
POLITECNICO DI TORINO
Master of Science Degree in

MECHATRONIC ENGINEERING

MASTER THESIS

Visual based local motion planner with
Deep Reinforcement Learning

Supervisor

Prof. Marcello CHIABERGE

Candidate

Mauro MARTINI

s260771

OCTOBER 2020

Abstract

This thesis aims to develop an autonomous navigation system for indoor scenarios
based on Deep Reinforcement Learning (DRL) technique.

Autonomous navigation is a hot challenging task in the research area of robotics
and control systems, which has been tackled with numerous contributions and
different approaches. Among them, learning methods have been investigated in
recent years due to the successful spreading of Artificial Intelligence and Machine
Learning techniques. In particular, in reinforcement learning an agent learns by
experience, i.e. through the interaction with the environment where it is placed,
avoiding the need of a huge dataset for the training process.

Service robotics is the main focus of the research at PIC4SeR (PoliTo Interdepart-
mental Centre for Service Robotics), where the idea of this thesis project is born
as part of a broader project. Under the supervision of Professor M. Chiaberge
(PoliTo), member of the group, the thesis embraces the vision of the centre, which
is to develop high-tech solutions for peculiar fields such as precision agriculture,
surveillance and security, in addition to assist people in their every-day life. As a
matter of fact, an autonomous navigation system enables competitive advantages
in a wide variety of the applications of interest.

Deep Deterministic Policy Gradient (DDPG) is the specific DRL algorithm applied
to train an agent in a simulated environment using ROS (Robot Operating System).
Training simulations offer different types of scenarios presenting both static and
moving obstacles. The main goal of the project is to provide a safe collision-free
navigation in an unknown indoor environment. An Artificial Neural Network (ANN)
is used to directly select suitable actions for the robot, expressed in terms of linear
and angular velocity (ANN output). Input information is composed of robot pose
and goal position, in addition to raw images provided by a depth camera. A great
focus is also devoted to reduce the computational cost of the model in the training
phase, as well as the energy consumption in a potential hardware implementation.
For this reason, an efficient architecture of the CNN is studied, paying attention
to both desired performances and costs. Firstly, a set of convolutional layers is
needed to extract high-level features from depth images. Then fully-connected
layers predict the action for the robot. Beside these aspects, also sensor data play
a key role in a navigation system. From a research point of view, it is interesting
to evaluate the performance of the algorithm when using depth images, compared
to other popular implementations based on LiDAR sensor. On the one hand, a
camera offers a rich depth information. On the other hand a simple 2D LiDAR is
able to cover a wider field of view.

The navigation system has been tested in a virtual environment with obstacles.
Despite the difficulty of the challenge and the amount of resources required for the
development, the system can be considered a good starting point for future works.
The implementation of the algorithm on a real robot will be a natural next step
for the project.

ii

Contents

List of Tables vii

List of Figures viii

Principal Acronyms xi

1 Introduction 1

1.1 Objective of the thesis . 1

1.2 Organization of the thesis . 2

2 State of the art 3

2.1 Introduction to navigation . 3

2.2 DRL and autonomous navigation 4

2.3 Depth Camera for Robotic Applications 6

3 Machine Learning 9

3.1 Chapter overview . 9

3.2 AI, Machine Learning and Deep Learning 9

3.3 History of Deep Learning . 10

3.4 Machine Learning concepts . 13

3.4.1 The artificial neuron: Threshold Logic Unit (TLU) 13

3.4.2 Perceptron . 15

iii

3.4.3 Architecture of Artificial Neural Networks 17

3.4.4 Activation functions . 18

3.4.5 Learning process: gradient descent 23

3.4.6 Stochastic Gradient Descent 25

3.4.7 The back-propagation algorithm 26

3.5 Insights on training neural networks 28

3.5.1 Learning slowdown . 29

3.5.2 Data overfitting . 30

3.5.3 ADAM optimizer . 33

3.6 Convolutional Neural Networks . 35

4 Deep Reinforcement Learning 37

4.1 Chapter overview . 37

4.2 Introduction to Reinforcement Learning 37

4.2.1 Elements of Reinforcement Learning 39

4.3 Markov Decision Process . 40

4.4 Tabular methods for reinforcement learning 44

4.4.1 Dynamic programming . 44

4.4.2 Monte Carlo Methods . 45

4.4.3 Temporal-Difference Learning 48

4.5 Approximate solution method: Deep Reinforcement Learning 50

4.5.1 Experience Replay . 51

4.5.2 Target Network . 51

4.5.3 Actor-Critic architecture . 52

4.5.4 Deep Q-Learning algorithm 53

4.5.5 DDPG Algorithm . 54

iv

5 Robot Platform 59

5.1 Chapter overview . 59

5.2 Introduction to robotic platform . 59

5.3 Sensors . 60

5.3.1 Laser distance sensors (LDS) 60

5.3.2 Visual sensors: Cameras . 61

5.3.3 Depth Camera . 61

5.4 TurtleBot3 . 62

5.4.1 Actuators . 64

5.4.2 OpenCR . 64

5.4.3 Intel RealSense R200 . 65

5.5 Software tools . 65

5.5.1 ROS . 66

5.5.2 Gazebo . 68

5.5.3 Machine Learning tools . 69

6 The navigation system 71

6.1 Chapter overview . 71

6.2 Simulation setup . 71

6.3 LiDAR-based navigation . 75

6.3.1 Data filtering . 75

6.3.2 Actor-Critic neural networks 77

6.3.3 Reward function . 79

6.3.4 Training process . 80

6.4 Visual based navigation . 83

6.4.1 Data processing . 83

6.4.2 Actor-Critic neural networks 85

6.4.3 Reward function and training 87

v

7 Results and Conclusions 91

7.1 Results . 91

7.1.1 Metrics . 91

7.1.2 Testing simulation . 92

7.1.3 Qualitative analysis of results 93

7.2 Conclusions and future works . 95

Bibliography 97

vi

List of Tables

6.1 Hyperparameters and simulation settings for LiDAR-based navigation. 81

6.2 Hyperparameters and simulation settings for visual based navigation. 89

7.1 LiDAR-based navigation: results obtained from the testing phase. . 93

7.2 visual based navigation: results obtained from the testing phase. . . 94

vii

List of Figures

2.1 Example of depth image in a virtual environment: on the left the
original image, on the right the depth map based on the distance
from the camera. 6

3.1 Artificial Intelligence, Machine Learning and Deep Learning. 10

3.2 Time-line of deep learning history. 11

3.3 Biological neuron: a schematic model. 13

3.4 The artificial neuron model with a generic activation function. . . . 14

3.5 Perceptron schematic. 16

3.6 Example of decision boundary for a binary classification problem. . 17

3.7 Example of neural network architecture. 18

3.8 Neural network: propagation of the weight’s variation till the output. 19

3.9 On the left a step activation function: the output is binary as in the
perceptron due to the sharp variation from 0 to 1. On the right the
sigmoid activation function showing its smooth trend in the same
interval. 20

3.10 Tanh activation function: it presents a smooth shape in the output
range (-1,1) . 21

3.11 ReLU activation functions. 22

3.12 Gradient descent visualization on a 3D surface. 24

3.13 A comparison between a big learning rate and a small one when
using gradient descent. 25

viii

3.14 An example of input 3 channel image 32x32x3 mapped to a first
hidden layer with 5 feature maps. 36

4.1 The interaction between an agent and the environment typical of
reinforcement learning. 38

4.2 Markov Decision Process schematic. 40

4.3 Finite Markov Decision Process: a simplified transition schematic. . 41

4.4 Policy improvement scheme. 47

4.5 Actor-Critic architecture scheme. 52

5.1 Hardware component description of TurtleBot Burger (top) and
TurtleBot Waffle (bottom).[26] . 63

5.2 Dynamixel actuator components. 64

5.3 OpenCR embedded controller. 65

5.4 Intel RealSense R200 labels and technical specification.[28] 66

5.5 ROS execution graph with nodes and Master. 67

5.6 ROS building organization. 68

6.1 An example of Gazebo simulation with waffle robot. 72

6.2 Pic4rl package: nodes organization. 73

6.3 Code logic basic scheme at a generic temporal transition. 74

6.4 Scheme of heading angle between the robot and the goal. Angle α
and yaw are exploited to compute it. Goal distance is also indicated. 76

6.5 Actor and Critic neural networks for the LiDAR-based navigation
system. 78

6.6 On the left the final standard scenario with static columns and walls.
On the right a custom training scenario realized from scratch. . . . 81

6.7 Learning curve with LiDAR sensor in a successful simulation with
the described reward function. After episode 800 the convergence
of the algorithm is stable and the goal is always met. From episode
950 static obstacles are added to the scene. 82

ix

6.8 Depth images examples during simulation. A column obstacle is
captured. Darker pixels indicate smaller distances while lighter
pixels represent distant points. 84

6.9 Actor neural networks for the visual based navigation system. Images
are processed through convolutional layers and then features are
aggregated with the information about the goal. 85

6.10 Critic neural network for the visual based navigation system. 86

6.11 Final configuration of the virtual world with static obstacles of
different shapes used to train the DRL agent for the visual based
navigation. 88

6.12 Training score trend of a successful simulation with depth images
on two different stages. The reward is tuned along the episodes to
improve the obstacle avoidance behaviour. 90

6.13 Score trend with reward function based on velocity. The plot shows
how the speed behaviour is almost satisfied and the agent gets small
positive rewards. However the goal is rarely reached. 90

7.1 Virtual world used for testing. Static obstacles of different shapes
and dimensions are placed between the initial spawning point of the
robot and the goal position. 92

7.2 Scheme of the virtual world used for testing. Obstacles and goals
are sketched for a better visualization of the scenario. 94

x

Principal Acronyms

AI

Artificial Intelligence

ML

Machine Learning

ANN

Artificial Neural Network

CNN

Convolutional Neural Network

RL

Reinforcement Learning

DRL

Deep Reinforcement Learning

DDPG

Deep Deterministic Policy Gradient

ROS

Robot Operating System

LiDAR

Light Detection and Ranging

xi

Chapter 1

Introduction

1.1 Objective of the thesis
Autonomous navigation is a challenging task in the research area of robotics,
which has been tackled with numerous contributions and different approaches.
Among them, learning methods have been investigated in recent years due to the
successful spreading of Deep Learning, a recent approach to Artificial Intelligence.
In particular, in Reinforcement Learning an agent learns by experience, i.e. through
the interaction with the environment where it is placed, without the need of a huge
dataset.

The idea of the thesis is born at the PIC4SeR (PoliTo Interdepartmental Centre
for Service Robotics), as part of a broader project focused on service robotics. The
work embraces the vision of the centre, which is to develop high-tech solutions for
peculiar fields of application such as precision agriculture, smart city, surveillance
and security, in addition to assist people in their every-day life as well as in
emergency situations. As a matter of fact, an autonomous navigation system
enables competitive advantages in a wide variety of the applications of interest. In
particular, the development of the system will be mainly devoted to indoor service
and assistance purposes for people.

Deep Deterministic Policy Gradient (DDPG) is the specific Deep Reinforcement
Learning (DRL) algorithm applied to train an agent in a virtual environment using
ROS (Robot Operating System). The main goal of the project is to provide a safe
collision-free navigation in an unknown indoor scenario. A Convolutional Neural
Network (CNN) is used to directly select suitable actions for the robot, expressed in
terms of linear and angular velocity (CNN output). Input information is composed
of robot pose and goal position, in addition to images provided by an Intel RealSense

1

Introduction

depth camera. Depth images are single channel grey-scale images which provide
distance information. A great focus is also devoted to minimize the computational
cost of the model, looking forward to a future hardware implementation. From a
research point of view, it is interesting to evaluate the performance of the navigation
system when using depth images, compared to a different popular implementation
based on LiDAR sensor. On the one hand, a camera offers a rich depth information.
On the other hand a simple 2D LiDAR is able to cover a wider field of view.

1.2 Organization of the thesis
An overview of the composition of the thesis is given, briefly describing the content
of each chapter.

Chapter 1 introduces the reader to the goal of the thesis. The main aspects of the
methodology carried out in the work are also summarized.

Chapter 2 starts framing the problem of navigation. Then, an overview of the state
of the art of autonomous navigation systems for robotics with Deep Reinforcement
Learning is proposed. The role of the Depth Camera in robotics works is also
depicted.

Chapter 3 illustrates the historical foundation and the main concepts of Machine
Learning and Deep Learning. It is convenient to provide the reader with a small
theoretical background about Artificial Neural Networks for a easier understanding
of the framework and results of the project.

Chapter 4 is devoted to Reinforcement Learning. The key elements of this learning
framework are first set. Then, a collection of the most popular algorithms and
methods is listed. In the final section of the chapter, the Deep Deterministic Policy
Gradient algorithm is described more in detail, as it is the one used in the project.

In chapter 5 the definition of robotic platform is given, analysing the main com-
ponents of the TurtleBot3 platform. Moreover, the software tools and the sensors
used for the simulation are depicted.

Chapter 6 comprises a thorough description of the implementation of the algorithm
in ROS. The Artificial Neural Networks designed for both a LiDAR-based and a
camera-based navigation are illustrated, together with the whole training process.

Chapter 7 is devoted to the testing phase in a virtual scenario with obstacles.
Results are reported and discussed. A comparison between the LiDAR-based
navigation and the visual one is carried out. Conclusions and suggestions for future
works are finally given.

2

Chapter 2

State of the art

2.1 Introduction to navigation
Navigation in robotics refers to the ability of a mobile robot to move from its
starting position to a desired destination, by selecting a valid path composed of a
sequence of configurations.
The possibility to navigate autonomously in an environment is an essential and
challenging problem in robotics. A wide variety of approaches has been developed,
making also possible to classify the existing systems according to their main features.
First of all, it is useful to briefly describe the three main elements needed by a
navigation system in an indoor scenario, which are:

1. a localization system to identify the robot position and orientation with respect
to a reference frame;

2. a path planner to compute a suitable sequence of configurations for the robot
to reach the goal;

3. a motion controller to select the actions for the robot to make it follow the
desired computed trajectory.

Given the target position, the robot should be able to localize itself and plan
a suitable path in the indoor environment. Then, the motion controller will be
responsible of moving the robot trying to fit precisely the points on the trajectory.
It is possible to distinguish between map-based and mapless navigation tasks. The
majority of the traditional methods need to map the environment where the robot
moves before being able to accomplish the localization and the path planning tasks.
Simultaneous Localization and Mapping (SLAM) is one of the principal technique
for localization, which simultaneously allow to build the map of the surrounding

3

State of the art

environment. However, it is often tough in multiple real scenarios to build a precise
map. Furthermore, complex environments with obstacles of many shapes represent
a huge limitation for traditional methods. Computational costs and versatility are
key aspects for an autonomous navigation system. Versatility can be defined as the
ability to generalize the performance with respect to different situations regardless
of the commands designed by the programmers.
To this extent, Deep Reinforcement Learning is an interesting mapless solution to
increase both flexibility and autonomy. Moreover, the system architecture results
to be simpler with DRL, since the path planner and the motion controller collapse
in a single decision-making entity.

2.2 DRL for autonomous navigation
Deep Reinforcement Learning emerged as a potential approach for robotic navigation
only in recent years. It presents multiple advantages with respect to both traditional
methods and others machine learning technique for what specifically concerns the
navigation task. An introduction to deep reinforcement learning concepts will be
presented in the following chapters. Here, a selection of the principal publications
from 2017 to 2020 representing the state of the art of DRL applications for robotic
navigation is shortly reported. [1], [2], [3], [4] and [5] exploit DRL by changing
the learning model and algorithm and by using different sensor data. A brief
description of the content of each work is proposed, highlighting the peculiarity of
each approach.

"Virtual-to-real Deep Reinforcement Learning: Continuous
Control of Mobile Robots for Map-less Navigation"
This work has been published in 2017. It proposes a basic but robust implementation
of a deep-RL agent to guide a wheeled robot in an unseen real environment. The
navigation has been tackled with a mapless motion planner, trained from scratch
with a continuous control deep-RL algorithm. In particular, an asynchronous
DDPG, called ADDGP, has been used. The algorithm exploits only 10 sparse
range laser points. Although it is intended as a low-cost solution, the system shows
great responses in new environments with respect to map-based methods thanks to
reinforcement learning.

"An End-to-End Deep Reinforcement Learning-Based Intel-
ligent Agent Capable of Autonomous Exploration in Un-
known Environments"
This work has been published in 2018. The project aims to realize an end-to-end
obstacle avoidance and navigation system based on DRL. The authors chose to

4

2.2 – DRL and autonomous navigation

develop a Memory-Based Deep Reinforcement Learning algorithm. They show the
importance of using a continuous action space to improve robot’s performance and
the advantages of training and testing in simulation. Moreover, a sensor fusion
technique is exploited to improve the noisy depth information thanks to additional
range sensors.

"Collision Avoidance for Indoor Service Robots through Mul-
timodal Deep Reinforcement Learning"
This paper has been published in 2019. The work presents an innovative artificial
neural network model trained with a DDPG algorithm to get a reliable collision
avoidance algorithm for indoor service robotics. In particular, the authors intro-
duced a set of long short-term memory (LSTM) layers. The model is able to
independently extract features from different sensors and combine them to select an
action for the robot. Moreover, an interesting analysis about how to cover the gap
between simulation and real world is conducted through depth images processing
during training.

"Learning Navigation Behaviors End-to-End with AutoRL"
This paper has been published in 2019. The authors approaches the development
of an end-to-end learning algorithm for navigation with an innovative technique:
AutoRL. It is a new automation trend in RL that automatically takes care of
the neural network architecture and of the reward by applying hyper-parameter
optimization. The system has been tested both in simulation and in reality and
shows promising results with respect to classical methods.

"Goal-Oriented Obstacle Avoidance with Deep Reinforce-
ment Learning in Continuous Action Space"
This paper has been published in February 2020 and it is the most recent contribu-
tion to this thesis in literature. The work aims to reach a high quality performance
in obstacle avoidance, also when dealing with objects of complex shapes. For this
purpose the proposed DDPG network controls the action of the robot exploiting a
depth-wise separable convolution, receiving in input a stack of successive depth
images. By using images of the surrounding scene at previous time instants it is
possible to compensate the limited field of view of depth cameras.

