
POLITECNICO DI TORINO

Master’s Degree in Communications and Computer
Networks Engineering

Master’s Degree Thesis

Dynamic management of cellular
networks with Base Stations on wheels

Supervisors:

Professor Gianluca RIZZO

Professor Marco AJMONE MARSAN

Candidate:

Masoud SOLTANIAN

September 2020

Summary

This thesis’s outcome is a moving base station simulator based on developing
SimuLTE, which is an LTE cellular network simulator project written in C++
on the OMNeT++ framework. After adding more than 1000 lines of C++ code
throughout this thesis, now SimuLTE has the moving base stations feature that
facilitates future researches on this topic. You can find the complete code of the
last version of SimuLTE featured by moving base stations through my GitHub:
https://github.com/Masoudsultanian/MovingBaseStations.git
C++ is one of the most complex programming languages in the world, and develop-
ers able working with this language consider it as their badge of honor. Difficulties
of this thesis in terms of development and investigation were:

• Finding an open-source extendable cellular network simulator that implements
the maximum number of LTE cellular network functionalities.

• No documentation is available for SimuLTE even at a very low level, like how
to run the project and to deal with simple possible configuration errors.

• Understanding not only how this massive project works but how to change
and develop it according to requirements for moving base stations.

A brief description of each chapter:

• In the first chapter, you will see an introduction to moving networks where the
necessity of moving base stations for the future generation of cellular networks
(5G) is discussed.

• Second chapter is related to our investigation on finding the best cellular
network simulator among several possible options discussing their pros and
cons.

• Third chapter is the place where the result of chapter 2 is explained in detail.
All network elements which are already available in SimuLTE are described.
The most crucial network element for development is eNodeB because in

ii

https://github.com/Masoudsultanian/MovingBaseStations.git

SimuLTE, the nature of eNodeB is designed to be stationary, and we want to
make it moving.

• Moving base station simulator is demonstrated in chapter 4, where you can
find many details about implementation tricks and difficulties.

• In order to show that the simulator came out from chapter 4, is working
perfectly fine, we decided to devise a set of experiments with results and put
them in chapter 5.

To make explanations more sensible, we put some algorithms and codes inside
chapter 4. Different colors are used in code presentations: light blue background
codes are the ones that are completely written within this thesis, and gray back-
ground codes are the ones that are in the original version of SimuLTE, but they
are manipulated for this thesis.
In the appendix, most of the codes written in this thesis are available.

iii

Acknowledgements

First and foremost, praises and thanks to God, the Almighty, for His blessings
throughout my thesis work to complete it successfully. I would like to express my
deep and sincere gratitude to my research supervisors:
Professor Gianluca Rizzo at University of Applied Sciences Western Switzerland,
Professor Marco Ajmone Marsan at Politecnico di Torino, Italy,
for the continuous support of my master thesis study and research, for their pa-
tience, motivation, enthusiasm, and immense knowledge without which this work
was impossible for me.
Special thanks to my wife Mina and my friends Marco Malinverno, Cyril Dinesh,
Gaetano Manzo, Marie-Bernadette Rey, who supported me technically and emo-
tionally, and Antonio Virdis, one of the creators of SimuLTE, who answered all my
questions.
Great appreciation goes to my father, Mohammad-Ali, and my mother, Mitra, who
guided me to be a good son.

iv

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction To Moving Base Stations 1
1.1 Introduction . 2
1.2 Why Moving Base Stations? . 2
1.3 Moving Base Stations . 3
1.4 Issues And Challenges . 5
1.5 The goal of this work . 6

2 Extendable Simulator? 7
2.1 What do we need? . 8
2.2 A test-bed for network simulation 8

2.2.1 JSim . 8
2.2.2 ns-3 . 9
2.2.3 OMNeT++ . 9
2.2.4 Comparison table . 10

2.3 A simulator for road traffic . 10
2.3.1 MATSim . 11
2.3.2 Treiber’s Microsimulation 12
2.3.3 SUMO . 12
2.3.4 Comparison table . 13

2.4 An extensible cellular network simulator project on OMNeT++ . . 13
2.4.1 VeinsLTE . 13
2.4.2 SimuLTE-Veins . 14

v

2.4.3 Comparison table . 14

3 SimuLTE-Veins 16
3.1 SimuLTE . 17

3.1.1 Veins and SUMO . 18
3.1.2 INET . 19
3.1.3 SimuLTE integration on OMNeT++ 19

3.2 Network Elements . 22
3.2.1 Zone settings . 22
3.2.2 Server . 24
3.2.3 Router . 24
3.2.4 Packet Gateway (PGW) . 25
3.2.5 EnodeB . 25
3.2.6 User Equipment (UE) . 26
3.2.7 Cars . 28

4 Developing ENodeB for Moving Base Stations (Moving Small
Cells) 31
4.1 Approaches and challenge . 32
4.2 Moving eNodeB . 34

4.2.1 Mobility models . 35
4.2.2 BonnMotionMobility utilization 36

4.3 Increase eNodeB population . 39
4.4 Appear and disappear eNodeB . 39

4.4.1 Appear eNodeB . 40
4.4.2 Disppear eNodeB . 41

4.5 Macro and micro eNodeBs . 41
4.5.1 eNodeB height . 42

4.6 Statistic collection . 43
4.6.1 Physical layer throughput and delay 44
4.6.2 Uplink SINR . 45
4.6.3 Per User number of Handovers 46

5 Experiments and results 47
5.1 Funtional experiments . 48

vi

5.1.1 EnodeB movement experiment 48
5.1.2 eNodeB On and off experiment 53

5.2 Performance test experiment . 54
5.3 Conclusion . 62

A 63

Bibliography 93

vii

List of Tables

2.1 Comparison of Simulators . 10
2.2 Comparison of road traffic simulators 13
2.3 Comparison between 2 cellular network simulators 15

4.1 statistics measured by SimuLTE have 3. For handovers uplink/-
downlink doesn not make sense but for coherency in table format
we mentioned both . 43

5.1 Experiment specifications . 48
5.2 Experiment specifications . 51
5.3 Experiment specifications . 53
5.4 Experiment specifications . 57
5.5 Experiment Results, DL: downlink, avg: average, CI: Confidence

Interval, Throughput (Bytes/s) is measured at physical layer , black
dot : macro eNodeB position, red dots: micro eNodeB positions . . 58

5.6 Experiment specifications . 60
5.7 Experiment Results, DL: downlink, avg: average,CI: Confidence

Interval, Throughput is measured Bytes/s 60
5.8 Experiment Results, DL: downlink, avg: average,CI: Confidence

Interval, Throughput is measured Bytes/s 61

viii

List of Figures

1.1 Introduction to moving base stations 1
1.2 the twice mobile networking concept[1] 5

2.1 Some network simulators . 7

3.1 SimuLTE-Veins . 16
3.2 Veins architecture taken from Veins official website 19
3.3 Installing Files . 20
3.4 Existing Project into Workspace . 21
3.5 Search for nested projects . 21
3.6 lte dependencies . 21
3.7 Veins-inet dependencies . 21
3.8 SimuLTE Cars . 22
3.9 SimuLTE-Veins Ready to work . 22
3.10 1432×1432m2 yellow zone with 7×7 blocks grid 23
3.11 Server on play ground . 24
3.12 Server, Router, Packet Gateway . 26
3.13 UE and eNodeB architectures . 27
3.14 NIC architecture . 27
3.15 Scenario instance . 27
3.16 7×7 grid street in SUMO . 28
3.17 Zoomed junction . 28
3.18 Cars in SUMO . 30
3.19 Cars in SimuLTE . 30

4.1 Moving Base Station . 31

ix

4.2 Communication schematic . 37
4.3 Car position trajectory with time suitable for BonnMotionMobility 38

5.1 Experiments and results . 47
5.2 initial position of UE . 48
5.3 A position close to eNodeB . 48
5.4 last position far from eNodeB . 48
5.5 SINR vs time for Moving UE . 49
5.6 Moving UE distance from stationary eNodeB vs time 49
5.7 SINR vs Distance . 50
5.8 SINR vs Distance (zoomed) . 50
5.9 initial position of Moving eNodeB 51
5.10 A position close to fixed UE . 51
5.11 last position far from fixed UE . 51
5.12 SINR vs time for moving eNodeB 51
5.13 UE distance from moving eNodeB vs time 52
5.14 SINR vs Distance . 52
5.15 SINR vs Distance (zoomed) . 52
5.16 Moving eNodeB is entering to playground 53
5.17 moving eNodeB position closest to fixed UE 53
5.18 Moving eNodeB is about to leave the playground 53
5.19 SINR vs time for moving eNodeB 54
5.20 UE distance from moving eNodeB vs time 55
5.21 SINR vs Distance . 55
5.22 SINR vs Distance (zoomed) . 56
5.23 one of five figures of this setup . 57
5.24 one of five figures of this setup . 59

x

Chapter 1

Introduction To Moving
Base Stations

Figure 1.1: Introduction to moving base stations

1

1 – Introduction To Moving Base Stations

1.1 Introduction

The next-generation of mobile networks called 5G is essential not only because
of its enormous capacity but also because of a high potential revolution that it
brings to human life. It provides higher accessibility for the user to the internet
and makes the connection of billions of devices to each other possible. With 5G,
home and industry automation is entirely possible, and health and security levels
increase rapidly. There are tons of benefits for 5G; we do not count since it is not
hidden for anyone. As the importance of implementation of the fifth generation of
mobile networks (5G) comes to focus, issues and essential technologies to overcome
the problems will be highlighted. Here we count a couple of issues to achieve 5G
and explain proposed solutions on these issues.

5G should be able to transfer a tremendous amount of information in a very
short time slot, which requires very high frequency in either uplink or downlink.
As a solution, millimeter waves with the capacity of from 30 GHz to 300 GHz
is proposed. As 5G technology grows, subscribers expect to have ubiquitous 5G
antennas everywhere and backward compatibility with 4G matters more. To address
this issue, small cells are suggested, which are portable low-powered base stations
that all together can form a dense and adaptable infrastructure. This technique is
also well-known as densification, and this thesis deals with this technique. Another
vital concern is efficiency and leveraging speed. To address this issue, MIMO
(multiple-input-multiple-output) comes to play, which allows both transmitter and
receiver to have many antennas working simultaneously. There is an interference
potential in MIMO that makes the use of beam-forming necessary.

In this thesis, among the three mentioned issues and corresponding solutions,
we worked on deploying small cells. In the following sections of this chapter, you
will see what we mean by moving base stations and why they are essential, and
finally, we count some issues and challenges we face throughout this work.

1.2 Why Moving Base Stations?

In today’s world, by the dramatic increase of mobile data traffic, deployment of
more cells in places where user equipment (UEs) presence is high is necessary. In
environments such as stadiums, universities, and shopping centers where user traffic
density is high, network densification is vital to provide a good quality of service
to each UE. The latter implies increasing the base stations (BSs), which burdens
more costs on mobile network operators (MNOs). Moreover, when there is no event
taking place in a stadium or the hours that shopping centers and universities are
closed, additional base stations will be useless. Even in daily life, users commute

2

1 – Introduction To Moving Base Stations

to work in the morning of working days, making business areas full of people
during business hours. In this duration, MNOs require more capacity provided by
dense small cell (SC) radio access network (RAN) deployments to have coverage
over working areas. After working hours, users get out of their business place, so
that the RAN capacity required in an industrial area drastically falls, and many
of the mounted SCs become unnecessary. The opposite happens in residential
quarters, where capacity is more demanding at night, typically not in business
hours. Furthermore, RAN densification in different areas may be needed when
traffic jams appear during travel to and from work [1].

These days we see network traffic with the mobility of users jointly has a sharp
increase; for instance, in concert halls, Instagram or YouTube live video traffic
requires additional network capacity. These kinds of circumstances force MNOs to
cost on the dense deployment of SCs while at the end of events like concerts or
sports matches, network traffic will have a drastic downfall. By observing these
situations, we realize that dense coverage relates to UEs’ presence in a time-varying
manner from day by day.

To make the situation better, it would be advantageous to create many SCs in
working areas in the daylight duration only, and in residential quarters during the
evening only. Deploying dense SC coverage in both business and residential, then
turning them on and off based on demand is one possibility to achieve this goal.
This way, we can bring savings in OPEX (operational expenditures), specifically
in energy consumption, but this approach does not reduce the CAPEX (capital
expenditures) caused by cell deployment. Another option is to carry SCs from
living areas to commercial districts and back for bringing cells’ capacity at the
needing place. Today, MNOs already utilize truck-mounted BSs for rapid service
provisioning in areas where service is more demanding [2], and several papers have
proposed drones to support communications in disaster areas. These solutions are
satisfactory in specific use cases, bbut they are not scalable, e.g., large metropolitan
areas, where MNOs have to pull out and synchronize hundreds of trucks mounted
with BSs or drones[1] .

1.3 Moving Base Stations
Based on the new approach proposed by [1], We choose BSs as the moving part
of the infrastructure, private cars are suitable for moving in accordance with the
mobile network clients. Thus, in a working center during working hours, both UEs
and vehicles are present. A temporary dense SC is created if a considerable part
of those cars mounted with BS. This cellular temporary dense will be recreated
in residential quarters when clients get back home with their cars. Besides, situa-
tions like traffic jam areas during rush traffic hours, football matches in stadium

3

1 – Introduction To Moving Base Stations

or concert halls will be provisioned similarly in the lack of network capacity. A
vehicle-mounted BS deployment has some prominent advantages:

• Network densification will be move-able to places in which data traffic is more
demanding. This implies drastically increase in efficiency. [3].

• With a tiny fraction of cars carrying SCs, the enormous capacity increase
will happen. capacity gains over 100% are possible with just 1% of vehicles
providing SC support as reported in[1].

• radio access network (RAN) densification is obtained very rapidly and with
a very limited cost for the MNO, since SCs are carried by vehicles, and are
used by the MNO with a small cell as a service (SCaaS) paradigm, with no
installation cost[1].

• Interconnection of a group of BSs for providing local service can happen
in areas where the cellular network infrastructure due to disasters is not
operational [1].

• Delay-tolerance in the Internet of Things (IoT) can be very effectively sup-
ported in applications like smart meter reading, by down-loading data while
they pass by smart objects[1].

Now we describe the concept of moving base stations, taken from Twice Mobile
Network (TMN) proposed by [1]. According to Figure 1.2, either a fixed or vehicle-
mounted one is connected to the backbone network via a backhaul link, which
can be either wired or wireless for fixed BSs but must be wireless for Mobile Base
Station (MoBSs). Millimetre-wave link is suggested for the connection between
a MoBS and the stationary network to sufficiently support the capacity of the
traffic between end-users and MoBSs, and also interference avoidance with the
lower frequency channels[1].

Millimetre-wave link between MoBSs is also essential to allow the creation of
a back-haul network when a direct link from a MoBS to the fixed network is not
present because of obstacles, so neighbor MoBSs provides back-haul opportunities
as well[1].

Finally, real-time management of the extremely complex Moving Network is
done by orchestrator and several controllers. MoBSs must be switched on and
off for better service provisioning, and to maximize the system performance and
energy consumption[1].

4

1 – Introduction To Moving Base Stations

Figure 1.2: the twice mobile networking concept[1]

1.4 Issues And Challenges
There are two categories of issues and challenges we face at the beginning of this
thesis:

• General issues:
By considering the difference between vehicle-based SCs and the ones carefully
planned by network operators, we realize that pre-planning of the position of
the base station to obtain minimum interference and maximum throughput
in the case of vehicle-based SC deployment does not work anymore. Because
fixed position BSs are planned to be in such a way to avoid interference and
maximize the efficiency, whereas vehicle-mounted base stations are positioned
according to drivers’ will. This requires strongly dynamic network solution
management.
Moreover, dynamic change in the position of the BS engaged with UE creates
more frequent handovers, and this again makes the rapid and on-demand
network management necessary. Random positioning of BS may lead to a high
signal to interference and noise ratio (SINR), and some actions are needed
to be done to cope with this problem. The connection of each moving BS
to back-haul is also challenging. The type of physical layer technology and
connectivity control due to the movement of BS is also crucial.

• Issues for our work:

– When we investigate network simulators, we do not find any simulator
that can simulate moving small cell networks, so the first problem is

5

1 – Introduction To Moving Base Stations

developing a module or existing project to meet our requirements, such
as creating a set of trace-based moving base stations. For the latter as a
second problem, testing different frameworks and projects, debugging and
verifying them is cumbersome and time-consuming.

– we have to figure out how much existing simulators or projects can offer
detailed attributes of today’s cellular network technology. For this purpose,
a comprehensive investigation of available projects is required.

• Issues for development:

– Programming language and available libraries that give us possibility to
develop accurate and flexible codes and at the same time easy to run on
different platforms.

– Finding frameworks with Integrated Development Environment (IDE) that
provide debugging mode for faster debug and ease of development. For
example, ns-3, despite it is a fast and well-structured network simulator,
it does not provide IDE and, as a consequence, no debugging mode so
difficult, complicated and time consuming development process.

– Performance parameters measurements and statistics such as Throughput,
Delay, SINR, Handovers (counting entirely for all users or per each user),
Channel quality indicator (CQI), etc. should be either embedded in the
available framework (project) or developed.

1.5 The goal of this work
Our aim in this thesis is to develop a project on one of the existing simulation frame-
works to achieve maximum possible approximated implementation of the Moving
Base Stations concept.We attempt to obtain numerical results of a framework that
can simulate moving small cells because we want not only to have a closer look at
dynamics and variants of this system but to achieve a cellular network simulation
environment with the possibility of moving small cells for future researches. For
this purpose, we need to solve some of the critical issues mentioned in the previous
section, such as finding a well and detailed made simulator of today’s cellular
technology and developing, bringing it up to a maturity level that can properly
simulate moving small cell base stations.

In the next chapter, one will see the procedure and criteria of choosing simu-
lators fit our work, and at the end, what simulator and which project meet our
requirements and attract our attention to start with.

6

Chapter 2

Extendable Simulator?

Figure 2.1: Some network simulators

7

2 – Extendable Simulator?

2.1 What do we need?
In this section, we will talk about the requirements of our work and explain how
we came up with the solution. Moreover, in some parts, we will talk about the pros
and cons of each choice. Here we mention briefly three main requirements which
should be met for our work:

• Comprehensive simulation test-bed able to simulate networking features of
real-world network and it either should support road traffic simulation or can
be integrated with a road traffic simulator.

• A road traffic simulator in the case in which the network simulator does not
have a road traffic simulator

• An extendable cellular network simulation project on the above-mentioned
test-bed

Based on what we said above, we started looking for a test-bed in which there is
a possibility of having both road traffic simulation and network simulation. Since
Moving Small Cells (MSC) is a quit novel idea, we did not find any simulator
being able of simulating moving base stations jointly with road traffic, and because
of the importance of modularity and extend-ability, we went through available
open-source network test-beds such as ns-3, OMNeT++, and JSim to check the
possibility of extension according to our needs. In the following, you will see that
we divided our research focus in two parts: first, finding proper test-bed fits for
simulation of cellular networks and second, finding a road traffic simulator with
the capability of integrating with cellular network simulator.

2.2 A test-bed for network simulation
Our criteria for investigation among network test-beds were open-source, modular,
extendable, discrete-event based, high processing speed, and visualization. From a
processing speed perspective, we desired a test-bed implemented in C++ or Java.
These programming languages are useful for high processing speed and complex
calculations. so we decided to look into the three most popular test-beds based on
C++ or java elaborated below.

2.2.1 JSim

JSim is an open-source Java-based simulation and animation environment support-
ing Web-Based Simulation for building quantitative numeric models and analyzing

8

2 – Extendable Simulator?

them concerning experimental reference data. Its computational engine is quite
general and applicable to a wide range of scientific domains[4]. The positive point
of JSim is that it includes a specific platform dedicated to network simulation, the
Inter-networking simulation platform called INET. The INET framework contains
models for numerous wired and wireless protocols, a detailed physical layer model,
application models, and more. However, the disadvantage of JSim is that it is a
real-time process-driven simulator. Event executions in JSim are carried out in
real-time as opposed to fixed time points in discrete event simulation. The latter
implies that this simulation test-bed doesn’t work in our case. Because discrete
event simulators are flexible and variation of the level of detail and complexity of
the simulation model is possible. The possibility to model uncertainties and the
dynamic behavior of the real system exists, but for having GUI in JSim, we need
to integrate a lot of codes manually.

2.2.2 ns-3

it is a discrete-event network simulator, created primarily for research and educa-
tional purposes. ns-3 is free software, built using C++ and Python with scripting
capability, licensed under the GNU GPLv2 license. It is publicly available for
research, development, and use[5]. ns-3 is under development by a large community
of scientists and developers with heterogeneous research interests, and it already
contains a considerable number of network modules (e.g., WiFi, WiMAX, 802.11s
mesh networks, etc.). The latter, along with being a discrete event simulator, are
prominent advantages. Moreover, having the possibility of implementing millimeter-
wave as an emerging technology for wireless communication makes ns-3 unique.
Despite all mentioned advantages above, The influential drawbacks of choosing
ns-3 for the purpose of our work are two: first, it doesn’t have a built-in integrated
development environment (IDE), which is important for programmers in terms of
fast editing and debugging of code. Second, it doesn’t provide a built-in GUI, and
this makes the error detection in network experiments difficult, especially when it
is supposed to integrate with a vehicular network or road traffic simulator.

2.2.3 OMNeT++

OMNeT++ (stands for Objective Modular Network Testbed in C++) is an open-
source, modular, component-based framework written in C++. It has a lot of
useful C++ simulation libraries and extendable for building network simulators.
Network protocols like IP or HTTP instead, the main computer network simulation
models are available in several external frameworks such as the most commonly
used one called INET, which offers various models for all kinds of network protocols

9

2 – Extendable Simulator?

like for IPv6, BGP, etc. INET also offers a set of mobility models like linear,
circular and random walk, etc. to simulate the node movement in simulations.
The basic OMNeT++ building blocks are modules, which can be either simple or
compound. Modules communicate through messages, which make discrete events
nicely possible and usually sent and received through connection links. The most
common approach to have the messaging process under our control is to manage
them by event handlers called by the simulation kernel when modules receive
a message. Besides handlers, simple modules have an "initialize" and a "finish"
function to write results to a file at the end of the simulation. The latter is really
useful to collect and analyze the results after experiments. The kernel includes
an event queue, whose events correspond to messages (including those a module
sends to itself) and regularly controls all the events throughout the simulation time.
It is a stable, mature, and feature-rich framework, much more so than ns-3. It is
supported by a large and community of users, from both academia and networking
industries, which is a guarantee that any setup time invested in learning is a reserve
over a long future. Concerning our criteria, from extendability and modularity
points of view and being a well-implemented event-based test-bed, this test-bed
meets our requirements.

2.2.4 Comparison table

In his table you see a summarized comparison among 3 investigated simulators.

- Node Mobility GUI and IDE Extendable Modular Discrete event
J-Sim 3 7 3 3 7

ns-3 3 7 3 3 3

OMNeT++ 3 3 3 3 3

Table 2.1: Comparison of Simulators

2.3 A simulator for road traffic
There are some powerful road traffic simulators (we call them RTS), but not all
are free to use. So, we just briefly introduce some popular RTSs then we explain
how we made our choice among open-source ones.

1. SUMO (Simulation of Urban MObility) is an open-source, highly portable,
microscopic road traffic simulation package designed to handle large road networks.

