
Politecnico di Torino

Joint Master’s Degree in
Nanotechnologies for ICTs

In partnership with:
Grenoble INP-Phelma

École Polytechnique Fédérale de Lausanne

Implementation of a Face
Detection Algorithm for

Low-Power FPGAs
Supervisor: Candidate:
Prof. Guido MASERA Giovanni CAPPAI

External Supervisors:
Prof. Luca BENINI
Dr. Michele MAGNO

External partner university:

Academic year 2019/2020

Acknowledgements

I would like to thank the Integrated System Laboratory of ETH, in particular Prof.
Luca Benini and Dr. Michele Magno for giving me the opportunity of working on
such an ambitious project that really helped my personal and professional growth.
I would like to express my gratitude to Mr. Morirtz Scherer, for his precious help
and patience in always answering my questions during the work on the project. I
would also like to extend my gratitude to Prof. Guido Masera, for his availability
and important feedback provided.

To my parents, Emanuela e Michele, for their endless support during all these years
of studying abroad.
To all the friends who shared these last years with me, for the enjoyable moments
that made me feel at home and, to my childhood friends, for still being with me
despite the distance.

Torino, October 23, 2020 G.C.

ii

Abstract

The recent technological progress is pushing the scientific community to enter a
new Artificial Intelligence (AI) era, with systems able to perceive and understand
the real world, in order to solve problems in a smarter way than humans do. In
this field, Computer Vision (CV) systems are able to automatically see, identify,
and understand the external visual world, making decisions depending on the data
acquired, emulating the human vision. This progress is placed side by side with a
continuous search of hardware architectures, such as GPUs, FPGAs, and ASICs,
that can sustain the computation in a more efficient way than conventional soft-
ware implementations do, allowing the analysis of data directly where it is acquired.

The project wants to address both tasks with the implementation of a face detection
algorithm, with a Deep Learning approach, on a low-power FPGA, taking advan-
tage of its full programmability. While different building blocks have already been
demonstrated as independent proofs-of-concept, a fully integrated, stand-alone sys-
tem has not been developed and the project tries to fill this hole.

This thesis presents the steps performed in order to obtain a suitable face detection
algorithm that can fit within a limited memory, low-power FPGA, including pre-
and post-processing of data. The work can be essentially divided into two parts:
firstly a software implementation of the face detector has been done, and the results
are compared to the literature, then simplifications are applied to the model in order
to reduce its complexity for the successive hardware implementation on the target
FPGA.

iii

Contents

List of Tables vi

List of Figures vii

List of Acronyms ix

1 Introduction 1
1.1 The Project . 2

1.1.1 Goals of the project . 3
1.2 Outline . 3

2 Brief Introduction on Neural Networks Fundamentals 5
2.1 Neural Networks . 5
2.2 Model of a Neuron . 6

2.2.1 Types of Activation Functions 7
2.3 Network Architectures . 8
2.4 Learning Process . 9

2.4.1 Supervised Learning . 9
2.4.2 Optimization Algorithms . 10

2.5 Convolutional Neural Networks . 14
2.5.1 Convolution Operation . 15
2.5.2 Padding . 17
2.5.3 Typical Layers in CNNs . 19

3 Hardware setup 21
3.1 Embedded Vision Development Kit (EVDK) 21
3.2 ECP5 FPGA . 22

3.2.1 Convolutional Neural Network (CNN) Accelerator Core . . . 23
3.2.2 Tools Used . 26

4 Software Implementation 29
4.1 CNN for Face Detection . 29
4.2 Multitask Cascaded Neural Network 30

iv

4.2.1 Network Structure . 31
4.2.2 Training Process . 38

4.3 Training Implementation . 40
4.3.1 First Simplification . 41
4.3.2 Second Simplifications . 45

5 Hardware Implementation 49
5.1 Pre-processing . 49
5.2 Multitask Cascaded Neural Network (MTCNN) 52

5.2.1 Proposal Network (P-Net) 52
5.2.2 Refine Network (R-Net) and Output Network (O-Net) . . . 53

5.3 Accuracy Evaluation . 55
5.3.1 Effect of Further Simplifications 55
5.3.2 Effect of Quantization . 58

5.4 Resource Usage . 60
5.5 Timing analysis . 61

6 Conclusions and Future Outlooks 65

Bibliography 67

A Detailed Structure of the Hardware Implementation 71

v

List of Tables

3.1 Summary of the resources for ECP5UM-85 FPGA. 22
4.1 Comparison on number of weights for different models. 30
4.2 Summary of the detection accuracy of the MTCNN. 31
4.3 Comparison on the mean accuracy between MTCNN model and

modified one. 45
4.4 Summary of hyperparameters for training process. 45
4.5 Comparison on the mean accuracy between MTCNN model and

modified ones. 48
4.6 Comparison on the mean accuracy between the MTCNN with Leaky

Rectified Linear Unit (ReLU) and ReLU activation functions. . . . 48
5.1 Comparison on the mean accuracy between the MTCNN from sec-

tion 4.3.2 and the ones with fixed scaling factors and thresholds = 0.5. 58
5.2 Actual values at the output of O-Net for floating point, fixed point

and inference model. 59
5.3 Resource usage for the hardware implementation of the face detector

after Place & Route step. 60
5.4 Number of clock cycles for the analysis of a single frame by the CNN

core. 61
5.5 Number of clock cycles for the analysis of a single frame by the

system implemented. 62

vi

List of Figures

1.1 A typical cloud architecture. 1
2.1 Schematic model of an Artificial Neuron. Adapted from [8]. 6
2.2 Fully connected Multilayer Feedforward Network. Adapted from [8]. 8
2.3 Schematic of a Supervised Learning Process. Adapted from [8]. . . . 9
2.4 Stochastic Gradient Descent (SGD) algorithm. Adapted from [6]. . 11
2.5 SGD with momentum algorithm. Adapted from [6]. 12
2.6 Comparison between a classical Machine Learning and Deep Learn-

ing approach for image classification. Adapted from [20]. 15
2.7 Example of a convolution. Adapted from [6]. 17
2.8 Convolution with multiple kernels. Adapted from [20]. 18
3.1 The chosen target hardware for the project. 22
3.2 Simplified schematic of the Lattice ECP5UM-85 FPGA. Adapted

from [24]. 23
3.3 Functional block level representation of the CNN Accelerator Core

Intellectual Property (IP). Adapted from [22]. 24
3.4 Interface ports for the CNN Accelerator Core IP. Adapted from [22]. 25
3.5 Command code format for the CNN Accelerator Core IP. Adapted

from [22]. 26
4.1 Structure of P-Net. Adapted from [40]. 32
4.2 Structure of R-Net. Adapted from [40]. 35
4.3 Structure of O-Net. Adapted from [40]. 36
4.4 Pipeline of the cascade structure. Adapted from [40]. 38
4.5 Training plots without Facial Landmark output. 42
4.6 Precision-Recall (PR) curves for the model without Facial Landmark

output. 44
4.7 Training plots with previous simplifications applied. 46
4.8 PR curves for the MTCNN with second simplifications applied. . . 47
5.1 Image resizing in the camera module. Adapted from [3]. 50
5.2 Rescaling procedure with a factor of 0.5. 51
5.3 Schematic of the hardware implementation of the pre processing stage. 51
5.4 Schematic of the hardware implementation of the P-Net stage. . . . 53
5.5 Schematic of the hardware implementation of R-Net and O-Net stages. 54

vii

5.6 PR curves for the MTCNN model with fixed scaling factors. 56
5.7 PR curves for the MTCNN model with fixed scaling factors and

thresholds equal to 0.5. 57
5.8 Comparison of the floating point, fixed point and actual hardware

implementation results for the O-Net. 59
5.9 Schematic of the P-Net stage with the highlighted critical path. . . 63

viii

List of Acronyms

AI Artificial Intelligence

CMOS Complementary MOS

CNN Convolutional Neural Network

CV Computer Vision

DDR Double Data Rate

DSP Digital Signal Processing

EBR Embedded Block RAM

EVDK Embedded Vision Development Kit

FC Fully Connected

FPS Frame Per Second

HDL Hardware Description Language

IoU Intersection over Union

ix

IP Intellectual Property

LMMI Lattice Memory Mapped Interface

MAC Multiply-Accumulate

MAE Mean Absolute Error

MMAC Multiply-Multiply-Accumulate

MTCNN Multitask Cascaded Neural Network

NMS Non Maximum Suppresion

NN Neural Networks

O-Net Output Network

P-Net Proposal Network

PR Precision-Recall

PReLU Parametric ReLU

R-Net Refine Network

ReLU Rectified Linear Unit

SGD Stochastic Gradient Descent

x

Chapter 1

Introduction

In the last years, the use of Artificial Intelligence (AI) has been constantly increas-
ing in every field of science due to the large amount of data to be processed. One
of the most inspiring tasks for AI algorithms is the problem of making a digital
system capable to see the external world and to make decision depending on what
it sees, as humans commonly do with their sight. All the applications related to
the analysis of the content of images or video fall into the name of Computer Vi-
sion (CV) applications. Almost every system that includes some camera it is also
equipped with a CV algorithm, starting from the common face tracking of smart-
phones, to object detection algorithms for autonomous cars or face recognition for
security systems.
Typically, systems that include an AI algorithm have a cloud structure, as repre-
sented in the next figure 1.1.

Figure 1.1. A typical cloud architecture.

1

Introduction

The sensing devices, represented at the bottom of the pyramid, collect the external
data that is sent to the cloud data centres for analysis and computation with the
sensed data. At the end, depending on the task addressed, the results are sent back
to the sensing device, in order to give to users a response.

The main advantage of this structure is the possibility to collect large amounts
of data of different type and to perform complex operations thanks to the high
computational power of data centres. On the other hand, it has the drawback of a
long transmission latency due to communication needed between the bottom and
the top of the pyramid. In recent years, the main trend is to move the computa-
tion directly where the data is acquired, integrating AI algorithms on edge devices
(EdgeAI). This processing paradigm leads to a reduction of the transmission la-
tency and protects the user privacy but introduces some other challenges such as
reduced computational power and limited resources, due to the fact that edge de-
vices are usually portable and tend to be less computationally powerful.
Edge devices can be classified depending on the structure on which they are based,
i.e. there are CPU based devices with good versatility but with limited parallelism
for computation, or GPU based devices whose strength is the massive parallelism
but with high power consumption. Particularly attractive are FPGA-based devices,
that allow the development of specifically customized designs with low latency and
reduced power consumption. The main disadvantage is the limited memory avail-
able, that introduces challenges in the development of AI algorithms for devices
with constrained memory.

1.1 The Project
Building on the recent trends in the fields of CV and EdgeAI applications, this
project aims to address both tasks, with the implementation of a face detection
algorithm for a low-power FPGA.

The problem of face detection has been chosen due to the fact that many CV
tasks have as a primary objective the identification and localization of faces in
images. Some of the most popular applications are face recognition and face track-
ing. Ever since the seminal work of [13], deep learning and Convolutional Neural
Network (CNN) constitute the state-of-the-art approach for AI algorithms for CV,
thanks to their capability of simplifying the feature extraction from input images,
for the subsequent recognition of its content [4].
In addition, convolution operation is a relatively easy operation to be translated on
hardware and its integration is a well-established practice, see for example works [2]
and [12], and many other hardware implementations that can be found in literature.
In fact, as explained in next section 2.5.1, the convolution operation can be simply

2

1.2 – Outline

reduced to a weighted sum of elements, translated in hardware in the implementa-
tion of Multiply-Accumulate (MAC) operations. Usually, only the computation of
the CNN is developed on FPGAs, in order to take advantage of the customizable
design to obtain a highly parallel architecture for convolution operations, leaving
the pre- and post-processing of data on external CPUs or GPUs. The novelty of the
project is in the full integration of the detector for a completely low-power analysis
of input data. On the other hand, it introduces some other challenges, because
operations that are commonly done in a simple way on CPU or GPU, like rescaling
of input images and post-processing of the data coming form the CNN, have to
be changed and simplified due to the reduced computational power of an FPGA.
The target board is the Embedded Vision Development Kit (EVDK) from Lattice
Semiconductors™ , that includes all the peripherals for acquiring and visualizing
external data [27].

1.1.1 Goals of the project
The main goals for this experience can be synthesized in:

1. Comparison of existing solutions of face detection algorithms using a Deep
Learning approach, in order to find a suitable network for the desired electronic
application.

2. Training and evaluation of the chosen network.

3. Implementation with a FPGA-based accelerator. Comparison between the
software and hardware solutions.

1.2 Outline
The thesis is organised as in the following:

• Chapter 2 treats the theoretical background about Neural Networks (NN)
and CNNs, essential for a complete understanding of the following chapters.
The concepts of artificial neurons and neural network are introduced and the
learning process of such networks is described. More focus is then given to
CNNs, that is the method used for the work done.