5

State of the art

2.3 Depth Camera for Robotic Applications
Depth Camera and depth images are increasing their relevance in robotics in
almost every field of application. Depth cameras became a popular sensor when
in 2010 Microsoft released its first Kinect for the Xbox gaming platform. This
technology combines RGB cameras as well as infrared sensors, which allow for
real-time gestures recognition. From the robotic point of view, the interest for
Kinect sensors is related to the great trade-off of speed and resolution offered for
3D perception. They resulted to be also a cheaper solution compared to existing
technology such as laser range finders and stereo vision systems. The advantages
of depth cameras are explored in several works about robotic navigation published
around 2012. [6] is a work published in 2011 which show an application of depth
camera (Kinect) for indoor robot localization and navigation. [7] also proposed in
2012 a real-time navigation system for a humanoid robot based on depth camera
data. More recent depth camera models have increased its capability and diffusion.
For example, the Intel RealSense is used in a great amount of works. Among them
[5] in 2020 uses a D435 Intel RealSense to enable a robot navigation completely
based on depth images and DRL.

Figure 2.1: Example of depth image in a virtual environment: on the left the
original image, on the right the depth map based on the distance from the camera.

[8]

In 2012, also deep learning spread out thanks to the great results of convolutional
neural network on image classification challenges, above all on the ImageNet
dataset. In the field of robot perception and computer vision convolutional neural
network are a standard tool to process RGB images and extract features from them.
However, for robotic tasks consisting in a physical interaction with objects, such

6

2.3 – Depth Camera for Robotic Applications

as grasping or obstacle avoidance, RGB images may be not necessary. In fact, for
those tasks the key information are mainly related to geometry, pose and other color
independent features. Depth images are single channel grey-scale images which
are able to provide distance information with a reduced computational cost. For
this reason, in recent years depth images are spreading out in robotic applications.
The article at [9] suggests three interesting examples. Among them, [10] proposed
a robot bed-making which is able to combine effectively depth images, processed
with very simple operations, and RGB images for corners detection. An additional
advantage of depth images is that it is possible to fix a ’blackout’ threshold, to
remove high distance section of the image and let the algorithm focus on relevant
information. This perfectly shows the effectiveness of depth images for complex
robotic tasks.

An ongoing research trend consists in estimating depth from monocular RGB
images through deep learning. Such a possibility is especially explored by Google
research groups, which published two works in 2019. The first one focused on
estimating depth from wild RGB videos, the second one on moving people. Further
information can be found at [11] and [12]. On the one hand depth estimation
would provide a great reduction of sensor cost, making a simple RGB camera the
only hardware needed for perception. On the other hand the efficiency of depth
estimation have to be sufficiently high to fit with a real-time navigation algorithm.

7

8

Chapter 3

Machine Learning

3.1 Chapter overview
This chapter aims to introduce the reader to Machine Learning (ML) concepts. This
is a first necessary step to understand the Deep Reinforcement Learning technique
used in the thesis. The first part of the chapter contains an high level discussion
about machine learning and deep learning, trying to make the point about their
definitions and also to provide some historical notes. The second section is devoted
to a brief explanation of the basic mathematical models and concepts behind ML,
with the aim of giving the reader an idea of what is an artificial neural network
and how it works.

3.2 AI, Machine Learning and Deep Learning
In the digitalization era, it is very common to hear talking about Artificial Intelli-
gence. However, often the meaning of the terms Artificial Intelligence (AI) and
Machine Learning (ML) is confused by people who are not experts of the field.
Without any doubt, the concept of AI and ML, as well as of Deep Learning (DL),
are related by the evolution of the technological sector in time. AI appears for
the first time in the 1950s. The term ML was first used by A.Samuel in 1959
[13], whilst DL was born recently. The mutual relation between the three of them,
can be described with concentric circles, as shown in Figure 3.1. Hence, AI is a
broader concept. It is possible to refer to AI as the set of operations performed by
computers which are able to accomplish tasks usually associated with intelligent
beings. Differently, ML can be identified as a sub-field or methodology of AI, with
the aim of learning automatically from data. Then, DL is a particular branch

9

Machine Learning

derived from ML, which is characterized by the usage of ’deep’ artificial neural
networks, i.e. learning models presenting a great number of layers and neurons.
[14]

Figure 3.1: Artificial Intelligence, Machine Learning and Deep Learning.
[15]

3.3 History of Deep Learning
The first wave of research about machine learning produced very simple models of a
neuron. This series of attempts of reproducing the brain function is also known as
cybernetics. The very first model is attributed to McCulloch and Pitts in 1943, who
modeled a neuron with a simple linear binary classifier. By checking the sign of the
function f(x, w) = x1w1 + ... + xnwn it was able to distinguish between two classes
of inputs. The weights needed to be set correctly by the human. An evolutionary
step comes in the 1950s with the Rosenblatt’s perceptron which was able to adjust
the weights thanks to a first idea of an iterative ’training process’ that exploit a set
of example inputs for each class. The perceptron algorithm had a great success. In
these years Alan Turing created a test to verify if a machine could bring a person
to believe to be talking with another human. Another important contribution to
machine learning comes from the Adaptive Linear Element (ADALINE) by Widrow
and Hoff in 1960. The algorithm used to change the weights of the ADALINE
was a fist version of the stochastic gradient descent, which is one of the principal
training algorithms also in modern deep learning. Linear models are still widely
used and reinterpreted today, although they present limitations. For example, it is

10

3.3 – History of Deep Learning

Figure 3.2: Time-line of deep learning history.

known that they have problems in learning the XOR function. In 1969 Minsky and
Papert exposed these negative considerations in their paper. This brought to a loss
of interest in learning linear models inspired by neurons in the following period,
called the ’first winter’ of AI.
The second period of active research about neural networks arose in the 1980s guided
by the connectionism movement. Fundamental contributions to deep learning were
conceived during the connectionism. The first one consists in the idea of distributed
representation. According to this, inputs should be represented by many shared
features. The framework for artificial neural networks was set with the idea of a
model for Parallel Distributed Processing (PDP), exploiting multiple connected
units (neurons). Rumelhart and McClelland were the principal contributors to these
ideas inspired by the human brain. Together with Williams they also conceived
the concept of hidden layers and the back-propagation algorithm, which is the
actual dominant method to train deep learning models. The second research wave
proceeded till the mid-1990s. Long short-term memory (LSTM) networks were
another important results obtained in those years by Hochreiter and Schmidhuber
to model long sequences of information. Different groups of people in the world
kept alive the research on neural networks obtaining also great results in some
cases. Among them Yoshua Bengio,Yann LeCun, Geoffrey Hinton. However, the
evident difficulty in training deep models stopped the excitement of the majority
of researchers.

From 2006, the combination of improvements in the model efficiency and new com-
putational possibilities brought deep neural networks outperform other ML models.
The term ’deep’ learning was chosen to emphasize the successful architecture of
neural networks. This third research wave is still ongoing, focusing on the ability
of generalize well also from small dataset or with unsupervised learning techniques,

11

Machine Learning

i.e. without the usage of labels for data.
The recent breakthrough of deep learning can be motivated considered some key
factors. First of all, in the "Big Data" era, huge datasets are available to train
deep models, which were computationally prohibitive in the past. A rule of thumb
suggests that a dataset of 10 millions of element is enough to reach the human
ability to classify items of different classes. Very popular are the MNIST dataset
of handwritten numbers or the ImageNet dataset. This last one contains more
than 14 millions of images of about 20.000 different categories. The ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) organized around the dataset
creation from 2010, had a strong impact on deep learning evolution. In 2012,
a convolutional neural network called AlexNet obtained a top-5 error of 15.3%,
which was an incredible result compared to previous attempts [16]. In the following
years other models such as VGG, GoogleNet and ResNet have overcome also this
performance.
Another fundamental factor for deep learning success has been the spreading of
powerful computational hardware such as fast CPUs and general purpose GPUs.
Today, GPU are build with new architectures providing optimized parallel oper-
ations, often dedicated to machine learning purposes. This is a trivial but key
aspect, since a high number of neurons is crucial for many applications. Indeed,
looking at the intelligent organism in nature, the number of biological neurons
increases with the level of intelligence: humans have about 1011 neurons, rabbits
have around 108 while jellyfish have slightly more than few thousands neurons.
Today, big artificial neural networks present about 106 neurons. Moreover, the
number of connections per neuron was initially limited by the hardware. Then,
it became a design choice. Biological neural networks present sparse connections,
which is important for artificial models to be able to reach their performance with
limited resources. Human neurons have about 104 connections, which is not an
exorbitant quantity if we look at some neural network models.

12

3.4 – Machine Learning concepts

3.4 Machine Learning concepts
In this section a brief description of Machine Learning concepts is proposed. The
goal is to provide the reader with a basic understanding of how neural networks
works and which are the main strategies and difficulties related to their implemen-
tation.

3.4.1 The artificial neuron: Threshold Logic Unit (TLU)
From the historical evolution of deep learning discussed in the previous section,
it is clear that the concept of artificial neural networks has been inspired by
biological models of the human brain. Although it has to be pointed out that the
evolution of modern machine learning mainly relies on mathematics, statistics and
numerical optimization, neuroscience should also be considered as a crucial source
of inspiration. A schematic model of the biological neuron in reported in Figure
3.3.

Figure 3.3: Biological neuron: a schematic model.
[17]

The main element which compose a biological element are: [18]

• Cell body or Soma: it encloses the nucleus of the nerve cell;

• Dendrites: they are branched extensions which allow the cell body to receive
input signals from neighboring neurons;

• Axon: it is a particular and unique extension connecting the cell body to the
synapses. It is responsible of carrying the electrical signal;

• Synapses: they are a ramified structure located at the final section of the axon.
They pass information to the other neurons.

13

Machine Learning

The connection of multiple neurons through dendrites and synapses, as shown in
Figure 3.3, results in a biological neural network. Roughly speaking, neural activity
is based on the flow of electrical signals from a neuron to the neighboring ones.
More in detail, the signal flow is governed by electrochemical processes such as
voltage-gated ion exchange to let the electrical signal move through all the neuron’s
cell. To make this process clear, let’s try to follow the entire path of a signal. If the
signal is passing through the axon termination, it will be transmitted to synapses.
Here, a certain amount of neurotransmitters is released. This chemical substance
has a fundamental influence on the synapse conductivity. Its quantity can attenuate
or boost the signal. In other words, it acts like a weight. Once passed the synaptic
junction, the signal is forwarded to the post-synaptic neuron thanks to dendrites,
which are able to capture neurotransmitters. Local small currents are created by
the positive and negative signals arriving from the dendrites in the soma. Here,
they can be mixed together and sum up. Finally, when the electrical potential
in the soma reaches a certain threshold, an impulse is generated and transmitted
again along the axon.

Figure 3.4: The artificial neuron model with a generic activation function.
[17]

By looking at a simple artificial neuron model (see Figure 3.4), the Threshold Logic
Unit (TLU), a parallelism with the described process is straightforward. Starting
back from the axon, a numerical signal between 0 and 1 becomes the input signal
for another neuron through the synapses. Here, a weight wi is assigned according
to the conductivity level of the synapses. All the weighted input signal (from the
dendrites) get sum as it happens in the soma. Finally, the signal is forwarded

14

3.4 – Machine Learning concepts

depending on a specific activation function. A basic step activation function is
namely a threshold. It is important to highlight that not all the connections
between synapses are equally weighted. They depend on their priority, and can be
excited or inhibited according to the amount of chemical transmitter. The same
happens in general for artificial neural networks (ANNs) with weights, but also
thanks to inhibitory signals.
Moreover, according to the McCullogh-Pitts first model of an artificial neuron, the
following assumptions are true:

• the activation function of each neuron is an established threshold
theta;

• the output is binary (logic unit);

• input signals are identically weighted and can be inhibited ;

• at each time step the output signal will be equal to 1 if the sum of all the
weighted inputs is greater than the threshold and the neuron is not inhibited,
0 otherwise.

Thus, the behaviour of the artificial neuron can be represented with the following
function.

output =

1 :

nØ
i=1

wixi ≥ θ ∧ no inhibition

0 : otherwise

3.4.2 Perceptron
Perceptron is a supervised algorithm which allows to learn a binary classifier.
Rosenblatt’s perceptron is the historical evolution of TLU model for artificial
neuron, with the only following differences:

• neurons have positive or negative weights and bias, all different;

• there is no inhibitory signals;

• the activation function is still a binary step in the classic implementation, but
the output can assume values [−1,1] instead of [0,1];

• it has a learning algorithm.

By expressing the threshold with a bias term, the model can be reshaped as follow:

f(x) =

1 :

nØ
i=1

wixi + b > 0

−1 : otherwise

15

Machine Learning

Figure 3.5: Perceptron schematic.

They key concept is that the goal of this model is to classify samples (vectors)
belonging to two different categories. With the described formulation, the classifier
is able to learn how to divide only a linearly separable set of points. Linear classifier
can be also combined to be applied on multi-categories problems. Nonetheless, the
most important innovation of the perception is its online learning algorithm, which
is used to adjust the weights of the model for each training sample. The iterative
process is roughly described in Algorithm 1, where yi are the sign labels of training
samples xi.

Algorithm 1 Perceptron algorithm
1: Initialize w = 0 , b = 0 ó weights and bias are set to 0
2: repeat
3: if yi[wixi + b] ≤ 0 then
4: w ← w + yixi
5: b← b + yi
6: end if
7: until all classified correctly

Hence, f(x) is used to classify the item x as positive or negative. At the end of
the process the correct weights for the linear binary classifier are obtained. It can
be represented graphically as a decision boundary. The position of the decision
boundary with respect to the origin is shifted by the bias term. An example is
reported in Figure 3.6 for a 2 dimensional case.

16

3.4 – Machine Learning concepts

Figure 3.6: Example of decision boundary for a binary classification problem.

3.4.3 Architecture of Artificial Neural Networks
As explain for the perception, linear classifiers are not able to deal with non-linear
problems. One of the main historical example is that they cannot learn the XOR
function. For this purposes, the evolutionary architecture of artificial neural network
(ANNs) resulted to be successful. As shown in Figure 3.7, a generic structure
is obtained by connecting single neurons with a precise organization. Neurons
vertically aggregated compose what is called a layer. By looking at the schematic,
the first layer on the left is also called input layer, since its neurons are directly
connected to input signals. On the opposite side, there is the output layer. In
the specific case of Figure 3.7 it is composed by a single neuron. It is responsible
of labeling the numerical signals arriving from previous layers, i.e. of the final
classification of the output. In the middle, there are the hidden layers.

To sum up, the main element of a basic neural network architecture as the one
considered are:

• the input signals xi;

• the weights wij and bias bj of each connection;

• the activation function aj of each neuron;

17

Machine Learning

Figure 3.7: Example of neural network architecture.
[19]

The weights decrease or boost the numerical signal of each connection. Once it
arrives at the neuron, the activation function decide to fire the signal or not. It is
possible to notice that the activation functions used in the hidden and in the output
layers are usually different, according to the specific function to learn. Moreover,
with respect to the perceptron, they can have different expressions that can be
generally written as:

aj = σ(
NØ
i=1

wijxi + bj)

3.4.4 Activation functions
The learning process of a neural network consists in the adaptation of its weights
and bias. However, when using an activation function with binary output, as
done in the perceptron, small changes of the parameters may cause a significant
modification of the output. In other words, the output can switch from 0 (or
-1 according to the activation function used) to 1, with a small variation of the
weights.

18

3.4 – Machine Learning concepts

Figure 3.8: Neural network: propagation of the weight’s variation till the output.

Sigmoid function

The solution to overcome this limitation is related to the introduction of the sigmoid
function.

σ(z) = 1
1 + e−z

A more specific formulation for neurons will be:

σ(wx + b) = 1

1 + exp(−
nØ
i=1

wixi − b)

It provides a smoother variation of the output with respect to modification of the
parameters. This mitigates the learning process with respect to step functions.
Nonetheless, the output still remain bounded in a limited range. Today the sigmoid
activation function is widely used in machine learning.

Linear activation function

A linear activation function of the form σ(z) = cz, produces an output proportional
to the input. Graphically, it results in a simple line passing for the origin. Although
the output is not binary, it produces some problems in neural network’s training.
In fact, in a network having all neurons with linear units the signal resulting from
all the connections will merely be a linear signal as well. It is easy to understand
it if we remember that the output of a neuron will be a weighted input for the
following one. The badness of this consideration relies on the fact that it is possible
to replace multiple layers with just an equivalent one.

19

Machine Learning

Figure 3.9: On the left a step activation function: the output is binary as in
the perceptron due to the sharp variation from 0 to 1. On the right the sigmoid
activation function showing its smooth trend in the same interval.

Tanh activation function

The hyperbolic tangent activation function presents a behaviour similar to sigmoid
functions. The main difference between the two of them is the range of output
values. Indeed tanh(z) presents an output bounded within -1 and 1. The hyperbolic
tangent can be preferred to the sigmoid for reasons strictly related to the specific
application. The expression of the function is reported below, whilst its graphical
representation is shown in Figure 3.10.

tanh(z) = ez − e−z

ez + e−z

The expression for the activation function of the neurons considering tanh(wx + b)
can be formulated with:

tanh(z) = 1 + tanh(z/2)
2

20

3.4 – Machine Learning concepts

Figure 3.10: Tanh activation function: it presents a smooth shape in the output
range (-1,1)

Rectified Linear Unit (ReLU)

The ReLU fuction is defined according to the expression:

σ(z) = max(0, wx + b)

Hence, the output will be a classic ramp for positive inputs, 0 otherwise. Although
it seems very similar to a linear unit activation function, ReLU presents several
advantages. First of all, its non-linearity gives it good approximation properties,
differently from the simple linear unit. Moreover, due to its nature, it allows to
a restricted part of neurons to fire. In this way the network will be lighter from
a computational point of view. It also involves simple mathematical operations
with respect to sigmoid like functions. ReLU is probably the most used activation
function in deep learning, not only for the already mentioned benefits. It resulted to
be an effective solution for more complex issues such as the vanishing or exploding
gradient.

21

Machine Learning

Figure 3.11: ReLU activation functions.

Softmax activation function

The softmax function, also known as normalized exponential function, is a widely
used activation unit. It is especially chosen for the output layer of neural networks,
in particular for classification purposes.
The standard softmax expression is:

σ(zj) = ezjØ
k

ezk

The main property of softmax function is that it can be interpreted as a probability
distribution. In other words, the output of the network tells us which is the
probability of a sample to be classified with the label of a certain category. This
can be clarified by looking at the expression of the function: the exponential of
each component of the vector z is divided by the sum of all the exponentials.

Ø
j

σ(zj) = ezjØ
k

ezk
= 1

It provides a confidence score related to the network’s prediction, which is a precious
information about its performance.

