Golang, so it is easier
to integrate the code with the orchestrator in such a way

• Golang has very good performance in term of execution, very im-
portant feature if we deal with critical services like the scheduler in
our case

The profiler leverages on Prometheus (5.1.1) and its query language
PromQl to obtain information about job execution, creating an inter-
nal representation of the requirements for that particular job.

In this chapter we will first discuss the way we obtain information
about job execution moving then to a second part showing how to trans-
late these information into profiling suggestions for the scheduler.

5.1 Metrics

A software metric is a standard of measure of a degree to which a soft-
ware system or process possesses some property. Even if a metric is
not a measurement (metrics are functions, while measurements are the
numbers obtained by the application of metrics), often the two terms
are used as synonyms.
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Metrics in production clusters are essentials because they provide feed-
back about:

• containers and cluster health

• cluster available resources

• network behaviour

• I/O and disk pressure on servers

• ... and many other information

Because of all these interesting features over the last few years a lot
of monitoring tools have been released and adopted in production data-
centers (see 5.1.1).

Metrics are deeply exploited by the profiling system in order to re-
trieve information about jobs execution; in details the most interesting
ones are:

• for the OTP:

– container_cpu_usage_seconds_total, provides information about
cpu usage of a container

– container_memory_usage_bytes, provides information about
memory usage of a container

– istio_request_bytes_sum, provides information about the amount
of bytes sent from a container to others

• for for the CP:

– container_cpu_cfs_throttled_seconds_total, provides in-
formation CPU throttling periods of a container

– container_memory_failures_total, provides information about
the amount of memory failure events for a container

All the previously listed metrics are collected using the PromQl query
language, that lets us select and aggregate time series data in real time.
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5.1.1 Prometheus

Prometheus is an open-source systems monitoring and alerting toolkit
originally built at SoundCloud. Since its inception in 2012, many com-
panies and organizations have adopted Prometheus, and the project has
a very active developer and user community. It is now a standalone open
source project and maintained independently of any company.

Prometheus gathers metrics from instrumented jobs either directly
or through an intermediary gateway designed for temporary jobs. The
samples are stored locally and scanned by rules in order to either collect
and record a new time series from the existing information or create
alerts.

Prometheus’s main features are:

• a multi-dimensional data model with time series data identified by
metric name and key/value pairs

• PromQL, a flexible query language to leverage this dimensionality

• multiple modes of graphing and dashboarding support (useful for
datacenter maintainer)

5.1.2 Istio

Istio is an open source service mesh platform that provides a way to
control how microservices share data with one another. It includes APIs
that let Istio integrate into any logging platform, telemetry, or policy
system. Istio is designed to run in a variety of environments: on-premise,
cloud-hosted, in Kubernetes containers, in services running on virtual
machines, and more.

Istio’s architecture is divided into the data plane and the control plane.
In the data plane, Istio support is added to a service by deploying a
sidecar proxy within the container environment. This sidecar proxy sits
alongside a microservice and routes requests to and from other proxies.
Together, these proxies form a mesh network that intercepts network
communication between microservices. The control plane manages and
configures proxies to route traffic. The control plane also configures
components to enforce policies and collect telemetry.

With a service mesh like Istio, dev and ops are better equipped to han-
dle the change from monolithic applications to cloud-native apps—collections
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Figure 5.1. Istio architecture

of small, independent, and loosely coupled microservice applications. Is-
tio provides behavioral insights and operational control over the service
mesh and the microservices it supports. Using a service mesh reduces
the complexity of deployments, and takes some of the burden off of any
development teams.

Istio’s main features include:

• Traffic management - Traffic routing and rules configuration in Istio
allow to control the flow of traffic and API calls between services.

• Security - Istio provides the underlying communication channel and
manages authentication, authorization, and encryption of service
communication at scale. With Istio, it is possible to enforce policies
consistently across multiple protocols and runtimes with minimal
application changes.

• Observability - Get insights into service mesh deployment with Is-
tio’s tracing, monitoring, and logging features. Monitoring lets us
see how service activity impacts performance upstream and down-
stream.

The observability feature is probably the most interesting in our case
because it provides us additional information about job execution and
in particular metrics related to microservice network behaviour.
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5.2 Profiling Implementation

In the implementation process of the logical architecture described in
chapter 4 we decided to keep the OTP and the CP as separate com-
ponents, working on the same data model; for this reason the code has
been structured exploiting multi threading.

