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Abstract

In the context of vehicle-positioning applications, Global Navigation Satellite
Systems (GNSSs) have remarkable role. However, these applications have very
strict safety requirements, thus needing an improvement in the performance of
such positioning systems. This necessity has led to the development of Cooperative
Positioning methods, also thanks to the recent rise of Vehicle-To-Vehicle (V2V)
communication. The aim of such methods is in fact to improve both the accuracy
and precision of the stand-alone positioning system by exploiting the exchange of
relative ranging information by a network of vehicles.

Moreover, in spite of the fact that the positioning problem is non-linear (i.e.
trilateration), many solutions approach it by means of linearization (i.e. Least
Mean Square, Extended Kalman Filter). These methods may also introduce errors
by assuming that general probability distributions of the input measurements are
Gaussian distributions.

However, the error of these relative distances derived from the measurement
exchanged by the vehicles have shown to be, in general, not Gaussian distributed,
leading to a reduction in performance due to the mismodelling of such probability
distributions. This has prompted the study of other solutions (i.e. Particle Filter),
able to handle the problem without linearization, and also the non-Gaussian
distribution of the measurement errors. Most importantly, these distributions are
also non-stationary, thus requiring a real-time estimation in order to allow the
Particle Filter to provide the best possible solution. In particular, the errors can
be affected by a bias, and it is the aim of the thesis to understand whether the
relative motion of the vehicles can affect the bias introduced in the measurements
they exchange. A further goal is to design an adaptive algorithm to select optimal
likelihood functions, based on the relative position, motion and GNSS measurements
of the vehicles, in order to improve the estimate provided by the Particle Filter.
Finally, the performance of the previously mentioned solutions is evaluated, to assess
if the use of the Particle Filter is justified even when the cooperative measurements
can be approximated to be Gaussian distributed.

Eventually, an optimized integration of cooperative ranging measurements is
performed in order to complement satellite-based measurements. This approach
aims at compensating for the limited availability and high geometrical dilution of
precision that are frequently experienced in urban environments. With this intent,
an Agent Network (AN) is implemented, and scenarios in which such agents are
static or moving are both studied, in order to gain a better understanding of the
effect that their relative motion can cause on the distribution of the measured
distances. The collaboration between agents is implemented with an exchange,



at each time instant, of both their estimated positions and their available GNSS
measurements (i.e. Doppler and pseudoranges). Thanks to these, inter-agent
distances are then computed by means of Weighted Least Square Double Difference
method. The integration of this additional information is expected to provide an
improvement in terms of accuracy of the positioning solution.
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Chapter 1

GNSS Overview

1.1 GNSS Fundamentals
Global Navigation Satellite System (GNSS) can be described as a one-way

radionavigation system, where satellites broadcast synchronized timing signals
that are exploited by receivers in order to estimate their Position, Velocity and
Time (PVT) based on passive ranging measurements. These satellites are typically
Medium Earth Orbit (MEO), altough some regional or augmentation system use
Geosynchronous Earth Orbit (GEO).
In particular, Global Positioning System (GPS) is a GNSS owned and maintained
by the Federal Aviation Administration (FAA), which operates on a global scale.
Other GNSS systems include European Union’s Galileo, Russia’s GLONASS and
China’s BeiDou.
Any GNSS receiver starts from the identification of the visible satellites (i.e.
acquisition of line-of-sight navigation signals), w.r.t. which an estimation of a
satellite-user distance called pseudorange is obtained. The position of satellites is
known at any time instant, or can be accurately computed thanks to the data carried
in their navigation message. Pseudorange measurements are then used to obtain
a Position and Time (PT) solution by means of a spherical trilateration method,
while velocity can be computed using the variation rate of the pseudoranges, which
is related to the Doppler shift measurements due to the relative velocity of satellite
and receiver [1].
Altough these GNSS have slightly different features and work according to different
system parameters, they are based on the same basic concepts. As such, this
Chapter will focus mainly on GPS, in order to give a basic understanding of the
working principles of a satellite-based radio navigation positioning system.

1



GNSS Overview

1.2 System Structure
Any GNSS is made up of three main segments: the Space segment which includes

the satellites, the Control segment composed of both control and monitor ground
stations, and finally the User segments which includes both military and civilian
users with a wide range of different receiver devices [1].

1.2.1 Space Segment
The GPS Space segment includes a constellation of at most 32 satellites, dis-

tributed across six circular orbits with at least four satellite each, as shown in
Figure 1.1. The orbits have an inclination of 55° degrees w.r.t. the earth’s equator
and are separated by 60° right ascension, with satellites not equally spaced within
each one. The orbit is approximately circular with a semi-major axis of 26,560 km
(typically classified as MEO), while its period is of around 12 hours, so that each
satellite passes over roughly the same location twice a day. Each satellite has a
highly stable atomic clock on board. The configuration of the orbits is such that at
least 4 satellites are always in line-of-sight from each point of the earth’s surface,
provided there are no obstacles. This number corresponds to the minimum number
of satellites w.r.t. which a pseudorange needs to be measured in order to obtain a
position solution [1] [2].

Figure 1.1: GPS constellation [3].

1.2.2 Ground Segment
The Ground segment is handled by the Master Control Station, whose purpose

is to remotely operate monitor stations, as can be seen from Figure 1.2. These

2



1.3 – GNSS Signal

dedicated monitor station track the flight trajectories of all satellites, then this
information is used to regularly contact satellites from ground antennas, providing
them navigation updates along with the navigation message the satellites will
transmit [4]. These updates are necessary to make sure the atomic clocks on board
are kept synchronized within a few nanoseconds with each other. Also, they are
used to adjust the ephemeris of the internal orbit model of each satellite. These
updates are applied by satellite maneuvers performed in order to correct its orbit.
During these corrections, the satellite is marked in order to not be used by receivers
for the pseudorange computation [1].

Figure 1.2: GPS Ground Segment [5].

1.2.3 User Segment
The User segment refers to the collection of all the military and civilian GNSS

receivers. These devices consists of a receiving antenna, a receiver processor able to
monitor multiple satellites simultaneously, and a clock. The performance of GPS
navigation devices can vary greatly depending on the quality of its components [1]
[2]. A more detailed description of the main stages of a GNSS receiver and their
purpose is provided in Section 1.4.

1.3 GNSS Signal
Each satellite in the GPS constellation continuously transmits a signal which is

made of three components: a carrier, a ranging code which uniquely identifies the
satellite, and the navigation data. The structure of the overall transmitted signal

3
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is shown in Figure 1.3.

Figure 1.3: GPS signal structure [6].

1.3.1 Carrier
All GPS satellites transmit two spread spectrum carrier signals on the same

frequency bands, referred to as L1 and L2. The first is used for Standard Positioning
Service, so for civil usage, while the second is used for Precise Positioning Service,
provided to the United States military and its allied organizations. The carrier
frequency of the two bands, respectively f1 = 1575.42 MHz and f2 = 1227.60 MHz,
are both integer multiples of a base frequency f0 = 1.023 MHz (f1 = 1540f0 and
f2 = 1200f0). It should be added that, since the satellites are moving, and possibly
the receivers as well, the received signal is affected by a Doppler shift.
In recent years, the L2 band has also been grant access to civil application in order
to calculate and compensate for propagation delays. When the signal transmitted
by the satellites travels through the ionosphere, it is delayed by an amount that
depends on the density of electrons along the path of the signal, but also on the
frequency of the signal itself. By measuring the difference in delay between two
signals transmitted at different carrier frequencies, the receivers are able to fully
compensate for this delay, which would otherwise be a source of error [2]. A
third civilian signal is also broadcasted on the L5 (f5 = 1150f0) band by 14 GPS
satellites (as of September 2020). This signal is transmitted at higher power, and on
a grater bandwidth in order to be more robust to jamming (intentional interference).
Furthermore, its more modern signal design (CNAV) allow for different message
types and Forward Error Correction (FEC), in the attempt to satisfy more strict
requirements involving safety-of-life or other high-performance application. Modern
GNSS receivers are able to simultaneously work with signals from different bands,
leading to improved accuracy and robustness [7].
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1.3.2 Ranging Codes
Satellite networks employ a Code Division Multiple Access (CDMA) spread-

spectrum technique, where data is encoded by pseudo-random sequences, also
known as PRN codes (as depicted in Figure 1.3), that are unique for each satellite.
These codes are also mutually orthogonal, thus allowing the receiver to separate
the signal coming from each satellite [1].
The C/A code, used for civilian applications, is a short and coarse-grained code,
whose purpose is to allow a fast identification and acquisition of the satellite signal.
It has a chip rate equal to f0 = 1.023 Mchips/s, and belongs to the family of Gold
sequences, used for their good correlation properties. Maximal Length Linear Shift
Registers can be used to generate m-sequences, which are then summed to obtain
Gold sequences. Different C/A codes are obtained by summing different shifted
versions of the same m-sequences, obtained from shift registers of size N = 10,
therefore creating sequences of length 2N − 1 = 1023 chips.
The P-code is instead a unique segment of an extremely long PRN sequence of
around 1014 chips which lasts for 267 days. The sequence is split into 37 sections
each lasting one week before repeating. The chip rate of the P-code is 10f0 = 10.23
Mchips/s.
The signal transmitted on the L1 band uses Binary Phase-Shift Keying (BPSK), and
is further modulated by two PRN codes in quadrature, both the Coarse Acquisition
(C/A) code and the Precision (P(Y)) code, as can be seen in Figure 1.4. The L2
signal is instead modulated by the P(Y) code only, since its intended use is for
military applications only.
GPS receivers have full knowledge of the C/A codes, which can be locally generated
and used to identify satellites by correlation between the local PRN code and the
received signal [2].
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Figure 1.4: Spectra of GPS signal on L1 band [8].

1.3.3 Navigation Data
The navigation data is a binary-coded message that includes information about

the status of the satellite, as well as its ephemeris and clock parameters, ionospheric
correction model parameters, relativistic corrections, and an almanac containing
low-precision ephemeris for all the other satellites of the constellation [1]. Data is
transmitted at a rate of 50 bits/s, so that each bit lasts for 20 ms. The navigation
message is structured into words which are contained into sub-frames which form a
frame (or page) whose total duration is of 30 seconds, as shown in Figure 1.5. Along
with data channels, the Galileo system also transmits pilot channels, shifted in
phase by 90 degrees w.r.t. data channels so that they can be separated at receiver.
These pilot channels use long codes, and contain no data.
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Figure 1.5: Overall structure of GPS navigation message [9].

1.4 GNSS Receiver
The purpose of a navigation receiver is to provide an estimate of Position,

Velocity and Time, based on the information carried by the signals sent by the
satellites. Its architecture can be divided in different stages, as depicted in Figure
1.6.

Figure 1.6: Generic architecture of a GPS receiver [10].