22

3.4 – Machine Learning concepts

3.4.5 Learning process: gradient descent
At this point, the architecture of a generic artificial neural network should be clear.
It is now possible to explain the main concepts about the learning process of ANNs.
Fist of all, the goal is to obtain a collection of weights and bias for the model which
provide a correct output, according to the task. The key concept is that we need a
measure to evaluate how the network is adapting its weights. For such a purpose,
a cost function is introduced.

C(w, b) = 1
2n

Ø
x

||y(x)− a||2

In the expression above, w and b are the weights and bias of the network, n the
total amount of samples used for the learning process. With x we refer to the single
training input, whilst y(x) will be the desired output and a the actual output of the
network. This specific form of quadratic cost function is also known as mean square
error (MSE). Basically, it is a measure of the error committed when the output a
is predicted with respect to the desired one y(x). Of course, it is a function of the
network’s parameters. When C(w, b) is almost 0 for all training inputs it means
the training algorithm is working well and a set of suitable w and b have been
found. Hence, a minimization problem for C(w, b) has to be solved. Since the
number of variables involved in a neural network is huge, an analytical approach
would be very difficult to be carried out. An algorithm called gradient descent is
therefore used. For a simpler initial step, a generic n-dimensional input array v is
considered. For small variations of each variables vj it is possible to express the
variation of the cost function in the following way:

∆C ≈ ∂C

∂v1
∆v1 + ∂C

∂v2
∆v2 + ... + ∂C

∂vj
∆vj + ... + ∂C

∂vn
∆vn

A more compact form of the expression above can be rewritten by exploiting the
concept of gradient of C:

∇C =
A

∂C

∂v1
,

∂C

∂v2

BT
∆C ≈ ∇C ·∆v

where ∆v is the vector representation of the variations of v.

The gradient’s notation is useful because it directly relates the variations of v with
the ones of C(v). At this point, we are interested in finding a set of ∆v such that
∆C is negative. The reason behind that can be roughly explained with a visual
metaphor. It it sufficient to imagine the cost function as a deep valley. Starting
from a random point on its surface, the goal of the process is to reach its bottom

23

Machine Learning

Figure 3.12: Gradient descent visualization on a 3D surface.
[20]

(see Figure 3.12). Hence, it is necessary to choose the appropriate movements ∆v
to go down correctly, which corresponds to a negative ∆C. This concept can be
expressed with the following, considering also a small positive parameter called
learning rate:

∆v = vÍ − v = −η∇C

The representative equation of gradient descent can be obtained by combining the
last two equations:

∆C ≈ −η∇C · ∇C = −η||∇C||2

Therefore, an update rule for the parameters v is provided by the algorithm:

v → vÍ = v − η∇C

To sum up, by choosing a suitable set of changes in the parameters, it is possible
to minimize a cost function C(v) with gradient descent. A correct choice of the
learning rate is also crucial to tune the process. It has to be small enough to
guarantee a good approximation of ∆C especially in the final steps of the algorithm,
when the goal is close and fine adjustments are needed (see Figure 3.13). On the
other hand, when the global minimum of the cost function is still far, it should not
speed down the process too much. For this reasons it is often modified during the
process according to an update rule.

Finally, it is possible to express the update rule provided by the gradient descent
algorithm using the weights and biases of a neural network. This formulation

24

3.4 – Machine Learning concepts

Figure 3.13: A comparison between a big learning rate and a small one when
using gradient descent.

describes how ANNs are actually trained. For a jth weight wj and bias bj it looks
like

wj → wÍ
j = wj − η

∂C

∂wj

bj → bÍ
j = bj − η

∂C

∂bj

3.4.6 Stochastic Gradient Descent
Beside the working principal of gradient descent, it has to be said that its effec-
tiveness in training neural network can be improved. By looking more in detail
the cost function C = 1

n

Ø
x

Cx it is possible to notice that it is an average over

all the cost contribution Cx of each training input x, with Cx = ||y(x)−a||2
2 . This

means we need to compute gradients ∇Cx for each training input, resulting in a
slow convergence of the algorithm. To speed it up, a modified version is usually
chosen. It is known as stochastic gradient descent and it consists in considering a
limited subset of m out of n samples to compute the gradient ∇C.

∇C = 1
n

Ø
x

∇Cx ≈
1
m

Ø
j

∇Cj

The small subset of m samples is usually called mini-batch. It is possible to express
the update rule of weights and biases taking care of this.

wj → wÍ
j = wj −

η

m

∂C

∂wj

25

Machine Learning

bj → bÍ
j = bj −

η

m

∂C

∂bj

The stochastic gradient descent selects in a random way a mini-batch from the
training data for each iteration of the algorithm. When all have been used once,
a training epoch is finished and a new cycle is started. The number of epochs
required to finish a training process depends on the specific network’s size and
on the other parameters influencing the process, such as the learning rate and
the dimension of the mini-batches. A batch size of 1 can be also chosen. In this
extreme circumstance the neural network learns from a single sample at a time.
Hence, this case is known as online or incremental learning and it is very close to
human intelligence learning.

3.4.7 The back-propagation algorithm
The gradient descent method allows to find a suitable set of weights and biases.
However, the back-propagation algorithm still need to be explained in order to
better understand how the gradients computation happens.
Today, the back-propagation approach is a pillar of neural network’s success.
Basically, it consists in computing partial derivatives of the cost function with
respect to all the weights of the network. As the name suggests, it works starting
from the output to the first layer of the model. Before providing a brief description
and comment about the mathematical core of the algorithm, a definition of the
error δlj must be given.

δlj = ∂C

∂zlj

Where the notation used refers to the jth neuron in layer l, and zlj is the input
received by such neuron. In other words, δlj is a variable used to measure the error
committed by the neuron.

Back-propagation can be formulated by using four principal equations.

Equation 1: it computes the error at the level of the output layer. It is composed
by two terms. The first one tells us the influence of a specific neuron’s output alj on
the cost function. The second one takes in account the response of the activation
function σ when the input zlj changes.

δLj = ∂C

∂aLj
δÍ(zLj)

The global error can expressed thanks to the matrix-based notation, which involves

26

3.4 – Machine Learning concepts

the element-wise product.
δL = ∇aC ¤ σÍ(zL)

Equation 2: it compute the error δl in layer l from the error in the next layer
δl+1. This is a fundamental step and the core of back-propagation principle, since
it moves the error from a layer to the previous one, taking care of the activation
functions in between.

δl = ((wl+1)T δl+1)¤ σÍ(zL)

Equation 3: it express the influence of any bias in the network on the cost
function.

∂C

∂blj
= δlj

Equation 4: it express the influence of any weight in the network on the cost
function.

∂C

∂wl
jk

= al−1
k δlj

Hence, these four equation describe the essence of the algorithm. It computes the
error in the output layer first and then propagates it back until the input layer.
Thanks to that, it is possible to compute the partial derivatives ∂C

∂wl
jk

and ∂C
∂blj

, which
are required for the gradient descent.

For a complete view on the learning process described until this point, a schematic
summary of the whole training process is reported below. It shows how a stochastic
gradient descent learning algorithm works in combination with back-propagation,
with a mini-batch of m training samples for a single training epoch.

1. A mini-batch of m inputs is sampled from the dataset.

2. For each input x in the mini-batch:

• x enters in the input layer;

• Feed-forward: it passes through all the other layers. For each layer
l = 2,3, ..., L zx,l = wlax,l−1 + bl and ax,l = σ(zx,l) are computed until the
final output.

• Output error δx,L: compute the error in the output layer according to
equation 1 of back-propagation

δx,L = ∇aCx ¤ σÍ(zx,L)

27

Machine Learning

• Back-propagate the error: according to equation 2 of back-propagation,
for each l = L− 1, L− 2, ...,2 compute:

δx,l = ((wx,l+1)T δx,l+1)¤ σÍ(zx,l)

3. According to the stochastic gradient descent update rule for the weights and
biases, for each layer l = L, L− 1, ...,2 do

wl → wl − η

m

Ø
x

δx,l
1
ax,l−1

2T

bj → bl − η

m

Ø
x

δx,l

4. Another mini-batch is sampled from the available dataset until they all have
been processed once and the epoch is over.

This is the basic algorithm to train a generic neural network. Further interventions
can be thought when the learning process does not work properly. A selected list
of possible actions and methods to improve the training of a neural network are
briefly discussed in the following section.

3.5 Insights on training neural networks
In this section some important methodologies to improve the training process of
neural networks are presented. However, before proceeding, a wider framework
on machine learning can be introduced for a better clarification. The architecture
described in this chapter is the basic one, also known as feed-forward neural networks,
since the numerical signal moves in only one direction. Different architectures have
been developed along the years, from long short-term memory units to recurrent
neural networks. Moreover, the learning process explained in this chapter is called
supervised learning. It makes use of labeled data to compute the output error and
train the network. In practice, many variants of the learning process have been
already conceived to tackle the cumbersome procedure of collecting huge labeled
datasets. Among them, unsupervised learning and reinforcement learning are the
principal ones.

At this point, it is possible to take in consideration the most common difficulties
in training deep neural networks. The collection of techniques and tools reported
represents today another building block of deep learning. It is convenient to be
familiar with them for a better understanding of the practical implementation of
neural networks.

28

3.5 – Insights on training neural networks

3.5.1 Learning slowdown
A common issue with neural networks is a slow learning process. Without a solid
experience in the field, it is often not trivial to fully understand the behaviour that
comes out from a network. Here, the neuron saturation phenomenon will be briefly
described. It is known that neurons learn from the changes in the weights and
biases, and the rate of learning is associated with the partial derivatives ∂C

∂w
and ∂C

∂b
.

As we have already seen a quadratic cost function of the form C = (y−a)2

2 presents
the following partial derivatives:

∂C

∂w
= (a− y)σÍ(z)x

∂C

∂b
= (a− y)σÍ(z)

Hence, the speed of learning strongly depends on the first derivative of the activation
functions σÍ(z). By recalling the shape of the sigmoid function (see Figure 3.9) it
is clear that σÍ(z) is close to 0 when σ(z) is equal to 0 or 1, i.e. when the function
is flat. This is the reason behind learning slowdown.

The cross-entropy cost function

A possible solution to solve the issue of the neuron saturation is to replace the
quadratic cost function with the cross-entropy cost function. It is defined by the
expression:

C = − 1
n

Ø
x

Ø
y

è
yj ln (aLj) + (1− yj) ln (1− aLj)

é

The associated partial derivative with respect to the weight for a single neuron is:

∂C

∂w
= 1

n

Ø
x

xj(σ(z)− y)

Thus, now the rate of learning is correlated to the quantity (σ(z) − y) which is
nothing but the output error. This is perfectly reasonable for a learning unit. For
the bias, the result is analogue. The cross-entropy cost function is always preferred
to the quadratic one whenever sigmoid activation function are used in the output
layer.

The log-likelihood cost function

In an analogue way, the log-likelihood cost function is used in combination with
the softmax unit in the output layer. This also mitigates the learning slowdown.

29

Machine Learning

Given the input x, the expression of the log-likelihood is:

C = − ln (aLx)

As it can be expected, the partial derivatives with respect to weights and biases
results to be directly proportional to the output error.

∂C

∂wL
jk

= aL−1
j (aLj − yj)

∂C

∂bLj
= (aLj − yj)

Weights initialization

The introduction of new cost function works well for the output neurons. However,
to avoid the same issue in hidden layers, an alternative solution must be exploited.
It turns out that the initial value assigned to weights and biases in the layers plays
a fundamental role in the learning process. In particular, a recognized working
possibility consists in initializing the weights according to a normal probability dis-
tribution with 0 mean and standard deviation equal to 1√

ni
, where ni is the number

of input connections. This is a quite effective in mitigating the slowdown issue.
More advanced methods have been developed by Xavier Glorot and Yoshua Bengio.
Today, the result of their studies is known as Xavier initialization. According to
this theory, the values for weights are picked from a random uniform distribution
bounded between ±

√
6√

ni+ni+1
, where ni is the number of input connections and ni+1

the number of output connections. It turns out that Xavier initialization usually
reduced the time for training with respect to standard methods.

3.5.2 Data overfitting
Overfitting is another well known issue affecting neural networks. It occurs when
a model is designed to fit extremely well on some data, increasing its level of
specificity. It is common to incur in overfitting when using models with a high
number of parameters such as neural networks. Overfitting must be strongly
avoided in machine learning, since a neural network which provides good results
only with data contained in the training set is useless. The ability to generalize
the performance on different data can be improved with several methods.

Splitting data

A fist possible method to reduce overfitting is to split the available data in three
different subsets. The new training dataset will include only a subgroup of the

30

3.5 – Insights on training neural networks

original amount of data and it will be used for the proper learning process. Then,
a validation dataset will be exploited to monitor the performance of the network at
the end of each epoch. This is a key step, indeed overfitting can be detected by
looking at the accuracy gap between the training and the validation set. Finally,
the network is tested on a Test dataset. A graphical representation of the accuracy
reached by the the network along the training process, on both training and
validation sets can be useful also for a better tuning of the hyper-parameters. An
trial and error procedure or a grid-search are often used to look for a suitable
combination of learning rate, mini-batch size, number of epochs, learning rate’s
decay policy. A simple strategy is to stop the training when the accuracy level in
the validation set becomes stable.

Data augmentation

The availability of a rich dataset is only guaranteed in machine learning. Hence,
training a deep neural network with plenty of parameters results to be difficult.
An accurate tuning of the hyper-parameters sometimes is not enough to avoid
overfitting. Data augmentation is a particular strategy developed for these purposes.
For example, in the specific case of image classification, it is possible to expand
the training dataset with artificial samples. A set of different transformation such
as rotation, cropping, flipping or filtering can be applied to images in order to
artificially create new ones. This is particularly useful when the number of samples
for each class in the training set is strongly unbalanced, often because some kind
of data is more difficult to collect.

Regularization

Beside data augmentation, there are other chances to reduce overfitting without
the necessity of an augmented dataset, for instance exploiting some regularization
techniques. The two most popular methods are known as L1 regularization and
L2 regularization. The key concept of both methods is to add a ’penalty’ or
regularization term to the cost function used for the learning process. For example,
a cross-entropy cost function can be considered.

The L2 regularization, which is probably the most popular, is analysed first. The
regularized cost function assumes the following shape

C = − 1
n

Ø
xy

è
yj ln (aLj) + (1− yj) ln (1− aLj)

é
+ λ

2n

Ø
w

w2

As shown, the regularization term for the L2 method is composed of the sum of
the squared weights and of a multiplicative factor. It is responsible of reducing the
value of the selected variables. Basically, during the learning process the network

31

Machine Learning

has to choose certain weights such that a good trade-off between the two terms of
the new cost function is found. To highlight the concept better, it is possible to
rewrite the expression using the notation C0 to indicate the original cost function.

C = C0 + λ

2n

Ø
w

w2

The role of λ, which is a positive regularization parameter, is central to make things
work. According to its value the relevance of the second term with respect to the
first one can be tuned. A small λ makes the regularization term negligible, a large
λ increases the importance of learning small weights. Considering a stochastic
gradient descent learning algorithm, a new update rule for the weights can be
computed with the L2 regularized cost function.

w → wÍ = w

A
1− ηλ

n

B
− η

∂C0

∂w

Differently, in the L1 regularization technique the extra term contains the sum of
the absolute values of the weights in the networks and the regularized cost function
is expressed with

C = C0 + λ

2n

Ø
w

|w|.

In an analogue way, the resulting update rule will be:

w → wÍ = w
ηλ

n
sgn(w)− η

∂C0

∂w

By comparing the expressions related to L1 and L2 regularization, it is possible to
say that both of them aims to penalize large weights in the network. However, in
L1 regularization weights are reduced by a constant amount toward 0, whilst in L2
regularization the reduction is proportional to the the weight itself. This means
L2 is particularly effective with larger weights. On the contrary the impact of L1
regularization is much bigger when |w| is very small, which are shrink to 0. The
result is that it focus the non-null parameters into a selected group of important
connections.

From a broader point of view, also the usage of a validation set can be considered
a regularizing contribute to the learning process. This is especially true for non-
parametric algorithms in machine learning such as k-nearest neighbours, which do
not explicitly make use of a cost function.

Dropout

Dropout is a totally different way of acting on the learning process to regularize
it. With respect to L1 and L2 regularization, it does not act on the cost function.

32

3.5 – Insights on training neural networks

In particular, for each training step it randomly selects a certain percentage of
neurons contained in a layer and it turn them off (usually around 50%). For these
neurons weights and biases will not be updated. Hence, only the remaining active
neurons are able to create connections with the neighboring layers. The dropout
can be also thought as an averaging process among different neural networks. In
some sense, this peculiar approach avoid the network to rely on a restricted number
of connections, making its performance more robust.

3.5.3 ADAM optimizer
Beside Stochastic Gradient Descent (SGD), many different algorithm have been
developed to solve the optimization problem in the neural networks learning process.
Among them, ADAM optimizer algorithm deserves a greater focus for two reasons.
Although SGD can be still considered the most popular one, ADAM is increasingly
spreading as one of the principal optimizers in Deep Learning. Moreover, it is the
actual algorithm used in the practical implementation of this project and it will
appear in the following chapters.

ADAM is an adaptive learning rate method. In other words, learning rates are
modulated specifically for each different parameter during the update step. This
is done by estimating the first and the second moments of the gradient. Before
looking at the entire algorithm, it is convenient to introduce the concept of moment.
It can be defined as the expected value of a random variable to the power of n.

mn = E [Xn]

Hence, the first moment of a random variable is equal to its mean, whilst the
second one is the uncentered variance. For the estimation of such quantities for the
gradient, ADAM makes use of exponentially moving averages m and v computed
with the gradient obtained from the current mini-batch:

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g2
t

Where g is the gradient on the the mini-batch, β1, β2 constant hyper-parameters
usually fixed at 0.9 and 0.999. These estimators are biased, hence they need a
proper correction. The final expression for the estimator results to be:

m̂t = mt

1− βt1

v̂t = vt
1− βt2

33

Machine Learning

Therefore, the update rule for the weight during training will be:

wt = wt−1 − η
m̂t√
v̂t + Ô

Where η is the step size and Ô is necessary for numerical stability. According to
the definition given by Kingma and Ba in the original paper of 2015 [21], ADAM
algorithm is reported below.

Algorithm 2 ADAM optimizer algorithm. Popular default values for the constants
are η = 0.001, β1 = 0.9, β2 = 0.999, Ô = 10−8.
Input: stepsize η, Ô for numerical stability, β1, β2 ∈ [0, 1) exponential decay rates
for the moment estimates, f(θ) the stochastic objective function, the initial vector
of parameters θ0.
Output: Resulting parameters θt.