• Chapter 3 presents the hardware setup and its characteristics.

• Chapter 4 discusses the software implementation of the face detector. Firstly
the structure of the chosen CNN is analysed and its training is described.
Secondly, modifications that have been made are discussed.

3

Introduction

• Chapter 5 deals with the FPGA implementation of the face detector. The
chapter discusses how different operations have been translated from software
to hardware. The second part shows the resource and timing results of this
implementation.

• Chapter 6 summarizes the results obtained and proposed some future steps
for the project.

4

Chapter 2

Brief Introduction on Neural
Networks Fundamentals

The aim of this chapter is to give to the reader a basic knowledge about the theory
behind the project, in order to completely understand the following chapters. In
particular, after an introduction to AI and Artificial NNs, without going very deep
into mathematical theory, more focus is given to Deep Learning and CNNs that
are at the base of the work done in this thesis.

2.1 Neural Networks
Artificial Neural Networks take their inspiration from the structure of the human
brain and from the observation that it works in a extremely different way from a
conventional digital computer. In fact, the brain can be seen as a complex, non-
linear and parallel system, that in some cases, can perform computations many
times faster than an existing digital system, thanks to its ability to reorganize its
structural components, the neurons [8]:

“A neural network is a massively parallel distributed processor made up of
simple processing units that has a natural propensity for storing experiential
knowledge and making it available for use. It resembles the brain in two
respects:
1. Knowledge is acquired by the network from its environment through a

learning process.
2. Interneuron connection strengths, known as synaptic weights, are used to

store the acquired knowledge.”

In conclusion, NNs due their computing power to the parallelize structure and
the generalization, the capability to produce consistent outputs given new inputs
outside the training dataset.

5

Brief Introduction on Neural Networks Fundamentals

2.2 Model of a Neuron
As said before, the objective of a NN is to, at least, try to mimic the human
brain behaviour. Therefore, the first step is to model the basic building blocks, the
neurons.
A schematic representation on how it is done can be seen in the next fig.2.1.

Figure 2.1. Schematic model of an Artificial Neuron. Adapted from [8].

Here, three fundamental elements can be found:
• A set of synapses, each of them takes an input signal and multiplies it by a

constant called synaptic weight, specific for each synapse. As explained later,
the final goal of the learning process is to determine these weights for the NN.

• An adder in order to sum all the weighted inputs.

• An activation function, foremost a non-liner one, is applied to generate the
final output. Typical ranges for the output are [0, 1] or [−1, 1].

In a mathematical form, the model can be represented with the following two
equations:

νk =
mØ

j=1
xjwkj + bk (2.1)

and
yk = ϕ(νk) (2.2)

where xj is the input signal, wkj is the weight for the jth input of the neuron k, νk

is called activation potential, ϕ(·) is the activation function and yk is the output.
bk is called bias, is an external parameter with the function of increasing (lowering)
the positive (negative) input of the activation function. Essentially it applies an
affine transformation.

6

2.2 – Model of a Neuron

2.2.1 Types of Activation Functions
The most common activation functions are [20]:

1. Heaviside function.

yk =
1 if νk ≥ 0

0 if νk < 0
(2.3)

2. Sigmoid function. It is one of the most popular function used in NN, unlike
the Heaviside function it is continuous and differentiable:

ϕ(νk) = 1
1 + e−ανk

(2.4)

where α is the slope factor.

3. Rectified Linear Unit (ReLU). Introduced by Hahnloser et al. [7], it outper-
forms the two previous activation functions, making it the most used function
in the framework of Deep Learning [15]. Its general form is:

f(x) = max(0, x) (2.5)

4. Variations of the ReLU. Examples are the Leaky ReLU, in which for negative
values of x it is defined as a linear function with constant slope, and the
Parametric ReLU (PReLU) in which the slope for the negative values of x is
a learning parameter.

7

Brief Introduction on Neural Networks Fundamentals

2.3 Network Architectures
In order to have a working system, neurons must be arranged to form more complex
structures. The basic architecture is the Multilayer Feedforward Network [8] where
the neurons, also called nodes, are organized in layers.

Figure 2.2. Fully connected Multilayer Feedforward Network. Adapted from [8].

Basically, there are three main components:

• An input layer of source nodes, that supply input data for successive layers
and where no computation is done.

• One or more hidden layers, where most of the computation is performed. Their
components are called hidden neurons (or units), due to the fact that they
are not directly accessible from neither the input or output of the network.
Multiple hidden layers can be stack one over the other in order to extract high-
order information (called features in the framework of image classification).
This idea is at the base of Deep Learning.

• Output layer, that gives the final response of the network for the given primary
input.

In particular, the network reported in fig.2.2 is called fully connected because each
node of each layer is connected to every node of its adjacent forward layer.

8

2.4 – Learning Process

2.4 Learning Process
A Learning Process is a process through which the NN is trained for a particular
task in order to then infer correct results when new unknown data is given at
its input. Two main kind of processes can be distinguished: unsupervised and
supervised learning. The focus is given to the latter, that is the most common
strategy and the one used during the project.

2.4.1 Supervised Learning
Supervised Learning, also called Learning with a teacher [8], is the process where
the network acquires knowledge of the external environment thanks to a feedback
loop that compares the response of the network with the correct one, and tries to
minimize a measure (loss function) of the error.
This is represented in the following fig.2.3.

Figure 2.3. Schematic of a Supervised Learning Process. Adapted from [8].

During the process, the network parameters, the synaptic weights, are adjusted
iteratively, step by step. The error signal is defined as the difference between
the actual response from the network and the expected response. This error is
represented through a loss function of the training parameters, differently defined
depending on the task for which the NN is trained for. At the end of the training
process, what the system has learned is represented in the fixed values for the
weights and the network is then able to predict correct results with samples outside
of the training dataset.
From a mathematical point of view, the loss function can be visualized as a surface

9

Brief Introduction on Neural Networks Fundamentals

on a multidimensional space, where each axis is a training parameter [8]. The
aim of the training process is to minimize the error, that is translated in trying to
reach a minimum point on the multidimensional error surface. This is achieved by
backpropagation: it uses the information from the gradient of the loss and specific
optimization algorithms to minimize the loss function. The training process usually
stops when some stopping criteria is achieved or a maximum number of iterations
is reached.

2.4.2 Optimization Algorithms
The learning process can be expressed as an optimization problem, that is trying
to minimize the loss function, and finding the values of weights that lead to this
minimum. Using a mathematical formalism, it can be expressed as:

xõ = arg min
x∗∈x

f(x) (2.6)

where, in the framework of NN, f(x) will be the loss function and xõ the final
weights after training process, that generate the minimum loss.
In next sections, a brief description of Gradient Descent and its evolution Stochastic
Gradient Descent (SGD), one of the most used optimization methods and the one
used in the project, are presented.

Gradient Descent

The concept behind the gradient descent method is very simple, in order to reach
the minimum of a function the information about the derivate of the function is
used. In particular, if the derivate is negative it means that the slope of the function
is also negative. By remembering the meaning of the derivative, at the first order
it is possible to write:

f(x + Ô) ≈ f(x) + Ôf Í(x) (2.7)
So the derivative is useful because knowing the sign of f Í(x) it is possible to know
how to modify x in order to decrease the value of f(x) [6]. This is exactly the
information needed during the learning process, where the values of the weights are
adjusted to obtain a decrease of the loss function.
This reasoning can be generalized in the case of multiple inputs by using the gra-
dient instead of the derivative, and the function is decreased by moving in the
direction of the negative gradient.
One single step of optimization can be written as:

xÍ = x − Ô∇xf(x) (2.8)

where x’ is the corrected value of the input vector, x its previous value, ∇xf(x)
is the gradient evaluated in x and Ô is called learning rate and it is the size of the
step.

10

2.4 – Learning Process

Stochastic Gradient Descent

Considering the previous argument, one problem arises when dealing with its ap-
plication to problems with a large training dataset. In these cases, the gradient
used for the parameter’s update is the average of the gradients calculated for each
single input data. Having a dataset of m samples, the computational cost of each
parameter’s update is O(m) that is not feasible for large training datasets. SGD
instead, at each update, approximate the gradient by calculating it over just a batch
of data, sampled uniformly from the training dataset. In this way, the computa-
tion time for the single update doesn’t increase with a growing number of training
samples [6]. The complete algorithm of SGD is reported in the next fig. 2.4.

Figure 2.4. SGD algorithm. Adapted from [6].

Usually training loss is not plotted versus steps but versus epochs, that is the
number of steps needed to have a complete pass over the entire training dataset.

Momentum

In some cases, also the SGD algorithm can be too slow for some practical appli-
cations. For this reason, accelerator methods have been designed to improve the
speed of the training process with SGD: one of them is the momentum [19].
With the addition of the momentum, the algorithm is modified with an exponen-
tially decaying average of the previous gradients, in this way, larger steps are taken
in the direction where the past gradients pointed. By doing that, if there is a se-
quence of gradients pointing in the same direction, larger steps are taken in this
direction to speed up the reaching of the loss function’s minimum [6]. The new
algorithm is:

11

Brief Introduction on Neural Networks Fundamentals

Figure 2.5. SGD with momentum algorithm. Adapted from [6].

The parameter α ∈ [0,1] defines the contribution of the momentum in the parame-
ters’ update. Higher is the value of α with respect to the learning rate Ô, more the
past gradients affect the direction of the updating step. Typically its value is near
1.

Hyperparameters

An hyperparameter is a parameter that must be set by the user to perform the
training process in a correct way. Examples of hyperparameters are:

• Learning rate Ô. Probably the most important one. It defines the size of the
steps taken in the direction for minimizing the loss. Too large values can
lead to an oscillating behaviour, because the minimum is overtaken by one
of the steps, too small values decrease the velocity of the process. One usual
technique is to adopt varying values of Ô during training, starting from large
ones and then moving to small ones when approaching the minimum.

• Batch size. As said, it is the number of samples used for one update of the
parameters’ values. Usually it is not a critical parameter, typically values are
multiples of 2, i.e. 64, 128 or 256.

• α. It defines the contribution of the momentum on weights’ update. Also in
this case, a varying values solution can be adopted during training, in a similar
manner as for learning rate.

12

2.4 – Learning Process

Convex vs non-convex problems

In principle, all the discussion done about optimization algorithms is valid only for
convex problems, such that all the local minima are also global minima. In these
cases, the application of an optimization algorithm allows the reaching of the min-
imum. The important thing to be pointed out is that almost all the problems with
NNs are non-convex ones. The application of optimization strategies in this situa-
tion does not ensure reaching even a local minimum. Anyway, has been observed
that the results obtained are good enough for practical application with non-convex
problems [6].

Overfitting

In some cases, can happen that the accuracy on the training dataset is quite high
while the network fails when unknown data is given in input. This is a common
problem called overfitting, the network models too well the training data and it
is not able to generalize with new data. In order to avoid this behaviour, usually
during learning process a validation dataset is also used. It is composed by images
not used during training steps, at the end of each epoch the network is evaluated
over this dataset in order to monitor the results with unknown data. If the vali-
dation loss is not decreasing over epochs, common strategies are the calibration of
the hyperparameters or the change of the training dataset.
Another technique commonly used for reducing overfitting is the addition of a reg-
ularization term in the loss function during training.

Regularization

When performing the training process, what one wants to get at the end is a model
that can work on new data, so a model that can generalize well. During the learning
process, the weights are constantly updated, step by step, but no information on
how the weights actually look is given. In fact, given a certain accuracy target,
different weights matrices, that leads to this particular value of accuracy, can exist.
The goal of regularization is to try to find a set of weights that at the end of
training generate the most possible generalized model. It is done by a penalization
of the largest weights’ values on the weight matrix, because they influence more the
output of the network and have more probability to lead to overfitting the training
data [14]. The goal of regularization is to find lower values for these weights, that
generate models with a better capacity to generalize. Common penalty functions
are L1 and L2 norms:

R(W) =
Ø

i

Ø
j

|Wi,j| (2.9)

R(W) =
Ø

i

Ø
j

W 2
i,j (2.10)

13

Brief Introduction on Neural Networks Fundamentals

where Wi,j is one weight of the matrix.
When defining the total loss, the general formula becomes:

L = 1
N

NØ
i=1

Li + λR(W) (2.11)

where λ is the hyperparameter that controls the strength of the penalization.
When using regularization, it is possible to see a slight increase of the training loss,
but it leads to better accuracy on testing data.