10

2 – Extendable Simulator?

2. Quadstone Paramics (Parallel Microscopic Simulation) Modeller: it is a modular
set of microscopic simulation instruments providing a strongly integrated platform
for modeling a complete range of real-world traffic and transportation problems.

3. AIMSUN (Advanced Interactive Microscopic Simulator for Urban and Non-Urban
Networks): a simulation package that integrates three types of transport models:
static traffic assignment tools; a mesoscopic simulator; and a micro-simulator.

4. CORSIM TRAFVU servers as a traffic simulation viewer and is part of the TSIS
CORSIM software package. It provides animation and static graphics of traffic
networks, using the CORSIM input and output files created by a licensed user of
TSIS CORSIM.

5. SimTraffic: a simulation application part of Trafficware’s Synchro Studio
package. It servers as a traffic simulator for Trafficware’s Studio, including traffic
lights synchronization application.

6. MATSim (Multi Agent Transport simulator): provides a framework for im-
plementation of large-scale agent-based transport simulations. The framework
includes several modules that can be combined or used stand-alone. Modules can
be replaced by custom implementations to test single aspects of your own work .

7. Treiber’s Microsimulation is a personal software project created by that author
and used in his research of traffic dynamics and traffic modeling .

Among all the above-mentioned RTSs, just three of them are open source: SUMO,
Treiber’s Microsimulation, and MATSim. So, we just discuss main features of these
three RTSs.

2.3.1 MATSim

MATSim developed by the Polytechnic of Zurich, providing a set of instruments
for the implementation of a very large simulation based on agents. It is used for
traffic simulation in Zurich (Switzerland), Padang (Indonesia), Berlin (Germany),
and Toronto (Canada). MATSim pursues an activity-based approach to demand
generation. Unlike other transportation simulation packages, MATSim is through-
out agent-based and generates individual activity plans as input to the network
loading rather than (time-dependent) origin-destination matrices as typically used
in dynamic traffic assignment[6]. MATSim is a simulator that uses GIS (Geographic
Information System). It can simulate the traffic of a vast region throughout the
day. But it is not interested in detail vehicle behavior, and this is a disadvantage

11

2 – Extendable Simulator?

from our perspective because this reduces the simulator’s modularity. The other
drawback of this simulator is that it does not have the necessary scalability to
simulate the entire city.

2.3.2 Treiber’s Microsimulation

This simulator has the ability to work under multiple operating systems, and it is
useful for heavy runs. It illustrates the utilization of different types of vehicles used
in the simulation: trucks and cars. The cars are shown with smaller rectangles
in color, while the trucks are larger rectangles in another color. The difference
between SUMO and this package is that SUMO is an open-source project developed
by two different institutions, while Treiber’s Microsimulation is a personal software
project whose source code is available[7]. Additionally, Treiber’s Microsimulator
includes some statistical distribution of vehicles where the user can basically define
the number of vehicles emitted per hour from a certain intersection as well as
the ratio between cars and trucks in certain scenarios[7]. Two drawbacks of this
simulator caused that we do not choose it for our work: first, it can not convert
traffic networks from most of the other simulators while SUMO has this capability.
Second and more importantly, integration with OMNeT++ has some challenges,
while SUMO integration with OMNeT++ is way more comfortable.

2.3.3 SUMO

SUMO is open-source and was created and developed at the German Aerospace
Center. In this simulator, vehicles can move freely, with the simulation of collision
between vehicles. Each vehicle has its route, and this routing is dynamic. The
vehicle behavior is considered when changing lanes happen. Roads in SUMO
are shown as a population of lanes. Moreover, the width of each lane and the
vehicle width is fixed. It does not take into account the many different types of
vehicles. SUMO allows modeling of intermodal traffic systems, including road
vehicles, public transport, and pedestrians. SUMO can be utilized with custom
models and provides a variety of APIs for the remote control of the simulation [6].
The latter is the most important feature which made us able to make a real-time
information exchange between OMNeT++ and SUMO.
Some other important capabilities of SUMO are the following:

1. we can manually write up of a traffic network in an XML file. OMNeT++ is
compatible with XML and this makes SUMO and OMNeT++ more cooperative.

2. We can Import city road map and also networks created in other traffic

12

2 – Extendable Simulator?

simulation applications .

3. Using an automatic network generator creating three different types of networks:
Grid network, Spider network Random network [7].

2.3.4 Comparison table

In this table you see a summarized comparison among 3 investigated road traffic
simulators.

- MATSim Treiber’s Microsimulation SUMO
intractability with network simulators 7 7 3

detailed vehicle behaviour 7 3 3

comprehensive documentation 3 7 3

GUI 3 3 3

Table 2.2: Comparison of road traffic simulators

2.4 An extensible cellular network simulator
project on OMNeT++

In this section we explain how we found our desired module fitting our work and
meeting our most of requirements. By investigating throughout the available
extendable project modules on OMNeT++ able to implement features of cellular
networks and also vehicular networks we found two packages: VeinsLTE and
SimuLTE-Veins. We elaborate pros and cons of each, then we describe how we
developed the C++ codes to set up our test-bed to meet maximum possible
requirements of moving base station simulator.

2.4.1 VeinsLTE

Veins is an open-source framework for vehicular network simulations. It is based
on two well-established simulators: OMNeT++, an event-based network simulator,
and SUMO, a road traffic simulator [8]. VeinsLTE is a simulator for heterogeneous
vehicular networks. It provides fine-grained simulation of vehicular networks
based on IEEE 802.11p and LTE. VeinsLTE was created by integrating three
popular frameworks to build a complete simulation suite: SUMO for detailed road-
traffic simulation,Veins for a fine-grained model of IEEE 802.11p and SimuLTE

13

2 – Extendable Simulator?

for a detailed model of LTE [9]. A first integration attempt has been performed
with VeinsLTE, which integrates a customized version of both simultators in a
single package. Nevertheless, this solution defines a third standalone framework,
rather than two interconnected simultators , taking snapshots of two independent
developments. This makes upgrading difficult, if possible at all [10]. Code extension
for developing the simulator according to our aims is very difficult on VeinsLTE.
The latter motivated us to take a look at facilities and possibilities on SimuLTE.

2.4.2 SimuLTE-Veins

SimuLTE is an OMNeT++-based simulator for LTE and LTE-Advanced cellular
networks. SimuLTE demonstrates a fully modular structure, which makes extension,
verification, and integration more comfortable. Moreover, it inherits the benefits of
OMNeT++ that is a widely-used and versatile simulation framework, and exploits
experiment support and seamless integration with the OMNeT++ network modules
and projects, such as INET. This allows SimuLTE users to build up combined
scenarios where LTE can be only a part of a wider network. SimuLTE simulates
the Evolved Packet Core and data plane of the LTE Radio Access Network [11].
SimuLTE allows simulation of LTE/LTEA in Frequency Division Duplexing (FDD)
mode, with heterogeneous eNBs (macro, micro, pico, etc.), using omnidirectional
and anisotropic antennas, possibly communicating via the X2 interface. Realistic
channel models, MAC, and resource scheduling in both directions are supported.
In the current release, the Radio Resource Control (RRC) is not modeled [11]. For
an exhaustive explanation of the detailed implementation of SimuLTE, we invite
you to take a look at [11].

As it is explained in the above paragraph, we observe that SimuLTE is not only
well designed for the detailed implementation of LTE/LTE-A, but it is modular
and extendable and by inheriting features of IP and TCP/UDP layer from INET
gives us the possibility of implementation of any cellular network scenario. With
that said and nice integration of it with Veins and SUMO made us want to choose
SimuLTE-Veins as our framework for implementation of MSC.

2.4.3 Comparison table

In his table, you see a summarized comparison between two SimuLTE projects
combined with Veins in two different approaches.

14

2 – Extendable Simulator?

- VeinsLTE SimuLTE-Veins
Up-gradable 7 3

Extendable 7 3

Veins intractable 3 3

SUMO intractable 3 3

INET intractable 3 3

Table 2.3: Comparison between 2 cellular network simulators

In the next chapter, you will get familiar with the structure and features of
SimuLTE and its integration with Veins.

15

Chapter 3

SimuLTE-Veins

Figure 3.1: SimuLTE-Veins

16

3 – SimuLTE-Veins

This chapter is an elaboration of what SimuLTE is and how it is structured.
For more information about OMNeT++, which is a testbed on which SimuLTE is
run, please visit http://www.omnetpp.org.

3.1 SimuLTE

SimuLTE is a well-made project that simulates Long-Term Evolution (LTE) of
the UMTS(3GPP-TS 36.300), which is a standard for cellular access networks.
SimuLTE simulates the data plane of the LTE/LTE-A Radio Access Network and
Evolved Packet Core. SimuLTE allows simulation of LTE/LTE-A in Frequency
Division Duplexing (FDD) mode, with heterogeneous eNodeBs (macro, micro, pico,
etc.), using omnidirectional and anisotropic antennas, possibly communicating via
the X2 interface. Realistic channel models, MAC, and resource scheduling in both
directions are supported. SimuLTE implements eNodeBs and UEs as compound
modules. These modules can be connected with each other and with other nodes
(e.g., routers, applications, etc.) for composed network creation. The Binder
module is instead visible by every other node in the system and stores information
about them, such as references to nodes. For instance, it is used to locate the
interfering eNodeBs to compute the inter-cell interference perceived by a UE in
its serving cell. UE and eNodeB are further composed of modules. Every module
has an associated description file (.ned) defining its structure and may have a class
definition file (.cpp, .h) which implements the module functionalities.

The UDP and TCP modules, taken from the INET package, implement the
respective transport layer protocols and connect the LTE stack to TCP/UDP
applications. TCP and UDP applications (TCP App and UDP App) are imple-
mented as vectors of N modules, thus enabling multiple applications per UE. Each
TCP/UDP App represents one end of a connection, the other end of which may be
located within another UE or anywhere else in the topology. SimuLTE comes with
models of real-life applications (e.g., VoIP and Video on Demand), but any other
TCP/UDP-based OMNeT++ application can also be used. The IP module is taken
from the INET package as well. In the UE, it connects the Network Interface Card
(NIC) to applications that use TCP or UDP. In the eNodeB, it connects the eNodeB
itself to other IP peers (e.g., a web server), via PPP (Point-To-Point Protocol).
The NIC module, whose structure is shown in Figure 3.14, implements the LTE
stack. It has two connections: one between the UE and the eNodeB and one with
the LTE IP module. It is built as an extension of the IWirelessNic interface defined
in the INET library, so as to be easily plugged into standard scenarios. This allows
one – among other things, to build hybrid connectivity scenarios, e.g., with nodes
equipped with both Wi-Fi and LTE interfaces. Each of the NIC sub-modules
on Figure 3.14, represents one or more parts of the LTE protocol stack, which is

17

http://www.omnetpp.org

3 – SimuLTE-Veins

common to the eNodeB as well. The only module in the UE that has no counterpart
in the eNodeB is the Feeback Generator, which creates channel feedbacks that are
then managed by the PHY module. The communication between modules takes
place only via message exchange; thus, each action starts from a message handler.
Cross module calls are used only in the form of getter/setter functions. This allows
us to maintain strong control over the interactions between modules, thus limiting
possible buggy behaviors.

3.1.1 Veins and SUMO

What is Veins? Veins is an open-source vehicular network simulation framework,
works as a set of simulation models for vehicular networks. An event-based network
simulator (OMNeT++) executes these models while interacting with SUMO, which
is a road traffic simulator. Other components of Veins are in charge of setting up,
running, and monitoring the simulation. This constitutes a simulation framework.
Veins is built to serve as a framework for writing application-specific simulation
codes. While it can be used, with only a few parameters tweaked for a specific use
case without modifications, it is also designed to serve as an execution environment
for user codes. Typically, these user-written codes will be an application that is to
be evaluated by means of simulation itself. The framework cares about the rest:
node mobility and modeling lower protocol layers, taking care of the simulation
setup and its proper execution, and collecting statistic results during and after the
simulation execution.

Veins contains an enormous number of simulation models that can be applied to
vehicular network simulation generally. Not all of them are required for every single
simulation, in fact, for some of them, it only makes sense to instantiate one in any
given simulation execution. The Veins’ simulation models serve as a box of tools:
much of what is needed to build up a comprehensive, highly detailed simulation of
a vehicular network are already accommodated in Veins. Nevertheless, a researcher
assembling a simulation is expected to know which of the available models to apply
for which task.

Veins is an Open Source simulation framework for vehicular networks. This
means that it and all of its simulation models are freely available for download,
study, and use. Nothing about its operations are kept secret. Any simulation
built and executed with Veins can be shared with interested colleagues not only
the results but the complete toolchain required for an interested colleague to
reproduce the same results, verify how they were derived, and build upon the
research performed.

As mentioned before, with Veins, each simulation is performed by executing two
simulators in parallel via a TCP connection: OMNeT++ (for network simulation)

18

3 – SimuLTE-Veins

Figure 3.2: Veins architecture taken from Veins official website

and SUMO (for road traffic simulation). A Traffic Control Interface (TraCI) protocol
has been standardized for this communication, allowing bidirectionally-coupling
simulation of network traffic and road traffic. Vehicles’ movement in the road traffic
simulator SUMO is reflected as nodes’ movement in OMNeT++ simulation. Nodes
can interact with the running road traffic simulator.

3.1.2 INET

INET Framework is an open-source model C++ library for the OMNeT++ sim-
ulation testbed. It provides protocols and models for researchers and students
interested in working with both wired and wireless communication networks. INET
is particularly useful when designing and validating new protocols or exploring
new or exotic scenarios. INET contains models for the Internet stack such as IPv4,
IPv6, TCP, UDP, OSPF, BGP, etc., wired and wireless link layer protocols such
as Ethernet,802.11, PPP, etc., support for mobility, MANET protocols, DiffServ,
MPLS with LDP and RSVP-TE signaling, several application models, and many
other protocols. Several other simulation frameworks take INET as a base and
extend it into specific desired directions, such as overlay/peer-to-peer networks,
vehicular networks, or even LTE.

3.1.3 SimuLTE integration on OMNeT++

In order to utilize simuLTE, we need to import it as a project into OMNeT++
jointly with INET and Veins. In this section, we talk about how we did it. Since it
is a little challenging, we preferred to mention it in order for newbies not to be in
trouble with the installation and importing process. If you are not interested in
this part, you can skip to 3.2.

The first release of SimuLTE was working only on Ubuntu 16.04 and OMNeT++
5.1.1, which mainly we worked on it but supporters of SimuLTE released a new

19

3 – SimuLTE-Veins

version of that which is working on Ubuntu 18.04 and OMNeT++ 5.5.1, and we
upgrade our work according to the new version, and after some days of challenge
finally it is perfectly working. Now all that you see here is based on Ubuntu 18.04,
so make sure that your operating system is Ubuntu 18.04 and you have installed
OMNeT++ 5.5.1 and make sure that you unchecked the INET installation in
the emerging window when we run OMNeT++ because it tries to install the last
version on INET which is not desirable for us. First of all create a folder and put
these three items with exactly mentioned versions inside:

• INET 3.6.6

• SimuLTE 1.1.0

• Veins 4.6

Figure 3.3: Installing Files

Secondly, make an empty folder beside this for workspace, call it whatever you like,
and change your new workspace’s path. From file/Import, you will see a window
shown below, then you select "Existing Project into Workspace," as shown in Figure
3.4 and click next. In the new window, browse for the path in which you have stored
the whole 3 installing files, and according to Figure 3.5 , make sure you have checked
"Search for nested projects." Once you performed all previous steps, ensure that
each project’s dependencies are given correctly by right click on SimuLTE (LTE)
and Veins-INET project folders respectively and choose "properties" according to
Figures 3.6, 3.7, and 3.8. Finally, run "Build All" from the "project" menu. After
finishing the build process, which takes several minutes, the whole project is ready
to use or develop, Figure 3.9.

20

3 – SimuLTE-Veins

Figure 3.4: Existing Project into
Workspace

Figure 3.5: Search for nested projects

Figure 3.6: lte dependencies Figure 3.7: Veins-inet dependencies

21

3 – SimuLTE-Veins

Figure 3.8: SimuLTE Cars Figure 3.9: SimuLTE-Veins Ready to
work

3.2 Network Elements
In this section, we will see what settings and ingredients required to build any LTE
network simulation with SimuLTE and how these ingredients can be added to our
experiment setup.

3.2.1 Zone settings

At the beginning of every simulation, we have to define zone characteristics on
which we want to mount our network elements. In order to define all physical
features of our network and its elements, we have to be familiar with the NED
language. This language is well made for this purpose by OMNeT++ developers.
To learn about syntax and semantic of NED, you have to visit chapter 3 of the
OMNeT++ 5.6.1 manual.

For every zone we in OMNeT++, we may want to specify the length(X),
width(Y), and height(Z) under the parameter keyword of our network definition file.
In the following example, you see NED code for a square zone with X=1432 meters,
Y=1432 meters (because we want to have 7×7 blocks,each block 200 meters+ 8
streets 4 meters wide each both vertically and horizontally in SUMO Figure 3.10
shows only in OMNeT++), and Z=50 meters:

22

3 – SimuLTE-Veins

1 double playgroundSizeX @unit(m) = 1432m; // x size of the area
the nodes are in (in meters)

2 double playgroundSizeY @unit(m) = 1432m; // y size of the area
the nodes are in (in meters)

3 double playgroundSizeZ @unit(m) = 50m; // z size of the area
the nodes are in (in meters)

Listing 3.1: play ground NED code

There is a command named @display by which you can define some visual attributes
of your zone:

1 @display ("bgb =1432 ,1432 ,# FCE94F ,#729 FCF;bgg =1432 ,7 , black");

Listing 3.2: play ground appearance code

Inside the @display command, every inner command is separated by a semicolon,
and within a command, each attribute is separated by a comma. The above example
with bgb, you specify the zone, and the first two elements describe the scale, and
the third and fourth elements describe the color of the zone and its background,
respectively. Then we have a second command bgg that puts a grid of 7 blocks on
our zone. Finally, with the above attributes, our "Manhattan’s quasi-streets" zone
is Figure 3.10.

Figure 3.10: 1432×1432m2 yellow zone with 7×7 blocks grid

23

3 – SimuLTE-Veins

3.2.2 Server

We need communication at the application level in both uplink and downlink to
have near to realistic experiments. One of the best network devices for this purpose
is the server. To bring the server to the scenario, we need to write a piece of code
according to listing 3.3.

1 server : StandardHost
2 {
3 @display ("p =1291.8359 ,120.83499; is=vl;i= device / server ");
4 }

Listing 3.3: server NED code

The server is a type of StandardHost defined in INET and can support application
and transport layer (TCP/UDP protocols). In the appendix, you will find the
StandardHost NED code. Once you add server code, you can see the presence of
the server in scenario figure 3.10.

Figure 3.11: Server on play ground

3.2.3 Router

One of the fundamental network devices in realistic scenarios is router. In SimuLTE
router inherits its attributes from the router defined in INET, and it has many
capabilities in terms of network protocols such as OSPF, RIP, BGP, etc. It is an
IPv4 router that supports wireless, Ethernet, PPP, and external interfaces. The

24

3 – SimuLTE-Veins

number of Ethernet and PPP ports are dependant on the external connections.
The NED code we used to have this router in our scenario is mentioned in Listing
3.4.

3.2.4 Packet Gateway (PGW)

SimuLTE simulates the Evolved Packet Core (EPC) and data plane of the LTE
Radio Access Network. Unlike 2G and 3G network architectures that switching
voice and data happens through two separate sub-domains: circuit-switched for
voice and packet-switched for data, Evolved Packet Core unifies voice and data
treating both as Internet Protocol (IP) service. One of the key devices in EPC
is Packet Data Node Gateway (PGW), which works as an interface between the
LTE network (mostly eNodeB) and other packet switching networks to manage the
quality of service (QoS), and performs packet inspection. SimuLTE also supports
GPRS Tunneling Protocol (GTP) which is an IP/UDP based protocol used in LTE
core networks. GTP encapsulates user data when passing through the core network
and carries specific signaling traffic between various core network elements. The
corresponding NED code for adding PGW into the scenario is mentioned in Listing
3.4, and Figure 3.12 shows the results of all the NED codes we provided up to now.

1 router : Router
2 {
3 @display ("p =916.1489 ,114.243996; is=vl;i= device / smallrouter ");
4 }
5 pgw: PgwStandardSimplified
6 {
7 nodeType = "PGW";
8 @display ("p =555.84094 ,114.243996; is=vl");
9 }

Listing 3.4: Router and Pacet gateway NED definition

3.2.5 EnodeB

The most sophisticated and well-made LTE/LTE-A element in SimuLTE is eNodeB.
It simulates a variety of LTE functionalities, which we mention some of them
throughout this subsection. Once each User Equipment (UE), is bounded to
an eNodeB, it allocates radio resources to UE, using Single-Carrier Frequency
Division Multiplexing (SC-FDMA) in uplink and Orthogonal Frequency Division
Multiplexing Access (OFDMA) in the downlink. This allocation is done in both
directions as a time/frequency frame of resource blocks (RBs) On each Transmission
Time Interval (TTI, 1ms). Depending on the modulation and coding scheme, each
RB carries a variable amount of bytes to/from a UE. This means SimuLTE supports

25

3 – SimuLTE-Veins

Figure 3.12: Server, Router, Packet Gateway

adaptive modulation coding. The eNodeB chooses the proper coding scheme
(QPSK,16QAM, 64QAM) based on the Channel Quality Indicator (CQI) reported
by each UE. CQI measures how each UE perceives the channel. Handovers are
supported very well according to CQI form eNodeB and UE point of views. ENodeB
in SimuLTE supports two important transmission schemes, such as Coordinated
Multi-Point (CoMP) Scheduling and Device-to-Device (D2D) communications.

The architecture of eNodeB in SimuLTE is depicted in Figure 3.13, and the
NED code is shown in Listing 3.5. There are some other features which are not
supported by eNodeB in SimuLTE such as movement and distinguishing between
macro and micro eNodeBs based on transmission power, attenuation computing
for different eNodeB antenna heights, etc.. These features and some others are
developed in this thesis and will be discussed in chapter 4.

3.2.6 User Equipment (UE)

Figure 3.13 shows how UE as a compound module in OMNeT++ is structured.
The Network Interface Card (NIC) is connected to the TCP/UDP layer through an
IP module taken from the INET package. SimuLTE has implemented NIC in good
detail according to the real LTE data link layer, Figure 3.14. An exemplary scenario
is shown in Figure 3.15, which depicts an eNodeB in the middle of Manhattan
streets, and 10 UEs are scattered around. The NED code for adding eNodeB and
UE is written in Listing 3.5. Please note that only 3 UEs are written for sample
generation of UEs. For generating more UEs, you should follow the same code

26

3 – SimuLTE-Veins

Figure 3.13: UE and eNodeB architec-
tures

Figure 3.14: NIC architecture

pattern or use for loop and use array of UEs.

Figure 3.15: Scenario instance

1 eNodeB0 : eNodeB {
2 @display ("p=716 ,716; is=vl");
3 }
4 ue1: Ue {
5 @display ("p =276.822 ,116.440994 ");
6 }
7 ue2: Ue {
8 @display ("p =134.017 ,1149.0309 ");
9 }

27

3 – SimuLTE-Veins

10 ue3: Ue {
11 @display ("p =1309.412 ,344.929 ");
12 }

Listing 3.5: EnodeB and UEs NED definition

3.2.7 Cars

Cars in SimuLTE act as a moving UE, and in terms of internal architecture, they
are the same as UEs. For car traffic models and trajectories, we need a car traffic
simulator, which is SUMO. Once we set up our car traffic scenario with SUMO,
we need to send its information, including car positions, speed, etc. at each time
instance to SimuLTE. This connection management is done through Veins, which
is a vehicular network simulator.