1.4.1 Front-End Stage
At first, the signal coming from the satellites is pre-amplified and filtered in order

to limit the bandwidth, the receiver then needs to move the signal to Intermediate
Frequency fIF , in order to perform sampling and quantization for the following
digital stages [1]. The signals can then be processed in Software Defined Radio
(SDR), as it is done for the work presented in this thesis.
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1.4.2 Acquisition Stage
In order to obtain measurements needed for the PVT computation, the set of

visible satellites needs to be determined so that the receiver can split and distinguish
the signal coming from each of them. The number of codes to be searched can be
narrowed down to the set of satellites which should be visible, if rough information
about the user position and a recent almanac are available. To acquire the signal
coming from each satellite, the receiver generates a replica of the known C/A
code, as described in Section 1.3.2. If the locally generated sequence corresponds
to the one of a visible satellite, then in the cross-correlation between the local
replica and the incoming signal, a peak should appear when the two sequences are
aligned in time. In order to determine this shift, the correlation of all possible shifts
between the two signals has to be computed [1]. Alternatively, the properties of the
Discrete Fourier Transform can be exploited to obtain the circular cross-correlation.
This approach requires the storage of L samples from the incoming signals, but
provides the L values of the cross-correlation in one step. Since the Fast Fourier
Transform (FFT) is an efficient implementation of the DFT, this approach can be
computationally efficient for long sequences, w.r.t. the linear cross-correlation.
Furthermore, the local replica is multiplied by a local carrier whose frequency varies
over a search space centered around fIF . Based on the values of the correlation
between the two signal over this bi-dimensional search space of time (code delay)
and frequency (Doppler shift), the receiver should decide whether the satellite is
present, and in that case give a first estimate of delay and Doppler shift based on
the position of the peak as can be seen in Figure 1.7.

Figure 1.7: Example of correlation peak in the search space.
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1.5 – PVT Computation

1.4.3 Tracking Stage
The tracking stage works as a feedback control loop. Given the rough delay

and Doppler shift estimation, a code wipe off can be performed by subtracting the
aligned local replica of the code from the incoming signal. The result should be a
clean sine wave, which can be used to obtain a finer estimation of the frequency,
and hence of the Doppler shift. In the same way, a carrier wipe off is obtained by
subtracting from the incoming signal a local carrier with the same frequency. This
is possible thanks to the Doppler shift estimation obtained through the acquisition
stage. Once again, the results should be a clean code signal, that allows for a finer
estimation of the delay.
At each iteration of these steps, a new estimation, possibly more accurate, of
Doppler shift and delay is obtained, which can in turn improve the code and carrier
wipe off in the next iteration. These two loops are called Phase Lock Loop and
Delay Lock Loop, and are initiated thanks to the previous estimation of parameters
performed in the acquisition stage. As the name suggests, these loops allow to
track the changes in delay and Doppler shift continuously, as the satellite moves
[1].

1.5 PVT Computation
Once the shift between the received signal and the local replica has been obtained,

the distance between the satellite and the receiving device can be estimated. The
PRN codes are transmitted by the satellites at precisely known time instants, and
the information about their transmission time is contained in the navigation data.
The time of reception of the sequence can instead be retrieved from the receiver
clock. The difference between these two times is the Time of Flight (ToF) of the
signal, which is multiplied by the speed of light c to obtain a measure of pseudorange
between the satellite and the receiver. After the receiver has been able to detect
the visible satellites, and has managed to obtain pseudorange measurements from
at least four satellite, a PVT solution can be computed. The reason why at least
four pseudoranges are needed, is that the user has to estimate 4 unknowns: its
three coordinates (xu, yu, zu) defined in a Cartesian reference systems, and the bias
of its clock w.r.t. the GPS time δtu [1].

9
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1.5.1 PT Estimation using Pseudoranges
The pseudorange measurement obtained from user u w.r.t. satellite s can be

written as

ρsu =
ñ

(xs − xu)2 + (ys − yu)2 + (zs − zu)2 + but (1.1)

where the bias but = c ·δtu is computed as the product between the clock bias δtu
and the speed of light. Therefore, ρus is the geometrical distance between the receiver
and the satellite plus the bias but. The position of the satellite ps = (xs, ys, zs)
can be derived from the information present in the navigation data sent by the
satellite itself, while the pseudorange value is measured by the receiver, thus leaving
four unknown quantities. Since, as mentioned in Section 1.5, the pseudorange
measurements is affected by errors as well, (1.1) can also be re-written as

ρsu = rsu + but + Ô (1.2)

where Ô account for all the remaining errors which are not corrected. The generic
formula of the pseudorange given in (1.1) can be approximated by Taylor expansion
around a known location and time p̂u = (x̂u, ŷu, ẑu, b̂ut) as shown in Figure 1.8.

pu p̂u

ps

∆pu

ρsu

ρ̂su

Figure 1.8: Linearization around known position p̂u.

The difference between the approximation point and the receiver position is
∆pu = p̂u − pu. Then, a first order approximation yields

∆ρsu = ρ̂su − ρsu = axs∆xu + ays∆yu + azs∆zu −∆but (1.3)

10



1.5 – PVT Computation

where the coefficients are defined as

axs = xs − x̂u
r̂su

, ays = ys − ŷu
r̂su

, azs = zs − ẑu
r̂su

r̂su =
ñ

(xs − x̂u)2 + (ys − ŷu)2 + (zs − ẑu)2.

(1.4)

Clearly from (1.4), r̂su is the Euclidean distance between the satellite and the
linearization point. In this way, the solution of the system of four equation (one
for each pseudorange) can be obtained starting from an estimated point and then
solving iteratively. The system of the equations in (1.3) can be written in matrix
notation as

∆ρ = H ·∆p (1.5)
where the matrix H contains the coefficients defined in (1.4) for each of the N

visible satellites

H =


a(1)
x a(1)

y a(1)
z 1

a(2)
x a(2)

y a(2)
z 1

... ... ... ...
a(N)
x a(N)

y a(N)
z 1.

 (1.6)

In case N = 4, then the solution can immediately be found by inverting (1.5)
to obtain ∆p = H−1∆ρ. If instead N > 4, then a least square solution has to be
used and is given by the value of ∆p which minimizes the square of the residual

RSE(∆p) = (H∆p−∆ρ)2. (1.7)
By differentiating w.r.t. ∆p, the gradient of RSE is obtained

∇RSE = 2(∆p)THTH− 2(∆ρ)TH. (1.8)
From (1.8), the transpose is taken and, and since the minimum value of RSE

has to be found, the gradient is set to zero

2HTH(∆p)− 2HT (∆ρ) = 0. (1.9)
Under the assumption that (HTH)−1 is non-singular, then the final solution is

found as

∆p = (HTH)−1HT∆ρ. (1.10)
This obtained solution is a Maximum Likelihood (ML) solution, which minimizes

the quadratic error of the approximation point [1].
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1.5.2 Velocity Estimation using Doppler Shift
In case the velocity of the receiver has to be estimated, pseudorange measure-

ments do not provide any information about their dynamics, since it only measure
their distance w.r.t. the satellites. Instead, Doppler shift measurements can be
used, as they contain information about the user-to-satellite relative velocity.
The frequency of the signal received by i from satellite s can be modeled as

f su = fc

3
1− vsu · esu

c

4
(1.11)

where fc is the nominal carrier frequency as described in Section 1.3.1, while esu
is the steering vector pointing from receiver u to satellite s, whose coefficients are
computed in (1.4). vsu is the user-to-satellite relative velocity.
It follows that the Doppler shift can be computed as

∆f su = f su − fc = −fc
vsu · esu

c
. (1.12)

The relative velocity can be defined as

vsu = vs − vu (1.13)

which is simply the difference between the two velocities (first derivative of the
position).
Due to the drift of the receiver clock, the received signal is not exactly centered
around the nominal frequency and is instead obtained as f su = fc(1 + ḃu). Then,
(1.11) can be rearranged to obtain

c
f su − fc

fc
+ vs · esu = vu · esu −

c f su ḃu
fc

. (1.14)

The satellite velocity vs can be retrieved from the ephemeris, so the right side
of (1.14) contains the derivatives of the receiver position and clock drift which
are unknown. Given the Doppler shift measurements obtained w.r.t. at least 4
satellites, then a system can be solved to obtain the receiver velocity.

1.5.3 Quality of the PVT Solution
The quality of the resulting solution depends on the number of available pseudo-

range measurements and on the geometry of the satellites in space. To achieve the
most precise solution as possible, it would be preferable to have as many visible
satellites as possible, distributed in space in order to be in different directions from
the user (i.e. not in the same portion of the sky from the perspective the receiver).
This comes from the fact that when performing a PVT estimation, a system of
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equations has to be solved. If the equations were all linearly independent, then the
best solution would be possible. But, since satellites in line-of-sight can only be
above the line of the horizon, this condition of linear independence is not satisfied.
Therefore, especially in urban scenarios in which large portions of the sky are
hidden to the receiver, possibly due to the presence of buildings or other obstacles,
the PVT computation is still possible, as long as four satellites are visible, but the
quality of the solution degrades.
From (1.10), the elements of the error vector ∆ρ can be modelled as random
variables with variance σ2

UERE (User Equivalent Range Error). On the other hand,
considering the position error ∆p, its covariance can be computed as

cov(∆p) = (HTH)−1 σ2
UERE. (1.15)

By defining

G = (HTH)−1 =


g11 g12 g13 g14
g21 g22 g23 g24
g31 g32 g33 g34
g41 g42 g43 g44

 (1.16)

then the Geometrical Dilution Of Precision (GDOP) factor can be derived as

GDOP =
√

g11 + g22 + g33 + g44 (1.17)

and the standard deviation of the positioning error is therefore obtained as

σp = GDOP σUERE. (1.18)

It should be noticed from (1.6) that matrix H is obtained from the coefficients
in (1.4), and thus only depends on the geometry of the problem. Therefore, in
(1.18) the GDOP works as an amplification factor for the uncertainty on the user
measurements that depends on the position of the satellites. This means that the
integration of other auxiliary measurements, possibly coming ground anchor nodes,
would compensate for the lack of visibility, by providing ranging information that
is geometrically relevant.
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pi pj

ps pt pu

Figure 1.9: Example of limited visibility due to obstacles.