2.5 Convolutional Neural Networks
CNNs are fundamentals for building Deep Learning applications for computer vi-
sion problems, because they are especially designed for multi-dimensional inputs,
like standard RGB images. Differently from what happens in traditional feedfor-
ward networks (sec. 2.3), where each neuron is connected to every neuron of the
next layer, in a CNN, Fully Connected (FC) layers are usually used just at the very
end of the network, to generate the output depending on the problem addressed by
the specific computer vision application.
In a CNN, each layer applies a different set of filters in order to extract, moving
deeper inside the network, higher-level features to make predictions about the con-
tent of the input image. In order to do that, a large number of convolutional layers
is needed and for this reason, by definition, a CNN is a type of Deep Learning
algorithm [20]. During training, the values of the filters are the training param-
eters automatically learned by the network. The next figure 2.6 compares and
summarizes the two different structures of a FC network and a CNN.
In conclusion, a CNN first detects edges from the input pixels, uses them to detect
shapes and finally detects high level features like facial or object parts.

14

2.5 – Convolutional Neural Networks

Figure 2.6. Comparison between a classical Machine Learning and Deep Learning
approach for image classification. Adapted from [20].

2.5.1 Convolution Operation
Convolution is a well-known mathematical operation consisting in the integral of
the product between one function, let’s say x(τ), and another function translated
by a fixed value, w(t − τ). In formulas:

(x õ w) (t) =
Ú

x(τ)w(t − τ)dτ (2.12)

where the first argument is called input, the second one is called kernel and the
result is the feature map.
Previous equation 2.12 is written in the case of continuous variables, but it can
be also defined in the case of discrete ones. Also, nothing that in the framework
of CV applications the analysis is done with images, the input and the kernel are
represented with multi-dimensional arrays. In this case, that is the one important

15

Brief Introduction on Neural Networks Fundamentals

for the aim of the project, the convolution operation can be written as:

S(i, j) = (I õ K)(i, j) =
Ø
m

Ø
n

I(m, n)K(i − m, j − n) (2.13)

or equivalently, due to the commutative property as:

S(i, j) = (K õ I)(i, j) =
Ø
m

Ø
n

I(i − m, j − n)K(m, n) (2.14)

where I is the input tensor and K is the kernel tensor.
It is important to point out that the commutative property can be applied because
the kernel is flipped with respect to the input image [6]. Almost all of CNNs don’t
use the convolution operation but the cross-correlation one:

S(i, j) = (K õ I)(i, j) =
Ø
m

Ø
n

I(i + m, j + n)K(m, n) (2.15)

where there is not the flipping of the kernel matrix. In the framework of Deep
Learning the terms convolution and cross-correlation are interchangeable and in
the following this convention is used.
While its mathematical form could seem to be a difficult operation, it is not true
in practice: the convolution operation can be simply thought as an element wise
multiplication between two matrices, followed by a sum [20]. With this idea in mind,
the convolution operation applied to an image can be visualized in the following
terms:

• The RGB input image is a tensor with dimensions (h, w, c) where h is the
height of the image (the number of pixel’s rows), w is the width (the number
of pixel’s columns) and c represent the three channels of the image, red, green
and blue.

• The kernel applied to the input image is a small tensor, with usually square
shape, of dimension (n, n, c) with n ≤ min(w, h).

• The convolution operation is done as follows: the kernel is sliding over the
bigger input tensor, at each location (x, y) of the centre of the kernel the
element-wise multiplication between the entries of the kernel and the entries
of the input ’covered’ by the kernel is performed, and the results are all summed
up. The final value is the (x, y) entry of the feature map. Usually the kernel
size n is an odd number: in this way the (x, y) position of the centre of the
kernel can be well-defined. This procedure, in the case of 2-D matrices, is
represented in fig.2.7.

16

2.5 – Convolutional Neural Networks

Figure 2.7. Example of a convolution. Adapted from [6].

The application of a convolution results in specific image processing functions, de-
pending on the values of the entries of the kernel. For example, some kernels are
well-defined for operations like blurring, edge detection and sharpening. One of
the main advantages of a Deep Learning approach is that the values of the filters
applied in the network are automatically learned during the training process and
not defined by the user.
Another important aspect must be pointed out. When using FC networks with
multidimensional inputs, each layer performs a classical matrix product, reflecting
the fact that each neuron is connected to every one of the next layer. This results
in an huge number of weights also for reasonable small input tensors. On the other
hand, in CNNs the matrix multiplication is substituted by the convolution with a
smaller matrix, the kernel, resulting in the fact that neurons in the current layer
are connected to only a small region of the layer before. In this way the number
of weights considerably decreases, resulting in only the values of the filters applied.
For this reason, CNNs are the preferred solution for solving CV tasks.

2.5.2 Padding

As explained before, the centre of the kernel slides over the input tensor and entries
in the neighbourhood of its (x, y) position are taken into account for the convolution.
The problem arises when scanning the contour of the input matrix: in this case
some entries of the kernel lies outside of the input tensor and the convolution can

17

Brief Introduction on Neural Networks Fundamentals

not be correctly defined. Padding is the solution for this problem. There are two
main possible strategies:

• Replicate the values at the border of the input matrix in the output one. Doing
that, the starting position (x, y) must be such that all the kernel entries lie
inside the input matrix.

• Zero Padding. Add rows and columns of zeros outside the border of the matrix,
in order to perform the convolution starting from the upper-left entry of the
input tensor.

Using padding has the advantage of generating outputs with larger dimensions than
without using it, due to the reduction in dimension implied by the convolution
operation itself. This is a good outcome, in particular with very deep networks:
in these cases consecutive convolutions may reduce too much rapidly the size of
the input matrices of the deepest layers, resulting in too much loss of information.
Padding avoid this issue.
To conclude this section about convolution, it is worth to mention three others
parameters to set when building a convolutional layer:

• Depth. It is the kernel’s third dimension, in the case of the first convolutional
layer it is equal to the channel depth of the input image, for a generic hidden
layer it is equal to the depth of the output of the previous layer.

• Number of filters. It is the number of kernels used in the convolutional layer.
Due to the fact that each filter generates a 2-D map (remember that kernel and
input tensor have equal depth), this number defines the depth of the output
of the layer because the 2-dimensional feature maps are stacked one over the
other along the third dimension, see fig. 2.8.

• Stride. It defines the step used when the kernel slides above the input matrix.
Must be defined for both x and y directions, typical values are 1 and 2. Along
with the padding, it affects the size of the output tensor.

Figure 2.8. Convolution with multiple kernels. Adapted from [20].

18

2.5 – Convolutional Neural Networks

2.5.3 Typical Layers in CNNs
Besides convolutional layers, other types of layer are almost always present in the
structure of a CNN. They are:

• Pooling layer. As said before, the application of a convolutional layer with
stride > 1 generates a reduction of the dimensions of the input volume. An-
other way is by using a pooling layer. As in the case of convolution, a kernel
size and a stride have to be defined by the user, typical are values are (2, 2)
and 1 or 2, respectively. Sometimes, larger kernel size such as (3,3) are used
in case of large input tensor. Inside of the kernel two types of operation can
be performed: max or average operation. In the first case, the maximum of
the entries inside the kernel is taken, in the second, the average of the entries
is taken. It is important to notice that, recently, the trend is to discard the
use of pooling layers [35] and just one average layer is used at the end of the
network.

• Activation layer. After the convolution operation, an activation layer is used
to apply the non-linear function, usually ReLU or one of its variants.

• Batch Normalization layer. Introduced by S. Ioffe and C. Szegedy [11], a
batch normalization layer is used to normalize the input tensor before going
to the next layer. The output tensor will have zero-centred values and unit
variance. It us used to reduce the number of training epochs, leading to lower
final loss. It helps also in reducing overfitting, because it makes easier the
tuning of the hyperparameters.

19

20

Chapter 3

Hardware setup

The chapter presents a brief description of the target board for the hardware im-
plementation of the face detector. More focus is given to the CNN accelerator core
that performs convolution operations.

3.1 EVDK
The Embedded Vision Development Kit (EVDK) is a modular platform for video
processing at the Edge. It is composed by three different boards connected one
over the other:

1. CrossLink VIP Input Bridge Board [23], composed by the the CrossLink FPGA
that receives the data from the two on-board integrated camera sensors Sony
IMX214 [34], bridging the CSI-2 interface of the cameras with a parallel one.
Its main task is to simply send the pixel data, in the RAW10 format, to the
next board for successive operations. The bitstream file for programming the
FPGA can be downloaded from the Lattice Semiconductors™ website.

2. ECP5 VIP Processor Board [25], including an ECP5 family FPGA, that is the
core for the analysis of images, dual DDR3 interface, SERDES interface and
LVDS/MIPI Transmitter/Receiver interface. The FPGA is described in more
details in next section 3.2. It also has two integrated Double Data Rate (DDR)
memories for a total capacity of 2 Gb.

3. HDMI VIP Output Bridge Board [26], its key component is the HDMI Deep
Color Transmitter, for transmitting video signals to an external monitor.

As it is possible to see, the EVDK contains everything for the data acquisition,
processing and visualization, allowing for the development of CV prototypes for
edge devices.

21

Hardware setup

(a) EVDK setup. (b) ECP5 VIP Processor Board.

Figure 3.1. (a) The EVDK platform is shown, from the top to the bottom there
are: the CrossLink VIP Input Bridge Board, ECP5 VIP Processor Board and
HDMI VIP Output Bridge Board. In red are highlighted the 2 camera sensors.
(b) The middle board is shown. Highlighted in green the ECP5UM-85 FPGA and
in blue the two DDR3 DRAM.

3.2 ECP5 FPGA
The most important part of the all system is the ECP5UM-85 FPGA [24], the
one that has to be programmed by the user in order to perform all the operations
needed for the analysis of the input data. The characteristics of the device are
reported in table 3.1.

LUTs (K) 84
sysMEM Blocks (18 Kb) 208
Embedded Memory (Kb) 3744
Distributed RAM Bits (Kb) 669
18 X 18 Multipliers 156
SERDES (Dual/Channels) 2/4
PLLs/DLLs 4/4

Table 3.1. Summary of the resources for ECP5UM-85 FPGA.

This FPGA allows the integration of systems without caring too much on the re-
source usage thanks to the almost 85 thousands of LUTs. In addition the sysDSP

22

3.2 – ECP5 FPGA

can perform 54-bits ALU operations, advanced 18 x 36 MAC and 18 x 18 Multiply-
Multiply-Accumulate (MMAC) operations essentials for the hardware implemen-
tation of convolutional layers of CNN. The core power supply is equal to 1.2 V,
limiting the power consumptions.
The main limiting factor is the integrated memory equal to 3.744 Mb. This mem-
ory is divided into 208 blocks, each of them with a dimension of 18 Kb, used for
the configuration of a large variety, in depth and width, RAM and ROM memories.
Next figure 3.2 shows a simplified schematic of the structure of the FPGA and
summaries the various features available.

Figure 3.2. Simplified schematic of the Lattice ECP5UM-85
FPGA. Adapted from [24].

3.2.1 CNN Accelerator Core
For the implementation of a face detector based on CNN a module capable to
reproduce the convolution operation is necessary. In general, it is quite easy to map
the convolution in hardware, it essentially is the subsequent application of MAC
operations. In addition to its high computational capability, the ECP5 FPGA has
been chosen because there is the possibility of directly use an Intellectual Property
(IP) for a CNN Accelerator Core [22]. Some of its main features are:

• support for convolutional, max and average pooling, batch normalization and
FC layers,

• configurable bit width of weights (16-bits, 1-bit),

23

Hardware setup

• configurable bit width of activations (16/8-bits, 1-bit),

• configurable number of engines and memory blocks,

• optimization for 3x3 2D convolutions,

• configurable input byte mode (signed, unsigned, disable),

• supports MobileNet.
The figure 3.3 shows an high level block representation of its internal structure.

Figure 3.3. Functional block level representation of the CNN Accelerator
Core IP. Adapted from [22].

Different sub-blocks are present:
• the control unit that organizes the operations for the other modules,

• the engine module where actual computations are performed. The number of
engines can be configured by the user with a maximum of 8 engines,

• the memory pool, used for saving partial data during computation. Also their
number can be configured by the user, the recommended number is equal to
the double of the number of engines.

The next figure 3.4 shows the external interface ports of the CNN Accelerator
module. It has clock and reset ports, a set of control ports including the i_start
for starting the computation and the o_rd_rdy that is equal to 1 when the module
is in the idle state and ready for starting a new computation, a Lattice Memory
Mapped Interface (LMMI) [28] for writing input data, a DRAM interface working
with an AXI4 protocol, the result ports and a status signal for checking in which
state is the module.

24

3.2 – ECP5 FPGA

Figure 3.4. Interface ports for the CNN Accelerator Core IP. Adapted from [22].

