
POLITECNICO DI TORINO

Department of Electronics and Telecommunications
Master’s Degree in Electronic Engineering

Master’s Thesis

VLSI architecture of a
low-complexity Wiener Filter for

video coding

Supervisor:

Prof. Maurizio Martina

Candidate:

Giorgio Armanno

October 12, 2020

Acknowledgements

I would like to thank, first of all, Professor Maurizio Martina who gives me the
chance to develop this work increasing my interest on the VLSI design subject that
i have taken during all my course of study. I thank him for supporting me, helping
me during the critical part of the work and sharing its precious knowledge with me.
I decided to write the following part in Italian to be better understood by the people
who this personal section is dedicated to.

Ci tengo a ringraziare il mio amico e collega Sandro che ha contribuito alla realiz-
zazione di questa tesi e con cui ho condiviso la maggior parte della mia giornata negli
ultimi mesi. Lo ringrazio per aver messo tutto il suo impegno e le sue conoscenze.
Ringrazio i miei ex-colleghi ed ora amici Ico e Fè, che mi hanno aiutato ad ambi-
entarmi in una città nuova diventando un punto di riferimento per me. Ringrazio
il mio amico Jack, conosciuto per caso ed insostituibile compagno di avventure.
Ringrazio Ciccio, non solo amico, ma coinquilino, confidente, fratello, senza il quale
probabilmente non sarei arrivato fin qui. Ringrazio Simone, cugino acquisito ma
vero, per esserci sempre stato. Ringrazio il mio amico Pupo, compagno di giochi e
di chiacchiere.

Ringrazio l’amore della mia vita Nadia, che mi ha tenuto la mano negli ultimi 10
anni, che mi è stata accanto in ogni momento di difficoltà e di debolezza, che non ha
mai dubitato di me , accettando le mie ansie e i 1522 km di distanza. La ringrazio
per avermi aspettato senza mai lamentarsi e per emozionarsi sempre al posto mio.
Ringrazio tutta la sua famiglia e le sue "mie" sorelle.

Ringrazio la mia famiglia per il supporto che non è mai mancato: i miei fratelli
tutti, 3 padri per me. I loro figli per la gioia che portano in casa. Mia nonna, per
cui non basterebbe un libro intero per esprimere la graditudine che nutro nei suoi
confronti e gli altri nonni che sarebbero stati tanto felici di esserci. I miei zii e il
resto della famiglia per la loro stima.

Infine i miei genitori, anche se non basta un grazie per ripagare il sostegno,
morale prima che economico, e la forza che mi hanno dato in questo percorso. Li
ringrazio per essersi privati per me, per averci sempre creduto e per avermi messo
sempre in cima a tutto.

Ringrazio chiunque abbia creduto anche un minimo in me.

i

Abstract

The aim of presented thesis work is to provide a special purpose hardware imple-
mentation of AOMedia AV1 Wiener Filter. The basic idea was to start from the
analisys of the complete AV1 codec and then focus on a very specific part based on
the profiling results of the codec, in order to understand the percentage of use for
each function and evaluate which one needed of more attention. The work presented
here concerns the design, the implementation, the analysis and a possible optimiza-
tion of an Hardware architecture for the Wiener Filter of AV1. The reasons why
the attention was focused on the Wiener filter are multiple: first of all, the lack of
informations about this kind of process in literature. Moreover, the importance of
the in-loop filters in AV1 codec mechanism of improving the quality of the output
images and, finally, the considerations about its usage in the coding process that
will be better explained in thesis development. The first attempt to implement the
architecture was to try to start from the source C code (available on AOMedia Web-
site using GitHub) and build an equivalent model based on matrix calculus. This
approach has been left because of many drawbacks related to the size of involved
data that will be explained during the following chapters. So the choice was to
follow completely the C code to maintain consistency : the basic implementation
derives from an algorithm to architecture mapping in terms of data, operations, flow
and parallelism. The basic idea of the presented work is not only to show the steps
and the design choices to obtain a working VLSI implementation starting from some
binding inputs, but also how it is possible to improve it based on the application
to develop. So, once obtained a working architecture, it has been synthesized with
Synopsys to evaluate the critical points and understand the direction to follow to
improve that performances. Due to the huge dimension of many internal component
of the filter and the very high parallelism, the complexity has been evaluated like
one of the most critical parameter to optimize. Starting from the basic implemen-
tation and by using deeply a folding approach on the bigger component inside the
architecture, a low-complexity version has been implemented, obtaining an area
reduction of about 90%.

ii

List of Figures

1.1 The historical delevopment of video codecs [5] 2
1.2 AV1 usage percentage of all browsers 3
1.3 AV1 block diagram . 5
1.4 AV1 coding loop filters . 8

2.1 Wiener Filter process . 12

3.1 Mij x bi data path . 25
3.2 Hij x bi x bj data path . 27
3.3 A enforcement data path . 28
3.4 B enforcement data path . 29
3.5 Partial Pivoting Data Path . 32
3.7 First stage of Forward Elimination:Data Path for bFE 33
3.6 First stage of Forward Elimination: Data Path for AFE 34
3.8 Second stage of Forward Elimination: Data Path for bFE 35
3.9 Second stage of Forward Elimination: Data Path for AFE 35
3.10 Combinational Data Path for Back-Substitution 38
3.11 Top-level FSM for Update a . 40
3.12 Top-level FSM for Update a . 41
3.13 Mij x ai data path . 43
3.14 Hij x ai x aj data path . 45
3.15 Top-Level Data path for update b . 47
3.16 Top-Level Data Path for Wiener Filter 48
3.17 Top-Level FSM for Wiener Filter . 49
3.18 Modelsim simulation for basic Wiener Filter 50

4.1 Optimized Restoring Divider . 59
4.2 Hardware implementation forMij x bi 61
4.3 Hardware implementation forHij x bi x bj 63
4.4 Hardware implementation for first stage of Forward Elimination . . . 66
4.5 Hardware implementation for second stage of Forward Elimination . . 68

iii

iv List of Figures

4.6 Hardware implementation for optimized Back-substitution and storing 71
4.7 Hardware implementation for update a 73
4.8 Hardware implementation for optimized Mij x ai 75
4.9 Hardware implementation for optimized Hij x ai x aj 76
4.10 Hardware implementation for update b 79

5.1 Modelsim simulation for optimized Wiener Filter 82

List of Tables

3.1 Critical Path delay for basic implementation 52
3.2 report_area results of basic implementation 53
3.3 Total area of basic design implementation 53
3.4 Video sequences fps for the basic architecture 54

4.1 Area occupation of each component for basic implementation 57
4.2 Complexity comparison between dividers 60
4.3 Complexity comparison between Mij x bi 62
4.4 Complexity comparison between Hij x bi x bj 64
4.5 Complexity comparison between Forward Elimination 67
4.6 Complexity comparison between Back-substitution and storing . . . 70
4.7 Complexity comparison between Mij x ai 74
4.8 Complexity comparison between Hij x ai x aj 78

5.1 report_area results of optimized implementation 82
5.2 Total area of top-level optimized design implementation 83
5.3 Video sequences fps comparison . 83
5.4 Reports contribution comparison . 84
5.5 Combinational and sequential contributions comparison 84
5.6 Total complexity comparison . 85

v

Contents

1 Introduction 1

1.1 A brief introduction to Video Codec 1

1.2 The next generation open-media codecs : AOMedia AV1 2

1.3 AV1 Video Coding . 3

1.3.1 A comparison between AV1 and other video codecs 3

1.3.2 AV1 block diagram . 4

1.3.3 AV1 Coding Technique . 5

1.4 Thesis organization . 9

2 Wiener Filter overview 10

2.1 AV1 Loop Restoration Unit . 10

2.2 Wiener filter behavior . 10

2.3 C model from AOMedia AV1 Codec Library 12

2.3.1 Pre-processing stage . 14

2.3.2 update_a_sep_sym function 15

2.3.3 linsolve_wiener function . 17

2.3.4 update_b_sep_sym function 20

3 A basic architecture of AV1 Wiener Filter 22

3.1 Algorithm to Architecture Mapping 23

3.1.1 Hardware design implementation of Update a 24

3.1.2 Hardware design implementation of update b 42

3.2 Implementation analysis: results and performances 48

3.2.1 Simulation with Modelsim . 50

3.2.2 Synthesis with Synopsys . 51

3.3 Elaboration for a real-time video sequence 54

3.4 From basic to optimized implementation: the need of a complexity
reduction . 55

vi

Contents vii

4 Low complexity architecture of AV1 Wiener Filter 56
4.1 Divider algorithm optimization . 58
4.2 Hardware architecture of optimized update a 60

4.2.1 Computation of vector A . 61
4.2.2 Computation of matrix B . 62
4.2.3 First stage of Forward Elimination 65
4.2.4 Second stage of Forward Elimination 67
4.2.5 Back-substitution and storing 69
4.2.6 Top-level . 70

4.3 Hardware implementation of optimized update b 74
4.3.1 Computation of vector A . 74
4.3.2 Computation of matrix B . 75
4.3.3 Top-level . 78

5 Results and Synthesis 81
5.1 Optimized design simulation . 81
5.2 Optimized design synthesis . 82
5.3 Elaboration for a real-time video sequence 83
5.4 Results comparison . 84

6 Conclusions 86

Bibliography 89

viii Contents

Chapter 1

Introduction

1.1 A brief introduction to Video Codec

According to a Cisco Research [1],video content composes more than 70% of internet
traffic today, and a growth of more than 80% worldwide is expected by 2021 as
well as the demand of a greater resolution both for images and videos is increased.
Nowadays for each electronic device, such us smartphone, tablet or TV a Full HD
resolution is available and 4K technology is quite common, leading to a constant need
of more memory space to store these bigger informations and, moreover, of a more
efficient data compression system, able to remove spatial and temporal redundancy
to improve images and video processing.

The key component of a video processing is the codec. It is used to compress
and decompress a digital media and it is mainly composed by two part: encoder and
decoder. The first one performs the compression (or encoding), while the second
performs the decompression (or decoding). Typically, the compression is lossy, since
it causes a loss of informations from the uncompressed video, damaging video quality.
Obviously, the accuracy of reconstruction of the original uncompressed video changes
according to the specific codec used and can be determined by considering many
relevant parameters, such as the amount of data used to represent the video (called
bit-rate), the sensitivity to be "lossy", the complexity of encoding and decoding
algorithm and so on.

The video codec behavior can be summarize in few passages: video is just a
sequence of pictures, and the encoder takes one of that at a time and compresses
it.The already encoded pictures are used to make a prediction of the actual one: the
coding algorithm computes the difference between the predicted and the real current
picture, and then processes it by means of a DCT (Discrete Cosine Transform) unit
or other transform coding algorithm. After a quantization step, the resultant bit-
stream is released as output and sent to decoder.

1

2 Introduction

Figure 1.1: The historical delevopment of video codecs [5]

1.2 The next generation open-media codecs : AO-

Media AV1

The most important companies all over the world is spending much time and money
trying to improve, even in small quantity, the file sizes or the image quality because
this leads to many benefits both for video creators and consumers. In the last years
the need for an open media codec has increased with the growing of internet video
contents, because many companies spent ten or thousand millions to compress and
decode video files and, also, because the triumph of the internet is founded on the
fact that the basic technologies (like browsers, operating system..) are open and
available to be freely used. The combination of those needs led several big compa-
nies to create some alternatives to avoid paying very expensive licensing fees a year:
for example, in 2013 Mozilla created a functional prototype of Daala Project while
Google was promoting VP9. The main goal was to create a new generation of video
coding, able to share video fast, easy and at low cost. In this panorama Mozilla,
Google and Cisco, with Amazon and Netflix and some hardware vendors like AMD
and Intel, founded AOMedia in 2015 that, in 2018, published the first version of
AV1 [2], a video codec largely based on VP9 but including many significant im-
provement, primarily the full compatibility with W3C Patent Policy [3]: essentially
it can be fully implemented with a royalty-free licensing requirements. This helps
the companies to broadcast in an efficient way video over the internet, respecting
the required resolution and quality. An overview of the evolution of video codec
technology is reported at figure 1.1

The powerful innovation came with AV1 is the compatibility among all web
technological support, like browsers. Apart from Google and Mozilla that, being
AOMedia members obviously support AV1 playback, also many other web browsers

1.3. AV1 Video Coding 3

Figure 1.2: AV1 usage percentage of all browsers

play AV1 providing high quality video content reducing bandwidth. Nowadays,
according to "Can I Use" [4], AV1 is used in 31.82% of all browsers, like in figure
1.2.

1.3 AV1 Video Coding

The interest in the analysis of several aspects of AOMedia AV1 derives from the
innovation that it represents due to the perpetual attempts to improve the codec
mechanism by testing and proposing new coding tools. Starting from an initial-
ization set almost equal to the VP9 one, nowadays AV1 is in a final-phase where
very special purpose features have been designed and an high-level syntax has been
reached.

1.3.1 A comparison between AV1 and other video codecs

It is necessary to do a premise before concentrating on how AV1 is different from
other video codecs. As a matter of fact, making an objective comparison between
video codecs is very difficult because of the difference between video coding stan-
dards and the different implementations for the related encoders: the point is that
standards can not be simulated, only their implementation can be used. So, even
if two different encoder implementations produce comparable bit-streams using the
same standard, they can be very different. This is why at the Picture Coding Sym-
posium (PCS), in 2018, were presented different works of comparison between video

4 Introduction

coding standards. In particular, for a practical Over-the-top (OTT) streaming ap-
plication AV1 was compared to standard video codecs like VP9 and HEVC using
a proper input data set suitable for that applications and able to cover a range of
video sequences with different properties [5]. The AV1 average bitrate has been
observed to be reduced of 13% respect to VP9 and 17% respect to HEVC and its
BD-rate (Bjontegaard rate) reduction increases to a range of 22%-27% respect to
VP9 and 30%-40% respect to HEVC. So, for an almost standard input sequence,
AV1 outperforms both VP9 and HEVC. This kind of result is confirmed also by
other researches, that report an improvement up to 30% of the average bitrate than
VP9, accepting to pay obviously a reasonable increases in encoding complexity [6].
These results are useful only to give an idea of the video coding performances and
an indication on the historical reasons that led to the rise of AV1, so it should be in-
terpreted carefully without forgetting the initial premise. However, the discussions
on the comparison between video codecs performances produced also completely
different results: some work reports that HEVC performs better than AV1 [7] with
plausible conclusions. It seems strange that opposite minds appear correct at same
time, indeed the point is that it depends on the choice of codec implementation
as mentioned before, configuration, metrics and test sequences, since each different
codec works differently depends on the type of content it has to perform.

1.3.2 AV1 block diagram

A reference implementation of decoder and encoder is published by AOMedia and
available on its official website [8]. By analyzing their description in C language it
is possible to build a block diagram concerning the main processing stages of AV1
codec algorithm, and it is represented in figure 1.3.

The coding process starts taking one frame at a time from the initial sequence of
pictures. Each current frame is divided into different size parts before being encoded.
Then, it is processed by intra prediction or inter prediction based on the kind of
frame: in particular, intra prediction is employed to exploit spatial redundancy and
correlation within pixels inside the same frame while inter prediction is used to
exploit temporal redundancy between more subsequent frames by employing the
motion estimation. What is elaborated from prediction blocks is subtracted to the
original input frame to compute the error made by prediction,then processed by
means of transformation and quantization algorithm and finally coded with a non-
binary entropy coding to be transmitted. In addition to the encoding operation,
the encoder enables a decoder to improve prediction quality by using the previous
reconstructed frame: the quantized data is inversely quantized and transformed
to be summed to the prediction signal. AV1 uses also several loop filtering and
post-processing tools to the processed frame, like Film Grain Synthesis, to improve
reconstruction quality.

1.3. AV1 Video Coding 5

Figure 1.3: AV1 block diagram

1.3.3 AV1 Coding Technique

• Transform Coding : as mentioned before, AV1 allows partitioning in units of
different sizes, differently from VP9. In particular, it supports squares (2:1 and
1:2) and rectangles (4:1 and 1:4) sizes, going from a 4 x 4 to 64 x 64 pixels.
AV1 exploits also a set of transform kernel, where DCT, ADST, flipADST and
IDTX are involved and applied both in horizontal and vertical directions.

• Coding Partition: frame is separated into adjacent same-sized blocks called
"superblocks" but, differently from VP9, AV1 use 10 structures of partition
starting from a 128 x 128 or 64 x 64 frame because it includes also rectangular
partitions absent in VP9. The recursive partitions is maintained until reaching
4x4 pixels.

• Intra Prediction: AV1 updates VP9’s intra prediction modes including several
tools developed as follows:

– Enhanced Directional Intra Prediction: the directional intra mode angle
has been improved to have a better resolution. Starting from 8 nominal
angles, a step size of 3 degree is introduced in order to obtain an overall
angle given by the sum between the nominal angle and a "delta angle",

6 Introduction

that add a contribute that belong to the interval from 0 to 3 times the
step size.

– Non-directional Smooth Intra Predictors: a quadratic interpolation in
both horizontal and vertical directions is employed by means of three
new smooth predictors : SMOOTH_V, SMOOTH_H and SMOOTH.

