
POLITECNICO DI TORINO

DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATIONS

Master of Science in Nanotechnologies for ICTs

Master Degree Thesis

Adversarial Machine Learning
against Real-World Attacks
on CNN Object Detectors

Supervisors
Prof. Dr. Luca Benini, Prof. Dr. Guido Masera
Dr. Michele Magno, Moritz Scherer

Candidate
Alessandro Ottaviano

Academic Year 2019-2020

Acknowledgements

I would like to thank my mother Liliana and my father Claudio, who dealt my educational journey
until now with an all-around and essential support. Their advice and steady presence have been
a reference milestone for me, and they will in the years to come.
In particular, my twin brother Marco, a soul mate by name and in fact, with whom words are
unnecessary as it suffices for us to speak in silence to trigger emotional contact, and my cousin
Elisa, with whom the bond is tight as with a sister, for their constant being around me, even if
virtually, as when we were a kid’s trio.

A special thank to Moritz, whose technical and organizational help has been fundamental in the
development of the project, for his constant patience and availability.

Last, a fragment of gratitude to my lifelong friends Manuel and Valerija, family members and
whose bond hasn’t been loosen despite my frequent absence, and to my Nanotech colleagues
(especially: Alberto, Elena, Giovanni, André, Gabriele, Dario and Ernesto), with whom I spent
the last two years sharing life in all its flavors. A more deeper thank goes actually to Elena,
dear friend, for having revised my work by providing precious suggestions, and for her tenacious
closeness during the thesis experience.

iii

Summary

The past few years have witnessed a growing interest in the analysis of Machine Learning models
robustness against Adversarial Attack examples, i.e. externally injected modifications (dis-
tortion or perturbation ρ) to the input of a Neural Network (NN) that are able to pollute the
predicted output correctness. It often happens that the adversarial nature of the perturbation ρ
is imperceptible/incognito with respect to the clean input. This definition has a double meaning:
either (1) unperceived modifications that affect the whole set of pixel’s intensities of the input
image or (2) spatially constrained distortions which are not yet constrained in terms of pixels
intensity. The attacks typically cause a substantial drop in the ability of these models to cor-
rectly predict the output given a specific input. The latter capability is quantified by exploiting
two evaluation metrics: (1) mean Average Precision (mAP) of the NN model and (2) Patch
Success Rate (SR). The first aims at measuring the drop in Recall or Precision 1 according to the
attack’s target, i.e. either misdetection or misclassification. Misdetection is defined as the
perturbation capability to prevent a foreground prediction to be assessed by the NN model, while
misclassification is defined as the perturbation capability to change the NN model decision from
one class to another. The second, i.e. Patch SR, directly counts the number of false negatives 2 at
detection time. In the aforementioned context, several issues and open questions about the actual
and effective security of modern Machine Learning models employed for different tasks, from
Speech Recognition to Computer Vision (CV), are introduced. As a matter of facts, there exists
a complementary and expanding field of interest which is getting devoted to craft countermea-
sures for lowering the attack’s strength. This set of techniques, known as Adversarial Defense,
follows different fashions according to the attack threat-model they aim to defend against. The
research community has started a process of hierarchical and methodological organization in order
to flatten the ground of reference, thus letting them acquire solid coherent results as well as a
robust application tool-set.

Adversarial Attacks
There is not a unique way to identify an adversarial attack. In particular, in the field of Computer
Vision which is under analysis in this study, several attacks typologies have been developed so far.
Fig. 3.2 provides an high level view of them. The entity of the injected distortion ρ is bounded
by a specific norm between the input image with and without the adversarial perturbation (x
and x’ respectively), indicated as ün (n indicates the type of the norm that is employed):

1Recall quantifies the total number of relevant elements the network should be able to retrieve while
Precision indicates the number of retrieved and correct elements.

2it quantifies the number of relevant elements which are not retrieved after inference.

v

Figure 1. Adversarial Attacks typologies, high level scheme

minimize ρ s.t. |x− xÍ|n ≤ ρ

The norm constraints the adversary ρ by either bounding its pixel intensity or its extension in
space. As already mentioned, the second case does not oblige the pixel intensity to stand within
a specified norm-bound and it allows to treat real-world based attacks. These find their most
suitable model in the structured ü0 norm domain [1] [2], which allows to train an adversarial
’patch’ by applying backpropagation over its pixel set. The training procedure follows the same
steps as a standard NN training but it allows to learn the set of pixels which define the perturbation
keeping the other network’s parameters frozen. The custom loss used during patch training is
called adversarial loss. It is minimized by employing model’s prediction to progressively lower
the detection capability of the model itself. The final crafted adversary is applied through affine
transformations to the target object at testing time and its robustness is evaluated by measuring
Precision-Recall (PR) curves, Mean Average Precision (mAP) and Patch SR as already
mentioned. Fig. 2 shows visual examples of inferences in the unperturbed and perturbed domains,
performed with YOLOv4 and MTCNN for object and face detection respectively, and highlights the
damaging effect labeled as misdetection.

(a) YOLOv4, original
input

(b) YOLOv4, per-
turbed input

(c) MTCNN, original in-
put

(d) MTCNN, perturbed
input

Figure 2. Adversarial patches effect on YOLOv4 and MTCNN detectors.

Adversarial Defenses
Adversarial defenses aim at improving model’s robustness by addressing several aspects of the
NN domain, from the inner architecture to either training and inference steps. Fig. 3(a) shows
an high-level hierarchy.

vi

(a) Adversarial Defense typologies, high
level scheme

(b) Ablation defense full-
combinations set

Figure 3. Adversarial Defense domain

The most suited defense against adversarial patch attacks has been identified to be de-randomized
smoothing, or ablation defense, which consists of progressively suppressing input image pixels
in a structured fashion to generally lower the adversary probability of being sampled at test-
ing time, i.e. ’seen’ by the NN model during inference. Fig. 3(b) shows the set of possibilities
implied by this kind of defense: ablation by rows, columns or block. The context of the afore-
mentioned defense, in the form described in [3], specifically deals with pure classification domain.
Moreover, even though being applied at inference time, de-randomized smoothing needs network
re-training on ablated samples in order to adapt the model to provide strong performances when
a consistent fraction of the input image is suppressed.

Project goals
This project has a double task. (1) Evaluate real-world based adversarial attacks effectiveness
against object detectors, providing benchmark assessments w.r.t. previous reference works. As
already mentioned, this has been done by targeting three families of networks: YOLO, SSD and
MTCNN for objects and face detection respectively. (2) Select, implement and test an adversarial
defense against structured ü0 adversarial attacks in the framework of object detection. The crafted
defense is selected within the family of de-randomized smoothing methodologies (ablation defense)
and assessed at both software and Register Transfer Level (RTL) levels. In the following, a
granular description of the topics treated in the document’s chapters is provided, distinguishing
between theoretical background and experimental results.

Theoretical background
A general overview of traditional and convolutional Neural Networks (CNN) is provided
in chapters 1 and 2 respectively. In particular chapter 2 introduces the field of object detection
for CV, and distinguishes between two- and one- stage detectors, with the latter unlocking real-
time capability. From there onward, state of the art about adversarial attacks and defenses is
addressed in chapters 3 and 5 respectively.

Experimental results
Chapter 4 reports the results obtained by testing the effectiveness of adversarial patch attacks
targeting misdetection against (a) state of the art object detectors from the YOLO (You Only
Look Once), SSD (Single Shot Detector) families and (b) MTCNN (Multitask Cascaded CNN) face
detector. Simulations are performed in the framework of white box digital attacks, which

vii

imply full model’s weights knowledge and no extension towards the physical world through patch
printing. They led to confirm the already diffused awareness that, in general, a neural network
is deceivable even though with heterogeneous degrees of damage according to its architectural
structure and complexity. Then, de-randomized smoothing by structured ablation defense is
assessed in chapter 6. The adopted solution is adjusted to meet the constraints introduced in
the framework of object detection by addressing the inference phase in the form of an image pre-
processing step. Benchmark YOLOv3 is taken as a reference network, re-trained on ablation and
its clean performances are checked when (a) the perturbation is kept off, though the defense is
activated (test on unperturbed ablated samples) for different values of retained fractions of the
input sample at ablation time, either in terms of bounding box regression (spatial localization)
and class confidence score predictions and (b) the model is attacked by exploiting adversarial
patches when the defense is activated. It is shown that the latter can decrease adversary
success rate from 40% to 6% on the tested dataset (video frames) under attack when switching
between the undefended and defended cases respectively. Last, chapter 7 introduces the challenges
defined by the new field of Edge Artificial Intelligence (Edge AI) with respect to the domain of
adversarial Machine Learning. These challenges involve either software and hardware design space
exploration to match the constraints of resource-limited devices that can not interface with a
cloud server. This context involves model compression in terms of internal architecture design
and low-precision (quantization), along with the study of efficient, low-power CNN accelerators.
In this framework, the pre-processing defense module is implemented as a combinational block in
the RTL of an existing FPGA-based object detector example flow, simulated and synthesized. The
process serves to address the overall resource usage and related real-time based constraints
w.r.t. multiple-inferences introduced by de-randomized smoothing defense, in order to start the
transition from digital to real-world based defenses at edge computing level.

viii

Contents

List of Tables xi

List of Figures xii

List of Acronyms xiv

I Machine Learning for
Computer Vision 1

1 An overview on classical (D)NNs 3
1.1 Background . 3
1.2 Traditional NNs building blocks . 5

1.2.1 NN structural composition . 5
1.2.2 The Learning flow . 7
1.2.3 Control: forward pass, backward pass and optimization step 8

1.3 Summary . 12

2 Convolutional Neural Networks 13
2.1 A powerful paradigm for Computer Vision . 13
2.2 Microscopic CNN structural building blocks . 15
2.3 High-level CNN structure . 18
2.4 The Head: detection layer . 22

2.4.1 Two-stage object detectors . 22
2.4.2 End-to-end object detectors: pursuing real-time detection 25
2.4.3 Training stage: Loss contributions for anchor-based detectors 33
2.4.4 Inference stage: prediction’s post-processing 35

2.5 Summary . 35

II Adversarial Attacks 37

3 Theory and Principles 39
3.1 Motivation . 39
3.2 State of the Art (SOTA) walk-through: Adversarial Attacks typologies 41
3.3 Structured ü0 (patch) attacks . 43
3.4 Summary . 46

ix

4 Crafting Adversarial Attacks 47
4.1 Adversarial flow: setup . 48

4.1.1 Training stage . 48
4.1.2 Inference stage and Evaluation metrics . 57

4.2 Fooling single-stage Object detectors: results . 62
4.2.1 You Only Look Once (YOLO) family . 63
4.2.2 Single-Shot Detector (SSD) family . 67

4.3 Fooling face detectors: Multi-Task CNN . 70
4.4 Summary . 73

III Adversarial Defense 75

5 Theory and Principles 77
5.1 Motivation . 77
5.2 SOTA walk-through: Adversarial Defenses typologies 78

5.2.1 Adversarial training . 80
5.2.2 Randomized smoothing . 80

5.3 Summary . 83

6 Crafting and implementing an Adversarial Defense 85
6.1 De-randomized smoothing defense . 85

6.1.1 Pure classification problem . 85
6.1.2 Object detection problem . 86
6.1.3 Ablation defense: notation . 87
6.1.4 Network re-training . 89

6.2 Case study: YOLOv3 . 91
6.2.1 Re-training results . 91
6.2.2 Post-training analysis . 94

6.3 Summary . 101

7 Defense module Hardware implementation 103
7.1 Machine Learning at the Edge . 104
7.2 Case study: Object Detection on FPGA . 106

7.2.1 Lattice Semiconductor’s toolkit . 106
7.2.2 Lattice Semiconductor’s EVDK . 106
7.2.3 RTL pre-processing module . 108

7.3 Summary . 112

Conclusions 113

A Optimization methods 115

B Ensemble training 117

Bibliography 119

x

List of Tables

4.1 Information retrieval, four case scenario . 57
4.2 mAP cross-evaluation on INRIA Person dataset, YOLO family 65
4.3 mAP cross-evaluation on INRIA Person dataset, SSD family 69
4.4 mAP cross-evaluation on FDDB dataset, MTCNN . 72
6.1 Defense post-training evaluation, cases under analysis 94
6.2 Post-training evaluation under attack, DEFENSE ON/OFF 101
7.1 Resource usage, ECP5-LFE5UM85 family . 108
7.2 Lattice ECP5-LFE5UM pre-processing steps . 108
7.3 Resource usage, un-defended and defended design 112

xi

List of Figures

1 Adversarial Attacks typologies, high level scheme vi
2 Adversarial patches effect on YOLOv4 and MTCNN detectors. vi
3 Adversarial Defense domain . vii
1.1 Machine Learning (ML) conceptual evolution [4] 4
1.2 Artificial Neural Networks (ANN) general structure. On the top the system level

representation, while on the bottom the layer-level representation. 5
1.3 Common activation functions [5] . 7
1.4 NN training process flow - forward and backward pass 7
1.5 Backpropagation steps on single entry [8] . 9
2.1 Convolution operation between f and g, visual representation [14] 13
2.2 Sparse connectivity and parameters sharing properties. The comparison involves

Convolutional Neural Network (CNN) (Top) and traditional NNs (Bottom) [4] . . 15
2.3 Convolution operation visual representation . 16
2.4 Max pooling operation with different strides [5] . 17
2.5 Convolution operation visual representation . 19
2.6 Modern CNN structure, human body analogy . 20
2.7 Feature Pyramid Network sketch [28] . 21
2.8 One- and Two- stage detectors comparison [12] . 22
2.9 One- and Two- stage detectors system level comparison 26
2.10 One- and Two- stage detectors bounding box regression notation 29
2.11 Single- and two- stage object detectors mAP/FPS comparison. Each circle represents

the mAP of a specific NN model as a function of its real-time capability, measured
as frames per second (FPS). Source: https://gluon-cv.mxnet.io/model_zoo/
detection.html. 32

3.1 Stop sign misdetection and misclassification. The stop signal squared in orange is
the non-perturbed one and it is correctly detected and classified. The other one is,
instead, subjected to the adversary attack [45]. 41

3.2 Adversarial Attacks high-level typologies . 44
4.1 Adversarial patch attack example against YOLOv4 object detector. On the right

picture the person on the left is attacked. The blue rectangles represent the
object detection made by YOLOv4, while the red circle represents the patch attack
that induces YOLOv4 to make mistakes. 47

4.2 Patch training evolution at different optimization steps 48
4.3 Adversarial patch training flow . 51
4.4 MTCNN face and landmarks detection (eyes, mouth extremities and nose) . . . 52
4.5 Patch rotation for mouth/eyes application, fixed-angle alignment 54
4.6 Spatial Transformer Network working features [60] 55
4.7 Patch transformation for digital application, INRIA dataset input image 56
4.8 Precision-Recall high level scheme (source Wikipedia) 58

xii

https://gluon-cv.mxnet.io/model_zoo/detection.html
https://gluon-cv.mxnet.io/model_zoo/detection.html

4.9 Overlapping bounding boxes sample and coordinate reference system 60
4.10 Adversarial Patch Success Rate cases . 62
4.11 YOLO family trained patches, minimization over objectness 63
4.12 YOLO family PR curves evaluation under attack with several patches, INRIAPerson

dataset . 64
4.13 YOLO family networks, SR evaluation . 66
4.14 SSD family trained patches, minimization over obj-cls, INRIAPerson dataset . . . 67
4.15 MBNTv2-SSDLite comparison between VOC and COCO dataset 68
4.16 SSD family networks, SR evaluation . 69
4.17 MTCNN trained patches, FDDB dataset . 71
4.18 Patches affine transformation and application over faces, FDDB dataset 71
4.19 MTCNN PR and SR evaluation, FDDB dataset . 73
5.1 Adversarial defense typologies, high-level classification 79
5.2 Randomized and de-randomized smoothing approaches comparison 82
6.1 De-randomized smoothing defense features . 89
6.2 Recall drop after training and overall training flow sketch 90
6.3 Training and validation tracking under rows ablation - YOLOv3 on COCO dataset . 92
6.4 Position distribution sample, highlighting timing constraints for real-world scenarios 95
6.5 Predictions retrieval, several ablation types, RF = {0.375, 0.5, 0.75} 97
6.6 IoU evaluation . 98
6.7 Confidence score degradation . 98
6.8 Patch Success Rate SR, Ablation = OFF, Patch = ON 100
6.9 Adversarial attack assessment under defense, Ablation = ON, Patch = ON 101
7.1 Lattice Vision Kit with ECP5 FPGA and HDMI output capability [76] 107
7.2 Input Image pre-processing steps, ECP5 board [76] 108
7.3 Object detection design, high-level diagram . 110
7.4 8-bit, maximum length Fibonacci LFSR. Source: https://www.oocities.org/

siliconvalley/screen/2257/vhdl/lfsr/lfsr.html 111
A.1 Update rule, classical vs. Nesterov momentum [77] 116
B.1 Ensemble training patches, YOLO family, different Loss minimization strategies . . . 118
B.2 Ensemble training, YOLO family, PR curve evaluation on INRIA dataset 118

xiii

https://www.oocities.org/siliconvalley/screen/2257/vhdl/lfsr/lfsr.html
https://www.oocities.org/siliconvalley/screen/2257/vhdl/lfsr/lfsr.html

List of Acronyms

CW Carlini-Wagner
FGSM Fast Gradient Sign Method
PGD Projected Gradient Descend
EBR Embedded Block RAM
STN Spatial Transformer Network
NPS Non-printability score
TV Total Variation
EoT Expectation over Transformation
NMS Non-maximum suppression
IoU Intersection Over Union
FCN Fully Convolutional Network
RPN Region Proposal Network
ROI Region of interest
R-CNN Region based CNN
FPN Feature Pyramid Network
SGD Stochastic Gradient Descent
GD Gradient Descent
CV Computer Vision
AI Artificial Intelligence
ANN Artificial Neural Networks
ML Machine Learning
CNN Convolutional Neural Network
YOLO You Only Look Once
SSD Single-Shot Detector
MTCNN Multi Task Convolutional Neural Network
SOTA State of the Art
OD Object Detection
FPS Frame per seconds

xiv

Part I

Machine Learning for
Computer Vision

1

Chapter 1

An overview on classical (D)NNs

1.1 Background
The huge interest that Artificial Neural Networks (ANN) have brought in the past decades come
from an interesting - as well as challenging - task: let a machine to gain some of the intuition
that is often a human-being exclusive. This is the result of an inverted trend that sees machines as
able to perform more quickly and precisely tasks that humans find hard to exploit - it is frequently
the case when a series of instructions making up a fairly complex algorithm have to be processed
- but less capable when it comes to problems that are not straightforwardly codifiable in a
formal and structured way [4].
The purpose of Artificial Intelligence (AI) is to try to formalize such an intuition-based and
informal knowledge to allow machines solving some common problems like speech, gestures and
image recognition.

The key element is the way that kind of knowledge is translated into a formal and machine-
friendly interpretation. In this framework, a suitable data representation plays a fundamental
role in the learning process, for machines as well as humans. In particular, each ’essential piece
of information [4]’ that is useful for a machine to properly fulfill its task and gain the sought
after knowledge - i.e. mapping an input to an output - is called a feature. Two paths have been
followed in the past (fig. 1.1):

• Hard-coding the outside knowledge by re-shaping and re-formulating data in a way that
is efficiently interpretable and mappable by machines. This means hand-crafting and
preparing features that can be quantitatively econded and thereafter interpreted by machines
as the teaching medium [5];

• Let the machine doing the process at the previous bullet point by itself, i.e. providing it
with the raw data only and letting it to extract the features that will be used for predicting
the output.

The last observation makes a step forward in making the learning flow more autonomous and
human-independent: that is the proper domain of Machine Learning 1. The learning structures
able to map the input to the output are called Neural Networks (NNs).

1It takes the name of supervised learning, since not only a set of raw inputs, but also the corresponding
solutions to the targeted problem - for each input - must still be provided, in order to calibrate the network
judgment capability during the learning phase. Unsupervised learning, such as k-means clustering, does
not need a ground truth, yet it could be used to prepare the reference itself for supervised learning in a previous
step.

3

An overview on classical (D)NNs

Features extraction creates a set of intermediate - or hidden - steps that are located between the
raw input and the mapped output, as the floors in a skyscraper. In particular, intermediate steps
could be organized:

• in a way to provide non-tied and fully connected feature information when moving
from the input to the output, building a ’flatten’ architecture.
That is the case of classical ANN developed before 2012 [6] and referred to as traditional
NNs.

• in a hierarchical way, such that primitive and essential elements of the problem to solve,
nearly detached from the context of the input, are isolated first - near the input - while
more high-level features are extracted afterwards - near the output - relying on the previous
pieces of knowledge (tied and sparse feature information).
That has been the transition phase towards today’s State of the Art (SOTA) NNs called
Convolutional Neural Networks (CNNs).

The number of hidden steps - the skyscraper’s floors - determines the depth of the learning
structure (the height of the building).
Deep Neural Networks is merely the name assigned to NNs of both types when a larger number
of hidden layers is introduced than the original and classical Machine Learning domain of the early
age was used to.

Figure 1.1. Machine Learning (ML) conceptual evolution [4]

4

1.2 – Traditional NNs building blocks

1.2 Traditional NNs building blocks
Traditional ANN that are treated in this document do not involve feedback loops that link some
intermediate steps back to the input: they are called feedforward ANN, while their counterpart
is named recurrent 2 (or with feedback) ANN [4]. Therefore, the adjective will be implied even
if not explicitly indicated hereafter.

Some steady features exist within a NN internal structure, as well as inside the supervised
learning flow - typically called training phase - it undertook. They are briefly described below,
since the terminology used is recurrent further on in the document.

1.2.1 NN structural composition
The tripartite structure input - hidden steps - outputs of a classical NN is reported in fig.
1.2, which represents either system level and layer-level NN structure (with n = 3 hidden steps
as an example). Each ’step’ is usually referred to as layer and the term is adopted here as well.

(a) ANN high-level tripartite structure

(b) ANN detailed fully-connected structure

Figure 1.2. ANN general structure. On the top the system level representation, while on the
bottom the layer-level representation.

In the domain of Computer Vision (CV), each entry xi of the overall vector x represents the
intensity of a single image pixel.

2As observed in [4], recurrent ANNs play the same role with respect to temporal sequences of data than
Convolutional NNs with grids of data, as outlined in chapter 2.

5

An overview on classical (D)NNs

Fig. 1.2 allows to understand the meaning of the term ’Neural Network’:

• Network because the formal terminology leads to define it as a direct acyclic graph where
each input is indeed connected to each output, for every layer;

• Neural is inspired to neuroscience, from a conceptual point of view. In fact, each layer is
represented as a vector - like the input x - and its elements play the role of neurons [4].
Each neuron collects a weighted information from the whole input vector x according
to a specific weight matrix W and provides a scalar output by taking (1) a linear weighted
sum followed by (2) a non-linear activation.
The last action is called firing. Overall, the process is represented by a chain rule for the
overall set of layers:

f(x) = fn(Wt
n · fn−1(. . . f1(W1

t · x + b1)) + bn), Wj
t · fj(. . .) =

mØ
i

wji f(. . .)ji

where fn is the nth layer after activation, Wn is the nth weight matrix and b is the nth
bias.

The firing action introduces the non-linearity needed by the system in order to be prop-
erly taught for solving a particular problem. It is indeed interesting to note, as reported in [4],
that the lack of a non-linearity would reduce the NN to a single linear transformation, i.e.
unable to correctly approximate the majority of non-linear phenomena that happen in the physi-
cal world. In a word, the set of n layers would collapse to a standalone - and fully linear - one.

The functions used to model the firing behavior are called activation functions or hidden
units [4]. The most intuitive is the Heaviside step. It has the drawback of being non differentiable,
a practical obstacle during the learning phase.
Threfore, some commonly employed activations with increasing performance capacity are listed
below:

• sigmoid function (fig. 1.3(a)): differentiable and continuous everywhere, but not ’zero-
centered’ [5], as well as asymptotically saturating at ±∞. Saturation is another unwanted
behavior, since it reduces the step-size of the performance gain each neuron is subjected to
after every iteration;

• hyperbolic tangent (fig. 1.3(b)): similar to the sigmoid, but zero-centered - its value
when the input is 0 is exactly zero;

• Rectified Linear Unit (ReLU) (fig. 1.3(c)): the well-know ramp function, which
shares the positive features of its predecessors. Moreover, it suppresses negative input
values and linearly keeps the positives, preventing saturation.
Nowadays, it’s the most used activation function since it outperforms other candidates,
and several variants of it have been proposed throughout the years (Leaky ReLU, Exponen-
tial Linear Unit (ELU), Parametric ReLU (PReLU);

6

1.2 – Traditional NNs building blocks

(a) Sigmoid (b) Hyperbolic tangent (c) ReLu

Figure 1.3. Common activation functions [5]

As a final comment, it is interesting to note that in a traditional NN, as in fig. 1.2, every input
sends a piece of information - weighted accordingly - to each output, generating a system that is
said to be fully connected. This structural feature keeps sealed some useful properties that are
instead embraced by Convolutional Neural Network (CNN) topology, as further on specified.

1.2.2 The Learning flow
The process of teaching to a machine in the framework of supervised ML shows a common pattern,
i.e. a set of fixed key elements that contribute to build up the learning phase, or machine training.
They are listed below and schematically sketched in fig. 1.4:

• Training dataset;

• NN model;

• Cost - or Loss - function;

• Optimization method;

These building blocks are managed by a three-step control flow, named forward pass, backward
pass and optimization step, that iteratively make use of them to inject the sought after level
of knowledge to the machine.

Figure 1.4. NN training process flow - forward and backward pass

7

An overview on classical (D)NNs

1.2.3 Control: forward pass, backward pass and optimization step
To the extent that an analogy is allowed, a NN model - when dealing with supervised learning - is
equivalent to a student trying to build knowledge around a selected topic by iteratively answering
questions coming from outside and receiving a feedback on their correctness slightly after. As time
passes, answers accuracy increases due to the trial-and-error strategy.
Building up on the naive example, and with reference to the scheme in fig. 1.4:

• The action of providing an answer when a question is risen, i.e. of predicting an output given
an input, according to the actual level of knowledge is called forward pass, or inference.
It can be displayed as an arrow pointing to the output from the input;

• The action of comparing the predicted answer with the correct one is named backward pass,
or backpropagation. It states the entity of the distance - or error - between prediction
and ground truth.

• The error itself plays the role of a loss (a penalty, or cost) to be minimized;

• The action of minimizing the loss and distributing the new piece of acquired knowledge back
to the entire model (weight update) is referred to as optimization step.
It can be displayed as an arrow pointing back towards the input from the output;

Training dataset

When dealing with supervised learning, the active material upon which the machine knowledge
is built is provided by a set of data, each of which bears along the actual solution to the task the
machine has to learn and is used to train it accordingly.
In the framework of computer vision, a training dataset consists of a number of input images with
information about the objects class and/or geometrical localization if requested. These labels are
the reference guideline for the NN model, therefore are also named ground truth annotations.

NN model

The choices done around the NN model architecture (e.g. the number of hidden layers) affect
its performances, and there is no orthodox way, or a prescribed set of rules, to follow in order to
fulfill this task, at least when building a model from scratch.
As mentioned in chapter 7, some techniques have been recently developed to automate the
search for an optimal configuration (NAS - Neural Architecture Search) when several constraints
have started rising - mostly concerning the model size and inference time - in the framework
of machine learning hardware deployment.

Optimization method and Cost function

The loss function (or objective function) quantifies the error of the prediction. It may have sev-
eral weighted contributions according to the specific problem to be solved, as outlined in chapter
2 with reference to the CV domain.
The cost function has to be minimized to favor the learning step 3. In order to do that, the
gradient of the loss function with respect to the NN weights is calculated by applying the

3Notice that, in this way, the model optimization happens indirectly w.r.t. the cost function optimization.
In other words, to solve an optimization problem, another one is addressed [4].