The typical operational procedure to follow is:

1. Assertion of the reset.

2. De-assertion of the reset, i_start must be de-asserted too.

3. The command code for the operations to be performed has to be loaded on the
DRAM memory integrated on the ECP5 VIP Processor Board. The command
code is generated through the compilation of the network structure described
on high level language, such as Python. i_code_base_addr specifies the start-
ing address of the command code to be read.

4. Check of o_rd_rdy status. It must be 1, otherwise start again from step 1.

5. The input data is written into the internal memories of the module.

6. i_start is asserted and o_rd_rdy must be equal to 0 after the assertion.

7. De-assertion of i_start.

8. Checking of o_we, the data coming from o_dout has to be collected while
o_we is equal to 1.

9. Repeat from step 5.

25

Hardware setup

3.2.2 Tools Used
The two main tools used for the hardware implementation are the NN compiler
and the Lattice Diamond software.

NN Compiler

The Lattice NN compiler [29] is used to generate the command code for the the
CNN Accelerator module by taking structure and weights of the model defined in
Caffè, Tensorflow or Keras. In addition to this, it allows the user to define the
width of the input data and how many bits are used for the fractional part of the
fixed point representation. Also, the user has to define the number of engines and
memories used for the computation, these two settings must be the same when
instantiating the IP on the Hardware Description Language (HDL) code. After
the analysis and compilation of the network, information regarding the number of
clock cycles needed for the computation are given, in addition to a report about
how the input data is saved in the internal memories. The format of the command
is a sequence of 32-bits data with additional optional parameters, as shown in fig.
3.5.

Figure 3.5. Command code format for the CNN Accelerator Core
IP. Adapted from [22].

The NN compiler permits also to simulate the model if an input sample is provided.
Thanks to this feature, it is possible to directly compare the output of the network
in the software implementation, with a floating point representation of numbers,
with the corresponding fixed point one, and to measure how much the results dif-
fer.
Finally, a debug option is available for checking directly on the device the data
written and read from the internal registers. For this feature is necessary to sub-
stitute the HDMI VIP Output Bridge Board of the EVDK with the USB3-GbE
VIP IO Board [31] and to connect it to an external computer for programming
it. Unfortunately, after several attempts, the result was that this feature was not
working, probably due to a conflict between some drivers. It was confirmed by the

26

3.2 – ECP5 FPGA

previous experience of people in the laboratory and the seller company, i.e. Lattice
Semiconductors™, does not provide any solution when contacted. This forbids the
checking of the correctness of results from the CNN core.

Lattice Diamond Software

The Lattice Diamond software is used for the synthesis, place and route and gener-
ation of the .bit file to be loaded on the board, from the HDL code of the system.
In addition to these features, it allows the generation of the IP modules from an
large set available, including:

• audio, video and image processing modules such as byte to pixel converters,

• communications modules like Ethernet Media Access Controllers,

• connectivity modules,

• Digital Signal Processing (DSP) modules, including the CNN Accelerator Core
and,

• controllers for external peripherals like the DDR3 controller for the integrated
DRAM on the ECP5 board.

27

28

Chapter 4

Software Implementation

The chapter presents a short introduction about face detection problem. Then, the
chosen network is analysed and details about the training are explained. In the
second part, modifications applied to the reference design are discussed and the
results are presented.

4.1 CNN for Face Detection
As stated before, currently CNNs constitute the state of the art for face detection
algorithms, thanks to their learning capability. In order to obtain a strong and
generalized model, a large training dataset with images of different types is needed.
The challenges connected to face detection task can be related to the following
attributes:

• Scale. The most intuitive problem when detecting faces in images is that they
can appear at different scales. In general, small faces are more difficult to be
detected.

• Pose. It describes the relative position between the face and the camera
(frontal, 45 degrees, profile, etc.). In some cases, a face can be partially oc-
culted.

• Structural components. It includes beards, glasses, mustaches that can be
present or not in a face. In addition they can vary in colour and shape, and
can hide some facial details.

• Occlusion. Other objects can partially mask a face, or in case of a group of
people, a face can hide another one.

• Facial expression. Depending on it the face appearance can change.

29

Software Implementation

• Imaging conditions. It includes lighting and characteristics of the camera
sensor.

An optimal face detector should be able to correctly detect faces with all these
different conditions. This result can be achieved if also the training dataset includes
all the various factors. For the project, the reference dataset used is the WIDER-
FACE dataset, that has been demonstrated to be extremely challenging with respect
to other datasets [37]. The dataset consists on 32203 images with 393703 labelled
faces with variations in pose, scale and occlusion. The images are divided in 61
different classes, and for each class, 40%, 10%, 50% of images are used for training,
validation and testing, respectively.
Several frameworks have been evaluated by using this dataset, from the seminal
work of Viola-Jones [36] to more complicated recent detectors, as reported in [39]
and [41], capable to reach the best accuracy results. Among the over 30 methods
reported, the chosen one is the Multitask Convolutional Neural Network.

4.2 Multitask Cascaded Neural Network
When dealing with EdgeAI applications, the focus is much more on the portability
of the detector than on its accuracy. For this reason, high-accurate models with
complex structure and large number of weights are not suitable for sensing applica-
tion. The choice of the Multitask Cascaded Neural Network (MTCNN) [40] follows
this reasoning: it performs quite well among all the models and it has a simple
structure that can be loaded on small-memory devices.

Typical object detection, and so also face detection, networks have a structure
based on a backbone for the feature extraction and only the last layers are modi-
fied depending on the needs. Usually, this kind of models have a very high detection
accuracy but also a number of parameters that make them unsuitable for portable
applications. The most common examples are the VGG-16 [33] and its evolution
VGG-19, MobileNet [10] and MobileNetV2 [21] models. The next table 4.1 reports
the number of parameters for these models and compares them with the MTCNN.

VGG16 VGG19 MobileNet MobileNetV2 MTCNN
Parameters 138357544 143667240 4253864 3538984 492410

Table 4.1. Comparison on number of weights for different models.

From the table it is possible to see that the MTCNN has a very low number of
parameters compared to the other methods, making it suitable for a portable face

30

4.2 – Multitask Cascaded Neural Network

detector on a small-sized memory device, such as an FPGA. In parallel it obtains
reasonable results in terms of detection accuracy over the WIDER-FACE validation
dataset, as reported in the next table.

Easy dataset Medium dataset Hard dataset
MTCNN accuracy 84.8% 82.5% 59.8%

Table 4.2. Summary of the detection accuracy of the MTCNN.

4.2.1 Network Structure
The structure of the MTCNN follows the previous works [16] and [38], where a
cascade of networks is used to locate and refine the position of faces in images. By
paying attention to the intrinsic correlation between the problem of face detection
and face alignment, a multi-task network was designed addressing both problems
and, in this way, reaching better results with respect to the previous solutions of
the time.
The detector consists of three stages:

1. Proposal Network (P-Net).

2. Refine Network (R-Net).

3. Output Network (O-Net).

P-Net

The aim of the first stage is to generate region proposals for the successive steps.
The functionality of the P-Net can be explained as follows: given an input image
of any size, a sliding window of dimension 12x12 pixels moves over the image with
stride equal to 2 and, for each region of 144 pixels, three different outputs are
generated. They are:

• Face classification output with a depth of two: the probability of not-being a
face and being a face for that region.

• An output of depth equal to four. They are the bounding box regression
outputs, essentially the corrections for the 4 coordinates of the 12x12 region
in order to correctly surround a face. Each proposal region is identified by the
top left and bottom right coordinates (x1, y1) and (x2, y2), respectively.

31

Software Implementation

• The facial landmark localization output with a depth of ten. As for the bound-
ing box regression, they are the corrections for the coordinates of the 5 facial
points for face alignment, They are the two eyes, the nose and the two corners
of the mouth.

All the process of the sliding window over the input image is actually equal to apply
a CNN to the input image, generating the three kinds of results. The structure of
the network is reported in the following fig. 4.1.

Figure 4.1. Structure of P-Net. Adapted from [40].

In the previous figure the input image is supposed to be of size 12x12x3, in this case
there is obviously just one region to analyse and the output predictions are just
vectors. In the case of generic size for the input image, the outputs will be tensors
with 3 dimensions, where each point in the result matrices is the prediction for one
region of size 12x12 in the input image. In this way, a generic point (x, y) in each
output tensor refers to a specific region of the input image, and at the same position
(x, y) in all the three outputs there are information about the classification, box
regression and face localization for this specific window.

The structure of the P-Net is very simple, it consists of just 3 convolutional layers
with kernel size equal to (3,3) and stride equal to 1; the first convolution is fol-
lowed by a max-pooling layer with pool size of (3,3) and stride 2. The number of
filters used in each convolutional layer is equal to the depth of tensors following its
application (as explained in sec. 2.5.2). In this case 10, 16, 32 filters are used in
the corresponding convolutional layers, and 2, 4, 10 filters for the three different
outputs. The activation function after every convolution is the PReLU, except for
the last layer. A network with this kind of structure is called fully convolutional,
because the typical FC layer at the end is not used. This has been done in order
to permit generic size for the input image: the dimension of the output tensors
will vary depending on the input size image, while using a FC layer at the end
would have required the definition of the number of output nodes when building
the network. The goal of the P-Net is to generate, in a fast way, the candidate

32

4.2 – Multitask Cascaded Neural Network

facial windows to be fed in the next stages, without being too much precise. This
is why it has its shallow structure.

The input image of the whole face detector is firstly resized to different scales,
generating an input image pyramid. The list of scales is defined by using the
minimum face size that the user wants to detect and with a multiplication factor
of 0.79. Scaled images are recursively generated until the condition

min(height, width) ≥ 12

is satisfied. Each single rescaled image has to be fed in input to the P-Net, in
order to detect faces with different dimensions. It is important to notice that the
network does not provide directly the coordinates of the proposal windows but just
the correction to apply. So the boxes’ coordinates in the original image size must
be calculated from the coordinates of the points inside the output matrices for each
scaled image (remember that each point represent a 12x12 window). This can be
achieved by applying the following equations:

X1 = (x · S)/scale Y1 = (y · S)/scale (4.1)
X2 = (x · S + cellsize)/scale Y2 = (y · S + cellsize)/scale (4.2)

where:

• (X1, Y1) and (X2, Y2) are the top-left and bottom-right corner coordinates of
the bounding box in the original image size,

• (x, y) are the coordinates of one point in the output matrix linked to a specific
scaled image,

• S is the stride, in this case is equal to 2,

• cellsize is the dimension of the sliding window, in this case equal to 12,

• scale is the rescaling factor applied to the original input image.

Obviously, not all of the generated bounding boxes will contain a face, for this
reason a threshold is defined by user: only the regions with a probability of being
a face higher than the threshold are considered for next computation.
In general a CNN does not produce probabilities at its end, these are the results of
the application of the softmax function to the face classification output.
It is a function σ : RK −→ RK defined as:

σ(z)i = eziqK
j=1 ezj

for i = 1, . . . , K and z = (z1, . . . , zK) ∈ RK (4.3)

33

Software Implementation

By using words, given a vector, the application of the softmax returns a vector of
the same length with values normalized in the range [0,1] that can be interpreted
as probabilities by humans. By doing that, also the threshold has to be a value
between 0 and 1. This value has to be decided by the user, with value of 0.5 all the
regions that are classified as faces by the P-Net will be taken, higher values like 0.6
and 0.7 allow to a first reduction of the proposals for next steps.

As said before, each scaled image is fed inside the P-Net, a common result is that
multiple bounding boxes, close one to each other, surround the same face. It has
not much sense to consider all these boxes for successive analysis, so a filtering
process is used, called Non Maximum Suppresion (NMS).
The NMS algorithm is based on the Intersection over Union (IoU) ratio, defined
as the ratio between the intersection area and the union of the areas of two boxes.
This number gives a value of how much two regions overlap one with the other.
The NMS algorithm can be summarized as:

1. Given the proposals with face probability above the threshold, sort them in
descending order of face probability.

2. Take the proposal with the highest face probability, and calculate the IoU
between this box and all the successive ones.

3. All the boxes for which the IoU value is above a certain threshold, usually 0.5
or 0.6, are discarded.

4. Move to the successive box with the highest face probability and repeat the
previous steps until the last remaining box.