– Recursive-filtering-based Intra Predictor : five FILTER_INTRA modes
are designed to remove spatial redundancy. Each mode is represented
like 7-pixels filter able to exploit correlation between pixels in a 4 x 2
block and 7 neighbours. Each block is predicted based on the different
weight filters gives to the neighbours.

– Chroma Predicted from Luma(CfL): chroma pixels are processed as lin-
ear function of reconstructed luma pixels without using decoder, but just
determining proper parameters from original chroma pixels and then sig-
naling them in the bitstream [9].

– Color Palette as a Predictor : to simplify the process of artificial videos,
many blocks is approximated by using a small number of single colors
(up to 8).

– Intra Block Copy : Intra predictor uses informations about reconstructed
blocks in the same frame, as happens with Inter predictor between subse-
quent frames. This optimizes the prediction process especially from the
videos characterized by a repeated content within the same frame.

• Inter Precition: differently from VP9, where a maximum of 2 references be-
tween 3 possible ones are used for motion compensation module, in AV1 intra
coder is more powerful since it extends the set of reference frames motion
vectors. So, the prediction is improved by means of several algorithms:

– Extended Reference Frames : the number of references for each frame is
extended from 3 (VP9) to 7. VP9 used:

∗ "LAST" frame, that is the nearest past one;

∗ "GOLDEN" frame, that is the distant past one;

∗ "ALTREF" frame, that is the temporal filtered future one;

AV1 adds two past frames, called "LAST2" and "LAST3" and two future
frames, called "BWDREF" and "ALTREF2". What is created is a multi-
layer model of prediction where frames are shared alternatively and can
be used individually or combined in a pair to increase the number of
possible combination of references.

– Dynamic Spatial and Temporal Motion Vector Referencing: AV1 develops
a motion vector coding incredibly improved, since it exploits both spatial

1.3. AV1 Video Coding 7

and temporal candidates. It means that, starting from a certain frame,
the motion vector consult neighborhood to generate the spatial references
set, but exploits also a temporal motion estimation to generate temporal
references.

The motion estimation works in three steps:

∗ Motion vector buffering;

∗ Motion trajectory creation;

∗ Motion vector projection.

The extimation procedure can be explained as follows: a reference frame
index and the correspondent motion vectors are stored for each coded
frames and, before decoding, the possible motion trajectories going from
one frame to another one are examined and recorded. Once all the refer-
ence frames have been determined, the motion extimated frame are de-
rived by applying the motion trajectories to the desired reference frames.
At this point, temporal informations are included and then "filtered"
until reaching a maximum of 4 final references.

– Overlapped Block Motion Compensation (OBMC): a combination of pre-
dictions is made by using smoothing filters in both horizontal and vertical
filter to decrease prediction errors, especially in block edges.

– Warped Motion Compensation:it is exploited by both global and local
warped motion compensation.

∗ The local warped motion describes each model parameters at the
block level by motion vectors assigned to neighborhood to analyze
the local motion variation with a "minimal overhead"

∗ The global warped motion analyze the motion models from the cur-
rent frame and the reference.

The real advantage of AV1 warping is the possibility to be implemented
in an efficient way just shearing horizontally and then vertically, using
proper "8-tap interpolation filters" for each shear.

– Advanced Compound Prediction: AV1 includes several new tools for com-
pound prediction, that can be generalized by the formula:

pf (i, j) = m(i, j)p1(i, j) + (1−m(i, j))p2(i, j) (1.1)

where, for a pixel (i, j),p1 and p2 are two predictors, pf is the final pre-
dictor and m(i, j) are the weighting coefficients belonging to range [0-1]

• Entropy Coding : as mentioned before, AV1 uses a non-binary entropy coding,
based on a multi-symbol arithmetic to reach an higher precision than the

8 Introduction

maximum achievable with binary configuration. Each syntax element belongs
to a precise alphabet of elements.

• Enhancement Filter : AV1 is characterized by in-loop and post-processing
tools. These technique don’t have necessarily to do with efficiency or encoding
improvement , their aim is just to make the output image look better. To be
more precise, AV1 uses a combination of pre-processing filters, post-processing
filters and in-loop filter, that belongs to the coding process. A basic structure
of an AV1 coding loop filters is presented at 1.4

Figure 1.4: AV1 coding loop filters

It is possible to identify three different kind of filters. The first is called
deblocking filter : it remove artifacts at the edges of the codec blocks, mainly
due to DCT that, even if works very well to compact energy, it tends to
accumulate error at the edges. The second one is called Constrained Direction
Enhancement Filter (CDEF) and removes particularly noise formed at sharper
edge. Since it is directional it can be used directly in the edges and it can follow
them instead of filtering in every possible directions as happens in most other
filters. The third filter, called Loop Restoration filter is composed by two
configurable filters: a Wiener Filter and a Self-Guided Filter.This is that’s the
thesis work focuses on and it is better explained in Chapter 2

– Self-Guided Filter : as the name suggests, in this case the guide picture
is the same as the imagine to be filtered. The decoder employees two
filters of this type, a 3x3 and 5x5 and then their outputs are weighting
combined obtain the final restored version.

– Wiener Filter : the filtering is exploited by using a 7x7 separable Wiener
filter, combining symmetry and normalization constraints to reduce the
number of filtered parameters sent.

1.4. Thesis organization 9

1.4 Thesis organization

The thesis work is organized as follows:

• This is the introductive Chapter 1, where a brief and concise overview about
video codec and more in details AV1 tools has been presented to illustrate the
panorama in which this work has been developed and give the basics to better
understand what is displayed on the next chapters.

• The Chapter 2 focuses on a more precise presentation about Wiener Filter
concepts and a detailed explanation of its C implementation for AOMedia AV1
video codec, available on AOMedia website through GitHub as mentioned.

• The Chapter 3 is about the development of a basic Hardware implementation
for the filter including all the basic blocks involved: starting from the C de-
velopment, each mapped Hardware component is presented reaching the final
version of the VLSI architecture. The analysis of obtained results in terms of
speed and complexity is proposed, underlining the reasons why a complexity
optimization is necessary and which is the best way to reach it.

• The Chapter 4 concerns the development of a low-complexity implementation,
illustrating which blocks have been modified and how.

• In the Chapter 5, the final one, a comparison between the previous two archi-
tectures is presented in order to understand the level of improvement reached.

Chapter 2

Wiener Filter overview

2.1 AV1 Loop Restoration Unit

The field of the image restoring is complex since it involves an huge number of
different technique to increase image or video quality, working for example on blurs,
banding, noise or contrast. The interest on this topic is increased when these tools
started to be used inside image and video codec both to recover some information lost
from compression and make them visibly more pleasant. The problem to overcome
regards the integration of these schemes inside a video codec process because of their
high-complexity : implementing a restoration tool able to work on input contents
that could be high-resolute could requires a very high computational cost, expecially
if binding constraint have to be respect. The complexity have been reduced in
modern video codecs by optimizing restoration paradigms and working on data
transmission from encoder to the decoder.

The AV1 Loop Restoration Unit is composed by two switchable filters:

• Self-Guided Filter : as the name suggests, in this case the guide picture is the
same as the imagine to be filtered. The decoder employees two filters of this
type, a 3x3 and 5x5 and then their outputs are weighting combined obtain the
final restored version.

• Wiener Filter : the filtering is obtained by using a 7x7 separable Wiener co-
efficient, combining symmetry and normalization constraints to reduce the
number of filtered parameters sent.

2.2 Wiener filter behavior

In video coding process, Wiener Filter is used to reconstruct a degraded frame by
means of a non-causal filter where each pixel is considered in a w x w window

10

2.2. Wiener filter behavior 11

around it, where w is n odd number such that w = 2r + 1, with r an integer
number representing the radius of involved window [6]. It is worth to noting that
the filtering block doesn’t work with the nominal value of w2 input taps, but it
receives a processed version of the taps contained in the matrices H and M. In
particular:

• H is given by

H = E[XXT] (2.1)

that is the autocovariance of X, the column-vectorized version of the w2 input
taps.

• M is given by

M = E[Y XT] (2.2)

that is the cross correlation between of X and the source pixel Y.

Clearly this approach requires to transmit w2 values for each filtered pixel and
increments both bit rate and decoding complexity. For this reason many constraints
needs to be imposed [6]:

• The resultant filter has to be separable: it means that filtering can be imple-
mented separately for horizontal and vertical w taps.

• Each horizontal and vertical filter have to be symmetric.

• Horizontal and vertical filter coefficients can not assume all possible values,
but such that their sum is exactly "S" for both filters, where S is a constant
value that, for the AV1 implementation is equal to 216.

These constraints make the filtering very powerful since they allow to send for each
filter just r values instead of w. Moreover, since the filter operates only to compute
of the first r elements, the implementation complexity is reduced considering that
both the vertical and horizontal filter, hereinafter called a and b respectively, can be
derived as follows:

a(i) = a(w − 1− i), i = 0, 1, ..r − 1 (2.3)

a(r) = S − 2
r−1
∑

i=0

a(i) (2.4)

b(i) = b(w − 1− i), i = 0, 1, ..r − 1 (2.5)

b(r) = S − 2
r−1
∑

i=0

b(i) (2.6)

12 Wiener Filter overview

The filtering process follows a simple iterative scheme: it starts with an initial value
of horizontal and vertical filters and optimize (a in this case) one of them while the
other is kept fixed (bin). Once the first the r-taps version of the filter is obtained, it
is reconstructed using the equations 2.3, 2.4, 2.5 and 2.6 and then used as input for
the other filter processing. The Wiener filter process is represented at figure 2.1.

Figure 2.1: Wiener Filter process

2.3 C model from AOMedia AV1 Codec Library

As mentioned before, AV1 library source code is available online at [8]. The software
reference for Wiener Filter is reported in "pickrst.c" function inside "search_wiener"
source code. Before going on it is necessary to clarify some parameters that is often
used inside C model implementation:

• In AV1 implementation, r = 3 and so w = 7.

2.3. C model from AOMedia AV1 Codec Library 13

• H is w x w matrix of w x w matrix Hij, so it has a dimension of w2 x w2 (that
is a 49x49).

H =

H00 H01 H02 H03 H04 H05 H06

H10 H11 H12 H13 H14 H15 H16

H20 H21 H22 H23 H24 H25 H26

H30 H31 H32 H33 H34 H35 H36

H40 H41 H42 H43 H44 H45 H46

H50 H51 H52 H53 H54 H55 H56

H60 H61 H62 H63 H64 H65 H66

• M is a 1 x w vector of 1 x w vector Mi, so it is a 1 x w2 vector, but during
the elaboration it is considered like a w x w matrix to handle it easier.

M =
[

M0 M1 M2 M3 M4 M5 M6

]

• As explained , the sum S of components of the output vector is equal to 216.

In the following pieces of code is used:

• WIENER_WIN to indicate a dimension of 7.

• WIENER_WIN2 to indicate a dimension of 49.

• WIENER_HALFWIN1 to indicate the middle position component of a 7-
element vector, the fourth one.

• WIENER_FILT_SCALE to indicate a scaling factor of 27

• WIENER_TAP_SCALE_FACTOR to indicate 216 value. The name clarify
the reason why this value has been used: it represents a scaling factor necessary
to avoid to work with high parallelism data.

• NUM_WIENER_ITERS to indicate how many times the Wiener filtering
process is called and it is equal to 5;

14 Wiener Filter overview

2.3.1 Pre-processing stage

The pre-processing stage is used to evaluate both H and M matrices, and it is done
by the function wiener_decompose_sep_sym, which code is reported below:

stat ic int wiener_decompose_sep_sym (int wiener_win , int64_t ∗M, int64_t
∗H, int32_t ∗a , int32_t ∗b) {

int k=0;

stat ic const int32_t i n i t _ f i l t [WIENER_WIN] = {
WIENER_FILT_TAP0_MIDV, WIENER_FILT_TAP1_MIDV, WIENER_FILT_TAP2_MIDV

,
WIENER_FILT_TAP3_MIDV, WIENER_FILT_TAP2_MIDV, WIENER_FILT_TAP1_MIDV

,
WIENER_FILT_TAP0_MIDV,

} ;
int64_t ∗Hc [WIENER_WIN2] ;
int64_t ∗Mc[WIENER_WIN] ;
int i , j , i t e r ;
const int plane_of f = (WIENER_WIN − wiener_win) >> 1 ;
const int wiener_win2 = wiener_win ∗ wiener_win ;
for (i = 0 ; i < wiener_win ; i++) {

a [i] = b [i] =
WIENER_TAP_SCALE_FACTOR / WIENER_FILT_STEP ∗ i n i t _ f i l t [i +

plane_of f] ;
}
for (i = 0 ; i < wiener_win ; i++) {

Mc[i] = M + i ∗ wiener_win ;
for (j = 0 ; j < wiener_win ; j++) {

Hc [i ∗ wiener_win + j] =
H + i ∗ wiener_win ∗ wiener_win2 + j ∗ wiener_win ;

}
}

i t e r = 1 ;
while (i t e r < NUM_WIENER_ITERS) {

update_a_sep_sym(wiener_win , Mc, Hc , a , b) ;
update_b_sep_sym(wiener_win , Mc, Hc , a , b) ;
i t e r ++;

}

return 1 ;
}

Both H and M and initial value for filters a and b are derived by a constant
vector init_filt. For each iteration, the Update a process occurs by calling up-
date_a_sep_symfunction and providing all the needed inputs, that are H,M and
bin; once finished, it returns the updated a filter value, used then by the function
update_b_sep_sym to obtain in the same way the updated b filter. The entire

2.3. C model from AOMedia AV1 Codec Library 15

process will be repeated until the limit value of the number of iterations equal to 5
is reached.

2.3.2 update_a_sep_sym function

The function is defined as follows:

stat ic AOM_INLINE void update_a_sep_sym(int wiener_win , int64_t ∗∗Mc,
int64_t ∗∗Hc , int32_t ∗a , int32_t ∗b) {

int i , j ;

int32_t S [WIENER_WIN] ;
int64_t A[WIENER_HALFWIN1] , B[WIENER_HALFWIN1 ∗ WIENER_HALFWIN1] ;
const int wiener_win2 = wiener_win ∗ wiener_win ;
const int wiener_halfwin1 = (wiener_win >> 1) + 1 ;

• B is a 4x4 matrix and each (i, j) element is derived as:

B =
w−1
∑

i=0

w−1
∑

j=0

Hij · b(i) · b(j) (2.7)

• A is a 1x4 vector and each i− th element is derived as:

A =
w−1
∑

i=0

Mi · b(i) (2.8)

The whole computation is reported in the following extract of C model:

for (i = 0 ; i < wiener_win ; i++) {
for (j = 0 ; j < wiener_win ; ++j) {

const int j j = wrap_index (j , wiener_win) ;
A[j j] += Mc[i] [j] ∗ b [i] / WIENER_TAP_SCALE_FACTOR;

}
}
for (i = 0 ; i < wiener_win ; i++) {

for (j = 0 ; j < wiener_win ; j++) {
int k , l ;
for (k = 0 ; k < wiener_win ; ++k) {

for (l = 0 ; l < wiener_win ; ++l) {
const int kk = wrap_index (k , wiener_win) ;

const int l l = wrap_index (l , wiener_win) ;
B[l l ∗ wiener_halfwin1 + kk] +=Hc [j ∗ wiener_win + i] [k ∗ wiener_win2 +

l] ∗
b [i] /WIENER_TAP_SCALE_FACTOR ∗ b [j] / WIENER_TAP_SCALE_FACTOR;

} } } }

16 Wiener Filter overview

WIENER_TAP_SCALE_FACTOR is used to to avoid to reach a large par-
allelism because of the multiplications without increasing the complexity, since it
is just a logic shifting: whenever a and b vector are used as operand in any com-
plex operation, their components are properly scaled. This will obviously involve
an approximation since the codec will never consider floating point number, so each
fractional part is removed in scaling.

wrap_index function is used to index input matrices and select for each cycle
the correct component for both A and B . It is done such that the operation of
multiplication results completely symmetric. Let’s consider, for example, the first
7x7 sub-matrix H00: each element is multiplied step by step by b filter components
and B matrix will be obtained by adding each single contribution symmetrically.
The process is based on the idea to obtain the output filter by solving a linear
system of equation in which:

• Matrix B is the coefficients matrix

• Vector A is the column-matrix of constant terms

The system solution represents the output value of the filter a and since, as explained
in paragraph 2.2 only r = 3 filtered taps have to be sent, it is necessay to process
these structures by an enforcement block to reduce the matrices size. It works as
follows:

for (i = 0 ; i < wiener_halfwin1 − 1 ; ++i) {
A[i] −=

A[wiener_halfwin1 − 1] ∗ 2 +
B[i ∗ wiener_halfwin1 + wiener_halfwin1 − 1] −
2 ∗ B[(wiener_halfwin1 − 1) ∗ wiener_halfwin1 + (

wiener_halfwin1 − 1)] ;

for (i = 0 ; i < wiener_halfwin1 − 1 ; ++i) {
for (j = 0 ; j < wiener_halfwin1 − 1 ; ++j) {

B[i ∗ wiener_halfwin1 + j] −=
2 ∗ (B[i ∗ wiener_halfwin1 + (wiener_halfwin1 − 1)] +

B[(wiener_halfwin1 − 1) ∗ wiener_halfwin1 + j] −
2 ∗ B[(wiener_halfwin1 − 1) ∗ wiener_halfwin1 + (

wiener_halfwin1 − 1)]) ;
}

}

It is possible to notice that the loop cycle terminates at wiener_halfwin1−1 =
3, so the process involves only the 3 x 3 sub-matrix in the top left corner for B and
the first 3 components for A. The system resolution is done by calling the function
linsolve_wiener.

