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Summary

A collection of data points, or a sample, is a sequence of N identical and inde-
pendently distributed realizations ŝ = (s1, . . . , sN) of the random variable S. The
latter is defined over a finite alphabet S and is distributed according to p(s), which
we are going to call the generative model.

Throughout the text upper case letters refer to random variables while low case
ones are used to label the values a random variable can assume.

A representation is a probabilistic mapping from the space of outcomes s ∈ S,
to the space of the labels b ∈ B∗,

p(s) =
Ø

b∈B∗
p(s|b)p(b) (1)

Our goal is to devise a mapping p(s|b) and infer a probability distribution over
the labels p(b) such that eq.1 is satisfied [1].

Since the true generative distribution is not known,the latter is approximated
by the empirical distribution computed on the basis of a sample of N identical and
independently distributed draws

p(s) ≈ p̂(s) = k̂s

N
(2)

ks =
NØ

i=1
δsi,s (3)

We refer to ks as the frequency of outcome s, since it counts the number of
times s is observed in a sample of size N . At this point we must also distinguish
between the set of different symbols S which is in general not known, and the set
of different symbols that are observed S Í.The latter depend on the sample and is
thus a random variable itself.

In our study the labels b are inferred after observing the data, by considering
only the information contained in the sample ŝ. This latter setting is known as
unsupervised in the literature [2]. In this context the labels are then equivalent
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to hidden variables, since their values are computed by those of the observable
variables (i.e s ∈ S).

We propose to generate representations by employing a coding procedure.
Coding procedures construct codes for a set of symbols s ∈ S on the basis of a

probability distribution p(s).
A code is a dictionary: for each symbol s ∈ S there is an associated code-word.

The latter is a sequence of characters b = (b1, b2, . . . ), each extracted from an
alphabet B. In order for the code to be decodable, symbol and code-word must be
associated in such a way that knowing the code-word we can retrieve easily the
corresponding symbol b→ s.

By the definition given above then, every code is also a representation.This is
said to be deterministic because to each symbol encoded corresponds one and only
one code-word.

Among the many coding procedures available, Huffman coding is in particular
an optimal and simple one [3],[4].

We then investigated the possibility of employing Binary Huffman coding, i.e
B = {0,1}, as an unsupervised manner of building representations.

The aim of the following work is to study:

• whether the number of Huffman codes can be taken as a measure of the
information carried by the sample on its generative process.

• the properties of the representation extracted, following previous works [5][2].
This is defined over a set of binary strings that constitute the code-words of
the Huffman codes b1, b2, . . . and are seen hidden variables in this context.

The thesis is divided into 4 parts:

chapter 1 We present key concepts in coding theory, properties of codes and the optimal
code-length theorem [3]. Huffman codes[4] are then introduced and some of
their useful properties are discussed, together with their use as generative
algorithm for discrete distributions.

chapter 2 After an introduction to the concepts and meaning of Relevance and Resolution
[6], we consider the definition of Most Informative Samples as stated in the
articles by Marsili et al[2]. We then argue why the number of Huffman codes
can be taken as a measure of the uncertainty regarding the generative model
of the data. The relationship between the latter quantities and R[k̂], the
logarithm of the number of Huffman trees is investigated and the numerical
results are presented and discussed.

chapter 3 A probabilistic representation π(s|b) based on a mixture of different Huffman
codes is explicitly constructed and the maximum entropy distribution p(b)
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satisfying eq.1 is derived.We then focused on individuating a subset of relevant
hidden variables.In order to do so we propose an iterative procedure to integrate
out bits and compute the mutual information I[S, B] between the latter B
and the source S. This allows us to define robust bits as those containing
the largest fraction of mutual information as opposed to noisy bits, i.e the
remaining ones.

chapter 3 As a benchmark example the ideas developed in the previous part are employed
on the data-set regarding the decisions of the Supreme Court of the United
States [7].
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Chapter 1

Codes,Huffman coding and
generative models

1.1 A short introduction to coding theory and
data compression

For data compression we consider the problem of encoding the values assumed by
a random variable S that we will call the source. The latter S takes values s ∈ S
with probability P (s) ∈ [0,1] ⊂ R.

A code is a function that associates to each symbol s ∈ S a code-word b ∈ B∗

C : s ∈ S → b ∈ B∗

where B is the alphabet, the set of characters available, and B∗ = {(b1, . . . , bn), bi ∈
B, n ∈ N} is the set of all possible sequences made of characters.

Our aim is to compress a given sequence of symbols ŝ = (s1, s2, . . . , sN), also
known as a message, as much as possible.

Since each message ŝ is observed with a certain probability, the length of the
encoded message is a random variable.

We define the code-length function:

L(s) : S → N

that is induced by the code over the symbols.
The length of the encoded message L(ŝ) is the sum of the lengths of the encoded

symbols that are observed in ŝ = (s1, s2, . . . , sN)

L(ŝ) =
Ø
s∈S

L(s)ks

1



Codes,Huffman coding and generative models

This quantity, that we are going to call message length, grows at least linearly
in N (the number of draws in the sample), so diverges as N → +∞.

Instead the message length per data-point

L(ŝ)
N

=
Ø
s∈S

L(s)ks

N

is always a finite quantity and in the limit of long N → +∞ messages converges to
the average message length

E
C
L

D
=
Ø

s

p(s)L(s)

We then look for the code that achieve the minimum of the latter quantity:

L∗(s) = arg min
L(s)

IØ
s

p(s)L(s)
J

Intuitively an optimal code should assign shorter code-words to more probable
symbols.

When compressing messages ŝ, which are sequences of symbols, we produce
sequences of code-words.

In order to achieve the optimal code-length function we should then avoid to
employ an additional character to signal the separation between different code-
words.

This leads to the definition of Prefix-code or instantaneous code [8].

Definition 1 (Prefix-code) A code is called prefix-code if no code-word is prefix
of any other code-word.

In other words prefix-codes are such that encoding a message ŝ = (s1, . . . , sN)
by concatenating code-words

b̂ = (b1, b2, . . . , bN) = (C(s1), C(s2), . . . , C(sN))

is possible without any ambiguity since

C∗(ŝ) = (C(s(1)), C(s(2)), . . . , C(s(N))) : ŝ ∈ SN → b ∈ B∗

is a bijective function [8].
The following theorem imposes a constraint on the possible code-length functions

of a prefix-code and is a cornerstone of coding theory, the interested reader can
find a proof in [3].
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Codes,Huffman coding and generative models

Theorem 1 (Kraft Inequality) For any prefix-code over a finite alphabet B,
the code-length function L(s), s ∈ S must be such that:q

s |B|−L(s) ≤ 1
Conversely for each sequence of integers l1, . . . , lN that satisfies the above in-

equality exists a prefix-code with code-length function taking values L(s) = ls.

Optimal code-length

Finding the optimal code for a given source can then be stated formally as a
constrained minimization problem,

L∗ = arg min
IØ

s

p(s)L(s) + λ(
Ø

s

2−L(s))
J

where the constraint is due to the Kraf Inequality 1.
Ignoring the restriction of integer code-length the solution reads

L∗(s) = − log2(p(s))

so that the minimum expected average message length is given by the entropy of
the source

H[S] =
Ø

s

−p(s) log2(p(s))

Note that if we take the ceiling of ç− log2(p(s))è in order to have integer code-
lengths,this also satisfies the Kraft Inequality:Ø

s

2−ç− log2(p(s))è ≤
Ø

s

2− log2(p(s)) ≤ 1

and log2( 1
p(s)) ≤ ç− log2(p(s))è < 1 + log2( 1

p(s)),this implies

H[S] ≤ E[L(s)] < H[S] + 1

so the average message length of an optimal code will exceed the entropy of the
source by at most 1 bit.

1.2 Huffman codes
So far we have not mentioned how to retrieve an actual optimal code. Many
procedures exists generating codes that satisfy the bound on the average message
length [3], examples are Arithmetic coding by Rissanen [9] and Lempel-Ziv-Welch
coding by the homonym authors[10],[11].

An elegant algorithmic procedure constructing optimal prefix-codes was invented
by David Huffman [4], while still a student at MIT in the 50Í and is known as
minimum redundancy coding or Huffman coding.
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Codes,Huffman coding and generative models

1.2.1 Constructing minimum redundancy codes

Given a source S emitting symbols s ∈ S,|S| = Q, with probability p(s) the coding
algorithm [4] for a binary alphabet B = {0,1} goes on as follows:

1 sort p(s) in increasing order p(si) > p(si−1), store this in a list qk = p(sk)

2 take the first 2 elements q1, q2 (which will always be the least probable 2)
assign bit 0 to the first and 1 to the second.This identifies q1 and q2 with the
two nodes of a binary tree.