As can be seen from Figure 1.9, the presence of obstacles in urban environments
can decrease the number of line-of-sight signals. The integration of auxiliary ranging
measurements (red line), not only can compensate for the lack of visible satellites,
but also improves the geometry of the system to be solved.
Equally important to the quality of a PVT solution, is the precision of the pseudor-
ange and Doppler measurements obtained from each satellite as modelled by σ2

UERE.
Several sources of error affect the pseudorange measurements, like propagation
delay errors in the ionosphere or troposphere, multipath error introduced by the
environment surrounding the receiving device, or errors in the parameters of the
satellite trajectory [1].
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Chapter 2

Cooperative DGNSS

The positioning solution obtained through GNSSs is used by an increasing number
of Intelligent Transportation System (ITS). However, these vehicular applications
require very strict safety-related constraints, which are not always met by stand-
alone GNSS [11]. Especially in some harsh environments, like urban canyons,
the quality of the positioning solution degrades quickly due to limited visibility,
multipath and possibly both intentional and unintentional interference as well.
To overcome this limitation, different enhancements of GNSS have been developed
in order to improve the positioning solutions [12]. Many of these applications are
focused on the use of sensors such as 3D laser scanners (also known as LIDAR),
radar sensors or camera systems [13]. The high precision information provided
by these sensors allows for vehicles to gain a comprehensive knowledge of their
surroundings, including possible obstacles, and thus allowing them to navigate
through it. Since the use of these sensors leads to a drastic increase in both costs
and computational complexity, auxiliary methods based on the cooperation between
different networked receivers, exchanging GNSS-only measurements, have been
proposed [14] [15] [16].
In particular, Cooperative GNSS exploits the ability of multiple receiving devices
(also called agents) to communicate with each other, so that pieces of information
such as GNSS measurements can be exchanged among them. This interaction
between agents can be done through civil networks infrastructure such as cellular,
or private/public Wi-FI networks. In case these are not available, direct communi-
cations between receivers is also a possibility. In either case, the transmission of
cooperative messages has to be regulated by proper communication protocols that
guarantee low latency (e.g. USP, RTSP), which are not discussed in this work.
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Figure 2.1: Simplified block scheme of a cooperative DGNSS receiver.

Figure 2.1 shows a simplified scheme of a cooperative receiver. The Data Com-
munication Interface handles the exchange of GNSS-only measurements among
agents through a data channel. These information is then exploited by the Col-
laborative Ranging Unit (CRU) to compute inter-agent distances. The Hybrid
PVT Processor is then responsible of computing a PVT solution based on both
the GNSS measurements coming from the respective antenna and front-end, and
the cooperative measurements computed by the CRU. The work presented in this
thesis focuses on the integration of the additional cooperative measurements in the
PVT computation in order to improve the quality of the positioning solution.
In the context of cooperative positioning, vehicles are able to broadcast messages
containing information regarding their most recent PVT solution, as well as mea-
sured pseudoranges and Doppler shifts, to other vehicles. At the receiver, this
information can be used by the CRU to compute inter-agent distances (also called
baseline lengths). The idea is to use the position of other agents as reference anchors
(in addition to the satellites) for relative ranging. The goal of these methods is to
exploit the additional information transmitted by aiding agents to improve both
accuracy and precision of the navigation solution, assuming reliable information is
transmitted among the cooperating receivers [17].
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Figure 2.2: Simplified cooperative scenario with two agents.

Figure 2.2 shows a two-dimensional simplified cooperative scenario where two
dynamic agents with velocity v are cooperating. The positioning solution of both
of them is affected by an error with covariance matrix C. Such covariance matrix
represented as an ellipse describes the uncertainty on the positioning solution. Since
in navigation applications it is important to measure not only the position, but
its uncertainty as well, the estimation of the covariance matrix C also has to be
performed. The aim of the aided agent, lets say j, is to estimate the true Euclidean
distance between the position of the two agents

rij = ëpi − pjë. (2.1)

A possible strategy would be to have the two agents simply exchange their
computed position (i.e. Absolute Positions Distance), but since the position of
agent j has yet to be estimated, (2.1) cannot be used to estimate the inter-agent
distance directly. Instead, this quantity can be estimated thanks to physical ranging
(using the sensors described in Section 2) or through the exchange of position-related
data such as GNSS measurements. This additional ranging information can be
used by agent j to improve its own positioning solution.

2.1 Differential Methods
The estimation of these inter-agent distances is performed through methods

similar to those used in Differential GNSS, with the difference that in the coop-
erative case both devices are moving, and base and aided station are determined
according to the quality of their a-priori information regarding state vector and
its covariance matrix. In order to perform this estimation, either raw code or
carrier measurements can be used, although the latter is not preferred since it is
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prone to cycle slipping phenomena and requires the carrier phase ambiguity to be
resolved [14]. Different techniques can be used to exploit these measurements to
obtain baseline length estimates, namely: Inter-Agent Ranging, Raw Pseudorange
Ranging, Single Differences and Double Differences (DD). Previous studies have
shown that DD technique can provide the most accurate estimations, under the
conditions of small uncorrelated error term contribution on the range measurements,
as well as small multipath error [14].

2.1.1 Synchronization of Pseudoranges
Differential methods aim at estimating the distance between two GNSS receivers

based on the difference between their measurements.
In principle, since the receivers all work independently on their PVT solution, the
estimation of the pseudoranges is not performed at the same time instant, as shown
in Figure 2.3.

tik tik+1

tjk tjk+1

Agent i

Agent j

τ jik

Figure 2.3: Time scale of two different cooperative agents.

The variable tik refers to time instant at which agent i has collected its measure-
ments and performed its k-th PVT solution. The computational delays introduced
by these operation are therefore not considered in the definition. The inter-epoch
misalignment between two agents is defined as

τ jik = tjk − tik. (2.2)

Since each measurement is time tagged to the GNSS time, the inter-epoch
misalignment is the difference in time between the time tag of two different receivers.
This means that each cooperative agent computed its distance w.r.t. to a given
satellites at a different time instant, and thus when the satellite is in a different
position. Even if the time misalignment of the two time tags is small, the resulting
pseudorange measurement can be greatly different because satellites move extremely
fast. Since the computation of the baseline length is based on the difference in
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distance w.r.t. a common reference point, the estimation is coherent only if time-
consistent measurements are combined. Therefore, the pseudoranges from two
different agents need to be synchronized in time.
It is important to note that the asynchronous nature of the different PVT solutions
is unrelated to the clock bias of the respective receiver, but is simply due to the
fact that different devices evaluate independent solutions.
The aided agent j, which receives pseudoranges from an aiding agent i, can adjust
them according to

ρsi (t
j
k) = ρsi (tik) + τ ijk λ0 ∆f si (tik) (2.3)

where ∆f si is the Doppler shift between satellite s and agent i, and λ0 is the
wavelength corresponding to the carrier frequency of the transmitted signal.
The idea behind (2.3) is to correct the pseudorange measurement w.r.t. satellite
s obtained by agent i, as if it was measured at the same time as agent j did.
This correction is performed by exploiting the Doppler shift measurement, which
implicitly contains the information on how fast the satellite and the agent were
moving away or towards each other, thus allowing to predict the pseudorange at
that time instant through a direct measurement performed previously.
It should be added that this correction is a linearization of the motion of both
satellite and agent, and thus is only accurate if τ jik is small enough.

2.1.2 Double Difference of Pseudoranges
Once the pseudoranges computed by different agents are synchronized, as

described in Section 2.1.1, they can be used to compute the baseline length as will
be showed hereafter. Considering a pseudorange measured by agent i from satellite
s, it can be expressed similarly to (1.2) as

ρsi = rsi + bi + xs + Ôsi (2.4)

where rsi is the user-satellite true range, bi is the error due to the receiver clock
bias, xs is the noise related to satellite s, while Ôsi is noise term related to both
satellite and agent. By subtracting the pseudoranges obtained from two agents
w.r.t. to the same satellite a Single Difference is obtained as

Ss
ij = ρsi − ρsj = ∆rsij + (bi − bj) + (Ôsi − Ôsj). (2.5)

Clearly, ∆rsij = rsi − rsj is the difference in true range. From (2.5) it can be seen
that the noise term related to the satellite xs has been cancelled, as it is in common
for both the agents involved in the computation of the SD.
Since the distance between the satellite and the agents is much larger than the
one between the two agents, the vectors pointing from the two agents toward the
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satellite can be considered parallel. For the same reason, the error in the estimation
of the position can be ignored when computing vector es, as it is negligible w.r.t to
the satellite-agent distance. As a result, es can be obtained thanks to the GNSS
corrections and the satellite ephemeris [11]. In such case, the difference in true
range can also be represented as

∆rsij = es · dij (2.6)

where es is the aforementioned vector pointing from the agents to the satellite,
and dij is the baseline vector, pointing instead from agent i to agent j, as depicted
in Figure 2.4.

pi pj

ps pt

∆rtij
∆rsij

dij

es et

Figure 2.4: Double Difference of pseudoranges.

After computing another SD w.r.t. a second common satellite t, then a Double
Difference can be obtained as

Dst
ij = Ss

ij − St
ij = (es − et) · dij + [(Ôsi − Ôsj)− (Ôti − Ôtj)]. (2.7)

When computing the DD, also the clock bias of both agents i and j can be
removed, since the term is in common to both the SD being subtracted from each
other. Furthermore, all the other common errors between the two agents are also
removed. Both ionosphere and troposphere error cancellations hold effectively when
agents are in close proximity, since the signal received by both agents has crossed
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roughly the same section of atmosphere.
Previous results also show that considerable improvement is obtained from integrat-
ing auxiliary measurements when the multipath conditions are very similar for the
two cooperating agents. For example, in case two receivers are in proximity, and
they both received a signal reflected from the same obstacle, the bias introduced
by the excess path from the reflection is cancelled, since it is common for both of
them. Furthermore, when computing a ranging measurement w.r.t. to a reference
point that is on ground level, the satellite geometry improves (the aiding agent
essentially acts as an additional ground anchor node), potentially leading to an
improvement in the quality of the PVT solution due to a reduction of the GDOP,
as explained in Section 1.5.3.
Going back to the DD calculation, given a set of common satellites visible to both
the agents, and taking one of those as a reference satellite (lets say s), (2.7) can be
expressed in matrix notation as

Dij = H dij + Ô (2.8)
where Dij is the column vector of the DD w.r.t. the reference satellite and each

of the other common satellites with indexes {1, ..., n}. Similarly, the other column
vectors are defined as

H = [(e1 − es), · · · , (en − es)]T

Ô = [((Ô1
i − Ô1

j)− (Ôsi − Ôsj)), · · · , ((Ôni − Ônj )− (Ôsi − Ôsj))]T
(2.9)

under the assumption that the non-common noise terms Ô are zero mean and
with equal variance, than the baseline vector dij can be obtained through linear
LMS estimator according to

dij = (HTH)−1 HT Dij. (2.10)
Eventually, the baseline length can be obtained as the norm of the baseline

vector

dij = ëdijë. (2.11)
It is important to highlight an crucial difference in the way different ranging

measurements are obtained. GNSS pseudoranges are computed as a product
between the estimated time of flight of the signal and the speed of light. On the
other hand, the baseline lengths are computed in (2.11) as the Euclidean norm of
a multivariate vector. Regardless of the differential technique used to obtain the
baseline vector estimate, when its magnitude is small, the resulting distribution of
the error on the baseline length is skewed towards positive values, since negative
distances can not be obtained.
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2.1.3 Weighted Least Square Double Difference
From (2.8), it can be seen that the only remaining error term after the DD

computation is Ô. In non-urban scenarios in which the multipath effect is small, the
term Ô is mostly due to code acquisition error, a quantity that is strictly related to
the CNR of the received signal from each satellite.
A possible strategy to reduce the impact of Ô would be to compute the DD using
only pseudoranges from satellites with high CNR values, above a given threshold
[18]. By selecting only pseudorange measurements performed from a satellite
with strong received signal would reduce the errors, but the improvement would
be counteracted by the reduction in the number of measurements used in the
computation. As an alternative, instead of only using measurements from high
CNR sources, measurements can be weighted based on the strength of the received
signal. The WLS-DD method, proposed in [11], is a linear unbiased estimator that
weights measurements based on the knowledge of their covariance matrix . The
baseline vector is obtained as

dij = (HTW H)−1 HT W Dij. (2.12)

It is assumed that the error terms Ô are independent and zero-mean, but
differently from (2.10) of non-equal variance, since the signal strength from different
satellite is in general different. In (2.12), W is the weight matrix obtained as the
inverse of the covariance matrix of Ô.
Exactly as the DD method detailed in Section 2.1.2, a satellite (once again let it be
called with index s) with the highest possible CNR value for both the two agents i
and j has to be chosen as a reference satellite. If this is ensured, then the value
(Ôsi − Ôsj) is small enough and the following simplification can be done

Ôt = (Ôti − Ôtj)− (Ôsi − Ôsj)
Ôt ≈ (Ôti − Ôtj).