SUMO (Cars and streets)

Since in the previous chapter, we have talked about SUMO, here we only go a little
into detail of how to apply SUMO commands for our purposes. Please consider that
the only version of SUMO that SimuLTE works with is 0.30.0. After installation
of SUMO 0.30.0 to create a grid similar to Manhattan streets with 7×7 blocks,
each block 200 meters long and create the corresponding ".net.xml" file, we need to
insert the Listing 3.6 command in terminal (Linux).

1 netgenerate --grid --grid. number =7 --grid. length =200 --output -file
= MySUMOFile .net.xml

Listing 3.6: SUMO command for grid of street generation

The result of Listing 3.6 command is shown in Figure 3.16 and Figure 3.17. Now

Figure 3.16: 7×7 grid street in SUMO Figure 3.17: Zoomed junction

28

3 – SimuLTE-Veins

we need to insert cars into these streets and assign a random trip to each of them.
For this purpose, we go to the directory in which SUMO is installed then use the
command in Listing 3.7. please pay attention that after -n, you should mention
the name network (streets) XML file.

1 /media/E/sumo -0.30.0/ tools/ randomTrips .py -n MySUMOFile .net.xml -
e 50

Listing 3.7: SUMO command for 50 car random trip generation

the above command will generate a name.trip.xml file, but In order to be able
to run our scenario in SUMO, we need two other XML files. The first one
is the configuration file, and the second in the launch file (name.sumocfg and
name.launchd.xml). Please note that in the configuration file, you must insert the
name.net.xml file as net parameter and name.trip.xml as rout parameter, and in
the launch file, you must insert these two plus the name of the configuration file.
In the following, we see the contents of these two files. There are also possibilities
to upload real-world street maps in SUMO that we do not mention it here.

1 <configuration >
2 <input >
3 <net -file value =" MySUMOFile .net.xml"/>
4 <route -files value=" MySUMOFile .trips.xml"/>
5 </input >
6 <time >
7 <begin value="0"/>
8 <end value="500"/>
9 <step - length value="0.1"/>

10 </time >
11 <gui_only >
12 <gui -settings -file value="gui - settings .xml"/>
13 </gui_only >
14 </ configuration >

Listing 3.8: SUMO configuration xml file

1 <launch >
2 <copy file=" MySUMOFile .net.xml"/>
3 <copy file=" MySUMOFile .trips.xml"/>
4 <copy file=" MySUMOFile . sumocfg " type=" config "/>
5 <copy file="gui - settings .xml"/>
6 </launch >

Listing 3.9: SUMO launchd.xml file

29

3 – SimuLTE-Veins

Figure 3.18: Cars in SUMO

Veins

In order to make SUMO collaborative with SimuLTE, Veins comes to play. To do
so, we need to insert a NED code into our network.ned file (in addition to what
was said in 3.1.3). This code allows us to use the capabilities of Veins and INET in
SimuLTE. For more detail, you can find this piece of code in final developed release
in my GitHub: https://github.com/Masoudsultanian/MovingBaseStations.git.

Figure 3.19: Cars in SimuLTE

In the next chapter, you will see the core of the thesis, where we put our hands
into code to tackle problems and obstacles on our way of creating Moving Base
Stations. During this way, we also added extra statistic measurement capabilities
that were not implemented in the SimuLTE original code.

30

https://github.com/Masoudsultanian/MovingBaseStations.git

Chapter 4

Developing ENodeB for
Moving Base Stations
(Moving Small Cells)

Figure 4.1: Moving Base Station

31

4 – Developing ENodeB for Moving Base Stations (Moving Small Cells)

In this chapter, we talk about methods and algorithms we devised to develop
eNodeB in SimuLTE for movement support and adding new features to meet
Moving Base Stations implementation requirements. You will also see the problems,
challenges, and constraints we were facing throughout this journey. Each challenge
is introduced in each section. There were also many tests and analyses that did
not lead to solutions for challenges so that we avoid mentioning them here because
only the analyses led to the solution might be interesting for readers. Please note
that codes or algorithms with light blue backgrounds are completely devised in
this thesis.

4.1 Approaches and challenge
When we take a look at many features provided in SimuLTE for eNodeB, we figure
out that it does not support the movement of eNodeB, and here is the point we
had to stop search and start to work on SimuLTE. For this purpose, we considered
two methods and evaluated the pros and cons of each.

• Snapshots
In this method, after setting up an exemplary scenario, we had to run the
simulation for a short duration. For instance, 100 milliseconds then stop
the simulator, gather statistics, update the base stations’ position manually,
and then resume the simulation run for another 100 milliseconds and col-
lect statistics and continuously repeat this process until reaching desirable
total simulation duration. Now we briefly point out some advantages and
disadvantages to this method.

– Even though this approach is not complicated in terms of implementation
but cumbersome and time-consuming.

– It does not need to get deeply into code or even development of a com-
ponent, so regardless of time and effort by having only SimuLTE, every
cellular communications scenario can be implemented without intervening
to code.

– To account for handovers, we need to correlate vehicles’ positions from
one snapshot to another, which is burdensome.

– computation of SINR is less complex but less realistic in comparison with
contiguously moving base stations.

• Simulate moving by animating eNodeB
we imagined a grid of streets being one eNodeB at the center of each square,
so many eNodeBs placed in a nice order vertically and horizontally, and by

32

4 – Developing ENodeB for Moving Base Stations (Moving Small Cells)

turning the eNodeB ON and OFF sequentially one after another, we would
have a moving eNodeB.

– This approach is less time-consuming than the previous one, but since we
increase the number of base stations compared with the previous scenario,
we increase the computation complexity.

– We improve in terms of time spending for our experiments, but this
approach is error-prone due to high complexity.

– We are animating a moving base station by a sequence of base stations,
and this is nearer to reality rather than taking snapshots, but still it is
not realistic

• Add movement capability to eNodeB features
The only close to the realistic scenario is to physically move eNodeB itself
by applying modifications and developments in its features, also adding new
features..

– This is the most realistic scenario.
– Computational complexity burden is on functions that we embed in

SimuLTE, and taking correlation for car parameters for handovers is not
needed since the handover mechanism is well-implemented in SimuLTE.

– The only drawback of this approach is that it needs a huge effort to dive
into thousands of lines of code and perform developments to move eNodeB
neatly without disrupting other eNodeB functionalities.

After hours of discussions and counting advantages over disadvantages, we decided
to implement the last approach. To relieve our concerns about simulation stuck
due to high computation complexity, we started to look at how some SINR and
handovers are implemented. For SINR, we wanted to see how computed it is, is it
pre-computed at the initial phase of each experiment, or is dynamically computed?
What do the parameters of the handover computation depend on? Can we include
the eNodeB movement into handover computations?

Here you see the answers that we found to the above questions:

• By looking into code and extracting the SINR computation algorithm, we
figured out that SimuLTE Computes SINR for each band for each user accord-
ing to pathloss, shadowing (optional) and multipath fading upon each LTE
airframe arrival. This means no pre-computation is applied. In listing 4.1,
you can see the algorithm.

33

4 – Developing ENodeB for Moving Base Stations (Moving Small Cells)

1 for each arrived Data packet or FeedBack packet
2 {
3 get transmission power;
4 get antenna gain;
5 get the Resource Blocks used to transmit this packet ;
6 find object associated to the packet ;//if we are in

downlink this object is eNodeB otherwise UE
7 get the current position of eNodeB and UE;
8 compute pathloss ;
9 compute fading ;

10 compute shadowing (optional)
11 compute received Signal strength according to
12 transmission power pathloss , fading , shadowing and

antenna gain;
13 compute Interference ;
14 compute Noise;
15 SINR = received signal / (Interference + Noise);
16 }
17

Listing 4.1: SINR computation algorithm in SimuLTE

• Handover computation is done dynamically by checking the Received Signal
Strength Indicator(RSSI) periodically from neighboring eNodeBs by each UE.
At each time interval, each eNodeB broadcasts a handover frame. Whenever
UE receives a broadcast from another eNodeB with higher RSSI, it starts
the handover process to new eNodeB regardless of moving or stationary
eNodeB. By studying the handover process in SimuLTE and performing some
experiments, we conclude that handovers will be done correctly in moving
eNodeB scenarios as well.

Now we are sure that we can start developing eNodeB to make it movable without
worrying about SINR and handover computations.

4.2 Moving eNodeB
Our goal was to have a set of moving eNodeBs that move as if each one mounted
on top of each car in all of our scenarios so that the mobility of eNodeB should
coincide point by point with the position of the corresponding car at any time
instance. In order to develop eNodeB for this purpose, we have to study current
features of eNodeB, so we go to the path: /src/corenetwork/nodes and open the
NED file of eNodeB, remembering that NED describes the skeleton and body of a

34

4 – Developing ENodeB for Moving Base Stations (Moving Small Cells)

component and C++ is its soul. Among all features, we see that at line 77, there is a
"mobility" feature under the sub-module section, which is set to StationaryMobility
by default. This means the nature of eNodeB in SimuLTE is stationary. There is a
nice feature in OMNeT++ that allows you by holding the Ctrl key and click on
StationaryMobility it shows the source NED file of StationaryMobility, and you can
see all attributes of this feature. By observing StationaryMobility file, we figure
out that these features are part of INET.

4.2.1 Mobility models

After studying INET mobility models, we understand that there are many mobility
patterns that we can have for our eNodeB that we explain some of them which are
tested by us:

• LinearMobility
This module describes a constant speed linear motion. There are parameters
to set starting angle, speed, and acceleration. For initial positioning, users
can set three parameters (initialX, initialY, initialZ), inside a pre-defined
constraint area by themselves. After testing this model on eNodeB we realize
some drawbacks:

– We do not have speed control over eNodeB. Once we set the speed at the
initial phase of our scenario, eNodeB keeps it, and there is no possibility
to manage the speed of motion while the simulation is running.

– No possibility to change the direction of LinearMobility. Once we run
the simulation, eNodeB starts to move on a straight line in the direction
according to a given angle, and we can not manage it, and it keeps going
forward until it reaches the border of the pre-defined constraint area.

• TurtleMobility
It is a programmable mobility model, where we program our moving object
with a set of statements in the form of an XML script. There will be commands
to set the speed and position, turn to a specified angle, pass from a certain
distance, etc. So, various motion patterns can be described by this model.
This model has some disadvantages that does not fit our work.

– TurtleMobility can not consider coordinates (X, Y, Z) of the area and
just follows the path as a result of the degree of direction and speed of
movement, which are specified in the XML file program. We can not
define every point that we would like the eNodeB to traverse.

35

4 – Developing ENodeB for Moving Base Stations (Moving Small Cells)

• BonnMotionMobility
It is a trace-based mobility model, in the sense that a pre-recorded trace
file specifies nodes’ trajectory. The BonnMotionMobility uses a plain native
text file format of the BonnMotion simulation tool. Each line of this file
describes the motion of one host. A line can consist of either triplet format (t,
x, y) or quadruples (t, x, y, z). This means that the given node goes to the
position (x,y,[z]) at the time t. There is a boolean parameter called is3D that
is responsible for controlling whether lines should be interpreted as including
quadruples (3D) or triplets (2D). Here we point out some pros and cons:

– The most distinguishing feature of this mobility model is that we can tell
a node where to be at each time instance t, and this is helpful for our
purposes, especially when we want to select a car trajectory to mount an
eNodeB on that car.

– Disadvantage of this model is that it does not support real-time positioning
in the sense that there is no possibility of real-time assignment of car
trajectory to eNodeB at the first simulation run. In other words we have
to first run simulation with random car path in SUMO, providing TCP
connection with OMNeT++ through Veins, extracting each car trajectory
point by point at each time instance to have translation of SUMO path
as many (t,x,y) triplets in OMNeT++.

We studied some other mobility models like CircularMoblility and Gauss-
MarkovMobility. As their names suggest, they had some attributes, but those
attributes were not in line with our aims. for more information visit [12].

4.2.2 BonnMotionMobility utilization

In order to utilize BonnMotionMobility model, we need to provide a plain
text file with "movements" extension i.e., "Car[1].movements" for each eNodeB
that we want to make a move. We have to extract each car trajectories from
SUMO and translate them into sequences of time and position (t1 x1 y1 t2
x2 y2 ...). For this purpose, we have to study the Application Programming
Interface(API) used to communicate between SUMO and SimuLTE and un-
derstand how to change the API code to extract our desirable information.
To summarize what we studied on this API called TraCI (Traffic Control
Interface), a C++ program provides a TCP connection between the traffic
simulator as a server and the network simulator as the client. During the
connection, SUMO sends information about the traffic to OMNeT++. In
Figure 4.2, you see the schematic of the communication.

36

4 – Developing ENodeB for Moving Base Stations (Moving Small Cells)

Figure 4.2: Communication schematic

To extract required information from TraCI, there will be two important challenges:

• We have to evaluate the source code of TraCI to see how we can extract each
car’s information.

• Since each car has its own ID, we have to extract the car Id and bind it to that
car’s trajectory file to understand which car the current trajectory belongs to.

By considering the above challenges, we devised an algorithm to extract each car
trajectory as a sequence of time and positions to keep each file’s uniqueness for
each car using car IDs. In listing 4.2, this algorithm is shown.

1 while simulation is running
2 {
3 for each car[i] in scenario
4 {
5 create a file car[i]. movements ;
6 write current simulation time;
7 write position .X and position .Y;
8 }
9 }

Listing 4.2: Algorithm for time and position extract result of this algorithm in
Figure 4.3

To get a desirable result, we found the TraCIScenarioManager.cc file in which we
insert our modification after line 950. In listing 4.3, you can see the piece of C++
code we used to extract this information. Please note that this code describes
inside the for loop of the above algorithm.

37

4 – Developing ENodeB for Moving Base Stations (Moving Small Cells)

1 FILE *fp=fopen("Car[i]. movements ","a");
2 std :: string str = std :: to_string (simTime ().dbl ()) +" "+

std :: to_string (p.x) +" "+ std :: to_string (p.y) +" ";
3 fputs(str.c_str (),fp);
4 fclose (fp);

Listing 4.3: C++ code inside the for loop

Now we have car trajectories compatible with BonnMotionMobility, each in a
separate file suitable for assigning each file to each eNodeB. This way, we can have
eNodeBs exactly at car positions at the right time. We have to change the mobility
field in eNodeB.ned file as shown in listing 4.5 but do not forget to import the
corresponding package on top of the eNodeB.NED file, listing 4.4, then we have to
tell eNodeB to move according to the trajectory indicated in the car[i].movements
file in omnetpp.ini file, listing 4.6.

1 import inet. mobility . single . BonnMotionMobility ;

Listing 4.4: BonnMotionMobility source package

1 mobility : BonnMotionMobility {
2 @display ("p=50 ,175; is=s");
3 }

Listing 4.5: Adding BonnMotionMobility to eNodeB features

1 *. eNodeB1 . mobility . typename = " BonnMotionMobility "
2 *. eNodeB1 . mobility . traceFile = "Car [1]. movements "
3 *. eNodeB1 . mobility .is3D = false
4 *. eNodeB1 . mobility . nodeId = -1

Listing 4.6: Car trajectory assignment to eNodeB

Figure 4.3: Car position trajectory with time suitable for BonnMotionMobility

38

4 – Developing ENodeB for Moving Base Stations (Moving Small Cells)

4.3 Increase eNodeB population
When we want to have more than one eNodeB in our experiments, we have to
perform some steps. We are mentioning these steps here as a separate section
because it was challenging, and there is no guide or tutorial for it. For every eNodeB
which we want to add to our scenario, we have to pass these steps mentioned in the
algorithm shown in listing 4.7 in this algorithm; we assume that we have eNodeB0
already in the scenario and we are going to add eNodeB1:

1 // step1 : Add the line of code corresponding to new adding eNodeB
and make sure that you have imported its package

2 import lte. corenetwork .nodes. eNodeB ;
3 eNodeB1 : eNodeB {
4 @display ("p=200 ,0; is=l");
5 }
6 // step2 : set up the backhaul connection (to packet gateway)
7 pgw.pppg ++ <--> Eth10G <--> eNodeB1 .ppp;
8 // step3 : open omnetpp .ini file and add these lines
9 *. eNodeB *. numX2Apps = 1

10 *. eNodeB *. x2App [*]. server . localPort = 5000 + ancestorIndex (1)
11 *. eNodeB0 .x2App [0]. client . connectAddress = " eNodeB1 % x2ppp0 "
12 *. eNodeB1 .x2App [0]. client . connectAddress = " eNodeB0 % x2ppp0 "

Listing 4.7: Steps for each additional eNodeB

There are some considerations regarding steps 2 and 3:

• In the LTE network, the interconnecting interface between eNodeBs is X2 and
supports both Control Plane and User Plane. Whenever we add new eNodeB,
we have to put the number of X2 connections equal to the number of eNodeBs
that this new one wants to connect to i.e., when adding the fifth eNodeB, we
have to put *.eNodeB*.numX2Apps = 4. This means now each eNodeB has
four X2 connections (one for each of the other eNodeBs).

• In the array of connecting addresses of each eNodeB, we have to specify which
other eNodeBs this new eNodeB is connected to (listing 4.7 lines 11 and 12).
PPP stands for point to point protocol that is implemented in INET and is
used in SimuLTE.

4.4 Appear and disappear eNodeB
According to what is illustrated in Figure 4.2, SUMO as a server tells about
conditions of the cars at each time instance to OMNet++ by a TraCI listener inside
the Veins. There are moments in which you see that cars enter (appear) to the

39

4 – Developing ENodeB for Moving Base Stations (Moving Small Cells)

scenario and also leave (disappear) after a while. The question that arises is that
what should we do with eNodeBs mounted on top of cars which enter the scenario
at time t1 and leave at time t2 (t1<t2)? We divided the problem into two main
parts to address the problem and tried to conquer like what you will read in 4.4.1
and 4.4.2.

When we think about appearing, disappearing eNodeB, we envision physically
appearing them and then disappearing after some time, just like what is happening
for cars in SUMO, which is ideal but it has some disadvantages:

• Appearing and disappearing, a wired node in OMNeT++ needs to manipulate
the code of the graphical part of the program, and that would need OpenGL
coding knowledge, which was difficult to manage in 6 months with having lots
of other works to do.

• Since OMNeT++ depicts all the nodes contributing to the scenario at the
beginning (except cars), if we want to frequently appear and disappear nodes,
it burdens a huge workload on our computing system, especially in large
scenarios with a lot of moving eNodeBs.

4.4.1 Appear eNodeB

By studying the functionalities of eNodeB in SimuLTE, we figure out that there is
an initialize function for eNodeB embedded at the physical layer at LtePhyEnb.cc
file in which "start to work of eNodeB" is written in C++ code. In this function,
each eNodeB introduces its presence to other nodes (eNodeBs, UEs, and cars) with
a broadcast message. The time of the broadcast message is set to 0, which means
at the beginning of the simulation process.

The idea of appearing eNodeB can be implemented by just turning the eNodeB
on at the time at which the corresponding car that is supposed to carry this eNodeB
appears to the scenario. However, how to turn an eNodeB on? By scheduling
the time at which the eNodeB introduces its presence equal to the presence of its
carrier car to the scenario. The algorithm is written in listing 4.8.

1 //at the end of initialize funtion of LtePhyEnb .cc
2 if (eNodeB is the one that we want to turn on)
3 {
4 scheduleAt (Time of car presence , broadcast message Starter);
5 Eisable ppp link of eNodeB to server ;// Enable back haul
6 // scheduleAt is a function in OMNeT ++ used to schedule a self -

message , this self - message turns on the eNodeB
7 }

Listing 4.8: An algorithm for turning eNodeB on

40

4 – Developing ENodeB for Moving Base Stations (Moving Small Cells)

4.4.2 Disppear eNodeB

After studying and testing the eNodeB behavior, we realized that by setting the
transmission power of eNodeB to zero, we turn eNodeB off when the carrier car
leaves the scenario. This way, we disable all eNodeB functionalities. How we do
it in the code? In the LtePhyEnb.cc file, which defines attributes of the physical
layer of eNodeB, there is a function named handleAirFrame(cMessage* msg). This
function is responsible for all the receiving packets from all nodes in the network
and can work only if the transmission power of eNodeB is not zero. By using the
algorithm mentioned in the listing 4.9, we turn off the eNodeB.

1 //at the beginning of handleAirFrame function of LtePhyEnb .cc
2 if (eNodeB is the one that we want to turn off and simulation time

= leaving time of the car that carries This eNodeB)
3 {
4 set the transmission power to zero;
5 disable PPP link of eNodeB to the server ;// disable backhaul
6 }

Listing 4.9: An algorithm for turning eNodeB off

4.5 Macro and micro eNodeBs
Distinguishing between macro and micro eNodeBs is one of challenging parts of
developing SimuLTE. By looking at the SimuLTE website and investigating in
code and asking creators of SimuLTE, we figure out that having both macro and
micro eNodeBs in one experiment simultaneously is not provided in the SimuLTE
original code. So we decided to develop this facility for eNodeB as well. Although
SimuLTE creators claim that by having different antenna transmission directions
i.e., omnidirectional and anisotropic we can have micro and macro base stations in
the same scenario, the transmission power and antenna height are two important
factors that are not possible to be obtained with just changing omnidirectional
to anisotropic. Finally we decided to have both micro and macro eNodeBs at the
same time with distinct transmission power and antenna height. there are two
important decision-making points:

• In order to distinguish between macro and micro eNodeBs, we have to look
for a feature that makes the difference between eNodeBs independently. What
comes to mind is eNodeB Id (identifier), but there is also cell Id, which is
exclusive to each eNodeB.

• We have to decide what the best place among these forty thousand lines of
code is for making the decision about which eNodeBs are about to be macro

41

4 – Developing ENodeB for Moving Base Stations (Moving Small Cells)

and which ones are to be micro

For the first point making a decision depends on the second point, which means
in some of the C++ classes defined in SimuLTE, we can work with eNodeB Id in
some others with cell Id. After searching and testing some functions, it turns out
that in the C++ class header file named LteCellInfo.h (in the previous SimuLTE
version named LteDeployer.h), there is a getter function that only returns the type
of eNodeB for either macro or micro type, not both. So we found the best place to
make a decision is here. In the listing below, you can see the modified code of the
get function in the LteCellInfo.h file.

1 EnbType getEnbType ()
2 {
3 if (cellId_ ==1 || cellId_ ==2)
4 eNbType_ = MACRO_ENB ;
5 else
6 eNbType_ = MICRO_ENB ;
7 return eNbType_ ;
8 }

Listing 4.10: Developed get function that returns eNodeB type based on cell Id
(LteCellInfo.cc)

When this function is called from the physical layer C++ class of eNodeB (LtePhyEnb),
the physical layer class initialize function sets the transmission power of each eN-
odeB base on what this get function return. In getEnbType() function, in exemplary
way we have described that we have two macro eNodeB for cell Ids equal to 1
or 2, and all the others are micro, but by using an extended if-else command or
switch-case command we can have desirable number of macro or micro eNodeBs.