8

1.2 – Traditional NNs building blocks

backpropagation (or backprop) chain-rule [7].
This gradient quantifies the sensitivity of the change the loss function undertakes when a corre-
sponding change to the input weights (matrix W) and bias (b) is performed. Given a neuron z
at (i+1)th layer, its output comes from a two-step process:

1. weighted sum calculation from the activated neuron output from the previous layer:

zi+1 = Wi · f(zi) + b

where f(·) is the chosen activation;

2. Activate the (i+1)th neuron through f(·):

ai+1 = f(zi+1)

Therefore, considering the jth weight and bias in the ith layer as highlighted in fig. 1.5, the
gradient loss is expressed as in eq. 1.1:

∇L = ∂L

∂w(i,j)
w(i,j) + ∂L(x)

∂b(i,j)
b(i,j) (1.1)

Figure 1.5. Backpropagation steps on single entry [8]

The chain-rule allows to compute:

∂L

∂w(i,j)
= ∂L

∂a(i+1,j) · ∂a
(i+1,j)

∂z(i+1,j) · ∂z(i+1,j)

∂w(i,j) = ∂L(x)
∂a(i+1,j) · ∂a

(i+1,j)

∂z(i+1,j) · ai,j (1.2)

and

∂L

∂b(i,j)
= ∂L

∂a(i+1,j) · ∂a
(i+1,j)

∂z(i+1,j) · ∂z(i+1,j)

∂b(i,j) = ∂L(x)
∂a(i+1,j) · ∂a

(i+1,j)

∂z(i+1,j) · 1 (1.3)

The term
δ(i,j) = ∂L

∂z(i,j)

is called local gradient or error related to neuron jth in layer ith.
The obtained gradients for weights and biases bear the direction towards which the min-

imizer 4 is updated, according to the simplest optimization method upon which all the others

4Given a function f(x), a point x∗ is a global minimizer of f if f(x∗) ≤ f(x) ∀ x [9]

9

An overview on classical (D)NNs

are built, Gradient Descent (GD). The minimizers are the weights and biases, thus the update
rule reads:

w(i+1) = w(i) − αw · ∂L

∂w(i) ; b(i+1) = b(i) − αb · ∂L

∂b(i) (1.4)

where α 5 is called learning rate. It quantifies the step taken by the gradient of the loss function.
It takes the name of hyperparameter, and its optimal choice does influence the performace of
the optimization step, i.e. the learning efficiency.
During the training, the hyperparameters are fixed and the learning procedure is performed on
a first dataset, called training set. A second dataset is used right after the training to test the
effective accuracy of the model after the weights update. The latter process is called validation,
while the name validation dataset is assigned to the corresponding ensemble of input data.
Note that training and validation phases, as well as their dataset, are detached and independent
during the machine’s learning flow.

The aforementioned optimization is termed gradient-based learning, since it seeks for the
minimum of the cost function, or - equivalently - to the set of weights that minimizes it by moving
towards the direction dictated by the gradient and learning rate.
If the used model is linear, the corresponding loss function is convex and the convergence towards
the global minimum of L is guaranteed:

When a function f is convex, any local minimizer x∗ is a global minimizer of f. If, in addition,
f is differentiable, then any stationary point x∗ is a global minimizer of f [9]

Conversely, in a NN the non-linearity introduced by the hidden units makes the loss a non-
convex function. Therefore, its true global minimum can be only approximated when iteratively
applying the optimization method by trying to find the nearest local one.

Optimization methods are a domain of research by themselves, and some of the most common
are briefly overviewed in Appendix A.
From the experience gained with this work and previous academic courses, actual benchmarks
optimization algorithms are Adam [10] (from adaptive moment estimation), which autonomously
tune the learning rate upon convergence and Stochastic Gradient Descent (SGD) with
Nesterov momentum acceleration, that requires manual learning rate tuning instead.

Regularization

Few words are going to be spent on a crucial concept, i.e. regularization. It is defined as the
set of techniques that helps the trained model to generalize its performances towards unseen
targets, i.e. to assess the correct prediction when fed with inputs it was not trained on [4] [5].
The set of these inputs is called testing dataset 6. Regularization can exist in several forms:

• Explicit regularitazion: [11] defines it as the set of techniques that would introduce
regularization by acting on external parameters.

5Usually, the bias is included into the weight matrix W by adding a column of 1s [5]. This prevents using
a separate variable, with a unique learning rate.

6Work [11] associates a network with high generalization capability as one having ’small generalization er-
ror ’, which is the difference between training and validation error. While regularization is effective in improving
generalization performances, it’s claimed ’it’s not necessary nor sufficient’ in controlling the generalization
error

10

1.2 – Traditional NNs building blocks

– Weight decay: it affects training phase and introduces an additional contribution to
the loss function. It addresses directly the weight matrix by taking either ü2 norm (also
called weight decay), ü1 norm or a combination of both on its entries.
In principle, this should improve the accuracy at testing time (avoiding over- and under-
fitting 7) while slightly damaging that at training time;

– Architectural regularization: it involves changing the network architecture at train-
ing time by dropping some neuron connections, thus avoiding bounding a single neuron
towards a specific input. This reduces the risk of over-fitting. A layer of this kind is
called Dropout layer;

– Data Augmentation: it consists of a set of techniques targeting input pre-processing
before it is fed to the neural network. This helps the model to generalize towards a
larger set of possibilities and situations.
Modern NNs for CV employ several data augmentation techniques at pre-processing
time, which are gaining growing importance - see [12] as mentioned further down in
the text.

• Implicit regularization:

– Early stopping: another method implied at training time to prevent overfitting. It
sets up a patience variable after a certain event is triggered, e.g. (1) the network
performances on the validation dataset (e.g. validation loss) start decreasing (2) per-
formances keep themselves constant starting from epoch i with respect to epoch i-1
(3) all of these behaviors happen in average over an ensemble of epochs. After the
patience has passed, the training is automatically stopped.

– Batch Normalization: in order to keep the output of each hidden units to have the
same mean µ and variance σ (thus reducing the so called internal covariance shift
[13]), the latter parameters are computed after each activation layer and applied to the
activated neuron so that zi+1

in = f(zi)−µ
σ .

µ and σ are said to be running mean and variance, and contribute improving the
generalization performances.

A comprehensive and detailed overview of regularization techniques is given in in chapter 7 of [4].

As a last note, the training procedure executes in an iterative manner until the cost
function reaches the convergence. Given a set of input training data, e.g. images for CV, they
are grouped in batches according to a user-specified batch size (its value is usually multiple
of 8 depending on computational capabilities).
Each batch defines a portion of teaching material, which is considered for the evaluation of the
gradient, and sets up an optimization step. After each of them has been processed and the whole
input dataset exploited, an epoch has passed. The cost function value after one epoch is usually
taken by averaging over the set of post-batch optimizations results, for all batches.
The epoch allows to introduce a measure in terms of training time and states how many
times the system has faced the whole input dataset for learning purposes.

7Overfitting: the model produces good performances on the training dataset only, failing to generalize
towards other input ensembles. Underfitting: the model performs poorly on the training dataset and thus fails
to generalize as well.

11

An overview on classical (D)NNs

1.3 Summary
This chapter briefly outlined the general background behind Neural Networks for system-level
understanding.
It highlighted the fundamental processes and elements that are needed to train and test a neural
network model in the framework of feed forward supervised Machine Learning, i.e. gradient-
based learning.
Key elements in this framework are (1) automatized feature extraction process along with (2)
training dataset, (3) cost function and (4) model architecture choices, which serve as tools
for the general forward and backward passes upon which machine knowledge is built.

12

Chapter 2

Convolutional Neural Networks

As mentioned in the previous chapter, in a traditional ANN each neuron receives activated
inputs from every neuron of the previous layer. It is said that the layer is fully connected
(FC). This feature dramatically increases the number of parameters of the final ANN model, slow-
ing down the training time.
In particular, it makes it difficult to treat real-world based problems such as classification and
object detection in the framework of CV.

This chapter initially overviews the structural composition of CNNs and their advantages
when addressing specific grid-like data types such as images. Thereafter, it describes their
extension towards CV classification and object detection in the recent years (starting 2012).

2.1 A powerful paradigm for Computer Vision
CNN replace traditional matrix-vector multiplication with the convolution operation.
Given two functions f and g, the convolution between them is defined as [14]:

(f ∗ g)(t) =
Ú +∞

−∞
f(τ) g(t− τ)dτ (2.1)

that is the area under the intersection curve between f (τ) and g(-τ + t) ∀ t. Function g is reversed
and shifted before calculation, as shown in fig. 2.1.

Figure 2.1. Convolution operation between f and g, visual representation [14]

13

Convolutional Neural Networks

Actually, another operation which does not involve reversing g exists and it is called cross-
correlation:

(f ∗ g)(t) =
Ú +∞

−∞
f(τ) g(t+ τ)dτ (2.2)

The latter is the operation employed by CNN models, although the misleading eponymus ’convo-
lutional’ by which they are known. From now on, the term convolution will be used to indicate
the actual ’Machine Learning’ definition, which implies the mathematical operation of cross-
correlation.
As from eq. 2.2, convolution between f and g is an integral in the time domain, yet it becomes an
element-wise multiplication between the Fourier transforms of f and g in the frequency
domain [4].
The latter is the way CNN will be described hereafter, since it encodes highly visual representa-
tion in the framework of ML applications, facilitating the final understanding.

Provided the following definitions

• Function f : raw input, grid-like shape. In the CV domain, it is an image data, i.e. a 3-D
tensor defined by three parameters: image width (W), image height (H) and number of color
channels, typically 3 for RGB format and 1 for grayscale. Overall, it has dimension (3 ×
H × W) 1

• Function g: channel kernel. Its dimensions are smaller than the input’s, which brings the
most important gain and source of advantage of CNN with respect to traditional NNs.
The kernel encodes the weights to be learnt and updated through the optimization
step, in analogy to a traditional NN. This will be clearer further on in this chapter.

• Convolution output f*g: it usually takes the name of output feature. In the domain
of CV, it encodes fine details of the input image, such as edges, corners or shapes (blobs).

the primary advantages of CNN, which stand behind its success and SOTA adoption w.r.t. tra-
ditional NNs, can be identified as [4] [5]:

1. Sparse interaction As already highlighted, the main difference between a CNN and a
traditional NN is encoded in the absence of full connections between each layer’s neuron.
This property is called sparse interaction [4] or, equivalently, each layer is said to have
sparse weights.
With reference to the graphs in fig. 2.2(a), sparsity can be visualized by considering that
the kernel interacts with a small portion of the input tensor. Kernel size is said to
define the receptive field of the convolution layer.
Note that though being the connections sparse, neurons in the deep layers of the network
still have indirect interactions with the input layers.
The main advantage is a critical reduction of the model total parameters, since the
number of connections is reduced by the receptive field of the applied kernel.

2. Parameters sharing In a convolutional network, the kernel slides along the input and
performs an operation at each sliding step. In this way, different portions of the output are

1This notation is called ’channel first’. The other one ’channel last’ reads (H × W × 3)

14

2.2 – Microscopic CNN structural building blocks

still generated by different portions of the input, as it would be reasonable to imagine, but
against the same applied kernel, which is ’shared’ as the sliding process moves forward.
In this framework, kernel entries are called tied weights, as represented in fig. 2.2(b) (Top),
where each bold arrow indicates a multiple contribution coming from the same kernel’s
element on different input entries. This behaviour is not present in a traditional NN - fig.
2.2(b) (Bottom) - where each kernel element does have effect on one input’s entry only
(single bold arrow);

3. Equivariant representation, or local invariance against translations 2 It is the
property that allows the extracted features to follow translations concerning the original
input’s objects.
According to local invariance defintion, convolving over a translated input is equiva-
lent to translating the convolved input.

4. Compositionality The property of hierarchical learning: detailed and context-detached
features can be generated early in the network (shallow layers), and used to provide more
detailed - and complex - ones in the deeper layers.
In the domain of CV, this means that object shapes are addressed from single corners or
edges.

(a) Sparse connectivity (b) Parameters sharing

Figure 2.2. Sparse connectivity and parameters sharing properties. The comparison involves
CNN (Top) and traditional NNs (Bottom) [4]

2.2 Microscopic CNN structural building blocks

A CNN is usually built by stacking several layers that manipulate the input and provide, as
output, the actual network predictions, whose nature varies according to the task being under-
taken.
In this context, some layers provide the sought after convolution, while others are borrowed from
traditional NNs architecture, as explained below.

2f is said to be equivariant to g if f (g(. . .)) = g(f (. . .)) [4]

15

Convolutional Neural Networks

CONV layer
Given an input grayscale image tensor I of size (1 × H × W) and a kernel K of size (1 × Kh
× Kw), with Kh < H and Kw < W 3 as considered in fig. 2.3(a), the convolution flow is defined by:

1. Align the kernel’s center with the first (top-left) element - or pixel - of the input image;

2. Perform element-wise multiplication between I and K ;

3. Sum the results; the output is the first element of the convolution tensor between I and K ;

4. Slide the kernel K by a certain amount (stride S, which is chosen by the user himself)
along the image width;

5. Repeat from step 1, until the whole set of input I entry pixels is covered;

In order to preserve the input dimensions after convolution, the latter may be padded (e.g.
with zeros) so that pixels at the edges of the input tensor may undertake convolution as well: if
not, the operation can’t be applied because of the impossibility to perform element-wise multipli-
cation. The value that unlocks this operation takes the name of padding P.

If the input tensor has depth Din, a specific number of kernels (here indicated with Ktot) is
usually exploited. The previous algorithm applies identically for each of them, i.e. it involves
input I at ith depth layer with ith kernel Ki, ∀ i. The whole operation is called 2D convolution.
The overall structure of size (Ktot × HK × WK) is called convolution filter, which is a collec-
tion of kernels, as shown in fig. 2.3(b). 4

(a) Input tensor and
kernel reception field
[14]

(b) 3D Convolution operation

Figure 2.3. Convolution operation visual representation

3The kernel is usually a square matrix whose side is odd to preserve the existence of a center. That side,
or receptive field F, quantifies the resulting level of sparsity after convolution

4Note that for the very first convolution involving the input image, the filter has Ktot = 3 for RGB (Din=3)
format and Ktot = 1 for grayscale (Din=1), where the filter collapses to a single kernel as described above.

16

2.2 – Microscopic CNN structural building blocks

It is worth noticing, as mentioned previously, that the elements building up each tensor
filter are the actual weights that have to be updated using the optimization rule as
well as the first responsible of the learning process.

As a matter of fact, the resulting convoluted tensor has dimensions [5]:

• Wout = (Winput - F + 2P)/S + 1

• Hout = (Hinput - F + 2P)/S + 1

• Dout = Ktot

Several types of convolutions have been proposed throughout the years. Among them, two are
getting popularity because of their capability to keep model final size compact (chap. 7): depth-
wise and pointwise convolutions [15].
Briefly, they are the result of factorizing a standard convolution process into two operations,
the first applying DK filters of depth 1 (DK × HK × WK) and the second Dout filters of unit
dimensions (Dout × 1 × 1), providing a sensible computation footprint reduction. The
operation is called depthwise separable convolution.
Separable convolution is the main reason of the growing popularity MobileNet family has gained
in the recent years in the field of Edge ML.

POOL layer
Pooling operation consists of ’replacing the output of a layer with a summary statistics of its
neighborood elements’ [4]. The overall process is similar to that of a standard CONV layer: a kernel
of reduced dimensions with respect to the input tensor slides along its columns and rows by a
fixed stride.
The operation that is performed can either be the average of the input pixels intensities in the
receptive field of the kernel (average pooling), or their maximum (max pooling, shown in fig.
2.4).

Figure 2.4. Max pooling operation with different strides [5]

It is interesting to note that pooling helps the network model to build invariance against
small input translations. The reason behind this statement can be understood from fig. 2.4:
even though the original set of pixels is slightly translated towards right (that can correspond
to an actual movement of an object in a image), the maximum operation still outputs the
same result in both cases.
This is an advantage when the exact location of some features is less important, for example in a
typical pure image classification problem.

17

Convolutional Neural Networks

Activation, DROPUT, BATCHNORM and FC layers
Other than convolution-based layers (both CONV and POOL), other blocks are usually needed to
either avoid overfitting as explicit and implicit regularizers (DROPOUT and BATCHNORM) or
exploit the required non-linearity via neuron activation (benchmark: ReLU layer). They have
all been already described in chapter 1.
Finally, one to two FC layers were typically inserted before the model output, although several
benefits exist in having fully convolutional models and their use is nowadays seldom.

CNN as particular forms of traditional FC NNs
A final comment to underline a quite interesting and peculiar point of view on CNN, as reported
in [4]. For each position of the filter with respect to the input tensor during the convolution
operation, the operative region is dictated by the filter’s receptive field.
The latter can be thought of as a tensor having the same size of the input with a set of weights
(tensor entries) hard-coded to zero. This property, along with the slide-and-convolve
operation which keeps the weights constant as the sliding proceeds, is ’similar to imposing a
prior probability distribution with infinite strength’ [4] on a traditional, FC, NN model 5,
since some operation’s features are known a priori.

2.3 High-level CNN structure
The elements described in the previous section constitute the ’microscopic’ building blocks, or
fundamental ’bag of ingredients’, when designing a CNN model. Their use has become SOTA in
such ML fields like image classification, starting from the seminal paper describing AlexNet 6

in 2012 [6].
From then on, research has evolved by introducing several novel modules in order to [12]:

• Improve network performances, i.e. model accuracy, for the task it has been trained
for;

• Reduce network inference time, i.e. the time needed to output a prediction starting
from an input feed;

• Control the model size to fit and support the ’shift towards the edge’.
As a general rule of thumb, the deeper the network, the wider its opportunities to learn
robust features in a hierarchical way, the more accurate its performance and the larger its
size, unless some architectural and methodological strategies are undertaken (chapter 7);

The first step when performing image detection is features extraction from the input feed,
i.e. the process allowing to derive information that would be manipulated to fulfill the specific
task under analysis. These task can be divided into two main classes:

• Image classification Given a training dataset with:

5a prior probabilty distribution states the level of knowledge (belief) of an event before its actual measure.
It is said to get stronger as long as its entropy, i.e. the uncertainty about prediction’s belief, gets smaller.

6among AlexNet major contributions: use of ReLU activations, extension towards multiple-GPU to shrink
training computation time and introduction of some regularization techniques to reduce overfitting, like
data augmentation and DROPOUT layers.

18

2.3 – High-level CNN structure

1. a set of input images, each containing one single object;
2. a corresponding set of ground-truth labels, each containing the image category;

the aim of the network is to learn how to classify images with a certain probability or
classification score, when properly taught on the training dataset (fig. 2.5(a)).
The advent of CNN, as introduced by [6], made it possible to extend image classification
from small and low-resolution datasets - e.g. MNIST 7 [16] and CIFAR-10 8 [17] - to
large and high-resolution’s such as ImageNet dataset by Stanford University 9[18].

• 2D objects detection: extension of pure image classification task that introduces mul-
tiple objects detection, starting from the seminal paper on Region-based CNNs (R-CNN,
[19]). Within this context ground-truth annotations do not only contain the correct class
for each object, yet also the set of bounding box coordinates that locate it in space (fig.
2.5(b)).

(a) Image classification
example [5]

(b) Object detection
example

Figure 2.5. Convolution operation visual representation

It is usually true that moving towards modeling a real-world based phenomenon introduces
a series of constraints and challenges.
In the case of 2D object detection, these mostly concern the final layers of the network with a
three-state problem:

1. Quantify the network process of discerning an object (foreground) from the background
by assigning an objectness confidence to some proposed regions of the input image: the
process is called localization;

2. Quantify four spatial coordinates around the selected objects, whose objectness is reason-
ably high: the process is called bounding box regression;

3. Compute classification scores of the localized objects (class confidence regression), the
only existing process when dealing with simple classification.
Steps 2. and 3. define the actual detection phase since they belong to the executive part
of the flow 10;

760000 hand-written digits images at 24 × 24 resolution
860000 colour images at 32 × 32 resolution
9about 1.4 million images at 256 × 256, divided into 1000 categories. It is used in one of the most

prestigious competitions on image classification, ILSVRC
10Henceforth, ’pure classification’ will refer to the process of assigning a single-object image a class

category - without localizing - while ’detection’ will refer to an actual interest in the spatial position of
multiple objects

19

Convolutional Neural Networks

Fig. 2.6 provides an high-level view [12] of the actual parts that build up a modern CNN for object
detection. The analogy relates with human’s spinal chord: backbone, neck and head. The first
two provide feature map extraction, the last executes the detection (either simple classification
or 2D detection). Each block makes use of the microscopic elements introduced in the previous
section and is briefly detailed in the following.

Figure 2.6. Modern CNN structure, human body analogy

Backbone
It is a CNN model typically pre-trained 11 on a large image dataset, e.g. ImageNet. The last
layer, responsible for the predicted score in a simple classification problem, is removed and the
network is used to build the features map.
Layer’s sequential stacking is performed by employing the building blocks mentioned in the
previous sections. In the recent years, some other features like inception modules (parallel stack-
ing, [20]) and residual connections (feed-forwarded skip connections to reinforce feature learning,
[21]) have been introduced to improve the teaching phase robustness.
Given the actual trend of reducing the model size by preserving its accuracy, there exists:

1. Heavy backbones: extremely deep CNN to be trained via single- or multi- GPU training.
It is worth citing VGG16, ResNet-50, ResNet-100, GoogleNet, Darknet-19 [22] [23] and
Darknet-53 [24] among the most employed 12;

2. Light backbones: these are NN models willingly crafted to keep some efficiency margin
in terms of overall size.
Among them, it is worth mentioning SqueezeNet [25] and the MobileNet family [15] [26]
[27] which has rapidly become SOTA in the field.
The architectural features that distinguish them in terms of efficiency/compactness trade-
offs are detailed in chapter 7.

11a NN is said to be pre-trained when its weights have already been taught through gradient-based learning
to perform a particular task, usually on a pure classifier’s backbone. In this way, detector’s weights are not
randomly initialized, but training stage can start from an already reasonably well-working initial point, nearer
to minimize the cost function.

12the final number usually indicates network’s depth in terms of layers.

20

2.3 – High-level CNN structure

Neck
It comprises a set of techniques to handle the output feature maps. As an example one of the
most used, Feature Pyramid Network (FPN) [28], allows to improve small objects detection
by collecting features from the intermediate layers of the backbone.
In fig. 2.7, the last layer encodes the feature maps to be used for detection. They have low
resolution due to the series of up/down sampling after POOL and CONV operations, but strong
semantic value since high-level objects, such as effective shapes, are recognized in the deeper
hidden units.
Overall, FPN starts a top-down process where intermediate feature layers are reconstructed
including residual connections to keep the resolution as high as possible from the semantic-
reach deeper layer.

Figure 2.7. Feature Pyramid Network sketch [28]

Head
It is the detection layer responsible to predict confidence scores of classes and - when requested
by the task - object’s bounding boxes.
According to historical development and evolution, the kind of head actually determines the type
of object detector:

1. Two-stage detectors (or sparse predictors): region proposals for localization and model’s
detection predictions are detached steps that happen sequentially and require fragment-
ing the input image before inference.
This provides high accuracy though not real-time detection. Pioneers in the field, are mostly
based on the Region based CNN (R-CNN) family, that made it feasible the transition
from pure classification to detection;

2. Single-stage detectors (or dense predictors): region proposals extraction and subsequent
model’s predictions are performed in a single step, by looking at the input image as
a whole entity, at a glance. This slightly decreases their accuracy, yet making them
capable of real-time detection 13.
They find their pioneers in the You Only Look Once (YOLO) (very first) and Single-Shot
Detector (SSD) families as well.

An interesting picture highlighting the difference between Two- and One- stage detectors is pro-
vided in [12] and shown in fig. 2.8.

13click here: https://www.youtube.com/watch?v=Cgxsv1riJhI for the live comparison of YOLOv2 and Faster
R-CNN fed with an input video stream by Joseph Redmon at a TEDx event in 2017.

21

https://www.youtube.com/watch?v=Cgxsv1riJhI

Convolutional Neural Networks

Figure 2.8. One- and Two- stage detectors comparison [12]

Last, with reference to fig. 2.6, it is worth mentioning that, alongside anchor-based models
that are the main subjects of this document, several anchor-free detectors have been developed
as well.

2.4 The Head: detection layer

This section will briefly describe the key differences between the two main heads typologies in
terms of classification scores and bounding box predictions computation.
It will serve either to justify the choice of the single-stage family employed in chapter 4 and to
highlight the historical evolution in the field, which is based on borrowed techniques and
methodologies that have quickly become cornerstones.

2.4.1 Two-stage object detectors

Sliding window, Image Pyramids: Overfeat approach

The transition from pure classification to detection has been first proposed in 2013 with the
Overfeat network (2013) [29], its main purpose being the capability to localize mostly single-
objects based images by employing multi-scale classification.
The primitive idea is indeed to use:

1. image pyramid 14 to get 6 different representations of the original image at different
scales;

2. a sliding window approach to select proper regions of interest (crops); objects with
different sizes can be located by the same window thanks to re-scaling;

3. perform both classification and, after, bounding box regression for each crop and scale;

4. output final and refined bounding box coordinates by considering the overlap over different
crops for all scales.

14image processing technique that performs multi-scale sub-sampling of the input feed, varying the original
resolution.

22

2.4 – The Head: detection layer

Overfeat - Summary

Benefits: Details are left to [29], however, the 2 last FC layers are treated through con-
volution operations, making the network pseudo-fully convolutional. Henceforth, it starts
probing the advantages of dealing with fully-convolutional networks: input size indepen-
dence and computation speed up [30].
Disadvantages: the sliding window and image pyramids slow down the whole inference
process and improve the overall cost at training time.

Region-based approaches

R-CNN family evolution line consists of three main contributions: Region-based CNN [19], Fast
R-CNN [31] and Faster R-CNN [32], with the last two correcting some weaknesses of the original
work, mostly at inference time, though the general workflow is kept the same.
A synthetic description is provided below, mostly underlining the major achievements and im-
provements at each steps.

R-CNN (2014)
It solves the most important drawback of the approach proposed in [29] by smartly selecting the
region proposals over which performing classification and bounding box regression.
About its building-blocks structure:

• A selective search algorithm [33] is applied on the input image to obtain a set of N (here set
to 2000) region proposals, or crops, with high objectness confidence, i.e. the probability
of dealing with an object - or foreground - rather than background;

• Each crop is independently fed to the CNN. Classification scores, as well as bounding
box coordinates to fine-tune the outputs localization coming from the selective search, are
computed through two FC layers;

R-CNN - Summary

Benefit: It reduces training and inference time by searching and selecting a reduced
number of region proposals instead of employing a more costly sliding windows
approach;

Disadvantages:

• Inference still takes a large amount of time (about 49 seconds [31] for a single image),
since each crops has to be individually fed to the CNN; being N = 2000 proposals,
this means that the feature maps extraction process happens 2000 times more
than needed;

• Selective search does not participate directly in the learning process [30] and plays
the role of a pre-processing module. It is said that the network is not end-to-end
trainable.

23

Convolutional Neural Networks

Fast R-CNN (2015)
R-CNN drawback no. 1 is solved by reducing the actual number of feature extractions to one:

1. The input image is fed to the CNN and its feature maps calculated;

2. Selective search algorithm is applied to extract - i.e. to only find - region proposals for
object localization;

3. A novel module called Region of interest (ROI) pooling is employed to execute ROI
cropping on the feature maps according to the results provided by the selective search;

4. Cropped ROIs are fed to a R-CNN where classification labels and bounding box coordinates
are computed;

Fast R-CNN - Summary

Benefit:

• large reduction of training and inference time (about 2.3 seconds [31] for a single
image);

• End-to-end training is reached, being each input fed to the network only once;

Disadvantage: dependence on the selective search algorithm still exist at inference time;

Faster R-CNN (2016)
In order to integrate the region proposal extraction in the flow at inference time and replace the
selective search, the proposal mechanism is split in two halves:

• Anchor reference generation: the input image is sampled with a steady stride to gen-
erate a set of Ngrid grid reference points. A fixed number of k boxes with different aspect
ratios (k = 9 in [32]) is associated to each grid point. Therefore, the maximum number of
proposal reads Ngrid · k.
The use of anchors allows to remove multi-scale images, instead considering anchors pyra-
mids [32], i.e. multi-scaling operated at bounding box coordinates level;

• Region Proposal Network: an additional network whose task is to reduce the total
number of proposals according to the entity of their objectness score, i.e. whether they
are foreground or background, keeping those belonging to the first class according to the
intersection over union IoU with the reference ground-truth boxes (training dataset labels
annotations).
As a matter of facts, its loss for the training stage is composed by two terms:

1. Binary cross-entropy for addressing the binary class problem of foreground/background
distinction;

2. Bounding box regression for coordinates calculation. It is handled by computing the
offset between anchors and predicted boxes coordinates, in the form (xcenter, ycenter,
w, h), where each term is normalized with respect to the corresponding horizontal or
vertical image dimension;

24

2.4 – The Head: detection layer

The set of N output proposals provided by the Region Proposal Network (RPN) module cor-
responds to the crops identified by the selective search algorthm in the previous implementations.
The set undertakes ROI pooling as well to extract fixed size windows. Each of them is given to a
R-CNN in order to calculate the final classification score predictions and to fine-tune the
already computed bounding box coordinates, adding a loss with another two contributions.