1: m0 ← 0 ó First moment estimate vector set to 0
2: v0 ← 0 ó Second moment estimate vector set to 0
3: t← 0 ó Timestep set to 0
4: while θt not converged do
5: t← t + 1
6: Compute gradient w.r.t parameters θ: gt ← ∇θf (θt−1)
7: Update of first-moment and second-moment estimates, biased

mt ← β1 ·mt−1 + (1− β1) · gt

vt ← β2 · vt−1 + (1− β2) · g2
t

8: Bias-correction of estimates

m̂t ←
mt

1− βt1

v̂t ←
vt

1− βt2

9: Update parameters
θt ← θt−1 − η

m̂t√
v̂t + Ô

10: end while

34

3.6 – Convolutional Neural Networks

3.6 Convolutional Neural Networks
In the previous sections, artificial neural networks have been introduced. It must
be pointed out that the architecture which has been taken in consideration only
involves fully-connected layers. In this case, each neuron inside a hidden layer
is connected to all the neurons of the next layer and of the previous one. This
architecture is not very efficient when dealing with input data such as images.
Principally, this is true for two reasons. First, the spatial structure of the image
is not considered. Second, the network becomes too computationally expensive
with a huge number of parameters to train. Here Convolutional Neural Networks
(CNNs) are introduced. The architecture of CNN is particularly optimized for
image classifications or other visual based tasks. We will try to give a simple
explanation of how does the convolutional operations actually works in CNN and
why it is efficient. The three pillars of CNN can be identified in the following
concepts:

• local receptive field;

• shared weights;

• pooling

In order to avoid a full connection between input pixels and neurons of a hidden
layer, each neuron is associated to a small region of the image, for example a 5x5
square of 25 pixels. This is called the local receptive field of the neuron. It learns a
weight for each connection and a general unique bias. Hence, each receptive field
region in the input image is connected to a neuron of the first neighboring layer.
By sliding the local receptive field by one pixel (or by a general quantity called
stride), a connection with the second neuron of the hidden layer is created. This
operation is repeated until completeness of the input image. The resulting number
of neurons in the hidden layer will be:

nh = W − F − 2P

S
+ 1

Where, W is the image width, F is the receptive field size, S is the stride and P is
the zero-padding. Sometimes it is useful to set to zero the pixels along the border
of the image to have a better control on output size of the layer. For example,
for 28x28 input image and a 5x5 receptive field we will have 24x24 neurons in the
hidden layer. What is important to say at this point is that all such neurons share
the same weights and biases. Indicating with σ a generic activation function and
with ax,y the input activation at position x,y, the output of a j,k-th hidden neuron
will be:

outj,k = σ

A
b +

Ø
l

Ø
m

wl,maj+l,k+m

B

35

Machine Learning

Figure 3.14: An example of input 3 channel image 32x32x3 mapped to a first
hidden layer with 5 feature maps.

This assumption implies that a single hidden layer can learn a single feature in the
input image, at different locations. This is why the map from input to hidden layer
is called feature map in CNNs. The shared weights and bias together identify a
kernel or filter. Sharing weights, the number of total parameters in the network is
dramatically reduced with respect to a fully-connected based architecture, enabling
a faster training process. The number of feature maps is a design parameter for
the convolutional layer that depend on the task and on the input image.

Furthermore, a convolutional layer is often associated to a pooling layer. Pooling is
usually a simple operation performed on small input regions in order to simplify the
information contained. A straightforward and popular example is the max-pooling.
By considering a 2x2 input region, it outputs the maximum activation. Thanks to
this, a further reduction of neurons is achieved.

To sum up, a basic complete architecture of a CNN is composed of convolutional
layers, pooling layers and finally fully-connected layer. The data volume is squeezed
all along the convolutional section. The training algorithms described before, such
as SGD and ADAM, and backpropagation work in the same way for CNN.

36

Chapter 4

Deep Reinforcement
Learning

4.1 Chapter overview
In this chapter the Reinforcement Learning framework is explored, starting from an
introduction of the main concepts. Then, tabular RL methods are presented, among
them Dynamic Programming, Monte Carlo methods and Temporal-Difference
learning are briefly discussed for completeness. Some examples of the principal
algorithms are also given. In the last part of the chapter, approximate solution
methods are treated with a great focus on Deep Reinforcement Learning. The
Deep Deterministic Policy Gradient algorithm, the one used in this thesis, is finally
presented. It is convenient for the reader to go through the introduction of the
basic reinforcement learning definitions to get a better understanding of what has
been used in the project.

4.2 Introduction to Reinforcement Learning
The fundamental idea behind many theories of learning is that we learn thanks to
the interaction with our environment. It is easy to confirm this concept by recalling
many events of our childhood. When a child is learning how to walk or how to ride
a bike, he is involved in a trial and error procedure. According to the action he
chooses, the environment gives him back a response, that can be for example the
hurting sensation perceived when falling. In order to reach the goal, it is necessary
to have a good consciousness of the environment and to be aware of the result of a
certain action. This causal connection is effectively learnt through experience.

37

Deep Reinforcement Learning

Figure 4.1: The interaction between an agent and the environment typical of
reinforcement learning.

[22]

Reinforcement Learning (RL) can be defined as a computational approach focused
on learning how to reach a goal by interacting with the environment. More
specifically, it is associated to the problem of how to map situations to actions in
order to maximize a numerical reward signal. The main peculiar characteristics of
reinforcement learning can be identified in the following:

• it involves closed-loop problems because the selected action influence the
successive inputs.

• the action is chosen by the learner according to a trial and error procedure.

• choosing an action in a certain situation determine the immediate reward as
well as the consequent situations and rewards.

For these aspects, it can be said that reinforcement learning is a separate paradigm
in machine learning. The differences with supervised and unsupervised learning
are quite evident. In reinforcement learning no labeled dataset is exploited and the
process focuses on maximizing the reward rather than in finding hidden structure
in unlabeled data.

Moreover, a key feature of reinforcement learning is the compromise an agent
should respect between exploitation and exploration. On the one hand, it has to
exploit what it has already experienced in order to get reward, on the other hand
exploration is important for future action selection.

38

4.2 – Introduction to Reinforcement Learning

4.2.1 Elements of Reinforcement Learning
At this point, a more detailed description of reinforcement learning can be discussed.
Beside the agent and the environment, it is possible to identify a set of elements
that are present in almost every reinforcement learning system: a policy, a reward
signal, a value function and a model of the environment.

The policy of a learning agent defines its way of selecting actions at a given instant
of time. It is therefore the core of a reinforcement learning agent, since it is
sufficient to give it a certain behaviour. In other words, the policy is responsible
of the mapping from a state of the environment to a specific action to perform in
that situation. Generally speaking, a policy can be also stochastic, introducing
probability in the action selection.

The reward signal defines the goodness of a certain event for the agent. At each time
step, the environment sends to the agent a numerical evaluation of its behaviour,
a reward. The agent tries to maximize the total reward over the entire training
period. This means the reward signal is responsible of guiding the agent to its goal
by indicating good and bad actions.

A value function can be roughly defined as a long-term advisor for the agent. It
associates to a state a value which is correlated to the total reward which is possible
to gain in the future starting from that state. Hence, if rewards give the agent an
indication of what is good to do in an immediate sense, values take care of the
potential development of taking a decision in a certain situation. This is certainly
a fundamental role in a reinforcement learning system. For example, an agent can
decide to move into a new state gaining a low immediate reward. Nevertheless,
this can still be a good choice if it gives the agent the chance to reach next states
that yield high rewards.

In any case rewards are considered primary, since values are predictions of rewards
and they could not exist without them. However, when selecting an action, we
should consider the one that allow to reach states with the highest value, not
highest reward, because the total reward accumulated over the long run will be
much greater. Unfortunately, an efficient estimation of the value function is not
trivial. For this reason this task is a crucial component of almost every reinforcement
learning algorithm.

Finally, some reinforcement learning system exploit a model of the environment. If
this is the case, they are identified as model-based methods. A model can be defined
as a virtual twin of the environment and it can be useful to make some inference
about its future behaviour for planning purposes. On the contrary, model-free
methods do not make use of any model and they are based on a pure trial and
error learning.

39

Deep Reinforcement Learning

4.3 Markov Decision Process
Reinforcement learning aims to frame the problem of goal-based learning from
interaction. The Markov decision process (MDP) is a way to formally define such a
problem. A better clarification of this concept is given in this section trying to put
together all the ideas discussed following a step-by-step approach.
As already introduced in the previous section, reinforcement learning is based on
the interaction between:

• the agent: the learner and decision-maker;

• the environment: what is outside the agent and interact with it.

This continuous interaction can be formalized in a closed-loop dynamics as shown
in Figure 4.2. At each discrete time step t = 0,1,2,3... the agent receives in input

Figure 4.2: Markov Decision Process schematic.

the state of the environment St ∈ S, which should contain all relevant information
about the environment. The agent chooses an action At ∈ A based on that. At
the next time step the environment sends back a new state St+1 and a reward
Rt+1 ∈ R ⊂ R. Therefore, the process generates an alternated sequence of signals
exchanged between the agent and the environment as the following:

(S0), (A0), (R1, S1), (A1), (R2, S2), (A2), ...

A graphical representation can be useful to better understand a generic set of
transitions. An example is reported in Figure 4.3, where circles contains the states
and arrows represent the transition from a state to another based on the selected
action.

40

4.3 – Markov Decision Process

Figure 4.3: Finite Markov Decision Process: a simplified transition schematic.

Now, a generic response of the environment at time t + 1, also called one-step
dynamics, can be expressed by a probability distribution that takes in consideration
all the previous events:

Pr{Rt+1 = r, St+1 = sÍ|S0, A0, R1, ..., St−1, At−1, Rt, St, At}

However, if the state contains all the relevant information about past transitions
the environment’s one-step dynamics at time t + 1 depends only on the state and
the action at time t. When this is true, the state signal has the Markov property.
In this case the previous expression becomes:

p(sÍ, r|s, a) = Pr{St+1 = sÍ, Rt+1 = r|St = s, At = a}

Moreover, the Markov property can be extended to the whole environment if the
previous assumption holds for every sÍ, r. This property has a tremendous relevance
for the whole RL conceptual framework. In fact, it means that given the actual
state and action, one is able to predict all future states and possible rewards.
Markov property is therefore extremely advantageous in reinforcement learning to
efficiently choose good actions.

Hence, it is possible to refer to a reinforcement learning task as a Markov decision
process whenever the Markov property is satisfied. In the case of finite state and
action spaces, the process is called a finite Markov decision process.

41

Deep Reinforcement Learning

Goals, Reward and Returns

As already introduced, a reinforcement learning agent has the final goal of maxi-
mizing a numerical signal called reward. At each time, the environment assign a
reward to the agent. According to the "reward hypothesis" [13]:

That all of what we mean by goals and purposes can be well thought of
as the maximization of the expected value of the cumulative sum of a
received scalar signal (called reward).

This peculiar idea of goal, strictly related to the reward signal, is typical of
reinforcement learning and it is not a limiting formulation for real applications.
For example, a robot can learn how to collect empty bottles for recycling simply
by assigning a +1 for each bottle collected and a -1 every time it collect a wrong
object or miss a bottle. A wide variety of rewards can be thought according to the
specific application.

The final amount of reward obtained can be formally called return and it can
be indicated as Gt. The mathematical expression of Gt depends on the specific
problem to tackle, a basic case could be the sum of all the rewards:

Gt = Rt+1 + Rt+2 + Rt+3 + ... + RT

It is possible to notice that a final time instant T concludes the sequence of re-
wards. This can be the case of agent-environment interactions that happen in
separated subsequences called episodes. In some sense this episodic interaction can
be compared to games levels. Differently, there exist active processes that need a
continuous agent-environment interaction to be learnt. In this scenario, it would
be T = inf and the return could diverge. A discount factor is therefore introduced
and the expected discounted return will be:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ...+ =
infØ
k=0

γkRt+k+1,

where the parameter γ is 0 ≤ γ ≤ 1 and it is called the discount rate. With γ = 1
the result is unchanged with respect to the previous expression. When instead
γ < 1 the infinite sum will converge to a finite value, given all bounded reward
contributions. A peculiar case called myopic agent occurs with γ = 0, since the
only immediate reward Rt+1 is maximized.

Optimal Value Functions and Policies

A formal definition of value functions can be given at this point. In particular, it
possible to define different value functions for the reinforcement learning framework.

42

4.3 – Markov Decision Process

A state-value function express how good is a certain state for the agent, according
to the associated expected return. In an analogue logic, a state-action pair value
function can be defined. This last function specifies how good an action is for the
state in account.
The concept of policy can be formulated as the function that associate the states
to the probabilities of selecting the possible actions. According to this definition,
an agent which follows a policy π has the probability π(a|s) to choose the action a
in the state s. The value function under the policy π is indicated with vπ(s). It
expresses the expected return that the agent should get when starting from state s
having a policy π. In a MDP this can be written as:

vπ(s) = Eπ[Gt|St = s] = Eπ
C infØ
k=0

γkRt+k+1

-----St = s

D

where Eπ[·] is the expected value of a random variable given the policy π of the
agent. vπ is the state-value function for policy π.
In an analogue way the action-value function for policy π, qπ can be defined:

qπ(s, a) = Eπ[Gt|St = s, At = a] = Eπ
C infØ
k=0

γkRt+k+1

-----St = s, At = a

D

Hence, qπ(s, a) formally expresses the value of choosing the action a in state s
under the policy π.

At this point it is easy to give a definition of optimal policy and optimal value
function. It can be said that a policy π is better than another policy πÍ if its
expected return is the greatest among the two of them, for all states:

π > πÍ ⇐⇒ vπ(s) > vπÍ(s),∀s ∈ S

A policy is said to be optimal if it is better than or equal to all other policies. An
optimal policy is usually denoted as π∗. There could be more than one optimal
policy, but all of them will share the optimal state-value function, v∗:

v∗(s) = max
π

vπ(s),∀s ∈ S,

as well as a optimal action-value function, q∗:

q∗(s, a) = max
π

vπ(s, a),∀s ∈ S,

Optimal policies and value functions cannot be found in non-finite MDPs due
to practical constraints in the implementation (such as the amount of available
memory), however useful approximations can be used.

43

Deep Reinforcement Learning

4.4 Tabular methods for reinforcement learning
In this section, a brief discussion about the simplest reinforcement learning ap-
proaches is carried out. These include tabular cases or methods applied with
only finite MDPs. Firstly Dynamic Programming is considered only to give the
reader a complete point of view about RL. Then, Monte Carlo methods are shortly
introduced. Finally, the key concept of Temporal-Difference Learning will be
explained.

4.4.1 Dynamic programming
Dynamic programming (DP) consists in a variety of algorithms used to compute
optimal policies. Usually, they can be implemented only when a perfect model of
the environment is given. Hence, a theoretical case such as an MDP can be one
of the few possible case of application. In real scenarios, a perfect environment
cannot be found and DP may result to be inappropriate or too computationally
expensive. Nonetheless, DP can be successfully used in the financial field.

Iterative policy evaluation is one of the possible method in DP literature. It allows
to obtain the state-value function vπ given an arbitrary policy π. This algorithm
exploits different results that can be obtained combining the equations described
in the previous section. Among them, the starting point for policy evaluation is
the Bellman equation, here used for computing vπ:

vπ =
Ø
a

π(a|s)
Ø
sÍ,r

p(sÍ, r|s, a)[r + γvπ(sÍ)], ∀s ∈ S.

In this equation, the term π(a|s) is the probability of choosing an action a in
state s under the policy π. For γ < 1 the existence and uniqueness of vπ are
guaranteed. However, an iterative computational procedure is more appropriate for
the purposes of reinforcement learning. Hence, by considering an arbitrary initial
v0, the state-value function can be approximated through successive computational
steps using the Bellman equation as an update rule:

vk+1(s) = Eπ[Rt+1 + γvk(St+1)|St = s]
=
Ø
a

π(a|s)
Ø
sÍ,r

p(sÍ, r|s, a) [r + γvk(sÍ)] , ∀s ∈ S

Once a value function vπ has been computed, looking for an optimal policy can be
a good advancement, since an arbitrary one has been used to compute vπ. The
result is a new greedy policy called πÍ that can be obtained combining equations
already seen. Here is directly reported without discussing the whole derivation. It
can be computed with:

πÍ(s) = argmaxa
Ø
sÍ,r

p(sÍ, r|s, a)[r + γvπ(sÍ)]

44

4.4 – Tabular methods for reinforcement learning

The greedy policy takes the action that maximizes the action-value function in the
short-term. No further details are provided about further possible optimization of
π and vπ since the result is out of the scope of this thesis. A deeper analysis of DP
ca be found at [13].

4.4.2 Monte Carlo Methods
With respect to DP algorithm, Monte Carlo methods are not strictly dependent on
the environment’s knowledge. In fact, they only requires to know the transitions
composed of states, actions and rewards obtained through the interaction with
a real or a simulated environment. These samples are also called experience. In
particular, learning from a simulated experience is a powerful tool, and it is what is
actually done in this thesis project. A virtual model of an environment is required
to simulate the interaction and obtain the sample transitions, but the associated
probability distributions are not requested as in DP.
Here only episodic tasks are considered for Monte Carlo methods. This allow to
have well-defined returns that can be easily averaged over all the episodes of the
task. In fact, the approach used for reinforcement learning problem consists in
sampling and averaging returns associated to state-actions pairs.
As first goal, we always aim to estimate the value function of a state s under the
policy π, vπ(s). A particular state can occur several times inside the same episode.
The term visit is usually used to refer to the occurrence of the state. Based on this
definition, it is possible to identify two main Monte Carlo methods:

• The first-visit MC method estimates vπ(s) averaging the returns coming after
the first visit to s.

• The every-visit MC method takes in account the returns following all visits to
s for the average.