2.3. C model from AOMedia AV1 Codec Library 17

2.3.3 linsolve_wiener function

The function is declared as follows:

stat ic int l i n so lv e_wiene r (int n , int64_t ∗A, int s t r i d e , int64_t ∗b ,
int32_t ∗x)

The B matrix is hereinafter called A and the A vector is called b. The parameter
stride is equal to wiener_halfwin1 = 4, while x is the 32-bit solution vector of 3
elements.

To solve the linear system, AV1 uses Gauss-elimination method instead of the
direct method that would have involved to reverse the coefficient matrix and so its
determinant. Obviously this solution would have required a much higher compu-
tational cost because each involved component is a 64-bit data and a dramatically
high parallelism would have been reached. Moreover, this kind of implementation
would not allow to scale properly input data. Problems related to the inversion
operation will be better explained in 3.1.1.

The used Gauss-elimination method is based on the following steps:

1. creating the matrix [A|b];

2. applying Partial pivoting;

3. applying Forward Elimination;

4. applying Back-Substitution.

Partial pivoting is used to bring the element of a matrix with the largest pivot to
the top: for pivot it is intended the first non-zero (and possibly far from it) element
of a row . The technique used to reach this kind of configuration is called pivoting
and in this case, since it swaps only the rows without involving the columns, it is
defined partial. Then the Forward Elimination operation helps to produce a matrix
in a row echelon form, that means that:

• If there are some rows containing only zeroes, they are at the bottom.

• The pivot of a non-zero row have to be to the right of the pivot of the row
above it

It means that, in the proposed case of Wiener Filter, the matrix [A|b] is:

[A|b] =

A00 A01 A02 b0
A10 A11 A12 b1
A20 A21 A22 b2

18 Wiener Filter overview

Being a 3x3 coefficient matrix, 2 steps are necessary to get it into an upper
triangular form. A first stage of Partial Pivoting is applied to first column elements
and the row with the largest between A00, A10, A20 is brought to the top. Then,
by means of elementary row operations (for example multiplying by a constant or
combining different rows adding an integer multiple of a row to another one) Forward
Elimination is applied and the matrix is modified into:

[A|b] =

A
′

00 A
′

01 A
′

02 b
′

0

0 A11′ A
′

12 b
′

1

0 A
′

21 A
′

22 b
′

2

A second step of Partial Pivoting is now applied on A11
′ and A

′

21, swapping the
correspondent row if A

′

21 > A11′ . Then, reusing Forward Elimination on the last
two rows it is possible to replace the lower pivot with 0, obtaining the following
structure where the pivots are A

′

00 , A11′′ and A
′′

22:

[A|b] =

A
′

00 A
′

01 A
′

02 b
′

0

0 A11′′ A
′′

12 b
′′

1

0 0 A
′′

22 b
′′

2

This algorithm is implemented as follows:

for (int k = 0 ; k < n − 1 ; k++) {
//n=2 : 2 c y c l e s o f p a r t i a l p i vo t ing and forward e l im ina t i on

// Pa r t i a l p i vo t ing : br ing the row with the l a r g e s t p ivot to the
top

for (int i = n − 1 ; i > k ; i−−) {
// I f row i has a be t t e r (b i gge r) p ivot than row (i −1) , swap them
i f (l l a b s (A[(i − 1) ∗ s t r i d e + k]) < l l a b s (A[i ∗ s t r i d e + k])) {

for (int j = 0 ; j < n ; j++) {
const int64_t c = A[i ∗ s t r i d e + j] ;

A[i ∗ s t r i d e + j] = A[(i − 1) ∗ s t r i d e + j] ;
A[(i − 1) ∗ s t r i d e + j] = c ;

}
const int64_t c = b [i] ;
b [i] = b [i − 1] ;

b [i − 1] = c ;
}

}
// Forward e l im ina t i on (convert A to row−eche lon form)
for (int i = k ; i < n − 1 ; i++) {

i f (A[k ∗ s t r i d e + k] == 0) return 0 ;
const int64_t c = A[(i + 1) ∗ s t r i d e + k] ;
for (int j = 0 ; j < n ; j++) {

A[(i + 1) ∗ s t r i d e + j] −= c / 256 ∗ A[k ∗ s t r i d e + j] / cd ∗
256 ;

2.3. C model from AOMedia AV1 Codec Library 19

}
b [i + 1] −= c ∗ b [k] / cd ;

}
}

It is important to note that Forward Elimination algorithm produce neither
an exact value of 0 before pivots nor an exact value of non-zero elements because
obviously it uses an approximation to integer number, since the algorithm performs
a logic scaling instead of a punctual division . A small error is introduced to the
system but hereinafter it will be consider negligible. To solve the upper triangular
system, is sufficient to use a simple Back-substitution method and then store the
filter taps in x variable as follows:

for (int i = n − 1 ; i >= 0 ; i−−) {
i f (A[i ∗ s t r i d e + i] == 0) return 0 ;
int64_t c = 0 ;
for (int j = i + 1 ; j <= n − 1 ; j++) {

c += A[i ∗ s t r i d e + j] ∗ x [j] / WIENER_TAP_SCALE_FACTOR;
// Store f i l t e r taps x in s ca l ed form .
x [i] = (int32_t) (WIENER_TAP_SCALE_FACTOR ∗ (b [i] − c) / A[i ∗

s t r i d e + i]) ;
}}

To maintain data consistency, it is necessary that the updated version of filter a
have the same 32-bit parallelism of its initial value because this vector will be used
as input for the Update b process, this is why only the first 32 bit are taken from
each element of x.

The last step is the reconstruction of x vector to 7 elements by applying a very
simple operation of symmetry that is made by update_a_sep_sym as follows:

S [wiener_halfwin1 − 1] = WIENER_TAP_SCALE_FACTOR;
for (i = wiener_halfwin1 ; i < wiener_win ; ++i) {

S [i] = S [wiener_win − 1 − i] ;
S [wiener_halfwin1 − 1] −= 2 ∗ S [i] ;

}
memcpy(a , S , wiener_win ∗ s izeof (∗ a)) ;

20 Wiener Filter overview

2.3.4 update_b_sep_sym function

This function works similarly to update_a_sep_sym. It is defined as:

stat ic AOM_INLINE void update_b_sep_sym(int wiener_win , int64_t ∗∗Mc,
int64_t ∗∗Hc , int32_t ∗a ,

int32_t ∗b) {
int i , j ;
int32_t S [WIENER_WIN] ;
int64_t A[WIENER_HALFWIN1] , B[WIENER_HALFWIN1 ∗ WIENER_HALFWIN1] ;
const int wiener_win2 = wiener_win ∗ wiener_win ;
const int wiener_halfwin1 = (wiener_win >> 1) + 1 ;

The only difference compared with Update a is the algorithm that produces B ma-
trix and A vector:

for (i = 0 ; i < wiener_win ; i++) {
const int i i = wrap_index (i , wiener_win) ;
for (j = 0 ; j < wiener_win ; j++) {

A[i i] += Mc[i] [j] ∗ a [j] / WIENER_TAP_SCALE_FACTOR;
}

}
for (i = 0 ; i < wiener_win ; i++) {

for (j = 0 ; j < wiener_win ; j++) {
const int i i = wrap_index (i , wiener_win) ;
const int j j = wrap_index (j , wiener_win) ;
int k , l ;
for (k = 0 ; k < wiener_win ; ++k) {

for (l = 0 ; l < wiener_win ; ++l) {
B[j j ∗ wiener_halfwin1 + i i] +=

Hc [i ∗ wiener_win + j] [k ∗ wiener_win2 + l] ∗ a [k] /
WIENER_TAP_SCALE_FACTOR ∗ a [l] / WIENER_TAP_SCALE_FACTOR;

}
}

}}

As explained A and B are derived using the a vector previously updated. Even if
they are derived in a different way, they maintain the same dimension they have in
Update a process

B =
w−1
∑

i=0

w−1
∑

j=0

Hij · a(i) · a(j) (2.9)

A =
w−1
∑

i=0

Mi · a(i) (2.10)

2.3. C model from AOMedia AV1 Codec Library 21

The multiplication remains symmetric but the function wrap_index operates in
a different way. For example, let’s consider a 7x7 sub-matrix Hij (same concepts
can be obviously applied to a generic sub-vector Mi to generate A):

• In Update a process, each sub-matrix Hij produces an entire matrix B, that is
back-added to the previous B contribution given by sub-matrix Hi,j−1

• In Update b process, each sub-matrix Hij produce just a single partial value Pij

stored in a 7 x 7 P matrix. Once filled, its components are added symmetrically
to produce the 4x4 output matrix B.

The steps of enforcement and the solution of linear system of equation are exactly
the same than the one analyzed in paragraph 2.3.2, since the same functions of
linsolve_wiener (explained at paragraph 2.3.3) is used.

Chapter 3

A basic architecture of AV1 Wiener

Filter

The idea of designing a hardware architecture starting from the reference specifi-
cations of AV1 is quite complex because it is necessary to take into account many
constraints and considerations outside from software panorama: several parameters
like area, speed, power consumption are involved and a good trade-off must be found
in order to design a well-performing architecture. So this thesis presents the design
of a special purpose architecture by knowing the basic algorithm and it means to
focus particularly on other additional performance parameters (latency, throughput
and so on) to obtain an architecture coherent with fixed design choices. The main
advantage of a dedicated architecture is the possibility to reach very high time or
energy efficiency because each design choice is properly customized. On the other
hand, there is a flexibility deficit and the only way to make the architecture working
is to use a fixed algorithm and adapt it to a system where to process the well-known
input data.

The starting idea is to implement a basic VLSI implementation using VHDL
language, without any kind of optimization. Indeed the first architecture is devel-
oped just like an Hardware translation of C model implementation, paying attention
only to ensure its proper behavior and, once obtained a working architecture, it is
analysed to evaluate its performances respect to a specific clock period TCK . In
particular, the following parameters are considered:

• Critical Path [TCP], defined as the longest path delay. Namely it is the amount
of time spent to propagate data along the longest path but TCP is very impor-
tant because it determines if the architecture could work or not, since have to
be TCP < TCK . The critical path is the first parameter under exam since from
it depend depend both the speed evaluation in terms of working frequency and
the power consumption.

22

3.1. Algorithm to Architecture Mapping 23

• Time per data item [T], defined as the amount of time elapsed between two
subsequent output data items.

• Throughput [tp], defined as 1/T and represents the number of sample generated
per second. It gives an idea of architecture speed.

• Latency [L], defined as the number of clock cycle the architecture takes from
a data entering into the circuit until it is released as output.

• Area[A] gives an idea of system complexity and it is measured by considering
the size and the number of each involved components such as ports, nets and
nets.

3.1 Algorithm to Architecture Mapping

The main problem of the algorithm mapping is to deal with very large data size. For
example, each H or M component is a 64-bit data, while the parallelism of initial
vector a and b is 32 bit. Of course their elaboration with elementary operations,
above all multiplications and divisions, would have meant reaching too high paral-
lelism: this is why, following the C model implementation, each intermediate critical
result has been truncated to 64 bit except from the 32-bit output filtered vector as
mentioned at paragraph 2.3.3.

Another critical point is the scaling operation of negative number. Each time a
data must be scaled, a shifter is employed. Let’s consider, for example, to operate a
28 scaling using a 8-bit shifter, with an initial bit sequence of 011000011010100000
that corresponds to a decimal value of 100000.

Remembering that all fractional parts will be truncated,in positive case:

Nshifted =
100000

28
= 390, 625... = 390 (3.1)

Scaling bit sequence the same result is obtained:

011000011010100000bin = 100000dec → 0110000110bin = 390dec (3.2)

In this case the shifter works properly. What happens in negative case is that the
final result is always approximated to lower number but, being negative, it is the
the larger in magnitude:

Nshifted =
−100000

28
= −390, 625... = −390 (3.3)

Scaling bit sequence:

100111100101100000bin = −100000dec → 1001111001bin = −391dec (3.4)

24 A basic architecture of AV1 Wiener Filter

A considerable error is introduced inside the process whenever a negative shifter
is implemented. In order to avoid this problema still using shifters, the scaling is
performed on the absolute value of the negative data, complementing it later again:

PROCESS(DATA_IN)
BEGIN

IF (DATA_IN(63) = ’1 ’) THEN

DATA_IN_ABS <= NOT (DATA_IN)+1;
ELSE

DATA_IN_ABS <= DATA_IN;
END IF ;

END PROCESS;

DATA_IN_SHIFTED_ABS <= sh i f t_ r i gh t (DATA_IN, 8) ;

PROCESS(DATA_IN)
BEGIN

IF (DATA_IN (63) = ’1 ’) THEN

DATA_IN_SHIFTED <= NOT(DATA_IN_SHIFTED_ABS)+1;
ELSE

DATA_IN_SHIFTED <= DATA_IN_SHIFTED_ABS;
END IF ;

END PROCESS;

3.1.1 Hardware design implementation of Update a

The aim of Update a is to map the algorithms of update_a_sep_sym and lin-
solve_wiener functions illustrated in the Chapter 2: it processes as input the matri-
ces H and M and the input fixed vector bin and it computes the update version of
filter a. The evolution of the whole algorithm is handled by using two counters for
every block where they are needed that select properly, at each step, which compo-
nent of H, M or b has to be processed. The counter enable is provided by an FSM
that controls the correct flowing of algorithm flows.

Computation of vector A The component designed to derive A vector maps
the following instructions:

for (i = 0 ; i < wiener_win ; i++) {
for (j = 0 ; j < wiener_win ; ++j) {

const int j j = wrap_index (j , wiener_win) ;
A[j j] += Mc[i] [j] ∗ b [i] / WIENER_TAP_SCALE_FACTOR;

}
}

It receives as inputs, for each cycle:

• Min, a 7 elements sub-vector of M correspondent to the i-th cycle properly
selected by the external block "M selection" such that:

Min =
[

M0 M1 M2 M3 M4 M5 M6

]

3.1. Algorithm to Architecture Mapping 25

Figure 3.1: Mij x bi data path

where each Mx is a 64-bit element.

• bin1, the i-th element of initial vector bin.

The block, called "Mij x bi", generates a vector of partial products and then
computes the output vector Aout by processing it as reported in the data path in
figure 3.1

The behavior of A computation block is described below:

FOR I IN 0 TO 2 LOOP

A_OUT(I)<=PP(I) (63 DOWNTO 0) + PP(6− I) (63 DOWNTO 0) ;
END LOOP;
A_OUT(3) <= PP(3) (63 DOWNTO 0) ;

Computation of matrix B This component is quite similar to the previous one
and it is used to implement the following instructions:

for (i = 0 ; i < wiener_win ; i++) {
for (j = 0 ; j < wiener_win ; j++) {

int k , l ;
for (k = 0 ; k < wiener_win ; ++k) {

for (l = 0 ; l < wiener_win ; ++l) {
const int kk = wrap_index (k , wiener_win) ;

const int l l = wrap_index (l , wiener_win) ;
B[l l ∗ wiener_halfwin1 + kk] +=Hc [j ∗ wiener_win + i] [k ∗ wiener_win2 +

l] ∗
b [i] /WIENER_TAP_SCALE_FACTOR ∗ b [j] / WIENER_TAP_SCALE_FACTOR;

} } } }

26 A basic architecture of AV1 Wiener Filter

It receives for each cycle:

• Hin, the 7x7 sub-matrix of H correspondent to (i, j) cycle properly selected
from the external block "H Selection" such that

Hin =

H00 H01 H02 H03 H04 H05 H06

H10 H11 H12 H13 H14 H15 H16

H20 H21 H22 H23 H24 H25 H26

H30 H31 H32 H33 H34 H35 H36

H40 H41 H42 H43 H44 H45 H46

H50 H51 H52 H53 H54 H55 H56

H60 H61 H62 H63 H64 H65 H66

where each Hxx is a 64-bit element.

• bin1, the i-th element of initial vector b.

• bin2, the j-th element of initial vector b.