4.5.1 eNodeB height

When we have different types of antennas, we would like to have different antenna
altitudes as well. This makes us want to develop SimuLTE more. In SimuLTE,
the eNodeB height contributes to the computation of attenuation in the LTE
communication channel. For channel simulation, SimuLTE has a component named
LteRealisticChannelModel.ned in which the attenuation computation is performed
there but for macro and micro eNodeBs distinctly. We bring them together in one
function with different eNodeB height, to do so, the goal was to choose a feature
that based on we could differentiate among eNodeB types in order to assign the
different heights.

After investigating this feature, we realize that eNodeB Id is the best choice,
but the problem is that this feature is not available in the getAttenuation function,
which computes attenuation, and we have to find a way to pass eNodeb Id to this

42

4 – Developing ENodeB for Moving Base Stations (Moving Small Cells)

function. We use a search algorithm to find some points in code that we have
eNodeB Id available for passing it to the getAttanuation() function to be able to
make decision in getAttenuation() function.

1 if (Find functions calling getAttenuation function)
2 if(find eNodeB Id)
3 pass Id with getAttenuation arguments
4 else
5 Find eNodeB Id where the caller function of getAttenuation

is called and pass the Id

Listing 4.11: recursive algorithm to find eNodeB Id for getattenuation()

After successfully passing the eNodeB Id to the getAttenuation function, we have
to choose which eNodeB will be macro for having higher height. The next step
is going to put together attenuation computation and make a decision based on
eNodeB height. For more clarity, the developed code for attenuation computation
is shown in the appendix. Please note that formulas are taken from the Winner II
channel model.

4.6 Statistic collection
SimuLTE has a nice statistic collection mechanism, and some statistic measurements
are available in the original code, but SimuLTE creators do not collect some essential
ones for our purpose. We decide to create and embed them into simuLTE code.
First of all, to highlight our work, we have to see what performance parameter
statistics are collected in SimuLTE and what are not. In Table 4.1, we see all the
statistic measurements related to our work. Measuring throughput and delay in

Per user performance metrics Uplink Downlink
Mac layer throughput 3 3

Physical layer throughput 7 7

Mac layer delay 3 3

Physical layer delay 7 7

SINR 7 3

Number of Handovers 7 7

Table 4.1: statistics measured by SimuLTE have 3. For handovers uplink/-
downlink doesn not make sense but for coherency in table format we mentioned
both

the Mac layer is useful when UE does not move from one cell to another because in
SimuLTE, when a user moves to a new cell, all statistics measured in the last cell

43

4 – Developing ENodeB for Moving Base Stations (Moving Small Cells)

will be eliminated. This is weird, but that is how simuLTE works; hence, we will
explain how delay and throughput measurement are developed in the physical layer
of all LTE nodes in SimuLTE. In the following, you will see how we implement
statistic measures that they are specified with (7) in the above table.

4.6.1 Physical layer throughput and delay

The most important question for starting to compute delay and throughput is
that what formula is suitable for measuring these parameters? We decide to use
formulas for throughput and delay which are used in original SimuLTE code.

1 for each arrived packet
2 {
3 Total received bytes += the current packet size
4 Throughput = Total received bytes / current time
5 }

Listing 4.12: average throughput

1 for each arrived packet
2 Delay = current time - packet time stamp

Listing 4.13: Delay

At each time instance we collect each received packet size and its arrival time in a
vector for point by point throughput computation.

Downlink

We have to embed corresponding code inside the physical layer of UE for having
delay and throughput computed truly in downlink. According to the above formulas,
whenever a UE receives a data packet, it computes delay and throughput.

Uplink

Computation of throughput and delay for each UE at uplink is very challenging
because, at each time instance, many packets from all UEs that are connected to
an eNodeB arrive at the physical layer of eNodeB, so there are two main challenges
for developing the throughput ant delay at uplink:

• Distinguishing packets in order to understand which UE this packet belongs
to.

• Once eNodeB identifies the UE that has sent this packet, it needs to have
access to that UE’s physical layer to write statistics of this packet to its owner.

44

4 – Developing ENodeB for Moving Base Stations (Moving Small Cells)

For the latter, you may say each eNodeB can save a record of each connected UEs,
and for each of them at the end of simulation report throughput and delay. This
may seem easier to implement but actually does not work in our case because we
have to consider that our eNodeBs are moving and at each time we may have UEs
joining and leaving the current eNodeB and keeping track of each single UE and
transfer its statistic information to the eNodeB that UE is going to handover on is
messier from the coding point of view and also more complicated for the running
machine and eventually may not work.

Some coding techniques can be applied to solve the two above mentioned
challenges:

• For the first challenge, we propose to use an object pointer of UserControlInfo
class inside the handelAirFrame function inside the physical layer of eNodeB
that points to the control information part of the packet and call the function
getSourceId. This way, we can have access to the packet transmitter’s Id,
which is one of the UEs connected to this eNodeB.

• The solution we are going to use for the second challenge is more tricky and
has some steps:

– Using forward declaration, we should announce a pointer object that is
about to point to UE’s physical layer.

– To specify which UE the pointer object is going to point to, we write a
function that uses the module that is in charge of binding UEs to each
eNodeB and provides access to the physical layer of UE. This way, we can
write all statistics of uplink inside the corresponding UE.

you can see the developed codes in appendix.

4.6.2 Uplink SINR

The SINR computation algorithm in SimuLTE is shown in listing 4.1. Challenges for
computation of SINR at uplink are very similar to challenges mentioned for Uplink
throughput and delay computation. We used almost the same solutions applied
for uplink delay and throughput, for this case. In the LteRealisticCannelModel.cc,
which is responsible for channel model and conditions, there is a function that is in
charge of SINR computation. Whenever this function is called from the physical
layer of eNodeB (uplink), it computes per packet SINR, and with the help of a
pointer object to the physical layer of UE, we collect SINR and record for that
specific UE. The general approach is very similar to what is mentioned in the
previous section for uplink throughput and delay. The developed code is in the
appendix.

45

4 – Developing ENodeB for Moving Base Stations (Moving Small Cells)

4.6.3 Per User number of Handovers

When we look at the Handover process in SimuLTE, we see that computations and
management are done very nicely, but there is a missed statistic collection point,
which is per user number of Handovers in the experiment. All the computation
and management processes of Handovers are done in the physical layer of each UE.
So the approach is to sit in the doHandover() function and observe the Handover
completion. Once it is done, we increase a private variable belonging to the
corresponding UE class’s physical layer by 1.

For collecting all the mentioned developed statistics, we used the signal-emit
approach. In the next chapter, we will perform a set of functional tests to evaluate
what is developed in this thesis, and at the end a performance test on a large
scenario with 200 UEs and 6 micro (moving and stationary) and 1 macro stationary
eNodeBs.

46

Chapter 5

Experiments and results

Figure 5.1: Experiments and results

47

5 – Experiments and results

5.1 Funtional experiments

5.1.1 EnodeB movement experiment

As an outcome of our work in this thesis, to ensure that the eNodeB movement
is done properly, we will set up two comparative experiments then compare the
results for the validity of our work in this thesis.

• First setup: UE moves, eNodeB doesn’t move.

– Goal: Examination of UE movement.
– Description: In the first experiment, we set up a scenario where one macro

eNodeB and one user equipment (UE) are located in a 1432×1432m2 area.
The eNodeB position will be fixed for the whole experiment duration,
but the position of UE at the beginning of the experiment is near the
eNodeB (Figure 5.2) then with a constant speed approaches close to
eNodeB (Figure 5.3) then as the time goes on it gradually moves away
(Figure 5.4) with the same constant speed (as if the user sits in a car).
During the experiment, we measure SINR perceived by UE (downlink)
and the distance of UE from eNodeB .

Figure 5.2: initial posi-
tion of UE

Figure 5.3: A position
close to eNodeB

Figure 5.4: last position
far from eNodeB

– Hypotheses:

- Number Height Antenna gain Speed TX power Moving
UE 1 1.5m 0 15m/s 26 dBm 3

Macro EnodeB 1 25m 18 0m/s 46 dBm 7

Table 5.1: Experiment specifications

48

5 – Experiments and results

– Expectation: As the UE approaches eNodeB, we anticipate higher SINR,
and as it goes farther from eNodeB, we expect the received signal at UE
is weaker so that the SINR will decrease.

– Result: From two curves below, we observe that measured results for both
distance and SINR meet our expectations. So at the beginning of the
experiment, UE gets close to static eNodeB smoothly (shorter distance)
while the SINR approaches its top value. The closer UE to eNodeB, the
higher SINR until around time=22 seconds, then by going UE far from
eNodeB, a downturn in SINR starts and continues until the end of the
experiment at time=120 seconds.

Figure 5.5: SINR vs time for Moving UE

Figure 5.6: Moving UE distance from stationary eNodeB vs time

49

5 – Experiments and results

Figure 5.7: SINR vs Distance

Figure 5.8: SINR vs Distance (zoomed)

• Second setup: eNodeB moves, UE does not move.

– Goal: Examination of eNodeB movement.

– Description: we set up the scenario precisely opposite of the previous
scenario in terms of positions. In this experiment, instead, we fix UE’s
position on the place that eNodeB was in the previous experiment for the
whole experiment duration, and we move eNodeB on the same path and
speed of UE in the previous experiment. Please note that moving eNodeB
goes close to UE diagonally-straight and then gets far from it.

– Hypotheses: the same as previous experiment except moving part which
is vice-versa.

50

5 – Experiments and results

Figure 5.9: initial posi-
tion of Moving eNodeB

Figure 5.10: A position
close to fixed UE

Figure 5.11: last posi-
tion far from fixed UE

- Number Height Antenna gain Speed TX power Moving
UE 1 1.5m 0 0m/s 26 dBm 7

Macro EnodeB 1 25m 18 15m/s 46 dBm 3

Table 5.2: Experiment specifications

– Expectation: We expect that by making the distance between UE and
eNodeB larger, we witness a lower SINR, and more importantly, we
anticipate getting almost identical results compared to the first setup.

– Result: Depicted results show that measured SINR and distance values are
identical to the first setup. So the results are in line with our expectations.

Figure 5.12: SINR vs time for moving eNodeB

51

5 – Experiments and results

Figure 5.13: UE distance from moving eNodeB vs time

Figure 5.14: SINR vs Distance

Figure 5.15: SINR vs Distance (zoomed)

52

5 – Experiments and results

5.1.2 eNodeB On and off experiment

This experiment aims to validate the developed framework in this thesis through a
turn on then a shutdown that we give to a moving eNodeB. This way, we ensure
that the mounted eNodeB on top of entering the car to the scenario is operative,
and it will be expelled functionally from the scenario when its carrying car leaves.
Since cars enter from one side of the setup scenario and leave from the other side,
the mounted eNodeB on the corresponding car which comes to scenario and leaves
must be turned on and off at the time which that car enters and leaves the scenario
respectively.

• Description: The moving eNodeB will arrive in the scenario from the left side
of the playground after 20 seconds passed from the starting time of simulation
(Figure 5.16), this means moving eNodeB should be turned on at t=20. There
is a UE in the middle of the playground at position (716,716), which is going
to start to communicate with moving eNodeB once the eNodeB enters (t=20s,
turned on). As time passes moving, eNodeB gets closer to UE. After reaching
the closest point (Figure 5.17), it moves away gradually until it vanishes
(t=100, turned off)(Figure 5.18).

Figure 5.16: Moving eN-
odeB is entering to play-
ground

Figure 5.17: moving eN-
odeB position closest to
fixed UE

Figure 5.18: Moving eN-
odeB is about to leave the
playground

• Hypotheses: Table 5.3

- Number Height Antenna gain Speed TX power Moving
UE 1 1.5m 0 0m/s 26 dBm 7

Macro EnodeB 1 25m 18 10m/s 46 dBm 3

Table 5.3: Experiment specifications

53

5 – Experiments and results

• Expectation: we look forward to seeing no SINR computed for the t<20s
because there is no eNodeB, therefore no communication between UE and
eNodeB before t=20s then we have to see computed SINR from t=20s, and
by passing the time it creates a bell shape until it goes out of the playground
because when eNodeB goes further, it approaches closer to UE thus higher
SINR and when it departs away we expect lower SINR and when eNodeB
disappears, no SINR.

• Results: Both graphs shown in Figure 5.19 and Figure 5.20 do not show any
value before time=20s and after time=100 for SINR and distance, respectively,
which means eNodeB has been successfully deactivated before time=20 and
after time=100. eNodeB is activated exactly at time=20, then it remains
active until time=100s and just right after time=100 it is off. We observe
the highest amount of SINR around time=60 in Figure 5.19, which translates
to the minimum distance of eNodeB around time=60 in Figure 5.20. results
match our expectations.

Figure 5.19: SINR vs time for moving eNodeB

5.2 Performance test experiment
In this section, the aim we envision is to evaluate and compare throughput and delay
at packet reception of each UEs, which is its physical layer, when they are served
by macro and micro eNodeBs in two different scenarios: static micro eNodeBs and
moving micro eNodeBs. Please keep in mind two important cases:

• Case 1: in all scenarios and all different seeds, we put a macro eNodeB in the
middle of the playground which its coverage is over total of 200 UEs present in

54

5 – Experiments and results

Figure 5.20: UE distance from moving eNodeB vs time

Figure 5.21: SINR vs Distance

the playground in all scenarios. This means in the absence of micro eNodeBs
in a part of the playground, the corresponding UEs present in that part are
under the coverage of macro eNodeB.

• Case 2: we did a preliminary experiment to compare the performance when
we have

– Only a macro eNodeB in the middle.
– A macro eNodeB in the middle and six micro ones randomly positioned
in the playground.

Results showed, on average, 73% increase in throughput when six micro
eNodeBs come to assist macro eNodeB. the reasons why we chose six eNodeB
was firstly, to have a low computation complexity to have lower run time for

55

5 – Experiments and results

Figure 5.22: SINR vs Distance (zoomed)

simulating each experiment, and secondly, to ensure that for all UEs, there
is almost the same chance to get served by micro eNodeBs when we throw
micro eNodeBs in the playground uniformly at random.

Now we are going to see two comparative setups’ specifications and results:

• First setup: One macro eNodeB in the middle and six stationary micro
eNodeBs are randomly positioned.

– Goal: Study throughput and delay.
– Description: one macro eNodeB is fixed in the middle of a grid similar

to Manhattan streets with 7 × 7 blocks, each block size is 200m × 200m.
There are six micro eNodeBs positioned uniformly at random in the grid
playground for five different random seeds. There will also be 200 UEs
that are randomly positioned uniformly in the playground for each run.
The server sends packets towards all UEs (downlink) with a speed of
100 packets per second for a total of 120 seconds simulation run time.
Throughput and delay are measured at the physical layer of each eNodeB.

– Hypotheses: Table 5.4

– Expectations: As each micro eNodeB randomly gets a position, we expect
that for those runs in which micro eNodeBs are in close neighboring,
throughput gets lower value due to the impact of interference of closely
located micro eNodeBs.

56

5 – Experiments and results

Figure 5.23: one of five figures of this setup

Characteristic Value Characteristic Value
Number of macro eNodeBs 1 Micro TxPower 30dBm
Number of micro eNodeBs 6 Number of sent packets/s 100

Number of UEs 200 Macro eNodeB height 25m
Bandwidth 20MHz Micro eNodeB height 2.5m

Macro TxPower 46dBm Simulated time (seconds) 120
Moving macro eNodeB No Moving micro eNodeB No

packet size (at application layer) 40B Connection Type UDP

Table 5.4: Experiment specifications

– Results: Depicted positions in Table 5.5 show that whenever micro eN-
odeBs are getting close to each other or macro eNodeB, the interference
increases and causes low throughput. This is more visible in the second
run, where three micro eNodeBs are close to each other, and one is close
to macro eNodeB, which causes the lowest throughput among all runs.

57

5 – Experiments and results

Runs DL avg throghput DL avg delay eNodeB positions

1 7214.35 0.001s

2 6069.13 0.001s

3 6865.39 0.001s

4 7286.68 0.001s

5 6770.72 0.001s

average: 6841.25 0.001 -
95% CI (6239.55 , 7442.96) (0.001-1.53e-10,0.001+1.53e-10) -
99% CI (5843.46 , 7839.05) (0.001-2.55e-10,0.001+2.55e-10) -

Table 5.5: Experiment Results, DL: downlink, avg: average, CI: Confidence
Interval, Throughput (Bytes/s) is measured at physical layer , black dot : macro
eNodeB position, red dots: micro eNodeB positions

On the contrary, in the fourth run, we observe that not only micro eN-
odeBs are far from each other, but they are nearer to the playground’s

58

5 – Experiments and results

borders. This nice fall-apart distribution of micro eNodeBs leads to the
best throughput amongst all. The average throughput of overall runs is
6841.25 Bytes/s.

• Second setup: One macro eNodeB in the middle and six moving micro eNodeBs
circulate in the streets of pseudo-Manhattan playground according to random
paths.

– Goal: Study throughput and delay
– Description: all the description for this setup is identical to the first setup
except that now micro eNodeBs are no longer stationary. They move
based on a random path assigned to each of them.

Figure 5.24: one of five figures of this setup

– Hypotheses: Table 5.6

– Expectations: Since we will have 6 moving micro eNodeBs circulating in
the playground on their own path, we expect to see many handovers in
the scenario. the impact of handovers on performance should not be so
much because we set handover latency to be one millisecond.

59

5 – Experiments and results

Characteristic Value Characteristic Value
Number of macro eNodeBs 1 Micro TxPower 30dBm
Number of micro eNodeBs 6 Number of sent packets/s 100

Number of UEs 200 Macro eNodeB height 25m
Bandwidth 20MHz Micro eNodeB height 2.5m

Macro TxPower 46dBm Simulated time(seconds) 120
Moving macro eNodeB No Moving micro eNodeB Yes

packet size (at application layer) 40B Handover latency 0.001s
connection Type UDP - -

Table 5.6: Experiment specifications

Runs DL avg throghput DL avg delay Total handovers
1 6732.72 0.001s 544
2 7147.92 0.001s 481
3 6380.26 0.001s 391
4 7263.35 0.001s 495
5 7283.34 0.001s 470

average: 6961.51 0.001s 476
95% CI (6472.82 , 7450.21) (0.001-1.23e-10,0.001+1.23e-10) -
99% CI (6151.13 , 7771.91) (0.001-2.31e-10,0.001+2.31e-10) -

Table 5.7: Experiment Results, DL: downlink, avg: average,CI: Confidence
Interval, Throughput is measured Bytes/s

– Results: Even though we have many handovers in this scenario, we see
that the average throughput of all runs for this scenario is 6961.51, which
is almost two percent higher than the static scenario. Even if we do not
have improvement in throughput and result of stationary scenario is equal
to moving scenario, this is interesting because this moving micro eNodeB
results show that with lower price (CAPEX) we are getting almost the
same result as stationary micro eNodeB scenario.

• Third setup: repetition of the second setup with zero handovers latency. In
this experiment, we repeat the second setup with all its specifications but
with different handover latency. In the beginning, we tried to set the handover
latency to zero, but OMNeT++ issues an out of range error because of its
constraints on my machine for processing intermediate instructions within
handover. After analyze and experiment, we realized that the minimum
possible latency for the handover process is 10 microseconds. So we repeat
the second setup with handover process latency equal to 10 microseconds.

60

5 – Experiments and results

As all other parameters are exactly equivalent to the second setup, the goal,
description, and hypotheses in this setup are the same as previous, so we just
mention the results.

Runs DL avg throghput DL avg delay Total handovers
1 6755.81 0.001s 544
2 7166.61 0.001s 481
3 6397.46 0.001s 391
4 7283.15 0.001s 495
5 7299.54 0.001s 470

average: 6980.51 0.001s 476
95% CI (6491.92 , 7470.40) (0.001-1.23e-10,0.001+1.23e-10) -
99% CI (6169.77 , 7792.85) (0.001-2.31e-10,0.001+2.31e-10) -

Table 5.8: Experiment Results, DL: downlink, avg: average,CI: Confidence
Interval, Throughput is measured Bytes/s

-Results: What we observe from the table tells us that although we decreased
the handover latency to 10 microseconds, there is no significant change in
throughput, which is reasonable because we are sending 100 packets per second
at the application layer. Each packet size at application layer is 40B and we
have 73B air frame (at physical layer = 40+5(GTP)+20(IP)+8(UDP)), so it
means that during the moment in which handover is processing in the previous
setup, which lasts one millisecond, there will be at most 7 bytes reception
less for those nodes which are involving in handover. By reducing handover
latency, we can say in this setup nodes that execute the handover process
in 10 microseconds instead of one-millisecond receive at most 7 bytes more
after each handover at their physical layer with respect to previous setup. By
doing simple math, it is quite rational that we have a little higher average
throughput in the third setup.

what we learn from all three setups of these experiments is that, By comparing
static and moving scenario throughput and delay results, we realize that even
if we have six moving eNodeBs that move non stop for 120 seconds around our
playground and there are, on average, two handovers per UE and interference
is higher when two cars passing by each other, still throughput and delay
are more or less the same. On average moving scenario (third setup) gives
throughput 2% more than the static scenario.

61

5 – Experiments and results

5.3 Conclusion
After developing and running many simulations to test the simulator itself and
measuring performance parameters in both static and moving eNodeB scenarios,

• The first achievement in this thesis is a simulation tool that has developed
SimuLTE capabilities to run and test new simulations based on moving base
stations. It also collects new statistics such as:

– Per-user physical layer throughput and delay.
– Per-user number of handovers.
– Per-user received SINR in uplink direction at eNodeB.
– Distance of each node from the base station.

There are also some functions (C++ methods) are created or developed in
this thesis, such as:

– getPhyByMacNodeId(), which provides access to the physical layer of a
node by having its Mac Id. This is a handy function that can be used by
other developers whenever they need to have access to the physical layer
of a UE or car in different scenarios.

– computeUrbanMacro() for computing attenuation for both micro and
macro eNodeBs, according to Winner II, which before was only computing
attenuation for macro eNodeBs according to Winner II recipe.

– computeUlStatistics(), this function is created at the node’s physical layer
to receive parameters from eNodeB, then computes statistics according
to that parameters. For future works, this function can be used as a
parameter receiver from eNodeB when the direction of data is uplink.

• The second achievement of this thesis is what we obtained from the last
experiment. The results of moving micro eNodeBs scenario reflect the fact
that "very likely" not only movement of base stations with interference and
attenuation and fading, but also handovers up to 1-millisecond latency in
process, do not reduce the performance of cellular network comparing to the
scenario in which all micro eNodeBs are stationary and positioned at random.
To prove the second achievement, doing more math and experiments and
comparing theoretical and simulation results is required.

62

Appendix A

All the functions or piece of codes with light blue background are fully written in
this thesis and codes with gray background are original codes that are manipulated
for different purposes of this thesis. In order to be easily visible, all the added code
lines are specified by comments starting and ending with five stars like this style:
//***** added code in this thesis *****//.