Faster R-CNN - Summary

Benefit: The whole computation is based on gradient learning. Moreover, the
four loss contributions (two for RPN, two for the final detection layer) can be jointly
trained increasing training speed. Last, inference speed is increased to 0.142 s for single
image w.r.t. Fast R-CNN.

Disadvantage: Overall, inference time is still slow (about 7 FPS) and prevents the net-
work to be used for real-time object detection.
The reason is the network’s modular setup [30] when dealing with (1) region proposals
for objectness confidence computation (RPN), (2) proposals cropping (ROI pooling) and
(3) detection (last layer).

2.4.2 End-to-end object detectors: pursuing real-time detection

In order to prevent the bottleneck determined by the multi-step approach of the R-CNN family,
fully end-to-end object detectors have been introduced starting from 2016.
Though their inner differences, the general underlying approach is the same: performing objectness
confidence, classification confidence and bounding box regression, yet all at once as a unique
regression problem.
The fundamental take-away is to avoid having a portion of the network to generate N proposals
from the input feed - i.e. to first evaluate their objectness and thereafter passing them to the
detection layer - but looking at the whole input image once (hence forth the name YOLO),
in a single-shot (hence forth the name SSD)15.
The key difference between the two approaches is sketched in fig. 2.9 and its main advantage is
a huge increase of speed at inference time.

15This approach mimics the human ability of deciding the potentiality of x being an object and, in case
of affirmative answer, evaluating its category as well as position in space with a single and quick glance.

25

Convolutional Neural Networks

(a) Two-stage object detector high-level view

(b) One-stage object detector high-level view

Figure 2.9. One- and Two- stage detectors system level comparison

In the framework of this document, more attention have been paid towards YOLO networks family,
making it worth detailing them more deeply. SSD topology is instead briefly described in sec.
2.4.2.

YOLO family

Several YOLO versions have actually been developed up to the fourth generation, released in May
2020 16.
Up to now, YOLOv3 is considered SOTA in the field of real-time object detection for CV.

YOLOv1 (2016)

In order to grasp the whole image context, the following procedure is followed in [22]:

• Given an input image, divide it into Ngrid × Ngrid grid cells. Each of these is responsible
for detecting one potential object 17;

• For each grid cell, the network predicts B (where B = 2 in the original paper) bounding boxes
- each of which brings 5 values: 4 bounding box normalized coordinates and 1 objectness
confidence score - along with Nclasses conditional class probabilities.
The term ’conditional’ indicates that the object’s probability of belonging to a certain class
is conditioned to its actual grade of objectness, i.e. whether it is an object or not;

16An apocryphal YOLOv5, released in June 2020 by the Spanish company Ultralytics LLC, is not yet consid-
ered official, since it is not associated to a scientific publication and it is mostly a re-shaping of YOLOv3.

17’potential object’ means that its grade of objectness is not yet known at detection time as in region-
based approaches.

26

2.4 – The Head: detection layer

• The output prediction is therefore a tensor of the form (Ngrid, Ngrid, B·5 + Nclasses).
Nclasses equals 20 for the PASCAL Visual Objects Classes (VOC) [34] dataset and 80 for
Microsoft COCO 18 [35];

• The final class confidence probability (or score) for a certain object at inference time
is built from objectness and conditional class predictions. It reads [22]:

objectness ·P(classi|object) = P(object) · IOUgt,box ·P(classi|object) = P(classi) · IOUgt,box
(2.3)

If P(object) = 0, there is no intersection between the ground truth and the predicted
box, thus the model confidence of the prediction being an object falls to zero (background
case).
Otherwise, if an intersection exists, P(object) = 1 and the objectness confidence equals
IOUgt,box. In this way, P(object) plays the role of an indicator function.

How the loss function is computed to get one, unique regression procedure is detailed further
down in the document.

YOLOv1 - Summary

Benefits:

• The network reaches 45 FPS at inference time [22] while keeping good performances
in terms of accuracy on COCO dataset;

• Being able to deal with the whole context of the image, the network is able to
distinguish foreground (objectness > 0) from background (objectness = 0) better
than region-based methods;

Disadvantages:

• Incorrect localization [22]: The number of boxes predicted for each grid cell is low (B
= 2), while there exists one conditional class probability output only for each grid
cell. This prevents the network to recognize group of objects that are not clearly
detached one from the other;

• The model is not anchor-based as Faster R-CNN, therefore it is weak in general-
izing towards several aspect ratios and shapes;

• Bounding box regression does not take into account multi-scale approach, thus strug-
gling to generalize towards small objects that would require high resolution to
be detected;

YOLOv2 (2017)

18MS COCO plays the role of ImageNet in the domain of pure classification and is rapidly growing as SOTA
dataset for object detection. It has about 120 thousands between train and validation annotated images, as
well as around 40 thousands available for testing.
VOC is significantly smaller, with about 10 thousands samples fragmented into train, validation and test sets.

27

Convolutional Neural Networks

YOLOv2 aims at solving localization and missing detection’s errors from the first YOLO. In order to
do that, some techniques are applied, such as (1) BATCHNORM regularization layers that prevent
over-fitting and allow to remove DROPOUT final layers, (2) multi-scale training that introduces
multiple scaled inputs at training time and (3) pass-through connections from intermediate layers.
The latter two increase the network robustness against small objects.
Nevertheless, the most important novelty concerns bounding box regression.

Fixed anchors (or priors)
Instead of proposing B bounding boxes directly as its predecessor, YOLOv2 borrows anchors-based
bounding box regression from Faster R-CNN. Nevertheless, two main changes are introduced:

1. Grid-cell offset: Faster R-CNN computes the offset between the proposed bounding box
and priors coordinates, following [32]:

offx,pred = (xpredc − xa)
wa

;

offy,pred = (ypredc − ya)
ha

;

offw,pred = log

3
w

wa

4
;

offh,pred = log

3
h

ha

4
(2.4)

where pedices c and a indicate ’center’ and ’anchor’ respectively and wa, ha are anchors
de-normalization factors.

YOLO authors introduce x- and y- offsets as well, though with respect to each grid-cell center,
according to:

σ(offx,pred) = xpredc − gridi,x;
σ(offy,pred) = ypredc − gridi,y;

offw,pred = log

3
w

wa

4
;

offh,pred = log

3
h

ha

4
;

(2.5)

where gridi,x and gridi,y is ith grid center coordinate tuple and σ(. . .) is the sigmoid
activation to constraint the predicted value in the range [0,1].
As it will be highlighted below, at training time the tuple (offx,pred, offy,pred, offw,pred,
offh,pred) is compared with (offx,gt, offy,gt, offw,gt, offh,gt), where ’gt’ means ground
truth, to compute the loss for box regression.
Fig. 2.10 reports a visual scheme of the different ways bounding box regression is performed
in two- and one- stage detectors.

28

2.4 – The Head: detection layer

(a) One-stage detector, coordinates prediction computa-
tion

(b) Two-stage detector, coordinates prediction computa-
tion

Figure 2.10. One- and Two- stage detectors bounding box regression notation

2. Anchor clustering: fixed priors choice should improve the learning phase as much as
it mimics the distribution of object’s bounding boxes provided a specific image training
dataset.
Faster R-CNN hand-pick anchors [32] [23], while YOLOv2 performs k-means clustering
19 over the ground truth bounding box distribution at varying number of priors, i.e. the
clusters. The task is to get the smallest number of groups (i.e. clusters/rectangles) the

19k-means clustering is a ML technique in the domain of unsupervised learning that allows to create clusters

29

Convolutional Neural Networks

ground truth boxes should be separated into in order to maximize their overlapping area.
The set of anchors Nanch is associated to each grid cell as in Faster R-CNN.

Anchor-level predictions
Anchors introduction allows to extend the number of actual predicted boxes. For each
prior, hereafter also referred to as proposals, 4 bounding box coordinates, 1 objectness confi-
dence score and Nclasses conditional class probabilities are computed. Therefore, given Ngrid ×
Ngrid grid cells, the output reads (Ngrid, Ngrid, Nanch·(5 + Nclasses))

YOLOv2 - Summary

Benefits:
YOLOv2 manages to handle its predecessor main disadvantages while keeping (and still
improving) inference speed.

Disadvantages: It still lacks a multi-scale contribution mechanism to build predictions
from different scales, thus limiting its overall accuracy.

YOLOv3 - YOLOv4 (2018; 2020)

YOLOv3 comes with several improvements to further increase YOLOv2 accuracy, rather than speed,
due to the competition of other family models like RetinaNet and SSD. Most of the changes are
performed at backbone level and detailed below.
Moreover, the newly released YOLOv4 mainly focus on image pre- and post- processing steps and
only slightly modifies YOLOv3 original backbone, while the head is kept exactly the same.
Therefore, less attention is dedicated to YOLOv4, though its major contributions are briefly men-
tioned:

• The third version of YOLO is a Fully Convolutional Network (FCN), with the already men-
tioned benefits of input size independence and computation speed up;

• YOLOv2 had 19 backbone’s layers (Darknet1920) and 11 head’s (detection) layers. YOLOv3,
other than introducing residual connections as in ResNet [24], increases networks depth to
106 global layers - half backbone, half head.
This further improves network accuracy but slows down inference stage with respect to
its predecessor to about 30 FPS;

• YOLOv3 introduces predictions at three scales to improve small object detection. Three
intermediate spots along the network are taken and propagated through the output, after
proper up-sampling.
The output shape is the same of YOLOv2, (Ngrid, Ngrid, Nanch·(5 + Nclasses)), with Ngrids

from scattered data by computing the Euclidean-norm distance with a set of centroids, which will define
the final categories. In this framework, centroids are the anchors themselves and the distance reads [23] d(box,
centroid) = 1 - IoU(box, centroid), where IoU indicates the intersection over union areas.
Their optimal number is typically selected through the elbow method, i.e. trading off the curve representing
the monitored property when varying the cluster’s number.

20Darknet is the ML framework used to develop YOLO, and stands along TensorFlow, PyTorch and Caffe

30

2.4 – The Head: detection layer

= 13, 26, 52 for each output. Nanch = 3 for YOLOv3 after prior k-means clustering.
The total number of predicted boxes thus reads:

Predboxes,YOLOv3 = (132 + 262 + 522) · 3 = 10647

against

Predboxes,YOLOv2 = 132 · 5 = 845

In general, the latter feature improves the network accuracy while reducing its speed, al-
though keeping it faster then the majority of other object detectors.

• YOLOv4 chooses CSPDarknet53 21 as backbone. Its main novelties concerns the coherent
introduction and theoretical reorganization of two sets of techniques [12]: bag of freebies
and bag of specials.
Both of them aims at improving model performances: the first set affects training cost
without degrading inference stage time and mostly deals with image pre-processing for data
augmentation, the second focus on enhancing some architectural aspects like receptive field,
feature integration (e.g. through FPN addressing network’s neck level) and post-processing
techniques with anchor-based networks.

SSD (2016)

SSD [37] addresses the problem of Object Detection (OD) in a similar way as YOLO. Its main
source of comparison according to timeline is YOLOv1, having been released in the same year. The
original publication does employ VGG as the backbone network. Nevertheless, given the effective
speed and accuracy performances guaranteed by the detector’s head, other backbones have been
integrated in the recent years, seeking to increase its efficiency in terms of hardware resources
(model size and compactness).
Among them, it is noteworthy to mention SSD with MobileNet family backbones, as well as a
compact version of SSD head called SSDLite, proposed in [15] [26]. They are employed in chap-
ter 4 for adversarial attacks experiments. As a matter of facts, hence forth SSD will be used to
indicate the architecture’s head.

A resource-optimized version of SSD has been proposed in [26] and named SSDLite due to the
reduced model’s size. It replaces standard CONV layers with more efficient depth-wise and point-
wise, briefly reviewed in chapter 2. This approach reduces the number of MAC 22 operations by
a factor of 1/7. SSDLite has been employed in the adversarial attack experimental part.
The main contributions introduced with SSD are summarized below [37] [30]:

21Cross Stage Partial Network, a novel feature recently proposed [36] to enhance backbone’s compactness
towards edge applications. It optimizes gradient reuse during backpropagation.

22Short for Multiply and Accumulate, the two main operations performed with convolution.

31

Convolutional Neural Networks

SSD - Summary

Benefits:

• The network is fully convolutional in order to detach its input size from the par-
ticular backbone used;

• It provides anchors - or priors - proposals in a way similar to Faster R-CNN;

• Conversely with respect to YOLOv1 and YOLOv2, the detection layer (head) other
than progressively reducing the layer’s volume, lowering the resolution, does directly
connect intermediate layers to the final output, therefore providing multi-scale
learning during the forward pass;

• SSD is fast and accurate.

The following fig. 2.11 shows some comparison results between two- and one- stage detectors on
the COCO dataset. In the figure, different circles refer to a variation in the input size, since
accuracy typically increases when the input resolution gets large.
Performances are indicated through the mean average precision metrics 23 as a function of the
frames captured per second. As it can be observed, two- stage detectors generally show higher
accuracy at the cost of low FPS, i.e. real time capability. Conversely, one- stage detectors allow
real-time data detection, yet at the cost of slightly lowering model’s capability in terms of accuracy.

Figure 2.11. Single- and two- stage object detectors mAP/FPS comparison. Each circle represents
the mAP of a specific NN model as a function of its real-time capability, measured as frames per
second (FPS). Source: https://gluon-cv.mxnet.io/model_zoo/detection.html.

23A deeper insight about the latter as well as others common evaluation metrics is provided in chapter 4.

32

https://gluon-cv.mxnet.io/model_zoo/detection.html

2.4 – The Head: detection layer

2.4.3 Training stage: Loss contributions for anchor-based detectors
In this section the main cost function contributions for an anchor-based object detector will be
briefly described.
As mentioned in the previous sections, detection is treated has a unique regression problem, with
three components:

• Confidence score regression to teach the model to correctly predict the objectness
confidence of a prediction;

• Bounding box regression, responsible for box parameter’s learning (typically xc, yc, w,
h), i.e. the actual spatial detection;

• Classification problem, i.e. assign the detected box a correct class label;

which can be synthesized as:

Ltot = Lconf + LBB + Lclass (2.6)

Bounding box regression

The typical approach has been to define the ün-norm 24 between ground-truth and predicted
spatial parameters. Each parameter is assumed in the form of relative coordinates with respect
to the set of reference anchors and/or grid cells, according to the network model (as an example,
refer to eq. 2.4 or 2.5) [22] [38] [19]:

LBB ∝
Ø
H

Ø
W

Ø
K

ün((offpredx − offgtx), (offpredy − offgty), (offpredw − offgtw), (offpredh − offgth)) (2.7)

where H, W and K indicates feature’s height, width and depth (number of applied filters) respec-
tively.
Nevertheless, some subtleties happen when considering ün norm which have been dealt with ever
since YOLOv1, producing an evolution in the actual approach.
One of the most recent results (2019) in the field has been considering the Intersection Over
Union (IoU) between ground truth and predicted boxes. Among the notable methods:

• Generalized IoU (GIoU): it evolves the IoU-based bounding box regression loss, of the
form [33] [39]:

LBB,IoU = 1 − IoU(gt, pred) = 1 − |Bgt ∩Bpred|
|Bgt ∪Bpred|

(2.8)

where B is the tuple indicating bounding boxes parameters, by adding a penalization term
that takes care of non-overlapping boxes, which witness vanishing backprop gradients slow-
ing down regression:

LBB,GIoU = 1 − IoU(gt, pred) + C − |Bgt ∪Bpred|
|C|

(2.9)

24ün norm is addressed with more detail in chapter 3. As for now, it is worth citing the Euclidean norm
(also called norm-2 or squared distance, i.e. ü2) as one of the most employed for bounding box regression.

33

Convolutional Neural Networks

C is the smallest box covering both Bgt and Bpred. Note that C reduces to Bgt ∪ Bpred
when Bgt and Bpred are overlapping, otherwise C > Bgt ∪ Bpred.

• Complete IoU (CIoU): GIoU often collapses to simple IoU because the penalization term
is often near to zero.
A novel approach recently proposed (December 2019) redesigns the penalty term in eq. 2.9
either by minimizing the normalized distance (ü2 norm) d between ground truth and
predicted boxes (DIoU) and considering their aspect ratio consistency [39]:

LBB,DIoU = 1 − IoU(gt, pred)+ d2(Bgt, Bpred)
C2 ; LBB,CIoU = LBB,DIoU +αν (2.10)

where α is a tunable parameter and ν measures the aspect ratio consistency [39].
This leads to a double advantage: regression speed up by distance minimization and a
non-vanishing gradient in the case of box inclusion, where otherwise GIoU loss would have
collapsed to IoU’s and vanished, being the intersection over union the same if Bgt ⊆ Bpred.
Of course, DIoU and CIoU cover the non-overlapping case as well.
YOLOv3 employs GIoU, while YOLOv4 witness the better results provided by CIoU.

Confidence score regression and Classification

The first contribution term considers the IoU between ground truth and predicted bounding boxes
and calculates the distance with the corresponding network output. IoU encodes the reference
information about the objectness confidence of a prediction. Besides, some tunable parameters
are usually introduced to enhance or smooth the penalization provided by the loss when
dealing with large/small objects or with foreground/background predictions, as e.g. in [38] [22].

The second comes from a pure classification problem (where indeed is the only one computed)
and deals with class labels predictions. Two cases can be distinguished [40]:

1. Single-label (SL) classification: each prediction may belong to one class only, i.e. the
set of classes is independent. In this case, the loss contribution reads:

Lclass,SL = −
CØ
i

ci,gtlog(Softmax(ci,pred)); Softmax(ci,pred) = eci,predqC
j cj,pred

(2.11)

where ci,gt and ci,pred indicates ground truth and network class scores predictions respec-
tively, Softmax(x) is the softmax activation; the overall loss is called Categorical Cross-
Entropy loss, or Softmax loss.
Softmax guarantees that the predicted classification probabilities for the whole set of classes,
given a certain proposal, lie within the range [0,1] and sum up to 1, thus compounding to-
gether class predictions.

2. Multi-label (ML) classification: when an object can belong to multiple classes, as in
the case of Google OpenImages 25 dataset [41] where each macro-class - such as ’Person’ -

25OpenImages is a wide, multi-task dataset that counts over 30 millions of annotated images and around 600
labels that can serve for several CV tasks, such as pure classification and image segmentation.

34

2.5 – Summary

is fragmented into sub-categories - such as ’Man’ and ’Woman’ - score predictions should
be detached, meaning that their sum can overcome 1. The problem is treated as a binary
classification within each class - if the set of classes is represented with an array, each element
can be either 1 or 0, and more elements can be 1 at the same time.
To treat each prediction independently, Softmax is replaced by Sigmoid activation:

Lclass,ML = −
CØ
i

ci,gtlog(Sigmoid(ci,pred)); Sigmoid(ci,pred) = 1
1 + e−ci,pred

(2.12)

Sigmoid constraints each prediction to lie within [0,1] without compounding the overall
ensemble values. Loss in eq. 2.12 is named Binary Cross-Entropy.

Multi-label classification has been adopted by YOLOv3.

2.4.4 Inference stage: prediction’s post-processing
Post-processing is a term that indicates the sequence of processes applied to the ensemble of
bounding box proposals (and associated class confidence scores) predicted by the network. As
mentioned in [12], post-processing only exists in the domain of anchor-based models where the
concept of ’region proposal’, being it sparse or dense, arises directly from the previously computed
and fixed anchors.
It typically consists of two procedures:

1. Confidence score filtering: The ensemble of proposals is filtered by hard-coding a confi-
dence threshold for their objectness score, therefore removing boxes that are less likely to
be objects; after filtering, the maximum conditional class probability among all classes
is retained for a certain proposal - in the single label framework - and class confidence score
is computed as in eq. 2.3.

2. Non-Maximum suppression (NMS): it aims at removing redundant proposals, i.e.
bounding boxes survived after confidence score filtering and pointing at detecting the same
objects. Usually, their IoU is filtered according to a NMS threshold value when comparing
with the highest confidence score’s proposal.
Recent advances such as GIoU, DIoU and CIoU can be applied to this purpose as well.

2.5 Summary
This chapter outlined the powerful paradigm introduced by Convolutional Neural Networks in
the framework of Computer Vision.
In particular, it describedmicroscopic (CONV, MAXPOOL, RELU, DROPOUT) and high-level (Backbone,
Neck and Head detection layers) building blocks, before setting them in the context of pure clas-
sification and object detection fields.
The latter domain is investigated in detail by distinguishing between two- and single- stage
detectors with their most representatives models, i.e. R-CNN, YOLO and SSD families. This com-
parison has the aim of reproducing the steps that have lead to unlock real-time detection
without accuracy loss by exploiting a unique regression problem.
Last, bounding box, objectness and classification loss contributions are reviewed for object
detection training.

35

36

Part II

Adversarial Attacks

37

Chapter 3

Theory and Principles

Adversarial attacks can be defined as "Inputs specifically designed to force a Machine Learning
system to produce erroneous outputs" [42]. The forcing nature typically consists of considering
imperceptible alteration of the input - e.g. an image in the field of CV - that however affects the
final system’s prediction, by properly training and crafting the alteration (distortion)
itself.

This chapter aims at briefly introducing why this topic has gained attention by the research
community in the recent years as well as reporting a walkthrough SOTA literature works.

3.1 Motivation
An attacker is typically defined through a threat model [42]. It embeds the set of perturba-
tion’s features defined by:

1. Goal, or attack main purpose;

2. Capabilities, or adversarial approach to reach its task;

3. Knowledge, or adversary’s accessibility towards the attacked system;

They are briefly described in the following.

Threat model goal, capabilities and knowledge

It is important to define the exact goal of the threat, i.e. which kind of damage it intends to bring
to the NN model under attack. In the field of object detection, it deals with either misclassifi-
cation or misdetection as already described and, for the first category, either with targeted or
un-targeted attacks. They will be both introduced further down in this chapter during SOTA
walkthrough.

Threat capabilities assessment concerns the way it can elaborate an assault.
Usually, it is worth reducing to a feasible and non-trivial attack, i.e. one that does not distort
completely the input semantic leading to a predictable decision change. This implies
the set of ün norm-based attacks, discussed further down in the next section, to be constrained
in intensity and only changing the input set by a small amount according to the corresponding
distance metrics.

39

Theory and Principles

Note that this holds true even when the adversarial pixels are not constrained in intensity,
but a bound exists anyway, e.g. in terms of spatial location: this contributes to de-
fine a perturbed sample that slightly differs from the original, being the majority of pixels
unchanged, and therefore preventing to assess a predictable decision incorrectness due to
an input consistent change. It is the case of structured ü0 norm - or patch - attacks, the main
category analysed in this document.
Roughly speaking, an attack needs inconspicuousness [43] and should edit the input example
so that a human could perform the particular task correctly as well, yet leading a machine to
produce an error.

The last listed feature, adversarial knowledge, refers to the model’s accessibility from the at-
tacker. Typically, the regime addressed in this work is named white-box attack with (1)
full weights, (2) pre-processing and (3) post-processing available to the adversary as media to
strengthen its damaging capabilities.
White-box counterpart, called black-box attacks, are not addressed in the framework of this
document. Nevertheless, appendix B outlines the attempt with adversarial patch ensemble
training according to [2] in the fashion of increasing the attack transferability towards several
models. This leads to less strong results than expected from literature comparison.
In the following paragraph, some examples of real-world based applications of adversarial attacks
are presented. They have the task of stressing the potential damage that an attacker can cause
to a NN model integrated in the physical world routine.

Real-world applications

It has initially been thought that adversarial attacks were not suited to model physical world
scenarios. This applies to a restricted subset of adversaries, in particular those constrained in
intensity but able to access each pixel of the input feed, a feature that makes the attack quite
unrealistic.
Starting from [44] ’adversarial patch’, as detailed below, has paved the way towards physical-
realizable and realistic attacks which could cause harm to sensible applications like:

• Autonomous driving systems in the form of ADAS 1 systems: the most common fashion
is traffic sign distortion to misclassify or misdetect them defining instability in terms of
security.
The same fashion is extendable towards pedestrian/car/cyclists hiding from the NN model
responsible to detect objects, with the well-intuitable consequences. The latter exceeds
into the field of intra-class variety (Person class), a more challenging task than traffic sign
fooling;

• Surveillance cameras for people and face detection: the possible harm is people local-
ization hiding from the camera in terms of object detection, or either face dodging and
impersonation with respect to misclassification ([43]).
Note that targeting the entire person body - which is usually treated as a class among other
objects - and a single face leads to a difference in the overall technical approach, even if the
qualitative effects are the same (see sec. 4);

Fig. 3.1 shows an example of stop sign attack by an adversary. As it can be seen, the non-
perturbed stop sign is correctly detected and classified, while its attacked version, even though

1Autonomous Driving Systems

40

3.2 – SOTA walk-through: Adversarial Attacks typologies

still resembling a traffic sign for human beings, is misdetected and misclassified by a NN model,
as in figs. 3.1(a) and 3.1(b) respectively.

(a) Misdetection (b) Misclassifica-
tion

Figure 3.1. Stop sign misdetection and misclassification. The stop signal squared in orange
is the non-perturbed one and it is correctly detected and classified. The other one is, instead,
subjected to the adversary attack [45].

The subsequent second part of the chapter has the aim of describing how the research field of
Adversarial Attacks has evolved through time either in terms of methodologies and capabilities.

3.2 SOTA walk-through: Adversarial Attacks typologies
The fundamental keyword to understand the idea behind adversarial attacks is distortion.
It quantifies the difference between two inputs I and I’, where I is pristine and I’ perturbed by an
attacker respectively, in terms of similarity. For ad adversary to be defined as such, it should
be able to change the decision of a NN model (regardless of the application domain) forcing
it to produce wrong results. This is the reason why these attacks are usually referred to as
inducing imperceptible modifications to the input.

Distance metric and pure classification problem

The first application domain to be addressed in the field of adversarial attacks for CV has been
pure classification [46]. At system level, there are two ways imperceptibility can take form:

1. By addressing the whole set of image pixels, i.e. constraining the perturbation intensity to be
bound by a certain amount in value (spatially unconstrained, intensity constrained).
Typically, there is the interest in finding the minimum disturbance that produces a
decision change in the task to fulfill by the model;

2. By addressing a subset of the image pixels, without constraining the perturbation intensity
(spatially constrained, intensity unconstrained).

Problem number 1 has been the first addressed historically after [46] ([47], [48], [49]).
It typically consists of selecting a way to model similarity as perceived by human eye in the form
of ün norm between the original and adversary inputs, x and x’ respectively:

ëx− xÍën =
3 mØ
i=1

|xi − x
Í

i|n
4 1

n

(3.1)

Among them, three are traditionally employed in the field [48]:

41

Theory and Principles

1. ü0 norm, which indicates the number of non-zero elements. In the present task, it is the
number of pixels that differs from the original image, i.e. the i for which xi /= xÍ

i and
corresponds to the perturbation itself;

2. ü2 norm, the first employed in [46], is the usual Euclidean distance or squared sum of
squares; it can be kept small when all the pixels undertake small changes;

3. ü∞ norm is defined as:

ëx− xÍë∞ = max(|x1 − x
Í

1|, |x2 − x
Í

2|, . . . |xm − x
Í

m|)

This means that the whole set of pixels can be perturbed up to a certain value which
defines the maximum distortion.

In general, given the perturbation δ and distance metric D(x, δ), the optimization problem for
targeted and un-targeted misclassification reads:

minimize D(x, δ) so that
I
C(x+ δ) = t, x+ δ ∈ [0,1]n targeted misclassification
C(x+ δ) /= C(x), x+ δ ∈ [0,1]n un-targeted misclassification

(3.2)
where C(. . .) represents the set of classifier predictions and t the misclassification target. As it
can be seen, the key difference is that when dealing with targeted misclassification the adversary
addresses a specific class during the deceiving process. As an example, both of them have been
employed for crafting attacks against face recognition 2 in [43].