In particular for each resource we have two working threads:

• one thread that implements the behaviour of the OTP; it watches
for new job deployment requests and compute the prediction based
on historical data

• one thread that implements the behaviour of the CP; it constantly
refreshes the information in the model

Let’s spend some more words to describe more in depth these two
threads, but first we need to introduce the Kubernetes library we use to
integrate the code to the orchestrator platform.

The Kubernetes programming interface in Go mainly consists of the
k8s.io/client-go library (for brevity we will just call it client-go
going forward). client-go is a typical web service client library that
supports all API types that are officially part of Kubernetes. It can
be used to execute the usual REST verbs: Create, Get, List, Update,
Delete, Patch; furthermore, the verb Watch is supported.

1 watch , e r r := c l i e n t . CoreV1 ( ) . Pods ( namespace ) . Watch ( . . . )
2

3 f o r event := range watch . ResultChan ( ) {
4 // . . .
5 go connect ion . ComputePrediction ( event )
6 go memory . ComputePrediction ( event )
7 go cpu . ComputePrediction ( event )
8 // . . .
9 }

Listing 5.1. OTP thread, simplified code

As we can see from the snippet 5.1 the fist performed task is to create
a watch.Interface via the chain of method calls client.CoreV1().
.Pods(namespace).Watch(...); this interface allow us to be notified
whenever something changes in Pods representation in a given names-
pace.
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The method watch.ResultChan() implements the previously described
behaviour by returning a channel, managed by the client-go library,
which will notify us whenever Pod scheduling requests arises in a form
of an event. The information contained in the event are finally used
to compute the prediction; in particular three threads are created, one
for each resource (the keyword go executes the function in a separate
thread).

The profiler is meant to work close to the scheduler, so performance
are crucial in this particular scenario; for this reason the function
ComputePrediction(event) on each resource has been implemented
with the following key concepts:

• if a model (CPU, Memory and Connections) has already the infor-
mation about the Pod the profiling is computed

• if these information are missing in the model the function takes care
of updating it, connecting to Prometheus and collecting historical
data. In this case no profiling is computed because the completion
time for these tasks can be huge (compared to scheduling times)
and we do not want the scheduler to wait such a long time

Moving then to the implementation of the CP we can see that the
client-go is no longer used (see snippet 5.2), because the update process
is triggered internally.

1 f o r {
2 job := memory . data . GetLastUpdatedJob ( )
3 // job := cpu . data . GetLastUpdatedJob ( )
4

5 jobConnect ions := connect ion . GetJobConnections ( job )
6

7 // . . .
8 go cpu . UpdatePredict ion ( job )
9 go memory . UpdatePredict ion ( job )

10 // . . .
11

12 time . S leep ( . . . )
13 }

Listing 5.2. CP thread, simplified code

The CP module has been implemented as a never ending thread. In
each iteration of the for loop the code checks what is the last updated
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job (the job whose profiling information will be updated in this iteration)
with the function memory.data.GetLastUpdatedJob() (in this case we
call the memory model to retrieve this information, using the cpu model
would provide the same result).

The CP module is meant to work at a higher abstraction level com-
pared to the OTP; in fact it does not consider each job individually, but
it carries out the following tasks on the complete set of microservices
that compose the application. The connection model has a complete
knowledge about the communication pattern between microservices, so
the function connection.GetJobConnections(job) gets as input a job
and returns the list of all the other jobs connected to it.

This list of jobs is passed to the UpdatePrediction(job) function
that actually connects to Prometheus, collects all the metrics it needs
to the profiling process and then stores the final result in the model.
The UpdatePrediction(job) for the connection model is not yet im-
plemented.

Finally sleeps until the next iteration.

5.3 Resource Profiling Implementation

In the previous section we presented the general behaviour of both the
Continuous Profiling and the One Time Profiling; this section aims to
provide some information about the metrics, which are collected and
processed, the data structures developed in the system and the expected
output.

We decided to split the problem of resource profiling (RAM and CPU)
from the problem of connection profiling; in this section we will present
the former, in section 5.4 the latter.

5.3.1 Metrics

The profiling system leverages on Prometheus as metrics collector. We
already discussed briefly the features of this open source project, so what
we would like to add in this section are some more practical information
about how the information collected by Prometheus can be accessed from
third party components.