1 cModule * getPhyByMacNodeId (MacNodeId nodeId)
2 {
3 int id = getBinder () ->getOmnetId (nodeId);
4 if (id == 0){
5 return NULL;
6 }
7 return (getSimulation () ->getModule (getBinder () ->getOmnetId (

nodeId))->getSubmodule (" lteNic ")->getSubmodule ("phy"));
8 }

Listing A.1: C++ method that returns access to physical layer of device which
pointer object needs to point to. (lteCommon.cc)

1 double LteRealisticChannelModel :: computeUrbanMacro (double d,
MacNodeId eNbId , bool los)

2 {
3 if (d < 10)
4 d = 10;
5 switch (eNbId)
6 {
7 case 1:
8 hNodeB_ = 25; // Macro eNodeB height (meter)
9 break;

10 case 2:
11 hNodeB_ = 2.5; // micro eNodeB height (meter)
12 break;
13 case 3:
14 hNodeB_ = 2.5;
15 break;

63

A –

16 case 4:
17 hNodeB_ = 2.5;
18 break;
19 case 5:
20 hNodeB_ = 2.5;
21 break;
22 default :
23 hNodeB_ = 25;
24 }
25 double dbp = 4 * (hNodeB_ - 1) * (hUe_ - 1)
26 * ((carrierFrequency_ * 1000000000) /

SPEED_OF_LIGHT);
27 if (los)
28 {
29 if (d > 5000){
30 if(tolerateMaxDistViolation_)
31 return ATT_MAXDISTVIOLATED ;
32 else
33 throw cRuntimeError ("Error LOS urban macrocell path

loss model is valid for d <5000 m");
34 }
35 if (d < dbp)
36 return 22 * log10(d) + 28 + 20 * log10(

carrierFrequency_);
37 else
38 return 40 * log10(d) + 7.8 - 18 * log10(hNodeB_ - 1)
39 - 18 * log10(hUe_ - 1) + 2 * log10(carrierFrequency_);
40 }
41 if (d < 10)
42 throw cRuntimeError ("Error NLOS urban macrocell path loss

model is valid for 10m < d ");
43 if (d > 5000){
44 if(tolerateMaxDistViolation_)
45 return ATT_MAXDISTVIOLATED ;
46 else
47 throw cRuntimeError ("Error NLOS urban macrocell path

loss model is valid for d <5000 m");
48 }
49 if (eNbId ==1)
50 {
51 double att = 161.04 - 7.1 * log10(wStreet_) + 7.5 * log10(

hBuilding_)
52 - (24.37 - 3.7 * pow(hBuilding_ / hNodeB_ , 2)) * log10(

hNodeB_)
53 + (43.42 - 3.1 * log10(hNodeB_)) * (log10(d) - 3)
54 + 20 * log10(carrierFrequency_)
55 - (3.2 * (pow(log10 (11.75 * hUe_), 2)) - 4.97);
56 return att;
57 }

64

A –

58 else
59 {
60 return 36.7 * log10(d) + 22.7 + 26 * log10(

carrierFrequency_);
61 }
62 }

Listing A.2: C++ method for attenuation computation according to winner II
formula for different eNodeB heights (here for simplicity we assume 1 macro and 4
micro eNodeBs)

1 if(result)// result is a Boolean , if it is true we accept the
packet , otherwise drop. decision is made based on SINR level at

packet reception
2 {
3 unsigned int size = pkt -> getByteLength ();
4 totalRcvdBytesDl_ += size;
5 double tputSample = (double) totalRcvdBytesDl_ / (NOW -

getSimulation () ->getWarmupPeriod ());
6 emit(phyThroughputDl_ , tputSample);
7 // Delay:
8 emit(phyDelayDl_ , (NOW - pkt -> getSendingTime ()).dbl ());
9 }

10 double distance = getCoord (). distance (lteInfo -> getCoord ());
11 emit(Dist_ , distance);

Listing A.3: C++ piece of code used to collect downlink throughput and delay
plus distance of UE from eNodeB (LtePhyUe.cc)

1 if(result)
2 {
3 phyUe_ = check_and_cast < LtePhyUe *>(getPhyByMacNodeId (lteInfo ->

getSourceId ()));
4 unsigned int size = pkt -> getByteLength ();
5 double delay= (NOW - pkt -> getCreationTime ()).dbl ();
6 double RcvdTime = (NOW - getSimulation () -> getWarmupPeriod ()).

dbl ();
7 double distance = getCoord (). distance (lteInfo -> getCoord ());
8 phyUe_ -> computeUlStatistics (size ,delay , RcvdTime);
9 }

Listing A.4: C++ piece of code used to collect uplink throughput and delay plus
distance of UE from eNodeB (LtePhyEnb.cc)

1 void LtePhyUe :: computeUlStatistics (unsigned int size , double delay
, double RcvdTime)

2 {
3 totalRcvdBytesUl_ += size;

65

A –

4 double tputSample = (double) totalRcvdBytesUl_ / RcvdTime ;
5 emit(phyThroughputUl_ , tputSample);
6 emit(phyDelayUl_ ,delay);
7 }

Listing A.5: C++ computeUlStatistic method for record statistics (LtePhyUe.cc

1 double ti = simTime ().dbl ();
2 FILE*fp=fopen(" outputPosition . movements ","a");
3 std :: string str = std :: to_string (ti) +" "+ std :: to_string (p.x)

+" "+ std :: to_string (p.y) +" ";
4 fputs(str.c_str (),fp);
5 fclose (fp);

Listing A.6: C++ code to extract car trajectory from sumo API at
OMNeT++(TraCISecarioManager.cc)

1 # Nodesmobility ############################
2 *. eNodeB *. mobility . constraintAreaMaxX = 1432m
3 *. eNodeB *. mobility . constraintAreaMaxY = 1432m
4 *. eNodeB *. mobility . constraintAreaMaxZ = 0m
5 *. eNodeB *. mobility . constraintAreaMinX = 0m
6 *. eNodeB *. mobility . constraintAreaMinY = 0m
7 *. eNodeB *. mobility . constraintAreaMinZ = 0m
8 *. eNodeB *. mobility . typename = " BonnMotionMobility "
9 *. eNodeB *. mobility .is3D = false

10 *. eNodeB *. mobility . nodeId = -1
11

12 *.ue [*]. mobility . constraintAreaMaxX = 1432m
13 *.ue [*]. mobility . constraintAreaMaxY = 1432m
14 *.ue [*]. mobility . constraintAreaMaxZ = 0m
15 *.ue [*]. mobility . constraintAreaMinX = 0m
16 *.ue [*]. mobility . constraintAreaMinY = 0m
17 *.ue [*]. mobility . constraintAreaMinZ = 0m
18 *.ue [*]. mobility . typename = " BonnMotionMobility "
19 *.ue [*]. mobility . traceFile = " stationary . movements "
20 *.ue [*]. mobility .is3D = false
21 *.ue [*]. mobility . nodeId = -1
22 #end of Nodes mobility #####################
23 #CellId , NodeId ############################
24 **. eNodeB *. macCellId = index +1
25 **. eNodeB *. macNodeId = index +1
26 #end of CellId , NodeId #####################
27 [Config Cbr -UL]## for app layer ############
28 *. server . numUdpApps = 1
29 *. server . udpApp [*]. typename = " CbrReceiver "
30 *. server . udpApp [*]. localPort = 3000 + ancestorIndex (0)
31 *.ue [*]. numUdpApps = 1
32 *.ue [*]. udpApp [0]. typename = " CbrSender "

66

A –

33 *.ue [*]. udpApp [0]. destAddress = " server "
34 *.ue [*]. udpApp [0]. destPort = 3000 + ancestorIndex (1)
35 # enodeB0 ##
36 *. eNodeB0 .x2App [0]. client . connectAddress = " eNodeB1 % x2ppp0 "
37 *. eNodeB0 .x2App [1]. client . connectAddress = " eNodeB2 % x2ppp0 "
38 *. eNodeB0 .x2App [2]. client . connectAddress = " eNodeB3 % x2ppp0 "
39 *. eNodeB0 .x2App [3]. client . connectAddress = " eNodeB4 % x2ppp0 "
40 *. eNodeB0 .x2App [4]. client . connectAddress = " eNodeB5 % x2ppp0 "
41 *. eNodeB0 .x2App [5]. client . connectAddress = " eNodeB6 % x2ppp0 "
42 *. eNodeB0 .x2App [6]. client . connectAddress = " eNodeB7 % x2ppp0 "
43 *. eNodeB0 .x2App [7]. client . connectAddress = " eNodeB8 % x2ppp0 "
44 *. eNodeB0 .x2App [8]. client . connectAddress = " eNodeB9 % x2ppp0 "
45 *. eNodeB0 .x2App [9]. client . connectAddress = " eNodeB10 % x2ppp0 "
46 *. eNodeB0 .x2App [10]. client . connectAddress = " eNodeB11 % x2ppp0 "
47 *. eNodeB0 .x2App [11]. client . connectAddress = " eNodeB12 % x2ppp0 "
48 *. eNodeB0 .x2App [12]. client . connectAddress = " eNodeB13 % x2ppp0 "
49 *. eNodeB0 .x2App [13]. client . connectAddress = " eNodeB14 % x2ppp0 "
50 *. eNodeB0 .x2App [14]. client . connectAddress = " eNodeB15 % x2ppp0 "
51 *. eNodeB0 .x2App [15]. client . connectAddress = " eNodeB16 % x2ppp0 "
52 *. eNodeB0 .x2App [16]. client . connectAddress = " eNodeB17 % x2ppp0 "
53 *. eNodeB0 .x2App [17]. client . connectAddress = " eNodeB18 % x2ppp0 "
54 *. eNodeB0 .x2App [18]. client . connectAddress = " eNodeB19 % x2ppp0 "
55 *. eNodeB0 .x2App [19]. client . connectAddress = " eNodeB20 % x2ppp0 "
56 *. eNodeB0 .x2App [20]. client . connectAddress = " eNodeB21 % x2ppp0 "
57 *. eNodeB0 .x2App [21]. client . connectAddress = " eNodeB22 % x2ppp0 "
58 *. eNodeB0 .x2App [22]. client . connectAddress = " eNodeB23 % x2ppp0 "
59 # enodeB1 ##
60 *. eNodeB1 .x2App [0]. client . connectAddress = " eNodeB0 % x2ppp0 "
61 *. eNodeB1 .x2App [1]. client . connectAddress = " eNodeB2 % x2ppp1 "
62 *. eNodeB1 .x2App [2]. client . connectAddress = " eNodeB3 % x2ppp1 "
63 *. eNodeB1 .x2App [3]. client . connectAddress = " eNodeB4 % x2ppp1 "
64 *. eNodeB1 .x2App [4]. client . connectAddress = " eNodeB5 % x2ppp1 "
65 *. eNodeB1 .x2App [5]. client . connectAddress = " eNodeB6 % x2ppp1 "
66 *. eNodeB1 .x2App [6]. client . connectAddress = " eNodeB7 % x2ppp1 "
67 *. eNodeB1 .x2App [7]. client . connectAddress = " eNodeB8 % x2ppp1 "
68 *. eNodeB1 .x2App [8]. client . connectAddress = " eNodeB9 % x2ppp1 "
69 *. eNodeB1 .x2App [9]. client . connectAddress = " eNodeB10 % x2ppp1 "
70 *. eNodeB1 .x2App [10]. client . connectAddress = " eNodeB11 % x2ppp1 "
71 *. eNodeB1 .x2App [11]. client . connectAddress = " eNodeB12 % x2ppp1 "
72 *. eNodeB1 .x2App [12]. client . connectAddress = " eNodeB13 % x2ppp1 "
73 *. eNodeB1 .x2App [13]. client . connectAddress = " eNodeB14 % x2ppp1 "
74 *. eNodeB1 .x2App [14]. client . connectAddress = " eNodeB15 % x2ppp1 "
75 *. eNodeB1 .x2App [15]. client . connectAddress = " eNodeB16 % x2ppp1 "
76 *. eNodeB1 .x2App [16]. client . connectAddress = " eNodeB17 % x2ppp1 "
77 *. eNodeB1 .x2App [17]. client . connectAddress = " eNodeB18 % x2ppp1 "
78 *. eNodeB1 .x2App [18]. client . connectAddress = " eNodeB19 % x2ppp1 "
79 *. eNodeB1 .x2App [19]. client . connectAddress = " eNodeB20 % x2ppp1 "
80 *. eNodeB1 .x2App [20]. client . connectAddress = " eNodeB21 % x2ppp1 "
81 *. eNodeB1 .x2App [21]. client . connectAddress = " eNodeB22 % x2ppp1 "

67

A –

82 *. eNodeB1 .x2App [22]. client . connectAddress = " eNodeB23 % x2ppp1 "
83 # enodeB2 ##
84 *. eNodeB2 .x2App [0]. client . connectAddress = " eNodeB0 % x2ppp1 "
85 *. eNodeB2 .x2App [1]. client . connectAddress = " eNodeB1 % x2ppp1 "
86 *. eNodeB2 .x2App [2]. client . connectAddress = " eNodeB3 % x2ppp2 "
87 *. eNodeB2 .x2App [3]. client . connectAddress = " eNodeB4 % x2ppp2 "
88 *. eNodeB2 .x2App [4]. client . connectAddress = " eNodeB5 % x2ppp2 "
89 *. eNodeB2 .x2App [5]. client . connectAddress = " eNodeB6 % x2ppp2 "
90 *. eNodeB2 .x2App [6]. client . connectAddress = " eNodeB7 % x2ppp2 "
91 *. eNodeB2 .x2App [7]. client . connectAddress = " eNodeB8 % x2ppp2 "
92 *. eNodeB2 .x2App [8]. client . connectAddress = " eNodeB9 % x2ppp2 "
93 *. eNodeB2 .x2App [9]. client . connectAddress = " eNodeB10 % x2ppp2 "
94 *. eNodeB2 .x2App [10]. client . connectAddress = " eNodeB11 % x2ppp2 "
95 *. eNodeB2 .x2App [11]. client . connectAddress = " eNodeB12 % x2ppp2 "
96 *. eNodeB2 .x2App [12]. client . connectAddress = " eNodeB13 % x2ppp2 "
97 *. eNodeB2 .x2App [13]. client . connectAddress = " eNodeB14 % x2ppp2 "
98 *. eNodeB2 .x2App [14]. client . connectAddress = " eNodeB15 % x2ppp2 "
99 *. eNodeB2 .x2App [15]. client . connectAddress = " eNodeB16 % x2ppp2 "

100 *. eNodeB2 .x2App [16]. client . connectAddress = " eNodeB17 % x2ppp2 "
101 *. eNodeB2 .x2App [17]. client . connectAddress = " eNodeB18 % x2ppp2 "
102 *. eNodeB2 .x2App [18]. client . connectAddress = " eNodeB19 % x2ppp2 "
103 *. eNodeB2 .x2App [19]. client . connectAddress = " eNodeB20 % x2ppp2 "
104 *. eNodeB2 .x2App [20]. client . connectAddress = " eNodeB21 % x2ppp2 "
105 *. eNodeB2 .x2App [21]. client . connectAddress = " eNodeB22 % x2ppp2 "
106 *. eNodeB2 .x2App [22]. client . connectAddress = " eNodeB23 % x2ppp2 "
107 # enodeB3 ##
108 *. eNodeB3 .x2App [0]. client . connectAddress = " eNodeB0 % x2ppp2 "
109 *. eNodeB3 .x2App [1]. client . connectAddress = " eNodeB1 % x2ppp2 "
110 *. eNodeB3 .x2App [2]. client . connectAddress = " eNodeB2 % x2ppp2 "
111 *. eNodeB3 .x2App [3]. client . connectAddress = " eNodeB4 % x2ppp3 "
112 *. eNodeB3 .x2App [4]. client . connectAddress = " eNodeB5 % x2ppp3 "
113 *. eNodeB3 .x2App [5]. client . connectAddress = " eNodeB6 % x2ppp3 "
114 *. eNodeB3 .x2App [6]. client . connectAddress = " eNodeB7 % x2ppp3 "
115 *. eNodeB3 .x2App [7]. client . connectAddress = " eNodeB8 % x2ppp3 "
116 *. eNodeB3 .x2App [8]. client . connectAddress = " eNodeB9 % x2ppp3 "
117 *. eNodeB3 .x2App [9]. client . connectAddress = " eNodeB10 % x2ppp3 "
118 *. eNodeB3 .x2App [10]. client . connectAddress = " eNodeB11 % x2ppp3 "
119 *. eNodeB3 .x2App [11]. client . connectAddress = " eNodeB12 % x2ppp3 "
120 *. eNodeB3 .x2App [12]. client . connectAddress = " eNodeB13 % x2ppp3 "
121 *. eNodeB3 .x2App [13]. client . connectAddress = " eNodeB14 % x2ppp3 "
122 *. eNodeB3 .x2App [14]. client . connectAddress = " eNodeB15 % x2ppp3 "
123 *. eNodeB3 .x2App [15]. client . connectAddress = " eNodeB16 % x2ppp3 "
124 *. eNodeB3 .x2App [16]. client . connectAddress = " eNodeB17 % x2ppp3 "
125 *. eNodeB3 .x2App [17]. client . connectAddress = " eNodeB18 % x2ppp3 "
126 *. eNodeB3 .x2App [18]. client . connectAddress = " eNodeB19 % x2ppp3 "
127 *. eNodeB3 .x2App [19]. client . connectAddress = " eNodeB20 % x2ppp3 "
128 *. eNodeB3 .x2App [20]. client . connectAddress = " eNodeB21 % x2ppp3 "
129 *. eNodeB3 .x2App [21]. client . connectAddress = " eNodeB22 % x2ppp3 "
130 *. eNodeB3 .x2App [22]. client . connectAddress = " eNodeB23 % x2ppp3 "

68

A –

131 # enodeB4 ##
132 *. eNodeB4 .x2App [0]. client . connectAddress = " eNodeB0 % x2ppp3 "
133 *. eNodeB4 .x2App [1]. client . connectAddress = " eNodeB1 % x2ppp3 "
134 *. eNodeB4 .x2App [2]. client . connectAddress = " eNodeB2 % x2ppp3 "
135 *. eNodeB4 .x2App [3]. client . connectAddress = " eNodeB3 % x2ppp3 "
136 *. eNodeB4 .x2App [4]. client . connectAddress = " eNodeB5 % x2ppp4 "
137 *. eNodeB4 .x2App [5]. client . connectAddress = " eNodeB6 % x2ppp4 "
138 *. eNodeB4 .x2App [6]. client . connectAddress = " eNodeB7 % x2ppp4 "
139 *. eNodeB4 .x2App [7]. client . connectAddress = " eNodeB8 % x2ppp4 "
140 *. eNodeB4 .x2App [8]. client . connectAddress = " eNodeB9 % x2ppp4 "
141 *. eNodeB4 .x2App [9]. client . connectAddress = " eNodeB10 % x2ppp4 "
142 *. eNodeB4 .x2App [10]. client . connectAddress = " eNodeB11 % x2ppp4 "
143 *. eNodeB4 .x2App [11]. client . connectAddress = " eNodeB12 % x2ppp4 "
144 *. eNodeB4 .x2App [12]. client . connectAddress = " eNodeB13 % x2ppp4 "
145 *. eNodeB4 .x2App [13]. client . connectAddress = " eNodeB14 % x2ppp4 "
146 *. eNodeB4 .x2App [14]. client . connectAddress = " eNodeB15 % x2ppp4 "
147 *. eNodeB4 .x2App [15]. client . connectAddress = " eNodeB16 % x2ppp4 "
148 *. eNodeB4 .x2App [16]. client . connectAddress = " eNodeB17 % x2ppp4 "
149 *. eNodeB4 .x2App [17]. client . connectAddress = " eNodeB18 % x2ppp4 "
150 *. eNodeB4 .x2App [18]. client . connectAddress = " eNodeB19 % x2ppp4 "
151 *. eNodeB4 .x2App [19]. client . connectAddress = " eNodeB20 % x2ppp4 "
152 *. eNodeB4 .x2App [20]. client . connectAddress = " eNodeB21 % x2ppp4 "
153 *. eNodeB4 .x2App [21]. client . connectAddress = " eNodeB22 % x2ppp4 "
154 *. eNodeB4 .x2App [22]. client . connectAddress = " eNodeB23 % x2ppp4 "
155 # enodeB5 ##
156 *. eNodeB5 .x2App [0]. client . connectAddress = " eNodeB0 % x2ppp4 "
157 *. eNodeB5 .x2App [1]. client . connectAddress = " eNodeB1 % x2ppp4 "
158 *. eNodeB5 .x2App [2]. client . connectAddress = " eNodeB2 % x2ppp4 "
159 *. eNodeB5 .x2App [3]. client . connectAddress = " eNodeB3 % x2ppp4 "
160 *. eNodeB5 .x2App [4]. client . connectAddress = " eNodeB4 % x2ppp4 "
161 *. eNodeB5 .x2App [5]. client . connectAddress = " eNodeB6 % x2ppp5 "
162 *. eNodeB5 .x2App [6]. client . connectAddress = " eNodeB7 % x2ppp5 "
163 *. eNodeB5 .x2App [7]. client . connectAddress = " eNodeB8 % x2ppp5 "
164 *. eNodeB5 .x2App [8]. client . connectAddress = " eNodeB9 % x2ppp5 "
165 *. eNodeB5 .x2App [9]. client . connectAddress = " eNodeB10 % x2ppp5 "
166 *. eNodeB5 .x2App [10]. client . connectAddress = " eNodeB11 % x2ppp5 "
167 *. eNodeB5 .x2App [11]. client . connectAddress = " eNodeB12 % x2ppp5 "
168 *. eNodeB5 .x2App [12]. client . connectAddress = " eNodeB13 % x2ppp5 "
169 *. eNodeB5 .x2App [13]. client . connectAddress = " eNodeB14 % x2ppp5 "
170 *. eNodeB5 .x2App [14]. client . connectAddress = " eNodeB15 % x2ppp5 "
171 *. eNodeB5 .x2App [15]. client . connectAddress = " eNodeB16 % x2ppp5 "
172 *. eNodeB5 .x2App [16]. client . connectAddress = " eNodeB17 % x2ppp5 "
173 *. eNodeB5 .x2App [17]. client . connectAddress = " eNodeB18 % x2ppp5 "
174 *. eNodeB5 .x2App [18]. client . connectAddress = " eNodeB19 % x2ppp5 "
175 *. eNodeB5 .x2App [19]. client . connectAddress = " eNodeB20 % x2ppp5 "
176 *. eNodeB5 .x2App [20]. client . connectAddress = " eNodeB21 % x2ppp5 "
177 *. eNodeB5 .x2App [21]. client . connectAddress = " eNodeB22 % x2ppp5 "
178 *. eNodeB5 .x2App [22]. client . connectAddress = " eNodeB23 % x2ppp5 "
179 # enodeB6 ##

69

A –

180 *. eNodeB6 .x2App [0]. client . connectAddress = " eNodeB0 % x2ppp5 " *.
eNodeB6 .x2App [1]. client . connectAddress = " eNodeB1 % x2ppp5 "