(2.13)

Since the Ô terms are assumed to be uncorrelated, than the weight matrix can
be simplified to a diagonal matrix

W =


1

(σ0)2 0 . . . 0
0 1

(σ1)2 . . . 0
... ... . . . ...
0 0 . . . 1

(σn)2

 (2.14)

where the set of other satellite used for the computation is {0,1, . . . , n}.
Unfortunately, the standard deviation σa of a generic noise error term cannot be
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measured directly, but it can be assumed to be inversely proportional to the CNR

(σa)2 ∝
A

1
(Sa

i )2 + 1
(Sa

j )2

B
(2.15)

where Sa
i is the CNR of the signal received by agent i from satellite a. Equation

(2.15) can be substituted into (2.14) to obtain the weight matrix W.
In order to avoid using pseudorange measurement with high noise, a minimum
threshold of CNR is set, and only satellite with CNR values above the threshold
are used in the computation. Since (2.12) is used to estimate a baseline vector
which has three components, one for each spatial dimension, the signal from at
least other three common satellites (plus the reference one) need to have a CNR
value higher than the threshold. If this condition is not met, or if no satellite has a
CNR value high enough to be used as the reference satellite, an estimation of the
baseline vector is still possible, but its quality is not guaranteed.
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Chapter 3

Bayesian Estimation for
Hybrid PVT

In the previous Chapter, it was described how the performance of stand-alone GNSS
was not sufficient for applications with strict safety requirements, and cooperative
methods to improve the performance of the positioning solutions were introduced.
In a scenario where additional information (i.e. inter-agent distances) is exploited,
the receiver needs to be able to integrate the auxiliary measurement with the other
GNSS observables. In the context of GNSS, the state to be estimated is

θ = [ x y z b ẋ ẏ ż ḃ ]
p = [ x y z ]
v = [ ẋ ẏ ż ]

(3.1)

where p and v are respectively the vectors of position and velocity of a receiver
in a given reference frame. Instead, b and ḃ are the bias and drift of the receiver
clock w.r.t. to the GNSS time scale. The aim is to estimate the state vectors
starting from a vector z containing the observed measurements, including the
cooperative ones. In particular, Bayesian Filters exploit the a-priori knowledge
regarding the temporal evolution of the system.

3.1 Kalman Filter
The KF is an algorithm that, from a series of measurements containing noise,

estimates unknown variables thanks to a joint probability distribution.
Given a discrete time representation of a system, a state transition equation can
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be expressed according to

θk = fk−1 (θk−1,vk−1) . (3.2)

The state at given epoch k is a function, possibly non-linear, of the previous
state and of vk−1, a multivariate random variable representing the noise affecting
the states. The measurements can instead be expressed as

zk = hk (θk,wk) . (3.3)

Once again, hk is a possibly non linear function, and w is another multivariate
random variable representing the measurement noise. It should be added that
vector zk containing the GNSS measurements can be extended to the cooperative
case by simply appending a vector dk with the auxiliary measurements as

z̄k = [ zk dk ] (3.4)

The Kalman Filter provides the optimal unbiased estimation of the state only if
the following assumptions hold:

• Both vk−1 and wk are realizations of a multivariate Gaussian random variable
with known parameters

• fk−1 is a known linear function of θk and vk−1

• hk is a known linear function of θk and wk

In the context of GNSS, these assumptions are not met, since trilateration is
not linear by definition, and the motion of the receiver is often non-linear as well.
Most importantly, the error affecting the cooperative ranging measurements is, in
general, not Gaussian distributed.
To deal with such conditions, sub-optimal filters have been adopted. In particular,
the Extended Kalman Filter is widely used in positioning applications. It works
by linearizing the system by means of Taylor expansion and then solving through
linear KF. On the other hand, the Unscented KF is instead able to approximate
posterior probability as Gaussian-distributed.

3.1.1 Extended Kalman Filter Routine
The algorithm starts by predicting the state at epoch k based on the a posteriori

state estimate θk−1|k−1 at the previous epoch, and on the system inputs uk as

θ̂k|k−1 = Fk θ̂k−1|k−1 + Bk uk (3.5)
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where Bk is the input matrix, while the linearized state transition matrix is
derived from (3.1) as

Fk = ∂f

∂ θ

-----
θ̂k−1|k−1,uk

. (3.6)

The system is therefore linearized around the current estimate. It should be
added that the EKF can suffer from severe divergence of the estimation if the
system is not modeled properly.
The covariance matrix is also predicted as

Pk|k−1 = FkPk−1|k−1 Ftk + Qk (3.7)

in which Qk is the covariance matrix of the multivariate random variable vk.
Afterwards, the update procedure starts by computing the innovation vector
according to

ỹk = zk − h(θ̂k|k−1) (3.8)

this quantity is obtained as the difference between the current measurement and
the predicted state. Subsequently, the covariance prediction obtained in (3.7) is
used to compute the Kalman Gain

Kk = Pk|k−1 HT
k (HkPk|k−1 HT

k + Rk)−1 (3.9)

where Rk is instead the covariance matrix of the noise wk.
Finally, the a posteriori estimate of both the state vector and the covariance matrix
are computed as

θ̂k|k = θ̂k|k−1 + Kk ỹk. (3.10)

Because of how the innovation vector is defined, the second term in (3.10) acts
as a correction term of the predicted state according to the input measurements.
The covariance matrix is updated as well

Pk|k = (I−KkHk)Pk|k−1 (3.11)

these correspond to the final estimates at epoch k, and will be subsequently
used to perform the prediction procedure in the next iteration k + 1.
The EKF is therefore able to deal with non-linear systems, but still assumes that the
process and observation noises are Gaussian distributed, which is not guaranteed
to be the case in the case of cooperative inter-agent distance measurements, as
already mentioned in Section 3.1.
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3.2 Particle Filter
The Particle Filter is a Monte-Carlo approximation of an optimal sequential

Bayesian estimation algorithm. The important feature of the PF is that it relaxes
the constraints of the KF, in particular it is able to natively handle both non-linear
system and non-Gaussian probability densities (or PDF). As such, in the context of
cooperative positioning applications based on inter-agent distances, it can provide
a better performance w.r.t. the EKF. The drawback of this method is that the
estimation requires a higher computational effort, especially when the cardinality
of the state vector to be estimated increases.

Particle
Generation

Particle
Prediction

Weigths
Computation

Resampling Estimation

Measurements

State θk
Covariance Ck

Likelihood
Distribution

Figure 3.1: Block diagram of Particle Filter routine.

As shown in Figure 3.1, the algorithm starts by generating a cloud of particles
around the current estimate, which are then propagated forward similarly to what
is performed in (3.5). Each particle represents a possible state estimate, and is
assigned a weight (probability) based on the value of the input measurements and
a likelihood function. The final state estimate is then obtained as the weighted
average of all the particles, and used to initialize the generation of particles at the
next epoch.

3.2.1 Particle Filter Algorithm
At first, a set of N particles in initialized according to the a priori density

θ̂ik ∼ p
1
θk | θ̂ik−1

2
(3.12)

where θik is the state vector of particle i at time k. The number of generated
particles needed to guarantee the best performance of the PF filter increases with
the number of dimensions of the state to be estimated. The number of particles
has also a big influence on the computational time needed by the PF to obtain a
solution.
Next, in the prediction step, each particle generated previously is propagated
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forward according to the system model as it is done in the EKF routine.
Afterwards, the weights computation is performed based on a predefined likelihood
function p(zk | θ̂ik) as

wi
k = L (z̄k | θ̂ik)qN

i=1 L (z̄k | θ̂ik)
=

r
n p
1
zn,k − zin,k

2
qN
i=1

r
n p
1
zn,k − zin,k

2 . (3.13)

Function p refers to the PDF of the measurement error, and the likelihood
is actually then obtained as the product of the PDFs for all the measurements.
What is from now on called the likelihood distribution, only refers to the PDF of a
single measurement. The likelihood function should be chosen so that it describes
the way the error is expected to be distributed for the measurements. The PF
is able to assign different likelihood functions separately for each input measurement.

pi

dij

Figure 3.2: Projected particles are assigned weights based on the input measure-
ments.