Both the MC algorithms converge to the value function. Here, the pseudo-code
of first-visit MC method is reported. The every-visit version is basically the same
except for the check of state ST . Monte Carlo methods allows also to estimate the
state-action pair value function q(s, a). More in detail, this is particularly useful
when a model of the environment is not known. In this case the state values are not
sufficient to determine the actions associated with highest rewards. It is possible to
talk about a visit of a state-action pair when the agent takes the action a when it is
in the state s. Monte Carlo methods illustrated before works in the very same way
and are able to estimate the expected values with an increasing number of visits.
However, the difference is that with a deterministic policy π, many state-action
pairs can never be visited. This means that the agent will not choose among all
the possible actions associated to a state, which is the basic purpose of learning
action values. In other words, we need to keep a sufficient rate of exploration. A

45

Deep Reinforcement Learning

Algorithm 3 First-visit Monte Carlo method for the estimation of V ≈ vπ(s)
Input: a policy π, a positive number of episodes ne
Output: the estimated value function V

1: Initialization of returns R(s) = 0,∀s ∈ S
2: Initialization of N(s) = 0,∀s ∈ S
3: ó N is a counter of the number of visits to each state s
4: for episodes in ne do
5: Generate the sequence according to π: S0, A0, R1, S1, A1, R2, .., ST−1, AT−1, RT

6: G← 0
7: for each time step of the episode t = T − 1, T − 2, ...,0 do
8: G← G + Rt+1
9: if state St is not present in the sequence S0, ..., St−1 then

10: R(St)← R(St) + Gt

11: N(St)← N(St) + 1
12: end if
13: end for
14: end for
15: V (s)← R(s)

N(s) ,∀s ∈ S

possible approach for this problem is called exploring starts. It consists in starting
the episode from a specific state-action pair and then assign a non-null probability
to each possible action. It guarantees a complete exploration of state-action pairs
in an infinite number of episodes but it could be practically not feasible. The most
popular alternative approach is to adopt a stochastic policy.

At this point it is possible to briefly describe how Monte Carlo methods are able to
approximate optimal policy for control purposes. The main idea of the procedure
is very similar to DP, i.e. the generalized policy iteration (GPI) is followed. As
graphically shown in Figure 4.4 the iterative process consists in updating an
approximate value function for the current policy, and the policy is modified at
each step according to the value function. This adversarial behaviour results in
an approximate optimal policy. As seen before, with an action-value function no
models are needed and it is possible to make the greedy policy. Policy improvement
constructs each policy πk+1 as the greedy policy based on qπk . This is a direct
application of the policy improvement theorem, which state:

qπk(s, πk+1(s)) ≥ vπk(s)

Basically, whenever a better policy is found by considering its future returns through
the value function, the actions start to be chosen according to πk+1 instead of
following πk. Until here, two basic assumptions have been considered for policy

46

4.4 – Tabular methods for reinforcement learning

Figure 4.4: Policy improvement scheme.

improvements: an infinite number of episodes for the policy evaluation and the
usage of exploring starts. For a practical implementation of the method, these have
to be removed. It is easy to pick a sufficient amount of steps to guarantee a good
approximation, within certain bounds. When the exploring start is not feasible, it
is possible to use particular greedy policy called Ô− greedy policy:

π(a|s) ≥ Ô

|A(s)|

This means that an action is usually picked up such that it maximizes the action-
value in a deterministic fashion. However, with a probability Ô a random action is
selected.

It is now convenient to introduce the concept of on-policy and off-policy methods.
Basically, on-policy methods aims to maintain and improve the policy used to
make decisions. On the contrary, off-policy methods tries to improve a different
policy. This difference will be useful to understand the following sections. The
main idea behind on-policy Monte Carlo methods are based on GPI. Differently,
off-policy methods focus on the usage of two different policies. One that we want to
become the optimal policy and it is called the target policy. The other one, will be
devoted to exploration and it is called behaviour policy. For example, considering
the prediction problem with fixed target policy π and behaviour policy b, the
principal aim will always be the estimation of a value function vπ or qπ. If we want
to use b to estimate values for pi, what is useful to do is to apply the coverage

47

Deep Reinforcement Learning

assumption. In brief, every action taken following π should also be taken under
b. For this reason, what is often convenient to do is to use a behaviour policy
stochastic in states, for example an Ô− greedy policy, not identical to the target
one, which instead will be deterministic. Off-policies usually rely on the principal of
importance sampling. It assign a weight to returns according to their probability to
occur. This is used in MC methods when averaging returns from policy b. Without
this intervention, they do not lead to the value of the target policy vπ. Off-policies
and importance sampling will be treated more in detail in the following section.

4.4.3 Temporal-Difference Learning
Temporal-difference learning (TD) can be considered the central innovative idea
behind reinforcement learning. TD presents some elements of both Monte Carlo
and Dynamic Programming methods. Indeed TD methods are able to learn without
the need of a model of the environment in the same way of MC. Similarly to DP,
they bootstrap, i.e. they update estimates using also other learned results. As
done for the previously described method, we start introducing the problem of
prediction, briefly illustrating how TD estimates the value function vπ for a policy
π. If a basic every-visit MC use the obtained return of the visit as target for V (St),
according to

V (St)← V (St) + α [Gt − V (St)] ,

where Gt is the actual return and α is a constant. Differently, TD simplest method
makes the update waiting only for the next time step using the obtained reward
Rt+1 and the estimate V (St+1):

V (St)← V (St) + α [Rt+1 + γV (St+1)− V (St)]

This method is called TD(0) or also one-step TD. The quantity Rt+1 + γV (St+1)
represents the target for TD. Moreover, it is possible to define the TD error as
follows:

δ = Rt+1 + γV (St+1)− V (St)

The advantages of TD with respect to DP and MC are easy to be noticed. The
combination of bootstrapping and independence from a model are precious charac-
teristics especially with long episodes. In addition, TD method do not suffer of
typical issues that can arise in MC-based problem such as the discount of episodes
used to test experimental action. A good and fast convergence is usually guaranteed
with TD in good situations, making these methods convenient in the majority of
the situations. Here, the main TD method are introduced and briefly discussed.

48

4.4 – Tabular methods for reinforcement learning

SARSA: on-policy TD method

SARSA algorithm takes its name from the quintuple composed by the typical
sequence St, At, Rt+1, St+1, At+1. Being an on-policy control method, in SARSA
the action-value function qπ(s, a) is continually estimated for the behaviour policy
π, pushing it toward greediness. The assumption of an infinite number of visits for
all state-action pairs and ensures the convergence of SARSA algorithm. The policy
can be set to an Ô− greedy policy as well as a Ô− soft policy. The pseudo-code of
SARSA algorithm is shown below.

Algorithm 4 SARSA algorithm for estimating Q ≈ q∗

Input: a small Ô > 0 for Ô-greedy policy π, step size α ∈ (0,1]
Output: the estimated action-value function Q

1: Initialize arbitrarily Q(s, a),∀s ∈ S+, a ∈ A(s),except Q(terminalstate,) = 0
2: for each episode do
3: Initialize S
4: Choose A from S using Ô-greedy policy
5: for each time step of the episode do
6: Take action A, observe R, S Í

7: Choose AÍ from S Í using Ô-greedy policy
8: Q(S, A)← Q(S, A) + α [R + γQ(S Í, AÍ)−Q(S, A)]
9: S ← S Í; A← AÍ;

10: if S is terminal then
11: break loop
12: end if
13: end for
14: end for

Q-Learning: off-policy TD method

Q-learning is an off-policy TD control method. It can be considered a real innovation
in reinforcement learning. In Q-Learning, the optimal action-value function q∗ is
approximated by directly learning Q according to:

Q(St, At)← Q(St, At) + α
5
Rt+1 + γ max

a
Q(St+1, a)−Q(St, At)

6

In such a way, the algorithm results to be immediate, as shown in pseudo-code
below.

49

Deep Reinforcement Learning

Algorithm 5 Q-learning algorithm for estimating π ≈ π∗

Input: a small Ô > 0 for Ô-greedy policy π, step size α ∈ (0,1]
Output: the estimated action-value function Q

1: Initialize arbitrarily Q(s, a),∀s ∈ S+, a ∈ A(s),except Q(terminalstate,) = 0
2: for each episode do
3: Initialize S
4: for each time step of the episode do
5: Choose A from S using Ô-greedy policy
6: Take action A, observe R, S Í

7: Choose AÍ from S Í using Ô-greedy policy
8: Q(St, At)← Q(St, At) + α [Rt+1 + γ maxa Q(St+1, a)−Q(St, At)]
9: S ← S Í;

10: if S is terminal then
11: break loop
12: end if
13: end for
14: end for

4.5 Approximate solution method: Deep Rein-
forcement Learning

In the previous sections, the general framework of RL has been introduced. Succes-
sively, tabular methods such as DP, Monte Carlo, TD have been briefly described.
It is now possible to move towards the Deep Reinforcement Learning framework.
First of all, what it is needed to be considered for this further step is that in
reinforcement learning tasks state spaces are frequently huge. Hence, tabular
methods present strong limitations due to the cost of updating accurately tables
with data in the required time. In this scenario an optimal policy and an optimal
value function cannot be found and approximate solutions must be considered
according to the available computational resources. What usually happens is that
many encountered states will be totally new, and the algorithm should be able
to generalize the knowledge that has already learnt in order to make sensible
decisions. In practice, it has to learn how to behave correctly on a wide number
of situations, experiencing a much smaller subset. The generalization challenge
is often translated in a function approximation problem. In our case, the desired
function to approximate is usually a value function.
Although several methods exist for function approximation, for the purpose of
this thesis only solutions based on artificial neural networks will be explained.
An essential difference in this new framework is that value functions are no more

50

4.5 – Approximate solution method: Deep Reinforcement Learning

represented using tables. Instead, they are shaped with a parametric functional
form. For ANNs the parameters coincide with the weights of the network w(w
∈ Rd). Since both the state-value and the action-value functions are now dependent
on the vector w, they can be written as v̂(s,w) ≈ vπ(s) and q̂(s, a,w) ≈ q∗(s, a).

4.5.1 Experience Replay

A popular practice in reinforcement learning is the method of experience replay.
It has been initially studied by Lin in 1992. However, its recent success is mainly
related to its application in the DQN algorithm proposed by Mnih et al. [23]
(2013) to learn playing ATARI games with DRL. The DQN algorithm will be
described later, here we briefly focus on experience replay. The method is based
on saving in a memory buffer called replay memory, at each time step, the tuple
(St, At, Rt+1, St+1). It contains all the information about the transition of the agent
from a state St to the next one, choosing a certain action At and receiving a reward
Rt. Once the replay memory reaches a sufficient number of stored transitions, mini-
batches can be sampled uniformly at random. Hence, experience is directly used to
train the ANN of the agent. Experience replay provides several advantages. First
of all, it increases the data efficiency of the algorithm, since an experienced event
can be used to update the agent’s weights multiple times. Another fundamental
effect of experience replay is to remove the instability in the learning process
caused by temporally correlated training samples. Consecutive samples should be
always avoided in reinforcement learning. A third improvement that can be done is
correlated to the dependence of the target function on the weights. When learning
on-policy with a parametric function approximation, parameters determine future
samples, which are then used to update the same parameters. This is a source
of instability and it is mitigated with experience replay thanks to the smoother
learning achieved through averaging the behaviour distribution over a great amount
of previous states. Experience replay clearly fits well with an off-policy learning.

4.5.2 Target Network

In addition to experience replay, a second approach can be used to reduce the
instability of the algorithm. In particular, Mnih et al. suggested to use another
network called target network to break the dependence of the target function on
weights w. After a certain amount of training steps, the network’s parameters can
be used to update the duplicate target network, which is used as reference. This
improves convergence of the algorithm when using TD-error.

51

Deep Reinforcement Learning

4.5.3 Actor-Critic architecture

A key concept for this thesis is the actor-critic architecture. Differently from the
classic MDP agent, this DRL framework involves the usage of two separate entities.
The actor is responsible of selecting the action, hence it represents the function
approximator of the policy. The critic evaluates the goodness of what the actor
has decided to do. For this reason, it usually approximates an action-value function
Q(s, a,w) using the TD error. The critic loss is therefore based on the TD error,
whilst the actor network will be updated according to Policy Gradient algorithm,
i.e. exploiting the gradient obtained from the critic. Roughly speaking, the critic
tries to teach the actor what are good or bad choices. A schematic is reported
in Figure 4.5 for a better visualization. During the training process, both the
actor and critic networks are updated. However, the actor will be the only entity
employed in the desired task, whilst the presence of the critic is limited to the
training phase.

Figure 4.5: Actor-Critic architecture scheme.

52

4.5 – Approximate solution method: Deep Reinforcement Learning

4.5.4 Deep Q-Learning algorithm
Deep Q-Learning algorithm is an advanced version of Q-learning method. Similarly,
this method focuses on the approximation of the optimal action-value function
Q∗(s, a). The definition of optimal action-value function remains the same:

Q∗(s, a) = max
π

E[Rt|st = s, at = a, π]

As explained in the previous sections, it can be exactly computed thanks to the
Bellman equation for action-value function:

Q∗(s, a) = E
5
Rt+1 + γ max

aÍ
Q∗(sÍ, aÍ)|s, a

6
Practically, an ANN is used as non-linear function approximator to obtain Q(s, a; θ) ≈
Q∗(s, a), where θ is used to indicate the weights of the network. In this particular
case, the neural network is often called Q-networks or Deep Q-network (DQN), due
to its purpose. The Q-network is usually trained with stochastic gradient descent,
which aims to minimize the loss function Li(θi) at each time step:

Li(θi) = Es,a∼ρ(s,a)
è
(yi −Q(s, a, θi))2

2
],

where yi is the target on iteration i and ρ(s, a) is the probability distribution over
states and actions also called behaviour distribution. The difference between target
policy and behaviour policy has been explained in the previous sections. Here, the
behaviour distribution is used to guarantee a sufficient exploration for the agent.
The pseudo-code of the algorithm is reported below.

Deep Q-learning is a model-free algorithm, since it does not need to know the
probability distribution of the environment dynamics. Moreover, it is an off-policy
method. Indeed it uses a target greedy policy for the optimization of the action-
value function, together with an Ô-greedy policy for the behaviour distribution
ρ(s, a). It also exploits the experience replay method, training the networks with
mini-batches sampled from the a total of N transitions stored in the memory buffer
D.

53

Deep Reinforcement Learning

Algorithm 6 Deep Q-learning algorithm with experience replay
Input: a small Ô > 0 for exploratory Ô-greedy policy, replay memory D of capacity
N , number of episodes M .
Output: the function approximator of the action-value function Q

1: Initialize the replay memory D with capacity N .
2: Initialize the Q function approximator with random weights.
3: for episode = 1, M do
4: Initialize s
5: for each time step t = 1, T do
6: Generate a random number 0 ≤ h ≤ 1
7: if h ≤ Ô then
8: Pick a random action at
9: else

10: Select at = maxa Q∗(s, a; θ)
11: end if
12: Perform selected action in the simulated environment and observe rt, st+1
13: Set next state st+1 = st
14: Store experience transition (st, at, rt, st+1) in replay memory D
15: Sample mini-batch of transitions (sj, aj, rj, sj+1) from replay memory D

16: Set target: yj =
rj if final state

rj + γ maxÍ
a Q(sj+1, aÍ; θ) otherwise

17: Perform a gradient descent step on loss (yi −Q(s, a, θi))2

18: end for
19: end for

4.5.5 DDPG Algorithm
Deep Deterministic Policy Gradient is the last algorithm described in this chapter.
Indeed it is the actual DRL algorithm used in the implementation of this thesis
project. It is now possible to define and to frame DDPG according to the entire set
of definitions and methods seen before. First of all, DDPG is a model-free off-
policy actor-critic algorithm. Hence, there is no need to know the environment
dynamics and, as already seen for Deep Q-Learning, a target deterministic policy
is used in combination with a stochastic exploratory policy. Similarly to DQN,
experience replay and target networks are used also in DDPG. From a broader
perspective, DDPG can be considered an extension of DQN from discrete to
continuous space. The actor-critic architecture is also a substantial difference.

Before proceeding with the illustration of the algorithm, originally proposed by
Lillicrap et al. in 2015 [24], Deterministic Policy Gradient (DPG) methods are

54

4.5 – Approximate solution method: Deep Reinforcement Learning

briefly introduced. Among all the existing versions, here we are interested in DPG
methods for off-policy learning with actor-critic architecture. Policy gradients
methods exploits gradient ascent technique to optimize the policy performance
objective function, generally defined as

J(π) = E[rγ1 |π]

It expresses the cumulative discounted reward, which has to be maximized. When
dealing with off-policy learning in continuous space, it has to be modified such
that it becomes the value function of the target policy, averaged over the state
distribution of the behaviour policy [25]:

Jβ(µθ) =
Ú

S
ρβ(s)V µ(s)ds

=
Ú

S
ρβ(s)Qµ(s, µθ(s))ds

Where µθ is the deterministic policy dependent on the weights θ. β instead is
the behaviour policy used to sample the transition guaranteeing exploration of
the unknown environment. The off-policy deterministic policy gradient can be
computed as:

∇θJβ(µθ) ≈
Ú

S
ρβ(s)∇θµθ(a|s)Qµ(s, a), ds

= Es∼ρβ
è
∇θµθ(s)∇aQ

µ(s, a)|a=µθ(s)
é

The action-value function is approximated by the critic Qw(s, a) ≈ Qµ(s, a). The
update rules for the DPG are:

δt = rt + γQw(st+1, µθ(st+1)−Qw(st, at)

wt+1 = wt + αwδt∇wQw(st, at)

θt+1 = θt + αθ∇θµθ(st)∇aQ
w(st, at)|a=µθ(s)

At this point, it is possible to talk about DDPG [24], introducing ANNs as function
approximators. The loss function is defined, similarly to Deep Q-learning:

L(θQ) = Est∼ρβ ,at∼β,rt∼E
è
(Q(st, at|θQ)− yt)2

é
where yt is the target,

yt = r(st, at) + γQ(st+1, µ(st+1)|θQ)

55

Deep Reinforcement Learning

Experience replay and target networks update are used in DDPG. More in detail, to
improve the convergence of the algorithm, a soft update is performed. By denoting
the target copies of both actor and critic as QÍ(s, a|θQÍ) and µÍ(s|θµÍ), the soft
update is performed as follows for the two of them:

θQ
Í ← τθQ + (1− τ)θQÍ

θµ
Í ← τθµ + (1− τ)θµÍ

With τ a small positive parameter. Moreover, in the original implementation of
the paper by Lillicrap et al., an exploration policy is constructed by adding to the
actor policy a noise N , generated with a particular process (Ornstein-Uhlenbeck).
A detailed explanation is avoided here, the resulting expression of the policy is
shown below.

µÍ(st) = µ(st|θµt) +N

However, in this thesis a basic stochastic policy is used to guarantee a non-null
probability of selecting random actions for exploration. The pseudo-code of the
used DDPG algorithm is shown in the next page.

56

4.5 – Approximate solution method: Deep Reinforcement Learning

Algorithm 7 DDPG algorithm
Input: a small Ô > 0 for exploration, replay memory R of capacity N , number of
episodes M , mini-batch size m.
Output: the critic network (function approximator of the action-value function
Q), the actor network (approximator of the target policy µ).