In the framework of pure classification, the most effective methods used to build up adversarial
examples for both targeted and un-targeted cases are:

1. Fast Gradient Sign Method (FGSM): introduced in [50] by Goodfellow et al., it employs
ü∞ norm on the perturbation δ so that the update rule for input x reads:

xÍ = clip[0,1](x− δ · sign∇Lx) so that ëδë∞ is minimized (3.3)

where L is the loss function that depends on the class prediction score and can take the
form of Softmax loss;

2. Projective Gradient Descend (PGD) [49]: also called Basic Iterative Method or Iter-
ative Gradient Sign Method [51], it is an iterative version of FGSM algorithm that
either manages to achieve high convergence speed and guarantees a minimum-crafted distor-
tion (imperceptibility) as well. Moreover, PGD happens to be a universal first-order attack
for ü∞ norm based attacks;

3. Carlini-Wagner CW [47] method: it solves the optimization problem in eq. 3.2 by choos-
ing C(x) so that:

f(x) = max
i /=t

(C(x)i) − C(x)t (3.4)

2Face recognition is a synonym for classification, where spatial detection is not considered.

42

3.3 – Structured ü0 (patch) attacks

where clipping 3 is accounted internally as detailed in [47]. An attempt with CW method has
been done with YOLOv3 by adapting towards the framework of object detection and further
reported in sec. 4.2.1.

Note that clipping either the input image x and the perturbation δ in the range of representable
pixels is crucial in the process. It takes the name of ’box constraint’ [48].

In general, it is unlikely that an attacker can provide accessibility to the whole pixel set of an
input image, which makes ü1, ü2 and ü∞ based attacks quite non-realistic.
Conversely, even though ü0 distortions still fail to model a real-world based attack in the
sparse form (ü0,sparse) [52], they succeed in the structured form (ü0,struct), where spatial con-
straints are introduced to keep adversarial pixels adjacent to each other, defining a patch-like
structure.
Spatially-constrained attacks correspond to the second approach towards imperceptibility previ-
ously outlined. Henceforth, the terms structured ü0 and patch associated to attack/defense will
be considered as synonyms and used interchangeably.

3.3 Structured ü0 (patch) attacks

ün norm attacks, n ∈ {0sparse, 0struct, 1, 2, ∞}, either in the form of targeted or un-targeted
adversaries, are said to produce misclassification. The domain of pure classification is the most
suitable for this kind of attacks. Note that this does not exclude misclassification task in the
context of object detection, which can be addressed as well even though not in the present work
([44], [53]).

In addition, ü0,struct attacks well fit object detection domain due to the spatial constraint
feature. This unlocks an additional type of model deceiving procedure that aims at confusing a
foreground object with background and is named misdetection (starting with the work by
Thys et al. [1]).

Fig. 3.2 shows an high level picture of the proposed adversarial attack hierarchy to summarize
the concepts.

3Clipping operation allows to bound the range of pixel intensities within the allowed interval, namely 0-255
for RGB input data.

43

Theory and Principles

Figure 3.2. Adversarial Attacks high-level typologies

In the following I will summarize some results obtained in previous works concerning both
misclassification and misdetection against structured ü0 norm-based attacks.

Related works targeting misclassification against pure classifiers and detectors, ü0,struct
norm

The first work targeting adversarial patches has been proposed by Brown et al. [44] in the context
of misclassification for a pure classification problem, resulting in a ’universal’ patch.
Athalye et al. [53] has been the first to introduce either the concept of Expectation over Trans-
formation (EoT) for adversary robustness and to extend adversarial attacks from the digital
world to the real, physical world, crafting a 3D perturbed object.

Last, Chen et al. [45] and Eykholt et al. [54] employ a similar technique to actually deceive stop
signs targeting misclassification on object detectors.

Related works targeting misdetection against object detectors, ü0,struct norm

The problem of addressing more challenging tasks such as adversarial attacks on classes that
present infra-category variety (e.g. Person) has been addressed first in Thys et al. [1], and
then in Wu et al. [2], Xu et al. [55] as well for the YOLOv2, YOLOv3 and R-CNN families.
Note that there exists a conceptual difference in terms of attack complexity between two-stage
and single-stage object detectors for misdetection [2]. R-CNN family, say its last and most
complete member Faster R-CNN (chapter 2), employs RPN to produce an ensemble of proposal
that are already filtered once and ready to feed a R-CNN classifier.
Conversely, single-shot detectors propose an ensemble of bounding box candidates that are not

44

3.3 – Structured ü0 (patch) attacks

filtered yet and can overlap with redundancy over the same object. It is an harder task to
suppress all of them and generate misdetection.

More recently, Lee et al. [56] addressed a ’generic suppressor’ patch against YOLOv3 that does not
need to overlap with a specific target class, yet inducing false negatives over all the objects in the
scene, extending the similar work by Liu et al. [57] from digital to real-world scenarios.

Loss function for misdetection

Inducing a model to generate a negative wrong decision (false negatives for misdetection) is
rather an harder task than forcing it to produce a positive wrong decision (false positives for
misclassification).
The subsequent loss functions employed during adversary training do target the optimization
problem in eq. 3.2. In this context, C(x) is still the function that maps the input image to a num-
ber encoding the prediction likelihood of belonging to a certain class and its spatial coordinates.

Conversely with respect to other distance metrics-based norms, ü0,struct constraint is implied in
the patch pre-processing procedure (affine 4 transformation and application). Therefore, the cost
function is assessed by considering a score-based approach: minimize network prediction
capability by directly addressing its scoring output.
Two possibilities arise according to eq. 2.3:

• Minimize prediction objectness score (obj), which is the parameter that allows a
single-stage object detector to distinguish between foreground and background by a network
at training time through IoU computation;

• Minimize the final class confidence score (obj-cls) of the class under attack (adver-
sary’s target);

Two loss functions to be minimized at patch training time have been employed in the present
document, following [1] and [2] respectively:

L = max
i

(f(I, P)i) (3.5)

and

L =
nØ
i=1

max
i

(f(I, P)i − tfilt, 0)2, tfilt ∈ [0,1] (3.6)

where f(. . .) indicates the usual mapping to generate probability scores and its ith is the bounding
box proposal associated to a certain anchor.
Eq. 3.5 aims at minimizing the loss by targeting the maximum value of confidence score
predicted by the model (f(I, P)i over the whole set of proposals. Eq. 3.6 follows a similar
approach by setting up a threshold tfilt and filtering accordingly the candidates set, since low-
valued predictions do not yield significant contribution when penalizing the loss.
Filtering has been applied after network prediction normalization through Softmax/Sigmoid with
threshold tfilt = 0.35.
As previously mentioned, f(. . .) can assume either obj or obj-cls forms.

4Affine transformation: a geometrical ensemble of operations that allows to modify an object in space by
preserving line parallelism. This implies that the object is not subjected to deformations, which is the case of
another family, called perspective transformations.

45

Theory and Principles

3.4 Summary
This chapter theoretically introduced the field of adversarial attacks against pure classification
and object detection. It described adversary typologies based on the distance metrics frame-
work: find a perturbation that is able to change the model’s decision while bounded by specific
norm constraint: ü0, ü1, ü2 and ü∞.
In particular, ü0 perturbations in the structured form have been referred to describe real-world
based adversarial patch attacks, which is the main typology addressed by this document.

46

Chapter 4

Crafting Adversarial Attacks

Chapter 3 gives a theoretical insight about the framework of Adversarial ML from the attacker
perspective. In particular, it outlines its main typologies and recent developments.
With reference to fig. 3.2, this document focuses on attacks that are:

• White-box;

• Digital;

• structured ü0, or patch attack;

• targeting misdetection on object and face detectors;

As a general reference intuition, fig. 4.1 reports and an example of patch attack success against
a SOTA and benchmark object detector, YOLOv4. Note that the success is encoded in the target
misdetection, as clearly visible.

(a) Non-attacked input, after detec-
tion

(b) Attacked input, after detection

Figure 4.1. Adversarial patch attack example against YOLOv4 object detector. On the
right picture the person on the left is attacked. The blue rectangles represent the object
detection made by YOLOv4, while the red circle represents the patch attack that induces
YOLOv4 to make mistakes.

This chapter aims at reporting the simulations that have been performed with this kind of
attacks typology, from the general framework setup for training and assessment (sec. 4.1) to the
actual experimental results (sec. 4.2.1, 4.2.2 and 4.3).

47

Crafting Adversarial Attacks

4.1 Adversarial flow: setup
The underlying key concept in the crafting process of an adversary sample, independently of its
typology, is gradient-based learning as for a traditional NN.
The entity to be updated applying backpropagation is provided by the ensemble of input
pixels intensities that make up the adversary, being it (a) distributed to the whole input
feed pixel set, (b) sparse or (c) spatially constrained as discussed with more detail in chapter 3.

The training stage is addressed first - sec. 4.1.1 - while the attack evaluation metrics that have
been adopted are discussed in sec. 4.1.2.

4.1.1 Training stage
An adversarial attack with the aforementioned properties can be crafted by following the setup
flow recipe [1] [58] reported below and schematized in fig. 4.3.

In order to give a visual idea of the adversary training process, fig. 4.2 reports some frames of
the patch evolution obtained by targeting YOLOv4 model.

(a) 0/46200 (b) 38/46200 (c) 145/46200 (d) 2702/46200 (e) 6230/46200

(f)
11534/46200

(g)
19958/46200

(h)
28788/46200

(i)
36212/46200

(j)
46199/46200

Figure 4.2. Patch training evolution at different optimization steps

Adversarial patch - training flow

1. Train images selection The set Itrain of input feeds I to train the adversary.
According to the target, it could focus on a specific object class;

2. Un-learned initial patch selection It constitutes the ensemble of starting pixel
intensities before gathering adversarial knowledge. As already mentioned, ü0 as-
saults are not constrained in intensity [52], therefore the initial values choice becomes
a degree of freedom.
In this document, all patches P are RGB tensors initialized with uniform gray
intensity a and have rectangular/square size with dimension (3 × HP × WP);

48

4.1 – Adversarial flow: setup

3. NNmodel f selection Addressing a white-box attack unconditionally binds the
adversarial sample performances to the network’s weights it has been trained
with.
As specified in sec. 4.1.2, model’s weights are frozen during training, i.e. the latter
is set in inference/testing mode.

4. Adversarial perturbation preprocessing
This step comprises the ensemble of procedures that should be undertaken to fulfill
two tasks:

(a) Preprocessing for patch location: patch size may equal or be in the vicinity
of input’s. Therefore, proper scaling and translation are required. If the
attack does not target a specific object class (e.g. [59], [56]), scaling factor and
translation can be a priori defined to be steady over the set of testing inputs,
i.e. the patch is always scaled and placed in a unique position.
Conversely, it should adapt to the aspect ratio and location of the object
to be applied on. This document addresses the latter case following [1].

(b) Preprocessing for patch robustness: set of strategies developed to
enhance patch effectiveness towards physical-world based attacks by including
brightness, noise and contrast changes at training and inference time. It takes
the name of Expectation over transformations (EoT) [53].

(c) Patch Application: the transformed adversary P is effectively applied to the
input image I by replacing pixels in the proper position. This action encodes
the most natural meaning of structured L0 attack.
Given an application function A and a patch pre-processing function T , the
overall output tensor reads:

IP = A(I, T (P))

5. Cost function
Typically, it comprises three contributions [43] [1] [2]:

(a) Adversarial contribution: The cost function can take one of the forms out-
lined in chapter 3. This contribution deals directly with the decision bound-
ary switch of the network between model’s correct and polluted predictions;

(b) Smoothness-wise contribution: when dealing with structural ü0 attacks that
are unconstrained in the pixel space, two further contributions keep control of
their intensity [43]: Total Variation (TV) loss and Non Printability Score (NPS).
TV loss increases patch smoothness to prevent sharp color variations. NPS
matches the constraints imposed by color gamut b alteration for real-world
scenarios;

6. Forward step IP is fed to the network which computes its set of predictions S in
the forward pass:

S = f(IP)

49

Crafting Adversarial Attacks

with S encoding regressed bounding boxes, objectness confidence score and con-
ditional class probabilities for each fixed prior when f is a single-stage object
detector as detailed in sec. 2.4.2;

7. Backpropagation step Loss gradient computation;

8. Optimization step Adversarial patch pixel intensities are updated according to the
chosen descend method.
Their update is coherent with the overall target: provided a patch P ∈ [0,
1](3×HP ×WP) find the value of P that minimizes the cost function, i.e. either

• the ün-norm distance between IP and I, typically for n ∈ {1, 2, ∞} norm-based
attacks;

• the class confidence scores predicted by the network during the forward pass,
the one adopted in this context for structured ü0 attacks;

s.t. the network judging decision changes when the adversary pollutes the input,
providing a wrong result (misclassification) or missing it (misdetection).
Here, Adam c is selected as optimizer for all the experiments.

Key observation #1: it is crucial that a gradient path does exist all the way
back from the network’s output to the set of input perturbed pixels P.
In practice, this means that the model should deal with input tensors and not arrays,
being the gradient information suppressed in the latter case. In software terms,
ML frameworks such as TensorFlow or PyTorch must be employed, disregarding
the more common NumPy library, at all levels of the process d

Key observation #2: In order to keep the set of patch pixels in the range of
representable colors [0,1] (or [0,255] without normalization), the ensemble of pixels
should be clamped in that range after any update:

Pi+1 = clamp(Pi, 0, 1)

9. Repeat steps 1-8 until the convergence of the loss is reached, typically for Nepochs
= 1000. The chosen dataset is INRIA Pedestrain e, that targets and annotates
the class Person with roughly 600 and 300 training and testing images respectively,
following the example of [1].

ai.e. tuple (127, 127, 127) if P ∈ [0, 255](3×HP ×WP) or equivalently its normalized form (0.5,
0.5, 0.5) if P ∈ [0, 1](3×HP ×WP)

bColor gamut is defined as the complete subset of colors described by a color model (e.g. RGB)
csee appendix A.
dThis also means that some useful tools towards ML frameworks unification - like the intermedi-

ate format ONNX - are not a deal at the moment in the adversarial attack context, being crafted
exclusively to exploit inference in a forward fashion by employing arrays.

ehttp://pascal.inrialpes.fr/data/human/

Note that a structured ü0 attack requires more effort in terms of preprocessing (step 4) from a

50

http://pascal.inrialpes.fr/data/human/

4.1 – Adversarial flow: setup

practical point of view. In fact, even though the underlying intent is the same as other norm-based
attacks, spatial constraints coming from structured ü0 norm imply detaching the ensemble
of pixels to be trained from the actual input feed and make the pixel-by-pixel substitution
for application in a second step.

The latter happens to be the most valuable feature of structured ü0 attacks, since it makes them
feasible towards physical-world attacks: the spatial restraints models attacker’s in-
ability to access every pixel of the input scenario.

Figure 4.3. Adversarial patch training flow

Adversarial perturbation preprocessing

Typically, a sequence of functions is applied to the adversarial patch P in order to either locate
it on the target and train it for being robust against physical world-based phenomena. Both of
these cases are addressed in the following.

Pre-processing for patch location

The present work aims at deceiving CNN predictions by targeting a specific class of objects, e.g.
the Person class, at digital level. It is worth noting that some works, such as [56], aim at crafting
a universal patch that is position-agnostic either for misdetection and misclassification cases.
In the present case, patch application should be performed accordingly on the pure and clean
original image.
The reference code for the set of geometric transformations in the framework of object detection
has been taken from [1] and mostly re-used. Likewise, challenges introduced for patch pre-
processing in the context of face detection have been dealt with by starting from the same code
as underlying structure.

51

Crafting Adversarial Attacks

Spatial Transformer Network (STN) are employed by computing a (2 × 3) affine trans-
formation matrix θ 1 [60]. The latter is the result of the composition (i.e. matrix multiplication)
of several rigid transformations: translation, scaling, rotation.
The first two are described below and target patch geometrical application at the digital level,
the third is detailed further down and aims at increasing patch robustness and pose-invariance.

1. Translation To translate an object by a tuple (δx, δy). In 2-D space:xloc,Pyloc,P
w

 =

1 0 δx
0 1 δy
0 0 1

 ·

x0
y0
w

 = T ·

x0
y0
w

where w is a blind parameter introduced to allow matrix multiplication with homogeneous
coordinates2, (δx, δy) are the box center coordinates and (x0, y0) the coordinates
of the patch initial position, i.e. image top-left corner. For the Person class deceiving, the
perturbation is applied at the center of the corresponding bounding box.

Face detector caseWhen dealing with Multi Task Convolutional Neural Network (MTCNN)
for face detection, the adversarial perturbation has been chosen to take a rectangular
shape when targeting face’s mouth and the more challenging shape of glasses with
respect to human eyes, as detailed in sec. 4.3. The spatial reference to perform trans-
lation is selected to be the middle point between mouth landmarks and eyes, where the
facial landmarks are provided as network’s outputs and shown in fig. 4.4. In this way, solid
anchors exist to place the patch reliably.

Figure 4.4. MTCNN face and landmarks detection (eyes, mouth extremities and nose)

2. Scaling Provided two scaling factors along box width and height, sw and sh respectively,
the scaling matrix multiplies patch width (WP) and height (HP) by:H

Í

P

W
Í

P

w

 =

sw 0 0
0 sh 0
0 0 1

 ·

HP

WP

w

 = S ·

HP

WP

w

where sw and sh typically take the form:

1An affine transformation keeps parallelism of dimensions but not angles and distances.
2https://cs.wellesley.edu/~cs307/readings/04-affine-math.pdf

52

https://cs.wellesley.edu/~cs307/readings/04-affine-math.pdf

4.1 – Adversarial flow: setup

s = target_size
original_size

In the experiments provided for object detection (YOLO and SSD), the patch is a square with
dimensions HP = WP = 300, therefore original_size = 300. The target size can be chosen
as target_size = min(Himg, Wimg) or, following the approach exploited in [1] by empirically
smoothing the target box’s diagonal by a factor α:

target_size = α ·
ñ

(W 2
img +H2

img)

where α is an empirical factor and equals 0.2. The last method has been borrowed and its
effectiveness properly checked.

When dealing with MTCNN for face detection, no major changes involve patch scaling
for both ’mouth’ and ’eyes’ targets.

Pre-processing for patch robustness

Athalye et al. [53] first proposed the need to improve attack’s robustness towards real-
world environmental changes and variations such as angle pose, light and rotations. The ap-
proach has henceforth been adopted in nearly all the subsequent works on adversarial attacks
[1][2][55][56][59][45] and is called Expectation over Transformations (EoT).
First, an ensemble of transformations applied on the adversarial patch including randomly tuned
parameters is introduced at each iteration of the patch training process. They are detailed
in the following:

1. Brightness, contrast and noise These are modeled as in the code provided by [1] with
uniform distributions that are applied to patch P and affect its pixels intensities. Indicating
the transformations as tensors B, C and N respectively:

PÍ = P · C + B + N

2. Rotation Given a rotation angle φ, the matrix is expressed as:xÍ

P

y
Í

P

w

 =

cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 ·

x
y
w

 = R ·

x
y
w

Rotation is introduced with a varying angle φ ∈ [-20◦, +20◦] with respect to the axes-aligned
position to increase model’s stability and pose-invariance in view of an extension towards
physical world-based attacks. This method has been proved to work fairly well still in [1]
[2] [55] [53].

The problem of face detection poses an additional constraint in terms of geometrical trans-
formation due to the fixed rotation established by the direction joining eyes and mouth
extremities as well. For the same reason, the random rotation R for EoT is removed when
addressing this problem.
Matrix Rface moves the patch towards an angle ψ. With reference to fig. 4.5:

53

Crafting Adversarial Attacks

Rface =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 if ymark,l ≥ ymark,r

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 otherwise

and

sinψ = c1

i
, cosψ = c2

i

from simple trigonometric relations. ymark,l and ymark,r indicate the left and right extrem-
ities of mouth/eyes respectively.

Figure 4.5. Patch rotation for mouth/eyes application, fixed-angle alignment

Provided a patch image input tensor P at training iteration ith, its entries intensities are altered
and varied through tensors B, C and N, giving P’ = P · C + B + N. The matrix θ that
properly locates and transforms P according to the target bounding box I box of image I is
the composition - i.e. matrix multiplication - of T, S and R:

θaffine = T · S · R · PÍ (4.1)

θaffine has dimensions (2 × 3) 3 and encodes the parameters of the function Tθ responsible for
the actual transformation, which is schematized in fig. 4.6(a).
Once it is computed, the whole process can be handled by two built-in functions introduced in
either PyTorch or TensorFlow ML frameworks according to that in use. Each of them implements
STN as described [60].
Given P’ and θaffine, a regular grid Gr,P Í is calculated from P’. Its transformed version, the
sampling grid Gs,P Í is provided by:

Gs,P Í = Tθaffine
(Gr,P Í) (4.2)

i.e. it is obtained by warping the regular grid with the affine parameters embedded in θaffine.
Note that, as mentioned in [60], if the warping happens with TI , where I is the identity matrix and
GS = GR (the sampling grid equals the regular grid). Fig. 4.6(b) helps clarifying the concept.

3θ typically embeds also information about the shear, which is absent in the present work

54

4.1 – Adversarial flow: setup

(a) STN process flow

(b) STN sampling grid behavior

Figure 4.6. Spatial Transformer Network working features [60]

Finally, note that Spatial Transformer Networks are crafted to allow:

• Input tensors of any type, e.g. input images or convoluted feature maps;

• Transformations of any type: in addition to affine transformation, an extension involves
projective transformations 4 like Thin Plate Splines TPS [61], which do not neces-
sarily preserve line parallelism.
In the context of adversarial attacks they have been applied by some authors [2][55] to
model those patch deformations that would happen with a physical application on non-
smooth surfaces. In particular, although TPS allows deformation modeling at the digital
level, [2] shown that in this case patch effectiveness tends to be degraded with respect to
the rigid perturbation case, perhaps because of the increased complexity at training time.

• The existence of a gradient path through the sampling function is guaranteed, pro-
vided the differentiability of θaffine, which holds in the case of affine transformations. As
mentioned in the adversarial attack training flow, that is critical for updating the set
of pixels of P during the optimization step.

After patch transformation, its application on the input image is performed as described in the
adversarial attack training flow.

The final set of learned pixels Plast at the end of the training loop is therefore a result of the
expectation E over the whole set of transformations t ~T applied to the patch ∀ i steps. This
last feature is known as the already mentioned Expectation Over Transformations.

An example of the overall result for patch spatial localization is shown in fig. 4.7.

4e.g. (3 × 3) matrices

55

Crafting Adversarial Attacks

(a) Trained
adversary patch

(b) Original unperturbed
image

(c) Perturbed image after
affine transformation

Figure 4.7. Patch transformation for digital application, INRIA dataset input image

Smoothness loss contribution

In order to preserve a smooth color variation within the adversarial perturbation pixel set, the
distance in intensity between pixels in the same neighborhood should be kept low. This is provided
by TV loss [62] [43], defined as:

LTV (P) =
Ø
i,j

ñ
(pi,j − pi+1,j)2 + (pi,j − pi,j+1)2 (4.3)

where pi,j is a pixel from the patch image ensemble at position (i,j). As it can be observed,
total variation loss increases when the distance gets larger, meaning sharp variation at pixel level.

Non-printability loss contribution

In general, a color is out of gamut, or altered, each time there is a change in the color space:
digitizing or printing an image, changing a digital image color space.
In order to craft adversarial patches that could be printed safely, Non-printability score (NPS)
loss is introduced as in [43]:

LNPS(P) =
Ù

p∈Cspc

|p− p̂| (4.4)

where p̂ is a pixel from the set of printable colors Cspc.
In order to determine Cspc the authors from [43] printed a color palette and then digitized it to
extract the set of all possible RGB triplets. Actually, this number has been reduced to the most
significant 30 triplets (to get minimal variance from the full set), which however allowed them to
keep optimal results. This reference color set is provided in their released code as well and used
accordingly.
From eq. 4.4, NPS loss gets larger when the distance between p̂ and p increases, which is an
indicator of non-printability condition.

Overall, the optimization problem described in chapter 3 embedding the adversary loss (eqs.
3.5 or 3.6) is modified as follows after having introduced (1) the affine function Tθaff

, (2) EoT
over each iteration and (3) patch-dependent-only loss contributions LNPS and LTV :

Find argmax
P

(L(P)) with E
t∼T

[L(f(A(I, Tθaff
(P))) + LNPS(P) + LTV (P), P)] (4.5)

56

4.1 – Adversarial flow: setup

4.1.2 Inference stage and Evaluation metrics

In order to evaluate the network performances on the set of perturbed images two criteria are
employed:

• Traditional NN evaluation metrics, i.e. Precision-Recall (PR) curves and mean Average
Precision (mAP);

• Adversarial patch Success Rate (SR);

Precision-Recall

This statistics comes from the Information Retrieval research field. Given a binary classification
problem distinguishing between two classes of elements labeled as relevant and non-relevant,
the system under analysis is let providing its predictions, which are further divided into retrieved
and non-retrieved elements. According to table 4.1, four scenarios arise [63]:

Relevant Non-relevant

Retrieved True positives (tp) False positives (fp)

Non-retrieved False negatives (fn) True negatives (tn)

Table 4.1. Information retrieval, four case scenario

They encode the system performances with respect to the expected outcome. It is clear from
table 4.1 that |tp|5 and |fp| indicate the number of system’s correct and incorrect answers
respectively, while |fn| and |tn| instead point out incorrect and correct abstentions.
Precision P and recall R are defined as:

P = tp

tp+ fp
= Pr(relevant|retrieved) (4.6)

R = tp

tp+ fn
= Pr(retrieved|relevant) (4.7)

Precision states the number of relevant samples over the set of retrieved, quantifying the system
ability to propose correct results among those given.
Recall instead measures the model’s ability to collect the set of relevant elements, independently
on their correctness (model’s sensitivity).
A useful and visual scheme is provided in fig. 4.8

5|. . . | indicates set cardinality.

57

Crafting Adversarial Attacks

Figure 4.8. Precision-Recall high level scheme (source Wikipedia)

It is common to plot how precision varies at varying recall, i.e. progressively tuning the set
of retrieved elements and measuring the corresponding system’s precision. As the recall steps
forward, precision may increase or decrease according to the retrieved element being relevant or
not.
When R = 0, no-elements are retrieved (ideal maximum precision), while at R = 1 all the predic-
tions are labeled as positive with a drop on P. Typically, recall is varied by setting up a threshold
value T, and R=1 when T=0.

As already mentioned, the present work targets misdetection, i.e. object hiding by confusion
with the background. This further contributes to increase the number of false negatives
on the testing dataset, reducing recall in eq. 4.7. The latter trend can be viewed as a mis-
detection footprint and the selected parameter to monitor when evaluating the adversary’s
performances.

Mean Average Precision

In this context, a typical evaluation metric is embedded into mean Average Precision (mAP).
Following the definition provided in [63] within the framework of object detection, and as described
in [64], provided:

• a set of classes qi ∈ Q;

• a set of k relevant bounding boxes B = {b1, b2, ... bmi
} coming from the testing dataset;

• Model’s precision for class q at box bki
, k ∈ [0, m] defined as P(Rqi,k), where Rqi,k is the

set of retrieved results until box k 6;

Mean average precision reads:

mAP = 1
|Q|

|Q|Ø
i=1

APi = 1
|Q|

|Q|Ø
i=1

1
mi

mjØ
k=1

P (Rqj ,k) (4.8)

6this reflects the trend of varying the recall by progressively adding relevant elements which can be
either retrieved or not, as mentioned further up in the paragraph

58

4.1 – Adversarial flow: setup

where |Q| is the cardinality of Q.
This means first calculating the average precision AP for class q by computing the area under
the PR curve and then averaging over q ∈ Q.

In the context of adversarial attacks targeting misdetection, mAP is a discrete performance
indicator. In fact, its overall drop may be affected as well by the contribution coming from
precision drops when a retrieved element is non relevant (false positives), loosing the capability
of probing a mAP decline exquisitely due to recall decreasing.
This could be addressed in two ways:

• Dealing with single-class datasets: it allows to filter out network’s detection cor-
responding to classes other than the targeted one, preventing false positives: model’s non-
relevant - yet retrieved - predictions are not taken into account. This is the case of INRIA
Person dataset employed for patch training;

• Introducing a second evaluation metrics, patch Success Rate (SR): it’s a an element-
wise counting of model’s false negatives and true positives in the presence of an ad-
versarial perturbation.