181 *. eNodeB6 .x2App [2]. client . connectAddress = " eNodeB2 % x2ppp5 "
182 *. eNodeB6 .x2App [3]. client . connectAddress = " eNodeB3 % x2ppp5 "
183 *. eNodeB6 .x2App [4]. client . connectAddress = " eNodeB4 % x2ppp5 "
184 *. eNodeB6 .x2App [5]. client . connectAddress = " eNodeB5 % x2ppp5 "
185 *. eNodeB6 .x2App [6]. client . connectAddress = " eNodeB7 % x2ppp6 "
186 *. eNodeB6 .x2App [7]. client . connectAddress = " eNodeB8 % x2ppp6 "
187 *. eNodeB6 .x2App [8]. client . connectAddress = " eNodeB9 % x2ppp6 "
188 *. eNodeB6 .x2App [9]. client . connectAddress = " eNodeB10 % x2ppp6 "
189 *. eNodeB6 .x2App [10]. client . connectAddress = " eNodeB11 % x2ppp6 "
190 *. eNodeB6 .x2App [11]. client . connectAddress = " eNodeB12 % x2ppp6 "
191 *. eNodeB6 .x2App [12]. client . connectAddress = " eNodeB13 % x2ppp6 "
192 *. eNodeB6 .x2App [13]. client . connectAddress = " eNodeB14 % x2ppp6 "
193 *. eNodeB6 .x2App [14]. client . connectAddress = " eNodeB15 % x2ppp6 "
194 *. eNodeB6 .x2App [15]. client . connectAddress = " eNodeB16 % x2ppp6 "
195 *. eNodeB6 .x2App [16]. client . connectAddress = " eNodeB17 % x2ppp6 "
196 *. eNodeB6 .x2App [17]. client . connectAddress = " eNodeB18 % x2ppp6 "
197 *. eNodeB6 .x2App [18]. client . connectAddress = " eNodeB19 % x2ppp6 "
198 *. eNodeB6 .x2App [19]. client . connectAddress = " eNodeB20 % x2ppp6 "
199 *. eNodeB6 .x2App [20]. client . connectAddress = " eNodeB21 % x2ppp6 "
200 *. eNodeB6 .x2App [21]. client . connectAddress = " eNodeB22 % x2ppp6 "
201 *. eNodeB6 .x2App [22]. client . connectAddress = " eNodeB23 % x2ppp6 "
202 # enodeB7 ##
203 *. eNodeB7 .x2App [0]. client . connectAddress = " eNodeB0 % x2ppp6 "
204 *. eNodeB7 .x2App [1]. client . connectAddress = " eNodeB1 % x2ppp6 "
205 *. eNodeB7 .x2App [2]. client . connectAddress = " eNodeB2 % x2ppp6 "
206 *. eNodeB7 .x2App [3]. client . connectAddress = " eNodeB3 % x2ppp6 "
207 *. eNodeB7 .x2App [4]. client . connectAddress = " eNodeB4 % x2ppp6 "
208 *. eNodeB7 .x2App [5]. client . connectAddress = " eNodeB5 % x2ppp6 "
209 *. eNodeB7 .x2App [6]. client . connectAddress = " eNodeB6 % x2ppp6 "
210 *. eNodeB7 .x2App [7]. client . connectAddress = " eNodeB8 % x2ppp7 "
211 *. eNodeB7 .x2App [8]. client . connectAddress = " eNodeB9 % x2ppp7 "
212 *. eNodeB7 .x2App [9]. client . connectAddress = " eNodeB10 % x2ppp7 "
213 *. eNodeB7 .x2App [10]. client . connectAddress = " eNodeB11 % x2ppp7 "
214 *. eNodeB7 .x2App [11]. client . connectAddress = " eNodeB12 % x2ppp7 "
215 *. eNodeB7 .x2App [12]. client . connectAddress = " eNodeB13 % x2ppp7 "
216 *. eNodeB7 .x2App [13]. client . connectAddress = " eNodeB14 % x2ppp7 "
217 *. eNodeB7 .x2App [14]. client . connectAddress = " eNodeB15 % x2ppp7 "
218 *. eNodeB7 .x2App [15]. client . connectAddress = " eNodeB16 % x2ppp7 "
219 *. eNodeB7 .x2App [16]. client . connectAddress = " eNodeB17 % x2ppp7 "
220 *. eNodeB7 .x2App [17]. client . connectAddress = " eNodeB18 % x2ppp7 "
221 *. eNodeB7 .x2App [18]. client . connectAddress = " eNodeB19 % x2ppp7 "
222 *. eNodeB7 .x2App [19]. client . connectAddress = " eNodeB20 % x2ppp7 "
223 *. eNodeB7 .x2App [20]. client . connectAddress = " eNodeB21 % x2ppp7 "
224 *. eNodeB7 .x2App [21]. client . connectAddress = " eNodeB22 % x2ppp7 "
225 *. eNodeB7 .x2App [22]. client . connectAddress = " eNodeB23 % x2ppp7 "
226 # enodeB8 ##
227 *. eNodeB8 .x2App [0]. client . connectAddress = " eNodeB0 % x2ppp7 "

70

A –

228 *. eNodeB8 .x2App [1]. client . connectAddress = " eNodeB1 % x2ppp7 "
229 *. eNodeB8 .x2App [2]. client . connectAddress = " eNodeB2 % x2ppp7 "
230 *. eNodeB8 .x2App [3]. client . connectAddress = " eNodeB3 % x2ppp7 "
231 *. eNodeB8 .x2App [4]. client . connectAddress = " eNodeB4 % x2ppp7 "
232 *. eNodeB8 .x2App [5]. client . connectAddress = " eNodeB5 % x2ppp7 "
233 *. eNodeB8 .x2App [6]. client . connectAddress = " eNodeB6 % x2ppp7 "
234 *. eNodeB8 .x2App [7]. client . connectAddress = " eNodeB7 % x2ppp7 "
235 *. eNodeB8 .x2App [8]. client . connectAddress = " eNodeB9 % x2ppp8 "
236 *. eNodeB8 .x2App [9]. client . connectAddress = " eNodeB10 % x2ppp8 "
237 *. eNodeB8 .x2App [10]. client . connectAddress = " eNodeB11 % x2ppp8 "
238 *. eNodeB8 .x2App [11]. client . connectAddress = " eNodeB12 % x2ppp8 "
239 *. eNodeB8 .x2App [12]. client . connectAddress = " eNodeB13 % x2ppp8 "
240 *. eNodeB8 .x2App [13]. client . connectAddress = " eNodeB14 % x2ppp8 "
241 *. eNodeB8 .x2App [14]. client . connectAddress = " eNodeB15 % x2ppp8 "
242 *. eNodeB8 .x2App [15]. client . connectAddress = " eNodeB16 % x2ppp8 "
243 *. eNodeB8 .x2App [16]. client . connectAddress = " eNodeB17 % x2ppp8 "
244 *. eNodeB8 .x2App [17]. client . connectAddress = " eNodeB18 % x2ppp8 "
245 *. eNodeB8 .x2App [18]. client . connectAddress = " eNodeB19 % x2ppp8 "
246 *. eNodeB8 .x2App [19]. client . connectAddress = " eNodeB20 % x2ppp8 "
247 *. eNodeB8 .x2App [20]. client . connectAddress = " eNodeB21 % x2ppp8 "
248 *. eNodeB8 .x2App [21]. client . connectAddress = " eNodeB22 % x2ppp8 "
249 *. eNodeB8 .x2App [22]. client . connectAddress = " eNodeB23 % x2ppp8 "
250 # enodeB9 ##
251 *. eNodeB9 .x2App [0]. client . connectAddress = " eNodeB0 % x2ppp8 "
252 *. eNodeB9 .x2App [1]. client . connectAddress = " eNodeB1 % x2ppp8 "
253 *. eNodeB9 .x2App [2]. client . connectAddress = " eNodeB2 % x2ppp8 "
254 *. eNodeB9 .x2App [3]. client . connectAddress = " eNodeB3 % x2ppp8 "
255 *. eNodeB9 .x2App [4]. client . connectAddress = " eNodeB4 % x2ppp8 "
256 *. eNodeB9 .x2App [5]. client . connectAddress = " eNodeB5 % x2ppp8 "
257 *. eNodeB9 .x2App [6]. client . connectAddress = " eNodeB6 % x2ppp8 "
258 *. eNodeB9 .x2App [7]. client . connectAddress = " eNodeB7 % x2ppp8 "
259 *. eNodeB9 .x2App [8]. client . connectAddress = " eNodeB8 % x2ppp8 "
260 *. eNodeB9 .x2App [9]. client . connectAddress = " eNodeB10 % x2ppp9 "
261 *. eNodeB9 .x2App [10]. client . connectAddress = " eNodeB11 % x2ppp9 "
262 *. eNodeB9 .x2App [11]. client . connectAddress = " eNodeB12 % x2ppp9 "
263 *. eNodeB9 .x2App [12]. client . connectAddress = " eNodeB13 % x2ppp9 "
264 *. eNodeB9 .x2App [13]. client . connectAddress = " eNodeB14 % x2ppp9 "
265 *. eNodeB9 .x2App [14]. client . connectAddress = " eNodeB15 % x2ppp9 "
266 *. eNodeB9 .x2App [15]. client . connectAddress = " eNodeB16 % x2ppp9 "
267 *. eNodeB9 .x2App [16]. client . connectAddress = " eNodeB17 % x2ppp9 "
268 *. eNodeB9 .x2App [17]. client . connectAddress = " eNodeB18 % x2ppp9 "
269 *. eNodeB9 .x2App [18]. client . connectAddress = " eNodeB19 % x2ppp9 "
270 *. eNodeB9 .x2App [19]. client . connectAddress = " eNodeB20 % x2ppp9 "
271 *. eNodeB9 .x2App [20]. client . connectAddress = " eNodeB21 % x2ppp9 "
272 *. eNodeB9 .x2App [21]. client . connectAddress = " eNodeB22 % x2ppp9 "
273 *. eNodeB9 .x2App [22]. client . connectAddress = " eNodeB23 % x2ppp9 "
274 # enodeB10 ###
275 *. eNodeB10 .x2App [0]. client . connectAddress = " eNodeB0 % x2ppp9 "
276 *. eNodeB10 .x2App [1]. client . connectAddress = " eNodeB1 % x2ppp9 "

71

A –

277 *. eNodeB10 .x2App [2]. client . connectAddress = " eNodeB2 % x2ppp9 "
278 *. eNodeB10 .x2App [3]. client . connectAddress = " eNodeB3 % x2ppp9 "
279 *. eNodeB10 .x2App [4]. client . connectAddress = " eNodeB4 % x2ppp9 "
280 *. eNodeB10 .x2App [5]. client . connectAddress = " eNodeB5 % x2ppp9 "
281 *. eNodeB10 .x2App [6]. client . connectAddress = " eNodeB6 % x2ppp9 "
282 *. eNodeB10 .x2App [7]. client . connectAddress = " eNodeB7 % x2ppp9 "
283 *. eNodeB10 .x2App [8]. client . connectAddress = " eNodeB8 % x2ppp9 "
284 *. eNodeB10 .x2App [9]. client . connectAddress = " eNodeB9 % x2ppp9 "
285 *. eNodeB10 .x2App [10]. client . connectAddress = " eNodeB11 % x2ppp10 "
286 *. eNodeB10 .x2App [11]. client . connectAddress = " eNodeB12 % x2ppp10 "
287 *. eNodeB10 .x2App [12]. client . connectAddress = " eNodeB13 % x2ppp10 "
288 *. eNodeB10 .x2App [13]. client . connectAddress = " eNodeB14 % x2ppp10 "
289 *. eNodeB10 .x2App [14]. client . connectAddress = " eNodeB15 % x2ppp10 "
290 *. eNodeB10 .x2App [15]. client . connectAddress = " eNodeB16 % x2ppp10 "
291 *. eNodeB10 .x2App [16]. client . connectAddress = " eNodeB17 % x2ppp10 "
292 *. eNodeB10 .x2App [17]. client . connectAddress = " eNodeB18 % x2ppp10 "
293 *. eNodeB10 .x2App [18]. client . connectAddress = " eNodeB19 % x2ppp10 "
294 *. eNodeB10 .x2App [19]. client . connectAddress = " eNodeB20 % x2ppp10 "
295 *. eNodeB10 .x2App [20]. client . connectAddress = " eNodeB21 % x2ppp10 "
296 *. eNodeB10 .x2App [21]. client . connectAddress = " eNodeB22 % x2ppp10 "
297 *. eNodeB10 .x2App [22]. client . connectAddress = " eNodeB23 % x2ppp10 "
298 # enodeB11 ##
299 *. eNodeB11 .x2App [0]. client . connectAddress = " eNodeB0 % x2ppp10 "
300 *. eNodeB11 .x2App [1]. client . connectAddress = " eNodeB1 % x2ppp10 "
301 *. eNodeB11 .x2App [2]. client . connectAddress = " eNodeB2 % x2ppp10 "
302 *. eNodeB11 .x2App [3]. client . connectAddress = " eNodeB3 % x2ppp10 "
303 *. eNodeB11 .x2App [4]. client . connectAddress = " eNodeB4 % x2ppp10 "
304 *. eNodeB11 .x2App [5]. client . connectAddress = " eNodeB5 % x2ppp10 "
305 *. eNodeB11 .x2App [6]. client . connectAddress = " eNodeB6 % x2ppp10 "
306 *. eNodeB11 .x2App [7]. client . connectAddress = " eNodeB7 % x2ppp10 "
307 *. eNodeB11 .x2App [8]. client . connectAddress = " eNodeB8 % x2ppp10 "
308 *. eNodeB11 .x2App [9]. client . connectAddress = " eNodeB9 % x2ppp10 "
309 *. eNodeB11 .x2App [10]. client . connectAddress = " eNodeB10 % x2ppp10 "
310 *. eNodeB11 .x2App [11]. client . connectAddress = " eNodeB12 % x2ppp11 "
311 *. eNodeB11 .x2App [12]. client . connectAddress = " eNodeB13 % x2ppp11 "
312 *. eNodeB11 .x2App [13]. client . connectAddress = " eNodeB14 % x2ppp11 "
313 *. eNodeB11 .x2App [14]. client . connectAddress = " eNodeB15 % x2ppp11 "
314 *. eNodeB11 .x2App [15]. client . connectAddress = " eNodeB16 % x2ppp11 "
315 *. eNodeB11 .x2App [16]. client . connectAddress = " eNodeB17 % x2ppp11 "
316 *. eNodeB11 .x2App [17]. client . connectAddress = " eNodeB18 % x2ppp11 "
317 *. eNodeB11 .x2App [18]. client . connectAddress = " eNodeB19 % x2ppp11 "
318 *. eNodeB11 .x2App [19]. client . connectAddress = " eNodeB20 % x2ppp11 "
319 *. eNodeB11 .x2App [20]. client . connectAddress = " eNodeB21 % x2ppp11 "
320 *. eNodeB11 .x2App [21]. client . connectAddress = " eNodeB22 % x2ppp11 "
321 *. eNodeB11 .x2App [22]. client . connectAddress = " eNodeB23 % x2ppp11 "
322 # enodeB12 ##
323 *. eNodeB12 .x2App [0]. client . connectAddress = " eNodeB0 % x2ppp11 "
324 *. eNodeB12 .x2App [1]. client . connectAddress = " eNodeB1 % x2ppp11 "
325 *. eNodeB12 .x2App [2]. client . connectAddress = " eNodeB2 % x2ppp11 "

72

A –

326 *. eNodeB12 .x2App [3]. client . connectAddress = " eNodeB3 % x2ppp11 "
327 *. eNodeB12 .x2App [4]. client . connectAddress = " eNodeB4 % x2ppp11 "
328 *. eNodeB12 .x2App [5]. client . connectAddress = " eNodeB5 % x2ppp11 "
329 *. eNodeB12 .x2App [6]. client . connectAddress = " eNodeB6 % x2ppp11 "
330 *. eNodeB12 .x2App [7]. client . connectAddress = " eNodeB7 % x2ppp11 "
331 *. eNodeB12 .x2App [8]. client . connectAddress = " eNodeB8 % x2ppp11 "
332 *. eNodeB12 .x2App [9]. client . connectAddress = " eNodeB9 % x2ppp11 "
333 *. eNodeB12 .x2App [10]. client . connectAddress = " eNodeB10 % x2ppp11 "
334 *. eNodeB12 .x2App [11]. client . connectAddress = " eNodeB11 % x2ppp11 "
335 *. eNodeB12 .x2App [12]. client . connectAddress = " eNodeB13 % x2ppp12 "
336 *. eNodeB12 .x2App [13]. client . connectAddress = " eNodeB14 % x2ppp12 "
337 *. eNodeB12 .x2App [14]. client . connectAddress = " eNodeB15 % x2ppp12 "
338 *. eNodeB12 .x2App [15]. client . connectAddress = " eNodeB16 % x2ppp12 "
339 *. eNodeB12 .x2App [16]. client . connectAddress = " eNodeB17 % x2ppp12 "
340 *. eNodeB12 .x2App [17]. client . connectAddress = " eNodeB18 % x2ppp12 "
341 *. eNodeB12 .x2App [18]. client . connectAddress = " eNodeB19 % x2ppp12 "
342 *. eNodeB12 .x2App [19]. client . connectAddress = " eNodeB20 % x2ppp12 "
343 *. eNodeB12 .x2App [20]. client . connectAddress = " eNodeB21 % x2ppp12 "
344 *. eNodeB12 .x2App [21]. client . connectAddress = " eNodeB22 % x2ppp12 "
345 *. eNodeB12 .x2App [22]. client . connectAddress = " eNodeB23 % x2ppp12 "
346 # enodeB13 ##
347 *. eNodeB13 .x2App [0]. client . connectAddress = " eNodeB0 % x2ppp12 "
348 *. eNodeB13 .x2App [1]. client . connectAddress = " eNodeB1 % x2ppp12 "
349 *. eNodeB13 .x2App [2]. client . connectAddress = " eNodeB2 % x2ppp12 "
350 *. eNodeB13 .x2App [3]. client . connectAddress = " eNodeB3 % x2ppp12 "
351 *. eNodeB13 .x2App [4]. client . connectAddress = " eNodeB4 % x2ppp12 "
352 *. eNodeB13 .x2App [5]. client . connectAddress = " eNodeB5 % x2ppp12 "
353 *. eNodeB13 .x2App [6]. client . connectAddress = " eNodeB6 % x2ppp12 "
354 *. eNodeB13 .x2App [7]. client . connectAddress = " eNodeB7 % x2ppp12 "
355 *. eNodeB13 .x2App [8]. client . connectAddress = " eNodeB8 % x2ppp12 "
356 *. eNodeB13 .x2App [9]. client . connectAddress = " eNodeB9 % x2ppp12 "
357 *. eNodeB13 .x2App [10]. client . connectAddress = " eNodeB10 % x2ppp12 "
358 *. eNodeB13 .x2App [11]. client . connectAddress = " eNodeB11 % x2ppp12 "
359 *. eNodeB13 .x2App [12]. client . connectAddress = " eNodeB12 % x2ppp12 "
360 *. eNodeB13 .x2App [13]. client . connectAddress = " eNodeB14 % x2ppp13 "
361 *. eNodeB13 .x2App [14]. client . connectAddress = " eNodeB15 % x2ppp13 "
362 *. eNodeB13 .x2App [15]. client . connectAddress = " eNodeB16 % x2ppp13 "
363 *. eNodeB13 .x2App [16]. client . connectAddress = " eNodeB17 % x2ppp13 "
364 *. eNodeB13 .x2App [17]. client . connectAddress = " eNodeB18 % x2ppp13 "
365 *. eNodeB13 .x2App [18]. client . connectAddress = " eNodeB19 % x2ppp13 "
366 *. eNodeB13 .x2App [19]. client . connectAddress = " eNodeB20 % x2ppp13 "
367 *. eNodeB13 .x2App [20]. client . connectAddress = " eNodeB21 % x2ppp13 "
368 *. eNodeB13 .x2App [21]. client . connectAddress = " eNodeB22 % x2ppp13 "
369 *. eNodeB13 .x2App [22]. client . connectAddress = " eNodeB23 % x2ppp13 "
370 # enodeB14 ##
371 *. eNodeB14 .x2App [0]. client . connectAddress = " eNodeB0 % x2ppp13 "
372 *. eNodeB14 .x2App [1]. client . connectAddress = " eNodeB1 % x2ppp13 "
373 *. eNodeB14 .x2App [2]. client . connectAddress = " eNodeB2 % x2ppp13 "
374 *. eNodeB14 .x2App [3]. client . connectAddress = " eNodeB3 % x2ppp13 "

73

A –

375 *. eNodeB14 .x2App [4]. client . connectAddress = " eNodeB4 % x2ppp13 "
376 *. eNodeB14 .x2App [5]. client . connectAddress = " eNodeB5 % x2ppp13 "
377 *. eNodeB14 .x2App [6]. client . connectAddress = " eNodeB6 % x2ppp13 "
378 *. eNodeB14 .x2App [7]. client . connectAddress = " eNodeB7 % x2ppp13 "
379 *. eNodeB14 .x2App [8]. client . connectAddress = " eNodeB8 % x2ppp13 "
380 *. eNodeB14 .x2App [9]. client . connectAddress = " eNodeB9 % x2ppp13 "
381 *. eNodeB14 .x2App [10]. client . connectAddress = " eNodeB10 % x2ppp13 "
382 *. eNodeB14 .x2App [11]. client . connectAddress = " eNodeB11 % x2ppp13 "
383 *. eNodeB14 .x2App [12]. client . connectAddress = " eNodeB12 % x2ppp13 "
384 *. eNodeB14 .x2App [13]. client . connectAddress = " eNodeB13 % x2ppp13 "
385 *. eNodeB14 .x2App [14]. client . connectAddress = " eNodeB15 % x2ppp14 "
386 *. eNodeB14 .x2App [15]. client . connectAddress = " eNodeB16 % x2ppp14 "
387 *. eNodeB14 .x2App [16]. client . connectAddress = " eNodeB17 % x2ppp14 "
388 *. eNodeB14 .x2App [17]. client . connectAddress = " eNodeB18 % x2ppp14 "
389 *. eNodeB14 .x2App [18]. client . connectAddress = " eNodeB19 % x2ppp14 "
390 *. eNodeB14 .x2App [19]. client . connectAddress = " eNodeB20 % x2ppp14 "
391 *. eNodeB14 .x2App [20]. client . connectAddress = " eNodeB21 % x2ppp14 "
392 *. eNodeB14 .x2App [21]. client . connectAddress = " eNodeB22 % x2ppp14 "
393 *. eNodeB14 .x2App [22]. client . connectAddress = " eNodeB23 % x2ppp14 "
394 # enodeB15 ###
395 *. eNodeB15 .x2App [0]. client . connectAddress = " eNodeB0 % x2ppp14 "
396 *. eNodeB15 .x2App [1]. client . connectAddress = " eNodeB1 % x2ppp14 "
397 *. eNodeB15 .x2App [2]. client . connectAddress = " eNodeB2 % x2ppp14 "
398 *. eNodeB15 .x2App [3]. client . connectAddress = " eNodeB3 % x2ppp14 "
399 *. eNodeB15 .x2App [4]. client . connectAddress = " eNodeB4 % x2ppp14 "
400 *. eNodeB15 .x2App [5]. client . connectAddress = " eNodeB5 % x2ppp14 "
401 *. eNodeB15 .x2App [6]. client . connectAddress = " eNodeB6 % x2ppp14 "
402 *. eNodeB15 .x2App [7]. client . connectAddress = " eNodeB7 % x2ppp14 "
403 *. eNodeB15 .x2App [8]. client . connectAddress = " eNodeB8 % x2ppp14 "
404 *. eNodeB15 .x2App [9]. client . connectAddress = " eNodeB9 % x2ppp14 "
405 *. eNodeB15 .x2App [10]. client . connectAddress = " eNodeB10 % x2ppp14 "
406 *. eNodeB15 .x2App [11]. client . connectAddress = " eNodeB11 % x2ppp14 "
407 *. eNodeB15 .x2App [12]. client . connectAddress = " eNodeB12 % x2ppp14 "
408 *. eNodeB15 .x2App [13]. client . connectAddress = " eNodeB13 % x2ppp14 "
409 *. eNodeB15 .x2App [14]. client . connectAddress = " eNodeB14 % x2ppp14 "
410 *. eNodeB15 .x2App [15]. client . connectAddress = " eNodeB16 % x2ppp15 "
411 *. eNodeB15 .x2App [16]. client . connectAddress = " eNodeB17 % x2ppp15 "
412 *. eNodeB15 .x2App [17]. client . connectAddress = " eNodeB18 % x2ppp15 "
413 *. eNodeB15 .x2App [18]. client . connectAddress = " eNodeB19 % x2ppp15 "
414 *. eNodeB15 .x2App [19]. client . connectAddress = " eNodeB20 % x2ppp15 "
415 *. eNodeB15 .x2App [20]. client . connectAddress = " eNodeB21 % x2ppp15 "
416 *. eNodeB15 .x2App [21]. client . connectAddress = " eNodeB22 % x2ppp15 "
417 *. eNodeB15 .x2App [22]. client . connectAddress = " eNodeB23 % x2ppp15 "
418 # enodeB16 ###
419 *. eNodeB16 .x2App [0]. client . connectAddress = " eNodeB0 % x2ppp15 "
420 *. eNodeB16 .x2App [1]. client . connectAddress = " eNodeB1 % x2ppp15 "
421 *. eNodeB16 .x2App [2]. client . connectAddress = " eNodeB2 % x2ppp15 "
422 *. eNodeB16 .x2App [3]. client . connectAddress = " eNodeB3 % x2ppp15 "
423 *. eNodeB16 .x2App [4]. client . connectAddress = " eNodeB4 % x2ppp15 "