1: Initialize the replay memory R with capacity N .
2: Randomly initialize the critic network Q(s, a|θQ) and actor µ(s|θµ) with weights

θQ and θµ.
3: Initialize target network QÍ and µÍ with θQ

Í ← θQ, θµ
Í ← θµ

4: for episode = 1, M do
5: Initialize observation s1
6: for each time step t = 1, T do
7: Generate a random number 0 ≤ h ≤ 1
8: if h ≤ Ô then
9: Pick a random action at

10: else
11: Select at = µ(st, θµ)
12: end if
13: Perform selected action in the simulated environment and observe rt, st+1
14: Set next state st+1 = st
15: Store experience transition (st, at, rt, st+1) in replay memory R
16: Sample a random mini-batch of m transitions (si, ai, ri, si+1) from R

17: Set target: yj =
rj if final state

rj + γQÍ(sj+1, µÍ(sj+1|θµ
Í)|θQÍ) otherwise

18: Update critic minimizing the loss L = 1
m

Ø
j

(yj −Q(sj, aj, θQ))2

19: Update the actor policy with sampled policy gradient

∇θµJ ≈ 1
m

Ø
i

∇aQ(s, a|θQ)|s=sj ,a=µ(sj)∇θµµ(s|θµ)|sj

20: Update target networks

θQ
Í ← τθQ + (1− τ)θQÍ

θµ
Í ← τθµ + (1− τ)θµÍ

21: end for
22: end for

57

58

Chapter 5

Robot Platform

5.1 Chapter overview
The aim of this chapter is to provide the reader with a basic knowledge about the
robotic development framework. The chapter is opened with a brief introduction
to robotic platforms. An overview of laser distance sensors and cameras is shortly
depicted, focusing on what has been actually used in this project. The robot models
and the software tools used for the simulations are described in the second part of
the chapter.

5.2 Introduction to robotic platform
A robot is a programmable machine able to accomplish a specific set of tasks.
More in detail, the term robotic platform is often used to indicate the ensemble
of the hardware elements composing the robot and the software. The hardware
mainly involves the mechanical the links and the joints, the motors, the electronic
boards and the sensors. The software is usually composed of a firmware to control
the robot and additional tools necessary to manage properly the computational
resources of the hardware part. The architecture of a robot may vary in a wide
range of possibilities, according to the desired application.
Among the most popular configurations there are the followings:

• Industrial robots: inspired to a human arm, realized with a set of links and
joints.

• Mobile robots: also called Unmanned Ground Vehicles (UGVs), usually
wheeled robots adopted for service robotics, logistics and exploration purposes.

59

Robot Platform

• UAVs: Unmanned Aerial Vehicles, often called drones. Quadcopters are the
most popular ones.

• Humanoid robots: full body robots inspired by humans.

• Others: soft robots, biomimetic robots inspired by animals, exploration robots,
etc.

In this thesis, we take in consideration wheeled mobile robots for service robotics.
Robots may have different levels of autonomy. An AI framework such as the DRL
agent developed in this project aims to achieve a full autonomy in the navigation
task. This aspect is mainly related to the software part of the robotic platform. The
hardware can be a custom realization of the developer, as well as a standardized
commercial platform. In the next sections the robotic platform used for this thesis
are shortly described.

5.3 Sensors
Sensors are the hardware devices responsible of the collection of data from the
environment and the robot itself. The choice of the most suitable sensor is a relevant
design factor, both from an hardware and a software point of view. In fact, the
information contained in sensor data affects the efficiency of an algorithm according
to the data dimensionality and accuracy. For what concerns an autonomous
navigation system, sensors are mainly responsible of the measurement of the robot
pose, the goal position and the obstacles distance. For additional tasks, sensors for
people or object detection can be also integrated. Here two families of sensors are
taken in consideration:

• Laser Distance Sensors (LDS): 2D LiDAR for obstacle detection.

• Visual sensors: Depth Camera for obstacle detection.

These perception technologies are briefly described in this chapter, whilst their
implementation will be detailed in 6.

5.3.1 Laser distance sensors (LDS)
Laser Distance Sensor (LDS) is a family of sensors commonly used in robotics.
Among them, Light Detection and Ranging (LiDAR), Laser Scanner and Laser
Range Finder (LRF) are popular examples. LDS exploits laser technology to
measure the distance from the surrounding objects, which reflect the laser beam.
LDS are particularly useful whenever a real-time information of the environment is
needed by the robot to accomplish its task. For example, in obstacle avoidance it is
fundamental to receive such information in time. Laser based sensors are typically

60

5.3 – Sensors

composed of a rotating support, the laser generator and a mirror. By focusing on
2D LiDAR, which is the one used in this thesis, the support rotates in a 360◦

angular range, obtaining the distance measures of points on the same horizontal
plane.
A competitive advantage offered by LiDAR data is that they are computationally
affordable. The measured points are often represented by a vector of relatively
small dimensions, differently from images. However, a LiDAR based perception
system can represent a limitation with respect to visual based solutions. Indeed, the
data are collected only on a 2D plane and sometimes a richer spatial information is
needed. This is a particularly relevant issue for navigation systems, since objects
with complex shapes can represent a challenging problem. Another critical aspect
is related to the reflection properties of the obstacle surface. Transparent materials
can dramatically reduce the efficiency of such sensors. In general, the precision of
the measurement is correlated to the distance from the obstacles.

5.3.2 Visual sensors: Cameras
Robotic vision is probably the most popular perception system used to let the robot
interact with the surrounding environment. It is inspired by the human vision,
which can be considered an incredibly sophisticated perception system. In fact, the
human visual system is able to interpret the information embedded in the light
received by the retina. This is an extremely complex task that all computer vision
systems aims to accomplish. In an analogue way, images are exploited in robotics to
extract information about the environment. In general, images provide a detailed
level of knowledge of the scene with respect to 2D laser points. Visual data can be
both 2D, if common 3-channel RGB colour images are used, and 3D. In this last
case, the depth information is added with an additional channel. Practically, for
the majority of robotic tasks depth information is the most valuable one, especially
when dealing with the motion control of the robot. RGB images results to be
precious for object detection and segmentation tasks.

5.3.3 Depth Camera
Depth cameras are particular visual sensors that provide information about the
distance of points in the captured scene. In fact, depth images are single channel,
grey-scale images. Each pixel of the image tensor is a numerical value associated
to the distance of that specific point with respect to the camera frame. As already
discussed in chapter 2, depth cameras are increasing their diffusion in robotic
applications thanks to their convenient trade-off between computational cost and
information.
There are different types of technology which are able to provide a depth map.

61

Robot Platform

Time of Flight (ToF) cameras exploits light reflection similarly to a radar or a
LiDAR. A light pulse is generated to illuminate the scene and a sensor is used to
detect the reflected radiation. Differently from point-to-point LiDAR data, the
light pulse is unique and provide a single depth image without the need of a moving
mechanism. Although the method of this relatively recent solution is effective, the
necessary hardware is quite expensive.
Structured light cameras are an alternative technology. This time, the object is
illuminated by a designed structured light and a single depth image is obtained. A
simple image sensor is able to build the depth map by receiving the reflected light
pattern from the object. The hardware required for this technology is generally
cheaper than ToF cameras.
Stereo-vision is the technology more inspired by the human visual system. In fact,
two image sensors are used to generate the depth map. The triangulation method
is used to calculate the distance between the two lens of the camera and the object.
Infrared rays are usually emitted by a projector and the two image sensors are
responsible of the depth map reconstruction. This is also the working principal of
Kinect depth cameras such as the Intel RealSense, already mentioned in chapter 2.

5.4 TurtleBot3
In the previous section, an overview of robotic platforms has been given. At this
point, it is possible to introduce one of the most popular platform among robotic
developers: TurtleBot3.
TurtleBot can be considered a standard for robotic platforms. It is based on open
source Robot Operating System (ROS) and it has been developed with a great
focus on research and educational purposes. In fact, on the one hand it offers the
tools to develop professional projects, on the other hand it is an easy instrument
to let beginners make the first steps in robotics. The actual available version of
the platform is the TurtleBot3, developed in 2017 from the collaboration of the
firms Open Robotics and ROBOTIS. TurtleBot3 platform aims to offer a low-cost
valuable kit which also allows for a further customization desired by the developer.
There are three available mobile robots in TurtleBot3: Burger, Waffle and Waffle
Pi. All of them mount a Single Board Computer (SBC), an embedded controller
OpenCR and Dynamixel actuators. The TurtleBot Burger is characterized by a
smaller mechanical chassis. From the perception point of view, it is only equipped
with a 2D LiDAR having a 360◦ angular range and an angular resolution of 1◦. In
addition to the LiDAR, the TurtleBot Waffle also makes use of an Intel RealSense
for 3D perception. A simpler solution is the Raspberry Pi camera used by the
Waffle Pi. In this thesis project, only the virtual models of the TurtleBot Burger
and Waffle are tested in simulation. They are shown in Figure 5.1.

62

5.4 – TurtleBot3

Figure 5.1: Hardware component description of TurtleBot Burger (top) and
TurtleBot Waffle (bottom).[26]

63

Robot Platform

5.4.1 Actuators

Figure 5.2: Dynamixel actuator components.
[27]

TurtleBot3 platforms uses electric motors to actuate the motion at the wheels. In
particular, Dynamixel is the actuator developed by ROBOTIS for robotic developers.
The components of the Dynamixel actuator are shown in Figure 5.2. Beside the
classic mechanical parts proposed with a modular architecture, it comprises an
incremental encoder sensor and a controller board. The combination of the DC
electric motor with the controller enables a direct easy implementation and a wide
variety of applications. A PID control strategy is used for feedback loops, in order
to guarantee the desired frequency, position, velocity and current. Dynamixel
aims to minimizing the current consumption for an optimal battery usage. The
target quantities for the actuators are provided by the software running on the
robotic platform. Different Dynamixel actuators can be chosen according to the
performance required.

5.4.2 OpenCR
OpenCR is the embedded system which takes care of controlling the operations of
the TurtleBot3 robot. It has been specifically designed to offer a great hardware
flexibility and to be compatible with ROS. First of all, it is convenient to explain
that an embedded system is a special purpose system composed of: an hardware
part, a real-time operating system (the basic software part) which is responsible of
the management of the hardware resources, and a software application running on
top of it. OpenCR is based on an ARM Cortex-M7 microcontroller, belonging to
the STM32F7 chips. It is a powerful microcontroller, that is also able to compute
data with floating point unit. The board offers the possibility to connect many
peripherals, for example to enable the communication with sensors such as LiDAR
and cameras or with the wheels actuators of the robot. The chip also contains
3-axis accelerometers, magnetometers and gyroscopes.

64

5.5 – Software tools

Figure 5.3: OpenCR embedded controller.
[26]

5.4.3 Intel RealSense R200
The Intel RealSense R200 camera is the standard camera model available for the
TurtleBot3 Waffle, also in simulated environment. The real hardware camera
belong to the stereo-vision camera technology. In fact, it has two IR images sensors
and a IR projector. In addition to that, it has a RGB camera. Hence, it is able
to provide both RGB colour images and single channel depth images at different
resolution and frequency. In Figure 5.4 the RealSense R200 is shown together with
its technical specifications.
For what specifically concerns its usage in this project, it is important to point
out that the resolution of 640 x 480 indicated for depth images is the maximum
available for the physical camera. In simulation, a resolution of 320 x 240 is set as
default.

5.5 Software tools
In this section the software tools used to develop the project are described. First
of all, this work has been carried out on a machine with Ubuntu, an open-source
Linux based operating system. The version used is the Ubuntu Bionic Beaver
(18.04). Beside this, the core of the software that will enable the deployment of the
application on a real robot is composed by ROS (Robot Operating System) packages.
For this work, the second official version of ROS is used, ROS2. It presents several
improvements at the building level with respect to the first one. The distribution
used is the ROS2 Dashing Diademata. The code for the application, namely for

65

Robot Platform

Figure 5.4: Intel RealSense R200 labels and technical specification.[28]

the DRL agent and the environment, has been developed using Python. It is a
high-level programming language which is largely spreading out thanks to its great
flexibility and easiness of usage. In fact, Python supports multiple programming
paradigm such as structured, object-oriented and functional programming.

5.5.1 ROS
ROS is a free and open-source meta-operating system for robotics. More in detail,
it is a middleware software platform, i.e. a collection of tools which lets interact
effectively the hardware and the software application. As such, it provides hardware
abstraction and packages management. On the other hand, it is true that the
ROS monolithic microkernel is very limited. ROS can be therefore defined as a
thin tools-based operating system. Each ROS component is executed separately
from the others allowing for a better robustness. Scripts can be launched as
standalone executable. This is a design choice motivated by the intention to leave
the developers an high freedom and the possibility of customizing the system.

66

5.5 – Software tools

Moreover, ROS is not a real-time operating system, even though a low latency is a
key requirement in robotic applications. ROS also supports multiple programming
languages.

Beside these aspects, it is interesting to briefly describe how does ROS work. ROS
processes can be represented as a graph composed of connected nodes. For this
reason, it is said to have a distributed peer-to-peer (P2P) architecture. Each
node of the graph is a process in execution. Figure 5.5 shows an example of ROS
graph.

Figure 5.5: ROS execution graph with nodes and Master.

A particular process called ROS Master is responsible of registering the nodes to
itself and to enable the communication between nodes. These can send and receive
messages in different ways, among them the principal ones are:

• topics: they are buses for messages characterized by a specific namespace.
The communication through topics is based on a mechanism of publisher/-
subscriber. An anonymous publication of messages on a specific topic allow a
node subscribed to that topic to access to the messages.

• services: they are another way to communicate actions between nodes. In
this case, a node will advertise the service (server) and the other one will
receive the service (client).

The ROS building structure is schematized in Figure 5.6.

67

Robot Platform

Figure 5.6: ROS building organization.

Where packages are the atomic units of ROS. They contain the nodes as well as
all the configuration files and libraries associated. The package manifest contains
licenses, dependencies and other information about the package. Packages are
stack in metapackages and grouped according to their specific purpose.

5.5.2 Gazebo
Gazebo is the software used to simulate the virtual environment. The great success
of Gazebo is mainly related to its open-source nature and to the necessity to
have a 3D virtual environment to simulate robots behaviour before test them in
the real-world. It is very common to use it in combination with ROS. Gazebo
exploits high performance physics engines and solvers like ODE, Bullet, etc, to
offer high-quality rendering. Lighting and textures are also represented realistically.
More importantly, it comes with a wide variety of models of robotic platforms such
as TurleBot, Pioneer2 DX and many others. Virtual copies of sensors are also
available, from laser scanner to cameras. Contacts and collisions between models
are also simulated. Hence, it is easy to set up a realistic indoor scenario such as
an office or an apartment and let the robot navigate and interact with the entire
environment. Gazebo 9 is the specific version used for this project.

68

5.5 – Software tools

5.5.3 Machine Learning tools
The development of a navigation system with a DRL agent requires a software
application where the artificial neural networks can be built as computational
models. For such a purpose, two software frameworks are imported into a Python
script, which is executed inside the ROS graph as a node. They are TensorFlow
and Keras.

TensorFlow is an open-source software platform which has obtained a great
popularity among Machine Learning developers. It was firstly created by Google
Brain team and released in 2015 for Google project concerning deep learning.
TensorFlow 2 has been recently released (September 2019) and it is used in this
work. It offers a complete set of tools useful to create a full computing pipeline
for neural networks. TensorFlow APIs (Application Programming Interfaces) are
exploited to: build the neural networks models, process data, compute gradients
and train models during the simulation. More in detail, Gradient Tape is the
API used for automatic differentiation and it allows to compute gradients and
set up a customized training. Furthermore, for the training of the DRL agent,
tensorflow-gpu is installed on a workstation to manage the GPU computational
resources.

Keras is a high-level API for deep learning written in Python. Keras runs on top
of TensorFlow, or in other words it uses TensorFlow as back-end. It allows to easily
instantiate a deep learning model defining each layer, activation function, etc.
Popular APIs offered by Keras are the Sequential model and the Functional API
model. The last one allows to easily build models with multiple inputs.

69

70

Chapter 6

The navigation system

6.1 Chapter overview
In this chapter, details about the autonomous navigation system and the imple-
mentation in a virtual environment are provided. Everything has been carried out
in simulation only, although both robot components and sensors are virtual models
of hardware devices physically available at the PIC4SeR centre. The core of the
chapter is devoted to the presentation of the proposed solution, focusing on the
sensor data and on the actor-critic model chosen for the DRL agent. First, the
navigation framework with LiDAR data is presented. Finally, the visual based
navigation with depth images is described.

6.2 Simulation setup
For the development of the project, a workstation has been bought and used to
locally train the neural networks in simulation. The computational resources of the
workstation consist in 32 GB of RAM, a NVIDIA RTX 2080 Super (8 GB) GPU
and a CPU Intel core i7-10700. As in the majority of deep learning applications,
also in this case the Graphic Card plays a central role and the whole training
process has been designed and tuned according to its resources. Time of execution
and memory are the main constraints that have to be sharply respected.

All the simulations have been run in Gazebo virtual scenarios. Different stages are
exploited to let the DRL agent learn how to navigate efficiently in environments
with the presence of different obstacles. The robot model is spawned inside the
virtual world, where its behaviour can be visually monitored. Also sensor data are
shown and collected in the dedicated ROS topics. Figure 6.1 shows an example

71

The navigation system

of basic virtual environment in Gazebo with the TurtleBot Waffle model moving
around. Both the LiDAR rays (blue lines) and the RealSense camera view are
visualized in real-time.

Figure 6.1: An example of Gazebo simulation with waffle robot.

Simulations are structured in episodes, since a Reinforcement Learning framework
need to be reproduced to train the agent. According to the complexity of the neural
network used for the agent, the reward function and the difficulty of the stage, the
simulations may require a huge amount of episodes and time to be successful. For
this reason, it is often convenient to speed them up, checking if the time needed to
execute the code allows to do it. This is done exploiting the physics functionalities
of Gazebo. A feasible configuration results to be obtained increasing the real-time
update of the simulation to 1.200 (simulations run at a speed of 1.2x).

72

6.2 – Simulation setup

At this point, it is convenient to briefly illustrate the organization of the ROS2
package developed at the PIC4SeR centre to handle reinforcement learning frame-
works in ROS. It is called ’pic4rl’ and it aims to provide the software application
needed to train a RL agent, with a generic robot model in a Gazebo simulation.
The package structure exploited in this work is illustrated in figure 6.2. In parallel
to the simulation running on Gazebo, two connected nodes exchange messages:
’pic4rl training’ and ’pic4rl gazebo’.