Prometheus exposes an endpoint to access those data and provides
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its own query language PromQL to collect and aggregate them accord-
ing to our needs. PromQL is designed for building powerful yet simple
queries for graphs, alerts or derived time series (aka recording rules). It
is designed from scratch and has zero common grounds with other query
languages used in time series databases; this allowed creating a clear
language for typical TSDB queries.

We provided the profiling system with a custom client to interact with
Prometheus:

• according to the type of data we need it creates the corresponding
query in PromQL language

• it connects to Prometheus, asking to perform the previously created
query

• it handles the response from Prometheus (the response in in JSON
format), un-marshalling it into an internal representation of data

• returns the un-marshalled data

As we previously mentioned the metrics involved in the profiling of
RAM and CPU required by the OTP and the CP are different because
they’re used for different purposes; in the case of the OTP two examples
of PromQL queries for collecting historical data are:

• avg by (pod, namespace) (
container_memory_usage_bytes
{namespace="namespaceName", name!="", container!="", pod= "pod-
Name.*"})

• sum by (pod, namespace) (
rate (
container_cpu_usage_seconds_total
{image!="", pod= "podName.*"}[1m]))

While in the case of CP for runtime data:

• sum by (pod, namespace) (
label_replace (
rate (
container_memory_failures_total
{namespace= "namespaceName", pod= "podName.*", container!=""}[1m]),
"pod", "$1", "pod", "(.*)-.5"))
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• sum by (pod, namespace) (
label_replace (
rate (
container_cpu_cfs_throttled_seconds_total
{namespace= "namespaceName", pod= "podName.*"}[1m]),
"pod", "$1", "pod", "(.*)-.{5}"))

5.3.2 Metrics Processing

Before starting to analyze how we process the metrics shown in the pre-
vious section, we first need to understand what happens to microservices
when the exceed their resource limits, because this has an impact on the
actual processing.

In production datacenter, as we saw in one of the previous chapter, it
is always a good practice to define some limits in resources consumption
for microservices to avoid a series of misbehaviour; these limits can be
set by the developer or by some automatic tool like our profiler, but the
concept is still the same.

Let’s start considering CPU limits: if there is little contention (as
measured by the overall CPU utilization), tasks are allowed to use CPU
beyond their limits. However, once there is contention, limits are en-
forced and some tasks may be throttled to operate within their limits.
So in case a microservice exceeds its CPU limits the orchestrator reacts
by imposing some throttling cycles.

In case of memory limits instead the situation is much more complex:
a task is killed with an out-of-memory (OOM) error as soon as the task
exceeds its limit, and the failure is handled by the orchestrator.

As we can see an error in the definition of memory limits has a much
bigger impact in job executions, compared to one in the definition of
CPU limits. This is why some parts of the metrics processing are similar
for RAM and CPU but other ones are not because of the previously
shown differences.

For what concerns the common part of the metrics processing, follow-
ing the work began by Google [7] that we already discussed in the design
section 4.5, the historical data for the OTP are first collected and then
weighted by the function w[t]:
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w[t] = 2−t/τ

to give more relevance to samples closer in time. Once the samples
are weighted we summarize them by extracting some features depending
on the resource; in particular:

• for the RAM we extract the peaks from the weighted data, because
it is the most conservative value we can consider

• for the CPU we extract the P98% from the weighted data

Finally both these raw recommendations of peak value and P98% are
post-processed before being applied by increasing them by a 15% for
safety margin.

The metrics used by the CP, which provide information about jobs
current executions, are processed in a different way. As we can see from
Listing 5.2 it does not work on a single microservice level, but with the
group of microservices, which compose the whole application.

For this reason these kind of metrics are processed in a different way:

• an average is computed for each microservice

• using the average computed for each single microservice we compute
the average for the system of microservices

• based on the final value of average we compute some boundaries
defined as ±20%application_avg

• finally we iterate on all the values of average defined at point 2; for
all the microservices that have an average value for that particular
metric below the boundaries we decrease the profiling, for the ones
above the boundaries we increase the profiling

5.3.3 Data Structure

The resource profiling data structure has been developed as an interface
to make the code extensible (now only RAM and CPU are considered
but the interface approach makes it easier to implement other resources
in the future).