F1 score

Another measure that can be extracted from Precision and Recall is the F-measure. It is written
as the weighted harmonic mean between P and R [63]:

F = 1
α · 1

P + (1 − α) · 1
R

(4.9)

It equally weights P and R when α = 0.5. By setting

β2 = 1 − α

α

the condition α = 0.5 means β = 1, which gives the name to the measure itself (F1) and reads:

F1 = 2PR
P +R

Note that by tuning α (or β) the metrics can emphasize Precision or Recall accordingly by
unbalancing the weight itself.

Patch Success Rate SR

mAP measured for the provided experiments deals with applying the adversarial perturbation in a
compound fashion over the whole set of boxes belonging to the target class prior to inference.
The approach that has been followed with the second metric is slightly different: the adversary
is applied to only one object at a time.
Given a testing dataset with Nimgs, and provided Nobj,j boxes in image Ij , j ∈ {1, 2, ..., |Nimgs|},
patch Success Rate is calculated as:

SR =

|Nimgs|Ø
j=1

δj

|Nimgs|Ø
j=1

Nobj,j

= |fnbox,tot|
|Nimgs|Ø
j=1

Nobj,j

(4.10)

59

Crafting Adversarial Attacks

where δj ∈ [0,1] indicates if the target object in image jth is retrieved (δ = 0) or not (δ = 1).
|fnbox,tot| indicates the total number of non-retrieved elements, i.e. false negatives, on the
dataset under analysis. Overall, SR actually plays the role of a granular metrics that directly
counts adversary effectiveness.

It is calculated by considering the intersection over union IoU between:

• Predicted bounding boxes in the presence of an adversary, which targets one out of multiple
objects in the image under analysis;

• The single clean reference box coordinates of the targeted object in absence of any per-
turbation, i.e. coming from clean detection. The latter is assumed as ground truth
reference for patch evaluation;

Bounding box intersection Handling bounding box coordinates plays a key role for success
rate calculation. Since it will be employed as well in part III, it is worth describing it in the
following. Figs. 4.9(a) and 4.9(b) provide two samples overlapping boxes which are used as a
reference to show intersection and union respectively.

(a) Overlap-
ping boxes,
intersection

(b) Overlap-
ping boxes,
union

(c) Boxes coordinates ref-
erence system

Figure 4.9. Overlapping bounding boxes sample and coordinate reference system

Consider a set of Nbox bounding boxes predicted on a perturbed input with coordinates Bi =
(xi,tl,yi,tl, xi,br, yi,br), where subscripts tl and br mean top-left and bottom-right corners
of ith box respectively, i ∈ [0, |Nbox|]. The reference system has axes aligned with bounding box
sides, and its origin lies in the top-left corner as shown in fig. 4.9(c).
The same notation applies for the single clean ground truth box, whose coordinates are Bgt
= (xgt,tl,ygt,tl, xgt,br, ygt,br).

Provided input image j, IoU is computed by checking if there exists intersection between Bi and
Bgt, ∀ i. Bgt is cloned |Nbox| times to allow bit-wise (concurrent) comparison and save
computation time. This step would be particularly important in part III.
Henceforth, overlap check can be performed by probing the conditions for which:

1. Bgt ∩ Bi = ∅ ∀ i, i.e. non-intersection case, or

60

4.1 – Adversarial flow: setup

2. Bgt ∩ Bi /= ∅ ∀ i, intersection case;

The first method happens to be the most straightforward to implement, and it is shown in code
4.1:

Listing 4.1. Boxes negative intersection check
def doOverlap (tl_1 , br_1 , tl_2 , br_2):

Check if one rectangle is on the left side of the other
no_int_left = torch.ge(tl_1 [0], br_2 [0]) | torch.ge(tl_2 [0], br_1 [0])

Check if one rectangle is above the other
no_int_top = torch.ge(br_1 [1], tl_2 [1]) | torch.ge(br_2 [1], tl_1 [1])

no_intersec = no_int_left | no_int_top

return ~ no_intersec_cond

where torch.ge(. . .), torch.le(. . .), &, | and ~ indicate bit-wise ≥, ≤, AND, OR and NOT oper-
ators, while tl1, br1, tl2, br2 are top-left and bottom-right (x,y) tuples of the first and second
set of boxes.
The code simply checks if boxes extremities do not touch on the horizontal or vertical directions
respectively. If it does happen, the result is inverted to provide a response about the intersection
status.
The second method brings equivalent results, but checks for intersection directly. The ensemble
of conditions becomes fairly harder to formalize and has an additional cost of 4 for loops
over the vertices of Bi. Although the code will not be provided here, overlapping conditions are
described below again with reference to figs. 4.9(a) and 4.9(b). For each vertex tuple (x1,j , y1,j)
of b1, j ∈ [0, 4]:

1. condA: check whether xl,2 ≤ x1 ≤ xr,2 AND yl,2 ≤ y1 ≤ yr,2 and vice-versa. There is an AND
operator between the two opposite cases;

2. condB: check whether xl,2 ≤ x1 ≤ xr,2 OR yl,2 ≤ y1 ≤ yr,2 and vice-versa. There is an OR
operator between the two opposite cases;

3. condC : check whether vertices do not fall inside the counterpart box and vice-versa. There
is an OR operator between the two opposite cases;

4. Final intersection condition intersec_cond: it reads

intersec_cond = condA OR (condB AND condC)

When an intersection is asserted, it means that the adversarial perturbation fails to provide
misdetection. The latter condition is further investigated according to the actual grade of
damage caused by the adversary, which is obtained by IoU computation and the hard-coding of
a threshold tpatch fail:

1. IoU > tpatch fail, fig. 4.10(a): adversarial perturbation makes no difference with respect
to the un-perturbed case and produce high-valued overlapping. The set of over-threshold
detection is named Patch Complete Failure (CF);

2. IoU ≤ tpatch fail, fig. 4.10(b): perturbed and un-perturbed detected boxes do overlap, but
the perturbation effects are not negligible and let a proposal with different aspect ratio to
survive after inference anyway. The set is assigned the name Patch Partial Success (PS).

61

Crafting Adversarial Attacks

The last available case to probe, i.e. IoU = 0, is probed by checking whether the returned value
from code 4.1 is False and the corresponding ensemble is assigned the name of Patch Complete
Success (CS, fig. 4.10(c)). It counts the number of objects misdetection for each image. Being
the perturbation applied one-object at a time, it can count up to 1 for each input.

(a) Patch Complete
Failure CF

(b) Patch Partial Suc-
cess PS

(c) Patch Complete Suc-
cess CS

Figure 4.10. Adversarial Patch Success Rate cases

Each inference generates a response r ∈ {CF, PS, CS} associated to the targeted object. By
including the newly introduced partial success ensemble, eq. 4.11 the overall SR is given by:

SR =

|Nimgs|Ø
j=1

δj

|Nimgs|Ø
j=1

Nobj,j

= |CS| + |PS|
|Nimgs|Ø
j=1

Nobj,j

, δ ∈ [0,1] (4.11)

while patch Failure Rate FR reads:

FR =

|Nimgs|Ø
j=1

δj

|Nimgs|Ø
j=1

Nobj,j

= |CF |
|Nimgs|Ø
j=1

Nobj,j

, δ = δ̄ (4.12)

4.2 Fooling single-stage Object detectors: results
The majority of code concerning the practical implementation of adversarial attacks has been
borrowed from [1], that applies it on YOLOv2 as already mentioned and released it publicly. The
reference code structure has been thereafter extended towards the simulation cases of interest in
terms of NN typologies.
Two brief notes before proceeding:

Note #1: this section will report the results obtained employing the loss function in eq. 3.5,
which shows the best results of the two. As a remainder, it minimizes the maximum network
prediction within the ensemble of proposals.

62

4.2 – Fooling single-stage Object detectors: results

Note #2: it is interesting to provide evaluations by addressing either (1) objectness confi-
dence score only (obj approach) or (2) final class confidence score (obj-cls approach) as
described further up in this chapter.
Even though from [1] it appears that obj method leads to better results in terms of adversarial
capability - because it exclusively targets foreground/background distinction, i.e. bare misdetec-
tion - it seems that the optimal choice strictly depends on the model under analysis.

As a matter of facts, mAP and SR assessments are performed with the best-case patch,
being it either obj or obj-cls. Some more specific network-related measurement under different
adversary conditions is sometimes provided and explicitly mentioned.

4.2.1 YOLO family

Best-case trained patches

Following the procedure described in sec. 4.1.1, some structured ü0 perturbation is trained with
three different networks: YOLOv2, YOLOv3 and YOLOv4. For all the three of them, the best-case
scenario happens by minimizing on obj only.
The obtained adversaries, which have dimension (3 × 300 × 300), are reported in fig. 4.11.

(a) YOLOv2 (b) YOLOv3 (c) YOLOv4 (d) Uniform
gray (U_GRAY)

Figure 4.11. YOLO family trained patches, minimization over objectness

The last patch, called U_GRAY, is introduced as a non-learned, uniform gray perturbation to
strongly assess the capability reached by a trained adversary in terms of adversarial robustness,
following the trend .

It is important to highlight again that these perturbations are not hand-crafted, but come
from a regression problem that employs model’s predictions to build knowledge over a set of
pixel variables.

PR curves Recall drop, varying patches

The primary analysis that has been done involves the computation of P-R curves under adversarial
attacks with each of the three networks.
Figs. 4.12 displays the results after testing with several YOLO-based patches.

63

Crafting Adversarial Attacks

(a) YOLOv2 P-R (b) YOLOv3 P-R

(c) YOLOv4 P-R

Figure 4.12. YOLO family PR curves evaluation under attack with several
patches, INRIAPerson dataset

The curves are intended for a single-network inner comparison. The expected result is the drop of
the curve as an effect of misdetection (attack footprint) with respect to the un-perturbed
scenario (CLEAN). Some observations can be risen:

• Best case loss As already mentioned, minimizing on objectness only degrades network
performances the most in terms of misdetection, in average. However, the effect is sharper
with YOLOv2 (mAP 28% - 41%), less definite with YOLOv4 (mAP 41% - 44%) and reversed
with YOLOv3 (mAP 56% - 62%).

For YOLOv2, results are comparable with those reported in [1] which indicates a mAP of
around 25% 7.

For YOLOv3, an interesting adversarial attack analysis exists in [2], as already mentioned.
They target MS COCO dataset, yet the overall approach is equal.
According to their results, YOLOv3 (original Darknet weights from [24]) witnesses a drop in
mAP from 74% to 36% 8.
Even though the testing dataset is different, the methodology is similar - one class only is
targeted - and therefore the results are formally comparable.

7The comparison is made under the same conditions, also because nearly anything has been changed from
their reference code

8Success Rate is evaluated on physical attacks, i.e. printed patches physically applied on object or paper
dolls such as printed versions of digitally perturbed images

64

4.2 – Fooling single-stage Object detectors: results

• Class only minimization Minimizing over conditional class probability (cls) only does
not provide optimal results in terms of model deceiving. The measurement has been
performed with YOLOv2 only (green curve) and reports mAP light decrease with respect to
CLEAN (68%);

• Carlini-Wagner loss An experiment has been tried by minimizing Carlini-Wagner CW loss
with YOLOv3, fig. 4.12(b). Since eq. 3.4 has been thought with misclassification in mind,
the expression has been adapted to the present case. In particular, the adversarial target
C(x)t is background itself that can be expressed as

Pbackground = 1 − obj

Henceforth, the overall CW loss reads:

LCW =
NpropØ
i=1

max(Pi, 0) − Pbackground,i =
NpropØ
i=1

max(obji · clsi, 0) − Pbackground,i (4.13)

As it can be seen, the result in terms of mAP (legend: CW) shows that an inner maximization
among proposals as in eq. 3.5 is still the best choice in terms of attack effectiveness.

• Random patch PR curves PR curves obtained with U_GRAY patch (RAND_IMG in the leg-
end) nearly overlap with the CLEAN un-perturbed measurements, showing that each model
seems able to preserve its accuracy when the adversary is non-trained and randomly
initialized.

Average Precision and Patch SR cross-testing evaluation

mAP metric evaluated on the INRIA Person single-class-capability dataset is measured by consid-
ering cross-evaluations. Each network is tested against perturbed images with the whole ensemble
of best-case patches introduced in fig. 4.11. Measurements results are reported in table 4.2.

mAP (%) YOLOv2p YOLOv3p YOLOv4p UGRAYp CLEAN

YOLOv2 28.23 74.07 76.50 84.08 88.42

YOLOv3 69.19 56.3 86.42 95.13 96.62

YOLOv4 63.12 69.03 44.84 90.09 93.53

Table 4.2. mAP cross-evaluation on INRIA Person dataset, YOLO family

CLEAN results are reported in blue for the un-perturbed reference. Pure white-box detection
is highlighted in red: it indicates a network that faces a perturbation crafted by accessing its
own weights at training time. Other measurements (in black) are the set of all complementary
cross-combinations available.

As for the second evaluation metric, Patch Success Rate SR is assessed following the steps
described in sec. 4.1.2. The most distinctive feature in terms of high level approach is that the

65

Crafting Adversarial Attacks

perturbation is applied one object at a time for each image and not over the whole set of
bounding boxes (Person object) as for mAP assessment.
Having this said, fig. 4.13 shows a bar plot of the results for each YOLO family network.

Figure 4.13. YOLO family networks, SR evaluation

The range of measures has been restricted to the pure white box evaluations along with U_GRAY
evaluation for reference purposes (red and gray colors respectively in table 4.2).

Considerations

Provided the trustworthiness of both kind of metrics employed, though their methodological
difference, some considerations may be pointed out:

• Random patch impact U_GRAY U_GRAY patch brings better results within the mAP metric
domain, even though its effect is still less sharp than its trained counterpart, as expected;

• Models comparison YOLOv2 appears to be the most damaged model of the family un-
der attack, either in terms of mAP and SR assessments (refer to the pure white box attacks
highlighted in red). Searching for reasons behind this behavior are out of the scope of this
document, nevertheless some guesses could be made.
YOLOv2 is a fully connected NN that does not bring multi-scale information, a
feature introduced from YOLOv3 (sec. 2.4.2). This increases the total number of network
proposals after inference, making it more difficult for the adversary to suppress every bound-
ing box surrounding an object.
The explanation reflects the same difference already discussed between single- and two-
stage detectors fooling, with the latter being an easier task due to former proposal filtering
by RPN;

• Black-box capability Cross-evaluation measurements show that black-box attack typol-
ogy is heavily affected by the network’s weights employed for training, causing a drop in the
patch effectiveness. However, YOLOv2 patch seems to have the best impact of the three by
looking at table 4.2. The reason may perhaps lie in the less number of total proposals as
mentioned above.
See appendix B for an attempt targeting adversary training on network ensembles to im-
prove black-box transferability, as attempted in [2].

66

4.2 – Fooling single-stage Object detectors: results

4.2.2 SSD family
The whole setup has been applied targeting SSD object detectors family. In particular, the
adversarial patches have been crafted employing SSD trained on VOC with MobileNetV1 and
MobileNetV2 as backbones. The reference repository is taken from GitHub. 9

In addition, several SSD variations have been considered from the TensorFlow Object Detection
API Model Zoo 10, with the following features:

• Complete pre-training on the COCO dataset - model already prepared and ready for inference;

• MobileNetV1, MobileNetV2 and MobileNetV3 [27] backbones;

• Resource-friendly (quantized versions or with SSDLite detection layer [15]) and full precision
configurations.

The variety of configurations allows to test adversary transferability among different back-
bones, dataset and model precision as well.
Last, SSDLite is taken as a case study to test against several adversary training configurations
for either VOC and COCO based implementations.

Best-case trained patches

Two patches are trained with MobileNetV1_SSD and MobileNetV2_SSDLite on VOC dataset. Uni-
form gray patch U_GRAY is employed as for YOLO family as well.

Note that SSD architecture encodes background as a standalone class. Therefore, given n classes
for the corresponding dataset (e.g. n = 21 with VOC), objectness is targeted as

Pobj = 1 − Pbackgr_cls = 1 −
Ø

i /=bakgr_cls

Pi

where Pi is the network output. Conditional class probability is therefore given by

Pcls = Pi
Pobj

Trained patches are reported in fig. 4.14

(a) MBNTv1-SSD (b)
MBNTv2-SSDLite

(c) U_GRAY

Figure 4.14. SSD family trained patches, minimization over obj-cls, INRIAPerson dataset

9https://github.com/qfgaohao/pytorch-ssd
10https://modelzoo.co/model/objectdetection

67

https://github.com/qfgaohao/pytorch-ssd
https://modelzoo.co/model/objectdetection

Crafting Adversarial Attacks

Adversary variants: SSDLite PR case study

Given the opportunity to assess adversarial results with respect to dataset changes in the SSD
framework, a more detailed PR evaluation has been performed targeting SSDLite with MobileNetV2
backbone from both VOC and COCO datasets.
In addition to obj/obj-cls and loss function changes, fig. 4.15 reports the results after varying
the patch size from (3 × 300 × 300) to (3 × 200 × 200).

(a) MBNTv2-SSDLite from VOC (b) MBNTv2-SSDLite from COCO

Figure 4.15. MBNTv2-SSDLite comparison between VOC and COCO dataset

Besides CLEAN and U_GRAY, Figs. 4.15(a) and 4.15(b) show several measures:

• obj-cls with adversarial loss from eq. 3.5;

• obj-cls with adversarial loss from eq. 3.6;

• obj only with adversarial loss from eq. 3.5;

• obj-cls with adversarial loss from eq. 3.5 and patch size (1 × 200 × 200);

Some considerations:

• Dataset transferability It seems that dataset variation is not effective and follows the
white-box constraint. The adversary is indeed more robust (mAP falls at around 50%) on
the very network used for training than on the other trained with COCO (mAP at around 70
%);

• Patch features variations with (1) different types of losses, (2) minimization strategies
(obj/obj-cls) and (3) patch size does not seem to change the adversarial effect by a
substantial amount.

Average Precision and Patch SR cross-testing evaluation

Table 4.3 reports the results on mAP calculation after cross-evaluation with the best-case trained
patches while fig. 4.16 shows Patch SR for pure white-box and uniform gray cases as well.

68

4.2 – Fooling single-stage Object detectors: results

mAP (%) M1SSDV OC,p M2SSDLV OC,p UGRAYp CLEAN

M1SSDV OC 46.5 61.19 75.97 80.46

M1SSDCOCO 63.78 68.65 79.2 84.41

M1SSD_QCOCO 69.94 76.98 81.61 85.73

M2SSDLV OC 64.81 52.38 78.13 81.56

M2SSDLCOCO 74.42 72.12 80.06 84.92

M2SSDCOCO 69.45 68.76 79.53 83.48

M2SSD_QCOCO 73.41 71.08 79.63 83.94

M3SSD_lCOCO 76.81 78.79 82.4 87.31

M3SSD_sCOCO 63.63 68.0 74.1 82.14

Table 4.3. mAP cross-evaluation on INRIA Person dataset, SSD family

Figure 4.16. SSD family networks, SR evaluation

The overall setup and notations are the same employed with the YOLO family.

Considerations

Random patch (U_GRAY) impact and black-box capability lead to comparable observations with
those provided when addressing YOLO family, while models comparison deserves a little bit of
attention more.

Models comparison Table 4.3 summarizes the complete set of possible cross-combinations after
inference. The most notable points to point out read:

• Pure white-box attacks lead to the highest mAP and SR drops. From fig. 4.16 however, it
emerges that patch Success Rate is less sharp than YOLO, especially YOLOv2 network (SR lies
in the range 20% - 30% for MobileNetV1 and MobileNetv2 backbones respectively);

69

Crafting Adversarial Attacks

• Quantization TensorFlow ModelZoo provides some quantized model following the proce-
dure known as ’quantization-aware training’ (mentioned in sec. 7.1). This allows to test the
impact of the adversary against different kinds of numerical precision. The result is a
small change on the fixed point model with respect to its floating counterpart (rows 3 and
7 in table 4.3).
What is less expected is the direction of the change: mAP increases when low precision models
are addressed for both the attempted measures;

• Model architecture Backbone typologies as well as the compact SSD model proposed in
[26], which addresses resource efficient networks, keep the results against adversaries mostly
unchanged. This is reasonable when considering that an efficient model size should imply
steady accuracy performances by definition, as it is the case for depthwise separable
convolution strategy applied within MobileNet and SSDLite frameworks (sec. 7.1);

• MobileNetV3 Even though the two provided versions of MobileNetV3 (small and large as
in [27]) have similar clean mAP on the INRIA dataset (82% and 87%), their behavior under
attack differs by a more substantial amount (nearly 20%).

4.3 Fooling face detectors: Multi-Task CNN
Face detection research field leads to introducing several modifications with respect to multiple-
class based object detection. Two main differences are reported:

1. The task reduces to a binary classification problem: face/no-face. Even though bound-
ing box regression and objectness score are still evaluated to allow object localization,
the NN model is not trained on ’classes’, but should be able to distinguish between the
background and foreground, with the latter corresponding to a single class-like, i.e.
faces;

2. Model’s architecture in the present case is quite different than single-stage detectors de-
scribed in chapter 2.

Given the aforementioned novelties, adversary training in the attack framework is modified and
faced accordingly, either for what concerns geometrical affine transformations (sec. 4.1.1) and
adversarial pixel training stages.

MTCNN is a SOTA model in the field of face detection and performs the task following the general
setup already introduced in chapter 2 - bounding box and confidence score regression, in addition
to score-based filtering and Non-maximum suppression (NMS) as post-processing processes.
Nevertheless, as the name suggests, three networks are employed to detach the tasks [65]:

• Proposal Net (P-Net): the input image is resized to different scales in order to build an
image-pyramid in a SSD/YOLOv3-like fashion. Bounding boxes are proposed and candidates
are further filtered through NMS and calibrated using bounding box predictions;

• Refine Net (R-Net): P-Net output are again filtered to suppress false positives. Redundant
boxes are deleted again via NMS;

• Output Net (O-Net): it is responsible for the final refinement and landmarks predic-
tions (eyes, mouth extremities and nose for a total of 5 positions);

70

4.3 – Fooling face detectors: Multi-Task CNN

Trained patches

Two kind of patches are attempted in the framework of face detection:

1. Mouth patch: A rectangle-shape adversary (3 × 250 × 450) that is located on the mouth
by using extremities landmarks as geometrical support. Scaling, translation and fixed-
rotation for alignment purposes are employed as described in sec. 4.1.1 by complementing
the reference code released by [1] with new functionalities;

2. Glasses patch: A sticker representing a pair of glasses is employed targeting face’s eyes
taking inspiration from [43] that used it for face recognition (classification). The application
step does not differ from the mouth-based case, where location landmarks are replaced with
eyes instead of mouth extremities.

Nonetheless, this second case implies a novel challenge in terms of perturbation training,
since only a subset of the patch pixels should be updated by the ADAM optimizer.
It is not possible to selectively compute loss gradients on a subset of pixels, therefore the
path of suppressing gradients after computation through the support of an external
mask of zeros is followed, allowing to keep regions that should be inactive in terms of
adversarial capability.

The set of patches that have been trained is shown in fig. 4.17, while fig. 4.18 reports an example
of actual application after affine transformation.

(a) Glasses, target P-Net (b) Glasses, target all nets (c) Mouth, target
P-Net

(d) Mouth, target
all nets

Figure 4.17. MTCNN trained patches, FDDB dataset

(a) Mouth patch (b) Glasses
patch

Figure 4.18. Patches affine transformation and application over faces, FDDB dataset

Four adversaries are crafted, given the multi-stage structure of the targeted model, providing
several possibilities when assessing the cost function. Its general structure however remains either

71

Crafting Adversarial Attacks

as in eqs. 3.5 or 3.6, i.e. it targets confidence score predictions by maximizing or summing the
squares over a filtered subset:

1. P-net output target: in this framework, the whole set of proposals before that filtering
and refinement processes are undertaken is attacked at training stage.
Moreover, since prediction candidates are extracted from each scale of the image pyra-
mid, a previous operation is required over scales.
For each scale, the maximum approach over the corresponding number of proposals is per-
formed. These maximum values are then passed to a subsequent maximum operation at
scale-level.
The final adversary cost function reads (eq. 4.14):

LPnet = max
scale j, Pnet

(max
box i, P−net

(fscale jbox i, Pnet(I, P))) (4.14)

2. Whole model output target: in this context, the final loss has contributions from either
R- and O- nets, which are assigned the same weight. The aim is to extend the attack - at
adversary training stage - to an increased number of proposals, at the cost of introducing
some redundancy. Results show that patches crafted in this manner behave slightly better.
The final loss takes the form (eq. 4.15):

Lall_nets = max
net k

(

max
scale j, k=Pnet

(max
box i, Pnet

(fscale jbox i, Pnet(I, P))),

max
box i, k=Rnet

(fk=Rnet
box i, Rnet(I, P)),

max
box i, k=Onet

(fk=Onet
box i, Onet(I, P))

) (4.15)

As a last note, all the patches have been trained on FDDB 11 dataset, which contains about 2800
images of multiple and single faces on different poses and sizes. The dataset has been filtered to
preserve images with no more that 5 faces and split in a train and test dataset for adversary
training and assessment (2000 and 768 images respectively).

Average precision and Patch SR evaluation

As a usual approach by now, mAP and SR results are shown in table 4.4 and fig. 4.19(b) respectively.
In addition, PR curve is reported as well in fig 4.19(a).

mAP (%) GLASS_PNETp GLASS_ALLp UGRAYp CLEAN

MTCNN 91.24 90.85 94.99 100

MOUTH_PNETp MOUTH_ALLp UGRAYp CLEAN

MTCNN 86.45 83.35 91.88 100

11http://vis-www.cs.umass.edu/fddb/

72

http://vis-www.cs.umass.edu/fddb/

4.4 – Summary

Table 4.4. mAP cross-evaluation on FDDB dataset, MTCNN

(a) PR curve (b) Success Rate

Figure 4.19. MTCNN PR and SR evaluation, FDDB dataset

Considerations

Note that CLEAN accuracy is indicated as a ground-truth reference, therefore providing 100% mAP.
This is due to the lack of bounding box annotations in the FDDB dataset, which provides elliptical
ground truths.
For what concerns the perturbation effect, it is clear from both metrics that the adversary does
not provide as sharp impact as with object detectors. The trained patches have nearly the same
effect as U_GRAY, which is un-learned.
Apart from the overall trend, loss minimization over the three-stages network provides slightly
better behavior than targeting P-Net only, though at a non-sufficient level of attack robust-
ness. This result is perhaps due to the proposal redundancy introduced by targeting all the
three networks, since an increased number of proposals should lead to worse results according to
what has been previously said (less boxes to attack means less complexity at training time).
Only one work does exist in the literature targeting adversarial attacks on MTCNN for face detection
other than recognition (e.g. Sharif et al. [43]), i.e. the work from Pautov et al. [58]. It shows that
addressing P-Net only allows to degrade the model’s mAP consistently. Nonetheless, it targets
physical attacks with a considerable small dataset for either patch training and testing (around
20 image), preventing a complete generalization of the adversary capability.

4.4 Summary
This chapter reported the experimental results obtained by implementing adversarial patch
attacks (ü0,struct norm) against single-stage (YOLO and SSD) and face (MTCNN) detectors targeting
misdetection. It introduced the general adversary training flow as well as attack’s evaluation
metrics in terms of Mean Average Precision mAP and Patch Success and Failure Rates
SR/FR.

Results led to the conclusion that a trained adversary, within the white-box domain and
against an a priori selected class, do cause harm to a specific model by a non-negligible
amount (more than 35% drop in accuracy and an equivalent Patch Success Rate ratio), at least
when compared with the effects of a non-trained adversary (U_GRAY patch).

73

Crafting Adversarial Attacks

Nevertheless, it has to be noted that experiments performed against face detectors provided poor
results in terms of adversary effectiveness, as already detailed above.

74

Part III

Adversarial Defense

75

Chapter 5

Theory and Principles

The following chapter briefly introduces the novel topic of Adversarial Defense for ML systems,
outlining how the need of its development has emerged (sec. 5.1) as well as its most recent
advances and proposals (sec. 5.2).
Note that here the attention is again focused on techniques introduced and applied in the field
of Computer Vision. In particular, while state of the art works have handled the topic of pure
classification, the attempt of this document (detailed in chapter 6) is to introduce/extend the
defense principles towards single-stage object detectors targetingmisdetection against real-
world based attacks, starting with a non certified (heuristic) defense typology.