• ’pic4rl training’: it contains the TensorFlow functions to instantiate and train
the neural networks with the DDPG algorithm, as well as the code for the
Environment response.

• ’pic4rl gazebo’ it mainly handles the service to reset the world and to receive
sensor data from the simulated scenario.

Figure 6.2: Pic4rl package: nodes organization.

The basic cycle executed by the code at each temporal transition can be depicted
as shown in figure 6.3. Once an episode of the simulation has been set, defining
the goal position, the actor model selects an action at based on the information

73

The navigation system

contained in the received state st. The selected action, which is always expressed
as a tuple of linear velocity and angular velocity, is executed by the robot in the
virtual world. The environment samples a reward according to the designed reward
function and checks if the episode has to be terminated or not. There are three
possible events for the end of an episode:

• Goal: if the robot reaches a sufficiently small distance from the goal coordinates.
This tolerance is indicated with δg and the goal is considered reached if
δg < 0.2m.

• Collision: if the robot collides with an obstacle in the virtual world. A
minimum distance of δc = 0.22m is accepted, otherwise the collision event is
detected.

• Timeout: after 500 temporal steps the episode is terminated in any case.

If none of those conditions is verified, the environment receive and process sensor
data from Gazebo. Then, the information concerning the position and orientation
of the robot with respect to the goal are updated and the new state st+1 is sent
back to the agent.

Figure 6.3: Code logic basic scheme at a generic temporal transition.

74

6.3 – LiDAR-based navigation

6.3 LiDAR-based navigation
The first type of solution implemented in simulation is the LiDAR-based autonomous
navigation. Although it is not the main goal of this project, it is considered a
fundamental step in order to acquire experience in handling reinforcement learning
systems coupled with ROS. Moreover, it constitutes a precious source of comparison
for what specifically concerns the efficiency of navigation with different sensor data.
The analysis of the proposed implementation begins from the description of the
data structure exploited. Then, both the neural networks and the reward functions
are illustrated with respect to the training process.

6.3.1 Data filtering
Odometry is the term used in robotics to indicate the usage of motion sensor
data to compute the position of the robot in time. This is done thanks to the
ROS standard TurtleBot3 packages. The change of the position of the robot is
computed with respect with its initial reference frame. These data are advertised
by the ROS topic /odom.

For the purpose of the navigation system, odometry is necessary to extract informa-
tion about the distance and the orientation of the robot with respect to its target.
Only the information related to the orientation (yaw) of the robot are processed.
In particular, they are needed to compute at each time step the heading angle, i.e.
the angle between the axis of orientation of the robot and the one passing from the
target point. Hence, the distance from the goal can be easily computed with:

d =
ñ

(xg − xr)2 + (xg − xr)2

According to the scheme in figure 6.4, the heading angle can be computed in
two steps. First, the angle between the vertical axe of the robot and the goal is
obtained:

α = atan2(yg − yr, xg − xr)

Then, the heading γ is computed exploiting the known yaw angle of the robot,
according to the angular range:

γ =

α− yaw if − π ≤ α− yaw ≤ π

α− yaw − 2π if α− yaw > π

α− yaw + 2π if α− yaw < −π

75

The navigation system

Figure 6.4: Scheme of heading angle between the robot and the goal. Angle α
and yaw are exploited to compute it. Goal distance is also indicated.

LiDAR data are the sensor data used in this implementation to enable the obstacle
avoidance ability of the robot. The raw LiDAR measurements are composed of
359 distance values stack in an array. The first value indicates the measure of the
distance in front of the robot. Then, other measures proceed all around the robot in
a counter-clockwise order. An array of 359 values is considered too computationally
expensive for such an implementation. Hence,the measurements are filtered before
to use them as input for the neural network. Different dimensionality of the array
of LiDAR points are tested, always keeping a FOV of 360◦: 10, 24, 36 and 60
all-around points. Increasing the dimensionality of the array, the convergence of
the algorithms is sometimes compromised. In fact, it becomes more difficult for
the neural network to distinguish between LiDAR measurements and goal distance.
An array of 36 LiDAR filtered measurements results to be a good trade-off between
the navigation accuracy and the training effort.

When the 359 measurements are received in the environment node from Gazebo,
the minimum distance value is selected for each angular interval of 10◦. This is
a simple effective data filtering, which aims to guarantee an effective detection of
obstacle all around the robot. With an array of equally-spaced points, a narrow
obstacle may be not perceived at all.

76

6.3 – LiDAR-based navigation

To sum up, the system receive a processed data structure composed of:

• Goal distance value.

• Goal angle value.

• Filtered LiDAR points.

This ensemble of information are stack together to compose a state st at a given
temporal instant t. The resulting array also represents the input of the actor neural
network, described in the following paragraph.

6.3.2 Actor-Critic neural networks
The navigation system is trained using the DDPG algorithm, to approach with a
DRL agent the continuous control task. The actor-critic architecture characteristic
of DDPG has been explained in chapter4. Here, it is convenient to remark that
the actor neural network is the one selecting actions for the robot, hence it is
the one responsible for the control of its motion. The actor network is therefore
composed of an input layer which receives LiDAR points, goal distance and heading.
Then, three fully-connected layers with ReLU activation function are set. The
output is passed to two different single-neuron layers used to map the linear and
the angular velocities for the robot. A sigmoid activation function, scaled in the
interval [0,0.2] is used for the linear velocity. Hence, the robot has no possibility to
move backward and its maximum linear speed will be equal to 0.2 m/s to ensure a
safe future hardware implementation. The angular velocity is instead obtained from
an hyperbolic tangent function. Therefore, its numerical value will be naturally
comprised in the interval [-1,1]. The two velocity signals are finally concatenated to
compose the predicted action at. The robot controller will takes care of actuating
the velocity command published on the /cmd_vel ROS topic, with the following
specifications:

• A linear velocity v ∈ [0,0.2]m/s

• An angular velocity ω ∈ [−1,1]rad/s

The critic network presents a general analogue structure to the actor. The main
difference is an additional input branch to receive the actions to be evaluated. After
some fully-connected layers, the output neuron with a Linear unit is used to predict
the Q-value.
Actor and Critic models for LiDAR-based navigation are shown in Figure 6.5 for a
better visualization.

77

The navigation system

Figure 6.5: Actor and Critic neural networks for the LiDAR-based navigation
system.

78

6.3 – LiDAR-based navigation

6.3.3 Reward function
The design of a suitable and effective reward function is one of the tough challenges
of this work. There are no clear and standardized indication in literature concerning
the design of a generic reward function, but it strongly depends on the specific
application of the RL agent. A general structure for the reward function is composed
of a fixed contribution, assigned at the end of each episode, and a sparse reward.
The last one is a smaller evaluation of the agent behaviour at each temporal step.
However, it has a great relevance in the learning process.

For this work, different reward function have been tried so far. Here a selection of
the relevant candidates is proposed. From an high-level perspective, the reward
function is shaped as follow:

r =

rg if Goal
rc if Collision
rb otherwise

For LiDAR-based navigation, the fixed rewards related to final events such as Goal
or Collision are kept constant. In particular the values rg = 100 and rc = −10
results to be as simple as effective for the convergence of the DDPG algorithm.

A greater focus must be devoted to the choice of a suitable sparse behavioural
reward rb. The followed approach consists in combining two terms: one related
to the heading of the robot and one focused on its motion towards the goal. The
main idea behind that choice is that the robot should learn to navigate keeping
the goal aligned with its direction of motion to minimize the total path.

The heading reward is shaped using the following formulation:

rh =
A

1− 2
ó----γπ

B

where γ is the heading angle between the goal and the direction of motion of the
robot, obtained from odometry. Differently, for the distance based reward different
shapes can be chosen. Here some examples are provided:

rd1 = 2
A

2 dt=0

dt=0 + dt
− 1

B

where dt=0 is the initial distance from the goal, at the beginning of the episode,
whilst dt is the actual one.

rd2 = dt−1 − dt

79

The navigation system

rd3 = 2− 2
dt
dt=0

A first try is done with the following sparse reward:

rb = rh + rd1

However, it results to be successful only with a state of very small dimensionality.
For example with an array of up to 4 LiDAR measurements. Hence, a different
combination is tried out and a further tuning with empirical numerical coefficients
is performed. The resulting final reward function used to train the agent is:

r =

rg = 100 if Goal
rc = −10 if Collision
rb = 0.8(rh) + 30(rd2) otherwise

6.3.4 Training process
As already mentioned at the beginning of the chapter, the training process evolves
alongside the simulation in virtual environment. A sufficient number of episodes
is carried out until the algorithm converges. More in detail, for the LiDAR-based
navigation different stages are used to train the neural networks. As a first attempt,
the agent is trained in standard scenarios with obstacles of different shapes. The
first one is an empty space with only outer walls, the second presents four columns
and a relatively wide space of maneuver, whilst the third one is mainly composed
of walls with narrow passages (see Figure 6.6). Then, the training process is also
experienced on a custom virtual world with obstacles realized from scratch. Similar
results are obtained.

ADAM optimizer is used to update parameters of both actor and critic networks.
The complete set of hyperparameters for training and the simulation settings are
listed in Table 6.1.

Learning rates for actor and critic networks are set to different values. This choice
results to be popular in literature and it is considered reasonable since the critic
works effectively when it starts to correct the action behaviour as soon as possible
in the learning process. A slightly lower level of accuracy can be accepted for the
critic since it will be the actor to control the robot motion. Train starts after 64
episodes in which the robot accumulates experiences through exploration. This is
necessary because mini-batches for training are sampled randomly from a replay
memory buffer that must be filled with tuples of transitions (st, at, st+1, rt+1, done).

80

6.3 – LiDAR-based navigation

Parameter Value
Training hyperparameters

batch size 64
train start 64

target networks update start 128
replay memory buffer maxlen 106

actor learning rate 0.0001
critic learning rate 0.0008

tau 0.9
starting epsilon 1
minimum epsilon 0.05
epsilon decay 0.998
discount factor 0.99
Navigation settings
lidar points 36

max linear speed 0.2m/s

max angular speed 1rad/s

Simulation settings
max number of episodes 5000

time step 0.001s
max update rate 1.200s−1

timeout 500 steps

Table 6.1: Hyperparameters and simulation settings for LiDAR-based navigation.

Figure 6.6: On the left the final standard scenario with static columns and walls.
On the right a custom training scenario realized from scratch.

81

The navigation system

As explained in chapter 4, devoted to Reinforcement Learning, exploration must
be guaranteed in order to find an optimal policy. This is done by using a stochastic
Ô − greedypolicy for the selection of random actions according to the value of
the parameter Ô. It is decreased with a decay policy such that after a suitable
number of episodes the randomness in the action selection is reduced and the
robot acquires more control on its motion. As already mentioned in the DDPG
theoretical description, τ is a constant used for the soft update of parameters in
the target networks, for an improved robustness of the algorithm. The discount
factor is used for the critic network training to compute the target values according
to the DDPG algorithm.

Figure 6.7: Learning curve with LiDAR sensor in a successful simulation with
the described reward function. After episode 800 the convergence of the algorithm
is stable and the goal is always met. From episode 950 static obstacles are added
to the scene.

82

6.4 – Visual based navigation

6.4 Visual based navigation
The idea of a visual based navigation is principally considered to tackle the difficulty
in perceiving obstacles of complex shapes, which is a limitation for the LiDAR
sensor. Cameras provide a greater amount of details related to the scene, although
in a limited FOV. In particular, depth images are exploited in this implementation
to provide the robot with information about obstacles. As already said in the
previous chapters of the thesis, depth images are single channel grey-scale images,
containing distance values in the pixels. The choice of a visual based navigation
system requires for some modifications in the training process with respect to the
previous implementation.

6.4.1 Data processing
The main concern in this new navigation system is related to the different data
format. With respect to the previous implementation,Odometry data are obtained
and processed in the same way. Heading angle and distance from the goal are
computed using the same equations described for the LiDAR navigation.

Depth images are received by the ’pic4rl training’ node thanks to the subscription
to the ROS topic dedicated to the Intel RealSense R200 camera. In order to access
to raw depth images, it is only required to add a plugin in the Gazebo model of
the waffle. The RealSense is able to provide three different data formats:

• RGB images: colour images, published on the ROS topic
/intel_realsense_r200_rgb/image_raw.

• Depth images: grey-scale images, published on the ROS topic
/intel_relasense_r200_depth/image_raw.

• Depth point cloud: spatial visual representation of obstacle surface with
points realized according to the depth map, published on the ROS topic
/intel_relasense_r200_depth/points.

Only depth images are used in this implementation. Messages containing the images
are imported in the environment and processed thanks to a callback function. The
CVbridge library, from the OpenCV collection of tools for Computer Vision, allows
to decode the image from ROS messages to a numpy array. Raw depth images
provided by the RealSense topic have a resolution of 240x320 (height x width).

At this point, it is convenient to recall some key aspects of the the DRL frame-
work in order to understand the difficulty behind this task. First of all, during
training mini-batches are sampled from the replay memory buffer. Transitions
(st, at, st+1, rt+1, done) are stored at each temporal step of simulation. However,

83

The navigation system

Figure 6.8: Depth images examples during simulation. A column obstacle is
captured. Darker pixels indicate smaller distances while lighter pixels represent
distant points.

the state st and the next state st+1 now contain depth images. Hence, two images
are stored as tensors at each time step. This results to be prohibitive for the
hardware resources available, also using the RTX 2080 Super GPU with a dedicated
memory of 8GB. In addition to that, the dimensionality of the data has largely
been increased with respect to the array of LiDAR points. This may constitute a
great gap of difficulty in the convergence of the algorithm. For these reasons, a
suitable processing of the raw images is necessary to allow for a feasible training in
simulation.

The processing of raw depth images is composed of mainly three steps:

1. The resolution is reduced from 240x320 to 60x80.

2. A cutoff distance value dcutoff is chosen and all the pixels with an higher value
are set equal to this threshold value.

3. All the pixels values are normalized with respect to the cutoff dcutoff .

The cutoff dcutoff is fixed to 5 meters to let the network focus on relevant information:
closer objects. In such a way all the depth values are bounded in the numerical
range [0,1]. For a coherent numerical interval in the input layers of the neural
networks, also the goal distance is scaled by the same factor, whilst the goal angle
is divided by π. Examples of depth images collected during the simulation with
the waffle turtlebot are shown in Figure 6.8. For a better visualization of the scene
in those pictures, pixels have been scaled from the normalized range [0,1] to the
range [0,255].

84

6.4 – Visual based navigation

6.4.2 Actor-Critic neural networks
The actor neural network is used also in this implementation to control the robot
motion. An effective new structure for the actor network is the central challenge
of this work. The main idea is to extract features from depth images thanks to
convolutional layers. Beside this, it has to be considered that in this task we need
to handle input data of different shapes: the depth images (with tensor size [60,80])
and the information about the goal ([1,2]).

Figure 6.9: Actor neural networks for the visual based navigation system. Images
are processed through convolutional layers and then features are aggregated with
the information about the goal.

To combine all the data in the input layer, two approaches are thought and
experimented. In the first one, images and goal info are passed to the network as
two separate inputs. Depth images are forwarded through convolutional layers and
the resulting array of features is concatenated with the goal distance and angle. In
the second approach, inspired by the AlphaGO project, goal distance and heading
are transformed into two constant tensors of the same shape of the image. All of
them are stack together in a unique tensor of shape [60,80,3] and this becomes the

85

The navigation system

unique input of the network. Although it is considered a reasonable method for
this task, the first approach results to be more simple and effective. The neural
network used for the actor is therefore shown in Figure 6.9.

Four convolutional layers are used to extract features. A limited number of features
is considered suitable for this application, since the input tensor volume to squeeze
is not huge. The first two convolutional layers have 32 features and 3x3 filters. Then,
a max pooling layer (2x2) is applied before two other convolutional layers with 64
features and 3x3 filters. Finally, a global average pool is performed and the obtained
array of features is passed to two fully-connected layers before being concatenated
with goal information. A single fully-connected layer with 128 neurons is set before
the output layer. The sigmoid and hyperbolic tangent activation functions are still
used to predict the linear and the angular velocities of the robot.

Critic network follows the same general structure of the actor, with the usual
additional input branch for the actions, necessary to predict the Q-value (see Figure
6.10).

Figure 6.10: Critic neural network for the visual based navigation system.

86

6.4 – Visual based navigation

Beyond the achievement of the task, the design of the convolutional neural networks
has been focused also on optimizing the computational cost of the system. In fact,
with respect to the LiDAR-based navigation, here the number and the size of fully
connected layers have been significantly reduced.

6.4.3 Reward function and training

The same reward function which demonstrates to be effective with many LiDAR
points is used for the visual based navigation. A further modification is also applied
to the heading sparse reward contribution to improve the obstacle avoidance
behaviour.

r =

rg = 100 if Goal
rc = −10 if Collision
rb = k(rh) + 30(rd2) otherwise

Where k is a numerical coefficient decreased with a fixed policy along the simulation.
This choice is motivated by the fact that a first stable convergence behaviour without
obstacles in proximity of the goal is reached around episode 400 with k = 0.8. Then,
when obstacles are gradually added in the virtual scenario, the robot should learn
to circumnavigate them in order to reach the goal instead of moving straight toward
it. Hence k is reduced and set equal to 0.4 for episodes between 400 and 1000, and
then reduced again to 0.2 for the last series of training episodes. Moreover rg is
increased to +200 when the obstacle population becomes dense, after episode 1000.
In this final scenario the number of collisions when moving towards the goal may
be high and the agent needs a bigger reward.

A totally different approach based on velocity is also tried for sparse rewards, to
let the robot learn how to navigate smoothly towards the goal.

rb = kv(v)− |ω|+ 30(rd2)

where v and ω are the linear and angular velocities selected in the previous temporal
step. kv is a numerical coefficient, different values such as 2,3,4 have been tried.
However, results are not considered satisfying. The scores obtained during the
learning process with both the reward approaches are shown in Figure 6.12 and
6.13.

The neural networks are trained in a virtual stage where obstacles are gradually
added around. The final configuration of the stage is shown in Figure 6.11.

87

The navigation system

Figure 6.11: Final configuration of the virtual world with static obstacles of
different shapes used to train the DRL agent for the visual based navigation.

As already discussed in the LiDAR-based navigation, the neural networks start to
be trained after episode 64 and target networks are softly updated from episode
128. ADAM is still the optimizer used for both actor and critic and learning rates
are kept the same. The replay memory buffer needs to be limited to a maximum
length of 180000 transitions stored. Nonetheless this configuration allow the agent
to be sufficiently trained on each phase of the interaction with the environment
and it guarantees a working training process. The complete set of parameters used
to train the model in simulation is listed in table 6.2.