3 define q1 ← q1 + q2 and q2 ← q3 . . . qQ−1 ← qQ, delete qQ.

4 repeat until the length of the list is 1, or equivalently, after Q− 1 iterations.

In other words at each step we are defining a new sample where two outcomes
are merged together defining a node with frequency the sum of the frequencies.Thus
at each iteration the list becomes shorter of one unit.

If the above list is stored in a heap structure, which automatically grants an
ordered sequence at each of the above steps, then the algorithm runs in Θ(Q log Q).

Consider employing the empirical distribution p̂(s) computed on a sample of
N observations ŝ = (s1, s2, . . . , sN). This is defined over the states that have been
observed at least once S Í,M = |S Í| ≤ N . So in this case the algorithm runs in
Θ(N log N).

Huffman codes and binary trees

Each Huffman code uniquely identifies a complete binary tree.The latter is iteratively
generated during the creation of the Huffman code.

A binary tree is a tree where each internal node has at most 2 leaves.The latter
is said to be complete if every internal node has exactly two leaves.

A code-word b = (b1, b2, . . . ) specifies a path linking the root of a tree to a leaf.
This is useful in the decoding procedure since we just need to control the bits

sequentially from the left-most: when a leaf of the Huffman tree is reached we write
the correspondent character,then we restart from the root and repeat the same
procedure until the last bit is reached.

An example presenting a possible binary tree generated by the empirical distri-
bution of the letters in Politecnico di Torino is presented in fig 1.1.
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Figure 1.1: One of the possible Huffman tree/code for the empirical distribution
of the letters in the string Politecnico di Torino

1.3 Generating Discrete Distributions by Huff-
man codes

The Huffman coding routine produces a complete binary tree that can be regarded
as an algorithm to generate symbols s ∈ S distributed according to a discrete
probability distribution p(s) [3].

We produce binary sequences b = (b1, . . . , bdT ) (dT being the depth of the tree)
with a certain probability p(b), that is dictated by p(s) and by the Huffman tree,
and then we generate a symbol by decoding the binary sequence.

When the distribution is dyadic, i.e the probability of each outcome is a negative
power of 2, the probability assigned to each leaf on the Huffman tree will be the
actual probability of the correspondent symbol.

It is then sufficient to generate random bit-strings of the appropriate length and
to follow the correspondent path starting from the root of the tree until a leaf is
found,the latter corresponds to a symbol in S.
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Example 1 (Huffman tree as generative algorithm) Consider the trivial case
of a dyadic distribution where M = 4 and p(a) > p(b) > p(c) > p(d) then a tree
that can be generated by Huffman procedure is in fig1.2.

The depth of the corresponding tree, equal to the number of bits, is 3. This means
that we will have 23 = 8 bit-strings and the generative model can be visualized as a
table 1.2.

Figure 1.2: One of the Huffman trees generated by the dyadic distribution
p(a) = 1

2 ,p(b) = 1
4 and p(c) = p(d) = 1

8 and its corresponding table

In the case where the probability distribution over S is not dyadic,see fig 1.3,
Huffman coding will generate a binary tree that is in one to one correspondence
with a dyadic distribution over S. In order to generate s ∼ p(s) a non-uniform
probability distribution p(b) over the binary sequences b1, . . . , bdT must then be
considered.

We introduce a way of retrieving p(b) in the 4th chapter.This leads us to define
a representation matrix whcih is obtained as an average over all the Huffman trees.

1.3.1 Degeneracy of Huffman codes
At each step of the algorithm to construct an Huffman tree there could happen
ties in the frequencies,i.e more then one node having the same frequency. In this
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Figure 1.3: One of the Huffman trees generated by the non-dyadic distribution
p(a) = 2

5 ,p(b) = p(c) = p(d) = 1
5 and its corresponding table

case the choice of which couple of nodes to merge is arbitrary,so Huffman coding
does not provide a unique optimal code.

To count the number of different Huffman trees we need to consider all the
different choices that can be made in carrying out the construction of a tree.

It is important to note that when merging 2 nodes with distinct frequencies the
choice is not arbitrary, and the bit 0 must be assigned to one with lower frequency.
The latter corresponds to an arbitrary rule that must be established before counting
the degeneracy and must be observed during all the procedure. In this aspect our
analysis departs clearly from that in [4] where this additional symmetry is kept.

When applied on the empirical distribution of a sample p̂(s), we define the
histogram of the frequencies

mk =
Ø
s∈S

δk,ks

for a given sample size S is the set of distinct states that have been observed.
Note that the number of different Huffman trees NHT (ŝ) is bounded by:

NHT (ŝ) ≤ eRmax

where Rmax is computed on the sample where m1 = N ,i.e exactly N different
symbols are observed in a sample of size N .
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We can compute this number by noting that at the first step we can choose
among N possible states of frequency 1,then we can choose among N − 1 states
one to be merged with the previously chosen, and so on, until there will be åN/2æ
with frequency 2 and at most 1 state with frequency one. This reasoning can be
repeated until we reach the point where only 1 state is left with frequency N .

If we approximate N ≈ 2d, then

log(NHT (ŝ)) ≤ log
A

dÙ
k=0

(2k)!
B

=
dØ

k=0
log

1
(2k)!

2
= Rmax (1.1)

Rmax ∼
dØ

k=0
k2k ∼ N log N (1.2)

On the other hand consider carrying out the procedure explained in the previous
paragraph,all the symbols that bear the same frequency can be permuted leading
to the same initial condition, thus resulting in an equally optimal code. This means
that NHT ≥ rk mk!.

It is then useful to consider

R[k] = log(NHT )

The procedure outlined in the previous paragraph can be employed to compute
R[k] , with some simple modifications.

First compute m = {mk, k = 1,2, . . . , N}, then start to create the binary tree.
At each step there are 2 possibilities:

1 mk ≥ 2 then we can pick the 2 elements to merge in this subset, and we have
mk(mk − 1) ways of doing this.

2 mk = 1, thus we must pick the other element in the subset mkÍ and there are
exactly mkÍ possible choices.

The procedure is delineated as a pseudocode in 1 Since at each step we are merging
2 symbols this is equivalent to reduce |S| of one,thus the running time of the
procedure is Θ(N).

1.3.2 Are all Huffman trees created equal?
Definition 2 HT is the set of trees T that can be produced by Huffman coding
procedure when applied on p̂(s)

We can ask if the depth of an Huffman tree T ∈ HT is the same for every
element of this set or not, the importance of this question will become clear in the
last chapter.

8
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Algorithm 1 Compute R[k]
1: procedure R[k](mk)
2: mk = q

s∈S δks,k k ∈ {1, . . . , N}, N = of draws
3: k = 0
4: R[k̂]=0
5: while k ≤ N do
6: if mk ≥ 2 then
7: R[k̂]+ = log(mk) + log(mk − 1)
8: mk ← mk − 2
9: m2k ← m2k + 1

10: else if mk = 1 then
11: R[k̂]+ = log(mk) + log(mkÍ) ó kÍ is the smallest frequency > k such

that mÍ
k ≥ 1

12: mk ← mk − 1
13: mÍ

k ← mÍ
k − 1

14: mk+kÍ ← mk+kÍ + 1
15: else
16: k = kÍ

9
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1

3
5

2
5

a,1
5 b,1

5

c,1
5

d,2
5 1

2
5

a,1
5 b,1

5

3
5

c,1
5 d,2

5

Figure 1.4: In this example, for instance, there are 4 symbols S = {a, b, c, d} and
pa = pb = pc while pd = 2pa. R = 12: 6 trees have depth dT = 3 and the remaining
have depth dT = 2.

To answer this question, let’s concentrate on the algorithm described above to
count the degeneracy. At each step a slot of the array mk can contain binary trees
with different depths.

Depending on how we choose among different nodes when there are ties,we will
obtain different trees of different depths 1.4.

In Figure 1.4 two different trees are presented, all the remaining trees can be
obtained by symmetry re-shuffling the labels of the symbols with same frequency.

Thus we conclude that dT is not the same over all the elements of HT .

1.3.3 Storing the Huffman code
Note that we can always add a level to a given binary tree by substituting a leaf
with a binary tree of depth 1 with 2 leaves, each with frequency half the one of the
original leaf.

This extended Huffman code can be constructed by padding shorter code-words
with dummy bits until the target depth is reached.

This is useful since we can picture the output of the coding procedure as a
mapping

p(s|b, T ) = δs,sT (b)

where we stressed that several Huffman trees exists and each one bears its own
code, which corresponds to a probability distribution over the data.

In order to actually store such a matrix in a computer we must know the
cardinality of the code-words space. The latter is fixed by the depth of tree
considered, and is thus a random variable.