51



Job Profiling Implementation

1 type ResourceModel i n t e r f a c e {
2 In se r tJob ( . . . )
3 UpdateJob ( . . . )
4 GetJobUpdateTime ( . . . )
5 GetLastUpdatedJob ( . . . )
6 GetJobPredict ion ( . . . )
7 PrintModel ( . . . )
8 }

Listing 5.3. Resource model interface

Each resource (Memory and CPU) implements this interface, defin-
ing its own implementation of these functions: it declares methods to
insert new jobs in the datastructure InsertJob, invoked by the OTP,
to update the model for an existing job UpdateJob, invoked by the CP.
It is possible to retrieve the profiling for a given job via the method
GetJobPrediction.

Given the multi-threading approach all the actual implementations
of this interface (RAM and CPU) are designed to be thread safe and
resilient to concurrent access.

5.3.4 Output

The output of the profiling system is a Custom Resource (CR), but
to understand what CR is, we must go over a couple of concepts in
Kubernetes:

• A resource is an endpoint in k8s API that allows to store an API
object of any kind.

• A custom resource allows to create arbitrary API objects and defin-
ing their own kind just like Pod, Deployment, ReplicaSet, etc.

They allows to extend Kubernetes capabilities by adding any kind of
API object useful for any application. Custom Resource Definition is
what we use to define a Custom Resource. This is a powerful way to
extend Kubernetes capabilities beyond the default installation.

Custom resource creation and management can be very complex be-
cause they require a lot of additional components. Because of their
versatility they are employed in a wide range of situations; here in this
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thesis are simply used as a way to store data in a distributed way. In
particular we designed two different CRDs to save profiling information
about RAM and CPU:

• memoryprofiles.webapp.liqo.io.profiling

• cpuprofiles.webapp.liqo.io.profiling

1 ap iVers ion : webapp . l i q o . i o . p r o f i l i n g /v1
2 kind: MemoryProfi le
3 metadata:
4 # ...
5 spec :
6 memoryProf i l ing:
7 updateTime: 2020−09−22 12:07:38
8 value : 112654345

Listing 5.4. Memory profile output example

1 ap iVers ion : webapp . l i q o . i o . p r o f i l i n g /v1
2 kind: CPUProfile
3 metadata:
4 # ...
5 spec :
6 c p u P r o f i l i n g :
7 updateTime: 2020−09−22 12:07:38
8 value : 0 ,867

Listing 5.5. CPU profile output example

As we can see from listings 5.4 and 5.5 both the resource profiling
have two values:

• the update time for that profiling

• the value of the profiling expressed in bytes for RAM and in millicore
for the CPU

5.4 Connection Profiling Implementation

In the previous section we presented the resource profiling system on
both the Continuous Profiling and the One Time Profiling; this section
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aims to provide some information about the orthogonal problem of con-
nection profiling, the metrics that are collected and processed, the data
structures developed in the system and the expected output.

5.4.1 Metrics

The metrics collection process in connection profiling relies on the same
Prometheus client already presented in the section 5.3.1. The main dif-
ference in this case, compared to resource profiling, is that there is no
implementation for CP profiling hence only historical data are collected
and processed; in particular two examples of metrics collection query
are:

• sum by (
namespace, source_workload,
destination_workload, destination_workload_namespace) (
increase(
istio_request_bytes_sum
{namespace="namespaceName", source_workload="podName"}[1m]))

• sum by (
namespace, source_workload,
destination_workload, destination_workload_namespace)(
increase(
istio_response_bytes_sum
{namespace="namespaceName", source_workload="podName"}[1m]))

5.4.2 Metrics Processing

The profiling of the connections is less critical than resource one because
it does not reflect on any particular constraint for the microservice exe-
cution.

For this reason the historical data for the OTP are first collected and
then weighted by the same function w[t] used for resource profiling to
give more relevance to samples closer in time. Then starting from the
weighted historical data we compute the average of bytes sent/received
between each couple of microservice over the time.

54



5.4 – Connection Profiling Implementation

5.4.3 Data Structure

A suitable data structure has been developed to create an in memory
representation of the connection between different microservice.