88

6.4 – Visual based navigation

Parameter Value
Training hyperparameters

batch size 64
train start 64

target networks update start 128
replay memory buffer maxlen 180000

actor learning rate 0.0001
critic learning rate 0.0008

tau 0.9
starting epsilon 1
minimum epsilon 0.05
epsilon decay 0.998
discount factor 0.99
Navigation settings

image resolution 60x80
depth cutoff 5m

max linear speed 0.2m/s

max angular speed 1rad/s

Simulation settings
max number of episodes 5000

time step 0.001s
max update rate 1.200s−1

timeout 500 steps

Table 6.2: Hyperparameters and simulation settings for visual based navigation.

89

The navigation system

Figure 6.12: Training score trend of a successful simulation with depth images
on two different stages. The reward is tuned along the episodes to improve the
obstacle avoidance behaviour.

Figure 6.13: Score trend with reward function based on velocity. The plot shows
how the speed behaviour is almost satisfied and the agent gets small positive
rewards. However the goal is rarely reached.

90

Chapter 7

Results and Conclusions

7.1 Results
In this last chapter, results obtained from testing the DRL agent for the visual
based navigation with depth images are exposed and discussed. A comparison with
a LiDAR based agent is also proposed, trying to highlight the different advantages
and limitations of the two different solutions.

7.1.1 Metrics
The metrics used to evaluate the performance of the system are mainly focused on
the navigation task. A basic set of features is selected for the evaluation:

• Outcome: the overall evaluation of the single test. It is used to express if
the robot is able or not to reach the specific target point.

• Total time [s]: the total amount of navigation time spent by the robot, until
the single test is terminated.

• Total path length [m]: the full length of the path chosen by the robot.

• Final distance from the goal [m]: this metric is only considered in the
case of failure.

The set of metrics chosen for the evaluation are merely focused on the final outcome
of the navigation test. More accurate metrics concerning the smoothness of the
navigation can be used, however, at this point of the project temporal and spatial
information about the path are considered sufficient to make some interesting
comparisons. A qualitative idea about the quality of the navigation can be also
formulated by visually analysing the behaviour of the robot during the tests. Those

91

Results and Conclusions

considerations are collected in the section dedicated to the qualitative analysis of
the results.

7.1.2 Testing simulation
A virtual world for testing is realized in Gazebo (see Figure 7.1). Six different target
positions are used to test the ability of the DRL agents in the two configurations
developed. For each target, the simulation is reset to the same initial condition.
The waffle robot is always spawned at the centre of the stage, where the fixed
reference frame for spatial coordinates is located. In this way the virtual world can
be fully exploited in all its areas with challenges of different kinds.

Figure 7.1: Virtual world used for testing. Static obstacles of different shapes
and dimensions are placed between the initial spawning point of the robot and the
goal position.

92

7.1 – Results

Once the target point is set in the virtual environment, the testing episode has
three possible outcomes:

• Goal: the goal is considered to be reach if the robot gets sufficiently close to
it, with a tolerance range δg < 0.2m.

• Collision: a collision is detected if the distance from an object is lower than
0.15m.

• Timeout: the robot has a maximum of 1000 temporal steps to reach the
goal, otherwise the attempt is considered failed. This limit is approximately
equivalent to 50s of navigation in the simulation.

In Figure 7.2 a sketch of the six targets position in the virtual scenario is provided.
Goal 1 is located in the right upper area of the scene and it is used to test the
ability to pass through a relatively narrow passage composed of walls. Goal 2, in
the same area, requires the robot to navigate close to the wall for a certain path.
Goal 3 is located in the upper left corner and the robot has to find a path to avoid
the columns in between. Goal 4 is similar with a different disposition. Goal 5 is
placed behind thin columns and it represents one of the most interesting challenges
to compare the LiDAR with the camera. Goal 6 is at the lower right corner. The
robot may choose different paths to reach it.
Then, results are summarized in table 7.1 for LiDAR-based navigation and in table
7.2 for the visual based implementation with depth camera.

Goal pose Result Total time Total
path length

Final
goal distance

Goal 1 [1.2,−1.8]m Goal 12.617s 2.116m /
Goal 2 [0.2,−2.0]m Goal 12.305s 2.004m /
Goal 3 [2.0, 2.0]m Goal 18.536s 2.751 /
Goal 4 [0.8, 0.2]m Goal 11.299s 2.087m /
Goal 5 [−1.9, 1.2]m Collision 10.463s 2.226m 1.163m

Goal 6 [−2.0,−2.0]m Goal 24.020s 3.174m /

Table 7.1: LiDAR-based navigation: results obtained from the testing phase.

7.1.3 Qualitative analysis of results
Both the DRL agents demonstrate the ability to reach the majority of the goals,
failing once due to a collision with an obstacle. Hence, a first conclusion is that the
agents have learnt how to move towards a given target point. By looking at the total

93

Results and Conclusions

Figure 7.2: Scheme of the virtual world used for testing. Obstacles and goals are
sketched for a better visualization of the scenario.

Goal pose Result Total time Total
path length

Final
goal distance

Goal 1 [1.2,−1.8]m Goal 11.378s 2.076m /
Goal 2 [0.2,−2.0]m Goal 11.194s 1.947m /
Goal 3 [2.0, 2.0]m Goal 17.041s 2.761m /
Goal 4 [0.8, 0.2]m Collision 8.181s 1.389m 0.862m

Goal 5 [−1.9, 1.2]m Goal 13.743s 2.226m /
Goal 6 [−2.0,−2.0]m Goal 22.948s 2.801m /

Table 7.2: visual based navigation: results obtained from the testing phase.

time and path length spent to reach the goal, lower values can be observed for the
camera based implementation. It visually shows a smoother navigation. Angular
velocities are chosen such that the robot heading is not affected by oscillations
when advancing towards the goal.

The collision events must be analysed critically. LiDAR based agent collide while
moving towards goal 5, which is located behind narrow columns. Such a case is
clearly a limitation of the LiDAR data, especially when using a reduced number of

94

7.2 – Conclusions and future works

measurements. Narrow obstacles are not always detected properly by the sensor
rays. It is interesting to see that the visual based agent does not suffer of such a
problem. Differently, it is affected by another issue. In fact, the camera-driven
robot collides while navigating towards goal 4. By visually analysing its behaviour,
it is possible to notice that the robot chooses to first advance along the x axe and
only in a second moment it decides to turn left. When the column enters in the
field of view of the camera, it is already too close and the robot is not able to
counteract and to avoid it. A limited view of the scene is the greatest limit of the
navigation based on camera.

A further consideration can be done by looking at the time of navigation obtained
for goal 6. Beside the fact that the total distance to cover is greater with respect to
other target points, the significant time gap is also related to a particular behaviour
of the robot. Indeed, during training the agents autonomously learnt to slow down
when more obstacles such as wide walls are getting closer. For this reason, they
spend more time for reaching the goal. Although this is not always required, it can
be considered a positive behaviour until the goal is reached safely in an acceptable
time.

7.2 Conclusions and future works
The DRL agent trained in simulation has shown the ability to reach target points
in the presence of static obstacles. The peculiar advantages and limitations of the
autonomous navigation system when based on LiDAR points and depth images
emerge in the tests. In both cases, obstacle avoidance can be improved working on
several aspects. Among them, a training procedure and a reward function more
focused on a collision-free navigation are the principal ones. Despite the difficulty
of a task such as autonomous navigation with a single depth camera, the project
can be considered a precious source of experience and it paves the way for further
developments. Future works could be devoted to the following improvements:

• Input data of the neural network can be enriched providing a stack of depth
images at successive time instants. This may improve the awareness of the
agent about the surrounding scene.

• An hybrid solution based on both LiDAR and depth images can be developed
to take advantage of the information provided by the two sensor data.

• The algorithm can be deployed and tested on a physical robot platform. Depth
images may need to be corrupted with some noisy signals during training in
simulation to adapt them to real sensor data.

95

96

Bibliography

[1] Lei Tai, Giuseppe Paolo, and Ming Liu. Virtual-to-real Deep Reinforcement
Learning: Continuous Control of Mobile Robots for Mapless Navigation. 2017.
arXiv: 1703.00420 [cs.RO] (cit. on p. 4).

[2] Amir Ramezani Dooraki and Deok-Jin Lee. «An end-to-end deep reinforcement
learning-based intelligent agent capable of autonomous exploration in unknown
environments». In: Sensors 18.10 (2018), p. 3575 (cit. on p. 4).

[3] Francisco Leiva, Kenzo Lobos-Tsunekawa, and Javier Ruiz-del-Solar. «Colli-
sion avoidance for indoor service robots through multimodal deep reinforce-
ment learning». In: Robot World Cup. Springer. 2019, pp. 140–153 (cit. on
p. 4).

[4] Hao-Tien Lewis Chiang, Aleksandra Faust, Marek Fiser, and Anthony Francis.
«Learning navigation behaviors end-to-end with autorl». In: IEEE Robotics
and Automation Letters 4.2 (2019), pp. 2007–2014 (cit. on p. 4).

[5] Reinis Cimurs, Jin Han Lee, and Il Hong Suh. «Goal-Oriented Obstacle
Avoidance with Deep Reinforcement Learning in Continuous Action Space».
In: Electronics 9.3 (2020), p. 411 (cit. on pp. 4, 6).

[6] Joao Cunha, Eurico Pedrosa, Cristóvao Cruz, António JR Neves, and Nuno
Lau. «Using a depth camera for indoor robot localization and navigation».
In: DETI/IEETA-University of Aveiro, Portugal (2011) (cit. on p. 6).

[7] Daniel Maier, Armin Hornung, and Maren Bennewitz. «Real-Time Navigation
in 3D Environments Based on Depth Camera Data». In: Nov. 2012. doi:
10.1109/HUMANOIDS.2012.6651595 (cit. on p. 6).

[8] Depth map - Wikipedia. url: https://en.wikipedia.org/wiki/Depth_map
(cit. on p. 6).

[9] Daniel Seita, Jeff Mahler, Mike Danielczuk, Matthew Matl, and Ken Goldberg.
Drilling down on depth sensing and deep learning. 2018. url: https://
robohub.org/drilling-down-on-depth-sensing-and-deep-learning/
(cit. on p. 7).

97

https://arxiv.org/abs/1703.00420
https://doi.org/10.1109/HUMANOIDS.2012.6651595
https://en.wikipedia.org/wiki/Depth_map
https://robohub.org/drilling-down-on-depth-sensing-and-deep-learning/
https://robohub.org/drilling-down-on-depth-sensing-and-deep-learning/

BIBLIOGRAPHY

[10] Daniel Seita, Nawid Jamali, Michael Laskey, Ajay Kumar Tanwani, Ron
Berenstein, Prakash Baskaran, Soshi Iba, John Canny, and Ken Goldberg.
«Deep transfer learning of pick points on fabric for robot bed-making». In:
arXiv preprint arXiv:1809.09810 (2018) (cit. on p. 7).

[11] Ariel Gordon, Hanhan Li, Rico Jonschkowski, and Anelia Angelova. «Depth
from videos in the wild: Unsupervised monocular depth learning from unknown
cameras». In: Proceedings of the IEEE International Conference on Computer
Vision. 2019, pp. 8977–8986 (cit. on p. 7).

[12] Zhengqi Li, Tali Dekel, Forrester Cole, Richard Tucker, Noah Snavely, Ce Liu,
and William T Freeman. «Learning the depths of moving people by watching
frozen people». In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2019, pp. 4521–4530 (cit. on p. 7).

[13] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep
learning. Vol. 1. MIT press Cambridge, 2016 (cit. on pp. 9, 42, 45).

[14] Maurizio Di Paolo Emilio. Intelligenza artificiale, deep learning e machine
learning: quali sono le differenze? 2018. url: https://www.innovationpost.
it/2018/02/14/intelligenza-artificiale-deep-learning-e-machine-
learning-quali-sono-le-differenze/ (cit. on p. 10).

[15] Is there a difference between deep learning, machine learning and AI? 2018.
url: https://mc.ai/is-there-a-difference-between-deep-learning-
machine-learning-and-ai/ (cit. on p. 10).

[16] ImageNet - Wikipedia. url: https://en.wikipedia.org/wiki/ImageNet#
History_of_the_ImageNet_challenge (cit. on p. 12).

[17] CS231n Convolutional Neural Networks for Visual Recognition. Biological
motivation and connections. url: https://cs231n.github.io/neural-
networks-1/ (cit. on pp. 13, 14).

[18] Daniel Graupe. Principles of artificial neural networks. Vol. 7. World Scientific,
2013 (cit. on p. 13).

[19] Ž. Ivezić, A.J. Connolly, J.T. Vanderplas, and A. Gray. Statistics, Data Mining
and Machine Learning in Astronomy. Princeton, NJ: Princeton University
Press, 2014 (cit. on p. 18).

[20] Mattew Huttson. AI researchers allege that machine learning is alchemy. 2018.
url: https://www.sciencemag.org/news/2018/05/ai- researchers-
allege-machine-learning-alchemy (cit. on p. 24).

[21] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Opti-
mization. 2014. arXiv: 1412.6980 [cs.LG] (cit. on p. 34).

98

https://www.innovationpost.it/2018/02/14/intelligenza-artificiale-deep-learning-e-machine-learning-quali-sono-le-differenze/
https://www.innovationpost.it/2018/02/14/intelligenza-artificiale-deep-learning-e-machine-learning-quali-sono-le-differenze/
https://www.innovationpost.it/2018/02/14/intelligenza-artificiale-deep-learning-e-machine-learning-quali-sono-le-differenze/
https://mc.ai/is-there-a-difference-between-deep-learning-machine-learning-and-ai/
https://mc.ai/is-there-a-difference-between-deep-learning-machine-learning-and-ai/
https://en.wikipedia.org/wiki/ImageNet#History_of_the_ImageNet_challenge
https://en.wikipedia.org/wiki/ImageNet#History_of_the_ImageNet_challenge
https://cs231n.github.io/neural-networks-1/
https://cs231n.github.io/neural-networks-1/
https://www.sciencemag.org/news/2018/05/ai-researchers-allege-machine-learning-alchemy
https://www.sciencemag.org/news/2018/05/ai-researchers-allege-machine-learning-alchemy
https://arxiv.org/abs/1412.6980

BIBLIOGRAPHY

[22] Lilian Weng. A (Long) Peek into Reinforcement Learning. 2018. url: https:
//lilianweng.github.io/lil-log/2018/02/19/a-long-peek-into-
reinforcement-learning.html (cit. on p. 38).

[23] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing Atari with Deep
Reinforcement Learning. 2013. arXiv: 1312.5602 [cs.LG] (cit. on p. 51).

[24] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess,
Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control
with deep reinforcement learning. 2015. arXiv: 1509.02971 [cs.LG] (cit. on
pp. 54, 55).

[25] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and
Martin Riedmiller. «Deterministic Policy Gradient Algorithms». In: 31st
International Conference on Machine Learning, ICML 2014 1 (June 2014)
(cit. on p. 55).

[26] Turtlebot3. url: https://emanual.robotis.com/docs/en/platform/
turtlebot3/specifications/#specifications (cit. on pp. 63, 65).

[27] ROBOTIS dynamixel actuators. url: http://en.robotis.com/model/page.
php?co_id=actuator (cit. on p. 64).

[28] Turtlebot3 RealSense. url: https://emanual.robotis.com/docs/en/
platform/turtlebot3/appendix_realsense/ (cit. on p. 66).

[29] Enrico Sutera. «Deep Reinforcement Learning and Ultra-Wideband for au-
tonomous navigation in service robotic applications». MA thesis. Politecnico
di Torino, 2019.

[30] Anna Boschi. «Person tracking methodologies and algorithms in service
robotic applications». MA thesis. Politecnico di Torino, 2019.

99

https://lilianweng.github.io/lil-log/2018/02/19/a-long-peek-into-reinforcement-learning.html
https://lilianweng.github.io/lil-log/2018/02/19/a-long-peek-into-reinforcement-learning.html
https://lilianweng.github.io/lil-log/2018/02/19/a-long-peek-into-reinforcement-learning.html
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1509.02971
https://emanual.robotis.com/docs/en/platform/turtlebot3/specifications/#specifications
https://emanual.robotis.com/docs/en/platform/turtlebot3/specifications/#specifications
http://en.robotis.com/model/page.php?co_id=actuator
http://en.robotis.com/model/page.php?co_id=actuator
https://emanual.robotis.com/docs/en/platform/turtlebot3/appendix_realsense/
https://emanual.robotis.com/docs/en/platform/turtlebot3/appendix_realsense/

	List of Tables
	List of Figures
	Principal Acronyms
	Introduction
	Objective of the thesis
	Organization of the thesis

	State of the art
	Introduction to navigation
	DRL and autonomous navigation
	Depth Camera for Robotic Applications

	Machine Learning
	Chapter overview
	AI, Machine Learning and Deep Learning
	History of Deep Learning
	Machine Learning concepts
	The artificial neuron: Threshold Logic Unit (TLU)
	Perceptron
	Architecture of Artificial Neural Networks
	Activation functions
	Learning process: gradient descent
	Stochastic Gradient Descent
	The back-propagation algorithm

	Insights on training neural networks
	Learning slowdown
	Data overfitting
	ADAM optimizer

	Convolutional Neural Networks

	Deep Reinforcement Learning
	Chapter overview
	Introduction to Reinforcement Learning
	Elements of Reinforcement Learning

	Markov Decision Process
	Tabular methods for reinforcement learning
	Dynamic programming
	Monte Carlo Methods
	Temporal-Difference Learning

	Approximate solution method: Deep Reinforcement Learning
	Experience Replay
	Target Network
	Actor-Critic architecture
	Deep Q-Learning algorithm
	DDPG Algorithm

	Robot Platform
	Chapter overview
	Introduction to robotic platform
	Sensors
	Laser distance sensors (LDS)
	Visual sensors: Cameras
	Depth Camera

	TurtleBot3
	Actuators
	OpenCR
	Intel RealSense R200

	Software tools
	ROS
	Gazebo
	Machine Learning tools

	The navigation system
	Chapter overview
	Simulation setup
	LiDAR-based navigation
	Data filtering
	Actor-Critic neural networks
	Reward function
	Training process

	Visual based navigation
	Data processing
	Actor-Critic neural networks
	Reward function and training

	Results and Conclusions
	Results
	Metrics
	Testing simulation
	Qualitative analysis of results

	Conclusions and future works

	Bibliography