10
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For a given dataset ŝ we can still investigate what is the largest depth achievable
by a Huffman tree. The deepest tree will be the one that assigns the longest
code-word to the least probable symbol.

Since all Huffman trees are complete binary trees, i.e each internal node (all the
nodes apart the leaves which are defined as external nodes) posses 2 children,the
number of internal nodes is constrained by the number of external nodes [12]:

if there are N external nodes there are exactly N − 1 internal nodes.
This can be proven by induction [12] and implies that

d = max
T ∈HT

I
d(T )

J
≤ N − 1

with equality only when all the probabilities are such that pi ≥ pi−1 + pi−2. This
resembles a Fibonacci series and indeed bounds have been derived by exploiting
this property[13].

Thus without having previously observed the frequency of the outcomes, we
know that the number of bits constituting the code-words is d ≤ N − 1.

This seems to be a useful bound but is in practice a loose one, just think that in
order to encode 100 symbols we would need at most 99 bits which give 299 ∼ 1030

states which correspond to the number of columns of the p(s|b, T ) matrix.

Computing the max depth

To compute the maximum depth among all the Huffman trees

d = max
T :T ∈HT

{d(T )}

we employ Huffman procedure and bias the choice of the nodes while constructing
the tree: in case of ties we always choose the node which corresponds to the deepest
sub-tree.

This procedure is presented as a pseudo-code 2.
This procedure is polynomial in N since we must go through N merging steps

and for each of these we search for the max in a finite sequence of size smaller than
N .

An upper bound on the running time is given by the worst case scenario in
which all the symbols have the same frequency, in this case the running time is
Θ(N2):

TN = N + (N − 1) + (N − 1) + (N − 2) + · · · ∼ Θ(N2)

11
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Algorithm 2 Compute max depth of Huffman trees a given sample
1: procedure Max-depth(mk)
2: create a list lk = {s : ks = k}
3: assign depth ds = 0 to all nodes
4: k = 0
5: while k ≤ N do
6: if length(lk) ≥ 2 then
7: select arg max{d(s) : s ∈ lk}
8: select arg max{d(sÍ) : sÍ ∈ lk, sÍ /= s}
9: delete s, sÍ from lk

10: add a node sÍÍ to l2k, with dsÍÍ = max(dsÍ , ds) + 1
11: else if length(mk) = 1 then
12: select the only s ∈ lk
13: select arg max{d(sÍ) : sÍ ∈ lkÍ} ó kÍ is the smallest frequency such

that length(lÍ
k) > 0

14: delete s from lk and sÍ from lÍ
k

15: add a node sÍÍ to lk+kÍ , with dsÍÍ = max(dsÍ , ds) + 1
16: else
17: k = kÍ

12



Chapter 2

Information content of a
sample and degeneracy of
Huffman trees

2.1 Resolution, Relevance and Most Informative
Samples

2.1.1 Information contained in a sample:Resolution and
Relevance

We go trough a brief review of the key concepts present in [6],[2],[14] by Marsili et
al. In these articles the quantities Resolution and Relevance have been introduced
and their meaning was investigated under different point of view.

Consider a complex system which optimazes a utility function U(þs), þs = (s, s̄),
defined over a set of known s ∈ S and unknown s̄ ∈ Q variables.

The observed variables s ∈ S are defined/chosen by the modeler,in the sense
that they must be regarded as abstract labels that identify a cluster of observations
of the system in object.The latter can be chosen in different way and account for a
description of the system at given level of detail.

The modeler also attempts to approximate the true utility function U(þs) with
another one u(s) defined solely on the known variables.

We can then rewrite
U(þs) = u(s) + v(s|s̄), v(s|s̄) = U(þs)− u(s) (2.1)

The state assumed by the system will be
þs∗ = arg max

þs
{U(þs)} = (s∗, s̄∗) (2.2)

13



Information content of a sample and degeneracy of Huffman trees

and the authors showed that the probability that a known state s is the observable
part of the optimal state s∗ is of the form

p(s) = eβu(s)

Z(β) (2.3)

where β is a function of the number of unknown variables [6].
For a sample, the frequencies ks provide a noisy estimate of p(s) ≈ ks

N
= p̂(s).

In this context the quantity

Ĥ[s] = −
Ø

s

p̂(s) log2 p̂(s)

which is the minimum number of bits necessary to encode a symbol generated by a
random variable S ∼ p̂(s), is a measure of the resolution of the description given
by the labels s ∈ S, hence the name Resolution.

To gain some intuition we can think of two limiting cases:

• at a sufficient level of detail every data point corresponds to a different label,
H[s] is maximal and takes value log N

• when the description is too coarse the same symbol sÍ is observed N times,
ks = Nδs,sÍ in a sample of size N , this implies H[s] = 0

Introducing the degeneracy histogram

m = (m1, m2, . . . , mN) mk =
Ø
s∈S

δks,k (2.4)

the quantity

Ĥ[k] = −
Ø

k

kmk

N
log2(kmk

N
) (2.5)

is the minimum number of bits that are needed to encode an outcome of the
random variable ksi [6], where si is a randomly chosen point from the sample ŝ.
We can also use the logarithm in base e to define the above quantities, in this case
the units of information will be bits nats as opposed to the former bits. So we will
drop the index being aware that both convention are equivalent apart for a scaling
factor needed to change the log basis.

Since the frequencies k = {ks, s ∈ S} give also an estimate of the part of the
utility function that depends on the known variables

us = 1
β

log(p(s))− log(Z(β)) ≈ c + 1
β

log(ks

N
) (2.6)

14



Information content of a sample and degeneracy of Huffman trees

the conclusion of the authors is that the latter quantity, called Relevance, quantifies
(in bit) the amount of information carried by the sample on the structure of the
generative model u(s) [2],[6].

Note that

Ĥ[s] = Ĥ[s|k] + Ĥ[k] = −
Ø

k

kmk

N
log( 1

mk

)−
Ø

k

kmk

N
log(kmk

N
) (2.7)

The number of classifications of the same data-set ŝ that yield the same number
of classes qk mk, each with the same size k, is [2]

Ù
k

kmk!
(k!)mk

∼ eNĤ[s|k] (2.8)

so Ĥ[s|k] is a measure of the ambiguity of the description s ∈ S adopted.
Thus the information content (per data point) of the sample Ĥ[s] consists of

two parts:

• Ĥ[k] which is the useful number of bits that can be utilized to estimate the
generative process

• Ĥ[s|k] which is the number of remaining bits that account for the noise in
the sample, see explanation below.

2.1.2 Most Informative Samples
The previous considerations suggest that samples that are most informative about
their generative process are such that the Relevance is maximal at fixed Resolution.

Mathematically Most Informative Samples (MIS) are the solution of the opti-
mization problem

mMIS = arg max
I

Ĥ[k̂] + βĤ[ŝ] + µN̂

J
(2.9)

= arg max
m

I
−
Ø

k

kmk

N
log(kmk

N
)− β

Ø
k

kmk

N
log( k

N
) + µ

Ø
k

kmk

J
(2.10)

the latter is non trivial, given that it is defined over integer variables mk ∈
{0, N} k = 1, . . . , N .

These must be compared to random/structure-less samples which corresponds
to a choice of the labels that do not provide a meaningful description of the system
observed.
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As explained in detail in appendix A.1 the MIS optimization problem can be
mapped into a statistical mechanics system in the zero temperature limit. One can
then think to the mk as being drawn from a probability distribution: when the
inverse temperature gets large, the latter is localized around the positive integer
values that are solution of the optimization problem 2.9.

In this case the averaged version of the MIS equation is considered.
An upper bound can be obtained as argued in [6], this approximate solution

reads
mk = ck−β−1

where

• β is fixed by the Resolution constraint

• c is fixed by the constraint over qk kmk

A similar result can be reached in a different way as described in A.2.1.
The latter is displayed as an upper bound on the MIS curve in the following

pictures,see fig 2.1 triangle curve, fig2.9 yellow curve.
In the article [14] the authors corroborated the result previously obtained by

presenting a lower-bound on the MIS curve by taking a Poisson distribution for the
mk with average nk, see fig 2.1 dotted curve. The approximate result still decreases
as a power law in k, with an exponent that is function of β.

These results lead to the conclusion that Most Informative Samples, in the
under-sampled regime, have a power law distribution with an exponent which
depends on the multiplier β .

The latter can then be used to explain the trade-off between Resolution and
Relevance.

As β varies from large and positive to negative values the solution of (2.9)
describes a curve in the plane Ĥ[ŝ], Ĥ[k̂], starting from the point Ĥ[ŝ] = 1, Ĥ[k̂] = 0
up to the point where the data processing inequality[3] is met.