74

A –

424 *. eNodeB16 .x2App [5]. client . connectAddress = " eNodeB5 % x2ppp15 "
425 *. eNodeB16 .x2App [6]. client . connectAddress = " eNodeB6 % x2ppp15 "
426 *. eNodeB16 .x2App [7]. client . connectAddress = " eNodeB7 % x2ppp15 "
427 *. eNodeB16 .x2App [8]. client . connectAddress = " eNodeB8 % x2ppp15 "
428 *. eNodeB16 .x2App [9]. client . connectAddress = " eNodeB9 % x2ppp15 "
429 *. eNodeB16 .x2App [10]. client . connectAddress = " eNodeB10 % x2ppp15 "
430 *. eNodeB16 .x2App [11]. client . connectAddress = " eNodeB11 % x2ppp15 "
431 *. eNodeB16 .x2App [12]. client . connectAddress = " eNodeB12 % x2ppp15 "
432 *. eNodeB16 .x2App [13]. client . connectAddress = " eNodeB13 % x2ppp15 "
433 *. eNodeB16 .x2App [14]. client . connectAddress = " eNodeB14 % x2ppp15 "
434 *. eNodeB16 .x2App [15]. client . connectAddress = " eNodeB15 % x2ppp15 "
435 *. eNodeB16 .x2App [16]. client . connectAddress = " eNodeB17 % x2ppp16 "
436 *. eNodeB16 .x2App [17]. client . connectAddress = " eNodeB18 % x2ppp16 "
437 *. eNodeB16 .x2App [18]. client . connectAddress = " eNodeB19 % x2ppp16 "
438 *. eNodeB16 .x2App [19]. client . connectAddress = " eNodeB20 % x2ppp16 "
439 *. eNodeB16 .x2App [20]. client . connectAddress = " eNodeB21 % x2ppp16 "
440 *. eNodeB16 .x2App [21]. client . connectAddress = " eNodeB22 % x2ppp16 "
441 *. eNodeB16 .x2App [22]. client . connectAddress = " eNodeB23 % x2ppp16 "
442 # enodeB17 ###
443 *. eNodeB17 .x2App [0]. client . connectAddress = " eNodeB0 % x2ppp16 "
444 *. eNodeB17 .x2App [1]. client . connectAddress = " eNodeB1 % x2ppp16 "
445 *. eNodeB17 .x2App [2]. client . connectAddress = " eNodeB2 % x2ppp16 "
446 *. eNodeB17 .x2App [3]. client . connectAddress = " eNodeB3 % x2ppp16 "
447 *. eNodeB17 .x2App [4]. client . connectAddress = " eNodeB4 % x2ppp16 "
448 *. eNodeB17 .x2App [5]. client . connectAddress = " eNodeB5 % x2ppp16 "
449 *. eNodeB17 .x2App [6]. client . connectAddress = " eNodeB6 % x2ppp16 "
450 *. eNodeB17 .x2App [7]. client . connectAddress = " eNodeB7 % x2ppp16 "
451 *. eNodeB17 .x2App [8]. client . connectAddress = " eNodeB8 % x2ppp16 "
452 *. eNodeB17 .x2App [9]. client . connectAddress = " eNodeB9 % x2ppp16 "
453 *. eNodeB17 .x2App [10]. client . connectAddress = " eNodeB10 % x2ppp16 "
454 *. eNodeB17 .x2App [11]. client . connectAddress = " eNodeB11 % x2ppp16 "
455 *. eNodeB17 .x2App [12]. client . connectAddress = " eNodeB12 % x2ppp16 "
456 *. eNodeB17 .x2App [13]. client . connectAddress = " eNodeB13 % x2ppp16 "
457 *. eNodeB17 .x2App [14]. client . connectAddress = " eNodeB14 % x2ppp16 "
458 *. eNodeB17 .x2App [15]. client . connectAddress = " eNodeB15 % x2ppp16 "
459 *. eNodeB17 .x2App [16]. client . connectAddress = " eNodeB16 % x2ppp16 "
460 *. eNodeB17 .x2App [17]. client . connectAddress = " eNodeB18 % x2ppp17 "
461 *. eNodeB17 .x2App [18]. client . connectAddress = " eNodeB19 % x2ppp17 "
462 *. eNodeB17 .x2App [19]. client . connectAddress = " eNodeB20 % x2ppp17 "
463 *. eNodeB17 .x2App [20]. client . connectAddress = " eNodeB21 % x2ppp17 "
464 *. eNodeB17 .x2App [21]. client . connectAddress = " eNodeB22 % x2ppp17 "
465 *. eNodeB17 .x2App [22]. client . connectAddress = " eNodeB23 % x2ppp17 "
466 # enodeB18 ###
467 *. eNodeB18 .x2App [0]. client . connectAddress = " eNodeB0 % x2ppp17 "
468 *. eNodeB18 .x2App [1]. client . connectAddress = " eNodeB1 % x2ppp17 "
469 *. eNodeB18 .x2App [2]. client . connectAddress = " eNodeB2 % x2ppp17 "
470 *. eNodeB18 .x2App [3]. client . connectAddress = " eNodeB3 % x2ppp17 "
471 *. eNodeB18 .x2App [4]. client . connectAddress = " eNodeB4 % x2ppp17 "
472 *. eNodeB18 .x2App [5]. client . connectAddress = " eNodeB5 % x2ppp17 "

75

A –

473 *. eNodeB18 .x2App [6]. client . connectAddress = " eNodeB6 % x2ppp17 "
474 *. eNodeB18 .x2App [7]. client . connectAddress = " eNodeB7 % x2ppp17 "
475 *. eNodeB18 .x2App [8]. client . connectAddress = " eNodeB8 % x2ppp17 "
476 *. eNodeB18 .x2App [9]. client . connectAddress = " eNodeB9 % x2ppp17 "
477 *. eNodeB18 .x2App [10]. client . connectAddress = " eNodeB10 % x2ppp17 "
478 *. eNodeB18 .x2App [11]. client . connectAddress = " eNodeB11 % x2ppp17 "
479 *. eNodeB18 .x2App [12]. client . connectAddress = " eNodeB12 % x2ppp17 "
480 *. eNodeB18 .x2App [13]. client . connectAddress = " eNodeB13 % x2ppp17 "
481 *. eNodeB18 .x2App [14]. client . connectAddress = " eNodeB14 % x2ppp17 "
482 *. eNodeB18 .x2App [15]. client . connectAddress = " eNodeB15 % x2ppp17 "
483 *. eNodeB18 .x2App [16]. client . connectAddress = " eNodeB16 % x2ppp17 "
484 *. eNodeB18 .x2App [17]. client . connectAddress = " eNodeB17 % x2ppp17 "
485 *. eNodeB18 .x2App [18]. client . connectAddress = " eNodeB19 % x2ppp18 "
486 *. eNodeB18 .x2App [19]. client . connectAddress = " eNodeB20 % x2ppp18 "
487 *. eNodeB18 .x2App [20]. client . connectAddress = " eNodeB21 % x2ppp18 "
488 *. eNodeB18 .x2App [21]. client . connectAddress = " eNodeB22 % x2ppp18 "
489 *. eNodeB18 .x2App [22]. client . connectAddress = " eNodeB23 % x2ppp18 "
490 # enodeB19 ###
491 *. eNodeB19 .x2App [0]. client . connectAddress = " eNodeB0 % x2ppp18 "
492 *. eNodeB19 .x2App [1]. client . connectAddress = " eNodeB1 % x2ppp18 "
493 *. eNodeB19 .x2App [2]. client . connectAddress = " eNodeB2 % x2ppp18 "
494 *. eNodeB19 .x2App [3]. client . connectAddress = " eNodeB3 % x2ppp18 "
495 *. eNodeB19 .x2App [4]. client . connectAddress = " eNodeB4 % x2ppp18 "
496 *. eNodeB19 .x2App [5]. client . connectAddress = " eNodeB5 % x2ppp18 "
497 *. eNodeB19 .x2App [6]. client . connectAddress = " eNodeB6 % x2ppp18 "
498 *. eNodeB19 .x2App [7]. client . connectAddress = " eNodeB7 % x2ppp18 "
499 *. eNodeB19 .x2App [8]. client . connectAddress = " eNodeB8 % x2ppp18 "
500 *. eNodeB19 .x2App [9]. client . connectAddress = " eNodeB9 % x2ppp18 "
501 *. eNodeB19 .x2App [10]. client . connectAddress = " eNodeB10 % x2ppp18 "
502 *. eNodeB19 .x2App [11]. client . connectAddress = " eNodeB11 % x2ppp18 "
503 *. eNodeB19 .x2App [12]. client . connectAddress = " eNodeB12 % x2ppp18 "
504 *. eNodeB19 .x2App [13]. client . connectAddress = " eNodeB13 % x2ppp18 "
505 *. eNodeB19 .x2App [14]. client . connectAddress = " eNodeB14 % x2ppp18 "
506 *. eNodeB19 .x2App [15]. client . connectAddress = " eNodeB15 % x2ppp18 "
507 *. eNodeB19 .x2App [16]. client . connectAddress = " eNodeB16 % x2ppp18 "
508 *. eNodeB19 .x2App [17]. client . connectAddress = " eNodeB17 % x2ppp18 "
509 *. eNodeB19 .x2App [18]. client . connectAddress = " eNodeB18 % x2ppp18 "
510 *. eNodeB19 .x2App [19]. client . connectAddress = " eNodeB20 % x2ppp19 "
511 *. eNodeB19 .x2App [20]. client . connectAddress = " eNodeB21 % x2ppp19 "
512 *. eNodeB19 .x2App [21]. client . connectAddress = " eNodeB22 % x2ppp19 "
513 *. eNodeB19 .x2App [22]. client . connectAddress = " eNodeB23 % x2ppp19 "
514 # enodeB20 ###
515 *. eNodeB20 .x2App [0]. client . connectAddress = " eNodeB0 % x2ppp19 "
516 *. eNodeB20 .x2App [1]. client . connectAddress = " eNodeB1 % x2ppp19 "
517 *. eNodeB20 .x2App [2]. client . connectAddress = " eNodeB2 % x2ppp19 "
518 *. eNodeB20 .x2App [3]. client . connectAddress = " eNodeB3 % x2ppp19 "
519 *. eNodeB20 .x2App [4]. client . connectAddress = " eNodeB4 % x2ppp19 "
520 *. eNodeB20 .x2App [5]. client . connectAddress = " eNodeB5 % x2ppp19 "
521 *. eNodeB20 .x2App [6]. client . connectAddress = " eNodeB6 % x2ppp19 "

76

A –

522 *. eNodeB20 .x2App [7]. client . connectAddress = " eNodeB7 % x2ppp19 "
523 *. eNodeB20 .x2App [8]. client . connectAddress = " eNodeB8 % x2ppp19 "
524 *. eNodeB20 .x2App [9]. client . connectAddress = " eNodeB9 % x2ppp19 "
525 *. eNodeB20 .x2App [10]. client . connectAddress = " eNodeB10 % x2ppp19 "
526 *. eNodeB20 .x2App [11]. client . connectAddress = " eNodeB11 % x2ppp19 "
527 *. eNodeB20 .x2App [12]. client . connectAddress = " eNodeB12 % x2ppp19 "
528 *. eNodeB20 .x2App [13]. client . connectAddress = " eNodeB13 % x2ppp19 "
529 *. eNodeB20 .x2App [14]. client . connectAddress = " eNodeB14 % x2ppp19 "
530 *. eNodeB20 .x2App [15]. client . connectAddress = " eNodeB15 % x2ppp19 "
531 *. eNodeB20 .x2App [16]. client . connectAddress = " eNodeB16 % x2ppp19 "
532 *. eNodeB20 .x2App [17]. client . connectAddress = " eNodeB17 % x2ppp19 "
533 *. eNodeB20 .x2App [18]. client . connectAddress = " eNodeB18 % x2ppp19 "
534 *. eNodeB20 .x2App [19]. client . connectAddress = " eNodeB19 % x2ppp19 "
535 *. eNodeB20 .x2App [20]. client . connectAddress = " eNodeB21 % x2ppp20 "
536 *. eNodeB20 .x2App [21]. client . connectAddress = " eNodeB22 % x2ppp20 "
537 *. eNodeB20 .x2App [22]. client . connectAddress = " eNodeB23 % x2ppp20 "
538 # enodeB21 ###
539 *. eNodeB21 .x2App [0]. client . connectAddress = " eNodeB0 % x2ppp20 "
540 *. eNodeB21 .x2App [1]. client . connectAddress = " eNodeB1 % x2ppp20 "
541 *. eNodeB21 .x2App [2]. client . connectAddress = " eNodeB2 % x2ppp20 "
542 *. eNodeB21 .x2App [3]. client . connectAddress = " eNodeB3 % x2ppp20 "
543 *. eNodeB21 .x2App [4]. client . connectAddress = " eNodeB4 % x2ppp20 "
544 *. eNodeB21 .x2App [5]. client . connectAddress = " eNodeB5 % x2ppp20 "
545 *. eNodeB21 .x2App [6]. client . connectAddress = " eNodeB6 % x2ppp20 "
546 *. eNodeB21 .x2App [7]. client . connectAddress = " eNodeB7 % x2ppp20 "
547 *. eNodeB21 .x2App [8]. client . connectAddress = " eNodeB8 % x2ppp20 "
548 *. eNodeB21 .x2App [9]. client . connectAddress = " eNodeB9 % x2ppp20 "
549 *. eNodeB21 .x2App [10]. client . connectAddress = " eNodeB10 % x2ppp20 "
550 *. eNodeB21 .x2App [11]. client . connectAddress = " eNodeB11 % x2ppp20 "
551 *. eNodeB21 .x2App [12]. client . connectAddress = " eNodeB12 % x2ppp20 "
552 *. eNodeB21 .x2App [13]. client . connectAddress = " eNodeB13 % x2ppp20 "
553 *. eNodeB21 .x2App [14]. client . connectAddress = " eNodeB14 % x2ppp20 "
554 *. eNodeB21 .x2App [15]. client . connectAddress = " eNodeB15 % x2ppp20 "
555 *. eNodeB21 .x2App [16]. client . connectAddress = " eNodeB16 % x2ppp20 "
556 *. eNodeB21 .x2App [17]. client . connectAddress = " eNodeB17 % x2ppp20 "
557 *. eNodeB21 .x2App [18]. client . connectAddress = " eNodeB18 % x2ppp20 "
558 *. eNodeB21 .x2App [19]. client . connectAddress = " eNodeB19 % x2ppp20 "
559 *. eNodeB21 .x2App [20]. client . connectAddress = " eNodeB20 % x2ppp20 "
560 *. eNodeB21 .x2App [21]. client . connectAddress = " eNodeB22 % x2ppp21 "
561 *. eNodeB21 .x2App [22]. client . connectAddress = " eNodeB23 % x2ppp21 "
562 # enodeB22 ##
563 *. eNodeB22 .x2App [0]. client . connectAddress = " eNodeB0 % x2ppp21 "
564 *. eNodeB22 .x2App [1]. client . connectAddress = " eNodeB1 % x2ppp21 "
565 *. eNodeB22 .x2App [2]. client . connectAddress = " eNodeB2 % x2ppp21 "
566 *. eNodeB22 .x2App [3]. client . connectAddress = " eNodeB3 % x2ppp21 "
567 *. eNodeB22 .x2App [4]. client . connectAddress = " eNodeB4 % x2ppp21 "
568 *. eNodeB22 .x2App [5]. client . connectAddress = " eNodeB5 % x2ppp21 "
569 *. eNodeB22 .x2App [6]. client . connectAddress = " eNodeB6 % x2ppp21 "
570 *. eNodeB22 .x2App [7]. client . connectAddress = " eNodeB7 % x2ppp21 "

77

A –

571 *. eNodeB22 .x2App [8]. client . connectAddress = " eNodeB8 % x2ppp21 "
572 *. eNodeB22 .x2App [9]. client . connectAddress = " eNodeB9 % x2ppp21 "
573 *. eNodeB22 .x2App [10]. client . connectAddress = " eNodeB10 % x2ppp21 "
574 *. eNodeB22 .x2App [11]. client . connectAddress = " eNodeB11 % x2ppp21 "
575 *. eNodeB22 .x2App [12]. client . connectAddress = " eNodeB12 % x2ppp21 "
576 *. eNodeB22 .x2App [13]. client . connectAddress = " eNodeB13 % x2ppp21 "
577 *. eNodeB22 .x2App [14]. client . connectAddress = " eNodeB14 % x2ppp21 "
578 *. eNodeB22 .x2App [15]. client . connectAddress = " eNodeB15 % x2ppp21 "
579 *. eNodeB22 .x2App [16]. client . connectAddress = " eNodeB16 % x2ppp21 "
580 *. eNodeB22 .x2App [17]. client . connectAddress = " eNodeB17 % x2ppp21 "
581 *. eNodeB22 .x2App [18]. client . connectAddress = " eNodeB18 % x2ppp21 "
582 *. eNodeB22 .x2App [19]. client . connectAddress = " eNodeB19 % x2ppp21 "
583 *. eNodeB22 .x2App [20]. client . connectAddress = " eNodeB20 % x2ppp21 "
584 *. eNodeB22 .x2App [21]. client . connectAddress = " eNodeB21 % x2ppp21 "
585 *. eNodeB22 .x2App [22]. client . connectAddress = " eNodeB23 % x2ppp22 "
586 # enodeB23 ###
587 *. eNodeB23 .x2App [0]. client . connectAddress = " eNodeB0 % x2ppp22 "
588 *. eNodeB23 .x2App [1]. client . connectAddress = " eNodeB1 % x2ppp22 "
589 *. eNodeB23 .x2App [2]. client . connectAddress = " eNodeB2 % x2ppp22 "
590 *. eNodeB23 .x2App [3]. client . connectAddress = " eNodeB3 % x2ppp22 "
591 *. eNodeB23 .x2App [4]. client . connectAddress = " eNodeB4 % x2ppp22 "
592 *. eNodeB23 .x2App [5]. client . connectAddress = " eNodeB5 % x2ppp22 "
593 *. eNodeB23 .x2App [6]. client . connectAddress = " eNodeB6 % x2ppp22 "
594 *. eNodeB23 .x2App [7]. client . connectAddress = " eNodeB7 % x2ppp22 "
595 *. eNodeB23 .x2App [8]. client . connectAddress = " eNodeB8 % x2ppp22 "
596 *. eNodeB23 .x2App [9]. client . connectAddress = " eNodeB9 % x2ppp22 "
597 *. eNodeB23 .x2App [10]. client . connectAddress = " eNodeB10 % x2ppp22 "
598 *. eNodeB23 .x2App [11]. client . connectAddress = " eNodeB11 % x2ppp22 "
599 *. eNodeB23 .x2App [12]. client . connectAddress = " eNodeB12 % x2ppp22 "
600 *. eNodeB23 .x2App [13]. client . connectAddress = " eNodeB13 % x2ppp22 "
601 *. eNodeB23 .x2App [14]. client . connectAddress = " eNodeB14 % x2ppp22 "
602 *. eNodeB23 .x2App [15]. client . connectAddress = " eNodeB15 % x2ppp22 "
603 *. eNodeB23 .x2App [16]. client . connectAddress = " eNodeB16 % x2ppp22 "
604 *. eNodeB23 .x2App [17]. client . connectAddress = " eNodeB17 % x2ppp22 "
605 *. eNodeB23 .x2App [18]. client . connectAddress = " eNodeB18 % x2ppp22 "
606 *. eNodeB23 .x2App [19]. client . connectAddress = " eNodeB19 % x2ppp22 "
607 *. eNodeB23 .x2App [20]. client . connectAddress = " eNodeB20 % x2ppp22 "
608 *. eNodeB23 .x2App [21]. client . connectAddress = " eNodeB21 % x2ppp22 "
609 *. eNodeB23 .x2App [22]. client . connectAddress = " eNodeB22 % x2ppp22 "

Listing A.7: Codes written in Omnetpp.ini file

1 parameters :
2 double playgroundSizeX @unit(m) = 1432m; // x size of the

area the nodes are in (in meters)
3 double playgroundSizeY @unit(m) = 1432m; // y size of the

area the nodes are in (in meters)
4 double playgroundSizeZ @unit(m) = 50m; // z size of the

area the nodes are in (in meters)

78

A –

5 @display ("bgb =1432 ,1432; bgg =1432 ,7 , black");
6

7 volatile int ueX = intuniform (0 ,1432);
8 volatile int ueY = intuniform (0 ,1432);
9