1 type ConnectionGraph s t r u c t {
2 j obs map [ s t r i n g ] ∗ connect ionJob
3 . . .
4 }
5

6 func ( cg ∗ConnectionGraph ) InsertNewJob ( . . . )
7 func ( cg ∗ConnectionGraph ) GetJobUpdateTime ( . . . )
8 func ( cg ∗ConnectionGraph ) GetLastUpdatedJob ( . . . )
9 func ( cg ∗ConnectionGraph ) GetJobConnections ( . . . )

10 func ( cg ∗ConnectionGraph ) FindSCC ( . . . )

Listing 5.6. Connection graph data structure

The connection model stores information of jobs connections in a
map. Additionally it provides methods to insert new job in the datas-
tructure via the function InsertNewJob(), to get information about a
job via the methods GetJobUpdateTime(), GetLastUpdatedJob() and
GetJobConnections().

The last function FindSSC() computes the strongly connected com-
ponents of the connection graph: a strongly connected component is a
sub-graph where every vertex is reachable from every other vertex. In
this context we exploited this property of the graph theory to compute
the list of all the connected job that compose the application.

5.4.4 Output

The output of the connection profiling process is, as in the previous case,
a CR object.

The connection profiling system produces a CR for each connection
between microservices; in particular the most interesting fields are:

• the value bandwidth_requirements represents the connection pro-
filing expressed in Bytes/sec

• the combination <destination_job, destination_namespace> uniquely
identifies the destination job of the communication
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• the combination <source_job, source_namespace> uniquely iden-
tifies the source job of the communication

1 ap iVers ion : webapp . l i q o . i o . p r o f i l i n g /v1
2 kind: Connec t i onPro f i l e
3 metadata:
4 # ...
5 spec :
6 bandwidth_requirement: "89219.00"
7 des t inat ion_job : reviews−v2
8 dest inat ion_namespace: d e f a u l t
9 source_job: productpage−v1

10 source_namespace: d e f a u l t
11 update_time: 2020−09−22 15:43:18

Listing 5.7. Connection profile output example
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Chapter 6

Experimental Evaluation

The profiling system aims to operate in combination with the scheduler
to provide the the best execution policies for microservices. Unfortu-
nately the development of this custom scheduler is not finished yet, so
we defined two different testing scenario to overcome such a limitation
and to understand the behaviour of the profiler in different situations.

The profiling system is composed of two components:

• OTP (One Time Profiler), performed one time at the beginning
of job execution

• CP (Continuous Profiler), performed periodically on any run-
ning job, in order to fit the output of the algorithm to the actual
behaviour of the microservice

The first test has been designed to evaluate the performance of the
OTP, exploiting traces from microservices of a real datacenter, hosted
in Ladispe in Politecnico (this one will be referred as Historical Data
Test, see 6.2), while the second one’s goal is to analyze the behaviour
of both the components in a real case scenario (hereinafter referred as
Application Profiling Test, see 6.3).

6.1 Microservice Analysis

If we consider the modern world of microservices we deal with two kind
of systems:
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• microservices hosted by the cloud, providing a service

• end-users (clients), which connect to the microservices to get the
service

So if we want to create a framework that manages microservices (like
Liqo does) we must create an infrastructure both able to host them prop-
erly and capable to provide to the end user the best possible performance
for the service. The second feature is not something new, it struggled
researcher for decades and goes under the name of Quality of Service
(QoS).

The final goal of the profiling system is indeed to improve as much
as possible the QoS experienced by the client so that no differences are
perceived between a microservice application hosted in a standard cloud
scenario and the same application handled by the Liqo framework.

The connection profiling definitely works in that direction, by pro-
viding to the scheduler information about the communication pattern
between components; since in a microservice environment jobs commu-
nicate with each other through the network, if they are placed properly
it is possible to improve their communications and so the final perceived
quality. Apparently the resource profiling improves only the execution
of each microservice, but it does not affect the overall QoS of the system.
This is why we decided to perform some tests to find out if our ideas
was actually correct or it is possible to exploit the resource profiling in
this improvement of the QoS.

For the purpose of the test we picked an existing web application
developed by Google called Online Boutique [11], which consists of a
10-tier microservices application (see figure 6.1). The application is a
web-based e-commerce app where users can browse items, add them to
the cart, and purchase them. In such a scenario we identified the measure
that better represents the QoS perceived by the customer in the latency.

A suitable testing tool has been developed to replicate end-user inter-
action with the system, but allowing us to scale horizontally, increasing
the number of contemporary requests, and collecting information about
the perceived latency.