As shown in Figure 3.2, a weight is associated to each generated particle based
on its distance w.r.t. the anchor point, which in case of cooperative measurements
is the position of the aiding agent pi. If for example a Gaussian distribution is
used as likelihood, then particles whose distance from the anchor point is the same
as the estimated baseline length dij will be assigned the highest weights. Clearly,
other particles are assigned decreasingly smaller weights according to the shape
of the likelihood distribution. Each particle is assigned a weight for each of the
input measurements, and their final weight is given by the product of all assigned
weights.
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Afterwards, the resampling step is performed, where particles are re-combined.
This step is fundamental since it has to deal with two problems of the PF: degener-
acy problem and sampling impoverishment.
The degeneracy problem occurs after multiple iterations of the PF algorithm, when
the weight of a single particle progressively converges to 1, while all other particles
have negligible weight. When this happens, first the PF collapses to a single
point thus losing its peculiarity. Second, most of the computational effort of the
algorithm is used to predict and assign weights to particles which have little to
no contribution to the final solution. It has been shown that, if no re-sampling
procedure is performed, this problem cannot be avoided.
Therefore, the purpose of the re-sampling step is to generate a new set of particles,
starting from the ones already existing, where particles with higher weights are
more likely to be drawn into this new set.
This method solves the degeneracy problem, but introduces sampling impoverish-
ment. Since particles with high weight are more likely to be drawn into the new set,
they are statistically chosen multiple times, thus leading to a decreased diversity
in the particles of the re-sampled set. This issue can be solved by performing the
re-sampling step only when the degeneracy effect has become significant. The level
of degeneracy can be represented by the effective number of particles, given as

Ne = 1q
i(wi

k)2 . (3.14)

This value is compared with a threshold (e.g. Nt = 2N
5 ), and the re-sampling

step is performed if Ne ≤ Nt (degeneracy higher than the threshold).
In the end, the Bayesian estimation is given as the weighted average of the re-
sampled particles as

θ̂k =
NØ
i=1

wi
kθ

i
k (3.15)
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Chapter 4

Error Modelling for
Cooperative GNSS

In this Chapter, the distribution of the error of the baseline length is analyzed for
two different available datasets, involving both static and kinematic agents. In
particular, when a dynamic agent is involved in the cooperation, the error on the
estimated baseline length shows a bias whose value evolves with time.
The behaviour of the baseline length error is observed for different parts of the
trajectories of the kinematic agents, and some metrics are introduced in an attempt
to model the bias.
Since, it is observed that the distribution of the baseline length error is not station-
ary, the aim is to gain a better understanding of how the motion of the cooperating
agents affects this distribution. With that knowledge, the PF algorithm can be
modified to be able to adapt the likelihood used to weight particles based on such
defined metrics.
At first, bias prediction model based on both absolute and relative motion between
the agents is discussed. Then, based on the knowledge acquired during the mod-
elling process about the link between the bias and the dynamics of the agents,
a more in-depth analysis of the receiver architecture handling the cooperative
measurements is performed, leading to the discovery of the origin of the observed
bias.
Finally, two possible strategies to correct this bias are proposed and their perfor-
mance in terms of accuracy of the navigation solution is evaluated and compared
to the previous implementation of the receiver architecture.
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4.1 Simulation Scenario
The scenario of cooperative vehicles is implemented through an Agent Network

(AN). A vehicular aided agent T (also referred as Target agent) moves on a
Bernoullian lemniscate trajectory while exchanging GNSS measurements with some
static aiding agents, whose position is exactly on the track as can be seen in Figure
4.1. Agent T is also static for roughly the first 30 seconds of the simulation, and
then uniformly accelerates until full speed is reached.
In this scenario, at each epoch of the simulation (measurements rate of 10 Hz),
agents interact with each other by providing an estimate of their state vector, along
with the set of GNSS measurements (i.e. Doppler and pseudoranges). Pseudorange
measurements are synchronized and inter-agent distances are then computed by
means of WLS-DD method as explained in Section 2.1.3.
In addition to the stand-alone GNSS measurements, the cooperative ranging
measurements are integrated in the PVT solution using the PF algorithm in order
to improve the estimate of the position. All simulation results presented in this
chapter are obtained working with a simulated constellation of 8 visible satellites
and the cooperation of only one aiding agent at a time. As such, this can be
considered as a worst-case scenario for cooperation, as only one inter-agent distance
measurement is available. Extending the study to multi-agent cooperation is
therefore expected to provide further improvement to the quality of the positioning
solution.

= Static Aiding Agents

T

L ' 1000 m

Figure 4.1: Position of the cooperative Agents on the track.
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4.1.1 Ranging error for Static and Kinematic agent
At first, the ranging error obtained when two static agents exchange their GNSS

measurements is considered. This error is the result of the difference between the
output of the WLS-DD and the true distance between the agents. Since both the
trajectory of the moving agent and the static position of the aiding agents are
simulated, their true position is known at each time instant.
A qualitative evaluation of the behaviour that is shown in Figure 4.2, suggests that
both mean and variance of the distribution of the ranging error are constant over
time.
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Figure 4.2: Ranging error over time when both the agents are static.

Considering the ranging error computed when one of the agents is the moving
target, as shown in Figure 4.3, the distribution of the baseline error is not zero-mean
anymore, as it presents a bias that evolves with time.
The difference w.r.t. the previously considered static case suggests that the bias
might be introduced by the motion of one of the agents involved in the computation
of the DD. This notion is further supported by the fact that the bias, excluding
the linear increment over time, which will be discussed later, is periodic with the
same period as the motion of the agent along the trajectory.
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Figure 4.3: Ranging error over time when one moving and one static agent are
involved.

4.1.2 Dependence on Motion
To address a possible correlation between the motion of the agent and the

experienced bias, a first quantity is investigated as---αijk --- = ëvik−1 × vikë. (4.1)
Since the definition of the metric is derived from the observation of the behaviour

of the bias over time, it is only tentatively defined, as well as all other metrics that
will be introduced in this chapter.
In (4.1), αijk is defined as the ranging error bias between agents i and j, at
simulation epoch k. Hence, the bias at each iteration is defined as the norm of the
cross product between two consecutive velocity vectors. As previously mentioned,
since only one agent is in motion, only its velocity is considered in the computation
of (4.1). Furthermore, it is reminded that the cross product of two vectors is
defined as

ëa× bë = ëaëëbë|sin θ| (4.2)
where θ is the angle between vectors a and b in the plane that contains them.
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Therefore, there are only two cases in which the norm of the cross product of two
vectors is equal to zero: when the norm of either vector is zero, or when θ is zero.
Going back to the quantity defined in (4.1), this value is zero when two consecutive
velocity vectors are parallel (i.e. when the trajectory is straight), or when the speed
(the norm of the velocity vector) is zero, which is when the agent is static. This
last case is consistent with what was observed when both agents were static, and
no bias was indeed observed. As shown in Figure 4.4, a first comparison between
the model and the actual errors shows that, while the zero-points of the metric
correspond to moments of zero bias experienced in the simulation (except for a
slight delay which will be addressed later), the general behavior of the bias is not
fully captured just yet.
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Figure 4.4: Ranging error over time compared with the cross product of consecu-
tive velocity vectors as in (4.1).

4.1.3 Dependence on Relative Motion
A closer look at the bias behavior for the measurements exchanged between

the target peer and different cooperative agents, showed slight differences between
the cases, thus suggesting a possible dependency also on the relative motion or
position, and not only on the trajectory of the moving agent, as considered so far.
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For this reason, a second metric for the bias estimation is introduced as---βijk --- = ëdjik−1 × djik ë (4.3)

where the vector dijk is the baseline vector, pointing from the static agent j to
the moving one i. Given the definition provided in (4.3), once again two possible
cases where the resulting bias is zero can be identified: when the norm of the
baseline vector is zero (i.e. the baseline length), or when baseline vectors at two
consecutive epochs are parallel, thus pointing in the same direction. This last
case occurs when the agent is moving directly towards or from the static agent
(i.e. when its angular velocity with respect to the static agent is zero). It can be
observed in Figure 4.5 that as for the quantity

---αijk ---, also for the metric
---βijk ---, points

where the value is zero correspond to points in the trajectory in which the ranging
error shows zero bias. Moreover, it is interesting to notice that zero-bias points
that were previously not captured by (4.1), are instead modeled by (4.3).
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Figure 4.5: Ranging error over time compared with cross product of baseline
vectors.

Since both the metrics defined in (4.1) and (4.3) are obtained by computing the
norm of a vector, they are always non-negative. On the other hand, as it can be
seen in Figure 4.3, the bias observed in the measurements can also be negative
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for certain parts of the trajectory. As a consequence, the sign of these functions
has to be considered as well. More specifically, it is introduced by taking into
consideration the sign of the components of the vector of which the norm is taken.
For each of the two metrics defined so far, their sign is computed as the sign of
the sum of the components of the cross-product. An equivalent definition could
be proposed by taking the sign of the product, but since the functions contain
oscillations due to noise, the sum has shown to be a more stable options close to
zero-crossing points.

4.1.4 Dependence on Time
As mentioned in 4.1.1, the bias also showed a linear dependency w.r.t. the

simulation epoch k. By merging this behavior with the previously defined quantities,
its absolute value is therefore computed as---φijk --- =

---αijk --- ---βijk --- a k (4.4)

where a is a coefficient used to adjust the model to match the slope of the linear
increment of the bias.
The now complete model still does not perfectly match the behavior of the bias,
which is shifted in time. A careful analysis involving the computation of the
cross-correlation between the bias prediction model and the ranging errors, shows
that the bias curve is lagging the model by 43 epochs. This is tied to the specific
dataset under study, and possibly due to some fault during the processing of the
simulated signals during the creation of the dataset. As a consequence, the shift
here introduced is not actually part of the model.
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Figure 4.6: Model shifted in time to match the actual behavior.

The origin of this delay in time is not known, but its value is consistent for all
the exchanged measurements between all possible pairs of agents. For the sake of
an evaluation of the improvement of the positioning solution given by the removal
of the bias, the prediction model is shifted in time to properly match the actual
behavior, as shown in Figure 4.6.
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Figure 4.7: Navigation Solution error compared with ranging error over time.

A comparison between the error magnitude of the stand-alone positioning solu-
tion (i.e. without cooperation) and the ranging error, shows a similar behaviour
and increment over time for both, as can be seen in Figure 4.7. If the positioning
solution shows a systematic error, it can be supposed that it is due to either the
signal generator, or the receiver. As a results, the bias observed in the distribution
of the baseline length error, might not be due to how the cooperative measurements
are combined to compute the baseline, but from a systematic error already present
in the input measurements of the dataset.

4.1.5 Bias Removal
In order to assess the improvement obtained by the PF when dealing with

unbiased measurement, the model previously defined is subtracted from the inter-
agent ranging data. The resulting residual error and its distribution are shown
in Figure 4.8a and 4.8b respectively. Despite a sub-optimal compensation of
the bias, the use of the prediction model guarantees a residual error distribution
considerably closer to some well-known probability distributions, hence enabling
the measurements likelihood function used in the PF to better match the actual
error distribution.
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Figure 4.8: Residual ranging error and its distribution.

To quantify the improvement in terms of precision given by the implementation
of the a posteriori correction of the bias discussed in the previous sections, the
CDF of the navigation error is evaluated for the first lap of the simulation, which
corresponds to the first 1900 epoch of the simulation. The value of the bias predicted
by the model is subtracted from the ranging measurement at each epoch of the
simulation, this is equivalent as having as errors on the measurements the values
in Figure 4.8a instead of the ones in Figure 4.3. The values being subtracted from
the measurements according to the model in (4.4) are known a-priori thanks to the
simulated environment, and from those values their velocity and baseline vectors
are computed. A real-time implementation of the model would instead require the
aided agent to compute the bias prediction using estimation of these quantities,
that are affected by error, thus leading to a degradation of the performance.
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Figure 4.9: Particle filter performance improvement when bias correction is
applied to inter-agent distances.

From the CDF of the positioning error shown in Figure 4.9, it is clear to see
that, even a heuristic correction of the bias can greatly improve the accuracy of
the positioning solution.

50-th percentile 75-th percentile 95-th percentile
Bias Correction 13.7 % 21.3 % 29.3 %

Table 4.1: Percentage improvement when using a posteriori correction of the bias.