The NMS is applied to the results of each scaled image and also after that all the
proposals are gather together. The main goal is the further reduction of the number
of proposals to decrease the calculation time of the next two stages. After the
generation and the filtering of the bounding boxes, their coordinates are adjusted
by using the bounding box regression output of the network thanks the following
equations

X Í
1 = X1 + ∆X1 · W Y Í

1 = Y1 + ∆Y1 · H (4.4)
X Í

2 = X2 + ∆X2 · W Y Í
2 = Y2 + ∆Y2 · H (4.5)

where:

• (X Í
1, Y Í

1) and (X Í
2, Y Í

2) are the corrected coordinates for the bounding boxes,

• (X1, Y1) and (X2, Y2) are the initial coordinates for the proposals, generated
by using the previous eq. 4.1 and 4.2,

34

4.2 – Multitask Cascaded Neural Network

• ∆X1 ∆Y1 ∆X2 ∆Y2 constitute the bounding box regression output of the net-
work for a specific 12x12 window,

• W and H are width and height of the box, calculated as X2 − X1 and Y2 − Y1
respectively.

Finally, all the steps done in the first stage can be summarized as:

1. Generate the image pyramid for the input image.

2. Each scaled image is presented to the input of the P-Net.

3. By using the face classification output, the regions with face probability above
the threshold are kept, for each scaled image in input, and their bounding box
coordinates are generated by using eq. 4.1 and 4.2.

4. NMS is applied first to proposals generated from the same scaled image and
then to the regions from all scaled images gather together.

5. Bounding box calibration is performed through eq. 4.4 and 4.5.

R-Net

After the first stage, the detector has a set of proposals defined by four coordinates
and for each one the associated face probability. The second stage takes each
proposal, resizes it to a 24x24 image and feeds it inside the R-Net. The structure
of the network is reported in the next fig. 4.2.

Figure 4.2. Structure of R-Net. Adapted from [40].

As already said, it takes an input image of size 24x24 and, in sequence, the following
layers are applied:

• Two pairs of convolutional layer and pooling layer. The two convolutions have
a kernel size of (3,3), stride = 1, 128 and 48 filters respectively. The max-
pooling layers have pool-size = (3,3) and stride equal to 2.

35

Software Implementation

• A convolutional layer with 64 filters, kernel size equal to (2,2) and stride equal
to 1.

• A FC layer with 128 neurons. From here, the three outputs branch out, each
one with another FC layer whose number of nodes is 2, 4 or 10 depending on
the output type.

The activation function of convolutional layers is the PReLU, while for the FC lay-
ers no activation function is applied except for the face classification output where
the softmax is used. The first difference from the P-Net is that this is not a fully
convolutional network, there is no need of doing that because the input size is fixed
in this situation. Also, the number of filters applied is higher from before, because
the network has to make better predictions about its input image content, so a
finer extraction of information from the input has to be done. The main task of
the R-Net is to discard a large number of false candidates coming from the P-Net
proposals.

For each input image, a decision is made depending on the face probability. Also
in this case, if it is higher than a defined threshold, it is taken for successive steps.
The bounding box calibration is performed by applying the corrections coming from
the bounding box regression output of the R-Net to the coordinates of the window
from the previous stage. It is done in the same manner as in eq. 4.4 and 4.5. After
all the P-Net proposals have been analysed, the remaining boxes are submitted to
a NMS process to further reduce the number of results. At the end of R-Net stage,
the corrected coordinates of remaining proposals are saved.

O-Net

The last stage of MTCNN is similar to the previous one. It takes the proposals
from the R-Net, resizes them to images with 48x48 size, and feeds them at the
input of the O-Net. The structure of the network is shown in fig. 4.3.

Figure 4.3. Structure of O-Net. Adapted from [40].

36

4.2 – Multitask Cascaded Neural Network

This network has to be the most precise of the three, because is the last one which
generates the final results. This is reflected in its structure, that is the one with
more layers and weights. In particular:

• Three pairs of convolutional and pooling layers. Convolutions have kernel size
(3,3), stride 1 and 32, 64, 64 filters respectively. After each convolution, max-
pooling is applied with pool size (3,3) for the first two pairs and (2,2) for the
last one. The stride is equal to 2 for all of them.

• A last convolutional layer with 128 filters, kernel size (2,2) and stride 1.

• A FC layer with 256 neurons. From here the three outputs are generated by
using FC layers with 2, 4 and 10 output nodes.

The network is similar to the R-Net, and same considerations can be applied re-
garding the activation functions. Also in this case, the main task of the network
is to eliminate last possible false positive proposals and to do bounding box re-
gression, both of them with more accuracy. As probably noticed, in the previous
paragraphs about P-Net and R-Net the facial landmark output is never used for
performing successive calculations. In fact, although it is present, the regression is
never performed in early stages but just in the last one.

The process is the same as in R-Net case. Firstly a decision is made on the input
resized proposal depending on the face probability output. If it is higher than the
last threshold, the proposal is saved and bounding box calibration is performed
using eq. 4.4 and 4.5. The remaining proposals are subjected to NMS to discard
highly overlapping boxes.

Finally, the next figure 4.4 summaries all the pipeline of the MTCNN based face
detector, with a visual example.

37

Software Implementation

Figure 4.4. Pipeline of the cascade structure. Adapted from [40].

4.2.2 Training Process
As explained before, the MTCNN detector has three different outputs, and for each
of them, a loss function has to be defined for the training process. Just to remind,
the loss function is a metric that measures how much the predictions differs from
correct values, see sec. 2.4.1 for more details. In the reference work done in [40], the
training dataset for face classification and bounding box regression was prepared
from the WIDER-FACE training dataset, while for facial alignment the CelebA
dataset [18] was used.

• For the P-Net, from WIDER-FACE images, random crops of dimension 12x12
are taken and used for the face classification and bounding box regression. For
the face alignment, faces are cropped from CelebA dataset. In particular there
are four types of samples:

Negatives for which the IoU with any ground-truth face is lower than 0.3.
Positives for which the IoU is higher than 0.65 to a ground-truth face.
Partial with IoU in the range [0.4, 0.65] to a ground-truth face.
Landmark faces samples with the five facial landmark labels.

38

4.2 – Multitask Cascaded Neural Network

• For the R-Net, the first stage is applied to WIDER-FACE images to generate
negative, positive and partial samples depending on the previous values of IoU.
So in this case, all the results from the P-Net are taken and labelled depending
on the IoU. For the facial landmark, the P-Net is applied to CalebA images.

• For the O-Net, the process is the same as before. The first two stages are used
to generate the different types of samples for the training.

The three loss functions used for training are:

1.
Ldet

i = −(ydet
i log(pi) + (1 − ydet

i) log(1 − pi)) (4.6)

For the face classification task the loss is formulated as a binary cross-entropy
loss, where pi is the face probability given by the network for the ith sample
and ydet

i ∈ {0, 1} is the ground-truth label for the same ith sample.

2.
Lbox

i =ë ŷbox
i − ybox

i ë2
2 (4.7)

For the bounding box regression problem, the network predicts the offset be-
tween the proposal candidate coordinates and its nearest ground-truth window.
The loss function is formulated as the Euclidean distance, where ŷbox

i ∈ R4 are
the results given by the network while ybox

i ∈ R4 are the ground-truth coordi-
nates, both referring to the ith sample.

3.
Llandmark

i =ë ŷlandmark
i − ylandmark

i ë2
2 (4.8)

For the facial landmark task, the problem is again a regression one, with the
Euclidean loss between the network results ŷlandmark

i and the ground-truth
coordinates ylandmark

i for the ith sample. There are five facial points, each one
defined by 2 coordinates so ŷlandmark

i ∈ R10 and ylandmark
i ∈ R10.

This kind of process, where a network has multiple outputs with different tasks, is
called multi-task training. In these type of training processes the total loss is not
just the sum of single losses, because it depends also on the type of the sample fed
inside the network. For example, in the case of a negative sample, only the detection
loss 4.6 makes sense to be considered, in case of positive sample the bounding box
regression loss 4.7 has to be added, while in the case of partial sample only the box
regression loss is used. The overall learning loss can be formulated as:

NØ
i=1

Ø
j∈{det, box, landmark}

αjβ
j
i Lj

i (4.9)

where:

39

Software Implementation

• βj
i ∈ {0,1} is a sample type indicator. Practically it makes sure that correct

losses are considered depending on the sample type;

• αj is the task importance. For P-Net and R-Net

αdet = 1 αbox = αlandmark = 0.5

while for O-Net
αdet = αlandmark = 1 αbox = 0.5

• Lj
i is one of the task losses for the ith sample;

• N is the number of training samples.

The optimization algorithm used is the SGD.

An important peculiarity of the work done in [40] is the implementation of online
hard sample mining. This process consist in taking only the top 70% samples with
highest loss for the computation of the gradient for the successive update of the
weights. It is called in this way because it is embedded in the training process and
only the samples that generates highest mis-detection are considered, so the most
difficult, i.e. hard, samples. The procedure leads to better performance as reported
in [32].

4.3 Training Implementation
The aim of this section is to describe how actually the training of the network has
been done for the project, which simplifications have been made, and why.
The first thing that has to be pointed out is the fact that the authors of [40] did
not provide any source code for the training while a Matlab implementation of
the detector for the inference is available as open source code1. For this reason,
after a first attempt of writing the training code from the beginning, due to the
low quality results obtained and the difficulty in finding where exactly was the
problem, the decision taken has been to use an already existing training setup
available as open source code. The choice fell on a GitHub project2, that has
the best evaluation from users and declares to obtain results comparable with the
ones reported in [40]. The repository includes codes for training data preparation,
training and evaluation. The inference model is just the translation in Python,
with the TensorFlow framework, of the Matlab code provided by the authors. The
training code is implemented with also the online hard sample mining.

1https://github.com/kpzhang93/MTCNN_face_detection_alignment
2https://github.com/AITTSMD/MTCNN-Tensorflow

40

https://github.com/kpzhang93/MTCNN_face_detection_alignment
https://github.com/AITTSMD/MTCNN-Tensorflow

4.3 – Training Implementation

4.3.1 First Simplification
The original structure of the network expects to have three outputs. Considering
the field of application for the project, i.e. EdgeAI applications, the facial land-
mark localization output is not essential, because the goal is to have a small-sized
network instead of a precise one. Moreover, the elimination of this output reduces
the operations to be done during the post-processing and allows a cross-checking
of the actual gain in accuracy when it is present.

The elimination of the face alignment output is reflected in only the elimination
of its related loss from the computation, the parameters αdet and αbox are left as
before. The steps done can be summarized as following:

1. The training samples for the P-Net are prepared as explained in sec. 4.2.2. At
the end have been generated:

• 1000405 negative,
• 457340 positive, and
• 1129405 partial samples.

2. Training of the P-Net is performed for 20 epochs with batch size of 384.

3. The trained P-Net is used to generate the training dataset for the R-Net,
resulting in

• 771571 negative,
• 123544 positive and,
• 640518 partial samples.

4. Training of the R-Net for 26 epochs with batch size of 384.

5. The trained P-Net and R-Net are used to generate the dataset for the O-Net
with:

• 688001 negative,
• 138143 positive and,
• 218044 partial samples.

6. Training of the O-Net for 20 epochs with batch size of 384.

Each batch has a ratio between negative, positive and partial samples equal to 3 :
1 : 1, in order to train the networks in conditions that emulate, as best as possible,
the conditions with real images where the face regions are less than background
ones. The optimization algorithm used is the SGD with momentum (α = 0.9), the

41

Software Implementation

learning rate is equal to 0.001 and it decreases of a factor of 10 after 6, 14 and
20 epochs. Training is also implemented with an L2 regularization term for the
weights in the convolutional layers, with λ = 0.0005, to improve the generalization.
Also, model’s weights are saved every two epochs, allowing the use of them in case
of overfit of the final trained parameters. The next figure 4.5 reports the training
total loss and detection accuracy for the three CNNs.

(a) Total training loss P-Net (b) Training detection accuracy
P-Net

(c) Total training loss R-Net (d) Training detection accuracy
R-Net

(e) Total training loss O-Net (f) Training detection accuracy
O-Net

Figure 4.5. Training plots without Facial Landmark output.

42

4.3 – Training Implementation

As it is possible to see, the classification accuracy increases from about 92% of the
P-Net to more than 95% in the case of O-Net.

In order to have a more effective result that can evaluate the efficiency of the
detector, it has to be tested on new images. For this scope, it has been decided
to use the WIDER-FACE validation dataset with 3226 images, because from the
official website3 it is possible to download a Matlab code allowing the users to
generate the Precision-Recall (PR) curves for their model and to compare their
results with existing benchmarks.
Precision and recall are defined as:

Precision = TP

TP + FP
Recall = TP

TP + FN
(4.10)

where:

TP is the number of true positives, so the number of faces that are classified as
such;

FP is the number of false positives, when the model predicts a face where there is
not;

FN is the number of false negatives, that counts the times when a no-face is
predicted but actually there is one.