The latter states that a function of a random variable cannot carry more
information then the original variable itself:

Ĥ[s] = Ĥ[s|k] + Ĥ[k] = −
Ø

k

kmk

N
log( 1

mk

)−
Ø

k

kmk

N
log(kmk

N
) ≥ Ĥ[k̂] (2.11)

The figure obtained by numerical simulation 2.1 2.2 can be explained by an
approximate analysis. Following [6] and [2] we divide the curve in two parts:

• β ≥ 1 loss-less compression part of the curve, here the slope of the curve is
negative then a reduction of one bit in Ĥ[ŝ] is balanced with a gain in Ĥ[k̂]
and the ratio −∆Ĥ[k̂]

∆Ĥ[ŝ] ≥ 1
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• β < 1 lossy compression part where −∆Ĥ[k̂]
∆Ĥ[ŝ] < 1

Our solution based on the result of a MCMC simulation technique are in
agreement with these previous results see fig 2.1,2.2.
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Figure 2.1: The numerical solution of the MIS equation 2.9 are presented for N =
1000,5000,10000, together with the correspondent curve for structure-less samples
and the lower bound on the MIS curve obtained by M.Marsili and A.Haimovici in
[14] by using Poisson distributed mk.

The details of the simulation are explained in the appendix A.1.

2.1.3 Representations and Huffman codes
Since each Huffman code corresponds to a deterministic representation relating the
observed states s ∈ S Í to the bit-strings b ∈ {0,1}d, R[k̂] is a measure of how many
such representations are compatible with the empirical evidence.

The main intuition is that:
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Figure 2.2: Numerical results for N=1000,N=5000. The data marked as canonical
ensemble are extracted from an approximate measure explained in A.2.1.The
structure-less curve is obtained as the average over 105 realizations of Nrandom
tosses in M boxes, with M varying from 10N to 2. The upper bound on the MIS
curve (on the left) is derived and obtained in A.2.1.The lower bound is the one
presented in [14] taking mk as Poisson R.Vs.

• in the under-sampled regime,i.e when the ratio the ratio S/N º 1,the number
of ties in the frequencies is expected to be huge m1 º 1, m2 < m1, . . . , this
implies R[k̂]º 1

• in the well-sampled regime each state is expected to be seen with a different
frequency resulting in R[k̂] ≈ 0

So that R[k̂] is expected to vary from close to 0 to O(N log N), in the case each
state is observed once.

The numerical results support our intuitions:

• R[k̂]/Rmax is a strictly increasing function of Ĥ[ŝ] in the under-sampling
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regime, see fig 2.4

• R[k̂]/Rmax is a strictly decreasing function of Ĥ[k̂] in the under-sampling
regime, see fig 2.3,2.2

• R[k̂]/Rmax is close to 0 in the well-sampled regime, see figs 2.4 and 2.3
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Figure 2.3: Numerical results for N = 1000,5000. Raw data are scatter-plotter
together with the MIS curve and the structure-less curve.

One can also argue that the observed dependency in the R[k], Ĥ[k] plane can be
simply explained by the first observation only. This would not be consistent with
fig 2.3. If R[k] depended solely on Ĥ[s] then, because of the strictly increasing
relation between these 2 quantities, the samples that maximaze Ĥ[k] at fixed Ĥ[s]
should be coincident with those that maximaze Ĥ[k] at fixed R[k].

To further verify weather or not R[k] depends on both the quantities, we proceed
to fit the data R[k̂], Ĥ[k̂], Ĥ[ŝ] in the under-sampled regime, i.e β > 0,with a linear
relationship. We present the results for the MIS points

R[k̂] = αsĤ[ŝ] + αkĤ[k̂] (2.12)
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Figure 2.4: Numerical results for N = 1000,5000. Raw data are scatter-plotter
together with the MIS curve and the structure-less curve.

If R[k] depends only on Ĥ[s], then we expect to find αs to be significantly larger
then αk ≈ 0. We found that this is not the case.

N α̂est
s α̂est

k σ̂s σ̂k ρ̂s,k

1000 9.6 · 10−1 −1.15 2 · 10−2 4 · 10−2 −8.5 · 10−1

5000 9.3 · 10−1 −1.23 2 · 10−2 5 · 10−2 −7.7 · 10−1

10000 9.0 · 10−1 −1.14 2 · 10−2 5 · 10−2 −7.6 · 10−1

Table 2.1: Least square fitting results for the MIS data-points when β ≥ 0.The
symbol σ̂ refers to the estimated Mean Squared Error, ρ̂ = cov(α̂s,α̂k)

σ̂sσ̂k
is the estimated

Pearson coefficient.The details of the computation are in the appendix A.3.

These results reveal that R[k], in the under-sampled regime, is a linear function
of both Ĥ[s] and Ĥ[k] and corroborate what we see in figure 2.3.

Our conclusion is that R[k] can be seen as a measure of the uncertainty on which
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is the generative model. Thus the useful information content Ĥ[k] is anti-correlated
with the uncertainty regarding the generative algorithm R[k]. This conclusion is
general and does not depend on the fact that samples lie on the MIS curve, since
the same holds for sample with fixed Resolution and sample size as one can see in
figure 2.3.
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Chapter 3

The generative model in the
Huffman representation and
robust bits

Each Huffman tree defines a deterministic representation p(s|b, T ) which relates
one or more bit-strings to a symbol s. We have argued in chapter 2 that each tree
corresponds to a generative algorithm as well, when provided with a generator of
binary sequences.

A probabilistic representation can then be obtained if we think that the tree
itself is a random variable T :

p̂(s) =
Ø
T ∈T

Ø
b∈B

p(s|b, T )p(b, T )

It must be stressed here that the trees contained in HT are the those that can
be generated from p̂(s) by Huffman coding when a convention is fixed:

when merging two nodes, the one with lower frequency is assigned bit 0.
This convention is of fundamental importance: without the latter π(s|b) would

result in a degenerate matrix with all identical entries equal to 2−|SÍ|.
Since we can indeed distinguish between 2 nodes with different frequencies, the

additional symmetry we would account for by not following this convention is
broken.

The resulting generative model is specified by the conditional probability distri-
bution:

π(s|b) =
Ø

T ∈HT
p(s|b, T )p(T |b)

where
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• p(s|b, T ) = δs,sT (b), since given a tree T and a code-word b we can easily
retrieve the corresponding symbol sT (b).

• p(T |b) = p(b|T )p(T )q
T∈HT p(b|T )p(T ) .

Given a tree T, this uniquely defines a dyadic distribution q(s) ∝ 2−L(s) over
s ∈ S.

If this were case, the distribution over the bit strings would be p(b|T ) = 2−d =
p(b) and p(T |b) = p(T ).

So the assumption
p(T |b) ≈ p(T ) (3.1)

is equivalent to approximate p̂(s) with the dyadic distribution dictated by the tree
T .

In order to simplify our calculations we will then use the above approximation.
Then

π(s|b) ≈
Ø

T ∈HT
p(s|b, T )p(T ) =

Ø
T ∈HT

1
|HT |

p(s|b, T ) (3.2)

where we have assumed a uniform distribution over the Huffman trees since they
all provide an optimal generative algorithm as described in chapter 2.

Given π(s|b), our aim is to retrieve the correct distribution over the binary
sequences p(b):

p̂(s) =
Ø

b

π(s|b)p(b)

Since the variables b are inferred by the evidence ŝ, they are called hidden or latent
variables.

The idea of using a mixture of Huffman codes is related to the concept of :

• noisy bits → represents different symbols in different trees.They should cor-
respond to hidden variables which do not contain much useful information
because they depend on the tree, which is a particular result of Huffman
coding. Such bits are not consistent with the symmetries dictated by the
observed frequencies.

• robust bits→ code for the same symbol in several different trees. They should
correspond to meaningful hidden variables, since they do not depend on the
particular code and are thus consistent with the symmetries dictated by the
observed frequencies.
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Construction of π(s|b)

Since log(|HT |) . N log N and there is no way, to the author knowledge, of
producing all the Huffman trees consistent with a sample, π(s|b) cannot be computed
exactly.

One can then resort to exact enumeration for small sample sizes, but this
approach is doomed to be applicable only in the well-sampled regime where the
number of ties in the frequency is small compared to number of observed states,
and when the number of states itself is small.

Nevertheless the mixture model can be estimated by means of montecarlo
sampling as the empirical average

π̂(s|b) =
MØ

t=1

1
M

p(s|b, T t)

of a sufficiently large sample extracted from p(T ).
We can use the same algorithm used to build a single Huffman tree, with the

variant that whenever there is a tie in the frequency we choose randomly the 2
nodes to merge.

When the frequency index is N and a tree has been constructed, then p(s|b, T )
can be stored as a 2-D array in which to each row corresponds a symbol, and to
each column a bit-string.