5.1 Motivation
Some efforts have been provided in the last few years to increase NN model’s robustness
against adversarial perturbations, which is also an intuitive reason for their development
and study.
In order to coherently provide a structure to the topic, an on-going and living document [42]
actually stands as major guideline to follow in terms of theoretical and practical approach in
order to produce reliable results. Overall, the most critical concepts that emerge are:

1. Providing a justification for the defense, i.e. why is it is important to assure high model
robustness;

2. Defining the threat model to defend against, and clearly outline:

(a) its goal in terms of prediction corruption;
(b) its main features and adversarial capabilities;
(c) the level of knowledge it possesses towards the attacked system;

While the second has been already described in chapter 3 , the first will be quickly summarized
below.

Defense justification
In part II the existence of an adversary able to mystify the correct behavior of a system has been
faced, by either theoretically describing adversarial results in the domain of image classification
and directly performing experiments on object detector’s deception by targeting misdetection.
Security drop is one of the crucial consequences of model’s poor performances. It implies the

77

Theory and Principles

existence of an adversary which is able to mystify the correct behavior of a system.
The latter case is much more affine to real-world based scenarios such as surveillance camera
or autonomous driving corruption for face and people detection/counting.

Other two reasons can state the importance of assessing model’s strength and may lead to deepen
the field of adversarial defenses: the worst case robustness evaluation and human-machine
gap [42].
The first does not imply actual concerns in terms of security, yet focuses on testing the actual
system capability to fulfill its task. This helps providing an upper bound on its performances
stability.
The second regards the actual gap existing between humans and machines in terms of reliability.
Fully ’clean’ results towards a certain task have been proved to keep tight the human/machine
disparity. Yet, adversarial attacks exactly witness the profound lack in term of decision-
making process [42] between humans and machines: small or incognito perturbations can
corrupt a machine even without changing the average decision for a human.

Adversarial knowledge

In addition to what have been said in chapter 3, few words are spent regarding the degree of
knowledge the adversary owns with respect to the targeted system. As many times highlighted,
the adversary knowledge typically falls in the white-box domain, which means full accessi-
bility to the model features. Moreover, it is worth mentioning that this knowledge holds in the
field of adversarial defense as well: there is no secret between attacker and defender and
the defense can be fully accessed by the adversary.
The latter is known as Kerckhoff’s principle, an assumption of cryptography that states a de-
fense effectiveness should not depend on the defender keeping some data secret to the adversary:
the ’underlying algorithm’ should be known but the encryption keys [42].
This means holding some portion of data hidden to the attacker, following the double principle
of non-extractability and replaceability of the secret, which should be either hard to draw
out and easy to replace by the defender, if extracted.

It is anticipated here that the selected kind of adversarial defense implies randomness as
the encryption key obscure to the adversary. There, the defense takes the form of structured
ablation as a function of ablating starting position, whose optimal distribution should be known
in advance for efficient defense.

5.2 SOTA walk-through: Adversarial Defenses typologies
Several adversarial defenses have been proposed against the metric-based attacks described
in chapter 3 in the context of pure classification. The object detection domain implies the
additional constraint of spatial localization and constitutes one of the main bottlenecks that is
addressed in this document.

In general, adversarial defenses can be divided in two categories [66]:

• Heuristic (or empirical) defenses are experimentally tested, but not theoretically proved.
This means that there is not a computed margin of reliability about their effectiveness that
represents the degree of distortion the defense can withstand;

• Certified defenses are theoretically proved in the sense that they provide the degree of

78

5.2 – SOTA walk-through: Adversarial Defenses typologies

distortion at which the defense it is assured to work.
A clear definition in these terms is given in [67] 1, which introduces:

1. Certified robustness: computed on a single input, it is the maximum perturba-
tion ρ for which the model gives a correct answer under any adversary that meets the
requirements imposed by the n-based distance metric: |x - x’|n ≤ ρ;

2. Certified accuracy: computed on the testing dataset, it is the fraction of input
samples with certified robustness ρ as a lower bound;

3. Median certified robustness: computed on the testing dataset, it represents the
median (higher) value of certified robustness across the set. Given input Ii and certified
robustness ρi, it reads max(ρi) ∀ i ∈ [0, Ndataset];

Defenses with certification are preferred to experimental ones due to their theoretically as-
serted validity within a computed perturbation range.
Up to now, certified defenses have been applied in the field of pure classification for CV though
their use is more challenging against real-world based (or structured ü0,struct) attacks on real-
time object detectors, which introduce non-predictable, hard to model elements (e.g. perturbation
scale, spatial position, rotation, folds and so on) and have not been considered in this document.

With this in mind, a brief digression on pure classification-based defense techniques is
provided in the following, with reference to the scheme in fig. 5.1.

Figure 5.1. Adversarial defense typologies, high-level classification

Note Some defenses have been thought that try to detect the perturbation before letting the
inference stage to reach out the output layer. In particular, two defenses of this kind have been
proposed: Digital Watermarking (DW) and Local Gradient Smoothing (LGS).
The first deals with (classification) loss gradients while the second with image gradients: both

1The definition is independent from the targeted metrics.

79

Theory and Principles

concern unusual sharp variations in the region of the adversary. These defenses have been broken
by Studer et al. [68], in particular LGS is confuted by inserting TV loss during perturbation training
(eq. 4.3) as exploited in this work as well.

5.2.1 Adversarial training
This section will briefly review the most important works on adversarial training by highlighting
the underlying conceptual methodology.
The intuition is to introduce adversarial samples in the NN model training process in order to
reduce their overall impact on its performance. Formally, the optimization problem becomes a
min-max game or saddle point problem of the form [49] [66]:

min
W

ΓW ΓW = max
ρ∈S

L(W, Iρ) (5.1)

where W represents the network’s weights, ρ the perturbation itself and Iρ the perturbed input
image.
The inner maximization concerns crafting an attack to pinpoint the most effective adversarial
sample while the outer minimization is performed through the usual gradient descend-based
regression.
For what concerns some state of the art about adversarial training, Goodfellow et al. first made a
proposal against Fast Gradient Sign Method (FGSM) in [50] by combining eq. 5.1 with the cost
function in eq. 3.3 for ü∞ attacks. Despite being effective against FGSM, the defense fails with
stronger attacks such as iterative methods.

Madry et al. [49] proposed a defense against ü∞ Projected Gradient Descend (PGD) attacks
which show to be effective towards others ü∞ adversaries, such as FGSM and Carlini-Wagner (CW).
Being PGD computationally costly, it has the drawback of increasing the training time.

Studer et al. [68] employs adversarial training (or, better, certificate training) on Interval
Bound Propagation (IBP) method to reproduce SOTA results against ü∞ attacks and extend
the method towards adversarial patch (ü0,struct) attacks in the field of pure classification.
IBP propagates the interval of allowed values for a certain output layer zk after convolution from
k = 0 (first layer) to k = Klast. For ü∞ attacks, the upper and lower bounds are defined by z̄(0)

and z
¯

(0), while for ü0,struct attacks they are unaltered for the majority of image pixels but
the patch region, where they vary in the range [0,1].
As it can be noted, all of the mentioned techniques focus on network re-training without targeting
image pre-processing. Moreover, all but the last are still empirical defenses.

5.2.2 Randomized smoothing
Another family of defenses that is gaining interest in the field in this field is called randomized
smoothing. Up to now, some researches have been done against ü2 and ü0,sparse attacks. Again,
this section will briefly review the most important works on this topic by highlighting the under-
lying conceptual methodology.

Randomized smoothing is a method for ’constructing a new - "smoothed" - classifier from an
arbitrary base classifier’ [69]. The smoothed model receives as input a noisy version of the
original one following a certain distribution (e.g. Gaussian or Laplacian).
A set of techniques specifically targeting image pre-processing already exists and provides padding,
cropping and applying positive randomization (i.e. noise addition) or negative randomization (de-
noising, i.e. perturbation removal). They exploit the network capability to withstand random

80

5.2 – SOTA walk-through: Adversarial Defenses typologies

features - also witnessed in part II - as a key element to extend its robustness against adversarial
samples. The latter is the fundamental difference with respect to randomized smoothing defenses.
Last, they are typically heuristic and not addressed in this document.

Lecuyer et al. [70] provided the first adversarial defense against classifiers targeting ü2 attacks.
Cohen et al. [69] improved the work by finding tighter bounds for certification purposes. The
general method that is followed concerns letting the classifier to perform inference on a sampled
set of inputs perturbed by Gaussian noise N (µ, σ) (where µ is the mean and σ is the
standard deviation). It is clear that two kinds of perturbation are in use:

• Random noise perturbation: the magnitude is encoded in the distribution chosen, being
either Gaussian or Laplacian. It can be thought of a non-trained adversary, which does not
cause harsh to the model’s decision;

• Adversarial perturbation: it is the properly trained adversary that makes the decision
to change according to a particular distance metric.

The general working principle flow is reported below, independently of the targeted attack metric:

Randomized smoothing process flow

1. Training dataset
Experiments have been provided either on relatively small datasets, like MNIST and
CIFAR10, or on SOTA ImageNet when dealing with classification purposes analysed
up to now by the community;

2. Noise introduction
Each input image is perturbed following a specific noise distribution. In [70], [69]
the number of perturbed images, that are obtained from one single original input,
is sampled statistically since the complete (deterministic) set of smoothed inputs
produced from the original one is huge a;

3. Inference stage
Each noisy input is fed to the model at inference. This for sure slows down the
overall detection time for each input, being all the ’smoothed’ versions processed
by the Neural Network.
In the framework of real-time defenses, it is the key bottleneck to deal with.

4. Majority vote decision
Defense effectiveness is performed through majority vote. In particular, the
number of correct class decisions is counted and compared with the remaining (or
the second highest class as in [69]) for both inputs x and x’ (adversary).
From the point of view of the defense alone, the compound statistics should favor
the correct class when the adversary is injected.
In terms of certification, if the noise perturbation between input x and x’ is larger
than the adversarial distortion between x and x’, then x and x’ will most likely
produce the same smoothed sample set, providing robust classification.

An interesting and peculiar proposal comes from Zhang et al. [71] that first inject
Gaussian noise to x and x’ and then perform k-means clustering to reduce the differ-
ence between the random distributions on x and x’ (called Kullback-Leibler distance)
without need for re-training.

81

Theory and Principles

aThis may lead to define an approximated certification accuracy.

De-randomized smoothing
The aforementioned techniques do not target structured ü0,struct attacks, the only capable of
modeling real-world scenarios. Besides, they add positive noise to each input’s pixel.
The complementary process, called de-randomized smoothing and introduced first by Levine
et al. [67], suppresses pixel values by reducing them to a unique, common ablated
state. It is indeed referred to as ablation. It is capable of transferring towards sparse and
structured (real-world compatible) ü0 attacks, as detailed in chapter 6.

Fig. 5.2 reports the major difference between positive and negative random noise injection
(the latter case)

(a) Positive randomized smoothing

(b) Negative (de-) randomized smoothing (ablation)

Figure 5.2. Randomized and de-randomized smoothing approaches comparison

One last note is the recent approach proposed by [72], named self-occlusion and targeting pure
classification as well. It works by minority vote: an occluding window slides at each position of
the input image defining a new sample to feed the network with. Model’s correct classification is
then bounded to a reduced number of cases, i.e. those where the adversary is covered (occluded)
by the sliding window.
Self-occlusion is quite similar to de-randomized smoothing, even though it does not aim at
lowering the probability for the network to sample a patch, but acts in the opposite way.

82

5.3 – Summary

5.3 Summary
This chapter introduced the field of adversarial defenses, highlighting the motivations behind its
need - among the others - in terms of security for new edge-based applications such as surveillance
camera and autonomous driving systems.
Thereafter, SOTA defenses against ML models are described. Among them, the most noteworthy
is randomized smoothing, a technique that implies training a smoothed classifiers/detectors
in order to reduce the adversary’s effect.
It is underlined how randomized smoothing research has fallen in the domain of pure classification
only, and the technique is chosen and implemented in the next chapter to fulfill the task of defense
against object detectors under attack.

83

84

Chapter 6

Crafting and implementing an
Adversarial Defense

Chapter 5 provides an overview on the topic of SOTA adversarial defenses and the correspond-
ing main features. In addition, it has been highlighted that the most targeted domain of study
has been pure classification either with empirical, certified or conservative defenses.
This chapter is organized as follows:

• Sec. 6.1 provides a deeper insight into de-randomized smoothing defenses and justifies their
choice to address the problem of object detection for real-time applications;

• Sec. 6.2 gives the overall experimental results obtained by implementing and characterizing
the selected defense with SOTA YOLOv3 detector;

6.1 De-randomized smoothing defense
Challenges dealing with the introduction of an adversarial defense in the field of object detection
have been already mentioned and deal with the additional bounding box and objectness
confidence regression problems the network has to face in order to properly locate and
classify multiple objects in a given input.
The open source, living document on adversarial defenses [42], clearly makes the point of properly
defining the attack threat model features to defend against. For the present work, these are
defined at the beginning of chapter 5: structured ü0 (or patch), digital, white-box attacks.
In this context, the already mentioned work by Levine et al. recently extended their previous
study on ablation defenses against sparse ü0 attacks [67] towards patch-based threat models
in the field of pure classification [3].

The latter has been taken as a reference framework in order to craft an adversarial defense
for OD, including the released code 1 for the image ablation part.

6.1.1 Pure classification problem
The approach followed in [3] aims at ablating structured portions of the input image I by
taking into account the equally structured nature of the adversary. They find this method to be

1https://github.com/alevine0/patchSmoothing

85

https://github.com/alevine0/patchSmoothing

Crafting and implementing an Adversarial Defense

more effective than pure sparse ablation against patches, as shown below.
Assume:

• Input’s dimensions as (3 × Himg × Wimg), with NI,pixels set of input pixels and |NI,pixels|
= Himg · Wimg;

• a square perturbation of size (3 × HP × WP), with NP,pixels set of patch pixels and |NP,pixels|
= HP · WP .

Considering a set of Nretained sparsely retained pixels at inference stage, the probability
Pr(A) that one of the NP,pixels pixel is not preserved (i.e., it is ablated) at inference is given
by [67]:

Pr(A) =

3
NI,pixels −NP,pixels

k

4
3
NI,pixels

k

4 ≈ k
NP,pixel
NI,pixel

(6.1)

that is the number of combinations needed for grouping all but the adversary’s pixels in k partitions
over the combinations of grouping all the input pixels in k partitions. As a consequence, the
probability Pr(Ā) that one of the NP,pixels is retained reads Pr(Ā) = 1 - Pr(A).
Applying a sparse defense against a structured attack leads to poor results, hence the proposal
of structured ablation against patches in [3]. The authors selected three main kind of organized
ablation:

1. Rows ablation: the preserved set of pixels is an horizontal band sampled along the image
height;

2. Column ablation: the preserved set of pixels is a vertical band sampled along the image
width;

3. Block ablation: a combination of the previous two keeping a block square windows from
the original input;

Similar calculations as in 6.1 provide a decreased theoretical probability for the preserved
window to sample the adversary with respect to the sparse case.

This kind of ’organized’ ablation is shown to be able to provide not only clean, but also high
certified accuracy as well on several SOTA classification datasets such as MNIST, CIFAR10 and
ImageNet.

6.1.2 Object detection problem
Two main differences exist between the work provided in [3] and the actual framework under
analysis:

• Threat model Even if dealing with adversarial patch attacks, the setup introduced by
Levine et al. considers small input images and equally small adversarial perturba-
tions, whose dimension is known a priori and axes-aligned with the input’s sides. This
allows to unseal deterministic computations about defense certifiability by exploiting
the geometric structure of the perturbed input feed.

86

6.1 – De-randomized smoothing defense

These assumptions do not fit in the domain of real-world oriented attacks theoreti-
cally described and practically evaluated in chapters 3 and 4 respectively: the adversary is
scaled and located according to the target object, while EoT are applied introducing non-
predictable rotation, brightness, contrast and noise adjustments.
This makes more difficult to assess a certification criterium, but does not prevent an
extension of the defense principles to check its effectiveness even though not proven with
respect to a specific adversary size margin;

• ML task Object detection adds a major constraint to the problem of pure classifica-
tion, as discussed in chapter 2: spatial location of multiple-objects, which introduces
objectness confidence score and bounding box regressions in the overall cost function cal-
culation.

Overall, this means assessing the adversarial defense by ü0 smoothing in two directions:

1. Keep network performances in term of detection high enough when the defense by
ablation is active and the adversarial perturbation is absent, on a double-sided
front: spatial coordinates and final confidence score computations, the latter expressed as
in eq. 2.3;

2. Assure that the de-randomized smoothing effectively allows to decrease patch Success Rate
SR when the model is under attack;

The path that has been followed introduces network re-training on ablated images, a
strategy already followed in [67] [3] as well other randomized smoothing approaches like [69][70]
addressing ü2-norms.

6.1.3 Ablation defense: notation
Given an input image I and named A and R the sets of ablated and retained pixels respectively,
the subsequent procedure allows to perform structured ablation on I , providing IA at output:

Adversarial defense - Image ablation

1. Ablation state encoding
Following the approach proposed in [67], image channels are doubled passing
from 3 to 6 for RGB, or from 1 to 2 for grayscale. With reference to the first case,
this uniquely encodes the ablated state as the tuple (0, 0, 0, 0, 0, 0),
thus differentiating it from any other pixel intensity combinations belonging to the
retained fraction of the image.
Provided a pixel pi, i ∈ NI,pixel and its R, G and B intensities, then for each channel
C ∈ {R, G, B} of pi it holds:

C
Í

=
I

0 if pi ∈ A

1 − C otherwise
(6.2)

Note The effectiveness of doubling the number of channels has not been tested
directly. Therefore, their introduction may not be strictly necessary to the purpose,
and it should be further investigated.

2. Retention zone (RZ)

87

Crafting and implementing an Adversarial Defense

It states the number of k pixels to retain. When addressing different types of ablation,
it reads:

RZ =
I
ceil((βRF ·Himg)) if rows ablation
ceil((βRF ·Wimg)) if columns ablation

(6.3)

where βRF is named retention factor and

βRF ∈ [0,1]

It indicates the fraction of pixels to retain along the corresponding image dimension
according to ablation type. If βRF = 1 the original, non-ablated image is re-
covered.
When block ablation is performed, the retained block sides are calculated from both
eq. 6.3 for horizontal and vertical dimensions.
Fig. 6.1(a) shows the aforementioned notation applied to an input image with abla-
tion by rows.

3. Starting ablation position
As already mentioned, randomized smoothing in the form of ü2 norm defense [70][69]
has the disadvantage of not being deterministic: the exact probability of the
smooth classifier (or detector in the present case) should be calculated on every
randomized input I. Since dealing with Gaussian noise distributions, Cohen et al.
in [69] provides a sampling method for the noise based on Monte-Carlo
technique. A similar approach has been provided in the framework of sparse ü0
defenses by Levine et al. in [67].

Conversely, structured ü0 defense further reduces the number of (de)randomized
examples to feed the model, allowing a complete study over the whole set of
possible ablation states. This fashion has been followed in the present work for
evaluating the defense performances either with and without the perturbation by
sliding the starting position spos according to the ablation type chosen, for each
input I a.

However, the task of real-time applications is not suitable for a deterministic
application of the defense, because it multiplies the number of inferences for each
input image I, as described in chapter 7.

4. Ablation boundaries
If the sum of spos with the retained zone RZ exceeds image dimensions (either Wimg

or Himg) the retained zone is wrapped around the image itself. This allows to
take into account each ablation starting position spos as equally probable.

Fig. 6.1(b) shows that this solution induces the number of configurations for each
typology to increase.

aThe origin coincides with the top-left corner of the image as in fig. 4.9(c)

88

6.1 – De-randomized smoothing defense

(a) Ablation notation (b) Ablation typologies

Figure 6.1. De-randomized smoothing defense features

6.1.4 Network re-training

As assessed in [3], pure classifiers are re-trained on ablated images in order to strengthen and
extend their knowledge towards partially visible inputs. The same approach is borrowed for
object detectors.
From this point of view, it may appear that there is no much difference between this kind
of re-training and a data augmentation procedure (chapter 1), because several techniques
implies a similar ’hiding’ approach such as Random Erase, Cutout, Hide and Seek, Grid Mask,
MixUp, CutMix [73].
Nevertheless, two key variations do exist:

1. Ablation is performed at inference time as well, which marks a separation line with
respect to standard data augmentation techniques;

2. In the framework of object detectors, it emerges the need of ablating the ground truth
annotations that encode reference spatial coordinates to be used as teaching material at
training time.
The first experiment that has been done with image ablation re-training has indeed wit-
nessed a large decrease in model’s recall on the evaluation dataset (fig. 6.2(a)). This
is not surprising because the actual multiple-objects framework may lead to the complete
ablation of some image characters and of their spatial locations (encoded into the annota-
tions) as well.

As a matter of fact, the following frame highlights the main steps towards performing ablation
re-training and is sketched in fig. 6.2(b) for either images and annotated labels.

89

Crafting and implementing an Adversarial Defense

(a) Recall drop without annotations ablation (b) Ablation training process flow

Figure 6.2. Recall drop after training and overall training flow sketch

Adversarial defense - Ablation re-training

1. Image ablation
The first step consists in performing image ablation, as described further up in the
text. The process can be dealt with in batches of inputs;

2. Ground truth ablation
As mentioned, ground truth annihilation is needed to preserve good recall (and
therefore mAP) performances and properly train the network. This step practically
means to calibrate the available teaching material according to what is left
effectively after the suppression process.

This procedure is performed by checking if an intersection between the set of
annotations and the fixed retention zone RZ exists. In order to do that, the same code
in 4.1 is applied again in a bitwise fashion. The latter condition is critical because
it allows to handle the cutting out in a concurrent way, making the impact of
the whole ablation pre-processing module negligible in terms of training timea.
Fig. 6.2 gives a visual representation of both the previous procedures with column
ablation.

3. Starting ablation position
Training phase deals with batches of images. Therefore, borrowing from [3], ablation
is performed with a single position for each batch of inputs to save training
computation time. This means:

(a) Applying the same kind of (de)noise - i.e. equal RZ - to several inputs in parallel;
(b) The starting position is handled and clocked by a common seed that gener-

ates reproducible random numbers in order to fairly compare different ablation

90

6.2 – Case study: YOLOv3

typologies under the same conditions - e.g. retention factors. This suggests
that training time is treated via probabilistic rather than deterministic
ablation;

aSome experiments dealing with non-optimized codes have even led to double the average training
time.

6.2 Case study: YOLOv3
The network selected for characterizing the ablation is SOTA object detector YOLOv3. The baseline
training and validation setup is borrowed from an existing repository2 which exploits PyTorch
ML framework. In particular, the analysis has been fragmented into two parts:

1. Subsection 6.2.1 treats network re-training on ablated images;

2. Subsection 6.2.2 covers the defense evaluation at digital level after re-training;

6.2.1 Re-training results
Re-training options are listed below:

• Input image size: (3 × 416 × 416);

• Activation: ReLu;

• Optimizer: SGD with Nesterov momentum (appendix A);

• Training Dataset: Microsoft COCO, about 80000 images with 80 labeled classes;

• Evaluation Dataset: Microsoft COCO, about 40000 images;

• Input batch size: It has been set at 8 to fit one single GPU memory capability - no
multi-processing is exploited;

• GPU: NVIDIA GeForce GTX 1080 Ti, without enabling multiple GPUs training;

• Training epochs: network’s re-training is performed starting from a pre-trained detec-
tor.
This means that the model has already been taught to localize and classify objects on the
same dataset (for 300 epochs), thus re-training with ablation can be thought of as a fine-
tuning 3.
In this framework, it has been performed for each ablation typology (Aset = rows, columns,
blocks) by:

2https://github.com/ultralytics/yolov3
3a term that typically indicates the refinement and sharpening of a given model on a peculiar and

specific task, provided it has been already trained on a more generalized target. Microsoft COCO and its
80 classes provide a generalized dataset, because it does not supply infra-class variety, like e.g. Google
OpenImages dataset

91

https://github.com/ultralytics/yolov3

Crafting and implementing an Adversarial Defense

1. Exploiting binary search 4 to characterize the optimal retention factor RF. The fol-
lowing set RFset = { 0.25, 0.375, 0.5, 0.75, 1} has been fully investigated ∀ RF ∈ RFset.
The last case (RF = 1) corresponds to a further fine tuning of the network on the
non-ablated dataset, and it is referred to as baseline;

2. Selecting first a training time of 30 epochs for each analyzed case (ablation types and
RFs). In order to have a more robust case study, a deeper insight has been provided by
specifically training on rows ablation for 100 epochs with RF ∈ {0.375, 0.5, 0.75,
1}. This latter training has a duration of about 8 days for each RF under the
conditions previously mentioned. Finally, it is the one selected to show the results
of this section and characterize the defense.

Training results on rows ablation for 100 epochs are summarized in fig. 6.3.

Figure 6.3. Training and validation tracking under rows ablation - YOLOv3 on COCO dataset

It shows training and validation results in the first and second rows respectively. For each of
them, it displays the three major loss contributions (sec. 2.4.3) as well as Precision, Recall, mAP
and F1 scores (sec. 4.1.2) evolution as a function of training time for different retention factors RF.

It is interesting to briefly compare the obtained results at varying RF, they can provide some hints
on each ablation state by keeping in mind that the fraction of preserved image increases
when moving from RF = 0 to RF = 1.

4also named dichotomous method, it consists of searching for a target by exploiting half-by-half
smart handling of selected intervals in the range of interest.
In the present case, it is to be intended as retaining fractions of the input following the sequence: 1/2, 1/4, 1/8
and so on, before proceeding with the analysis.

92

6.2 – Case study: YOLOv3

Loss contributions

The Bounding boxes regression in the form of generalized IoU and classification loss (sec. 2.4.3)
show some common trends. Here are few comments:

1. The curves seem to increase first and then descend rapidly, where the effective learning
takes place. This kind of behavior is perhaps associated to the pre-trained nature of the
initialized weights, which have to ’get used’ to clash against and build learning from
an harder teaching material set than the one they have been trained on. Harder does
not mean simply different, e.g. another dataset with infra-class specificity, but really a
more restrictive environment.

2. The slope of the decrease seems to be quite similar for different ablations, even though the
initial loss values are quite detached and tend to diminish as RF is tending to 1. Usually,
there is no real interest in the absolute value of the loss, as long as it manages to converge
and reach a stable state. Yet, different starting values for the penalization may indicate
an inner difficulty for the common set of pre-trained weights to gain knowledge
when RF → 0.

For what concerns objectness score regression, the trend seems to be reversed with respect to
the other two losses. This may be due to the fact that, by reducing the retention size, the number
of objects decreases because of ablation, thus providing less contributions to the squared sum
in [22], which is the same employed in the following versions including YOLOv3.

Evaluation metrics

Graphs on the right in fig. 6.3 show Precision, Recall, mAP and F1 score for different ablation
states. Here, the comparison with respect to the baseline network, that is trained with RF = 1
(without ablation) is useful to look at performance evolution as a function of training
time.

Precision seems to not be affected by pixel suppression. It starts decreasing, possibly for the
same reasons outlined previously, and ends by stabilizing for each investigated typology. The
underlying message is that, provided a pre-trained network as a starting point, ablation does not
affect model correctness, i.e. the number of false positives remains steady.

Recall represents the process bottleneck. mAP and F1 depends on both P and R, and being P
nearly steady with training moving forward, it is of key importance network performances will
be bounded to recall drops.
Ground truth ablation introduction has helped building a formally correct smoothing process
during training. In addition, an underlying trend does exist among the ablation states: as RF
→ 1, recall tends to increase. It seems reasonable since it would get more difficult for the
network to distinguish between foreground and background as the number of retained pixels
is reduced.
As an example of how much reducing the size of the retained window can affect network perfor-
mances, experiments done with block ablation training at RF = 0.25 have shown to cause
loss divergence, defining a limit for that kind of ablation.

In addition to the previous two observations, it has to be noted that loss contributions from fig.

93

Crafting and implementing an Adversarial Defense

6.3 have not converged yet, even at 100 epochs. Note that the technique of early-stopping 5 is
not employed to automatically end the training, preserving the original setup provided in the
repository.
This means that better results may perhaps be collected by training the model for a
larger number of epochs.

6.2.2 Post-training analysis
As previously mentioned, networks re-training has been performed with several ablation states
through binary search. For what concerns post-training assessment, it is organized as reported
in table 6.1.