This block called "Hij x bi x bj" provides as output a 4x4 matrix Bout related
to (i, j) step. Its datapath is represented at figure 3.2 and it is described by the
following VHDL code where the absolute value done to implement properly the
shifting operation has not been reported:

PROCESS(H_IN, BIN1 , BIN2 ,)
BEGIN

FOR I IN 0 TO 6 LOOP

FOR J IN 0 TO 6 LOOP

PP(I , J)<=(sh i f t_ r i g h t (((s h i f t_ r i g h t ((H_IN(J , I) ∗BIN1) ,16) (63 DOWNTO 0)) ∗BIN2) ,16)) ;
END LOOP;
END LOOP;
END PROCESS;
B0<=PP(0 , 0)+PP(0 , 6) +PP(6 , 0) + PP(6 , 6) ;
B4<=PP(0 , 1) +PP(0 , 5) +PP(6 , 1) + PP(6 , 5) ;
B8<=PP(0 , 2) +PP(0 , 4) +PP(6 , 2) + PP(6 , 4) ;
B12<=PP(0 ,3) + PP(6 , 3) ;

B1<=PP(1 , 0) +PP(1 , 6) +PP(5 , 0) + PP(5 , 6) ;
B5<=PP(1 , 1) +PP(1 , 5) +PP(5 , 1) + PP(5 , 5) ;
B9<=PP(1 , 2) +PP(1 , 4) +PP(5 , 2) + PP(5 , 4) ;
B13<=PP(1 ,3) + PP(5 , 3) ;

B2<=PP(2 , 0) +PP(2 , 6) +PP(4 , 0) + PP(4 , 6) ;
B6<=PP(2 , 1) +PP(2 , 5) +PP(4 , 1) + PP(4 , 5) ;
B10<=PP(2 ,2) +PP(2 , 4) +PP(4 , 2) + PP(4 , 4) ;
B14<=PP(2 ,3) + PP(4 , 3) ;

B3<=PP(3 , 0) + PP(3 , 6) ;
B7<=PP(3 , 1) + PP(3 , 5) ;
B11<=PP(3 ,2) + PP(3 , 4) ;
B15<=PP(3 ,3) ;

3.1. Algorithm to Architecture Mapping 27

Figure 3.2: Hij x bi x bj data path

In order to process the proper component of the matrix Hin other two internal
indices have been employed. Calling them z and k, the block generates, performing
two steps of multiplication and shift, a 7x7 matrix of partial product such that its
(z, k) element is derived by processing the (z, k) element of Hin. Then, a tree of
adders is implemented to compress the matrix dimension in a symmetric way like
reported in the VHDL code above.

Enforcement The enforcement block acts to compress the input matrices adapt-
ing them to the linear system of equation. It receives as inputs:

• The 4x4 B matrix:

B =

B0 B1 B2 B3

B4 B5 B6 B7

B8 B9 B10 B11

B12 B13 B14 B15

• The 1x4 A vector:
A =

[

A0 A1 A2 A3

]

The algorithm described at paragraph 2.3.2 is mapped to Hardware using the fol-
lowing VHDL code:

28 A basic architecture of AV1 Wiener Filter

PROCESS(A_IN, B_IN, ARGUMENT)
BEGIN

FOR k IN 0 TO 2 LOOP

A_ENF(k)<=A_IN(k)−s h i f t _ l e f t (A_IN(3) ,1) − B_IN(k , 3) + s h i f t _ l e f t (B_IN(3 , 3) ,1) ;
END LOOP;

FOR k IN 0 TO 2 LOOP

FOR z IN 0 TO 2 LOOP

ARGUMENT(k , z)<=B_IN(k , 3) + B_IN(3 , z) − s h i f t _ l e f t (B_IN(3 , 3) ,1) ;
B_ENF(k , z)<=B_IN(k , z) − (s h i f t _ l e f t (ARGUMENT(k , z) ,1)) ;

END LOOP;
END LOOP;

END PROCESS;

The implementation can be divided in two parts: the first involves A , the other
B. The output vector Aenforced is computed as represented at figure 3.3, producing
the 1x3 output vector:

A =
[

A
′

0 A
′

1 A
′

2

]

Figure 3.3: A enforcement data path

The elaboration of B matrix is very similar but, for reason of space, the figure
3.4 reports only the first and the last part of the implementation:

The output is the 3 x 3 matrix:

B =

B
′

0 B
′

1 B
′

2

B
′

4 B
′

5 B
′

6

B
′

8 B
′

9 B
′

10

3.1. Algorithm to Architecture Mapping 29

Figure 3.4: B enforcement data path

To follow the C model terminology and as mentioned in 2.3.3, hereinafter B matrix
will be called A and A vector will be called b. After the enforcement block both
coefficient matrices and known terms vector have been obtained so it is possible to
introduce the design choices for the resolution of the linear system

A · a = b (3.5)

where the a vector solution is the output vertical filter.

System resolution: inverse method for linear system The first attempt
was to implement a solution using the inverse method for linear system. Starting

30 A basic architecture of AV1 Wiener Filter

from the system

A0 · a0+A1 · a1+A2 · a2=b0

A4 · a0+A5 · a1+A6 · a2=b1

A8 · a0+A9 · a1+A10 · a2=b2

the solution can be expressed as:

a = b · A−1 (3.6)

The main advantage is to reduce the solution to a row-column product, paying the
cost of the inversion operation that include the computation of the Cofactor matrix
whose each element is:

Cof{Aij} = (−1)i+j ·Mij (3.7)

where Mij is the minor related to Aij that is the determinant of the smaller matrix
obtained cutting down from A the i-th row and j-th column. From Cofactor matrix,
the adjugate matrix [ADJ] is computed by transposing it and the inverse matrix is
equal to:

A−1 =
ADJ

DET
(3.8)

where DET is the determinant of A matrix.
In this special purpose architecture, the matrix inversion represents a big trouble

for two reasons:

• Aij is a 64 bit data, so the calculation of the adjugate matrix and the determi-
nant requires two and three multiplication respectively. This means that ADJ
elements have a parallelism of 128 bit and determinant reaches even 196 bit.
The implementation of a 196-bit division is unsustainable not only for its huge
computational cost, but also because it would require a higher number of con-
secutive combinatorial block in the critical path, worsening the performances
in terms of speed.

• DET is always bigger than each elements of ADJ because it is obtained from
one more multiplication. Their ratio always belongs to range [0-1] and, since
fractional part is always truncated, the result would be just a matrix of zeroes.

A possible solution might be to use a different numerical representation, for
example floating-point or fixed-point, but it would have changed all the algorithm
behavior presented in previous chapter making the hardware mapping impossible.
For these reasons , following the C model approach, the linear system has been
solved using the Gauss-elimination algorithm described at paragraph 2.3.3 and the
following paragraphs focus on the design of Partial pivoting, Forward elimination
and Back − substitution and storing based on their C model behavior.

3.1. Algorithm to Architecture Mapping 31

Partial Pivoting From a computational point of view, this is the simplest block
inside the whole architecture because it consists only in a swap rows operation. A
unique block has been implemented for both processing stage: each step is individ-
uated by a value of the parameter k, so k = 0 identifies the first step while k = 1
the second one. The architecture at figure 3.5 is described by the following VHDL
extract:

PROCESS(A, b , k , ABS_A0,ABS_A4,ABS_A5,ABS_A8,ABS_A9)
BEGIN

IF (k= ’0 ’) THEN −−k=0 : f i r s t computat ional s tage
IF (ABS_A4<ABS_A8) THEN

IF (ABS_A0<ABS_A8) THEN

OUT_MATRIX<=((A(2 , 0) ,A(2 , 1) ,A(2 , 2)) , (A(0 , 0) ,A(0 , 1) , A(0 , 2)) , (A(1 , 0) ,A(1 , 1) ,A(1 , 2))
) ;

OUT_VECTOR<=(b (2) , b (0) , b (1)) ;
ELSE

OUT_MATRIX<=((A(0 , 0) , A(0 , 1) , A(0 , 2)) , (A(2 , 0) ,A(2 , 1) ,A(2 , 2)) , (A(1 , 0) ,A(1 , 1) ,A(1 , 2)
)) ;

OUT_VECTOR<=(b (0) , b (2) , b (1)) ;
END IF ;

ELSIF (ABS_A0<ABS_A4) THEN

OUT_MATRIX<=((A(1 , 0) ,A(1 , 1) ,A(1 , 2)) , (A(0 , 0) ,A(0 , 1) , A(0 , 2)) , (A(2 , 0) ,A(2 , 1) ,A(2 , 2))
) ;

OUT_VECTOR<=(b (1) , b (0) , b (2)) ;
ELSE

OUT_MATRIX<=A;
OUT_VECTOR<=b ;

END IF ;

ELSE −−k=1: second computat ional s tage

IF (ABS_A5<ABS_A9) THEN

OUT_MATRIX<=((A(0 , 0) , A(0 , 1) , A(0 , 2)) , (A(2 , 0) ,A(2 , 1) ,A(2 , 2)) , (A(1 , 0) ,A(1 , 1) ,A(1 , 2)
)) ;

OUT_VECTOR<=(b (0) , b (2) , b (1)) ;
ELSE

OUT_MATRIX<=A;
OUT_VECTOR<=b ;

END IF ;
END IF ;

END PROCESS;

• In the first step, the absolute values of A0, A4 and A8 are compared two by
two to find the largest: Swap Rows block makes the first row the one with
the largest pivot and eventually change the position of b elements. The output
matrix Apivot and the output vector bpivot are ready for the Forward Elimination
step.

• In the second stage, the inputs come from the first stage of forward elimina-
tion. What remains to compare is the absolute value of pivots of second and

32 A basic architecture of AV1 Wiener Filter

Figure 3.5: Partial Pivoting Data Path

third rows, A5 and A9. If A9 > A5 the two relative rows and the relative b
components are swapped. Otherwise, both input structures are released as
outputs and ready for the second stage of Forward elimination.

Forward elimination This is the mathematical step of the linear system resolu-
tion: it performs multiplications, divisions and subtractions to combine properly two
rows and, finally, transform the matrix as closest as possible to an upper triangular
form to be able to find the solution of the system. Similarly to Partial Pivoting,
a unique block has been implemented for both processing stages. It is necessary
to distinguish how each stage works since different elements of input structure are
involved.

3.1. Algorithm to Architecture Mapping 33

First stage The first stage occurs after the first Partial pivoting operation, so
it is ensured that the first rows contains the largest pivot. This allows to involve only
the second and the third rows of A matrix in the computation. At the same time,
the meaning of the system must be unaltered and this means that also the second
and the third elements of b vector must be processed exactly in the same way. To
derive each element of the output matrix AFE the following VHDL code has been
implemented (only A4FE

is reported as an example)and the related architecture is
reported at figure 3.6.

−−Code i s r e f e r r i n g to A4_FE computation but ope ra t i on s
−− are the same f o r a l l the o the r s components
DIVIDEND <= sh i f t_ r i gh t (A4 , 8) ∗ A0 ;
DIV : DIVISION PORTMAP (DIVISOR=>A0 ,

DIVIDEND=>DIVIDEND(63 DOWNTO 0) ,
QUOTIENT=>QUOTIENT) ;

A4_FE <= A4− s h i f t _ l e f t (QUOTIENT, 8) ;

The same approach is used also to modify the b vector in order to find bFE: the
VHDL description is reported below and its architecture is at figure 3.7.

−−Code i s r e f e r r i n g to b1_FE computation but ope ra t i on s
−− are the same f o r b2_FE
B_DIVIDEND <= A4∗b0 ;
B_DIV : DIVISION PORTMAP (DIVISOR=>A0 ,

DIVIDEND=>B_DIVIDEND(63 DOWNTO 0)
,

QUOTIENT=>QUOTIENT) ;
b1_FE<=b1 − QUOTIENT;

Figure 3.7: First stage of Forward Elimination:Data Path for bFE

34 A basic architecture of AV1 Wiener Filter

Figure 3.6: First stage of Forward Elimination: Data Path for AFE

3.1. Algorithm to Architecture Mapping 35

Figure 3.8: Second stage of Forward Elimination: Data Path for bFE

Second stage The second stage Forward Elimination is very similar to the
first one in terms of behavior. The relevant difference is, being after the last stage of
Partial pivoting, the matrix and the vector are already ordered so it works only on
the last element of b vector and the last A matrix row to reach the upper triangular
form. The sequence of operations for both structures is exactly the same to first
stage, so they have been described by the same VHDL extract and their architectures
are reported at figure 3.8 and 3.9 respectively.

Figure 3.9: Second stage of Forward Elimination: Data Path for AFE

36 A basic architecture of AV1 Wiener Filter

Divider implementation Before going on, a special mention has to be done
for division operation because it is a big critical point due to its complex integration.
A basic divider could be an huge and slow operator, the worst to implement a good
design. In particular, for this 64-bit case, a bad designed divider could be dramatic
because the algorithm involves several divisions. As mentioned at the beginning
of the current chapter, the aim is to start building a no-optimized architecture to
analyse its critical points and, finally, apply a proper optimization. Even knowing
that the divider implementation will be definitively the first point to consider to
build a more efficient design, in this basic architecture a simple function based on
the Restoring Division Algorithm is used. It performs an unsigned division between
two 64-bit numbers A and B by doing a 64-bit addition and a 64-bit subtraction
at each step: after all, each division will cost 128 operations and the integration
of 128 64-bit adder. The function has been reported in VHDL using the variable
construction.

FUNCTION DIVISION (A : UNSIGNED; B : UNSIGNED) RETURN UNSIGNED IS

VARIABLE A1 : UNSIGNED(63 DOWNTO 0) :=A;
VARIABLE B1 : UNSIGNED(63 DOWNTO 0) :=B;
VARIABLE P1 : UNSIGNED(63 DOWNTO 0) := (OTHERS => ’0 ’) ;
VARIABLE I : INTEGER:=0;

BEGIN

FOR I IN 0 TO 63 LOOP

P1(63 DOWNTO 1) := P1(62 DOWNTO 0) ;
P1 (0) := A1(63) ;
A1(63 DOWNTO 1) := A1(62 DOWNTO 0) ;
P1 := P1−B1 ;
IF (P1(63) = ’1 ’) THEN

A1(0) := ’0 ’ ;
P1 := P1+B1 ;
ELSE

A1(0) := ’1 ’ ;
END IF ;
END LOOP;
RETURN A1 ;

END DIVISION ;

3.1. Algorithm to Architecture Mapping 37

Back-substitution and storing Once obtained an upper triangular linear sys-
tem in a row echelon form, the last remaining operation is to solve it. This block
aims to find the 3-taps filtered vector x = [x0, x1, x2] by solving the following system:

A0 · x0+A1 · x1+A2 · x2=b0

A5 · x1+A6 · x2=b1

A10 · x2=b2

This is not the final output of the filter, since it is necessary to make a symmetry to
obtain a 7-taps vector: this operation is done by an external block. The designed
architecture have to map the following algorithm:

for (int i = n − 1 ; i >= 0 ; i−−) {
i f (A[i ∗ s t r i d e + i] == 0) return 0 ;
int64_t c = 0 ;
for (int j = i + 1 ; j <= n − 1 ; j++) {

c += A[i ∗ s t r i d e + j] ∗ x [j] / WIENER_TAP_SCALE_FACTOR;
// Store f i l t e r taps x in s ca l ed form .
x [i] = (int32_t) (WIENER_TAP_SCALE_FACTOR ∗ (b [i] − c) / A[i ∗

s t r i d e + i]) ;
}}

From a computational point of view, this block is really complex since:

• it involves several expensive operators like dividers and multipliers. Their
integration requires an increment of the complexity;

• the output is the results of lots of subsequent operations along the critical path
and this widely affects the speed performances.

The design choice was to implement a purely combinatorial block even if it
is not a good choice in terms of data flow control and output results checking:
the simulation depends on many external factors like the simulator or the timing
constrains. Despite that the choice to avoid to break the critical path employing
registers is done to ensure that final analysis of the performances will be made
considering a complete no-optimized version of the architecture, in order to be able
to better understand the critical points and optimize them. The related architecture
is reported at figure 3.10. An extract of the VHDL description is reported below.
For each instruction has been reported to which (i, j) cycle it occurs:

38 A basic architecture of AV1 Wiener Filter

Figure 3.10: Combinational Data Path for Back-Substitution

3.1. Algorithm to Architecture Mapping 39

−−I=2
DIVIDEND_1<=s h i f t _ l e f t (b (2) ,16) ;
B2_A10_DIV : DIVISION PORTMAP (DIVISOR=>A(2 ,2) ,

DIVIDEND=>DIVIDEND_1,
QUOTIENT=>X2) ;

−−I=1
−−J=2

PRODUCT_1<=X2∗A(1 ,2) ;

C1<=sh i f t_ r i gh t (PRODUCT_1, 1 6) ;
DIVIDEND_2<=s h i f t _ l e f t (b (1)−C1(63 DOWNTO 0) ,16) ;
B1_A5_DIV : DIVISION PORTMAP (DIVISOR=>A(1 ,1) ,

DIVIDEND=>DIVIDEND_2,
QUOTIENT=>X1) ;

−−I=0
−−J=1

PRODUCT_2<=X1∗A(0 ,1) ;
C2<=sh i f t_ r i gh t (PRODUCT_2, 1 6) ;
PRODUCT_3<=X2∗A(0 ,2) ;
C3_SHIFT<=sh i f t_ r i gh t (PRODUCT_3, 1 6) ;
C3<=C_2+C3_SHIFT;
DIVIDEND_3<=s h i f t _ l e f t ((b (0)−C_3(63 DOWNTO 0)) ,16) ;
B0_A0_DIV : DIVISION PORTMAP (DIVISOR=>A(0 ,0) ,

DIVIDEND=>DIVIDEND_3,
QUOTIENT=>X0) ;

OUT_VECTOR<=(X0(31 DOWNTO 0) , X1(31 DOWNTO 0) , X2(31 DOWNTO 0)) ;

Only the first 32 bit of x0, x1 and x2 are taken to maintain data coherence with
the following filtering operation.