This can be easily done because there exists a bijection b ∈ {0,1}d → n ∈
{0,1, . . . ,2d−1}, i.e each b is in unique correspondence with the binary representation
of a natural number.

The running time is Θ(M · 2d · n), n being the total number of MC samples.
At this point one should know how many steps are needed for the procedure to

converge. We propose to probe the convergence in two ways:

1 by monitoring the differences between the elements of the matrix π as the
number of steps is increased

2 by comparing the obtained matrix with one that satisfy a minimal symmetry
requirement, that is explained below

The differences between the elements of two matrices can be summed up in one
number, the norm of the difference matrix.

We employed the Frobenius norm

ëMëF =
Ø

i

Ø
j

M2
i,j (3.3)

So we first computed π for increasing values of the number of Montecarlo steps
π = (πt1 , πt2 , . . . ), where the list is ordered such that ti+1 > ti, and then we checked

24



The generative model in the Huffman representation and robust bits

the value
ë∆πiëF , ∆πi = πti − πti−1 (3.4)

when the convergence is reached we expect to find ∆πi = 0.
A minimal symmetry requirement for π is to be consistent with the symmetries

of the sample.This amount to satisfy

π(s|b) = π(sÍ|b) ∀b ks = kÍ
s (3.5)

because if 2 symbols have the same frequency they can be permuted and the
resulting tree will still be an Huffman tree.

We can explicitly construct a matrix that satisfies the minimal symmetry
requirement by enforcing the constraint 3.5. If we do so for π̂, this gives us a matrix
that we are going to call π̂S .

One can then also observe how the difference between the latter two matrices
changes as the number of Montecarlo steps gets larger.

We expect the difference to get closer and closer to 0 as the average converges
toward its actual value.

3.0.1 p(b), Maximum entropy principle and Spin models
Maximum entropy distribution

We look for the least constrained probability distribution p(b) compatible with
p̂(s) = q

b∈{0,1}n π(s|b)p(b) , this is given by the maximum entropy distribution [15].
The latter is equivalent to find the maximum of the Entropy function taking

into account the desired constraints

Γ(p) =
Ø

b

I
−p(b) log(p(b))+

Ø
s

θs

A Ø
b∈{0,1}n

π(s|b)p(b)−p̂(s)
B

+η

A Ø
b∈{0,1}n

p(b)−1
BJ

the result is
p(b) = eη−1+

q
s

θsπ(s|b) = e
q

s
θsπ(s|b)

Z(θ)
where {θs} and η are Lagrange multipliers fixed by the conditions

Ø
b

π(s|b)q(b) = ∂

∂θs

logZ(θ) = p̂(s) (3.6)

Integrating in θs we obtain that these conditions are equivalent to solve

θ∗ = arg max
IØ

s

θsp̂(s)− log(Z(θ))
J

= arg max
I
F(θ)

J
25



The generative model in the Huffman representation and robust bits

because the Hessian matrix of F(θ) is negative semi-definite for every value of θ
being minus the co-variance matrix of π(s|b).

The argument of the maximum θ∗, can be found using a gradient ascent procedure

θ(t+1)
s = θ(t)

s + δθs δθs ∝
I

p̂(s)− Eθ(t) [π(s|b)]
J

the exit condition ∆ < ξ is fixed by the accuracy chosen ξ and the norm employed
to compute ∆.

Spin models

Since we want to retrieve a probability distribution over a set of binary variables, the
natural model that seems a good candidate is the Ising model with heterogeneous
interactions of possibly arbitrary order [5].

In the following we indicate the sequence corresponding to the binary conversion
of n over d variables with bin(n, d) = (b1, b2, . . . , bd). For instance

bin(10,4) = 1010 bin(10,4)1 = 1 bin(10,4)2 = 0 . . . (3.7)

The set of product operators on a set of d binary variables b = (b1, b2, . . . , bd)

φµ(b) =
Ù

i:bin(µ)i /=0
(2bi − 1) (3.8)

satisfy the relations Ø
b

φµ(b) = 0 ∀µ (3.9)
Ø

b

φµ(b)φν(b) = 2dδµ,ν (3.10)

and constitute thus a basis for the binary functions of d bits [5],[16].
The problem of retrieving p(b) such that

p̂(s) =
Ø

b

π(s|b)p(b) (3.11)

can be rewritten as
p̂(s) =

Ø
µ

Λµ(s)E
C
φµ(b)

D
(3.12)

where

Λµ(s) = 1
2d

Ø
b

π(s|b)φµ(b) (3.13)
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This means that the probability distribution p̂(s) induces a set of constraints on
the average values of the operators φµ(b). The least square solution of the latter
system can be obtained by pseudo-inverse matrix or gradient descent using the
quadratic error as the function to be minimazed.

The maximum entropy principle then dictates that the probability distribution
over the bits is of the form

p(b) = e
q

µ
gµφµ(b)

Z(g) (3.14)

where the coupling gµ are fixed to enforce the constraints on the average values of
φµ(b).

With the same exact reasoning one can project the maximum entropy distribution
obtained in the previous paragraph onto a fully connected heterogeneous spin model
by means of the operators φµ(b)

log p(b) =
Ø

s

θsπ(s|b)− logZ(θ) (3.15)

=
Ø

µ

gµφµ(b) (3.16)

where we define
gµ =

Ø
s

θsΛµ(s) (3.17)

It is useful to observe that obtaining p(b) with gradient descent over {θs, s ∈ S}
parameters and then projecting the log-probability onto the basis {φµ(b)} is faster
and easier than doing gradient descent with parameters {gµ}, because the number
of parameters is larger in the latter case.

This approach is useful in spotting the strength of the various interactions
among the variables, and gives us an explicit energy function.

On the basis of this result one can also consider different models with a subset
of interactions and learn the couplings of such theories.

3.0.2 Information content of the binary variables B

We briefly review the definition and meaning of the mutual information for discrete
random variables.

Mutual information

Definition 3 (Mutual information) The mutual information I[X, Y ] between
two variables X, Y taking values in respectively X ,Y, is defined [3] as

I[X, Y ] =
Ø

x∈X ,y∈Y
p(x, y) log( p(x, y)

p(x)p(y)) (3.18)
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If one recalls the definition of Shannon entropy H[X] of a random variable X,
taking values in X , as

H[X] =
Ø
x∈X
−p(x) log p(x) (3.19)

and of conditional entropy as

H[X|Y ] =
Ø
y∈Y

H[X|Y = y]p(y) =
Ø
y∈Y
−p(x|y) log(p(x|y))p(y) (3.20)

Then the mutual information can be rewritten as

I[X, Y ] = H[X]−H[X|Y ] = H[Y ]−H[Y |X] (3.21)

Thus I[X, Y ] quantifies the reduction in the entropy regarding the random
variable X due to the knowledge of Y , and vice-versa [3].

Since H[X] corresponds to the optimal number of bits needed to encode the
outcome X, we can also interpret the latter conclusion in term of description length.

I[X, Y ] is equal to the difference between the number of bits needed to encode
the outcome of X without the knowledge of Y and without.

Consider for instance X, Y such that they are independent, then the value
assumed by X is not influenced by the value assumed by Y .This means that
p(x, y) = p(x)p(y) and finally I[X, Y ] = 0.This is consistent with the intuition that
X carries no information on Y and vice-versa.

Robust and noisy bits

Since π(s|b) is a rectangular matrix, with a number of columns 2d ≥ |S| = M , the
number of bits necessary to generate the empirical distribution p̂(s) is larger than
actually needed.

We argue that there exist noisy and robust bits and attempt to define quantita-
tively these adjectives.

To quantify the information content of each subset of bits we look at the mutual
information I[S, B], while the number of bits d is varies from 10 to 1.

In this context

I[S, B≤d] =
Ø

s∈S,b∈{0,1}d
π(s|b)p(b) log(π(s|b)

p̂(s) ) (3.22)

As the number of marginalization steps increase, the number of bits will decrease and
the mutual information of the restricted sequence b≤k will trace a curve I[S, B≤k]
for k = 1, . . . , d. We expect the latter to be a decreasing function of the number of
coarse-graining iterations k, or an increasing function of the number of bits.

We define robust bits as those that account for the largest fraction of mutual
information.
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In particular a bit is robust if when it is integrated out results in a significant
reduction of the mutual information, as opposed to noisy bits which causes no
variation of the latter.

If we define
∆Ik = I[S, B≤k]− I[S, B≤k−1] (3.23)

then the bit k is robust when ∆Ik > 0, noisy else.
Incidentally this also allow us to investigate if there is a hierarchy of relevance

between robust bits:
a bit k is more relevant than another one kÍ if ∆Ik < ∆IkÍ
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Chapter 4

Application on the Us
Supreme court data set

The Us Supreme Court “is the highest court in the US government,consisting of
nine justices who vote on the constitutionality of legislative and executive actions ”
[7], to which we refer the interested reader and for a more detailed description of
the data set employed.