Defense evaluation Patch OFF Patch ON

Ablation ON Re-trained network Re-trained network

Ablation OFF Original network Original network

Table 6.1. Defense post-training evaluation, cases under analysis

The entry encoded by the tuple (Ablation OFF, Patch OFF) corresponds to the un-perturbed,
un-defended case and is labeled as ground truth reference for the evaluation, a way of
proceeding strongly suggested in [42].
The second row indicates the same set of analysis that have been provided in part II when
dealing with adversarial attacks, i.e. the comparison between perturbed and un-perturbed cases
without the defense activated (Ablation = OFF).
The first row represents the novelty introduced with the defense. Here, two kinds of evaluations
are necessary:

1. (Ablation ON, Patch OFF): it embeds an inner comparison among re-trained networks
with ablation, in order to verify the most suitable trade-off in terms of un-perturbed
accuracy;

2. (Ablation ON/OFF, Patch ON): the second column of table 6.1 concerns the defense im-
pact evaluation in the perturbed domain, i.e. the system’s behavior when the network is
under attack and the defense mechanism is either active or not.

Testing dataset
Since the application field is real-time detection against real-world attacks, the testing dataset has
been chosen as an ensemble of frames (about 100) coming from a short hand-made video
which represents a single person moving towards the camera. This choice has the purpose of
simulating what a NN model effectively sees at each instant of time in video streams applications.
Even though several objects are present in the background of each frame, in the framework of
defense evaluation there exists an interest restricted to the single class targeted under attack
6. Every other class, following the approach described in part II, is filtered out accordingly.

5A technique employed to further stop the training of a NN model when some trigger is reached.
Triggering conditions may interest either some specific loss values or, typically, performance measures in terms
of NN accuracy.

6this feature serves as well as a simplification in order to handle post-processing evaluation easily.

94

6.2 – Case study: YOLOv3

These holds true not only for the perturbed case, but for the clean evaluation too, as detailed
below.

Evaluation metrics
Two kinds of evaluations are implemented:

1. The first draws PR curves along with mAP on the provided dataset. However, such a com-
pound metric does not help to display how near is the network after re-training to the ground
truth reference: it lacks granular information on spatial localization capability as
well as class confidence score prediction strength with respect to the ground truth;

2. Granular, box-by-box evaluation to address the two features mentioned in the previous
bullet point, which is introduced in the results assessment;

Ablation position distribution
As described in chapter 5, the term randomized smoothing indicates injecting noise (or de-
noise when dealing with ablation) to the input before feeding it to the model.
Each random state applied to the input represents a variation with respect to the original state
that should be evaluated through inference.
In the case of structured ablation, after having selected and fixed the retention zone size RZ, each
of this states is obtained by choosing:

1. The ablation starting position distribution, that can be e.g. a uniform distribution if
there is no preference among positions and each of them is assumed equally probable;

2. The number of ablation states tested, which is an additional constraint to be taken into
account when dealing with real-time applications. It depends on the acquisition frame
rate of the camera sensor, i.e. the time available between two captures.

All the experiments that have been performed investigate the whole set of positions by
assuming a uniform distribution over their ensemble.

Fig. 6.4 shows a sample position distribution within the time constraint imposed by a real-time
application. The latter influences the number of usable positions, which are chosen where the
distribution provides optimal results.

Figure 6.4. Position distribution sample, highlighting timing constraints for real-world scenarios

95

Crafting and implementing an Adversarial Defense

Notation Last, the original network will be indicated as YOLOv3_orig, while the re-trained
ensemble as YOLOv3_ablXRFY , with X ∈ rows, columns, blocks and Y ∈ [0,1].

First analysis: (Ablation ON, Patch OFF)

In this section, results are provided by evaluating on the whole testing dataset and addressing
re-trained networks on rows ablation for 100 epochs.

Given an input image dataset Dimgs with Himg,Y OLOv3 = 416 as NN input feed size, inference is
run Npos = Himg,Y OLOv3 times at several RF values.
First, the re-trained network capability to mimic the ground truth reference model performances
in terms of information retrieval is evaluated following the definitions provided in sec. 4.1.2.
With reference to table 4.1, they are borrowed and adapted as follows:

• True positives: the targeted object is correctly retrieved and classified;

• True negatives: background is correctly assigned non-object state;

• False negatives: the targeted object is not correctly retrieved;

• False positives: the targeted object is assigned a wrong class label. In the present single-
class fashion, this last situation is not expected to assume values different from 0;

Within the ensemble of true positives tp, two entities are thereafter measured and tracked:

1. Intersection over Union IoU of the targeted class bounding box with respect to those
predicted by the ground truth reference model.
It answers the question: ’How good is the re-trained network (with ablation type X) at spa-
tially detecting and locating an object when the same ablation type X is applied at inference
time?"

2. If the detection happens, independently of its spatial regression quality (a good or a bad
detection), what it is measured is the final class confidence score degradation w.r.t.
the ground truth reference model.
It answers the question: ’How good is the re-trained network (with ablation type X) at
assessing the final confidence score of a prediction when the same ablation X is applied at
inference time?’

The entire set of experimental results on the whole dataset Dimgs, for each ablation position and
in the forms detailed above, reports (1) predictions retrieval assessment in fig. 6.5 and (2)
spatial localization and confidence score strength assessments in figs. 6.6, 6.7 respectively.

Predictions retrieval assessment

96

6.2 – Case study: YOLOv3

(a) RF = 0.375 (b) RF = 0.5

(c) RF = 0.75

Figure 6.5. Predictions retrieval, several ablation types, RF = {0.375, 0.5, 0.75}

Figs. 6.5(a), 6.5(b) and 6.5(c) report a bar plot indicating evaluation statistics after information
retrieval with three retention factors (RF = 0.375, 0.5, 0.75). Green, red and blue colors indicate
true positives tp, false negatives fn and true negatives tn respectively 7 as a function of
the ablation starting position, which slides along the image covering all the possible locations.
Since this is the un-perturbed case, the number of (1) true negatives and (2) false negatives
should tend to 0.
The first is a drawback caused by the process of ablation applied within multi-objects scenarios,
that can completely hide small objects for all locations.
The second is a defect coming from training with ablation. It may indeed happen that some
bounding boxes are retained after ablation, but only a small portion of the object is effectively
visible to the network, which struggle to fulfill the learning process, a lack that is reflected
at training time.

In this context, the optimal scenario is RF = 0.75 (highlighted in bold in fig. 6.5(c)), with a
negligible number of tn and fn. This result seems reasonable because with 3/4 of the original
image kept after ablation the network has enough space to look at the majority of the
input image, reducing unwanted side cases.

Spatial localization assessment
This paragraph shows the results obtained by evaluating spatial the NN model localization capa-
bilities after the defense has been applied and switched on (Ablation ON).

7with reference to the target object, in a single-class detection framework

97

Crafting and implementing an Adversarial Defense

(a) Bar plot, re-trained YOLOv3_ablR, RF
= {0.375, 0.5, 0.75, 1}

(b) 3D scatter plot, re-trained YOLOv3_ablR, op-
timal trade-off RF = 0.75

Figure 6.6. IoU evaluation

E(IoUpos,Dimgs
) = 1

NTP

NposØ
i=1

NT PØ
j=1

IoUi,j · Pr(Position) = 1
NTP

NposØ
i=1

NT PØ
j=1

IoUi,j · 1
Npos

(6.4)

Confidence score strength assessment

(a) Bar plot, re-trained YOLOv3_ablR, RF
= {0.375, 0.5, 0.75, 1}

(b) 3D scatter plot, retrained YOLOv3_ablR op-
timal trade-off RF = 0.75

Figure 6.7. Confidence score degradation

E(Sdiffpos,Dimgs
) = 1

NTP

NposØ
i=1

NT PØ
j=1

Sdiffi,j · Pr(Position) = 1
NTP

NposØ
i=1

NT PØ
j=1

Sdiffi,j · 1
Npos

(6.5)

Considerations Bar plots from figs. 6.6 and 6.7 are structured as follows:

98

6.2 – Case study: YOLOv3

• Bars that indicate re-trained networks with several kinds of ablation (reported on the hori-
zontal axis) are drawn in steel blue color;

• Fig. 6.6(a) shows network’s capability to preserve optimal spatial location in terms of
bounding box regression. Therefore, IoU is computed with respect to the ground truth case
(Ablation = OFF, Patch = OFF) on the target single-class object;

• In a similar fashion, 6.7(a) reports how much, in case of true positive detection, the final
class confidence score differs with respect to the ground truth case.
Note that the last two trends affect model’s accuracy when the defense is activated
and looks after the ideal reference scenario of de-activated defense;

• Eqs 6.4 and 6.5 mathematically show how the values reported in figs. 6.7(a) and 6.6(a) are
computed.
The measured values of IoU and confidence difference are averaged by summing on each
element in the true positive set, providing a mean value on the dataset.
Thereafter, the final value depends on the position distribution, which can take the form of
a uniform density 1/Npos if there is no preferred position to access for ablation;

• In addition to the behavior of the re-trained networks, the baseline’s (RF = 1) under the
same inference conditions is appended as an extra comparison term (in gold color). The
latter appears to be quite interesting because it displays benefits and limitations of the
re-training procedure. Note indeed that:

1. IoU drops when the baseline network is tested on ablated images, meaning that the
non-trained network is unable to perform efficient bounding box regression.
Conversely, re-trained networks show optimal results (more than 80%) w.r.t. the
ground truth clean case: ideally, the value should tend to 1;

2. Confidence difference shows that the baseline network is able to preserve tight gap
(less than 20%) w.r.t the ground truth clean case: ideally, the value should tend
to 0.
The re-trained models perform worse in this context (peak of around 50% at RF =
0.375), though reasonable results happen when the spatial context accessible by the
neural network at inference time becomes large enough, i.e. at growing RF;

The analysis allows to understand that the optimal retention factor among those tested
is again RF = 0.75.

• Figs. 6.6(b) and 6.7(b) simply show a 3D scatter plot of the best performing trade-off case
for both IoU and confidence difference, i.e. RF = 0.75, before computing frames average and
position distribution.

Second analysis: (Ablation = ON/OFF, Patch = ON)

The second task involves testing the actual defense effectiveness.
In order to do that, the perturbation is activated and the following measurements are
performed with the best trade-off RF = 0.75:

1. Assess patch Success Rate SR (sec. 4.1.2) of the original, un-defended, ground truth
reference network YOLOv3_orig. Model’s deceiving method should follow the directions
depicted in part II;

2. Activate the defense and perform the same evaluation on the best re-trained model according
to the previous analysis. Quantify the impact on patch SR.

99

Crafting and implementing an Adversarial Defense

Perturbation against un-defended network
The operative method is the same employed in part II. Being the defense de-activated, one single
inference is performed over the whole dataset, from which it is possible to compute Success Rate
SR metrics. The latter is shown in fig. 6.8.

Figure 6.8. Patch Success Rate SR, Ablation = OFF, Patch = ON

This graph shows that the adversary causes network deceiving with a SR = 40%. This
means that nearly half of the frames are misdetected according to the definitions introduced in
chapter 4.
The next measurement introduces ablation defense and checks the same evaluation under attack.

Perturbation against defended network
When the defense mechanism is activated, inference is performed for each image in the dataset
and repeated for each position according to the chosen distribution.
The expected patch Success Rate is therefore obtained from:

E(SR) =
NposØ
i=1

Pr(Patch Success | Position) · Pr(Position) =
NposØ
i=1

SRi · Pr(Position) (6.6)

As previously mentioned, if there exists no preference for a particular subset of the available
positions, a uniform distribution can be used:

Pr(Position) = 1
Npos

(6.7)

In the latter case, the expected success rate takes the form of an average over the number of
positions. Fig. 6.9(a) shows SR as a function of the ablation state (i.e. ablation position).

100

6.3 – Summary

(a) Patch Success Rate SR vs. Ablation position (b) mAP SR, Ablation = ON, Patch = ON

Figure 6.9. Adversarial attack assessment under defense, Ablation = ON, Patch = ON

Table 6.2 shows SR, expected SR and their complements (patch Failure Rate FR) for both the
aforementioned cases:

Defense evaluation Patch SR (%) Patch FR (%)

Defense ON 6 94

Defense OFF 40 60

Table 6.2. Post-training evaluation under attack, DEFENSE ON/OFF

Applying the defense and performing the expected computation over single-position SR leads to
a decrease of the overall Patch SR from about 40% to 6%.
The effect is associated to a subset of optimal positions where the adversary is not sampled by
the network at inference time. It is clear that the results highly depend on the position distribution
that is chosen, which is related to the dataset. A direct consequence is that model performances
under defense can be fine-tuned by selecting a proper position distribution.

For the sake of completeness, fig. 6.9(b) shows adversary evaluation from the point of view of
mAP assessment, reporting the same position-dependent behavior. Note that there exists cor-
respondence between the two evaluations in terms of better and worse ablation locations.

Finally, it is important to highlight that real-time capability is constrained by the defense
model that has been selected, which implies multiple inferences over the same input sample.
These features will be addressed within the framework of real-time efficient Edge applications in
the next chapter.

6.3 Summary
This chapter outlined the main features to be addressed in order to setup structured ablation
defense against ü0,struct adversarial attacks. Object detection introduces an additional constraint
related to objects location in space, which is absent in the pure classification domain. As a

101

Crafting and implementing an Adversarial Defense

consequence, neural network re-training on ablated images and ground truth annotations
is performed before testing the defense at inference time.

The implementation of this defense is performed against structured ü0 attacks targeting SOTA
YOLOv3 detector.
At the cost of constraining the results in terms of inference time, the defense leads to lowering
Patch Success Rate from 40% to 6%, thus increasing networks robustness, on the tested
dataset (frames of a short, hand-made video).

102

Chapter 7

Defense module Hardware
implementation

This chapter introduces the field of Edge AI and highlights its growing importance inside the
research community over several application fields (sec. 7.1).
Thereafter, it outlines the potential implementation of the defense described in chapter 6 as a
pre-processing module at hardware level in sec. 7.2.

As a general scheme with respect to the present work, section 2.4 gave an insight to the most recent
trends in the domain of object detection, giving in parallel an historical glance at its evolution.
The most remarkable take-away reads:

Object detection is moving towards increasing model’s inference speed - Frame per seconds (FPS)
-, without damaging its accuracy [12].

Increasing inference speed means enhancing the number of inputs that can be processed by the
NN model every second (or frames per seconds FPS), i.e. the model’s working frequency. Its
inverse indicates the average inference time, or latency, of the machine and it is expressed in
seconds.
For a NN model to be feasible with real-time applications such that video streams, it should be
able to work at a frequency > 30 FPS 1, which moves the operational choice towards single-stage
detectors. As from chapter 2, this kind of detectors allows to reach real-time detection capability
by facing either the classification and detection problems as a unique regression problem.
As reported in [12] there exists multiple aspects that can be controlled and optimized to fulfill the
task either by acting at training stage or at inference’s (bags of freebies and specials), as mentioned
in chapter 2.

From the perspective of this document, which mostly deals with Adversarial ML in real-world
based scenarios, it emerges the critical need to handle real-time capable machine learning
models.
Conversely, the property of being resource efficient in terms of model size and compactness
does have less impact on Adversarial ML framework itself. It is much more related to its actual
potential implementation as a pre-processing module in a cloud-detached context. In fact:

1human eye’s limit, even though it can be extended for more trained and focused eyes - e.g. airplane pilots

103

Defense module Hardware implementation

• Adversarial attacks. adversarial sample’s crafting process heavily depends on the targeted
model in a white-box attack (chapter 4).
The model’s choice is up to the attacker: either a floating point as well as a low-precision
fixed point network could be used to craft the attack, which would still be more effective
on the exact network architecture it was trained with, as further reported.
Chapter 4 shows one example of attack evaluation against quantized and non-quantized
model pairs with respect to an adversarial sample crafted with the same model architecture
at floating point precision (sec. 2.4.2).

• Adversarial defense. It should be model-agnostic by definition. Therefore, network’s
model choice reflects the application itself, whether it is a real-time edge (such as smart
vision on FPGA) or a computation unconstrained scenario.
In addition, the defense should be platform-agnostic as well, i.e independent on the tar-
geted board.

7.1 Machine Learning at the Edge
AI is witnessing a huge impact in the research community. In particular, applications such as
computer vision, surveillance camera and autonomous driving are promoting the need of a shift
from centralized (or cloud) to de-centralized (or edge) data acquisition and processing: this
fashion takes the name of edge AI.
Edge AI brings several challenges over server-based systems, such as [74] [75]:

1. Latency: data should be acquired quickly for in loco analysis. Communicating with a
server for data handling increases data transmission time by a non-negligible amount;

2. Privacy and Security: users privacy and data information security may benefit from
the shift to the edge. In fact, sending sensitive information to centralized servers induces
data manipulation which is hidden from the user knowledge. This may be reduced in the
framework of data collection proximity to the sensor itself;

3. Scalability: it concerns the number of devices connected to the cloud. It can be a bottleneck
if a large amount of devices is connected, as it may happen with the smartphones network
which is growing larger and larger.

In order to develop Edge AI systems two frontiers should be addressed:

• Deep Learning design from the software side;

• Hardware deployment techniques from the implementation viewpoint on suitable edge
devices. An edge device, also called leaf device, is a part of an AI system that contributes
to its inner working. They can be divided in (1) devices with processing power, such as
smartphones and boards and (2) devices without processing power, mainly responsible for
data collection such as smart camera sensors and health monitoring systems. Edge devices
can be CPU-, GPU-, FPGA- or ASIC- based;

In addition, others methodologies exist such as SW/HW co-design and Design Space Exploration
for HW optimization [74].

In the framework of the present work, the targeted edge device is Lattice Semiconductor ECP5
FPGA. It is not the most optimal device in terms of power consumption provided by the company,

104

7.1 – Machine Learning at the Edge

being overcome by iCE40 UltraPlus family 2.

For what regards Deep Learning software design, the contingent application of adversarial ML is
quite model-agnostic as already mentioned for both attack and defense. This means that the
choice of non-resource friendly models such as those from the YOLO family - large and requiring
high computing capability - does not affect the results from a functional viewpoint.
Some useful software design methodologies are shown hereafter.

Trading off model size, accuracy and inference time

Deep and large NN models often benefit from a high performance accuracy. In addition, in the
domain of CV and object detection single-stage models manage to keep real-time capability
(high inference speed) as well.
Nonetheless, their size - which is affected by the number of convolution layers and indicating the
dimension of the trained weights - prevents them to be efficient or even implementable
for resource-constrained applications at the edge.
In order to make deep and large NN models feasible for this type of applications there exist some
size control techniques, whose purpose is to generally optimized the models in terms of hardware
application.
More specifically, NN size control techniques can be divided in two categories: : model design
and model compression [74]:

• Model design involves the use of automated tools such as Neural Architecture Search
(NAS) to find the optimal and hardware-aware solutions. It is the case of some SOTA back-
bones such as MobileNetV2 and MobileNetV3 that have also been tested in this document
as well;

• Model Compression aims at reducing model size, which leads to low power and low
latency (improved inference speed) performances.

Among model compression methods, quantization, pruning, knowledge distillation [75], can
be mentioned in this context.
Quantization reduces the numeric precision of weights and activation functions (the network’s
parameters) from floating point (32 or 64 bit) to fixed point (8 bit) notations by multiplying
for scale factor and subsequently rounding the result. This allows to save memory by reducing
data-width at the cost of some accuracy drop.
Several quantization typologies exist 3:

1. Quantization-aware training: floating values are rounded in order tomimic fixed point
values during training. Nevertheless, the computation is performed with full precision
values, hence the term "aware": the NN is made aware of the fact that the final model will
be in fixed point precision;

2. Dynamic quantization: it involves weights and activation scale factor tuning during
inference, i.e. at run-time;

2http://www.latticesemi.com/Products/FPGAandCPLD/iCE40UltraPlus
3https://pytorch.org/docs/stable/quantization.html

105

http://www.latticesemi.com/Products/FPGAandCPLD/iCE40UltraPlus
https://pytorch.org/docs/stable/quantization.html

Defense module Hardware implementation

3. Static post-training quantization: scale factors for both weights and activation is stat-
ically determined by a calibration step: inference is run over a subset of the testing
dataset (calibration set) in order to determine optimal values. The latter are used as fixed
and steady for each following inference;

Pruning concerns suppressing some near-to-zero values, thus lightening the model size;
Knowledge distillation concerns training a smaller model based on the output of a larger, more
powerful model which shares the same structure, thus defining an approximated version.
As shown in chapter 6, either quantization and hardware-aware automated design examples
(MobileNet) under adversarial attacks are analysed when dealing with SSD variants. Overall,
the adversary results low precision-agnostic.

7.2 Case study: Object Detection on FPGA
The reference platform and tools for this section come from Lattice Semiconductor and are briefly
outlined in sec. 7.2.1 and in sec. 7.2.2.
Besides, sec. 7.2.3 describes the implementation of the adversarial defense detailed in chapter 6
as a standalone RTL module targeting the pre-processing step of an object detection flow. The
module is integrated into an existing RTL design that exploits the pre- and post- processing steps
of the detector itself.

7.2.1 Lattice Semiconductor’s toolkit
Among the ensemble of tools provided by Lattice, a primary classification detaches between ML
frameworks and FPGA design:

1. NN Compiler (Machine Learning Software 3.0) generates the firmware (or binary) file
from the NN model. It natively supports Caffe, pure Tensorflow or TensorFlow with
Keras backend as ML frameworks.
It converts the architecture to a Caffe model by applying static post-training quanti-
zation (sec. 7.1) after proper calibration with a sample ensemble of images.

2. Lattice Diamond 3.11 performs all the steps characterizing Semi-custom Design, from
architectural level RTL code down to Place&Route (P&R). As a synthesis tool, it uses Lattice
Synthesis Engine (LSE) that exploits Synplify Pro of the Synopsys family.
The output file after P&R is a bitstream to program the FPGA.

In the framework of this project, Lattice Diamond has been used when dealing with pre-processing
ablation module, while NN Compiler is involved less because the adversarial defense should be
ideally model-agnostic.

7.2.2 Lattice Semiconductor’s EVDK
Lattice Embedded Vision Development Kit comprises three main platforms:

1. CrossLink Input Bridge Board, that handles the frame preparation and clocking
from the input video stream. In particular, it takes raw data from both CSI-2 camera sensors
(Sony IMX214) and merges them through parallel logic in order to feed CNN Accelerator;

2. ECP5 Processor Board, that embeds the FPGA. It contains all the pre-processing
needed to prepare the input before feeding it to the CNN Accelerator, which implements
the inference stage and produces output predictions;

106

7.2 – Case study: Object Detection on FPGA

3. HDMI Output Bridge Board, that receives the input image and NN predictions in terms
of bounding boxes and class confidence scores and displays it to a 1080p (Full HD) monitor;

The full board, which stacks the three aforementioned components, is shown in fig. 7.1(a) along
with a black box system diagram (fig. 7.1(b))

(a) EVDK three-level board

(b) EVDK high-level block diagram

Figure 7.1. Lattice Vision Kit with ECP5 FPGA and HDMI output capability [76]

A typical design flow for object detection needs two key elements, a binary (firmware) file em-
bedding the NN model weights frozen at inference4 and a bitstream file representing the RTL
level design, where the CNN accelerator is instantiated as an IP 5 block.
The firmware file is loaded into an outer SD card and written in the external DRAM on ECP5 board,
while the input image is pre-processed as mentioned previously and stored either in external DRAM
or CNN internal memory according to the training size.

When both the elements are available, the CNN accelerator has all what it needs to perform
inference (both input and NN weights) after FPGA programming. The computed predictions are
handled according to post-processing design.

For what concerns resource availability, it depends on the specific ECP5 device selected. Table
7.1 shows the features of the board employed here, which belongs to the ECP5-LFE5UM family:

4This means that some layers such as DROPOUT and BATCHNORM used for regularization are removed with
respect to the training model. This is performed either by setting the model in inference mode (model.eval()
with PyTorch or tensorflow.keras.backend.learning_phase = 0 with TensorFlow/Keras)

5Intellectual property

107

Defense module Hardware implementation

ECP5-LFE5UM85 Availability

Voltage 1.1 V

LUT 83640

Registers 83640

EBR 208

Table 7.1. Resource usage, ECP5-LFE5UM85 family

The number 85 in the name of the considered family board refers to the availability in terms of
LUTs and registers, that is around 85000.

7.2.3 RTL pre-processing module
It is first useful to understand how the input image coming from CrossLink board is handled
by ECP5 intermediate board all the way up before feeding the NN accelerator for inference at
hardware level.

Typically, the sequence of pre-processing steps for input preparation deals with pixel intensity
adjustment and (R, G, B) channels extraction. It is shown in the following fig. 7.2:

Figure 7.2. Input Image pre-processing steps, ECP5 board [76]

These steps are briefly summarized in table 7.2 [76]:

Pre-process step Task

Pixel correction Repair damaged pixels from the camera sensors

White balance Widen the range of each color via gain and offset controls

Debayer Extract (R, G, B) data from raw input

Color Space Converter Match real-world gamut via gain and offset controls

Gamma Correction Match 8-bit depth of common displays with sensors larger depth

Table 7.2. Lattice ECP5-LFE5UM pre-processing steps

108

7.2 – Case study: Object Detection on FPGA

The defense pre-processing module is placed at the end of this chain, and should:

1. Encode ablation by doubling each pixel channel size;

2. Suppress the pixel at the correct position, according to the defense settings chosen
by the user;

3. Have a minimum impact on the existing design with de-activated defense either in terms
of resource usage and delay. In this context, a combinational module is sought after.

Ablation starting position
When performing defense simulations at software level from a static point of view 6 every posi-
tion is checked and sampled with equal probability. This can not happen without increasing
the risk of preventing real-time capacity due to the additional constraint of camera sensor
acquisition frame-rate.

Therefore, some optimal position distribution that accurately takes into account the trade off
between performances and time should be crafted:

1. The time constraint can be assessed by deciding the number of positions to be tested a
priori. According to acquisition frame rate and accelerator inference speed, this number is
defined as:

Nablations = tacquisition
tinference + tprocessing

(7.1)

where tacquisition, tinference are camera acquisition time and accelerator inference time re-
spectively, while tprocessing embeds contributions from either pre- and post-processing times.
Supposing tprocessing = o(tinference) (i.e. tprocessing negligible w.r.t. tinference), and given
FPSinference= 1/tinference and FPScamera = 1/tcamera, eq. 7.1 becomes:

Nablations Ä FPSinference
FPScamera

(7.2)

2. The position distribution should be assessed as well. For the present implementation with
one inference per frame in mind (therefore one ablation as well), the starting position is
selected by a pseudo-random number generator that takes the form of a Linear Feed-
back Shift Register LFSR to evaluate the final resource usage.
If some other distributions is chosen (within the time limitations, which shape the distribu-
tion by introducing boundaries), they should be implemented in hardware as well, following
the same fashion.

Alternative for ablation starting position
One last note on this topic. Since each frame bears high similarity with respect to its
nearest neighbors, the application of the defense following real-time restrictions can be thought
as distributing a single ablation state over the whole set of positions Npos on the first Npos

frames instead of applying it Npos times on a single frame.
In this context, LFSR could be employed as well as described further down in the text.

6static means without considering the constraint introduced by the camera sensor acquisition frame
rate, i.e. the time required for the camera to sample two adjacent frames.

109

Defense module Hardware implementation

User free parameters
The user is allowed to choose the ablation typology as well as the retained zone size for
the suppression to be applied. The module encodes actions for the whole set of ablation cases
shown in fig. 6.1(b).
In addition, if LFSR solution is selected, its length is chosen so that it can generate all the numbers
in the range [0, Himg] in the rows ablation case. In general the whole set of testing positions
should be accessible for the LFSR.

Ablation module
The process of ablation that is started immediately before feeding the accelerator - as shown in
fig. 7.3 - can be handled in two ways:

1. Employing a line buffer to store re-scaled pixels along one line of the input;

2. Employing a frame buffer to store re-scaled pixels of the whole image;

The second method is not feasible in terms of resource usage since it exceeds the number of avail-
able Embedded Block RAM (EBR) due to large memory depth requirement, which equals
Himg,inf · Wimg,inf . If Himg,inf = Wimg,inf = 224, frame buffer depth exceeds 50000 rows.

In the first fashion, each accumulated pixel is doubled in terms of channel size (from 3 to 6) and
then suppressed according to its position by employing a supporting mask.
When the ablation is activated, a line buffer in the form of a true single port RAM (TSP-RAM)
is modified by doubling its width size accordingly. Input pixels are written into CNN acceler-
ator internal memory and ready for inference.
The ablation module implements two counters that add up until Himg,inf and Wimg,ing are
reached, before restarting when the next frame is available.