PR curves plot the values of precision and recall for different cut-off values, where
the latter is defined as the threshold that discriminates when a result as to be inter-
preted as a face or not. Usually PR curves are not easy to understand if a model is
working correctly or not, so also the mean accuracy over the samples is calculated,
that is approximately equal to the area below the PR curve.

Next figure 4.6 reports the PR curves for the different partitions of the validation
dataset where the easy one denotes the simplest images and the hard one the most
difficult images. The face probability thresholds after each stage are [0.5 0.5 0.3] and
the minimum face size is set to be 20x20 pixels. These setting are the same used by
the authors when testing their model [40] on WIDER-FACE dataset. Furthermore,
the three network models used are the ones after 20, 14 and 16 epochs of training,
because, in the case of R-Net and O-Net, models trained for more epochs led to
lower performances, probably due to an overfitting on training data.

3http://shuoyang1213.me/WIDERFACE/WiderFace_Results.html

43

http://shuoyang1213.me/WIDERFACE/WiderFace_Results.html

Software Implementation

(a) Easy Dataset

(b) Medium Dataset

(c) Hard Dataset

Figure 4.6. PR curves for the model without Facial Landmark output.

44

4.3 – Training Implementation

Easy dataset Medium dataset Hard dataset
MTCNN 84.8% 82.5% 59.8%
MTCNN modified 73.3% 70.6% 45.2%

Table 4.3. Comparison on the mean accuracy between MTCNN model
and modified one.

As expected the modified model has lower performances on all the datasets com-
pared to the reference model, confirming the importance of having also the facial
landmark localization output implemented. Anyway, the results are good also in
this case, with a loss in accuracy that ranges between 11,5% and 14,6% depending
on the difficulty of images (see table 4.3), showing that this is a good point for
successive simplifications for the hardware implementation.

4.3.2 Second Simplifications
The second simplification made to the model has been forced due to tools re-
strictions. In particular, as explained in chapter 3, the network models must be
compiled by the NN compiler in order to generate the set of instructions to be
loaded on the FPGA for the CNN computation. Unfortunately, the software does
not support PReLU and softmax activation functions, and networks with multiples
outputs. The solution adopted is to use the ReLU activation after the convolutions,
the softmax has been removed and applied outside the network for the successive
calculations. For the generation of the output the structure has been modified: for
the P-Net instead of two convolutional layers with 2 and 4 filters, one has been
used with depth equal to 6, for the R-Net and O-Net the two FC layers have been
substituted by only one with 6 neurons. These changes are reflected in the fact
that correct portions from the output matrix and vectors have to be selected for
the calculation of different losses.

For the training, samples generated in sec. 4.3.1 are used and the the actual training
was conducted for the same number of epochs, i.e. 20, 26 and 20, and with the
same batch size of 384. The next table 4.4 resumes the training parameters, and
results are plotted in fig. 4.7.

alpha λ starting lr lr decay factor
0.9 0.0005 0.001 0.1

Table 4.4. Summary of hyperparameters for training process.

45

Software Implementation

(a) Total training loss P-Net (b) Training detection accuracy
P-Net

(c) Total training loss R-Net (d) Training detection accuracy
R-Net

(e) Total training loss O-Net (f) Training detection accuracy
O-Net

Figure 4.7. Training plots with previous simplifications applied.

As before, these plots are not so explicative in showing how good the model actually
is. Again, the detector has been tested on the WIDER-FACE validation dataset,
in the same conditions as in 4.3.1. The PR curves are reported in the next fig. 4.8
and the comparison for the accuracy in table 4.5.

46

4.3 – Training Implementation

(a) Easy Dataset

(b) Medium Dataset

(c) Hard Dataset

Figure 4.8. PR curves for the MTCNN with second simplifications applied.

47

Software Implementation

Easy dataset Medium dataset Hard dataset
MTCNN 84.8% 82.5% 59.8%
MTCNN (1st simplification) 73.3% 70.6% 45.2%
MTCNN (2nd simplifications) 67.9% 66.5% 43.2%

Table 4.5. Comparison on the mean accuracy between MTCNN model
and modified ones.

These further changes have generated another small decrease in accuracy, that
varies between 5.4% and 2%. This was expected because now some training pa-
rameters, introduced by the PReLU activation function, have been removed. This
result also confirms the fact that the usage of PReLU instead of ReLU improves
the detection accuracy of models [9]. The models coming from this training setup
are the ones used for the progression of the thesis work.

For the sake of completeness, it is fair saying that also an attempt with the Leaky
ReLU activation function was performed, with slope equal to 0.0625, which is also
supported by the NN compiler. The next table 4.6 compares these results with the
ReLU case, showing that no significant improvement is given by its usage. Also
considering that, the choice of the ReLU function seems to be reasonable.

Easy dataset Medium dataset Hard dataset
MTCNN with ReLU 67.9% 66.5% 43.2%
MTCNN with Leaky ReLU 68.1% 66.7% 43.1%

Table 4.6. Comparison on the mean accuracy between the MTCNN with Leaky
ReLU and ReLU activation functions.

48

Chapter 5

Hardware Implementation

In this chapter, changes made for the hardware implementation are explained and
justified. Then, these simplifications are tested on the software implementation of
the model to show the effects on the model’s accuracy. Finally the resource usage
and the timing analysis of the actual implementation are discussed.

5.1 Pre-processing
Pre-processing includes all operations done on the data before going to the actual
computation with the CNN core module. As explained in previous section 4.2.1,
the input image has a generic size and is rescaled several times. Each rescaled
image is then fed inside the P-Net assuring the detection of faces at different scales.
While this is a simple task to be implemented in software, especially with high level
languages such as Python, it is not true when coding with VHDL. In parallel, has
to been kept in mind that the final implementation, in principle, should work in
real-time, so high complexity operations that lead to high accuracy are substituted
with simpler ones that generates acceptable results.

The input images come from the integrated camera sensor on the top of the EVDK,
properly set by writing on its internal registers. In order to save memory, frames
from the camera have a fixed dimension of 160x120 pixels. This size can be obtained
by the subsequent application of operations of sub-sampling, cropping and scaling
on the primary exposed region where the Complementary MOS (CMOS) cells are
placed. The work was speeded up thanks to an already existing Verilog code [30]
for setting the camera, available on the open-source demos provided for the EVDK.
So, the code was just adapted for this task. The next figure 5.1 summarized the
steps performed.

49

Hardware Implementation

Figure 5.1. Image resizing in the camera module. Adapted from [3].

The format of the data at this point is the RAW10 format, where information for
each pixel is embedded in 10 bits. In order to perform successive operations, the
image must be converted on standard RGB format. Also in this case, an exist-
ing module from a demo [30] is used for the task, generating the three channels’
data, with a width of 16 bits. Then, the data is saved on three dual-port RAM
memories. It is important to notice that is not possible to avoid the usage of these
memories, because the input image has to be accessible for all the successive stages.

The scaling operation for the saved input frame is performed with the set of fixed
scaling factors [0.5 0.25 0.125]. These values are extremely easy to be implemented
on hardware, in fact in order to obtain the scaled image, it is just necessary to
properly select a smaller ensemble of the total pixels. In particular, for example
in the case of a factor of 0.5, alternate rows and columns are taken from the input
pixel matrix. The same is done in the cases of 0.25 and 0.125, where are not taken
3 and 7 rows (columns) in between two selected rows (columns), respectively. The

50

5.1 – Pre-processing

reasoning on doing in this way is that near pixels in images have similar values
in intensity, so the loss of information is limited. The next figure 5.2 shows the
procedure adopted for a scaling factor of 0.5. On hardware it can be simply done
by using a counter that increases with different steps depending on the needs.

Figure 5.2. Rescaling procedure with a factor of 0.5.

To end this section about pre-processing, a black-box schematic of the implemen-
tation is given (fig. 5.3):

1. The 160x120 input frame is acquired by the camera sensor,

2. RGB values for each pixel are saved on three RAM memories,

3. A counter generates the correct addresses for the image RAMs in order to
perform the rescaling,

4. Each scaled image is fed inside the CNN core for computation.

Figure 5.3. Schematic of the hardware implementation of the pre processing stage.

51

Hardware Implementation

5.2 MTCNN

5.2.1 P-Net

The software implementation of the first stage has been described in details in 4.2.1,
here only the changes made for its hardware implementation are discussed.

As mentioned in section 4.3.2, the NN compiler does not support the application
of the softmax function for the classification output. In this way the detection
output does not contain probability values in range [0, 1] but numbers in the range
[−∞, +∞]. While it is not a big problem in software, because the softmax can
be applied outside the network for the successive calculations, in hardware it is
not the way how it is done. One possible solution could be the application of the
inverse function of the softmax to the thresholds and perform the comparison with
values modified in the range [−∞, +∞], but the problem is that the inverse of the
softmax is not unique and the constant value to be added depends on its input data
and varies each time it is applied to different inputs. This makes it not suitable
for an hardware implementation. The solution adopted is to compare directly the
face and no-face outputs from the CNN Accelerator Core, that is equal to use a
threshold of 0.5 to which compare the face probability.

The second big simplification is the non implementation of the NMS step after
CNN calculation. It has not be done because, although it can be performed, an
optimized implementation of it on FPGA systems is a fairly recent field of study,
see for example [17]. In order to avoid having a module that employs too much
memories and that is not optimal, the final decision was to not implement it at this
point and to consider all the proposals that pass the comparison stage.

The step performed in the first stage can be summarized as:

1. The scaled image is saved inside the CNN Accelerator Core, starting from the
red channel and then blue and green ones. Each channel pixel intensity is
represented with signed 16-bits. Correct addresses for internal memories of
CNN Core have to be given in input.

2. Calculation with the CNN core is performed. Before asserting the starting
signal, the initial address of the P-Net command code, previously saved on
the DDR DRAM, has to be provided in input.

3. When o_we is asserted, the result data is collected. The data width is 16-bits.
Firstly all the no-face results are serially given in output and saved on a RAM
memory.

52

5.2 – MTCNN

4. The next set of results is the face ones. Each single data coming from the
CNN core is compared to its corresponding no-face result, previously saved
on memory. The addresses of regions for which the condition dataface ≥
datano−face is satisfied are saved, along with the corresponding face scores.

5. Then, the Bounding Box regression results are given in output. Just the data
that correspond to the previously saved addresses is taken and, thanks to the
knowledge of the address and of the scaling factor, the box coordinates are
generated and calibrated. They are then saved on 4 different RAM memories,
one for each X1, Y1, X2, Y2.

6. The process is repeated for each scaled image, X1, Y1, X2 and Y2 coordinates
are saved on the corresponding RAM memories starting from the first available
location.

7. At the end of the process, all the bounding box coordinates and relative scores
for every scaled image are available into the corresponding memories.

The figure 5.4 shows a schematic of the process described above.

Figure 5.4. Schematic of the hardware implementation of the P-Net stage.

5.2.2 R-Net and O-Net
For the last two stages, the two simplifications made for the P-Net are still valid
and they are:

• the comparison between the face and no-face outputs, instead of comparing
the first one with a given threshold expressed as a probability and,

• the non implementation of NMS step.

Operations performed during second and third stages are essentially the same as
explained in section 4.2.1. Here, the steps performed in the the hardware imple-
mentation are reported and a schematic high level block diagram is shown in fig.
5.5.

53

Hardware Implementation

1. The coordinates of the proposal are taken from the X1, Y1, X2 and, Y2 RAMs.
These ones are used for the generation of correct addresses for the image RAM,
where the input frame is saved, in order to select the correct pixels inside the
proposal region and perform the rescaling operation. The scaling operation is
performed in a similar way as in section 5.1.

2. Pixels from the image RAM are saved in the internal memories of the CNN
core, providing, also in this case, the correct addresses.

3. Computation of the CNN core is performed. The starting address of the
external DDR DRAM, where the R-Net or O-Net command code is saved,
must be provided.

4. When the o_we signal is high the output from the CNN module is collected.
The first data is the no-face result that is saved in a 16-bits register.

5. The face result is compared to the no-face result, in the case of dataface ≥
datano−face the coordinates are updated, otherwise the system waits until the
CNN core is ready to accept the next proposal and the process restart from
step 1.

6. The bounding box regression outputs ∆X1 ∆Y1 ∆X2 ∆Y2 are saved into 4 reg-
isters.

7. The coordinates X1, Y1, X2, Y2 are calibrated and saved back into X1, Y1, X2
and, Y2 RAMs. Then the next proposal is taken and the process is repeated.

8. The process finishes when all the proposals from the previous stage have been
analysed. At the end of the O-Net stage the final results are saved in the X1,
Y1, X2 and, Y2 RAM memories.

Figure 5.5. Schematic of the hardware implementation of R-Net and O-Net stages.

54

5.3 – Accuracy Evaluation

5.3 Accuracy Evaluation
In this section, the effect on the accuracy of the model, because of the previous
simplifications applied for the hardware implementation, are shown.