For the testing phase we defined four different scenarios:

1. the web application is deployed removing all the limits for RAM
and CPU usage; this scenario is useful to define the lowest possible
value of latency perceived
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Figure 6.1. Online Boutique architecture

2. the web application is deployed with the defaults limits set by the
developers; this scenario allow us to identify a normal value of la-
tency perceived

3. the web application is deployed with the defaults limits decreased
by 1/3; with this scenario we would like to see if there is any degra-
dation in latency with under estimated limits

4. the web application is deployed with the defaults limits decreased
by 1/3 only for those microservices we think are not suffering for
this limits reduction, while all the others are deployed with default
limits

#1 #2 #3 #4
avg 61,89ms 68,47ms 83,47ms 69,15ms

95%ILE 64,05ms 180,61ms 190,54ms 165,23ms
98%ILE 78,10ms 281,64ms 343,67ms 276,76ms
99%ILE 105,83ms 362,74ms 740,53ms 384,39ms

Table 6.1. Microservices analysis results

The results of the tests, as shown in table 6.2, are surprising: if we
consider scenario #2 and #4 we can see that while in both cases 99%
of latency values are almost comparable and below 390ms, the resource
consumption in case #4 are much lower (almost reduces of a 1/3) com-
pared to case #2.
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These results let us believe that the overall Quality of Service can
benefits not only by the connection profiling, but also by an accurate
resource profiling.

6.2 Historical Data Test

The main purpose of this test is to evaluate the performance of the
OTP using data coming from real datacenter workload. We specifically
designed this test to obtain a feedback of what would have been the
profiling output of the OTP when dealing with such data.

As we mentioned in the implementation chapter of this thesis the
OTP constantly watches for incoming job scheduling requests and based
on those requests it computes the profiling according to some historical
data. This behaviour cannot be applied in this test case, because no
scheduling is involved, so we slightly modified the code to implement
the behaviour described by the pseudo code in the following snippet 6.1.

1 f o r i := startTime ; i < endTime ; i += o f f s e t {
2

3 // c o l l e c t h i s t o r i c a l data at time i
4 data := co l l e c tData ( i )
5

6 // compute p r e d i c t i o n with the c o l l e c t e d data
7 p r e d i c t i o n := computePredict ion ( data )
8

9 // generate a s u i t a b l e output f o r the p r e d i c t i o n
10 generateOutput ( p r e d i c t i o n )
11 }

Listing 6.1. OTP pseudo code

The previously shown loop at each time instant i generates a fake
scheduling request for a given job (the target job is always the same in
all the iterations) and then triggers the profiling system to compute the
prediction, collecting the results to an output file.

6.2.1 Expectations

In this section we would like to describe what is the output we expect
to have from the profiling system and most importantly what are the
values we will use to evaluate the quality of the profiling.
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Figure 6.2. Quality and overhead of prediction visualization

In each time instant ideally the profiling output should always be
≥ than the value of resource usage. This characteristic can be easily
analyzed by looking at a graphical representation of both the profiling
output and the resource usage graph; what we would like to define here
are some values able to characterize objectively the output. In particular
we are focusing on:

• the quality of the prediction

• the overhead in term of resource wastage introduced by the profiling

Now let’s spend some more words about the previously listed items.
The “quality of the prediction”, as the name suggests, aims to evaluate

if the prediction at a given time instant has been good or not. To do so
we define the value ∆t (see figure 6.2) as:

∆t = prediction_time+ 30minutes

using this simple formula we can label each profiling sample as:

• GOOD, if the value of the resource usage never exceeds the profiling
value within these 30 minutes

• BAD, if the value of the resource usage exceeds the profiling value
at least once within these 30 minutes
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In the end the ratio between GOOD/BAD profiling samples and the
total amount of profiling sample can provide an interesting feedback of
the quality of the prediction.

The metric we’ve just described is definitely important but it cannot
provide a complete overview of the behaviour of the profiling; for this
reason we introduced another value called “overhead of prediction” to
evaluate the difference between the output of the profiling and the actual
resource usage.

In this case we defined for each profiling sample the value δ (see figure
6.2) as:

δ = profiling_value− resource_value

where resource_value is the average of the resource values within the
next 30 minutes starting from the profiling time.

Averaging each computed δ we can have a value that describes the
overall amount of resource wastage introduced by the profiling.