Note that the process of pixel suppression is performed in a fully combinational way because it
does not rely on data storage. This helps not degrading performance speed when the defense
is activated.

Figure 7.3. Object detection design, high-level diagram

110

7.2 – Case study: Object Detection on FPGA

LFSR
It is implemented as a standard Fibonacci typology and schematized in fig. 7.4. An LFSR bears
several key properties:

• It generates pseudo-random numbers which are predictable by hand-calculation;

• It is characterized by flip-flops and XOR gates that are located to change the subsequent
state. XOR gates in this configuration are called taps;

• According to the modulo-2 algebra (or Galois field GF), each state can be calculated from a
specific polynomial whose grade n corresponds to the number of Flip-flops employed while
the binary coefficients (either 0 or 1) to the taps.
The LFSR can generate at maximum 2n - 1 pseudo-random numbers if it is primitive,
otherwise it will generate less.
It is therefore important to choose the most suitable n according to the number of positions
to reach.

• LFSR needs an initialization state. 0 and 1 are forbidden initial states when employing
XOR and XNOR gates respectively, since the state will be frozen;

• In the optimal case of the largest set of distinct vectors generated (2n - 1), the LFSR will
loop again by proposing the same sequence in the same order as the loop just expired.

Figure 7.4. 8-bit, maximum length Fibonacci LFSR. Source:
https://www.oocities.org/siliconvalley/screen/2257/vhdl/lfsr/lfsr.html

For the present case where Himg,inf = 224, the LFSR is designed with n = 8 stages, whose primitive
polynomial reads.

x8 + x6 + x5 + x4 + 1 = 0 (7.3)

As a matter of facts, coefficients at monomials x6, x5 and x4 generates taps, i.e. XOR gates, at
positions 6, 5 and 4 respectively.

The frequency at which the LFSR changes its state depends on the next frame captured and its
handled by a counter that updates when the last image pixel of the current frame is reached.

Verification and post-synthesis results
The standalone module before integration into the RTL design is functionally verified via a test
vectors based testbench. An image is digitally ablated and each pixel (R,G,B) tuple is saved
accordingly along with the expected result after pixel ablation.
This ensemble of binary test vectors is used to feed the module and compare its results with the
expected ground truth for the whole set of image pixels, providing a strong verification method.

111

https://www.oocities.org/siliconvalley/screen/2257/vhdl/lfsr/lfsr.html

Defense module Hardware implementation

After integration in the existing RTL design, Lattice Diamond tool is employed to perform Synthesis,
Mapping and Place&Route processes under the same resource constraint conditions of the un-
defended design. They are summarized in table 7.3:

Defense @HW Original design Design with ablation Available

Number of EBRs 186 192 208

Number of Registers 28157 28220 84735

Number of LUTs 49072 49327 83640

Table 7.3. Resource usage, un-defended and defended design

Post-synthesis results show a negligible increase when the ablated module is activated. EBR num-
ber is affected by the incremented width memory size associated to the line buffer, while
registers and LUT come from the LFSR stage.

7.3 Summary
This chapter outlined the constrains introduced when exporting the defense crafted in chapter
6 towards real-world adversarial attacks for edge applications in the form of a pre-processing
module.
In general, the module is affordable from the resource usage viewpoint, and does not seem
to have heavy influence on the overall process speed.
The other major point of interest of the ablation procedure seems to be the introduction of
timing constraints associated to frame acquisition, punctuated by the camera sensor capability.
The two alternatives mentioned in the text treat the problem by either applying the defense
once on each frame, which is quite a too much simplified solution and rather un-realistic, or
exploiting ≥ 1 ablations per inference by calibrating acquisition and detection time to follow
de-randomized smoothing foundations more tightly.

112

Conclusions

This work had the purpose of analyzing the two complementary processes of Adversarial Attacks
and Defenses in the framework of Object Detection for Computer Vision, either from theoretical
and practical point of view, addressing real-world based attacks.

Hence, Adversarial patch attacks targeting misdetection have been addressed against three
network families: YOLO, SSD and MTCNN, with an in-depth evaluation through Precision-Recall
curve PR, mean Average Precision mAP and Patch Success Rate SR.
In general, the perturbation shows to be quite effective against white-box attacks (full-model
knowledge by the attacker), reproducing already assessed results in the literature or extending
them to novel architectures. Networks internal structure seemed to play a crucial role in
order to quantify the entity of the damage caused by the perturbation.

Adversarial defense against the aforementioned kind of attacks has been chosen among the
randomized smoothing category.
In particular, de-randomized smoothing by structured ablation is extended towards the field
of object detection with the whole set of consequences this research field introduces with respect
to pure classification.
Having real-world and real-time applications in mind, the process has been extended towards
an existing object detection design targeting a low-power FPGA in the framework of edge AI
applications.
The overall results show that, at software level, the defense is able to reliably strengthen
network performances under the attacks described in the first part of the work.

As a future outlook, some trade-offs still need to be introduced when assessing the same ap-
proach at hardware level. First of all, this means selecting a resource-friendly NN model that
would fit into the FPGA (or other platforms such as Microcontrollers) in terms of resource usage.
This is not strictly necessary in the framework of the adversarial defense itself, rather for what
concerns low-power deployments for edge devices. The sought after model can belong to the
MobileNet family along with SSDLite, being its size dramatically lower than the network tested
in this document (YOLOv3). Having this fixed, the major issue related to the Adversarial ML
domain is the real-time capability, which is bounded by the video-stream flow steadily going
from the camera sensor towards the edge device.
Eventually, future outlooks on a network deployed on an edge device in the context of the de-
veloped Adversarial Defense for the Object Detection research field in Computer Vision would
involve:

• performing tests at varying position distribution, in order to increase the defense
robustness and effectiveness by targeting a selected subset of positions. This feature is
heavily dataset-dependent as previously mentioned;

113

Conclusions

• selecting an optimal number of ablations between two consecutive captured
frames. This feature is bounded by the maximum number of inferences that could be
performed between two discrete frames, that depends either on the camera frame rate and
the NN model inference speed.

in order to completely match real-world based constraints.

114

Appendix A

Optimization methods

Optimization methods dictates the speed and the quality of Loss function convergence towards
its minimum. This appendix aims at briefly describing two benchmark optimization methods that
have rapidly risen above the others: ADAM and SGD with momentum.

SGD with classical and Nesterov momentum

Gradient descend optimization method follows the expression in eq. 1.4, which encodes the entity
of the step to be taken, whose direction is dictated by the gradient itself.
Gradient descend performs operations over the whole input set, thus assuring loss decrease after
each step. This can however slow down the process, mostly if the learning rate assumes small
values.
Stochastic or Mini-Batch gradient descend allows to perform the update step computation
over an input batch rather than the whole dataset. As a drawback, loss decrease after each step
is no more guaranteed because a fraction only of the data is considered.

Momentum is a technique employed to take into account previous gradients at each step
(by a certain amount), rather than the contingent and actual one. The general update rule reads:

vt+1 = µ · vt − α · g
θt+1 = θt + vt+1

where v brings information of the past gradients (speed and direction of the update), ν controls
the extent at which past history of updates should be considered (previous gradients fraction)
and α, g are the learning rate and actual gradient loss respectively.
Nesterov acceleration works by the same update rule, yet it calculates gradients in a different way
- fig. A.1(b) provides a schematic representation.

115

Optimization methods

(a) Gradients computation (b) Update rule scheme

Figure A.1. Update rule, classical vs. Nesterov momentum [77]

Fig. A.1(a) with classical momentum shows that the loss is computed with respect to the actual
value of θ only, while Nesterov introduces the previous gradient information through the variable
θ̃, avoiding oscillations and guaranteeing control over unwanted high loss (for small steps, the two
methods coincides).

SGD with Nesterov momentum is used for YOLOv3 training following the corresponding reference
repository. In addition, it applies manual learning rate tuning by cosine decay as mentioned in
chapter 6.

ADAM

ADAM [10] is an optimization algorithm that has been introduced as an extension of SGD 1

Its major contribution is that it automatically tunes the learning rate instead of leaving it
steady across the training stage as in traditional SGD methods.
Among the most noteworthy properties and advantages:

• It adds an exponentially decaying parameter that tunes the stored past computed
gradients in analogy to what RMSProp does for the sum of squares of the gradients;

• It needs little memory requirements and it is computationally efficient;

• It fits well for large data and parameters problems;

• It is well suited for noisy problems to which apply the running mean (stochastic) approach;

ADAM is the optimization method employed for training the patch-like perturbation in the frame-
work of adversarial attacks.

1In particular RMSProp algorithm, which is not addressed in this document and therefore not discussed.

116

Appendix B

Ensemble training

Ensemble training has been attempted in order to probe the transferability of adversarial attacks
with several networks. Tables 4.2 and 4.3 show that cross-evaluation outside the domain of pure
white-box attacks lead to poor results in terms of average precision drop.
The approach that has been followed by Wu et al. in [2] refers to ensemble training, i.e.
adversary train by employing several networks instead of one only. Eq. 4.5 changes as follows:

Find argmax
P

(L) s.t. Fj(E
t∼T

[L(j)(f(A(I, Tθaff
(P))), P)]) (B.1)

F can either indicate the worst-case maximum strategy or the average strategy [55] while j stands
for jth detector. Henceforth:

Fj = max
detector j

(. . .) maximum strategy

Fj = 1
Ndet

Ø
detector j

(. . .) average strategy
(B.2)

It is expected that after ensemble training mAP drop could transfer to each of the network em-
ployed at training time, as an extension of single white-box train.

Trained patches

Fig. B.1 shows two adversarial patches that have been trained following the procedure in sec.
4.1 and employing multiple models concurrently (YOLOv2, YOLOv3 and YOLOv4 respectively in this
case).
The only difference in the overall process with respect to single-network training is indeed the
additional operation that has to be performed on the compound set of prediction scores coming
from each network, as in eq. B.2.

117

Ensemble training

(a) Maximum
strategy

(b) Average
strategy

Figure B.1. Ensemble training patches, YOLO family, different Loss minimization strategies

Inference results

Fig. B.2 shows PR curves to assess ensemble training effects with either maximum (fig. B.2(a))
and average (fig. B.2(b)) strategies when training the adversary with three networks: YOLOv2,
YOLOv3 and YOLOv4 on the INRIA dataset.
As related works, a similar attempt on the COCO dataset has been performed in [2] with an equiv-
alent methodology, even though summation over detectors has been chosen as the ensemble
operation.

(a) Maximum strategy (b) Average strategy

Figure B.2. Ensemble training, YOLO family, PR curve evaluation on INRIA dataset

The average procedure strategy seems to be the most effective in terms of adversarial capability.
Nevertheless, it shows that the same perturbation, which should encode information over the
three network’s weights, performs differently when tested against each single model, as if its inner
architecture still plays a key role on adversarial performances at inference time.

118

Bibliography

[1] Simen Thys, Wiebe Van Ranst, and Toon Goedemé. “Fooling automated surveillance cam-
eras: adversarial patches to attack person detection”. In: CoRR abs/1904.08653 (2019).
arXiv: 1904.08653. url: http://arxiv.org/abs/1904.08653.

[2] Zuxuan Wu et al. “Making an Invisibility Cloak: Real World Adversarial Attacks on Object
Detectors”. In: ArXiv abs/1910.14667 (2019).

[3] A. Levine and S. Feizi. “(De)Randomized Smoothing for Certifiable Defense against Patch
Attacks”. In: ArXiv abs/2002.10733 (2020).

[4] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. The MIT Press, 2016.
isbn: 0262035618.

[5] A. Rosebrock. Deep Learning for Computer Vision with Python: Starter Bundle. PyImage-
Search, 2017. url: https://books.google.ch/books?id=9Ul-tgEACAAJ.

[6] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classification with Deep
Convolutional Neural Networks”. In: Advances in Neural Information Processing Systems
25. Ed. by F. Pereira et al. Curran Associates, Inc., 2012, pp. 1097–1105. url: http://
papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-
neural-networks.pdf.

[7] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. “Learning Representa-
tions by Back-Propagating Errors”. In: Neurocomputing: Foundations of Research. Cam-
bridge, MA, USA: MIT Press, 1988, 696–699. isbn: 0262010976.

[8] Understanding Backpropagation Algorithm. 2019. url: https :/ /towardsdatascience .
com/understanding-backpropagation-algorithm-7bb3aa2f95fd.

[9] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. second. New York, NY,
USA: Springer, 2006.

[10] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”. In:
CoRR abs/1412.6980 (2015).

[11] C. Zhang et al. “Understanding deep learning requires rethinking generalization”. In: ArXiv
abs/1611.03530 (2017).

[12] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. “YOLOv4: Optimal
Speed and Accuracy of Object Detection”. In: ArXiv abs/2004.10934 (2020).

[13] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift”. In: CoRR abs/1502.03167 (2015). arXiv:
1502.03167. url: http://arxiv.org/abs/1502.03167.

[14] A Comprehensive Introduction to Different Types of Convolutions in Deep Learning. 2019.
url: https://towardsdatascience.com/a-comprehensive-introduction-to-different-
types-of-convolutions-in-deep-learning-669281e58215.

119

https://arxiv.org/abs/1904.08653
http://arxiv.org/abs/1904.08653
https://books.google.ch/books?id=9Ul-tgEACAAJ
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://towardsdatascience.com/understanding-backpropagation-algorithm-7bb3aa2f95fd
https://towardsdatascience.com/understanding-backpropagation-algorithm-7bb3aa2f95fd
https://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215
https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215

BIBLIOGRAPHY

[15] Andrew G. Howard et al. “MobileNets: Efficient Convolutional Neural Networks for Mobile
Vision Applications”. In: CoRR abs/1704.04861 (2017). arXiv: 1704.04861. url: http:
//arxiv.org/abs/1704.04861.

[16] THE MNIST DATABASE of handwritten digits. url: http://yann.lecun.com/exdb/
mnist/.

[17] The CIFAR-10 dataset. url: https://www.cs.toronto.edu/~kriz/cifar.html.
[18] J. Deng et al. “ImageNet: A large-scale hierarchical image database”. In: 2009 IEEE Con-

ference on Computer Vision and Pattern Recognition. 2009, pp. 248–255.
[19] R. Girshick et al. “Rich Feature Hierarchies for Accurate Object Detection and Semantic

Segmentation”. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition.
2014, pp. 580–587.

[20] C. Szegedy et al. “Going deeper with convolutions”. In: 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 2015, pp. 1–9.

[21] K. He et al. “Deep Residual Learning for Image Recognition”. In: 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). 2016, pp. 770–778.

[22] Joseph Redmon et al. “You Only Look Once: Unified, Real-Time Object Detection”. In:
CoRR abs/1506.02640 (2015). arXiv: 1506.02640. url: http://arxiv.org/abs/1506.
02640.

[23] Joseph Redmon and Ali Farhadi. “YOLO9000: Better, Faster, Stronger”. In: CoRR abs/1612.08242
(2016). arXiv: 1612.08242. url: http://arxiv.org/abs/1612.08242.

[24] Joseph Redmon and Ali Farhadi. “YOLOv3: An Incremental Improvement”. In: CoRR
abs/1804.02767 (2018). arXiv: 1804.02767. url: http://arxiv.org/abs/1804.02767.

[25] Forrest N. Iandola et al. “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters
and <1MB model size”. In: CoRR abs/1602.07360 (2016). arXiv: 1602.07360. url: http:
//arxiv.org/abs/1602.07360.

[26] Mark Sandler et al. “Inverted Residuals and Linear Bottlenecks: Mobile Networks for Clas-
sification, Detection and Segmentation”. In: CoRR abs/1801.04381 (2018). arXiv: 1801.
04381. url: http://arxiv.org/abs/1801.04381.

[27] Andrew Howard et al. “Searching for MobileNetV3”. In: CoRR abs/1905.02244 (2019).
arXiv: 1905.02244. url: http://arxiv.org/abs/1905.02244.

[28] Tsung-Yi Lin et al. “Feature Pyramid Networks for Object Detection”. In: CoRR abs/1612.03144
(2016). arXiv: 1612.03144. url: http://arxiv.org/abs/1612.03144.

[29] Pierre Sermanet et al. “OverFeat: Integrated Recognition, Localization and Detection using
Convolutional Networks”. In: International Conference on Learning Representations (ICLR)
(Banff) (Dec. 2013).

[30] A. Rosebrock. Deep Learning for Computer Vision with Python: ImageNet Bundle. Deep
learning for computer vision with Python. PyImageSearch, 2017. isbn: 9781722487867. url:
https://books.google.ch/books?id=B3sBvgEACAAJ.

[31] R. Girshick. “Fast R-CNN”. In: 2015 IEEE International Conference on Computer Vision
(ICCV). 2015, pp. 1440–1448.

[32] Shaoqing Ren et al. “Faster R-CNN: Towards Real-Time Object Detection with Region
Proposal Networks”. In: Advances in Neural Information Processing Systems 28. Ed. by C.
Cortes et al. Curran Associates, Inc., 2015, pp. 91–99. url: http://papers.nips.cc/
paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-
proposal-networks.pdf.

120

https://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html
https://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1612.08242
http://arxiv.org/abs/1612.08242
https://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1804.02767
https://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1602.07360
https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1801.04381
http://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1905.02244
http://arxiv.org/abs/1905.02244
https://arxiv.org/abs/1612.03144
http://arxiv.org/abs/1612.03144
https://books.google.ch/books?id=B3sBvgEACAAJ
http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf
http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf
http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf

BIBLIOGRAPHY

[33] Jasper Uijlings et al. “Selective Search for Object Recognition”. In: International Journal
of Computer Vision 104 (Sept. 2013), pp. 154–171. doi: 10.1007/s11263-013-0620-5.

[34] M. Everingham et al. “The Pascal Visual Object Classes Challenge: A Retrospective”. In:
International Journal of Computer Vision 111.1 (Jan. 2015), pp. 98–136.

[35] Tsung-Yi Lin et al. “Microsoft COCO: Common Objects in Context”. In:ArXiv abs/1405.0312
(2014).

[36] Chien-Yao Wang et al. “CSPNet: A New Backbone that can Enhance Learning Capability
of CNN”. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW) (2020), pp. 1571–1580.

[37] Wei Liu et al. “SSD: Single Shot MultiBox Detector”. In: CoRR abs/1512.02325 (2015).
arXiv: 1512.02325. url: http://arxiv.org/abs/1512.02325.

[38] Bichen Wu et al. “SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Net-
works for Real-Time Object Detection for Autonomous Driving”. In: CoRR abs/1612.01051
(2016). arXiv: 1612.01051. url: http://arxiv.org/abs/1612.01051.

[39] Zhaohui Zheng et al. “Distance-IoU Loss: Faster and Better Learning for Bounding Box
Regression”. In: AAAI. 2020.

[40] Understanding Categorical Cross-Entropy Loss, Binary Cross-Entropy Loss, Softmax Loss,
Logistic Loss, Focal Loss and all those confusing names. 2018. url: https://gombru.
github.io/2018/05/23/cross_entropy_loss/.

[41] Alina Kuznetsova et al. “The Open Images Dataset V4: Unified image classification, object
detection, and visual relationship detection at scale”. In: CoRR abs/1811.00982 (2018).
arXiv: 1811.00982. url: http://arxiv.org/abs/1811.00982.

[42] Nicholas et al. “On Evaluating Adversarial Robustness”. In: ArXiv abs/1902.06705 (2019).
[43] Mahmood Sharif et al. “Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-

Art Face Recognition”. In: Oct. 2016, pp. 1528–1540. doi: 10.1145/2976749.2978392.
[44] Tom B. Brown et al. “Adversarial Patch”. In: ArXiv abs/1712.09665 (2017).
[45] Shang-Tse Chen et al. “Robust Physical Adversarial Attack on Faster R-CNN Object De-

tector”. In: ECML/PKDD. 2018.
[46] Christian Szegedy et al. “Intriguing properties of neural networks”. In: CoRR abs/1312.6199

(2014).
[47] Nicholas Carlini et al. “Ground-Truth Adversarial Examples”. In: ArXiv abs/1709.10207

(2017).
[48] Nicholas Carlini and D. Wagner. “Towards Evaluating the Robustness of Neural Networks”.

In: 2017 IEEE Symposium on Security and Privacy (SP) (2017), pp. 39–57.
[49] A. Madry et al. “Towards Deep Learning Models Resistant to Adversarial Attacks”. In:

ArXiv abs/1706.06083 (2018).
[50] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explaining and Harnessing

Adversarial Examples”. In: CoRR abs/1412.6572 (2015).
[51] A. Kurakin, Ian J. Goodfellow, and S. Bengio. “Adversarial examples in the physical world”.

In: ArXiv abs/1607.02533 (2017).
[52] Francesco Croce and Matthias Hein. “Sparse and Imperceivable Adversarial Attacks”. In:

2019 IEEE/CVF International Conference on Computer Vision (ICCV) (2019), pp. 4723–
4731.

121

https://doi.org/10.1007/s11263-013-0620-5
https://arxiv.org/abs/1512.02325
http://arxiv.org/abs/1512.02325
https://arxiv.org/abs/1612.01051
http://arxiv.org/abs/1612.01051
https://gombru.github.io/2018/05/23/cross_entropy_loss/
https://gombru.github.io/2018/05/23/cross_entropy_loss/
https://arxiv.org/abs/1811.00982
http://arxiv.org/abs/1811.00982
https://doi.org/10.1145/2976749.2978392

BIBLIOGRAPHY

[53] Anish Athalye et al. “Synthesizing Robust Adversarial Examples”. In: ArXiv abs/1707.07397
(2018).

[54] Kevin Eykholt et al. “Physical Adversarial Examples for Object Detectors”. In: ArXiv
abs/1807.07769 (2018).

[55] Kaidi Xu et al. “Adversarial T-shirt! Evading Person Detectors in A Physical World.” In:
arXiv: Computer Vision and Pattern Recognition (2019).

[56] Mark Lee and J. Zico Kolter. “On Physical Adversarial Patches for Object Detection”. In:
ArXiv abs/1906.11897 (2019).

[57] Xin Liu et al. “DPATCH: An Adversarial Patch Attack on Object Detectors”. In: arXiv:
Computer Vision and Pattern Recognition (2019).

[58] Edgar Kaziakhmedov et al. “Real-world Attack on MTCNN Face Detection System”. In:
2019 International Multi-Conference on Engineering, Computer and Information Sciences
(SIBIRCON) (2019), pp. 0422–0427.

[59] A. Braunegg et al. “APRICOT: A Dataset of Physical Adversarial Attacks on Object De-
tection”. In: ArXiv abs/1912.08166 (2019).

[60] Max Jaderberg et al. “Spatial Transformer Networks”. In: ArXiv abs/1506.02025 (2015).
[61] F. L. Bookstein. “Principal Warps: Thin-Plate Splines and the Decomposition of Defor-

mations”. In: IEEE Trans. Pattern Anal. Mach. Intell. 11.6 (June 1989), 567–585. issn:
0162-8828. doi: 10.1109/34.24792. url: https://doi.org/10.1109/34.24792.

[62] Aravindh Mahendran and A. Vedaldi. “Understanding deep image representations by in-
verting them”. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2015), pp. 5188–5196.

[63] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to In-
formation Retrieval. Cambridge, UK: Cambridge University Press, 2008. isbn: 978-0-521-
86571-5. url: http://nlp.stanford.edu/IR-book/information-retrieval-book.html.

[64] Breaking Down Mean Average Precision (mAP). 2019. url: https://towardsdatascience.
com/breaking-down-mean-average-precision-map-ae462f623a52#1a59.

[65] Kaipeng Zhang et al. “Joint Face Detection and Alignment using Multi-task Cascaded
Convolutional Networks”. In: CoRR abs/1604.02878 (2016). arXiv: 1604.02878. url: http:
//arxiv.org/abs/1604.02878.

[66] Kui Ren et al. “Adversarial Attacks and Defenses in Deep Learning”. In: Engineering 6.3
(2020), pp. 346 –360. issn: 2095-8099. doi: https://doi.org/10.1016/j.eng.2019.12.
012. url: http://www.sciencedirect.com/science/article/pii/S209580991930503X.

[67] A. Levine and S. Feizi. “Robustness Certificates for Sparse Adversarial Attacks by Random-
ized Ablation”. In: AAAI. 2020.

[68] Ping-Yeh Chiang et al. “Certified Defenses for Adversarial Patches”. In: ArXiv abs/2003.06693
(2020).

[69] Jeremy M. Cohen, Elan Rosenfeld, and J. Zico Kolter. “Certified Adversarial Robustness
via Randomized Smoothing”. In: ICML. 2019.

[70] Mathias Lécuyer et al. “Certified Robustness to Adversarial Examples with Differential
Privacy”. In: 2019 IEEE Symposium on Security and Privacy (SP) (2019), pp. 656–672.

[71] Yuchen Zhang and Percy Liang. “Defending against Whitebox Adversarial Attacks via Ran-
domized Discretization”. In: AISTATS. 2019.

[72] Michael McCoyd et al. “Minority Reports Defense: Defending Against Adversarial Patches”.
In: ArXiv abs/2004.13799 (2020).

122

https://doi.org/10.1109/34.24792
https://doi.org/10.1109/34.24792
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
https://towardsdatascience.com/breaking-down-mean-average-precision-map-ae462f623a52#1a59
https://towardsdatascience.com/breaking-down-mean-average-precision-map-ae462f623a52#1a59
https://arxiv.org/abs/1604.02878
http://arxiv.org/abs/1604.02878
http://arxiv.org/abs/1604.02878
https://doi.org/https://doi.org/10.1016/j.eng.2019.12.012
https://doi.org/https://doi.org/10.1016/j.eng.2019.12.012
http://www.sciencedirect.com/science/article/pii/S209580991930503X

BIBLIOGRAPHY

[73] Data Augmentation in YOLOv4. url: https://towardsdatascience.com/data-augmentation-
in-yolov4-c16bd22b2617.

[74] Cong Hao et al. “New Design Methodologies and Future Trend for Edge AI”. 2020.
[75] J. Chen and X. Ran. “Deep Learning With Edge Computing: A Review”. In: Proceedings

of the IEEE 107.8 (2019), pp. 1655–1674.
[76] Lattice Embedded Vision Development Kit.
[77] Stochastic Gradient Descent with momentum. 2017. url: https://towardsdatascience.

com/stochastic-gradient-descent-with-momentum-a84097641a5d.

123

https://towardsdatascience.com/data-augmentation-in-yolov4-c16bd22b2617
https://towardsdatascience.com/data-augmentation-in-yolov4-c16bd22b2617
https://towardsdatascience.com/stochastic-gradient-descent-with-momentum-a84097641a5d
https://towardsdatascience.com/stochastic-gradient-descent-with-momentum-a84097641a5d

	List of Tables
	List of Figures
	List of Acronyms
	I Machine Learning for Computer Vision
	An overview on classical (D)NNs
	Background
	Traditional NNs building blocks
	NN structural composition
	The Learning flow
	Control: forward pass, backward pass and optimization step

	Summary

	Convolutional Neural Networks
	A powerful paradigm for Computer Vision
	Microscopic CNN structural building blocks
	High-level CNN structure
	The Head: detection layer
	Two-stage object detectors
	End-to-end object detectors: pursuing real-time detection
	Training stage: Loss contributions for anchor-based detectors
	Inference stage: prediction's post-processing

	Summary

	II Adversarial Attacks
	Theory and Principles
	Motivation
	SOTA walk-through: Adversarial Attacks typologies
	Structured 0 (patch) attacks
	Summary

	Crafting Adversarial Attacks
	Adversarial flow: setup
	Training stage
	Inference stage and Evaluation metrics

	Fooling single-stage Object detectors: results
	YOLO family
	SSD family

	Fooling face detectors: Multi-Task CNN
	Summary

	III Adversarial Defense
	Theory and Principles
	Motivation
	SOTA walk-through: Adversarial Defenses typologies
	Adversarial training
	Randomized smoothing

	Summary

	Crafting and implementing an Adversarial Defense
	De-randomized smoothing defense
	Pure classification problem
	Object detection problem
	Ablation defense: notation
	Network re-training

	Case study: YOLOv3
	Re-training results
	Post-training analysis

	Summary

	Defense module Hardware implementation
	Machine Learning at the Edge
	Case study: Object Detection on FPGA
	Lattice Semiconductor's toolkit
	Lattice Semiconductor's EVDK
	RTL pre-processing module

	Summary

	Conclusions
	Optimization methods
	Ensemble training
	Bibliography