5.3.1 Effect of Further Simplifications
As discussed in section 4.2.2, the first changes made regard the elimination of the
facial landmark localization output and the usage of ReLU activation function in-
stead of the PReLU one.

Starting from this model, the successive modification applied is the usage of fixed
scaling factors 0.5, 0.25 and 0.125. The successive fig. 5.6 shows the PR curves for
the new model.

The last simplification concerns the thresholds after each stage. As explained in
previous section 5.2, in hardware the comparison between the face result and the
no-face one is performed for each proposal. In the software implementation, this is
reflected in the usage of a threshold equal to 0.5 after each stage. The next figure
5.7 shows the PR curves for the model with also this change applied.

55

Hardware Implementation

(a) Easy Dataset

(b) Medium Dataset

(c) Hard Dataset

Figure 5.6. PR curves for the MTCNN model with fixed scaling factors.

56

5.3 – Accuracy Evaluation

(a) Easy Dataset

(b) Medium Dataset

(c) Hard Dataset

Figure 5.7. PR curves for the MTCNN model with fixed scaling factors and
thresholds equal to 0.5.

57

Hardware Implementation

The next table 5.1 compares the mean accuracy of the different models.

Easy dataset Medium dataset Hard dataset
MTCNN with ReLU 67.9% 66.5% 43.2%
MTCNN with fixed scaling factors 53.7% 54.0% 32.0%
MTCNN with thresholds = 0.5 56.9% 57.9% 35.2%

Table 5.1. Comparison on the mean accuracy between the MTCNN from section
4.3.2 and the ones with fixed scaling factors and thresholds = 0.5.

As expected the accuracy of the model decreased from the case with an input
image pyramid, because now some faces in images are no more detected. Clearly,
this happens because the model is analysing three scaled images, and only faces
at these scales are now detected. This generates the largest decrease in the mean
accuracy of the model.
On the other hand, the application of a threshold equal to 0.5, slightly increases
the mean accuracy of the model, because now more proposals than before are taken
in early stages. This obviously increases the number of false negatives but also the
faces with low face probability are now included, while in the previous models they
were discarded.
The results are also comparable with what found in literature [1], that shows mean
average precision values between 45.67% and 56.10% for the MTCNN, when using
as input image a scaled version of the original one. The difference is that now the
model can be successfully fully implemented on FPGAs and not only on CPUs or
GPUs.

5.3.2 Effect of Quantization
The last evaluation about the accuracy regards the change from a 32-bits floating
point model to a one that will perform calculations on 16-bits fixed point numbers.
Usually, the process of reducing the number of bits for representing the weights of
the model and for the calculations performed is called quantization. The compar-
ison between the two models can be performed directly with the NN compiler. It
provides the values inside each layer of the model for the floating point, fixed point
and actual inference engine model, given a sample image at the input. The next
figure 5.8 shows the comparison between the three models for the output of the
O-Net.

58

5.3 – Accuracy Evaluation

Figure 5.8. Comparison of the floating point, fixed point and actual hardware
implementation results for the O-Net.

The graph represents the value for each of the six outputs coming from the O-Net
in the case of different representation of numbers. In the graph, only the curve
for the inference engine model is visible because the other two essentially overlap
one to each other with the green one. This happens because the difference in the
representation of numbers is very small, as shown in the next table 5.2 where the
actual values for the three models are reported. In order to have a quantitative
estimation of the error due to the quantization, the Mean Absolute Error (MAE)
has been calculated, leading to a value of

MAE Ä 0.014

No-face output Face output ∆X1 ∆Y1 ∆X2 ∆Y2

Floating point model 2.544 −3.664 0.101 0.114 −0.288 0.0699
Fixed point model 2.564 −3.396 0.100 0.110 −0.285 0.0640
Hardware implementation 2.573 −3.406 0.101 0.107 −0.282 0.0659

Table 5.2. Actual values at the output of O-Net for floating point, fixed
point and inference model.

59

Hardware Implementation

5.4 Resource Usage
In this section the resource usage of the actual implementation of the face detec-
tor is discussed. As said in section 3.2, the target FPGA is the Lattice ECP5UM-85.

Before starting the actual development of the VHDL code for the system imple-
mentation, an estimation of the resource usage has been done. In particular, the
focus is more on the memory usage, because it is limited to only 208 Embedded
Block RAM (EBR), while for LUTs and register their number is quite high so that
no particular interest has been given to them.

Firstly, the number of EBRs needed for the pre- and post-processing steps has been
evaluated. The highest contribution comes from the memories needed for saving the
input image and the results after the CNN core. Their number has been estimated
to be about 60.
Considering the whole system, the CNN accelerator module is the one that uses
most of the EBRs. Configuring it with the maximum computational capability
with 8 engines leads to an amount of 153 EBRs for it. Considering the previous
estimation for the rest of the system, this implementation is not suitable because
exceeds the 208 EBRs available on the FPGA. So, it forces to a reduction of the
computational power of the CNN core, that has been chosen to work with 6 engines
leading to a number of EBRs equal to 117. In this way the system should fit into
the target FPGA without any problem.
The actual resource usage for the hardware implementation of the face detector,
after the Place&Route step, is reported in table 5.3.

EBRs LUTs 1-bit Registers
207 (100%) 33638 (40%) 21005 (25%)

Table 5.3. Resource usage for the hardware implementation of the face
detector after Place & Route step.

It shows that also with the CNN core working with 6 engines, almost 100% of
the EBRs are used. This because the previous estimation for the pre- and post-
processing was wrong. In fact, when performing the estimation, some modules were
not considered and have been generated during the development of the VHDL code
for the system. Essentially, as stated in sec. 5.1, between the camera sensor and
the image RAM , a module for converting the input RAW10 data to RGB one is
placed, and it uses a FIFO memory inside it. In addition, all the no-face results
must to be saved after the CNN core and another memory is needed to save the
addresses of regions for which dataface > datano−face. Because of that the number

60

5.5 – Timing analysis

of EBRs has increased, however the implementation is sutable for the FPGA.

5.5 Timing analysis
Also for what concerns the timing, some previous analysis have been done before
starting with the actual implementation of the system.

Firstly the evaluation of the inference time per image for the software implemen-
tation of the MTCNN detector, including all the simplifications needed for its
hardware counterpart, is reported. In this case, the model has been tested with
images of the WIDER-FACE validation dataset, reporting a mean inference time
per image equal to

Inference time Ä 0.246 s

showing that at least the software implementation on an Intel Core i7-9750H can
be suitable for real-time detection with a throughput of about 4 Frame Per Sec-
ond (FPS).

The second analysis has been done considering more the actual hardware setup
used for the implementation. In this case the NN compiler has been used. After the
compilation of the network, the number of cycles needed for a single computation
is provided in output from the software and they are used for the estimation. In
order to produce an estimation, the number of proposals coming from the first two
steps has to be known. When doing this, the software implementation of the face
detector was not working so a number of 100 proposals after the P-Net and 10
proposals after the R-Net were considered as feasible. The working frequency for
the clock signal connected to the CNN core has been supposed to be 100 MHz. At
this point, the number of clock cycles used for the pre- and post-processing of the
data has not been considered because the main bottleneck for the computation is
for sure the CNN core. The next table 5.4 reports the number of clock cycles for
each of the three steps of the detection.

P-Net R-Net O-Net Total
clock cycles 932020 366505 1950475 3249001

Table 5.4. Number of clock cycles for the analysis of a single frame by the CNN core.

The result from these considerations is that the inference time for a single input
frame is

Inference time ≥ 0.57 s

61

Hardware Implementation

making it a good starting point for successive development and optimization of the
face detector.

After the development of the VHDL code, the synthesis and the P&R steps the
final outcome for the timing analysis has been given. It shows that

Inference time ≥ 12.5 s

making it not suitable for real time analysis at this point. The reasons behind this
result are essentially two:

1. previously wrong estimation of the proposals coming from the first two stages.
In fact, having at this point a working software implementation, a more accu-
rate estimation has been done by using the number of proposals generated by
the software implementation of the face detector with all the simplifications
made previously. It shows that the mean number of proposals, by using the
validation dataset from WIDER-FACE, is 870 and 120 after P-Net and R-Net
respectively. The next table 5.5 reports, just for the sake of completeness,
the number of clock cycles needed for each stage considering also the pre- and
post-processing steps.

Pre-processing CNN core calculation Post-processing
P-Net 18900 clk cycles 759196 clk cycles 6240 clk cycles
R-Net 1503360 clk cycles 313880340 clk cycles 330000 clk cycles
O-Net 794880 clk cycles 207462300 clk cycles 3750 clk cycles

Table 5.5. Number of clock cycles for the analysis of a single frame by
the system implemented.

2. limited working frequency for the CNN accelerator core. After the P&R step
the maximum frequency for the clock connected to the CNN core is limited to
42 MHz.

At this point, it is important to know which is the logical path that is limiting the
working frequency of the system. It has been discovered that the critical path is
the one for the generation and calibration of bounding boxes coordinates after the
P-Net computation, as highlighted in the next fig. 5.9.

62

5.5 – Timing analysis

Figure 5.9. Schematic of the P-Net stage with the highlighted critical path.

The reason is that for this block, the operations have been done with the help of
variables in VHDL, leaving the problem of how to convert the operations into logical
modules to the synthesis tool. It has been done in this way because the entries of
the output tensor are given in a serial way and are also saved serially on memories.
So, from the address of the location where the data is saved, it is necessary to
calculate the corresponding X1, Y1, X2 and Y2 for the proposal, in order to apply
equations 4.1 and 4.2 and then equations 4.4 and 4.5. These calculations imply
divisions and multiplications for numbers that are not power of two. For example,
considering the output tensor for the first rescaled image, that has a dimension
of 35x25x6, the X1 coordinate for the proposal saved at a specific address can be
calculated as:

numrow = (addr + 1)/25

numcol = X1 = addr − (numrow · 35)

At the time of the implementation a more optimal way was not found, so the usage
of variables has been the chosen solution. In this way the division and multiplica-
tion operations have been synthesized with the usage of multiplier modules, that
are by definition quite slow arithmetic modules.

One possible optimization can be the substitution of the multiplication operation
with shift-left and add ones, for example

x · 35 = x · (32 + 3) = x · (25 + 2 + 1) = (x << 5) + (x << 1) + x

where << represent the shift left operation.
The division can be substituted with a recursive subtraction of the divisor from
the dividend: the number of subtractions that can be performed until dividend ≥
divisor is counted and it gives the solution of the division to be rounded depending
on the value of the remainder. Due to a lack of time for the project, these optimiza-
tions have not been implemented because they require a change of the structure
around where the operations are performed, but in principle they should lead to
better performances thanks to the removal of multipliers modules.

63

64

Chapter 6

Conclusions and Future
Outlooks

At the end of the experience, a fully integrated face detection algorithm has been
developed for a low power FPGA, that was the primary task of the thesis. The
steps performed can be summarized as:

• Study and identification of a suitable Deep Learning approach for face detec-
tion problem that can fit in a low power FPGA with limited memory and
resources.

• The chosen method, the MTCNN network, has been implemented on software
and trained. Several simplification from the initial model have been applied
in order to make it suitable for the successive hardware integration. The most
important ones are the removal of the facial alignment output and the fixed
scaling factors for the pre-processing of the input frame. The effects of the
simplifications on the accuracy of the model have been discussed showing that
the highest impact on the loss of accuracy is due to the previously two cited
changes.

• An high level structure of the system implemented has been developed for a
previous estimation of resource usage and for expectations on the timing anal-
ysis. Then, with a top-down approach, the VHDL code for the face detector
has been developed, almost from the beginning, and the synthesis and P&R
steps have been performed in order to show that it can be integrated into the
target low power FPGA.

Although the final solution has an inference time that makes it not suitable for a
real-time application, the approach adopted for its implementation is completely
new and introduces new challenges. Usually, only the CNN accelerator module
is developed by using FPGAs [5], creating a module optimized for the specific

65

Conclusions and Future Outlooks

network, leaving the pre- and post-processing steps on CPUs or GPUs that have
less computation limitations but higher power consumptions than a FPGA. In this
work, also the last two mentioned tasks have been implemented on FPGA, making
necessary simplifications and solutions for problems arisen during the translation
of operations from software to hardware.

In conclusion, it can be certainly used a starting point for successive development
of CV applications that can perform calculations directly on sensing devices. Next
steps for the project could be:

• Development of a complete testbench for the whole system to ensure the cor-
rect timing interface between different modules. At this point only developed
modules have been tested singularly.