As can be seen from 4.1, the percentage improvement obtained with the correction
is greater at the 95-percentile, which consist of the most critical cases. It should
be remarked that, as mentioned before, the dataset displayed an increase in time
of the bias of the ranging error that is likely due to come corruption of the data
and is not expected to be found in a real scenario.
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4.2 Circular Dataset
With the intent of gaining a better understanding of the role that the agent’s

motion might have on the stationarity of the experienced ranging error, a new
scenario is studied. In this case, both the target agent T and the collaborative
agents Ci are moving. The first follows a clock-wise circular trajectory, while the
others are moving as a convoy in counter-clockwise direction on another circular
track of slightly larger radius, as depicted in Figure 4.10. It should be added that
for this scenario, both the bias increase in time, and the shift in time between the
model and the actual behavior of the bias are not present, thus confirming that
the phenomena observed in the Bernoullian scenario were likely due to systematic
errors in the post-processing of the data.

R = 200 m

T

Aiding Agents

Figure 4.10: Trajectories of the cooperative agents.

4.2.1 Model Adaptation
The model obtained in Section 4.1.4 is applied to the new scenario, excluding for

the shift and linear increment in time. As can be seen in Figure 4.11, the model is
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still able to capture the periodicity of the trajectory, but is otherwise not consistent
with the bias in the error. This is to be expected, since the old model was devised
for the case in which only one agent is moving (and hence it only considers its
motion). Furthermore, the metrics previously considered might have been mislead
by the presence of the systematic error in the positioning solution present in the
other dataset.
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Figure 4.11: Ranging Error over Time compared with model obtained previously.

For these reasons, a new model is studied in order to consider a scenario where
both agents are in motion. The newly adopted metric is defined as---γijk --- = ëvik × vjkë (4.5)

where vik and vjk are the velocities of agents i and j respectively.
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Figure 4.12: Ranging Error over Time compared with modified model.

As it can be seen in Figure 4.12, the metric in (4.5) seems to accurately capture
the behaviour of the bias.

4.2.2 Doppler-based Model
Since the ranging error bias has been linked to the agent’s velocity, the possibility

to express this value in terms of Doppler measurements is explored. A new metric
is defined as the difference in measured Doppler between the two agents (with
respect to the same satellite), multiplied by its derivative

---δijk --- = (∆fai −∆faj )
∂(∆fai −∆faj )

∂t
. (4.6)

As can be seen in Figure 4.13, from a qualitative point of view, the model
based on Doppler measurements correctly captures the behaviour of bias. Despite
this, the possibility of defining this model using only one Doppler measurement is
allowed by the extreme simplicity of the trajectory, but a general case would need
the combination of different Doppler contribution, according to the geometry of
the problem, to effectively represent the agent’s motion in 3-D space. On top of
that, the noisy nature of Doppler measurements does not provide any advantage
w.r.t. using the velocity. It should be remarked here that, altough linked, Doppler
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shift are measured directly from the incoming signal of each satellite, while the
velocity is obtained as an output of the PVT computation.
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Figure 4.13: Ranging error over Time compared with prediction model based on
Doppler measurements.

4.3 Analysis of Receiver Architecture for Bias
Correction

The analysis performed so far, with the attempt of modeling the bias affecting
the ranging error, has showed a clear link between the motion of the agents and
the experienced bias, but since it is still unclear whether this bias is inherent of
the nature of the problem or if it is introduced when computing the DD, a more
in-depth look at the receiver software is required. In particular, a careful analysis of
the Collaborative Ranging Unit (CRU) performed with knowledge acquired so far
about the relationship between the motion of the agents and the bias in the ranging
measurements, has highlighted an implementation issue that was causing the bias
to occur. In its current implementation, when an agent receives the collaborative
measurements from another agent, since the two receivers are asynchronous in
collecting their observables, these measurements need to be corrected. If agent
j performs its pseudorange measurement at time tjk, while agent i does so at tik
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(which we assume to be before tjk), then the pseudoranges of the latter need to be
corrected so they are as if they were measured at time tjk instead, as explained
in Section 2.1.1. This is needed due to the fact that both the satellites and the
agent move in the meantime. In order to perform this operation, the Doppler
measurement with respect to each satellite are used to correct the respective
pseudorange. The difference between this two time instants is the inter-epoch
misalignment as computed in (2.2).
Afterwards, the corrected measurements are used to compute the baseline length
through DD method, the result of this operation is the distance between the two
agents as if both took their measurements at tjk

dijk = ëpi(t
j
k)− pj(t

j
k)ë. (4.7)

Eventually, it is compared with the true range to obtain the ranging error.
Differently from the measured baseline, the true range is obtained according to

rijk = ëpi(tik)− pj(t
j
k)ë (4.8)

which is the Euclidean distance between the positioning solutions, but these
points correspond to the position of agent i in time tik and the one of agent j at
tjk. This definition of true range is thus inconsistent with what is actually being
measured. Essentially, the bias comes from the fact that particles are weighted
based on the baseline length measurement dij , but the anchor point used to compute
the distance of the particles is the old position of the aiding agent pi(tik).

pi(t
i
k)

pj(t
j
k)

pi(t
j
k)

rijk

dijk

Figure 4.14: The bias on the ranging error is originated by an inconsistency in
the measurement of the distance between agents.
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Given the scenario drawn in Figure 4.14, a definition of the bias can be derived
as

φijk = dijk − rijk . (4.9)

A synchronization of the aiding agent j is performed in the CRU in order to make
the definition of the true range consistent with what is actually being measured.
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Figure 4.15: Ranging error before (a) and after (b) correcting the true range
computation.

As shown in Figure 4.15b, the distribution of the error no longer shows a bias
that evolves over time. Therefore, when the position of the aiding agent is correctly
synchronized, no bias prediction model needs to be used. This results is crucial, as
it shows that a correct estimation and integration of the cooperative measurements
does not introduce any bias.

4.4 Aiding Agent Position Synchronization
The discrepancy between the measured baseline length and the anchor point,

generates a systematic error which compromises the quality of the solution. Given
this inconsistency that is responsible for the ranging error bias, its maximum value
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at any given epoch is equal to

max φijk = vikτ
ij
k . (4.10)

It is directly proportional to the velocity of the collaborative agents whose
measurements have to be synchronized, and the time misalignment between the
two receiver. The actual bias then depends on the direction of the motion as well,
and is maximum when the aiding agent is moving directly towards or away from
the aided agent, but these two quantities can be used for a quick estimation of the
worst-case bias that can be experienced.
Previous work on cooperative positioning focused mostly on scenarios including
agents with low dynamics, and since the observed bias is directly proportional
to the velocity of the agents, there was no need to synchronize the position of
the aiding agents. Furthermore, since previous studies did not focus on precise
positioning (unlike what is done here), the effect of the bias from low-dynamic
agents was possibly hidden in the high variance of the estimation. To overcome
this issue, two possible position synchronization strategies are now discussed.

Velocity-Based Position Synchronization
First, a method based on the velocity of the aiding agent is discussed. When

agent j exchanges its measurements obtained at time tjk, the velocity obtained from
the PVT is also transmitted, along with the position. This additional information
can be used to predict the position of the aiding agent at time tik, according to

pi(t
j
k) = pi(tik) + vikτ

ij
k . (4.11)

Since this correction is a linear projection of the motion of the agent, it is not
an exact correction of the position, and only holds under the assumptions that τ ijk
is small enough and that the velocity of the agent changes slowly. It also has to be
considered that, in scenarios of high dynamics, it is needed greater synchronization
between agents for (4.11) to hold. It should be added that the availability of inertial
data collected by the aiding agent could enable a better estimation of his trajectory,
but would require considerably more data to be exchanged between the cooperating
agents.

Pseudorange-Based Position Synchronization
As already mentioned, when aiding agent i transmits its pseudorange measure-

ments obtained at time tik, those are synchronized by aided agent j in order to
perform the DD method. The idea is to use these synced pseudoranges as if they
were measured at time tjk to re-obtain the synchronized position of agent i by means
of position estimation algorithms. In particular, the LMS was used in this study to
compute the synchronized position. It should be noted that, differently from the
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computation of DD which uses raw pseudorange measurements, the LMS requires
pseudoranges to be corrected, and thus additional computations on the side of the
aided agent. The upside of this method is that, since the two agents are assumed
to be close enough, pseudoranges being exchanged can be corrected using the aided
agent’s parameters, and therefore no additional information has to be transmitted.

4.4.1 Performance of Position Synchronization methods
The performance of the previously described methods is evaluated with the

intent to quantify the improvement in the positioning solution that can be achieved
with respect to the previous implementation of the integration of collaborative
measurements. Since the issue of synchronizing the aiding agent position is critical
especially in high-dynamics situations, when agents are moving at considerable
speeds, these methods are compared over a portion of the simulation where the
agents are moving. The CDF of the error on the positioning solutions are shown in
Figure 4.16.
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Figure 4.16: Performance comparison of the presented synchronization techniques.

The percentage improvement in terms of CDF of both methods is then evaluated
at three different percentile points with respect to the past implementation where
the position of the aiding was not synchronized.
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Sync. method 50-th percentile 75-th percentile 95-th percentile
Velocity-based 13.1 % 9.8 % 14.2 %

Pseudorange-based 11.7 % 14.4 % 14.5 %

Table 4.2: Percentage improvement when synchronizing the position of the aiding
agent.

The results in Table 4.2 show that, even in situations where τ ijk < 0.1 s ,
in a dynamic scenario where agents are moving at relatively high speeds (i.e.
approximately 90 km h−1), the improvement in the positioning solution obtained
using the synchronization methods previously discussed is considerable.
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Chapter 5

Automatic Adaptive
Likelihood Switch

In section 3.2.1, it was mentioned how according to the PF algorithm, weights are
assigned to the particles based on a pre-defined likelihood distribution. Furthermore,
the PF allows for different likelihoods to be used for different input measurements,
and also relaxes the Gaussian constraint of the EKF and UKF on the measurement
noise. GNSS pseudorange measurements are expected to have a measurement error
distributed as Gaussian random variables, and so that distribution is chosen as the
likelihood for those measurements.
On the other hand, for inter-agent distances, the proximity between the agents
exchanging measurements can affect the shape of the distribution of the error of
the baseline length.
To avoid a degradation of the performance due to the mismodeling of errors, it
is necessary to dynamically use different likelihood models to account for the
non-stationarity of measurements.
Eventually, an algorithm is proposed to automatically switch between different
families of likelihood distributions depending on the proximity of agents. Then, its
performance is evaluated over a dataset containing kinematic agents.