6.2.2 Input

As a sample data input we selected an application called Kubevirt, a
project that enable VMs management inside a Kubernetes cluster; in par-
ticular we mainly focused one one single component called virt-handler.

Unfortunately the production datacenter that provide us input data
does not collect metrics about microservices network behaviour; for this
reason in this test case we decided to analyze the profiling output only
for resource usage (RAM and CPU).

The virt-handler component is a deployment in the Kubernetes
cluster with 4 different replicas; each replica shares with the others the
same image, but each of them can require a different amount of resources
to the system according to the actual workload. Figures 6.3 and 6.5
show a visual representation each replica resource usage (respectively
RAM and CPU), while in figures 6.4 and 6.6 we extracted for each time
instant the maximum value of resource usage among the replicas for a
better visualization (again respectively RAM and CPU)
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Figure 6.3. Pod RAM usage Figure 6.4. Pod max RAM usage

Figure 6.5. Pod CPU usage Figure 6.6. Pod CPU max usage

6.2.3 Output

In table 6.2 we summarized the values we previously discussed to evaluate
the performance of the profiling system.

Profiling quality Profiling overhead
RAM 98,64% 16,73%
CPU 96,12% 29,73%

Table 6.2. OTP analysis results

Some of the results may require some additional consideration, in
particular:

• both for RAM and CPU we have a very high quality of profiling
(>96%); it worth noticing that the value for RAM profiling quality
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Figure 6.7. RAM profiling Figure 6.8. CPU profiling

is slightly higher compared to CPU’s one and this is because RAM
profiling is computed following some stricter constraints

• the profiling overhead introduced by both is below 30%, which is
a very good result (according to Google reports developers usually
overestimate microservices request by at least 50%); the fact that
CPU profiling overhead is higher than RAM’s one may seem strange
but this is due to the pattern of CPU usage of the microservice,
which is very “spiky”

Figures 6.7 and 6.8 shows a visual representation of the output of the
profiling and the resource usage.

6.3 Application Profiling Test

This test has been designed to evaluate the performance of the complete
profiling system in a real time scenario.

The profiling system has been designed to work with the scheduler
to determine the best execution policies for any given job; an high level
overview of the behaviour of the complete system can be summarized in
the following:

• a job scheduling request arises

• the profiling system intercept the scheduling request and compute
a suitable prediction for that given job

64



6.3 – Application Profiling Test

• finally the scheduler, among other things, enforces these predictions
by changing the resource allocation for the job execution

Unfortunately the development of the scheduler has not finished yet,
so for the purpose of this test we slightly modified the code of the profiler
by providing it the capability not only to compute the profiling, but also
to enforce it in the pod execution policies.

With this code modification it is possible to run seamlessly a set of
microservices, while the profiling system constantly adjusts the resources
allocated to them in order to meet their actual needs.

6.3.1 Input

Differently from the previous test in this case we will first analyze what
is the kind of application we will use, because this choice will affect not
only the testing tool, but also the values to extract in order to have
reliable information of the quality of the profiling system.

For the purpose of the test we picked the same web application devel-
oped by Google that we already presented in section 6.1.

6.3.2 Expectations

This test required the development of two different components:

• the code addition in the profiler previously discussed

• the development of suitable testing tool able to extract some useful
data of the behaviour and the quality of the profiling system

In such a scenario we identified the measure that better represents the
QoS perceived by the customer in the latency. A suitable testing tool
has been developed to replicate end-user interaction with the system, but
allowing us to scale horizontally, increasing the number of contemporary
requests, and collecting information about the perceived latency.

During the test we started the execution of the microservices and the
profiling system at the same time in order to replicate what could be
the worst case scenario: no information are accessible from the profiling
system about microservices previous executions.
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First of all we started by testing the behaviour of the same microser-
vices disabling the profiler and collecting information about the latency
perceived by the end user; these values will be used as a benchmark,
by comparing them with the ones obtained with the profiling system
enabled.

Starting from this benchmark values we decided to implement such a
test scenario mainly for three reasons:

• to understand if the system is able to converge, improving the Qual-
ity of Service perceived by the end user

• to quantify the convergence time of the algorithm, comparing the
results with the execution without the profiling system

• to evaluate the final suggestions provided for RAM and CPU lim-
its, comparing them again with the execution without the profiling
system

6.3.3 Output

We run the test for approximately 60 minutes, constantly collecting both
information about job executions and latency values perceived by the
end user, which will be used later to evaluate the overall quality of the
profiling system.