Top-level architecture The top-level architecture is reported at figure 3.11. It
is necessary to make a premise regarding the multiplicative blocks Hij x bi x bj and
Mij x bi. As mentioned, each of them receives as input the proper sub-structures
correspondent to the (i, j) working cycle from external selection components, but in
two different way:

• For Mij x bi an M Selection block is implemented such that it processes the
whole 7x7 M matrix releasing as output the 1x7 sub-vector using only the j
counter: since for each cycle an entire row has to be selected, just one counter
is needed, this means that the whole selection occurs when i = 0.So, for the
first seven cycle, where i = 0 and j is incremented by the counter from 0 to 6,
Mij corresponds to the j-th row of the input matrix M. As a consequence,Mij

x bi terminates its process in 7 clock cycles. M Selection has been integrated
inside the top-level architecture due to the reasonable dimension of the involved
input.

• The block Hij x bi x bj has been indexed in a different way because, because
in this case both counters are needed to properly select the wanted sub-matrix
Hij. It was not possible to integrate the H selection inside the architecture

40 A basic architecture of AV1 Wiener Filter

because of the huge dimension of input H matrix. The selection from a 49x49
matrix of 64-bit elements would have been too expensive during the synthe-
sis. This is why sub-matrix Hij is provided directly implementing the proper
selection in the testbench avoiding in this way its synthesis.

Figure 3.11: Top-level FSM for Update a

3.1. Algorithm to Architecture Mapping 41

Figure 3.12: Top-level
FSM for Update a

To keep under control the instructions flow each signal
is handled by using the FSM described at figure 3.12. For
example, the multiplicative blocks are enabled only when
they have to perform some kind of operations to be sure
they work with correct data input.

At the beginning, when the reset signal is released, both
i and j are equal to 0. In the first seven clock cycles where
only j is incremented [Enable Counter j state], Hij x bi
x bj and Mij x bi work in parallel. In particular, for each
(0, j) cycle they generate a partial B matrix and A vector
respectively that are added using a feedback register to the
previous contribution computed at cycle (0, j − 1). When
j = 6, Mij x bi ends its process, so the related feedback reg-
ister is disabled [Disable Ret Register state] and have to
wait the Hij x bi x bj completion that lasts other 42 clock
cycles in which every partial B matrix produced at cycle
(i, j) continue to be back-added to previous contribution of
cycle (i, j − 1). Once obtained the final value of matrix B,
one clock cycle is spent to wait that the last [(6, 6)] partial
matrix B passes through the feedback register [Wait Last
B Storing state]. A and B are processed as discussed by
the Enforcement block [Enable Enforcement state]. To
solve the system, two processing step of Partial Pivoting
and Forward-Elimination are computed . Each stage is se-
lected using a 2-to-1 multiplexer such that:

• In k=0: first processing stage state its output are
the matrices coming from Enforcement block;

• In k=1: first processing stage state its output are
the matrices coming from textitForward-Elimination
block by means of a feedback register;

.
The upper triangular system is then solved by Back-

Substitution and Storing at Enable Update_B state.
The input register of this block are enabled only in this
state to ensure to not have overusing by processing useless
intermediate structures. Finally, the following symmetry
is employed to the 3-tap vector X to obtain the final out-
put vector aupdated, the vertical filter derived by applying
Wiener Filter to input pixel:

42 A basic architecture of AV1 Wiener Filter

A(0)<=X(0) ;
A(1)<=X(1) ;
A(2)<=X(2) ;
A(4)<=X(2) ;
A(5)<=X(1) ;
A(6)<=X(0) ;
SHIFT_IN <=X(0)+X(1)+X(2) ;
A(3)<= s h i f t _ l e f t (TO_SIGNED(1 , 32) ,16) −−2^16 =WIENER_TAP_SCALE_FACTOR

− s h i f t _ l e f t (SHIFT_IN, 1) ;

3.1.2 Hardware design implementation of update b

The architecture designed to derive the output horizontal filter is quite similar to
the vertical one since the same linsolve_wiener function is used for both of them.
What changes is the computation of B matrix and A vector that consists in the
mapping of update_b_sep_sym function and leads to a quite different top-level
implementation.

This component receives as inputs the matrices H and M and ain, the updated
version of the vertical filter vector that will be kept fixed during all the process.

Computation of vector A Differently from the block Mij x bi, this component
Mij x ai produces a single output value Aout correspondent to each iteration (i, j)
that will be back-added to the contribution related to the previous cycle. The
algorithm to map is the following:

for (i = 0 ; i < wiener_win ; i++) {
const int i i = wrap_index (i , wiener_win) ;
for (j = 0 ; j < wiener_win ; j++) {

A[i i] += Mc[i] [j] ∗ a [j] / WIENER_TAP_SCALE_FACTOR;
}

}

The inputs are:

• Min, a 7 elements sub-vector of M correspondent to the i-th cycle properly
selected again by the external block "M selection" such that:

Min =
[

M0 M1 M2 M3 M4 M5 M6

]

where each Mx is a 64-bit element.

• ain, the updated vertical filter.

The j-th step is described by the architecture at figure 3.13 where the Index Selection
block picks the j-th component of both vector Minand ain .

3.1. Algorithm to Architecture Mapping 43

Figure 3.13: Mij x ai data path

The VHDL variable construct has been preferred to the "adder and feedback
register" to perform the feedback sum because the register would have required a
internal reset signal when the last element of Min, the i-th row of the M matrix,
is processed; otherwise the process related to the first element of the i + 1 row
vector would have had an offset equal to Apartial: it has been chosen to follow a
design implementation in which only the top-level reset is considered and so, even if
variables represent a kind of approach very close to software world, in this specific
application they are used because they could be reset very easily:

PROCESS(M_IN,A)
VARIABLE A_TEMP : SIGNED(95 DOWNTO 0) :=TO_SIGNED(0 ,96) ;
VARIABLE SUM_A: SIGNED(63 DOWNTO 0) :=TO_SIGNED(0 ,64) ;
BEGIN

SUM_A:=TO_SIGNED(0 ,64) ; −− Reset o f v a r i a b l e SUM_A
A_TEMP:=TO_SIGNED(0 ,96) ; −− Reset o f v a r i a b l e A_TEMP

FOR j IN 0 TO 6 LOOP

A_TEMP:= sh i f t_ r i gh t (M_IN(j) ∗A(j) ,16) ;
SUM_A:=SUM_A+A_TEMP(63 DOWNTO 0) ;

END LOOP;

TEMP_A<=SUM_A; −−Necessary because the s i g n a l i n s t ance have to be i n s i d e the
proce s s

END PROCESS;
A_PARTIAL<=TEMP_A;

44 A basic architecture of AV1 Wiener Filter

Computation of B matrix Similarly to what explained in the previous para-
graph, the block Hij x ai x aj receives as input

• Hin, the 7x7 sub-matrix of H correspondent to (i, j) cycle properly selected
from the external block H Selection such that

Hin =

H00 H01 H02 H03 H04 H05 H06

H10 H11 H12 H13 H14 H15 H16

H20 H21 H22 H23 H24 H25 H26

H30 H31 H32 H33 H34 H35 H36

H40 H41 H42 H43 H44 H45 H46

H50 H51 H52 H53 H54 H55 H56

H60 H61 H62 H63 H64 H65 H66

where each Hxx is a 64-bit element.

• ain, the updated vertical filter

The algorithm to map is the following:

for (i = 0 ; i < wiener_win ; i++) {
for (j = 0 ; j < wiener_win ; j++) {

const int i i = wrap_index (i , wiener_win) ;
const int j j = wrap_index (j , wiener_win) ;
int k , l ;
for (k = 0 ; k < wiener_win ; ++k) {

for (l = 0 ; l < wiener_win ; ++l) {
B[j j ∗ wiener_halfwin1 + i i] +=

Hc [i ∗ wiener_win + j] [k ∗ wiener_win2 + l] ∗ a [k] /
WIENER_TAP_SCALE_FACTOR ∗ a [l] / WIENER_TAP_SCALE_FACTOR;

}
}

}}

The developed architecture is at figure 3.14. The Index Selection block selects
the (i, j) component from the input sub-matrix and the i-th from ain. It is important
to clarify that both counters i and j are internal to this block and used to scan the
7x7 matrix Hin.They must not be confused with the ones used from H Selection
and M Selection to define properly the sub-matrix and sub-vector that have to be
processed. One value of Bpartial is produced for each (i, j) cycle: similarly to the
computation of A matrix, a Feedback Sum is needed to combine all subsequent
contributions.

3.1. Algorithm to Architecture Mapping 45

Figure 3.14: Hij x ai x aj data path

This is done by using the variable construct approach like follows:

PROCESS(H_IN,A)
VARIABLE B : SIGNED(95 DOWNTO 0) :=TO_SIGNED(0 ,96) ;
VARIABLE SUM_B: SIGNED(63 DOWNTO 0) :=TO_SIGNED(0 ,64) ;
BEGIN

SUM_B:=TO_SIGNED(0 ,64) ;−− Reset o f v a r i a b l e SUM_B
B:=TO_SIGNED(0 ,96) ; −− Reset o f v a r i a b l e B

FOR I IN 0 TO 6 LOOP

FOR J IN 0 TO 6 LOOP

B:=(sh i f t_ r i gh t (((s h i f t_ r i gh t ((H_IN(J , I) ∗A(I)) ,16) (63 DOWNTO 0)) ∗A(J)) ,16))
;

SUM_B:=SUM_B+B(63 DOWNTO 0) ;
END LOOP;
END LOOP;

TEMP_B<=SUM_B;

END PROCESS;
B_PARTIAL<=TEMP_B;

Top-level architecture The top-level implementation is really similar to Update
a architecture, including the considerations done for the input multiplication blocks:
the same M selection block is integrated, while the sub-matrix Hij is provided di-
rectly from the testbench.

46 A basic architecture of AV1 Wiener Filter

The final top-level architecture is presented at figure 3.15.

The flow is controlled by an FSM exactly equal to the one reported at figure 3.12.
Apart from the already described multiplication blocks, another difference between
the two configurations regards the storing algorithm to derive the matrix B and the
vector A.

For the first seven clock cycle where i = 0 and only j is incremented, Mij x
ai produces a value of Apartial stored in the j-th position of a 7-elements vector for
each step (0, j). Once filled it, their components are processed by a tree of adder to
perform the final value of A vector:

PARTIAL_A_ARRAY(j)<=PARTIAL_A;
−−Once f i l l e d the array :
A(0)<=PARTIAL_A_ARRAY(0)+PARTIAL_A_ARRAY(6) ;
A(1)<=PARTIAL_A_ARRAY(1)+PARTIAL_A_ARRAY(5) ;
A(2)<=PARTIAL_A_ARRAY(2)+PARTIAL_A_ARRAY(4) ;
A(3)<=PARTIAL_A_ARRAY(3) ;

At the same time, Hij x ai x aj computes the value Bpartial(0, j) storing it in a 7 x
7 matrix. From the 8th clock cycle, when the whole vector A has been computed and
stored, it is necessary to wait the completion of B disabling the store operation for
A, similarly to what done for feedback registers in Disable Ret Register state. For
each subsequent (i, j) step, Bpartial(i, j) is stored into (i, j) elements of the partial
matrix.

The final value for B is computed once filled the matrix and it requires 49 total
clock cycles.

PARTIAL_B_MATRIX(i , j)<=PARTIAL_B;
−− Once f i l l e d the matrix :
B(0 , 0)<=PARTIAL_B_MATRIX(0 , 0)+PARTIAL_B_MATRIX(0 , 6)+PARTIAL_B_MATRIX(6 , 0)+

PARTIAL_B_MATRIX(6 , 6) ;
B(0 , 1)<=PARTIAL_B_MATRIX(0 , 1)+PARTIAL_B_MATRIX(0 , 5)+PARTIAL_B_MATRIX(6 , 1)+

PARTIAL_B_MATRIX(6 , 5) ;
B(0 , 2)<=PARTIAL_B_MATRIX(0 , 2)+PARTIAL_B_MATRIX(0 , 4)+PARTIAL_B_MATRIX(6 , 2)+

PARTIAL_B_MATRIX(6 , 4) ;
B(0 , 3)<=PARTIAL_B_MATRIX(0 , 3)+PARTIAL_B_MATRIX(6 , 3) ;
B(1 , 0)<=PARTIAL_B_MATRIX(1 , 0)+PARTIAL_B_MATRIX(1 , 6)+PARTIAL_B_MATRIX(5 , 0)+

PARTIAL_B_MATRIX(5 , 6) ;
B(1 , 1)<=PARTIAL_B_MATRIX(1 , 1)+PARTIAL_B_MATRIX(1 , 5)+PARTIAL_B_MATRIX(5 , 1)+

PARTIAL_B_MATRIX(5 , 5) ;
B(1 , 2)<=PARTIAL_B_MATRIX(1 , 2)+PARTIAL_B_MATRIX(1 , 4)+PARTIAL_B_MATRIX(5 , 2)+

PARTIAL_B_MATRIX(5 , 4) ;
B(1 , 3)<=PARTIAL_B_MATRIX(1 , 3)+PARTIAL_B_MATRIX(5 , 3) ;
B(2 , 0)<=PARTIAL_B_MATRIX(2 , 0)+PARTIAL_B_MATRIX(2 , 6)+PARTIAL_B_MATRIX(4 , 0)+

PARTIAL_B_MATRIX(4 , 6) ;
B(2 , 1)<=PARTIAL_B_MATRIX(2 , 1)+PARTIAL_B_MATRIX(2 , 5)+PARTIAL_B_MATRIX(4 , 1)+

PARTIAL_B_MATRIX(4 , 5) ;
B(2 , 2)<=PARTIAL_B_MATRIX(2 , 2)+PARTIAL_B_MATRIX(2 , 4)+PARTIAL_B_MATRIX(4 , 2)+

PARTIAL_B_MATRIX(4 , 4) ;
B(2 , 3)<=PARTIAL_B_MATRIX(2 , 3)+PARTIAL_B_MATRIX(4 , 3) ;
B(3 , 0)<=PARTIAL_B_MATRIX(3 , 0)+PARTIAL_B_MATRIX(3 , 6) ;
B(3 , 1)<=PARTIAL_B_MATRIX(3 , 1)+PARTIAL_B_MATRIX(3 , 5) ;
B(3 , 2)<=PARTIAL_B_MATRIX(3 , 2)+PARTIAL_B_MATRIX(3 , 4) ;
B(3 , 3)<=PARTIAL_B_MATRIX(3 , 3) ;

3.1. Algorithm to Architecture Mapping 47

All the steps necessary to derive and solve the linear system of equations are
exactly the same explained during the analizys of vertical filter since it consists
only on the application of a fixed mathematical solution and it doesn’t depend
on the unknown variables processed. This is why the C model exploits the same
linsolve_wiener function to compute both horizontal and vertical filter.

Figure 3.15: Top-Level Data path for update b

48 A basic architecture of AV1 Wiener Filter

3.2 Implementation analysis: results and performances

The last step of every kind of design must be the evaluation of the results, not only
from a numerical point of view but also in terms of performances reached. It is very
interesting at the end to discover if the designed architecture is working properly and
which is the cost to pay to obtain the correct results. To do that both Simulation
and Synthesis operation have been performed on the final architecture reported at
figure 3.16.

Figure 3.16: Top-Level Data Path for Wiener Filter

To enable properly Update a and Update b the FSM at figure 3.17 has been
designed.

3.2. Implementation analysis: results and performances 49

Figure 3.17: Top-Level FSM for Wiener Filter

These few states are necessary to control the correct data flowing and in partic-
ular to ensure that the horizontal filter b is computed only after the completion of
Update a using the signal (DoneupdateA), otherwise it would receive a wrong value
of input updated filter. Obviously the possibility to making both filtering architec-
tures working in parallel would be efficient in order to decrease by a factor 2 the
processing time but, unfortunately, the filter algorithm doesn’t allow that due to
data dependencies.

Two mentions have to be done for what concerns this architecture:

• In order to ensure a good timing behavior, each input is processed after being
stored in a register. Placing a series of input registers is a good choice in
general for every digital design, but especially in this particular case where
the structure is inside a loop because it gives the possibility to enable the
architecture to read the input only when some valid are available avoiding to
work with useless data.

• This architecture has not to be intended stand-alone because its output became
the input of the following filtering process. This loop behavior forces the

50 A basic architecture of AV1 Wiener Filter

employment of two output buffer tri-state to ensure that both outputs are
available only when the last of two has been completed, otherwise wrong partial
results will be inserted inside the loop. To do that a signal DoneupdateB is
exploited to drive both buffers tristate and the outputs are released only when
it is equal to 1.