The data set is composed by N = 895 court votes and have been selected being
the largest available relative to a natural court, i.e the set of justices is the same
throughout the whole data-set.

“although opinions can be nuanced, each justice casts a yes ( i = +1) or no (
i = 1) vote, and the majority of votes decides the fate of the case” [7]. A court
decision is thus uniquely identified by a sequence of 9 bits, each of which represents
the decision of a single justice. The number of possible court decisions is therefore
|S| = 29 = 512 while the number of distinct observed states is |S Í| = M = 128 = 27.

Our aim is to extract a set of binary variables by means of Huffman coding and
to quantify their information content.

4.0.1 Construction of π̂

The maximum depth reached by an Huffman tree compatible with the data-set is
10, so b ∈ {0,1}10. The matrix π will then have shape (M,210). We compute π̂ for
different numbers of Montecarlo steps t(1), t(2), . . . , we indicate the corresponding
matrices as π̂(1), π̂(2), . . . .

To check the convergence we considered

∆π(i) = π̂i − π̂i−1 (4.1)

The results of such procedure are presented in fig 4.1.
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Figure 4.1: Frobenius norm of ∆π(t) vs number of Montecarlo iterations t. The
number of Montecarlo steps is rescaled by the the sample size N .The Frobenius
norm of the difference matrix tend to saturate to a value close to 0 as the number of
iterations increases. The absolute difference between matrix π̂ and its symmetrized
version π̂MS rapidly decays as the number of Montecarlo steps grows.

Indeed we still cannot be sure that the average computed over 2000N trees
is a sufficient number of steps to obtain a correct estimate of π. What we can
do is to check a posteriori if our result is consistent with the minimal symmetry
requirement dictated by the observed frequency

π(s|b) = π(sÍ|b), ∀b, ks = ksÍ (4.2)

To do so we considered the difference between the matrix π̂ and its symmetrized
version π̂MS, see fig 4.1.
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4.0.2 How many bits are needed to generate the decision
of the United States Supreme Court

We carried out the procedure delineated in the previous chapter for π̂. The mutual
information between the decision of the judges S and the bits B has been computed
as the number of the latter varies from 10 to 1. The result is presented in fig 4.2.
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Figure 4.2: I[B≤k, S]/I[B≤10, S] as k goes from 10 to 1. The random curve is
relative to πS computed for a sample obtained by randomly tossing N = 895 balls
in M = 512 boxes.

For the USSC data-points, the picture 4.2 shows that we can easily distinguish
between robust and noisy bits. Furthermore robust bits show different degrees
of relevance, in the sense that they account for different fractions of the total
information content.

First we note that the number of bits which contain the largest fraction of the
mutual information is ≤ 7. This is consistent with M = 27,since to generate M
states we need at least 7 bits,i.e to each binary string b ∈ B must be associated at
least a symbol s ∈ S.
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We additionally expect the number of robust bits to be ≥ Ĥ[s] Ä 5 [7], since
this is the optimal description length for an outcome drawn from p̂(s) [2].

This is confirmed by observing that more than the 90% of the mutual information
is contained in the first 5 bits.

We confronted these results with those obtained from the same procedure applied
to a synthetic data set, that we called Random. The latter is obtained by randomly
throwing N = 895 balls in 512 boxes and mimics a set of data-points resulting
from a structure-less generative model.

In this case we can still observe that there is a subset of 9 bits which accounts
for the whole information content.This is consistent with the fact that the number
of distinct states that are observed is M = |S Í| = 512 = 29.

Both the data-sets resulted in ∆Ik getting larger as k gets smaller, but for
Random the information content is spread almost evenly on all the bits.

This is consequence of the fact that the latter is a randomly generated sequence:
the resolution Ĥ[s] is larger. Thus the number of bits necessary to encode an
outcome of S ∼ p̂(s) will be larger.

Figure 4.3 shows the mutual information between the system and the single
bits,together with

∆p(bi = 1) = p(bi = 1)− 1
2 (4.3)

for the different bits. What we realize from this picture is that robust bits are
characterized by:

• ∆p(bk) /= 0

• I[S, Bk] > 0

thus noisy bits account for the noise in the sample in a precise sense:
∆p(bk) = 0 so they carry no information on the generative model.

4.0.3 The Hamiltonian of the bit-system
As explained in the previous chapter one can re-write the probability distribution
p(b) as a Boltzmann weight

p(b) = e−H(b)

Z(g) , H(b) = −
2d−1Ø
µ=1

gµφµ(b) (4.4)

so the couplings {gµ} specify how much a given interaction contributes to shape
the probability distribution.

For the USSC data-set, when only the robust bits are considered, the largest
part of the coupling are close to zero, while 9 peaks are clearly distinguishable, see
fig 4.4.
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Figure 4.3: I[S, Bk] as k varies
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Figure 4.4: bar-plot of gµ and corresponding histrogram.
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These are 1 or 2 body interactions, while only a 3-body and 4-body operators
are present. Most importantly they involve only the first four bits b1, b2, b3, b4.

The {gµ} are mainly negative for relevant interactions as among the 9 largest
only one is positive, the latter being the interaction between b0, b1.

An hypergraph picturing the network of interactions relative to the 9 largest
couplings is in fig 4.5.

1

2

3

4

Figure 4.5: Hypergraph picturing the network of interactions for the 9 largest
couplings.

We observe a hierarchical structure across {gµ}.
Bits can be distinguished on the basis of their position from the Most Significant

Bit, which is the left most in our notation, to the Least Significant Bit.
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If one order the couplings according to their magnitude, then as the number of
coupling considered grows,the more less significant bits start to interact.

For instance if one considers

• the first 9 couplings → (b1, b2, b3, b4)

• the first 21 couplings → (b1, b2, b3, b4, b5)

• the first 41 couplings → (b1, b2, b3, b4, b5, b6)

This is consistent with the conclusion that the robust bits are characterized by
different degrees of relevance and bits that are more significant have also an higher
degree of relevance.

Conclusions
To summarize the original contribution of the above work, we have shown that :

• R[k̂], defined as the logarithm of the number of Huffman trees, can be taken as
a quantitative measure of the uncertainty regarding the generative model.This
quantity depends both on Ĥ[s] and Ĥ[k], it is positively-correlated with the
second, while it is negatively-correlated with the first.This is consistent with
the definition and meaning of Ĥ[k] as the useful information that can be used
to estimate the generative model [2],[6]. To show this we produced synthetic
samples at fixed average resolution for different samples sizes. We additionally
computed the exact solution of the MIS equation by employing the saddle
point identity, thus obtaining the result by simulating a fictitious physical
system in the zero temperature limit as explained in appendix A.1.

• when Huffman coding is exploited as an unsupervised procedure to generate
representations, a set of hidden binary variables is extracted. The latter are
organized in a hierarchy, that is quantified in a precise sense by means of the
mutual information. We distinguished between robust and noisy bits on the
basis of the I[S, B], the former being those that contain a non-zero fraction of
mutual information. We also observe, for the data-set studied, that robust bits
carry different amount of information and are thus organized in a hierarchy of
relevance.

• the distribution induced over the labels of the Huffman representation (i.e
the bit-strings) can be represented as a spin model [5]. The structure of the
Hamiltonian is dictated by the couplings of the different interactions among
the variables. We argue that the relevant interactions can be understood by
estimating the couplings through the use of appropriately defined projection
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operators φµ(b) [16].For the data-set analyzed, the gµ result to be organized
in a hierarchy.

We conclude by remarking some problems that afflicts our analysis together
with additional topics that could be worth investigating in the future.

The generative model build with the procedure explained in the text is not
capable of generating new outputs, in the sense that the probability distribution is
set to 0 for not-yet-seen states. This is because the symbol space S corresponds to
the set of already-observed states, i.e those with frequency ks > 0.

A possible way to solve this problem, when the real symbol space S0 is known,
could be to include in the sample also those symbols with frequency 0.The Huffman
procedure would theoretically work, with the only drawback of generating very deep-
trees, as the number of additional bits would be at least as large as log(|S0 \ S|).
Provided that a small amount of probability is assigned to yet-unseen states,
this would define a model where every state as a defined probability.But further
investigations are needed in this direction.

A rigorous proof of the convergence of π̂ would be preferable, even though
our approximate analysis of the Frobenius norm and the confrontation with its
minimally symmetric version seems to point in the right direction.

For what concerns the hidden variables b an important point is to understand
their meaning, up to now we do not know what features the various bits code for.