5.1 Baseline Length Error Distribution
As mentioned in Section 2.1.2, the inter-agent distances being integrated in the

PF is obtained as the norm of the baseline vector, whose error on the components
can be modelled as a multivariate Normal distribution, since the baseline vector is
estimated by means of W-LMS. As such, when the distance between two agents
cooperating approaches zero, the measurement error on the baseline length becomes
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more and more skewed towards positive values, since negative distances can’t
obviously be measured. On the other hand, when the distance between agents
tends to infinite, the distribution of the error on the distance tends to a more
symmetric zero-mean distribution.
The non-Gaussian nature of the cooperative ranging measurement (due to the
Euclidean norm) justifies the use of PF as choice for the estimation of the position, as
it allows to model the PDF of the errors according to other well-known distributions.
To demonstrate this behaviour, a Monte-Carlo simulation was set up to randomly
generate points according to multivariate Normal distribution with covariance
matrix C around a point at a given distance from the origin. Then, the error of
the distance w.r.t. to the origin between the generated points and the mean of the
distribution is computed. The experiment is repeated twice for different distances
of the center of the distribution. The histogram of the error in the two cases is
shown in Figure 5.1a and 5.1b.
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Figure 5.1: Baseline length error distribution at distances 2m (a) and 20m (b)
w.r.t. a reference point.

The fact that the distribution of the error of the measurements changes shape
as the distance between the agents changes, requires an adaptive estimation of
its distribution, in order to guarantee a proper weight of the particles in the PF.
Given the dynamic nature of the scenario under study, where the distance between
moving agents is constantly changing, it is not a suitable strategy to store the
estimation of the ranging errors over time to then decide the distribution based
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on a best-fit technique. Instead, the most suitable family of distribution for both
the cases in which agents are close or far w.r.t. each other, should be evaluated
comparing the performance of some well-known families when used as likelihood
distributions for the PF.
It should be added that the error distribution being studied varies continuously as
the distance between the agents changes, but the choice of the likelihood distribution
can be dicretized based on models known a-priori and chosen via a best-fit approach.

5.2 Likelihood Distribution Families
In the previous section, the problem of the skewness of the error distribution

for close agents was introduced. In order to find the best performing likelihood
for a reliable computation of the particle weights to use in that scenario, some
well-known families of distribution will be introduced in this section in order to
later test their performance. When evaluating the baseline length w.r.t. to a
multivariate distribution, the distribution of the error can be modelled as a Normal
distribution only under the assumptions that the value of the baseline length is
large enough, and that the covariance matrix of the multivariate distribution is
diagonal. In the general and most frequent case in which the off-diagonal terms
are instead not negligible, it has been shown through Monte-Carlo simulation of
DD measurements, that the GEV distribution can be used to approximate the
distribution of the error [19]. In Figure 5.1a, it was shown how the distribution of
the baseline length error can be skewed, to account for this scenario, the Rayleigh
distribution will be introduced as a possible likelihood.

5.2.1 GEV Distribution
The GEV distribution is a family of continuous probability distribution. It

takes as input three parameters known as location µ, scale σ and shape ξ. For
the purposes of this investigation, the only value of the location parameter that
will be used is zero, since the error distributions observed so far have shown
probability distribution centered around zero. The scale parameter σ, used to
obtain the likelihood function for the weights assignment in the PF, corresponds to
the estimated value of the variance of the input measurements. Therefore, only
the shape parameter ξ will be changed to test the performance of this family of
distributions in different scenarios.
Moreover, as parameter ξ changes, so does the skewness of the GEV distribution
changes. Therefore, this family of distributions will be tested as likelihood for both
the cases in which the cooperating agents are close or far, possibly by varying the
shape parameter accordingly. The probability density function of the distribution
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is

f(x; µ, σ, ξ) = 1
σ

t(x)ξ+1e−t(x) (5.1)

where

t(x; µ, σ, ξ) =

(1 + ξ(x−µ
σ

))
−1
ξ , for ξ /= 0

e
−(x−µ)

σ , for ξ = 0.
(5.2)

Figure 5.2 shows an example of a GEV distribution used as PDF of a single
element of the state vector inside the PF, where each particle is given a certain
weight based on its distance w.r.t. the aiding agent.
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Figure 5.2: GEV likelihood distribution with ξ = 0.

5.2.2 Rayleigh Distribution
The Rayleigh distribution is a continuous probability distribution, and is defined

for non-negative values only. It can be defined to be the magnitude of a bivariate
Normal distribution whose components are uncorrelated and zero mean, and it
is modelled through the scale parameter σ. For this distribution, σ is the mode
as well, and so both the shape and the mean value of the distribution change
according to the value of the scale parameter. For this reason, this distribution will
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be tested using fixed values of the σ parameter, instead of using the estimation of
the variance of the error as done for the GEV distribution. Because of its support,
this family of distribution will only be tested as likelihood when the agents are
close to each other. The probability density function is

f(x; σ) = x

σ2 e
−x2

(2σ2) . (5.3)

As shown in Figure 5.3, the distribution is flipped with respect to the vertical
axis, this is done in order to reflect the way distances are defined inside the PF.
As mentioned in Section 5.1, when agents are close to each other, it is expected
that the error on the ranging measurements is not zero-mean and instead skewed
towards positive values. Hence, to provide the best performance, the likelihood
distribution should give more weight to particles that are closer to the aiding agents
with respect to the measurement.
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Figure 5.3: Rayleigh likelihood distribution.

5.3 Mahalanobis Distance
In section 5.1, the necessity to switch between different likelihood distribution

families according to the distance between the agents was introduced. In order
to identify which likelihood is the best suited at each epoch of the simulation, a
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metric needs to be introduced in order to evaluate how close the two cooperating
agents are.
The reason why the Euclidean distance is not used, is that is does not take into
account the variance of the error, whose value is critical in deciding whether the
two agents are close enough to perform the switch. Furthermore, the covariance
matrix of the error on the baseline vector is not an identity matrix, meaning that
the variance might be greater in some given directions.
Because of these reasons, a geometrical information about the distance between the
agents is not sufficient to establish when to switch between distribution families.
Therefore, a statistical distance has to be defined, namely the Mahalanobis distance.

5.3.1 Mahalanobis Distance Definition
The Mahalanobis distance can be defined as the statistical distance between

a point P and a distribution D. In particular, it can be seen as a restriction of
the Bhattacharyya distance, which instead computes the distance between two
distributions. In case the covariance of D is a unit matrix, the Mahalanobis distance
reduces to the Euclidean distance. This metric is widely used in many different
applications, and in particular in collision avoidance [20] [21] and motion planning
[22] for vehicles. Its value can be computed according to the formula

DM(P) =
ñ

(P− µ)TC−1(P− µ) (5.4)

where P and µ are the vectors containing the coordinates of point P and the
coordinates of the center of distribution D, respectively. It can be observed from
(5.4) that because of its definition, the Mahalanobis distance is dimensionless.
Moreover, it is also scale-invariant, meaning that if the Euclidean distance between
P and the mean of D is doubled, but each term of the covariance matrix of D is
also multiplied by two, then the Mahalanobis distance does not change.
When computing the Mahalanobis distance between two cooperative agents, the
vectors containing their coordinates would be used as P and µ. C is instead the
covariance matrix of the distribution, and corresponds to the estimated covariance
matrix of the baseline vector in the case under study.
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Figure 5.4: Distance of two points with respect to a distribution.

As it can be seen from the plot in Figure 5.4, even tough the two points P1 and
P2 are at the same Euclidean distance d from the mean value of the distribution,
P2 is closer in terms of Mahalanobis distance, since the variance of the distribution
is grater in the direction pointing towards it.
Another way of looking at the problem, would be to measure the probability
that a given point in space P is a realization of the distribution D, but since the
Mahalanobis distance can be computed in matrix form, it is easier to be implement
in navigation filters without increasing their computational complexity.

5.4 Automatic Adaptive Likelihood Switch Algo-
rithm

As mentioned in Section 5.1, the shape of the error distribution for the magnitude
of the baseline vector depends on its value, thus it is needed to properly choose the
likelihood distribution that best fits the expected distribution of the error. In this
section, an algorithm to perform an automatic switch between different families
of likelihood is proposed. In Algorithm 1, S corresponds to the number of aiding
agents, while DistrType is a variable used to choose between the different likelihood
distribution families.
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Algorithm 1 AALS
1: if S > 0 then
2: for i = 1 : S do DM = f

1
pi(tik),pj(tik), C

2
3: if DM > TM then DistrType ← 1; ó GEV
4: else DistrType ← 2; ó Rayleigh
5: end if
6: ProbCOOP(:,i) = Likelihood(DistrType,...)
7: end for
8: end if

At each iteration of the PF, for each cooperative agent, the Mahalanobis distance
is computed and a choice of distribution type is made based on its value. The
likelihood is then computed on line 6 of Algorithm 1 by also providing the function
any parameter necessary for the chosen distribution. It should be added that, in
case a real-time estimation of the covariance matrix of the baseline vector is not
performed, but instead only an estimate of the variance of the baseline length
is available, the algorithm has to be modified to work with the baseline length
instead of computing the Mahalanobis distance, since it is not possible to compute
the covariance matrix from only an estimate of the variance. In such case, the
value should be compared to a different threshold T Í

M = TM ∗ σ, where σ is the
estimated variance of the baseline length. This alternative is a simplification of the
real scenario, as it does not fully consider the orientation of the covariance matrix.
In particular, the information of the orientation of the covariance matrix with
respect to the baseline vector is not taken in consideration, and only the variance
of the baseline length is used instead. For this reason, it should be preferred the
implementation given in Algorithm 1.

5.4.1 AALS Threshold Value
In order to benefit the most from the likelihood switch, it is of critical importance

a correct choice of the threshold value TM . For this reason, a Monte-Carlo simulation
is set up to find a candidate best fit distribution. A grid of points with different
values of variance and distance of a distribution from a reference point is set up.
The best fit distribution for each point in the grid is decided based on the Bayesian
Inference Criterion (BIC), a popular tool used to compare the PDF of a given
distribution to a set of well known models [23] [24].
The BIC uses the optimal likelihood function value, while also penalizing more
complex models with multiple parameters. This approach is suitable for real
implementations, since it limits the complexity of the likelihoods that have to be
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generated inside the PF algorithm. The BIC can be computed as

βi = −2Λi + Wi log(N) (5.5)

where Λi is the Log-Likelihood of a given model and W is the number of
parameters of its PDF.
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Figure 5.5: BIC computed at different Mahalanobis distances for two distribution
families.

As can be seen in Figure 5.5, the Rayleigh distribution minimizes the BIC for
values of the Mahalanobis distance roughly smaller than 3, meaning that it is the
PDF with the best fit for those cases. It should be added that the results shown
are obtained from an ideal scenario.
In reality, the covariance matrix of the baseline vector is not diagonal, and the
off-diagonal terms are in general not negligible, altough no assumption can be
made on the correlation of the errors, since it depends on the geometry of the
satellites. Furthermore, no assumptions can be made on the correlation between
errors on the components of the baseline vectors, as in general it depends on the
geometry of the problem. Because of these reasons, the distributions obtained here
are not necessarily the best fit in a real scenario, but the simulation provides a
good estimate of the Mahalanobis distance in which the switch happens. Therefore,
a threshold value for the automatic likelihood switch is chosen as Tm = 3. It should
be clarified that this choice of value is only an heuristic. An accurate estimation of
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the threshold value would require an accurate estimation of the covariance matrix,
and on the magnitude of its off-diagonal terms. A generalization of this is out of
the scope of this thesis and is foreseen as a future investigation.
As for the likelihood distributions to be used in the a real implementation, sim-
ulations are run over different families of distributions, possibly with varying
parameters as well, in order to evaluate their performance.