3.2.1 Simulation with Modelsim

The only way to verify if the architecture works properly is to compare the results
obtained by executing the software model of Wiener Filter with the ones obtained
simulating the Hardware architecture.

Using a .yuv input file called "Flowervase_832_480_30.yuv" , the encoder
"aomenc" by libaom AV1 library has been executed by using cmake command,
printing on screen the most significant data, above all:

• input matrix H ;

• input vector M ;

• input vector bin;

• indexes from "wrap_index" function;

• coefficient matrix and known factors of linear system of equation;

• output value for a and b.

Once derived all the necessary input values, the testbench has been developed in
the following way:

• H, M and bin have been provided by hand using process statement;

• the Wiener Filter Top-Level has been instantiated;

• the component related to H selection has been included providing the proper
value of counter i and j directly from the Wiener Filter Top-Level component.
Therefore, no counters has been developed in the testbench;

The simulation results is reported with the Modelsim extract of figure 3.18.

Figure 3.18: Modelsim simulation for basic Wiener Filter

3.2. Implementation analysis: results and performances 51

Until the signal done_b became ’1’, both output lines are high-impedence [yellow
rectangle]. The signal drives output buffers to release both horizontal and vertical
filter at the same time [red rectangle].

3.2.2 Synthesis with Synopsys

Once verified the behavior of the basic architecture testing it on Modelsim , it has
been synthesized using Synopsys. Hereinafter the attention will be focused mainly
on two parameters:

• Speed: the minimum clock period is derived by the evaluation of critical path
from which depends the maximum value of working frequency;

• Area: the dimension of both combinatorial and not combinatorial cells involved
has been established.

The synthesis has been performed with a top-down approach: after having elab-
orated the top-level and all its components, the design is compiled providing directly
all the proper timing constraints starting from the higher level architecture and leav-
ing the compiler to transmit timing information to every internal components. An
example of a typical used script is reported below:

set_host_options −max_cores 3
ana lyze −f vhdl − l i b WORK . . / s r c /MATRIX_PACK. vhd
analyze −f vhdl − l i b WORK . . / s r c /DIVISION . vhd
analyze −f vhdl − l i b WORK . . / s r c /COUNTER. vhd
analyze −f vhdl − l i b WORK . . / s r c /M_SELECTION. vhd
analyze −f vhdl − l i b WORK . . / s r c /REG_1X3_64BIT. vhd
analyze −f vhdl − l i b WORK . . / s r c /REG_1X4_64BIT. vhd
analyze −f vhdl − l i b WORK . . / s r c /REG_1X7_32BIT. vhd
analyze −f vhdl − l i b WORK . . / s r c /REG_3X3_64BIT. vhd
analyze −f vhdl − l i b WORK . . / s r c /REG_4X4_64BIT. vhd
analyze −f vhdl − l i b WORK . . / s r c /REG_7X7_64BIT. vhd
analyze −f vhdl − l i b WORK . . / s r c /REG_32BIT. vhd
analyze −f vhdl − l i b WORK . . / s r c /REG_64BIT. vhd
analyze −f vhdl − l i b WORK . . / s r c /MATRIX_SUM. vhd
analyze −f vhdl − l i b WORK . . / s r c /SUM_VECTOR. vhd
analyze −f vhdl − l i b WORK . . / s r c /PIVOTING. vhd
analyze −f vhdl − l i b WORK . . / s r c /MUX_A. vhd
analyze −f vhdl − l i b WORK . . / s r c /MUX_B. vhd
analyze −f vhdl − l i b WORK . . / s r c /MIJ_BI . vhd
analyze −f vhdl − l i b WORK . . / s r c /MIJ_AI . vhd
analyze −f vhdl − l i b WORK . . / s r c /HIJ_BI_BJ . vhd
analyze −f vhdl − l i b WORK . . / s r c /HIJ_AI_AJ . vhd
analyze −f vhdl − l i b WORK . . / s r c /FORWARD_ELIMINATION. vhd
analyze −f vhdl − l i b WORK . . / s r c /ENFORCEMENT. vhd
analyze −f vhdl − l i b WORK . . / s r c / bu f f e r_t r i_s ta t e . vhd
analyze −f vhdl − l i b WORK . . / s r c /BACK_SUB_STORING. vhd
analyze −f vhdl − l i b WORK . . / s r c /FSM. vhd
analyze −f vhdl − l i b WORK . . / s r c /FSM_B. vhd
analyze −f vhdl − l i b WORK . . / s r c /FSM_TOP. vhd
analyze −f vhdl − l i b WORK . . / s r c /UPDATE_A. vhd
analyze −f vhdl − l i b WORK . . / s r c /UPDATE_A_TOPLEVEL. vhd

52 A basic architecture of AV1 Wiener Filter

analyze −f vhdl − l i b WORK . . / s r c /UPDATE_B. vhd
analyze −f vhdl − l i b WORK . . / s r c /UPDATE_B_TOPLEVEL. vhd
analyze −f vhdl − l i b WORK . . / s r c /WIENER_FILTER. vhd
e l abo ra t e WIENER_FILTER −arch BEHAVIOR − l i b WORK
create_c lock −name MY_CLOCK −per iod 10 CLOCK
set_dont_touch_network MY_CLOCK
set_clock_uncerta inty 0 .07 [get_clocks MY_CLOCK]
set_input_delay 0 .5 −max −c l o ck MY_CLOCK [remove_from_collect ion [a l l_ input s]

MY_CLOCK]
set_output_delay 0 .5 −max −c l o ck MY_CLOCK [a l l_outputs]
s e t OLOAD [load_of NangateOpenCellLibrary /BUF_X4/A]
set_load $OLOAD [a l l_outputs]
compi le
report_timing> ./ report_timing . txt
report_area> ./ report_area . txt

Timing performances [Tcp]: The report_timing command is typed to extract
the most relevant timing informations of the compiled architecture . The compiler
maps each single component defining the critical path using pre-defined cells from
the "NangateOpenCellLibrary": the time spent to propagate data along the longest
path, called Tcp, is derived by means of a parameters called SLACK that is defined
like the difference between the constrained time and the actual time of a timing
path: it represent the quantity of the clock period not used to transmit data along
the critical path .Let’s consider a generic clock period Tck. It is:

Tcp = Tck − SLACK (3.9)

This relation gives informations on the architecture reliability. In particular:

• SLACK > 0 means that the design has a working frequency such that the
processed data is able to travel all the subsequent combinatorial blocks inside
the clock period defined by the provided constraint;

• SLACK < 0 means that the actual clock period is not enough to propagate
data along the whole critical path and the architecture can not work at this
frequency. The only way to solve it is to make the constraint softer.

From the file "report_timing.txt" it has been noticed that the critical path of
synthesized architecture is given by the block Back-Substitution, and in particular
by the computation of x(0).

Tcp = 3 · Tdivision + 2 · Tmultiplication + 2 · Tsubtraction + Tadder + 4 · Tshifter (3.10)

Clock Period[Tck] SLACK Critical Path Delay [Tcp]

10 ns -221.43 ns 231.42 ns
232 ns +0.01 231.42 ns

Table 3.1: Critical Path delay for basic implementation

3.2. Implementation analysis: results and performances 53

The first attempt was to provide a clock constraint of 10ns but the related
SLACK was strongly negative. The lowest SLACK of +0.01ns is obtained by con-
sidering a 232 ns clock period, from which 231.43 ns are available to propagate data
since it is necessary to include also a fixed clock uncertainty parameters equal to
0.07 ns and an output external delay of 0.50 ns. The obtained working frequency
is:

fs =
1

Tck

=
1

232ns
≃ 4.31MHz (3.11)

As expected, the combinatorial nature of the presented basic implementation is the
cause of a bad result in terms of frequency. To make the execution speeder, the
architecture should be strongly pipelined in order to split as much as possible the
critical paths. This kind of modification will not be discussed in this thesis because
the aim is to present a low-complexity optimization approach.

Area performances: The command report_area allows to analyse each contri-
bution of area of every involved component. InFrom the file "report_area.txt" it is
possible to identify the main results that are reported in the table below:

Number of ports 1245024
Number of nets 5016113
Number of cells 3568398
Number of combinational cells 3539633
Number of sequential cells 22044
Number of buf/inv 862746

Table 3.2: report_area results of basic implementation

The total area requirement is given by two contributions:

Contribution Area [µm2]

Combinational Area 4132550.177
Non-combinational area 80061.746

Table 3.3: Total area of basic design implementation

The total area occupied by the architecture is almost equal to 4.22 mm2, that
is definitely too much high to be just a little component of the entire video codec
environment.

54 A basic architecture of AV1 Wiener Filter

3.3 Elaboration for a real-time video sequence

To better understand the provided results and to better focus on the impact they
have on the codec execution it is necessary to define some target application and
analyse their elaboration related to the performances reached with the proposed
basic architecture.

In particular, it is possible to consider some real-time video sequences and eval-
uate for each of them how the design works. By evaluating the implementations
throughput, intended as the number of samples processed per second, it is possible
to define for a certain application how many frames can be elaborated in a real-time
processing. The most known video format have been chosen like target application:

• Standard Definition [SD]: there are different kind of SD sequences, based on
their resolution. The most used are:

– 480i, with a resolution of 720x480 pixels;

– 576i, with a resolution of 720x576 pixels;

• High Definition [HD]: it is the most used nowadays and it is divided into:

– 720p, with a resolution of 1280x720 pixels;

– 1080p, with a resolution of 1920x1080 pixels.

For each resolution, the related approximated fps (frames per second) is reported
at table 3.4.

Application Resolution [pixels x pixels] fps [Basic Architecture]

SD [480i] 720 x 480 12
SD [576i] 720 x 576 10
HD [720p] 1280 x 720 4
HD [1080p] 1920 x 1080 2

Table 3.4: Video sequences fps for the basic architecture

It is clear how the designed basic architecture can not sustain high frame rates
neither for SD or HD definition. This is due to its combinatorial nature that increase
the time necessary to process each pixel.

3.4. From basic to optimized implementation: the need of a complexity reduction55

3.4 From basic to optimized implementation: the

need of a complexity reduction

The main reason why the attention is focused on the complexity optimization is
that it is challenging not only didactically speaking but also from a technological
point of view. In the last 30 years, the need of reaching an heterogeneous integration
led to a technological scaling of dimension. In particular, reducing transistor size,
it was possible to integrate more functionality inside the same chip and this is the
reason why the maximum dimension of an integrated circuit, and so the maximum
area that can be exploited for system design is increased by 50% every year. It is
really important to keep under control the complexity in VLSI design because it
determines also the manufacture costs, the quality of production process and power
consumption, expecially in the presented situation where the analysis is limited to
a small part of the whole architecture.

• Cost: the total cost of one die depends strongly from die area with a propor-
tionality that has been extimated to be about the fourth power [10]:

cost of die = f(die area)4 (3.12)

Since the area can be controlled by designer, the aim must be to produce gates
smaller and smaller to reach higher integration density and smaller die size.

• Production quality: the area influences also the quality of die production
through the yield parameter, defined like the ratio between the number of
working die inside a wafer respect to the total one. From a statistical point of
view, larger is the area lower is the yield because less die fit on the wafer. It is
very important to control this technological parameter because many devices
requires very strict constraint on it.

• Power consumption: The power dissipation of a circuit is given by:

Pavg ∝ fclk · CL · V 2
DD (3.13)

Reducing the complexity of involved operator the total switching capacitance
CL is reduced as well.

Chapter 4

Low complexity architecture of AV1

Wiener Filter

The basic idea to develop a low complexity architecture is to work with a bottom to
top approach. The optimization has been approached following a precise methodol-
ogy described in the steps below that will be deepen in this chapter:

1. Individual analysis and synthesis of each involved block designed for the basic
architecture.

2. Identification of the most critical in terms of complexity.

3. Modification and optimization to reach a low-complexity version of each com-
ponent.

4. Design of the top-level architecture for both Update a and Update b.

5. Integration of the optimized implementations in the top-level architectures.

The synthesis results obtained by performing the report_area of each component
one at a time are reported in the table 4.1. This analysis was useful to give an idea
of what to focus on to reduce the complexity of the basic architecture. In particular:

• The divider contribution is highlighted because it is really crucial in that phase
of research. This is the reason why the whole optimization mechanism began
by analysing the divider: the implementation used for the basic design and
explained at paragraph 3.1.1 is unsustainable for a low-complexity purpose be-
cause it involves a huge number of operators. The massive usage of the divider
component expecially in already complex blocks such as Forward Elimination
or Back-substitution lead to a further increment of their complexity and, as a
consequence, to the need for a new optimized version.

56

57

Hardware component Area[µm2]

Mij x bi 77730.520
Mij x ai 76808.298
Hij x bi x bj 1033883.482
Hij x ai x aj 1034442.881
Enforcement 10275.846
Pivoting 4164.495
Forward Elimination 709903.197
Back-substitution 193676.729
Divider 87258.107

Table 4.1: Area occupation of each component for basic implementation

• The multiplicative blocks are relevant in terms of area requirement because,
even if they don’t employee divider, they need for several multipliers.

• The central part of the elaboration composed by Enforcement and Pivoting is
not crucial since they perform few number of basic operations, like swapping.

The critical elements have been strongly modified using a folding approach in
order to share hardware components. What really changes respect to the basic
implementation is the design approach: it is not possible to use unlimited resources,
so the design is based on the idea of reducing at minimum the number of exploited
components. Basically, the same operator is used whenever possible providing step
by step the correct inputs by means of multiplexers in order to perform the related
operation; every time a data dependency occurred a certain number of register is
placed to ensure the correct algorithm execution. On the other hand, as it will be
explained better during the following sections, the cost is a considerable increment
of latency since several clock cycles are required to complete each operation.

For the reasons explained above, the optimization for a low-complexity version
of AV1 Wiener Filter has been developed for both Update a and Update b following
these steps:

1. optimization of divider algorithm;

2. optimization of most complex components using folding ;

3. implementation of FSM for each block to handle data flow;

4. integration of re-designed component into the top-level architecture;

5. implementation of a specific top-level FSM to ensure the algorithm execution
accuracy.

58 Low complexity architecture of AV1 Wiener Filter

It is necessary clarify that this proposed way for the design optimization, that is
valid for both the horizontal and vertical filter design, works only because this is a
dedicated architecture and the basic algorithm to map extracted from the C model
is fixed and well known. This is really important to underline how each kind of
implementation reported in this work is adapted on each single line of the code and
many architectural choices have been made knowing exactly what expected from the
execution. A very efficient optimization would have required to change the algorithm
description in some way maintaining the same working behavior, since obviously the
provided source code has not been developed for any kind of optimization purpose .
The algorithm instructions to map block by block are exactly the same of the ones
available at Chapter 3 and will not be reported in this section.

4.1 Divider algorithm optimization

From a purely computational point of view, the main problem of the previous im-
plementation for the division is the employment of 64 adder and 64 subtractors to
perform one single operation. The main goal of the optimization is to reduce as much
as possible the number of hardware components even paying in terms of latency: in
fact, the only way to reduce the complexity of the division is to distribute the whole
operation in several clock cycle end re-use the same operators. The implemented
architecture follows again a "Restoring divider algorithm" and it is reported at
figure 4.1.

The used components are:

• a 128 bit shift-register, where the 64 LSBs are occupied by the dividend, while
the 64 MSBs contain the value of partial reminder computed cycle by cycle;

• a 64 bit register where the divisor has been stored;

• a 64 bit counter to stop the iteration at 64th cycle;

• a 64 bit shift-register to store the quotient.

For each i-th cycle, the value of partial reminder is computed as:

s(i) = 2s(i−1) − q64−i · (2
64d) (4.1)

The algorithm is that of typical of a Restoring Divider: at each cycle i, the first
64 MSBs from the 128 bit shift-register are taken and from which the divisor is
subtracted(the 264 shifting is made taking only the first 64 MSBs): if the result is
positive a ′1′ is stored in the Quotient shift register and the Partial Reminder is
loaded into 128 bit shift register starting from the MSB, otherwise a ′0′ is stored

4.1. Divider algorithm optimization 59

(a) Optimized division
data path

(b) Optimized division
FSM

Figure 4.1: Optimized Restoring Divider

into the quotient shift register without loading the partial reminder. At cycle i+ 1,
the value taken from 128 bit shift-register depends on the subtraction result and it
will be:

• 2 · s(i) if it was positive;

• 2 · s(i−1) if it was negative.

The proper value of quotient is stored inverting the sign bit of the partial reminder,
in order to save 1 every time it is positive and 0 when negative. The algorithm
requires several control signals for store and load operations: for this purpose, the
FSM at figure 4.1 has been implemented.

• The Load operator state enables the storing of both dividend and divisor in
correspondent registers;

• The Shift z state enables the shift operation of both shift-registers at the end
of each cycle;

60 Low complexity architecture of AV1 Wiener Filter

• The Load reminder and quotient state provide a load enable signal for
partial reminder equal to the opposite of its sign bit and enables the quotient
storing;

• When the value of counter reach 64, the operation is concluded.

This algorithm is very powerful because, apart from the fact that it is very easy to
implement, it requires just one subtractor and 4 registers to perform the division
but, on the other side, each operation lasts 64 clock cycles.