Looking at the conditional probability π for the USSC, we inferred for instance
that the first bit only is capable of distinguishing between the 2 most probable
events, i.e the unanimous decisions of the court, and the remaining split votes.But
also in this case additional investigations are needed.
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Appendix A

Numerical simulations

A.1 Solving the MIS optimization problem
Through the saddle point approximation we can map the optimization problem
into a statistical mechanics problem

max
I

Ĥ[k̂] + βĤ[ŝ] + µN̂

J
= lim

γ→+∞

1
γ

I
log

AØ
m

eγ(Ĥ[k̂]+βĤ[ŝ]+µN̂)
BJ

(A.1)

Note that the constraints written as

Ĥ[ŝ] = Ô ∼ O(log N) (A.2)
N̂ = N ∼ O(N) (A.3)

imply that Ĥ[ŝ], Ĥ[k̂] are intensive quantities, while N̂ is extensive, thus is better
to re-write the constraints as

NĤ[ŝ] = E ∼ O(N log N) (A.4)
N̂ = N ∼ O(N) (A.5)

and rescale the multipliers thus setting the scaling of the various term contributing
to the Energy to O(N).

This leads to

max
I

N̂Ĥ[k̂]+βN̂Ĥ[ŝ]+µN̂

J
= lim

γ→+∞

I
1
γ

log
AØ

m

eγ(N̂Ĥ[k̂]+βN̂Ĥ[ŝ]+µN̂)
BJ

(A.6)

Now we can identify

Z(β, γ, µ) =
Ø
m

eγ(N̂Ĥ[k̂]+βN̂Ĥ[ŝ]+µN̂)
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and the Boltzmann weight reads

Pβ,γ,µ(m) ∝ eγ(N̂Ĥ[k̂]+βN̂Ĥ[ŝ]+µN̂) (A.7)

This means that the solution of the problem is accessible trough simulations
techniques in the appropriate limit.

The value of A.6 is exactly the free energy of this statistical mechanics model in
the ’zero-temperature’ limit

lim
γ→+∞

F(β, µ, γ) = lim
γ→+∞

1
γ

log
AØ

m

eγ(N̂Ĥ[k̂]+βN̂Ĥ[ŝ]+µN̂)
B

(A.8)

A.1.1 Montecarlo simulation
We set up a Montecarlo Markov Chain procedure in order to sample configurations
m according to the measure A.7.

Two options are available :

• propose moves which conserve the number of samples,thus sampling at fixed
N ,hence µ = 0

• propose moves that do not conserve the number of samples,thus µ /= 0

Proposal

If the first option is preferred, as in this case, then a possible way of proposing the
moves is to consider a combination of 2 moves,which separately do not conserve N :

evaporation pick one frequency at random with mk > 0

mk ← mk − 1 (A.9)
mk−1 ← mk−1 + 1 (A.10)

deposition pick one frequency at random with mk > 0 and
move a

mk ← mk − 1 (A.11)
mk+1 ← mk+1 + 1 (A.12)

or move b

mk ← mk (A.13)
m1 ← m1 + 1 (A.14)

39



Numerical simulations

The probability with which the 2 possible moves in deposition are chosen is
fixed so that each final state is reached with the same probability. If we indicate
with l(m) = qN

k=1 1[mk > 0] then
move a with probability pa = l

l+1

move b with probability pb = 1
l+1

Even though detailed balance is satisfied, this way of proposing moves is not
symmetrical : l(m) can be different in the initialm and final mÍ configurations.

Acceptance

This in turn means that the acceptance of the MCMC, fixed by the Metropolis-
Hastings rule [17], is

min
3

e
n(∆ ˆH[k]m,mÍ+ν∆ ˆH[s]m,mÍ )+log( l(m)

l(mÍ) )
,1
4

where the correction term e
log( l(m)

l(mÍ) ) is equal to the ratio of the forward and backward
proposal probability Qm→mÍ

QmÍ→m
.

A.2 Synthetic data production
We would like to produce samples m = (m1, . . . , mN) such that

N̂ =
Ø

k

kmk = N (A.15)

NĤ[ŝ] = −
Ø

k

kmk log k

N
= E (A.16)

NĤ[k̂] = −
Ø

k

kmk log kmk

N
= S (A.17)

One would thus want to sample from the distribution

p(m)E,S,N = 1
Ω(E, S, N)δ(NĤ[ŝ]− E)δ(NĤ[k̂]− S)δq

k
kmk,N

unfortunately sampling from this distribution is extremely inefficient and depend on
the tolerance allowed on the values E, S,thus a smoothed version must be considered.
Information theory tells us that the least constrained distribution consistent with
the requirements above is the one that maximaze

Γβ,λ,µ(q) =
Ø
m

−q(m)
î

log q(m)− β(
Ø

k

kmk log k

N
)− λ(

Ø
k

kmk log kmk

N
)− µ(

Ø
k

kmk)
ï

(A.18)
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this is the maximum entropy distribution

Pβ,λ,µ = 1
Z(β, λ, µ)e+βNĤ[ŝ]+λNĤ[k̂]+µN̂ (A.19)

the parameters β, λ, µ are fixed by the equations

E = ∂

∂β
log Z(β, λ, µ) = Eβ,λ,µ

C
NĤ[ŝ]

D
(A.20)

S = ∂

∂λ
log Z(β, λ, µ) = Eβ,λ,µ

C
NĤ[k̂]

D
(A.21)

N = ∂

∂µ
log Z(β, λ, µ) = Eβ,λ,µ

C
N̂

D
(A.22)

Consider then sampling from this smoothed distribution.
At this point it is not clear what parameters should we use and to gain some

intuition on at least the order of magnitude of the parameters controlling Pβ,λ we
can search for approximate solutions .

A.2.1 β, µ Ensemble

First we consider the distribution obtained by fixing E
C
NĤ[ŝ]

D
and E

C
N̂

D
,

We will thus consider the measure of a grand-canonical ensemble

Pβ,µ(m) = e(+βNĤ[ŝ]+µN̂)

Z(β, µ)

Note that

βNĤ[ŝ] + µN̂ = −β
Ø

k

mkk log k

N̂
+ µN̂ (A.23)

= −β
Ø

k

mkk log k

N
− β

Ø
k

mkk log N

N̂
+ µN̂ (A.24)

= βN
Ø

k

Ôkmk + µN
Ø

k

kmk

N
+ βN

N̂

N
log N̂

N
(A.25)

= βÍH̃[ŝ] + µÍ N̂

N
+ βÍ N̂

N
log N̂

N
(A.26)

where we defined
Ôk = − k

N
log k

N
(A.27)
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we can then re-write the normalization factor as

Z(βÍ, µÍ) =
Ø
m

e+βÍH̃[ŝ]+µÍ N̂
N

+βÍ N̂
N

log N̂
N = E0

βÍ,µÍ

C
e+βÍ N̂

N
log N̂

N

D
Z(βÍ, µÍ)0

where E0
βÍ,µÍ

CD
is intended as the expectation value using the measure

P0
βÍ,µÍ = e+βÍH̃[ŝ]+µÍ N̂

N

Z0(β, µ)

As a rough approximation we can expand in power series, akin to a high
temperature expansion in stat. mechanics

Z(β, µ) = Z0(β, µ)
+∞Ø
k=0

βÍk

k! E
0
βÍ,µÍ

CA
N̂

N
log N̂

N

BkD
(A.28)

the lowest order of approximation is valid when

βÍE0
βÍ,µÍ

C
N̂

N
log N̂

N

D
¹ 1

this is valid when N̂ ≈ N and must be checked a-posteriori.

If E0
βÍ,µÍ

C
N̂
N

D
≈ 1 then

E0
βÍ,µÍ

C
N̂

N
log N̂

N

D
= E0

βÍ,µÍ

C
N̂

N
− 1

D
+ 1

2E
0
βÍ,µÍ

CA
N̂

N
− 1

B2D
+ . . . (A.29)

≈ 1
2N2V

0
βÍ,µÍ

C
N̂

D
(A.30)

so it is sufficient to check the variance of N̂ to have an estimate of the validity of
the approximation.

In the regime of validity of the approximation explained above, we have

1 = ∂

∂µÍ logZ0(βÍ, µÍ) = E0
β̄,µ̄

C
N̂

N

D
=

+∞Ø
k=0

k

N

1
e(βÔk+µk) − 1 =

+∞Ø
k=0

k

N
nk (A.31)

e = ∂

∂βÍ logZ0(βÍ, µÍ) = E0
β̄,µ̄

C
H̃[ŝ]

D
=

+∞Ø
k=0

Ôk
1

e(βÔk+µk) − 1 =
+∞Ø
k=0

Ôknk (A.32)

Solving this set of coupled non-linear equations is equivalent to find the maximum
of

F0(βÍ, µÍ) = βe + µ− logZ0(β, µ)

42



Numerical simulations

since the Hessian of F0 is negative semi-definite for every value of βÍ, µÍ being equal
to the co-variance matrix of Ĥ[ŝ], N̂ .