5.4.2 AALS Implementation
Considering the block diagram of the PF shown in Figure 3.1, Algorithm

1 is implemented as a further block between the input measurements and the
weight assignment. Based on the position of the cooperating agents, the algorithm
computes the Mahalanobis distance between them and uses its value to choose
between two different likelihood distributions.
A quick simulation was set up to check whether the effectiveness of the proposed
AALS algorithm, and so to evaluate if it switches between the two distribution
types as intended. During the simulation, the measured ranges between peers are
collected separately, based on the scenario that was chosen according to the AALS
algorithm, meaning that a set of true baseline lengths is collected for all the epoch
where peers were considered to be close enough to perform a switch of the likelihood
function, and another set of measurements is collected for the complementary case.
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Figure 5.6: CDF of the range measurements collected for the two cases.
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In Figure 5.6, it is shown the CDF of the collected values of true baseline length
for the two cases described. As it can be seen, the algorithm works as intended,
as it switches to a different distribution only for epochs were peers are close to
each others, and for those cases only. Since the computation of the Mahalanobis
distance, used to perform the switch, is based on values of distance and estimated
covariance matrix, whose value might vary over the duration of the simulation, the
two curves might overlap slightly, as there is no fixed value of the distance at which
the switch is performed. It can be nonetheless claimed that the implementation of
the AALS algorithm previously introduced in Section 5.4 works as intended.

5.5 AALS Performance Evaluation
In this section, the performance of different distribution families previously

introduced will be evaluated both when they are used as distribution types 1 and 2,
as defined in Algorithm 1. First, the best-performing likelihood will be evaluated
for the case in which the cooperating agents are far from each other. Then, that
distribution will be kept fixed and the same type of analysis will be repeated for
the complementary case.

5.5.1 Distribution Families for Distant Peers
Since it is of interest to consider the far case first, the second distribution type,

used as likelihood when the cooperating agents are close, is kept fixed for all
tests performed as a GEV distribution with shape parameter ξ = 0.5. Then, the
performance of the likelihood switch is evaluated when the first distribution type is
a GEV with varying shape parameter ξ = 0,0.5,1.
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Figure 5.7: Comparison of different GEV distributed likelihood for distant peers.

As shown in Figure 5.7, the performance in terms of CDF of the positioning
solution is best when the shape parameter ξ = 0, as expected since the GEV
distribution is more symmetric for this value of ξ.

Shape Parameter 50-th percentile 75-th percentile 95-th percentile
ξ = 0 1.92 m 2.66 m 3.92 m

ξ = 0.5 2.07 m 2.85 m 4.20 m
ξ = 1 2.11 m 2.88 m 4.28 m

Table 5.1: Error of different GEV likelihoods evaluated at three percentiles.

As can be seen from Table 5.1, the difference between the cases is small, but
it can still be claimed that the performance degrades for increasing values of ξ,
meaning we are getting further away from the ideal likelihood distribution.

5.5.2 Distribution Families for Close Peers
In the previous section, a GEV distribution with ξ = 0 was found to be the

best-performing when used as a likelihood for when the agents are far away from
each other. As such, it is now kept fixed for all the tests performed in this section
as distribution type 1, while different families will be tested as type 2.
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Rayleigh Families
First, Rayleigh distributions with different scale parameters σ = 0.5,1,2 are

tested and the result of this comparison is shown in Figure 5.8. Then, a similar
comparison with varying parameters will be performed for the GEV.
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Figure 5.8: Comparison of different Rayleigh distributed likelihood for close peers.

In this simulation, a Rayleigh likelihood with σ = 0.5 has shown to provide
the better performance, although the performance of the different cases is very
similar, as can be seen from Table 5.2. This is due to the fact that, in the dataset
being used for simulation, the cooperating agents moving over the track are close
to each other for very short time-spans, and thus the AALS algorithm switches to
the second distribution type rarely. Since these families of distribution are used as
likelihood only on few epochs w.r.t. the entire simulation, the difference in overall
performance of the PF is very small.

Scale Parameter 50-th percentile 75-th percentile 95-th percentile
σ = 0.5 1.96 m 2.66 m 3.91 m
σ = 1 1.94 m 2.70 m 3.99 m
σ = 2 2.01 m 2.75 m 4.08 m

Table 5.2: Error of different Rayleigh likelihoods evaluated at three percentiles.
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Even tough the difference between the three experiments is small, it can be
observed that the best performance is obtained for small values of the shape
parameter σ.

GEV Families
As previously done for the Rayleigh distribution, different GEV likelihoods with

varying parameter ξ = 0,0.5,1 are tested, the result can be seen in Figure 5.9.
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Figure 5.9: Comparison of different GEV distributed likelihood for close peers.

Once again, for the aforementioned reasons, the performance of the PF is very
close for different ξ values of the GEV. Differently from the tests performed for the
Rayleigh distribution tough, there is no value of ξ which clearly provides the best
performance.

Shape Parameter 50-th percentile 75-th percentile 95-th percentile
ξ = 0 1.81 m 2.55 m 3.82 m

ξ = 0.5 1.90 m 2.59 m 3.86 m
ξ = 1 1.80 m 2.49 m 3.95 m

Table 5.3: Error of different GEV likelihoods evaluated at three percentiles.
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5.5.3 Performance Comparison
Comparing the results obtained in the previous two tests, it can be seen from

Tables 5.2 and 5.3 that the performance in terms of CDF of the GEV distribution,
for any tested value of ξ, is better that the one obtained for Rayleigh for any
tested value of σ. Given the extremely skewed nature of the PDF of the Rayleigh
distribution, it is reasonable to assume that its performance as a likelihood would
be most suited only for cases in which the two cooperating agents are extremely
close to each other (e.g. DM < 1).
Comparing instead the different values of shape parameter of the GEV distribution,
their performance is very similar, as shown in Table 5.3. This might be due to
the fact that the current choice of threshold for the likelihood switch is greater
than the actual value in which the best-fit distribution changes from one value
of shape parameter to another. If that is the case, the current implementation
includes cases in which different shape values perform best, thus leading to an
overall similar performance between them. A possible strategy would be decreasing
the value of the threshold TM of the AALS algorithm, in order to only account
for cases in which the agents are extremely close, and thus the distribution of the
error is expected to be more skewed. The benefit obtained when the algorithm
switches to a different likelihood to account for this skewness could be greater,
but it would be counteracted by the fact that the number of epochs in which such
switch would trigger would greatly decrease, as it becomes more and more unlikely
that the agents are close enough to trigger the likelihood switch.
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Chapter 6

Conclusions

In the context of vehicle positioning applications, GNSSs have a remarkable role
since they allow receivers to estimate their own position. However, these appli-
cations have very strict safety requirements, thus needing an improvement in the
performance of such positioning systems. This necessity has led to the development
of Cooperative Positioning methods, which exploits the exchange of GNSS-only
measurements among a network of vehicles (i.e. agents). These additional measure-
ments allow agents to compute inter-agent distances through differential methods,
and use other agents as additional anchor points w.r.t. which relative ranging
measurements are used. The integration of inter-agent distances has led to the use
of navigation filters such as the PF, since it is able to handle the non-stationary
behaviour of such measurements. A proper integration of the auxiliary measure-
ments can lead to a significant improvement in the quality of the solution, since the
differential methods used to compute inter-agent distances allow for cancellation
of common error terms between agents, thus possibly reducing the uncertainty of
these auxiliary measurements. Furthermore, cooperative measurements provide
information that is geometrically relevant, especially in scenarios of limited sky
visibility, by reducing the GDOP (a scaling factor for the uncertainty on the posi-
tioning solution).
The work carried out during this thesis highlighted the importance of synchronizing
in time the position of the aiding agent, especially for scenarios in which the
velocity of the agents changes rapidly relative to the time-misalignment between
the timestamp of their PVT solution. If the position of the aiding agent is not
updated, the weights assigned to particles inside the PF are based on an anchor
point which has a bias w.r.t. the true position of the agent, leading to a degradation
of the performance. Two different strategies were proposed in order to perform this
correction. The first involves the use of the velocity of the aiding agent to linearly
project its most recent position solution to be synchronized with the one of the
aided agent. This strategy is very simple, but holds only under the assumptions
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that the motion of the agent is uniform w.r.t. the timestamp misalignment between
the two agents. This means that the acceleration should be close to zero and
there should not be any high-order term such as jerk. Furthermore, it requires the
transmission of additional information, whose possible impact on network delays
is not discussed in the thesis. The second strategy proposed requires the aided
agent to use the synchronized pseudoranges (already used by the DD method) to
compute the updated position of the aiding agent by means of LMS algorithm.
This method requires no additional information to be transmitted, but involves
more computational effort on the side of the aided agent since it needs to passively
track the aiding agent. The performance of the two strategies is very similar and
can yield a significant improvement in accuracy in cases of high dynamics (around
14% improvement at 95-th percentile), thus justifying the extra effort needed to
perform the synchronization of the position.
Furthermore, the thesis investigated a solution to deal with the non-stationarity of
the error on the baseline length. Since this quantity is computed as the Euclidean
norm of a multivariate vector, the distribution of the error suffers from skewness
when the norm of the baseline vector (the distance between the agents) is small
w.r.t. to its variance. In scenarios involving kinematic agents, their distance
changes continuously, and so does the statistical distribution on the baseline length.
Therefore, a real-time method to adjust the likelihood distribution accordingly is
needed. A metric known as the Mahalanobis distance is introduced, in order to
quantify the statistical distance between agents. This metric is then used by a newly
proposed algorithm (AALS algorithm) in order to automatically switch between
different predefined likelihood distributions inside the PF. The ability to perform
an automatic switch between different likelihoods depending on the proximity of
agents is expected to improve the performance, since it reduces the mismodeling of
the error on the measurements. The available datasets were not conceived to work
in scenarios of proximity of the agents, and as such an improvement on the quality
of the solution cannot be credited to a precise model of likelihood distribution. It
is therefore necessary to work with new dedicated scenarios, and a new dataset is
being worked on, which includes more complex and realistic trajectories of vehicles
in a urban environment with more situations of proximity between them. Possible
future work is expected to focus on the fine-tuning of the threshold used by the
AALS algorithm to perform the switch, as well as possibly extend the experimenta-
tion to different families of distribution or different values of parameters for such
distributions. Furthermore, future experimentation on the improvement obtained
with multi-agent cooperation is expected.
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