Making a comparison between the previous implementation:

Implementation Area[µm2]

Basic divider 87258.107
Optimized divider 3426.346

Table 4.2: Complexity comparison between dividers

The complexity has been reduced of a factor close to 26.

4.2 Hardware architecture of optimized update a

The architecture designed for each block is the product of several implementation
attempts: it is no longer enough to develop a working architecture, but it is neces-
sary to reach the minimum level of complexity The mapped algorithm describing the
Wiener Filter is obviously the same reported at Chapter 2. All the considerations
presented here concern only the integrated blocks without including any kind of
optimization for the top-level architecture to underline how it is possible to achieve
a great improvement changing only the behavior of its components. The fixed point
in the design is to exploit just one operator for each kind whenever allowed by data
dependency constraints. Every modification aimed to the architecture optimization
has been designed in order to obtain a balanced structure, in order to make always
a trade off between latency and complexity: for this reason the lower-area compo-
nents have not been modified because optimizing an already low complex elements
would not have introduced a relevant improvement in terms of area, but would have
increased too much the latency. That’s why the intermediate block of Enforcement
and Partial Pivoting have not been optimized and will not be presented in this
section.

4.2. Hardware architecture of optimized update a 61

4.2.1 Computation of vector A

This block, called again "Mij x bi", receives the same input of the basic imple-
mentation and reported at paragraph 3.1.1. It has been designed considering that
the employment of 7 different multipliers which exploit the same fixed operand bin
is critical in terms of area occupation: this is why one single multiplier is shared
between the 7 components of input vector Min. The architecture is described by the
data path and the FSM reported at figure 4.2

(a) Data Path Mij x bi

(b) FSM Mij x bi

Figure 4.2: Hardware implementation forMij x bi

The first multiplier operand is provided by selecting at each cycle the i-th com-
ponent of input vector Min through the output of the Counter , enabled at state
Enable counter i. To store the partial product produced step by step, a chain of
seven registers have been employed (e.g. at the i-th cycle, the i-th value of partial
product is stored in first register while the second contains the one related to cycle
i − 1, the third the one of cycle i − 2 and so on). At the 6th step, the operation
is completed and all the values stored inside the registers are combined in the A

62 Low complexity architecture of AV1 Wiener Filter

computation block that works as follows (the registers are enumerated from the top
to the bottom):

B_OUT(0)<= OUT_REG_1 + OUT_REG_7;
B_OUT(1)<= OUT_REG_2 + OUT_REG_6;
B_OUT(2)<= OUT_REG_3 + OUT_REG_5;
B_OUT(3)<= OUT_REG_4;

In this case 4 different adders have been implemented even if it was possible to
reduce more the complexity by using just one and performing the operations one at
a time: this solution has not been considered because the computational cost of an
adder is quite negligible respect to the multiplier, so the complexity would have been
decreased of a little factor paying a further deteriorating of latency performances.
The optimization led to a complexity reduction of a factor about 7.7.

Implementation Area[µm2]

Basic Mij x bi 77730.520
Optimized Mij x bi 10104.542

Table 4.3: Complexity comparison between Mij x bi

4.2.2 Computation of matrix B

The considerations on the component "Hij x bi x bj take a crucial role in the
whole optimization since it is one of the most expensive of the architecture. From
a computational point of view, the multipliers are the bottleneck since the algo-
rithm requires 98 multiplications. Analysing better the basic structure reported at
paragraph 3.1.1 it is possible to notice that, having the same inputs:

• The first set of multipliers receives a fixed operand equal to bin1 and one
element of 7 x 7 sub-matrix Hin.

• The second set of multiplier uses the result of previous multiplication and
another fixed operand equal to bin2

These operations have been replaced by using:

1. one single multiplier;

2. a 49-to-1 multiplexer selecting the proper element of Hin;

3. a 2-to-1 multiplexer that selects the fixed operand from bin1 and bin2;

4. a 2-to-1 multiplexer to select which set of multiplication have to be performed.

4.2. Hardware architecture of optimized update a 63

(a) Data Path Hijx bix bj

(b) FSM Hij x bi x bj

Figure 4.3: Hardware implementation forHij x bi x bj

The architecture is reported at figure 4.3. The selection signals are provided in First
Multiplication and Second multiplication state as follows:

• In "First Multiplication " the multiplier is used to compute Hin(i, j) · bin1, so:

– SELHij is exploited to scan the 7 x 7 matrix horizontally and vertically
by using the value of count signal. It is updated in the range (0 − 48)
and the selected element is extract sorting the matrix from left to right:

H0 H1 H2 H3 H4 H5 H6

H7 H8 H9 H10 H11 H12 H13

H14 H15 H16 H17 H18 H19 H20

H21 H22 H23 H24 H25 H26 H27

H28 H29 H30 H31 H32 H33 H34

H35 H36 H37 H38 H39 H40 H41

H42 H43 H44 H45 H46 H47 H48

64 Low complexity architecture of AV1 Wiener Filter

So, step by step, the value Hcount comes out from the input matrix.

– SELoperand1 selects as first operand the data coming from the matrix
multiplexer providing to multiplier Hin(i, j).

– SELoperand2 provides bin1 as second operand.

• In "Second Multiplication" state:

– SELHij is neglected since the matrix element has already been used.

– SELoperand1 selects as first operand data coming from the feedback regis-
ter, providing to multiplier the shifted result of the previous calculation.

– SELoperand2 provides bin2 as second operand.

After each second stage of multiplication a partial value is stored in a register chain
similarly to the "Mij x bi" architecture, but employing 49 registers. It is interesting
to notice how the reduction of huge components corresponds to a strongly increment
of registers number that have very little influence on the complexity of the system
being low-area components.

The derivation is completed by combining all the 49 partial values obtained in
the B Computation component:

B0<=OUT_REG_1+OUT_REG_7+OUT_REG_43+ OUT_REG_49;
B4<=OUT_REG_2+OUT_REG_6+OUT_REG_44+ OUT_REG_48;
B8<=OUT_REG_3+OUT_REG_5+OUT_REG_45+ OUT_REG_47;
B12<=OUT_REG_4 + OUT_REG_46;

B1<=OUT_REG_8+OUT_REG_14+OUT_REG_36+ OUT_REG_42;
B5<=OUT_REG_9+OUT_REG_13+OUT_REG_37+ OUT_REG_41;
B9<=OUT_REG_10+OUT_REG_12+OUT_REG_38+ OUT_REG_40;
B13<=OUT_REG_11+ OUT_REG_39;

B2<=OUT_REG_15+OUT_REG_21+OUT_REG_29+ OUT_REG_35;
B6<=OUT_REG_16+OUT_REG_20+OUT_REG_30+ OUT_REG_34;
B10<=OUT_REG_17+OUT_REG_19+OUT_REG_31+ OUT_REG_33;
B14<=OUT_REG_18 +OUT_REG_32;

B3<=OUT_REG_22+ OUT_REG_28;
B7<=OUT_REG_23+ OUT_REG_27;
B11<=OUT_REG_24+ OUT_REG_26;
B15<=OUT_REG_25;

The advantage obtained is a complexity reduction of a factor close to 25.

Implementation Area[µm2]

Basic Hij x bi x bj 1033883.482
Optimized Hij x bi x bj 41748.966

Table 4.4: Complexity comparison between Hij x bi x bj

4.2. Hardware architecture of optimized update a 65

Once obtained B matrix and A vector, it is necessary to apply the same En-
forcement step described at paragraph 3.1.1 to fit the dimensions and then solve the
linear system of equation by using the same Gauss-elimination algorithm exploiting
Partial Pivoting, Forward Elimination and Back-substitution. As mentioned, the
architecture for Enforcement and Partial Pivoting are not explained in this section
and their basic version described at paragraph 3.1.1 and 3.1.1 respectively are used.
The only difference in the pivoting operation is that, differently from the unique
structure presented in the basic implementation, it is now divided in two parts, one
for each processing stage in order to adapt it to the Forward Elimination operation
that have to be necessarily processed in two separated step since the derivation of
the architecture differs depending on the processing stage and each of them will be
handled with different Finite State Machines: adopting two blocks ensures a better
synchronization.

4.2.3 First stage of Forward Elimination

After the first step of Partial Pivoting , a Forward Elimination operation on
the last two rows (6 elements) is performed again to start the conversion into an
upper triangular form. The basic version described at paragraph 3.1.1 uses for each
input, above all, one multiplier, one divider and one subtractor. The data flow has
been compacted to use the same operators to process all the inputs deriving the
architecture at figure 4.4.
The same algorithm has been replicated. It is not necessary to implement counters
because the number of iterations to perform is well-known and equal to 8 (the last
two rows of matrix [A|b]). The execution starts only when the block is enabled
by ENforward signal; after that, the operations is managed by FSM states and, for
each one, the selection signals pick proper inputs. For example, to update A4 (the
sequence of operation is reported at pag. 34):

• 1st multiplication state selects the input A4 from the multiplexer at the left
and the input A0 from the right one. The multiplier compute the operation

DIVIDEND <= sh i f t_ r i gh t (A4 , 8) ∗ A0 ;

• 1st division state provides the result of previous operation to the divider by
means of a register and it is divided by A0.

• 1st subtraction state provides SELsub signal to pick A4 and perform the
operation

A4_FE <= A4− s h i f t _ l e f t (QUOTIENT, 8) ;

66 Low complexity architecture of AV1 Wiener Filter

(a) Data Path for first
stage of Forward Elimi-
nation

(b) FSM for first stage of
Forward Elimination

Figure 4.4: Hardware implementation for first stage of Forward Elimination

4.2. Hardware architecture of optimized update a 67

Every time a division is executed, the flow is stopped waiting its completion. The
output elements are derived neatly starting from the first of the second row A4 and
are stored consecutively in an 8 registers chain . Once terminated, the output A
matrix and b vector are filled with the proper updated coefficients.

4.2.4 Second stage of Forward Elimination

This elaboration is similar to the first stage, but involves only the last row of A
matrix and the last element of b vector. Even if the number of computational blocks
is lower, it is necessary to pay attention on this component since it contains expensive
operator like divider. For that reason the same concepts are applied again to share
the resources (figure 4.5).

It is possible to notice how the architecture is really similar to the one at figure
4.4. The mechanism is exactly the same apart from the distribution of input data
inside the structure. The computed elements are cycle by cycle stored in a 4 registers
chain and, after all, the output A matrix and b vector are filled.

It is worth to notice that the whole Forward Elimination operation has been
realized using just two multipliers, two dividers, two subtractors and 12 registers.
This allows to reach a complexity reduction of a factor of about 19.

Implementation Area [µm2]

Basic Forward Elimination 709903.197
Optimized First stage of Forward Elimination 19256.272
Optimized Second stage of Forward Elimination 18274.200
Total optimized Forward Elimination 37350.472

Table 4.5: Complexity comparison between Forward Elimination

68 Low complexity architecture of AV1 Wiener Filter

(a) Data Path for second
stage of Forward Elimi-
nation (b) FSM for second stage

of Forward Elimination

Figure 4.5: Hardware implementation for second stage of Forward Elimination

4.2. Hardware architecture of optimized update a 69

4.2.5 Back-substitution and storing

The Back-substitution and storing block presented at paragraph 3.1.1 is one
of the least complex inside the whole architecture: it employees just 3 dividers,
3 multipliers and 3 adders to execute the algorithm. Despite this, the presented
optimization leads to a further complexity improvement and at the same time split
the critical path and, even if that’s not the task that it has been designed for, it helps
to relax the clock period constraints and decrease the critical path computed by the
analysis of basic implementation. The designed architecture is reported at figure
4.6. The algorithm is mapped now in a quite more complex way, that is explained
below:

• In 1st division state, the output x(2) is computed by dividing the component
b2 selected by SELdiv1 properly shifted and A10 selected by SELdiv2 and it is
stored in the first register of the chain below the divider.

• In "1st multiplication state, the multiplier is used to compute the operation
x(2) · A6. The result is then right-shifted to derive C1.

• In 1st subtraction the difference from b1 and C1 is made and the result is
the dividend to provide to divider for the next division.

• In 2nd division state the output x(1) is computed by dividing the difference
obtained at previous point and the coefficient A5. To store the result, as made
for x(2), the chain of registers is enabled and so, at the next clock cycle, x(1)
will be available at the output of first register while x(2) will be shifted on the
second one.

• In 2nd multiplication state, C2 is derived exactly as C1 handling the multi-
plexers control signals to provide x(1) and A1 to multiplier.

• In 3rd multiplication state, C3 is obtained again repeating the same multi-
plication and shifting operation, providing as operands x(2) and A2. At the
same time C2 is stored in the sum addend register.

• "Sum" state is used to perform the addition of C2 available at the output of
addend register and C3.

• In 2nd subtraction the subtractor is again used to provide the dividend to
perform final division making the difference between b0 and the sum C2 + C3

derived at previous step.

• In Last division state, the divider is exploited to compute the division be-
tween A0 and the dividend provided from previous point deriving the last

70 Low complexity architecture of AV1 Wiener Filter

output x(0) that, by enabling again the chain of register, is properly stored.
The final output configuration is the one reported at figure 4.6.

The number of resources has been reduced to one instance for each kind of
operation and this leads to a reduction complexity of about 8.

Implementation Area [µm2]

Basic Back-substitution and storing 193676.729
Optimized Back-substitution and storing 24587.444

Table 4.6: Complexity comparison between Back-substitution and storing

4.2.6 Top-level

The design has been implemented with the idea of maintaining the same top-level
architecture modifying the related FSM to adapt the new features of optimized
components. The control of the execution flow is the most critical point because
an optimization aimed to complexity reduction is more or less independent from
timing behavior, but the only way to organize the algorithm development is to use
an FSM scanning the design cycle by cycle. Differently from the basic combinatorial
implementation where it was ensured that each involved component completed all
the operations in one single clock cycle, this design is characterized by a clock cycles
request that depends both on the number of operations to performs and on the type
of involved operators. For that reason it is important to underline that, even if the
block diagram and the mapped algorithm are exactly the same, the design behavior
is completely different and it is managed by a more complex dedicated FSM as can
be noticed at figure 4.7. As a consequence of that, also the register enabling is more
difficult since they must store data, cycle by cycle, only after the related operation
completion: this is why many enabling control state have been inserted. The design
execution follows these steps:

• The mechanism that provide inputs is exactly the same than the one described
for basic architecture handling M Selection and H Selection in the same way.
When the inputs are available, both multiplicative blocks are enabled. Differ-
ently from basic implementation it is not possible to control each operation
completion by using counters since each one needs to different clock cycles:
each block provide a done signal when it completes the operations.

• The computation of each partial vector of a requires the elaboration of the
7 elements of sub-vector Min provided by M Selection block. In order to

4.2. Hardware architecture of optimized update a 71

(a) Optimized Back-

substitution and storing

data path

(b) Optimized Back-

substitution and storing

FSM

Figure 4.6: Hardware implementation for optimized Back-substitution and storing

72 Low complexity architecture of AV1 Wiener Filter

synchronize the operations it is important to notice how the blocks Hij x bi
x bj and Mij x bi complete the respective operations with a different number
of clock cycle since each B partial matrix is the result of an elaboration of
49 elements of Hin one for each clock cycle. On the contrary each a partial
vector is produced by elaborating only 7 input elements of Min. Both Hij x
bi x bj and Mij x bi are enable at the same time: since the a partial vector is
produced earlier, when the component signals its completion with the signal
DONEMijxbj , the result is stored using a feedback register. The subsequent
a partial product is elaborated only after B partial matrix is produced and
available to be stored. This operation is repeated for the first six cycles when
all the partial values of a have been back-added and the final value of the
vector is provided out from the feedback register.

• Between the 6th and the 48th cycle(where i = j = 6), the derivation of
B partial matrix continues as for the previous step until the final value is
reached.

• Once obtained and then enforced both final value for a and B the system
A · a = b is solved by repeat the same execution flow implemented for the
basic implementation but enabling each operation only after the previous one
is completed. Nevertheless,Enforcement and Pivoting block does not have any
done because, not being optimized, it is ensured that the execution ends in
one single clock cycle.

The vertical filter aupdated is taken by selecting only the first 32 bit of each compo-
nent of the symmetrized output vector.

4.2. Hardware architecture of optimized update a 73

(a) Data Path for opti-
mized update a

(b) FSM for optimized
update a

Figure 4.7: Hardware implementation for update a

74 Low complexity architecture of AV1 Wiener Filter

4.3 Hardware implementation of optimized update

b

The concept is the same of the one applied for the basic implementation: executing
the same algorithm means using the same linsolve_wiener function and as a conse-
quence just the derivation of B matrix and a vector changes from update a design.
From table 4.1 it can be noticed an analogy from the correspondent computation
of a and B in terms of complexity and so the steps adopted to optimize them are
similar to what explained in previous section.