Gradient ascent has been employed, with

δβÍ = α

A
1− E0

β,µ

C
N̂

N

DB
(A.33)

δµÍ = α

A
e− E0

β,µ

C
H̃[ŝ]

DB
(A.34)

The variances can then be easily computed using the fluctuation dissipation
theorem as

V0
β,µ

C
N̂

D
= ∂

∂µÍE
0
β,µ

C
N̂

D
=

+∞Ø
k=0

k2(1 + nk)nk (A.35)

V0
β,µ

C
Ĥ[ŝ]

D
= ∂

∂βÍE
0
β,µ

C
H̃[ŝ]

D
=

+∞Ø
k=0

Ô2
k(1 + nk)nk (A.36)

The numerical solutions for different values of N all result in the fluctuations
growing with β and being a finite fraction of the theoretical mean.

This implies that our result should only be trusted for small positive values of
β.Indeed we observe by confrontation with the simulations that this is not the case:
there is an almost exact agreement between the theoretical average and the average
of the simulation.

Alternative derivation of the upper bound for the MIS curve

An upper-bound on E0
β,µ

C
Ĥ[k̂]

D
can be derived as a consequence of the well known

Jensen’s inequality

E
C
X log X

D
≥ E

C
X

D
logE

C
X

D

which implies

E0
β,µ

C
Ĥ[k̂]

D
≤ −

Ø
k

k

N
E0

β,µ

C
mk

D
log( k

N
E0

β,µ

C
mk

D
) = Ẽ0

β,µ

C
Ĥ[k̂]

D

It must additionally be remembered that Ĥ[k̂] is bounded from above by the
data processing inequality and thus Ĥ[k̂] ≤ Ĥ[ŝ].

43



Numerical simulations

Continuum limit approximation Since

E0
β,µ

C
Ĥ[k̂]

D
=
Ø

k

k

N
E0

β,µ

C
mk log mk

D
− E0

β,µ

C
Ĥ[ŝ]

D

and
mk ∼

e−(βÔk+µk)mk

Zk(β, µ)
consider the expectation

E
C
−X log X

D
= −

∞Ø
X=0

e−αx

Z(α)x log x ≈
Ú ∞

0
dy

1
α2

e−y

N (α)y(log α− log y) = (A.37)

=
Ú +∞

−∞
dz

1
α2N (α)e−(e−z+z)e−z(z + log α) (A.38)

noting that Z ∼ e−(e−z+z) is a Gumbel distributed random variable, we can rewrite
the above integral as a function of its moment generating function φZ(t)

φ(t) =
Ú +∞

−∞
dze−(e−z+z)etz =

Ú +∞

0
dse−ss1−t−1 = Γ(1− t)

as

E
C
−X log X

D
≈ 1

α2N (α)

A
log αφ(t)|t=−1−

∂

∂t
φ(t)|t=−1

B
= log α + 1− γ

α2N (α) = log α + 1− γ

α

the normalization factor N (α) = 1
α
is fixed so that the continuous approximation

is correctly normalized.
Thus asymptotically as N →∞

E0
β,µ

C
Ĥ[k̂]

D
∼

NØ
k=0

log αk + 1− γ

αk

this means that in the continuous approximation E
C
−X log X

D
Ä −E

C
X

D
logE

C
X

D
.

This result suggests that as N → +∞ the value of Ĥ[k̂] should approach its
upperbound.

A.2.2 β, N ensemble
Thanks to the insight gained in the previous paragraph we already know the order
of magnitude of the multipliers and their relation with the quantities they tune. We
then use our educated guesses on the parameters to simulate the system at fixed
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N̂ with the MCMC developed to solve the MIS equation 2.9 setting the multiplier
of Ĥ[k̂] to 0.

The samples extracted are in quantitative agreement with the approximate
results of the previous section (see figA.1), even though we stressed that our intent
was only to estimate the order of magnitude of the parameters β, µ: we expected
large errors due to the fluctuations of N̂ . A possible explanation of the latter fact
is that the function f(x) = e−x log x is well approximated by f(x) Ä 1 − (x − 1)
when x Ä 1, thus the average effect of the fluctuations around 1 sum up to be 0.

0.0 0.2 0.4 0.6 0.8 1.0

H[s]/log(N)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

H
[k

]/l
og

(N
)

N = 1000

data processing inequality
canonical ensemble avrg
approximate avrg
approximate upper bound
canonical ensemble raw data

20

10

0

10

20

30

40

50

60

0.0 0.2 0.4 0.6 0.8 1.0

H[s]/log(N)

0.0

0.1

0.2

0.3

0.4

0.5

0.6
H

[k
]/l
og

(N
)

N = 5000

data processing inequality
canonical ensemble avrg
approximate avrg
approximate upper bound
canonical ensemble raw data

40

20

0

20

40

60

Figure A.1: Numerical results for N = 1000, N = 5000.The raw data from the
β, N ensemble, here called canonical, are presented together with the theoretical
average computed with the approximated measure of the β, µ ensemble of previous
section.We include also the upper bound on the MIS curve computed in the previous
section.
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A.3 Least square fitting of the linear relation
R[k̂], Ĥ [ŝ], Ĥ [k̂]

In order to search for the parameters αs, αk such that
R[k̂] = αsĤ[ŝ] + αkĤ[k̂] (A.39)

defining R[k̂]i = Yi and Xi = (Ĥ[ŝ]i, Ĥ[k̂]i), 1 ≤ i ≤ N the above problem can be
stated as

Y = X · α + Ô (A.40)
where Ô is a set of N independent and identically distributed draws of a random
variable with finite support,i.e the noise.

As a measure of goodness of fit we take the mean squared error
∆(α) = (Y −X · α)T (Y −X · α) (A.41)

then
α̂ = arg min

α
∆(α) = (XT X)−1XT Y = MY (A.42)

the matrix M = (XT X)−1XT is known in the literature as Moore-Penrose pseudo-
inverse, since it generalizes the concept of inverse for non-square matrices.

Since the Least Square estimator α̂ depends on the data Y , it is a random
variable. We can quantify the error on the fitting coefficient by the variance of α̂

V
C
α̂i

D
=
Ø
k,j

MikMT
jiE

C
(Yk − E[Yk])(Yj − E[Yj])

D
= (MT M)i,iV[Ô] (A.43)

where we used the fact that the errors are uncorrelated and identically distributed
E[(Yk − E[Yk]) · (Yj − E[Yj])] = V[Ô]δk,j

with the same reasoning we obtain that the co-variance

Cov

C
α̂iα̂j

D
E
C
(α̂i − E[α̂i])(α̂j − E[α̂j])

D
= (MT M)i,jV[Ô] (A.44)

The (unbiased) estimator for the variance of the error is

σ̂2
Ô =

NØ
i=1

(Yi −X i · α)2

N − 1 (A.45)

So the errors on α̂i are given by
σ̂2

i = (MT M)i,iσ̂
2
Ô (A.46)

and the Pearson correlation coefficient ρ̂i,j is given by

ρ̂i,j = (MT M)i,jñ
(MT M)i,i

ñ
(MT M)j,j

(A.47)

46



Numerical simulations

A.4 Marginalization of π

The marginalization procedure can be carried out in 2 directions :

1 integrate out the Least Significant Bit (LSB):pb → pbÍ where b = (b1, . . . , bd)
and bÍ = (b1, . . . , bd−1).

2 integrate out the Most Significant Bit(MSB):pb → pbÍ where b = (b1, . . . , bd)
and bÍ = (b2, . . . , bd).

LSB-Coarse Graining is implemented by observing that configurations b which
are binary numbers corresponds to natural numbers in base 10 and these number
corresponds to column induces of π(s|b). Two binary numbers which differ only by
the LSB correspond to natural numbers whose difference is 1(we use the Python
notation for concatenation as ’+’).

π(s|bÍ)← π(s|bÍ +Í 0Í)p(bd = 0|bÍ) + π(s|bÍ +Í 1Í)p(bd = 1|bÍ)

MSB-Coarse Graining is similarly implemented by noting that binary numbers
that differ by the MSB are natural numbers in base 10 that differ by 2d−1 where d
is the length of the binary sequence,formally:

π(s|bÍ)← π(s|Í0Í + bÍ)p(b1 = 0|bÍ) + π(s|Í1Í + bÍ)p(b1 = 1|bÍ)

When reducing the number of bits we will always employ the LSB method.The
MSB method is useful in combination with the LSB to compute marginals, as one
can sequentially integrate first the bits that are less significant and then those that
are more significant.
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