• Reduction of inference time per frame, by acting in two ways:

1. reduction of the number of proposals from the two early stages, acting
both on the training process of the network and with the integration on
hardware of some filtering modules as it is done on software with the NMS
algorithm;

2. optimization of the critical path that limits the working frequency. Instead
of using variables and leaving the synthesis of logical blocks to the tolls,
probably a by hand declaration of the arithmetic modules should lead
to better performances. The usage of some pipelining registers could be
another good solution.

• Optimal power analysis should be done by loading the code on the FPGA and
measuring the consumptions during computation thanks of a power analyser.
It is an essential step for a portable application.

66

Bibliography

[1] D. Chaves et al. “CPU vs GPU performance of deep learning based face
detectors using resized images in forensic applications”. In: 9th International
Conference on Imaging for Crime Detection and Prevention (ICDP-2019).
2019, pp. 93–98.

[2] Chen, Yu-Hsin and Krishna, Tushar and Emer, Joel and Sze, Vivienne. “Ey-
eriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional
Neural Networks”. In: IEEE International Solid-State Circuits Conference,
ISSCC 2016, Digest of Technical Papers. 2016, 262–263.

[3] Sony Semiconductor Corporation. IMX214 Software Reference Manual. Ver-
sion 4.1.3. 2018.

[4] Xin Feng et al. “Computer vision algorithms and hardware implementations:
A survey”. eng. In: Integration (Amsterdam) 69 (2019), pp. 309–320. issn:
0167-9260.

[5] C. Fu and Y. Yu. “FPGA-based Power Efficient Face Detection for Mobile
Robots”. In: 2019 IEEE International Conference on Robotics and Biomimet-
ics (ROBIO). 2019, pp. 467–473.

[6] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016.

[7] Richard Hahnloser et al. “Digital selection and analogue amplification coexist
in a cortex-inspired silicon circuit”. In: Nature 405 (July 2000), pp. 947–51.
doi: 10.1038/35016072.

[8] Simon Haykim. Neural Networks and Learning Machines. 3rd ed. Upper Sad-
dle River, NJ: Pearson Education, 2009.

[9] K. He et al. “Delving Deep into Rectifiers: Surpassing Human-Level Perfor-
mance on ImageNet Classification”. In: 2015 IEEE International Conference
on Computer Vision (ICCV). 2015, pp. 1026–1034.

[10] Andrew G. Howard et al. MobileNets: Efficient Convolutional Neural Net-
works for Mobile Vision Applications. 2017. arXiv: 1704.04861 [cs.CV].

67

https://doi.org/10.1038/35016072
https://arxiv.org/abs/1704.04861

BIBLIOGRAPHY

[11] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. 2015. arXiv: 1502.
03167 [cs.LG].

[12] J. Jo et al. “DSIP: A Scalable Inference Accelerator for Convolutional Neural
Networks”. In: IEEE Journal of Solid-State Circuits 53.2 (2018), pp. 605–618.

[13] Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. “ImageNet Classifi-
cation with Deep Convolutional Neural Networks”. In: Neural Information
Processing Systems 25 (Jan. 2012). doi: 10.1145/3065386.

[14] Anders Krogh and John A. Hertz. “A Simple Weight Decay Can Improve
Generalization”. In: Advances in Neural Information Processing Systems 4.
Ed. by J. E. Moody, S. J. Hanson, and R. P. Lippmann. Morgan-Kaufmann,
1992, pp. 950–957. url: http://papers.nips.cc/paper/563-a-simple-
weight-decay-can-improve-generalization.pdf.

[15] Yann LeCun, Y. Bengio, and Geoffrey Hinton. “Deep Learning”. In: Nature
521 (May 2015), pp. 436–44. doi: 10.1038/nature14539.

[16] Haoxiang Li et al. “A convolutional neural network cascade for face detec-
tion”. In: 2015 IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR) (2015), pp. 5325–5334.

[17] F. Liang et al. “The Design of Objects Bounding Boxes Non-Maximum Sup-
pression and Visualization Module Based on FPGA”. In: 2018 IEEE 23rd
International Conference on Digital Signal Processing (DSP). 2018, pp. 1–5.

[18] Ziwei Liu et al. “Deep Learning Face Attributes in the Wild”. In: Proceedings
of International Conference on Computer Vision (ICCV). Dec. 2015.

[19] B. T. Polyak. “Some methods of speeding up the convergence of iteration
methods”. In: USSR Computational Mathematics and Mathematical Physics
4(5) (1964), pp. 1–17.

[20] Dr. Adrian Rosebrock. Deep Learning for Computer Vision with Python -
Starter Bundle. 1st ed. Vol. 1. PyImageSearch, 2017.

[21] M. Sandler et al. “MobileNetV2: Inverted Residuals and Linear Bottlenecks”.
In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion. 2018, pp. 4510–4520.

[22] Lattice Semiconductor™. CNN Accelerator IP Core - User Guide. Version 2.1.
Oct. 2019.

[23] Lattice Semiconductor™. CrossLink VIP Input Bridge Board - Evaluation
Board User Guide. Version 1.4. Oct. 2018.

[24] Lattice Semiconductor™. ECP5 and ECP5-5G Family - Datasheet. Version 2.1.
Apr. 2019.

68

https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167
https://doi.org/10.1145/3065386
http://papers.nips.cc/paper/563-a-simple-weight-decay-can-improve-generalization.pdf
http://papers.nips.cc/paper/563-a-simple-weight-decay-can-improve-generalization.pdf
https://doi.org/10.1038/nature14539

BIBLIOGRAPHY

[25] Lattice Semiconductor™. ECP5 VIP Processor Board - Evaluation Board
User Guide. Version 1.4. Feb. 2018.

[26] Lattice Semiconductor™. HDMI VIP Output Bridge Board - Evaluation Board
User Guide. Version 1.1. June 2017.

[27] Lattice Semiconductor™. Lattice Embedded Vision Development Kit - User
Guide. Version 1.3. Nov. 2018.

[28] Lattice Semiconductor™. Lattice Memory Mapped Interface and Lattice In-
terrupt Interface - User Guide. Version 1.1. Feb. 2018.

[29] Lattice Semiconductor™. Lattice SensAI Neural Network Compiler Software
- User Guide. Version 2.1. Oct. 2019.

[30] Lattice Semiconductor™. Object Counting using Mobilenet CNN Accelerator
IP - Reference Design. Oct. 2019.

[31] Lattice Semiconductor™. USB3-GbE VIP IO Board -Evaluation Board User
Guide. Version 1.0. May 2018.

[32] A. Shrivastava, A. Gupta, and R. Girshick. “Training Region-Based Object
Detectors with Online Hard Example Mining”. In: 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA, USA:
IEEE Computer Society, June 2016, pp. 761–769. doi: 10.1109/CVPR.2016.
89. url: https://doi.ieeecomputersociety.org/10.1109/CVPR.2016.89.

[33] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks
for Large-Scale Image Recognition. 2014. arXiv: 1409.1556 [cs.CV].

[34] SONY. IMX214-0AQH5-C datasheet.
[35] Jost Tobias Springenberg et al. Striving for Simplicity: The All Convolutional

Net. 2014. arXiv: 1412.6806 [cs.LG].
[36] Paul Viola and Michael Jones. “Robust Real-Time Face Detection”. In: In-

ternational Journal of Computer Vision 57 (May 2004), pp. 137–154. doi:
10.1023/B:VISI.0000013087.49260.fb.

[37] Shuo Yang et al. “WIDER FACE: A Face Detection Benchmark”. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 2016.

[38] Zhenheng Yang and R. Nevatia. “A multi-scale cascade fully convolutional
network face detector”. In: 2016 23rd International Conference on Pattern
Recognition (ICPR) (2016), pp. 633–638.

[39] Bin Zhang et al. ASFD: Automatic and Scalable Face Detector. 2020. arXiv:
2003.11228 [cs.CV].

[40] K. Zhang et al. “Joint Face Detection and Alignment Using Multitask Cas-
caded Convolutional Networks”. In: IEEE Signal Processing Letters 23.10
(2016), pp. 1499–1503.

69

https://doi.org/10.1109/CVPR.2016.89
https://doi.org/10.1109/CVPR.2016.89
https://doi.ieeecomputersociety.org/10.1109/CVPR.2016.89
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1412.6806
https://doi.org/10.1023/B:VISI.0000013087.49260.fb
https://arxiv.org/abs/2003.11228

BIBLIOGRAPHY

[41] Shifeng Zhang et al. RefineFace: Refinement Neural Network for High Perfor-
mance Face Detection. 2019. arXiv: 1909.04376 [cs.CV].

70

https://arxiv.org/abs/1909.04376

Appendix A

Detailed Structure of the
Hardware Implementation

In this appendix a more detailed description of the structure of the hardware im-
plementation of the face detector is given, including the modules not discussed in
the previous chapters because not fundamental for the understanding but present
in order to ensure a correct functionality.

The system has been developed as an Algorithm State Machine with 102 states,
in each state a specific operation of the data flow is performed. Due to the large
number of operations and the complexity of the system, it has been chosen to
use separate states for simple operations, in order to have a better control on the
different modules. It can be done without any risk due to the large number of 1-bit
registers available on the ECP5UM-85 FPGA.
The working process flow of the detector is described as follows:

1. The command code has to be generated by the NN compiler for the three
networks and loaded on a SD card.

2. The SD card with the command code for the successive CNN core calculations
has to be connected to the board and its content to be loaded on the integrated
DDR3 RAM. It is performed in the early states of the process after the appli-
cation of the reset signal. Practically, the data from the connected SD card
is taken by a module called sd_spi with the aim to generate the signals for
the AXI3 protocol for writing into the DDR3 RAM. These signals constitute
a set of inputs for the axi_ws2m1 module: it is an arbiter that controls which
module can write into the DDR3 RAM. This is essential because also the CNN
core needs to write into external memories, in this way one module at the time
have writing access to the DDR3 RAM. The outputs from the axi_ws2m1 are
inputs for the axi2lattice128 module that generates the data burst for the

71

Detailed Structure of the Hardware Implementation

ddr3_ctrl which actually writes and reads data from the integrated memories.

3. In parallel, the two external cameras must be set for having the correct format
of frames. It is done thanks to the module CSI2_to_DVI_top, that consists
of two sub-modules:

• the first one is the i2c_top sub-module, it writes into the cameras’ register
in order to set them;

• the second is the image_pipe one that takes the data from cameras in the
RAW10 format and converts it to standard RGB data, with a width of 16
bits for each channel.

4. When the done signal for setting correctly everything is asserted, the system
starts saving the input frame into the three image RAMs, one for each channel.

5. After the saving of the input frame, the data is written into the CNN Accel-
erator Core by using a counter for generating the correct internal memories
addresses and the computation is performed, as detailed in sec. 3.2.1. During
computation, the CNN core reads the command code from the external mem-
ory and writes partial data into it if its internal memories are not sufficient.
For reading data from the DDR3 RAM, the CNN core AXI3 outputs are taken
in input by the axi2lattice module that generates the correct set of signals to
be sent to the ddr3_ctrl for the reading of data. For the writing of data the
process is quite the same, but the request of writing has to pass on the arbiter
axi_ws2m1 before to be taken in input by the axi2lattice module.

6. After the computation of the CNN core, the data is processed and saved on
the result memories, as explained in sec. 5.2.

7. When the last results are saved into memories, the process restarts waiting for
the next complete frame to be analysed.

The modules sd_spi, axi_ws2m1, axi2lattice128 and CSI2_to_DVI_top are taken
from an existing demo [30], while the ddr_ctrl and all the memories used are
generated through the diamond software for the generation of the IP, as well as
for the CNN Accelerator Core. All the other modules, mostly different types of
counters, have been described by hand and singularly tested.

72

	List of Tables
	List of Figures
	List of Acronyms
	Introduction
	The Project
	Goals of the project

	Outline

	Brief Introduction on Neural Networks Fundamentals
	Neural Networks
	Model of a Neuron
	Types of Activation Functions

	Network Architectures
	Learning Process
	Supervised Learning
	Optimization Algorithms

	Convolutional Neural Networks
	Convolution Operation
	Padding
	Typical Layers in CNNs

	Hardware setup
	EVDK
	ECP5 FPGA
	CNN Accelerator Core
	Tools Used

	Software Implementation
	CNN for Face Detection
	Multitask Cascaded Neural Network
	Network Structure
	Training Process

	Training Implementation
	First Simplification
	Second Simplifications

	Hardware Implementation
	Pre-processing
	MTCNN
	P-Net
	R-Net and O-Net

	Accuracy Evaluation
	Effect of Further Simplifications
	Effect of Quantization

	Resource Usage
	Timing analysis

	Conclusions and Future Outlooks
	Bibliography
	Detailed Structure of the Hardware Implementation