Figures 6.9-6.12 show the resource consumption of each microservice
(beware that even if sometimes some time series change color over the
time, it does not mean that they are different microservices; this be-
haviour is due to the fact that sometimes microservices are rescheduled
hence they are considered different instances by the metrics system even
if they are not); in particular:

• as we can see from figure 6.9 over the time some microservices in-
crease their CPU usage thanks to the profiler. Not all the microser-
vices experience such a behaviour because the profiling system in-
creases the available resources only for a subset of them; in particu-
lar it selects only the ones which are suffering for lack of resources.
As a consequence of these choices we can see from figure 6.10 that
the throttling periods of the system of microservices keeps reducing
over the time
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Figure 6.9. Microservices CPU consumption

Figure 6.10. Microservices CPU throttling

Figure 6.11. Microservice Memory consumption

Figure 6.12. Microservice Memory errors

• by executing the microservices without the profiling system we re-
alized that the microservices do not start to require more memory
as the number of external requests grows. What is interesting to
notice is that the profiling system is aware of that and so it does
not find it necessary to increase them at runtime as we can see from
figure 6.11, because even if there are some memory failure events
(see figure 6.12) their number is very low so they do not affect the
execution of the microservices
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Figure 6.13. Perceived latency

After approximately 60 minutes of test we collected the values of
latency perceived by the end user and we started to analyze them in
order to understand the behaviour of the profiling system by comparing
them to the ones obtained without our profiling system.

Looking at figure 6.13 we can see that over the time the latency per-
ceived keeps reducing; in particular we defined 2 values in order to eval-
uate more in detail the overall performance of the system:

• settling time, defined as the time elapsed from the beginning of
the test to the time at which the latency output has entered and
remained within a specified band. In this case we estimated this
settling time in approximately 50 minutes, which is quite impressive
if we consider that the profiling system did not have past information
about the microservices at the beginning of its execution. It worth
noticing that the profiling system updates the resource associated to
each microservice every 10 minutes meaning that this settling time
has been reached after 5 iterations of the profiling algorithm

• the final latency perceived in the last 10 minutes is about 140ms;
this result is quite impressive if we consider that the average latency
perceived without the profiling system is approximately 120ms

In the end this test can provide us a very interesting feedback: within
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50 minutes the profiling system is able to converge, adapting the amount
of resources associated to each microservice to the actual workload of the
system. What is even more interesting actually is that even if after 50
minutes the final latency perceived with/without the profiling system is
comparable, the amount of resources allocated to the microservices is
very different in the two cases (see Table 6.3).

Profiling Disabled Profiling Enabled
CPU Requests 1625m 599m

Limits 2825m 1198m
RAM Requests 1368MB 550MB

Limits 2542MB 1100MB

Table 6.3. Allocated resources
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Chapter 7

Conclusions and Future
Works

This work aims to propose a profiling system capable of enabling a job
aware scheduling on Kubernetes cluster. In this first implementation we
succeeded to:

• create a profiling system capable of providing information about
microservice expected resource usage and communication patterns

• exploit a two level profiling able to predict the expected behaviour
of any given microservice, adjusting that prediction at runtime by
constantly looking at job performance

In Chapter 6 we evaluated the overall performance of the profiling
system and we obtained the following feedback:

• the OTP has an average quality of prediction of 97% within the next
30 minutes from the profiling time

• the profiling system is able to converge, adjusting the resources as-
sociated to each single microservice to the actual workload of the
system and providing an overall Quality of Service for the profiled
application similar to the one experienced without any profiling tool

• the profiling system is not only able to meet applications Quality of
Service requirements, but also can reduce significantly the difference
between the limit and the actual resource usage for microservices
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These results are very promising but analyzing these numbers there
are a lot of possible improvements for the profiling system:

• the 97% average quality of prediction within 30 minutes is a good
result but we would like to understand if it is possible to achieve the
same quality in the next 60 minutes by correlating different metrics
about microservices previous executions

• the 50 minutes (5 iterations) convergence time can be improved by
balancing carefully the resources assigned to each microservice

Finally we would like to combine the profiling system and the custom
scheduler developed within the Liqo project in order to test both the
components in a real case scenario and get additional feedbacks useful
for even further improvements.
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