4.3.1 Computation of vector A

The optimized Mij x ai generates again one single output value for each input sub-
vector Min. While in the basic implementation case the execution was based on the
"variable" syntax to perform the feedback sum, in the optimized one the only way
to reduce the area request is to give up this method adopting a classic adder with
feedback register, even if it involves a new local reset signal. Moreover, a further
optimization is done on the multiplication numbers: each operation Min(i) ·ain(i) is
completed exploiting the same multiplier, instead of instancing seven. This means
that while in basic architecture a "for" loop is used and all the multiplications were
done in parallel, in the architecture reported at figure 4.8 the block Index selection
provides proper component for Min and ain related to the i-th cycles according to
the counter value enabled by the FSM state Enable counter i. Every time the i-th
operands are provided to multiplier the feedback register will sum the contribution
i−1 and, after the 6th clock cycle, the value of Apartial related to the sub-vector Min

is released as output.

The obtained architecture completes the operation using just one counter, one
multiplier, one adder and one register allowing a complexity reduction of a factor
close to 10.

Implementation Area[µm2]

Basic Mij x ai 76808.298
Optimized Mij x ai 7736.876

Table 4.7: Complexity comparison between Mij x ai

4.3. Hardware implementation of optimized update b 75

(a) Optimized Mij x ai

data path

(b) Optimized Mij x ai

FSM

Figure 4.8: Hardware implementation for optimized Mij x ai

4.3.2 Computation of matrix B

The optimization for Hij x ai x aj is quite more complex than the one explained
for A vector because it must process the 49 elements of a 7x7 sub-matrix of H.
Its basic implementation reported at paragraph 3.1.2 needs for 2 multiplication, 2
shifting and a feedback sum for each processed input. The adopted way to share
resources is similar to the one exploited in Hij x bi x bj: in particular, the first set
of multiplier performs the multiplication between the (i, j) element of sub-matrix
Hin and the i-th element of input vector a. The second one computes the previous
result multiplying it with the j-th element of a. The complexity has been reduced
to the following components:

1. one single instance for multiplier;

2. a 49-to-1 multiplexer selecting the proper element of Hin;

3. a 2-to-1 multiplexer that selects the operand coming from input vector a.

4. a 2-to-1 multiplexer to select which set of multiplication have to be performed.

76 Low complexity architecture of AV1 Wiener Filter

The output storing algorithm is similar to the basic implementation because again
just one value is produced instead of a whole matrix: a feedback adder is exploited.
The final architecture is reported at figure 4.9

(a) Optimized Hij x ai x
aj data path

(b) Optimized Hij x ai x
aj FSM

Figure 4.9: Hardware implementation for optimized Hij x ai x aj

The design requires the employment of three counters:

• Counter i and Counter j are exploited to select respectively i-th and j-th
component of input vector ain;

• Counter_49 is used to select the proper component of input matrix Hin

The selection signals are provided in "First Multiplication " and "Second multipli-
cation" state as follows:

4.3. Hardware implementation of optimized update b 77

• In First Multiplication the multiplier is used to compute Hin(i, j) · ain(i),
so:

– SELHij is exploited to scan the 7 x 7 matrix horizontally and vertically
by using the value of count signal. It is updated in the range (0 − 48)
and the selected element is extract sorting the matrix from left to right:

H0 H1 H2 H3 H4 H5 H6

H7 H8 H9 H10 H11 H12 H13

H14 H15 H16 H17 H18 H19 H20

H21 H22 H23 H24 H25 H26 H27

H28 H29 H30 H31 H32 H33 H34

H35 H36 H37 H38 H39 H40 H41

H42 H43 H44 H45 H46 H47 H48

So, step by step, the value Hcount comes out from the input matrix.

– SELoperand1 selects as first operand data coming from the matrix multi-
plexer providing to multiplier Hin(i, j).

– SELoperand2 provides ain(i) as second operand

• In "Second Multiplication" state:

– SELHij is neglected since the matrix element has already been used.

– SELoperand1 selects as first operand data coming from the feedback regis-
ter, providing to multiplier the shifted result of the previous calculation.

– SELoperand2 provides ain(j) as second operand.

After each second stage of multiplication a partial value is produced and it is summed
to the contribution computed at previous clock cycle. For that operation it is nec-
essary to distinguish two cases:

• If j < 6 it means that the scan of whole ain is not completed, so the subsequent
sum have to be exploited incrementing only the j counter to move in the same
row.

• If j = 6 the whole vector has been scanned. In that case the counter i have
to be incremented and counter j reset to move on to the next row and start
again the cycles of 6 iterations. In both cases, the process ends when the total
number of iterations is equal to 49 and so when counter_49 reach a value of
48.

78 Low complexity architecture of AV1 Wiener Filter

The execution is performed used only 2 expensive component: one adder and
one multiplier, that compared with the 96 multipliers and the "variable" feedback
sum exploited in the basic design allows a reduction of complexity of a factor of
about 85 paying just some additional multiplexers.

Implementation Area[µm2]

Basic Hij x ai x aj 1034442.881
Optimized Hij x ai x aj 12443.214

Table 4.8: Complexity comparison between Hij x ai x aj

4.3.3 Top-level

The top-level architecture for the optimized horizontal filter is derived from the same
design choices that is again summarized below:

• Each sub-vector of M is provided by an M selection instance based on the
counters values;

• The sub-matrix Hin is provided directly from the testbench. This solution has
become even more powerful in the optimized implementation since H selection
block would have required an huge area occupation without any possibility to
compress it.

• The only difference compared with the optimized version of the Update a
design is about the storing. In fact the feedback adder has been replaced by
the same trees of adder of the basic Update b implementation. Of course from a
computational point of view it might seems a contrast choice but it isn’t: once
filled the partial structures both for B and a, optimizing the storing algorithm
would have meant to exploit just one adder to see a significant reduction of
complexity and then perform one operation for each clock cycle. The already
critical latency would have increased more of a large factor. In this case ,paying
the employment of some more adders, the design is surely more balanced.

• All the steps from the Enforcement are repeated exactly as done for vertical
filter a. It is possible to notice how a further complexity reduction could be
obtained shari this architectural section between both Update a and Update b,
with perhaps a proper selection signal. This step is skipped in this presentation
to underline, block by block, the complexity contribution and the improvement
related to same top-level architecture.

4.3. Hardware implementation of optimized update b 79

(a) Data Path for opti-
mized update b (b) FSM for optimized

update b

Figure 4.10: Hardware implementation for update b

80 Low complexity architecture of AV1 Wiener Filter

The final designed architecture is reported at figure 4.10.
The execution is controlled by the FSM that, how it can be easily noticed,

it is very similar to the one exploited at figure 4.7. The only difference consists
in the storing enable operation: differently from Update a where it was necessary
to control a feedback register, in this case the partial value for both B and a is
stored in a 7x7 matrix and a 1x7 vector respectively only when the related input
register is enabled in the state "EnableBpartial" and "Enableapartial".After the
last cycle i = j = 6 the execution proceed solving the linear system as explained
and producing the updated value of filter b taking the first 32 bit of each component
of the symmetrized output vector.

Chapter 5

Results and Synthesis

In order to analyse optimized architecture of the Wiener Filter in terms the same
top-level architecture reported at figure 3.16 controlled by related FSM at figure
3.17 has been exploited, in order to define the amount of improvements introduced
with the low-complexity optimization. The design analysis has been performed in
three steps:

1. Simulation of the optimized architecture using Modelsim to verify if it works
properly;

2. Synthesis of the working architecture using Synopsys to derive whole design
complexity informations ;

3. Comparison between optimized and basic architecture complexity.

5.1 Optimized design simulation

The basic idea was to reuse significant data already extracted from basic design
simulation and then verify if the results obtained by the new implemented architec-
ture were equals to the ones derived from software execution of .yuv file "Flower-
vase_832_480_30.yuv" . This choice allows to provide the same inputs extracted
from the software analysis also for this optimized design and make the results com-
parison easier. The simulation is performed again using a Modelsim test-bench
where:

• Both input matrices H and M and vector bin is provided by process statement.

• H selection block is instanced to avoid its synthesis providing it the counter i
and j taken from Wiener Filter top-level instance.

81

82 Results and Synthesis

Figure 5.1: Modelsim simulation for optimized Wiener Filter

• The provided clock period is equal to the one used in the basic design, in order
to be able to quantify the latency increment.

The relative Modelsim simulation screen is reported at figure 5.1.

The screen above is extracted with the same horizontal resolution of the one at
figure 3.18 related to the basic architecture, and what turns out immediately is that
the output buffers stay at High-Impedance state for longer time because the signal
Doneb is released later: as expected the latency parameter is increased a lot. Both
the output 7-elements of horizontal and vertical filter are equal to the ones derived
in the basic implementation.

5.2 Optimized design synthesis

Differently from the basic implementation where the synthesis was used to trace the
optimization field, this one aims to evaluate gives an idea on the achievement of
the objectives set. Hereinafter only the performances in terms of complexity will be
discussed since timing evaluation is out from the optimization goal. Nevertheless
this kind of improvement probably leads to a reduction of critical path delay because
the insertion of many registers have the effect of splitting the critical path easing
time constraints. Obviously this consideration have to be related to latency huge
increment to evaluate properly the total time spent to finish processing.

To analyse the area occupation the command report_area is typed again and
the results are reported in the table below:

Number of ports 242670
Number of nets 482942
Number of cells 193866
Number of combinational cells 163017
Number of sequential cells 30051
Number of buf/inv 29469

Table 5.1: report_area results of optimized implementation

5.3. Elaboration for a real-time video sequence 83

The total occupied area is given adding both combinational and noncominational
contribution:

Contribution Area [µm2]

Combinational Area 253727.824
Non-combinational area 147411.884
Total area 401139.709

Table 5.2: Total area of top-level optimized design implementation

5.3 Elaboration for a real-time video sequence

The evaluation on the behavior of the proposed optimized architecture for the elab-
oration of real-time application is reported considering the same standard video
sequences used for the basic implementation. This kind of analysis deviates from
the low-complexity purpose because the improvement of the elaboration speed would
have required a different type of optimization, focused on the throughput improve-
ment inserting properly pipeline registers. Even if this proposed design relaxes the
timing constraints decreasing critical path with the inclusion of folding registers, the
results should be measured carefully because of the latency.

For sake of completeness, the results related to the maximum fps reachable from
the low-complexity optimized architecture will be reported and compared with the
basic implementation, even if its throughput is not indicative of speed performances.

Application Resolution [pixels x pixels] fps [Basic Architecture] fps [Low-comlexity]

SD [480i] 720 x 480 12 317

SD [576i] 720 x 576 10 264

HD [720p] 1280 x 720 4 119

HD [1080p] 1920 x 1080 2 52

Table 5.3: Video sequences fps comparison

84 Results and Synthesis

5.4 Results comparison

The table below summarizes the main results obtained comparing the reports for
both the implementation:

Report data Basic design Low area design Reduction Factor

Number of ports 1245024 242670 5.1
Number of nets 5016113 482942 10.4
Number of cells 3568398 193866 18.4
Number of combinational cells 3539633 163017 21.8
Number of sequential cells 22044 30051 0.73
Number of buf/inv 862746 29469 29.2

Table 5.4: Reports contribution comparison

It is worth to notice that the reduction factor confirms clearly what expected from
the design choice: it turns out easily how the contribution given by the combination
cells is one of the most reduced because the optimization is based on a drastic
abandonment of the combinatorial nature of basic design. To obtain that, a step-
by-step employment of several registers to save properly computed data was needed:
this is the reason why the contribution related to sequential cells has increased even
for a small quantity. To quantify combinatorial and non-combinational trend both
contributions are compared in the following table:

Contribution Basic design[µm2] Low area design[µm2] Reduction Factor

Combinational Area 4132550.177 253727.824 16.3
Non-combinational area 80061.746 147411.884 0.54

Table 5.5: Combinational and sequential contributions comparison

What emerges is that:

• A massive usage of folding technique leads to a very high hardware resources
sharing. For that reason the area required by combinatorial block is decreased
of a factor 16.3.

• The mentioned increment of storing components to complete folding approach
leads to a little complexity rise and the consequent area request from non
combinatorial block became about the double.

The main relevant comparison concerns the total occupied area:

5.4. Results comparison 85

Contribution Basic design [µm2] Low area design [µm2] Reduction Factor

Total Area 4212611.924 401139.709.824 10.5

Table 5.6: Total complexity comparison

The total complexity has been reduced of about 90%.

Chapter 6

Conclusions

The continuous increment of video applications diffusion lead to the need of improv-
ing as much as possible the coding mechanism, in order to be able to process high
resolution videos in a very efficient way. The concept of efficiency is the key point
of this presented treatment: of course a special purpose hardware implementation
helps to manage properly some critical point increasing the processing quality. As
mentioned many times before, even if the main objective of the presented architec-
ture is to reduce the complexity, it is necessary to make the design reliable, reaching
good value also for throughput or latency. This is why, even reaching a reduction
of complexity of about 90%, it is possible to further improve it by those who will
continue this work. For example, an increment of folding degree would reduce more
the complexity, but it is necessary to take more into account the latency issue. Just
to give an idea, this level of optimization produce a latency increment of a factor
close to 100 measured by simulating both designs with the same clock period and
obtaining the correspondent amount of clock cycle spent to produce the output.
Anyway this parameters doesn’t consider that the complexity optimization make
the design faster reducing the minimum clock period. Considering the amount of
time spent to release the output for each implementation and evaluating the Total
Time Increment Factor like

TTIF =
Tck(basic) ·Ncycles(basic)

Tck(optimized) ·Ncycles(optimized)
(6.1)

the expected value will be much smaller.
In this panorama the obtained results can be considered very powerful because

not only they record a good improvement, but it is a good starting point for further
optimization in the same direction like:

• Redesigning every involved operators (multipliers above all) building a resource
sharing algorithm for each one;

86

87

• Optimizing also the already low complex component;

• Optimizing storing algorithm exploiting it in several clock cyle;

• Designing a different way to implement the inputs distribution avoiding to
store the whole matrix structures and provide for each clock cycle only the
needed input vector;

• Sharing all the components mapping the linsolve_wiener function since they
are in common for both Update a and Update b.

88 Conclusions

Bibliography

[1] Online available at : https://www.cisco.com/c/en/us/solutions/collateral/executive-
perspectives/annual-internet-report/white-paper-c11-741490.html

[2] Online available at: https://research.mozilla.org/av1-media-codecs/

[3] Online available at: https://www.w3.org/Consortium/Patent-Policy-
20040205/

[4] Online available at: https://caniuse.com/#feat=av1

[5] Feldmann C.: "Multi-Codec DASH Dataset: An Evaluation of
AV1,AVC,HEVC and VP9 – Bitmovin".

[6] Yue Chen, Debargha Murherjee, Jingning Han, Adrian Grange, Yaowu Xu,
Zoe Liu, Sarah Parker, Cheng Chen, Hui Su, Urvang Joshi, Ching-Han Chi-
ang, Yunqing Wang, Paul Wilkins, Jim Bankoski,Luc Trudeauy, Nathan Eggey,
Jean-Marc Valiny, Thomas Daviesz, Steinar Midtskogenz, Andrey Norkinx and
Peter de Rivaz: "An Overview of Core Coding Tools in the AV1 Video Codec",
2018 Picture Coding Symposium (PCS),San Francisco, 2018

[7] Laude T.; Adhisantoso Y.G.; Voges J.; Munderloh M.; Ostermann J.: "A com-
parison of JEM and AV1 with HEVC: coding tools, coding efficiency and com-
plexity", Picture Coding Symposium (PCS), San Francisco, 2018

Online available at : https://bitmovin.com/av1-multi-codec-dash-dataset/,
2018

[8] Online available at: https://aomedia.googlesource.com/aom/

[9] L. N. Trudeau, N. E. Egge, and D. Barr: “Predicting chroma from luma in
AV1”, Data Compression Conference, 2018.

[10] Jan M. Rabaey : "Digital Integrated Circuits – A Design Perspective", Univer-
sity Press, 2004

89

	Introduction
	A brief introduction to Video Codec
	The next generation open-media codecs : AOMedia AV1
	AV1 Video Coding
	A comparison between AV1 and other video codecs
	AV1 block diagram
	AV1 Coding Technique

	Thesis organization

	Wiener Filter overview
	AV1 Loop Restoration Unit
	Wiener filter behavior
	C model from AOMedia AV1 Codec Library
	Pre-processing stage
	update_a_sep_sym function
	linsolve_wiener function
	update_b_sep_sym function

	A basic architecture of AV1 Wiener Filter
	Algorithm to Architecture Mapping
	Hardware design implementation of Update a
	Hardware design implementation of update b

	Implementation analysis: results and performances
	Simulation with Modelsim
	Synthesis with Synopsys

	Elaboration for a real-time video sequence
	From basic to optimized implementation: the need of a complexity reduction

	Low complexity architecture of AV1 Wiener Filter
	Divider algorithm optimization
	Hardware architecture of optimized update a
	Computation of vector A
	Computation of matrix B
	First stage of Forward Elimination
	Second stage of Forward Elimination
	Back-substitution and storing
	Top-level

	Hardware implementation of optimized update b
	Computation of vector A
	Computation of matrix B
	Top-level

	Results and Synthesis
	Optimized design simulation
	Optimized design synthesis
	Elaboration for a real-time video sequence
	Results comparison

	Conclusions
	Bibliography