10 volatile int EnbX = intuniform (0 ,1432);
11 volatile int EnbY = intuniform (0 ,1432);
12 submodules :
13 eNodeB0 : eNodeB { @display ("p=$EnbX ,$EnbY;is=l");}
14 eNodeB1 : eNodeB { @display ("p=$EnbX ,$EnbY;is=l");}
15 eNodeB2 : eNodeB { @display ("p=$EnbX ,$EnbY;is=l");}
16 eNodeB3 : eNodeB { @display ("p=$EnbX ,$EnbY;is=l");}
17 eNodeB4 : eNodeB { @display ("p=$EnbX ,$EnbY;is=l");}
18 eNodeB5 : eNodeB { @display ("p=$EnbX ,$EnbY;is=l");}
19 eNodeB6 : eNodeB { @display ("p=$EnbX ,$EnbY;is=l");}
20 eNodeB7 : eNodeB { @display ("p=$EnbX ,$EnbY;is=l");}
21 eNodeB8 : eNodeB { @display ("p=$EnbX ,$EnbY;is=l");}
22 eNodeB9 : eNodeB { @display ("p=$EnbX ,$EnbY;is=l");}
23 eNodeB10 : eNodeB { @display ("p=$EnbX ,$EnbY;is=l");}
24 eNodeB11 : eNodeB { @display ("p=$EnbX ,$EnbY;is=l");}
25 eNodeB12 : eNodeB { @display ("p=$EnbX ,$EnbY;is=l");}
26 eNodeB13 : eNodeB { @display ("p=$EnbX ,$EnbY;is=l");}
27 eNodeB14 : eNodeB { @display ("p=$EnbX ,$EnbY;is=l");}
28 eNodeB15 : eNodeB { @display ("p=$EnbX ,$EnbY;is=l");}
29 eNodeB16 : eNodeB { @display ("p=$EnbX ,$EnbY;is=l");}
30 eNodeB17 : eNodeB { @display ("p=$EnbX ,$EnbY;is=l");}
31 eNodeB18 : eNodeB { @display ("p=$EnbX ,$EnbY;is=l");}
32 eNodeB19 : eNodeB { @display ("p=$EnbX ,$EnbY;is=l");}
33 eNodeB20 : eNodeB { @display ("p=$EnbX ,$EnbY;is=l");}
34 eNodeB21 : eNodeB { @display ("p=$EnbX ,$EnbY;is=l");}
35 eNodeB22 : eNodeB { @display ("p=$EnbX ,$EnbY;is=l");}
36 eNodeB23 : eNodeB { @display ("p=$EnbX ,$EnbY;is=l");}
37 ue [200]: Ue {
38 parameters :
39 @display ("p=$ueX ,$ueY;is=s");
40 }
41 connections allowunconnected :
42 pgw.pppg ++ <--> Eth10G <--> eNodeB0 .ppp;
43 pgw.pppg ++ <--> Eth10G <--> eNodeB1 .ppp;
44 pgw.pppg ++ <--> Eth10G <--> eNodeB2 .ppp;
45 pgw.pppg ++ <--> Eth10G <--> eNodeB3 .ppp;
46 pgw.pppg ++ <--> Eth10G <--> eNodeB4 .ppp;
47 pgw.pppg ++ <--> Eth10G <--> eNodeB5 .ppp;
48 pgw.pppg ++ <--> Eth10G <--> eNodeB6 .ppp;
49 pgw.pppg ++ <--> Eth10G <--> eNodeB7 .ppp;
50 pgw.pppg ++ <--> Eth10G <--> eNodeB8 .ppp;
51 pgw.pppg ++ <--> Eth10G <--> eNodeB9 .ppp;
52 pgw.pppg ++ <--> Eth10G <--> eNodeB10 .ppp;
53 pgw.pppg ++ <--> Eth10G <--> eNodeB11 .ppp;

79

A –

54 pgw.pppg ++ <--> Eth10G <--> eNodeB12 .ppp;
55 pgw.pppg ++ <--> Eth10G <--> eNodeB13 .ppp;
56 pgw.pppg ++ <--> Eth10G <--> eNodeB14 .ppp;
57 pgw.pppg ++ <--> Eth10G <--> eNodeB15 .ppp;
58 pgw.pppg ++ <--> Eth10G <--> eNodeB16 .ppp;
59 pgw.pppg ++ <--> Eth10G <--> eNodeB17 .ppp;
60 pgw.pppg ++ <--> Eth10G <--> eNodeB18 .ppp;
61 pgw.pppg ++ <--> Eth10G <--> eNodeB19 .ppp;
62 pgw.pppg ++ <--> Eth10G <--> eNodeB20 .ppp;
63 pgw.pppg ++ <--> Eth10G <--> eNodeB21 .ppp;
64 pgw.pppg ++ <--> Eth10G <--> eNodeB22 .ppp;
65 pgw.pppg ++ <--> Eth10G <--> eNodeB23 .ppp;
66 // eNodeB0 ///
67 eNodeB0 .x2++ <--> Eth10G <--> eNodeB1 .x2 ++;
68 eNodeB0 .x2++ <--> Eth10G <--> eNodeB2 .x2 ++;
69 eNodeB0 .x2++ <--> Eth10G <--> eNodeB3 .x2 ++;
70 eNodeB0 .x2++ <--> Eth10G <--> eNodeB4 .x2 ++;
71 eNodeB0 .x2++ <--> Eth10G <--> eNodeB5 .x2 ++;
72 eNodeB0 .x2++ <--> Eth10G <--> eNodeB6 .x2 ++;
73 eNodeB0 .x2++ <--> Eth10G <--> eNodeB7 .x2 ++;
74 eNodeB0 .x2++ <--> Eth10G <--> eNodeB8 .x2 ++;
75 eNodeB0 .x2++ <--> Eth10G <--> eNodeB9 .x2 ++;
76 eNodeB0 .x2++ <--> Eth10G <--> eNodeB10 .x2 ++;
77 eNodeB0 .x2++ <--> Eth10G <--> eNodeB11 .x2 ++;
78 eNodeB0 .x2++ <--> Eth10G <--> eNodeB12 .x2 ++;
79 eNodeB0 .x2++ <--> Eth10G <--> eNodeB13 .x2 ++;
80 eNodeB0 .x2++ <--> Eth10G <--> eNodeB14 .x2 ++;
81 eNodeB0 .x2++ <--> Eth10G <--> eNodeB15 .x2 ++;
82 eNodeB0 .x2++ <--> Eth10G <--> eNodeB16 .x2 ++;
83 eNodeB0 .x2++ <--> Eth10G <--> eNodeB17 .x2 ++;
84 eNodeB0 .x2++ <--> Eth10G <--> eNodeB18 .x2 ++;
85 eNodeB0 .x2++ <--> Eth10G <--> eNodeB19 .x2 ++;
86 eNodeB0 .x2++ <--> Eth10G <--> eNodeB20 .x2 ++;
87 eNodeB0 .x2++ <--> Eth10G <--> eNodeB21 .x2 ++;
88 eNodeB0 .x2++ <--> Eth10G <--> eNodeB22 .x2 ++;
89 eNodeB0 .x2++ <--> Eth10G <--> eNodeB23 .x2 ++;
90 // eNodeB1 ///
91 eNodeB1 .x2++ <--> Eth10G <--> eNodeB2 .x2 ++;
92 eNodeB1 .x2++ <--> Eth10G <--> eNodeB3 .x2 ++;
93 eNodeB1 .x2++ <--> Eth10G <--> eNodeB4 .x2 ++;
94 eNodeB1 .x2++ <--> Eth10G <--> eNodeB5 .x2 ++;
95 eNodeB1 .x2++ <--> Eth10G <--> eNodeB6 .x2 ++;
96 eNodeB1 .x2++ <--> Eth10G <--> eNodeB7 .x2 ++;
97 eNodeB1 .x2++ <--> Eth10G <--> eNodeB8 .x2 ++;
98 eNodeB1 .x2++ <--> Eth10G <--> eNodeB9 .x2 ++;
99 eNodeB1 .x2++ <--> Eth10G <--> eNodeB10 .x2 ++;

100 eNodeB1 .x2++ <--> Eth10G <--> eNodeB11 .x2 ++;
101 eNodeB1 .x2++ <--> Eth10G <--> eNodeB12 .x2 ++;
102 eNodeB1 .x2++ <--> Eth10G <--> eNodeB13 .x2 ++;

80

A –

103 eNodeB1 .x2++ <--> Eth10G <--> eNodeB14 .x2 ++;
104 eNodeB1 .x2++ <--> Eth10G <--> eNodeB15 .x2 ++;
105 eNodeB1 .x2++ <--> Eth10G <--> eNodeB16 .x2 ++;
106 eNodeB1 .x2++ <--> Eth10G <--> eNodeB17 .x2 ++;
107 eNodeB1 .x2++ <--> Eth10G <--> eNodeB18 .x2 ++;
108 eNodeB1 .x2++ <--> Eth10G <--> eNodeB19 .x2 ++;
109 eNodeB1 .x2++ <--> Eth10G <--> eNodeB20 .x2 ++;
110 eNodeB1 .x2++ <--> Eth10G <--> eNodeB21 .x2 ++;
111 eNodeB1 .x2++ <--> Eth10G <--> eNodeB22 .x2 ++;
112 eNodeB1 .x2++ <--> Eth10G <--> eNodeB23 .x2 ++;
113 // eNodeB2 ///
114 eNodeB2 .x2++ <--> Eth10G <--> eNodeB3 .x2 ++;
115 eNodeB2 .x2++ <--> Eth10G <--> eNodeB4 .x2 ++;
116 eNodeB2 .x2++ <--> Eth10G <--> eNodeB5 .x2 ++;
117 eNodeB2 .x2++ <--> Eth10G <--> eNodeB6 .x2 ++;
118 eNodeB2 .x2++ <--> Eth10G <--> eNodeB7 .x2 ++;
119 eNodeB2 .x2++ <--> Eth10G <--> eNodeB8 .x2 ++;
120 eNodeB2 .x2++ <--> Eth10G <--> eNodeB9 .x2 ++;
121 eNodeB2 .x2++ <--> Eth10G <--> eNodeB10 .x2 ++;
122 eNodeB2 .x2++ <--> Eth10G <--> eNodeB11 .x2 ++;
123 eNodeB2 .x2++ <--> Eth10G <--> eNodeB12 .x2 ++;
124 eNodeB2 .x2++ <--> Eth10G <--> eNodeB13 .x2 ++;
125 eNodeB2 .x2++ <--> Eth10G <--> eNodeB14 .x2 ++;
126 eNodeB2 .x2++ <--> Eth10G <--> eNodeB15 .x2 ++;
127 eNodeB2 .x2++ <--> Eth10G <--> eNodeB16 .x2 ++;
128 eNodeB2 .x2++ <--> Eth10G <--> eNodeB17 .x2 ++;
129 eNodeB2 .x2++ <--> Eth10G <--> eNodeB18 .x2 ++;
130 eNodeB2 .x2++ <--> Eth10G <--> eNodeB19 .x2 ++;
131 eNodeB2 .x2++ <--> Eth10G <--> eNodeB20 .x2 ++;
132 eNodeB2 .x2++ <--> Eth10G <--> eNodeB21 .x2 ++;
133 eNodeB2 .x2++ <--> Eth10G <--> eNodeB22 .x2 ++;
134 eNodeB2 .x2++ <--> Eth10G <--> eNodeB23 .x2 ++;
135 // eNodeB3 ///
136 eNodeB3 .x2++ <--> Eth10G <--> eNodeB4 .x2 ++;
137 eNodeB3 .x2++ <--> Eth10G <--> eNodeB5 .x2 ++;
138 eNodeB3 .x2++ <--> Eth10G <--> eNodeB6 .x2 ++;
139 eNodeB3 .x2++ <--> Eth10G <--> eNodeB7 .x2 ++;
140 eNodeB3 .x2++ <--> Eth10G <--> eNodeB8 .x2 ++;
141 eNodeB3 .x2++ <--> Eth10G <--> eNodeB9 .x2 ++;
142 eNodeB3 .x2++ <--> Eth10G <--> eNodeB10 .x2 ++;
143 eNodeB3 .x2++ <--> Eth10G <--> eNodeB11 .x2 ++;
144 eNodeB3 .x2++ <--> Eth10G <--> eNodeB12 .x2 ++;
145 eNodeB3 .x2++ <--> Eth10G <--> eNodeB13 .x2 ++;
146 eNodeB3 .x2++ <--> Eth10G <--> eNodeB14 .x2 ++;
147 eNodeB3 .x2++ <--> Eth10G <--> eNodeB15 .x2 ++;
148 eNodeB3 .x2++ <--> Eth10G <--> eNodeB16 .x2 ++;
149 eNodeB3 .x2++ <--> Eth10G <--> eNodeB17 .x2 ++;
150 eNodeB3 .x2++ <--> Eth10G <--> eNodeB18 .x2 ++;
151 eNodeB3 .x2++ <--> Eth10G <--> eNodeB19 .x2 ++;

81

A –

152 eNodeB3 .x2++ <--> Eth10G <--> eNodeB20 .x2 ++;
153 eNodeB3 .x2++ <--> Eth10G <--> eNodeB21 .x2 ++;
154 eNodeB3 .x2++ <--> Eth10G <--> eNodeB22 .x2 ++;
155 eNodeB3 .x2++ <--> Eth10G <--> eNodeB23 .x2 ++;
156 // eNodeB4 ///
157 eNodeB4 .x2++ <--> Eth10G <--> eNodeB5 .x2 ++;
158 eNodeB4 .x2++ <--> Eth10G <--> eNodeB6 .x2 ++;
159 eNodeB4 .x2++ <--> Eth10G <--> eNodeB7 .x2 ++;
160 eNodeB4 .x2++ <--> Eth10G <--> eNodeB8 .x2 ++;
161 eNodeB4 .x2++ <--> Eth10G <--> eNodeB9 .x2 ++;
162 eNodeB4 .x2++ <--> Eth10G <--> eNodeB10 .x2 ++;
163 eNodeB4 .x2++ <--> Eth10G <--> eNodeB11 .x2 ++;
164 eNodeB4 .x2++ <--> Eth10G <--> eNodeB12 .x2 ++;
165 eNodeB4 .x2++ <--> Eth10G <--> eNodeB13 .x2 ++;
166 eNodeB4 .x2++ <--> Eth10G <--> eNodeB14 .x2 ++;
167 eNodeB4 .x2++ <--> Eth10G <--> eNodeB15 .x2 ++;
168 eNodeB4 .x2++ <--> Eth10G <--> eNodeB16 .x2 ++;
169 eNodeB4 .x2++ <--> Eth10G <--> eNodeB17 .x2 ++;
170 eNodeB4 .x2++ <--> Eth10G <--> eNodeB18 .x2 ++;
171 eNodeB4 .x2++ <--> Eth10G <--> eNodeB19 .x2 ++;
172 eNodeB4 .x2++ <--> Eth10G <--> eNodeB20 .x2 ++;
173 eNodeB4 .x2++ <--> Eth10G <--> eNodeB21 .x2 ++;
174 eNodeB4 .x2++ <--> Eth10G <--> eNodeB22 .x2 ++;
175 eNodeB4 .x2++ <--> Eth10G <--> eNodeB23 .x2 ++;
176 // eNodeB5 ///
177 eNodeB5 .x2++ <--> Eth10G <--> eNodeB6 .x2 ++;
178 eNodeB5 .x2++ <--> Eth10G <--> eNodeB7 .x2 ++;
179 eNodeB5 .x2++ <--> Eth10G <--> eNodeB8 .x2 ++;
180 eNodeB5 .x2++ <--> Eth10G <--> eNodeB9 .x2 ++;
181 eNodeB5 .x2++ <--> Eth10G <--> eNodeB10 .x2 ++;
182 eNodeB5 .x2++ <--> Eth10G <--> eNodeB11 .x2 ++;
183 eNodeB5 .x2++ <--> Eth10G <--> eNodeB12 .x2 ++;
184 eNodeB5 .x2++ <--> Eth10G <--> eNodeB13 .x2 ++;
185 eNodeB5 .x2++ <--> Eth10G <--> eNodeB14 .x2 ++;
186 eNodeB5 .x2++ <--> Eth10G <--> eNodeB15 .x2 ++;
187 eNodeB5 .x2++ <--> Eth10G <--> eNodeB16 .x2 ++;
188 eNodeB5 .x2++ <--> Eth10G <--> eNodeB17 .x2 ++;
189 eNodeB5 .x2++ <--> Eth10G <--> eNodeB18 .x2 ++;
190 eNodeB5 .x2++ <--> Eth10G <--> eNodeB19 .x2 ++;
191 eNodeB5 .x2++ <--> Eth10G <--> eNodeB20 .x2 ++;
192 eNodeB5 .x2++ <--> Eth10G <--> eNodeB21 .x2 ++;
193 eNodeB5 .x2++ <--> Eth10G <--> eNodeB22 .x2 ++;
194 eNodeB5 .x2++ <--> Eth10G <--> eNodeB23 .x2 ++;
195 // eNodeB6 ///
196 eNodeB6 .x2++ <--> Eth10G <--> eNodeB7 .x2 ++;
197 eNodeB6 .x2++ <--> Eth10G <--> eNodeB8 .x2 ++;
198 eNodeB6 .x2++ <--> Eth10G <--> eNodeB9 .x2 ++;
199 eNodeB6 .x2++ <--> Eth10G <--> eNodeB10 .x2 ++;
200 eNodeB6 .x2++ <--> Eth10G <--> eNodeB11 .x2 ++;

82

A –

201 eNodeB6 .x2++ <--> Eth10G <--> eNodeB12 .x2 ++;
202 eNodeB6 .x2++ <--> Eth10G <--> eNodeB13 .x2 ++;
203 eNodeB6 .x2++ <--> Eth10G <--> eNodeB14 .x2 ++;
204 eNodeB6 .x2++ <--> Eth10G <--> eNodeB15 .x2 ++;
205 eNodeB6 .x2++ <--> Eth10G <--> eNodeB16 .x2 ++;
206 eNodeB6 .x2++ <--> Eth10G <--> eNodeB17 .x2 ++;
207 eNodeB6 .x2++ <--> Eth10G <--> eNodeB18 .x2 ++;
208 eNodeB6 .x2++ <--> Eth10G <--> eNodeB19 .x2 ++;
209 eNodeB6 .x2++ <--> Eth10G <--> eNodeB20 .x2 ++;
210 eNodeB6 .x2++ <--> Eth10G <--> eNodeB21 .x2 ++;
211 eNodeB6 .x2++ <--> Eth10G <--> eNodeB22 .x2 ++;
212 eNodeB6 .x2++ <--> Eth10G <--> eNodeB23 .x2 ++;
213 // eNodeB7 ///
214 eNodeB7 .x2++ <--> Eth10G <--> eNodeB8 .x2 ++;
215 eNodeB7 .x2++ <--> Eth10G <--> eNodeB9 .x2 ++;
216 eNodeB7 .x2++ <--> Eth10G <--> eNodeB10 .x2 ++;
217 eNodeB7 .x2++ <--> Eth10G <--> eNodeB11 .x2 ++;
218 eNodeB7 .x2++ <--> Eth10G <--> eNodeB12 .x2 ++;
219 eNodeB7 .x2++ <--> Eth10G <--> eNodeB13 .x2 ++;
220 eNodeB7 .x2++ <--> Eth10G <--> eNodeB14 .x2 ++;
221 eNodeB7 .x2++ <--> Eth10G <--> eNodeB15 .x2 ++;
222 eNodeB7 .x2++ <--> Eth10G <--> eNodeB16 .x2 ++;
223 eNodeB7 .x2++ <--> Eth10G <--> eNodeB17 .x2 ++;
224 eNodeB7 .x2++ <--> Eth10G <--> eNodeB18 .x2 ++;
225 eNodeB7 .x2++ <--> Eth10G <--> eNodeB19 .x2 ++;
226 eNodeB7 .x2++ <--> Eth10G <--> eNodeB20 .x2 ++;
227 eNodeB7 .x2++ <--> Eth10G <--> eNodeB21 .x2 ++;
228 eNodeB7 .x2++ <--> Eth10G <--> eNodeB22 .x2 ++;
229 eNodeB7 .x2++ <--> Eth10G <--> eNodeB23 .x2 ++;
230 // eNodeB8 ///
231 eNodeB8 .x2++ <--> Eth10G <--> eNodeB9 .x2 ++;
232 eNodeB8 .x2++ <--> Eth10G <--> eNodeB10 .x2 ++;
233 eNodeB8 .x2++ <--> Eth10G <--> eNodeB11 .x2 ++;
234 eNodeB8 .x2++ <--> Eth10G <--> eNodeB12 .x2 ++;
235 eNodeB8 .x2++ <--> Eth10G <--> eNodeB13 .x2 ++;
236 eNodeB8 .x2++ <--> Eth10G <--> eNodeB14 .x2 ++;
237 eNodeB8 .x2++ <--> Eth10G <--> eNodeB15 .x2 ++;
238 eNodeB8 .x2++ <--> Eth10G <--> eNodeB16 .x2 ++;
239 eNodeB8 .x2++ <--> Eth10G <--> eNodeB17 .x2 ++;
240 eNodeB8 .x2++ <--> Eth10G <--> eNodeB18 .x2 ++;
241 eNodeB8 .x2++ <--> Eth10G <--> eNodeB19 .x2 ++;
242 eNodeB8 .x2++ <--> Eth10G <--> eNodeB20 .x2 ++;
243 eNodeB8 .x2++ <--> Eth10G <--> eNodeB21 .x2 ++;
244 eNodeB8 .x2++ <--> Eth10G <--> eNodeB22 .x2 ++;
245 eNodeB8 .x2++ <--> Eth10G <--> eNodeB23 .x2 ++;
246 // eNodeB9 ///
247 eNodeB9 .x2++ <--> Eth10G <--> eNodeB10 .x2 ++;
248 eNodeB9 .x2++ <--> Eth10G <--> eNodeB11 .x2 ++;
249 eNodeB9 .x2++ <--> Eth10G <--> eNodeB12 .x2 ++;

83

A –

250 eNodeB9 .x2++ <--> Eth10G <--> eNodeB13 .x2 ++;
251 eNodeB9 .x2++ <--> Eth10G <--> eNodeB14 .x2 ++;
252 eNodeB9 .x2++ <--> Eth10G <--> eNodeB15 .x2 ++;
253 eNodeB9 .x2++ <--> Eth10G <--> eNodeB16 .x2 ++;
254 eNodeB9 .x2++ <--> Eth10G <--> eNodeB17 .x2 ++;
255 eNodeB9 .x2++ <--> Eth10G <--> eNodeB18 .x2 ++;
256 eNodeB9 .x2++ <--> Eth10G <--> eNodeB19 .x2 ++;
257 eNodeB9 .x2++ <--> Eth10G <--> eNodeB20 .x2 ++;
258 eNodeB9 .x2++ <--> Eth10G <--> eNodeB21 .x2 ++;
259 eNodeB9 .x2++ <--> Eth10G <--> eNodeB22 .x2 ++;
260 eNodeB9 .x2++ <--> Eth10G <--> eNodeB23 .x2 ++;
261 // eNodeB10 //
262 eNodeB10 .x2++ <--> Eth10G <--> eNodeB11 .x2 ++;
263 eNodeB10 .x2++ <--> Eth10G <--> eNodeB12 .x2 ++;
264 eNodeB10 .x2++ <--> Eth10G <--> eNodeB13 .x2 ++;
265 eNodeB10 .x2++ <--> Eth10G <--> eNodeB14 .x2 ++;
266 eNodeB10 .x2++ <--> Eth10G <--> eNodeB15 .x2 ++;
267 eNodeB10 .x2++ <--> Eth10G <--> eNodeB16 .x2 ++;
268 eNodeB10 .x2++ <--> Eth10G <--> eNodeB17 .x2 ++;
269 eNodeB10 .x2++ <--> Eth10G <--> eNodeB18 .x2 ++;
270 eNodeB10 .x2++ <--> Eth10G <--> eNodeB19 .x2 ++;
271 eNodeB10 .x2++ <--> Eth10G <--> eNodeB20 .x2 ++;
272 eNodeB10 .x2++ <--> Eth10G <--> eNodeB21 .x2 ++;
273 eNodeB10 .x2++ <--> Eth10G <--> eNodeB22 .x2 ++;
274 eNodeB10 .x2++ <--> Eth10G <--> eNodeB23 .x2 ++;
275 // eNodeB11 //
276 eNodeB11 .x2++ <--> Eth10G <--> eNodeB12 .x2 ++;
277 eNodeB11 .x2++ <--> Eth10G <--> eNodeB13 .x2 ++;
278 eNodeB11 .x2++ <--> Eth10G <--> eNodeB14 .x2 ++;
279 eNodeB11 .x2++ <--> Eth10G <--> eNodeB15 .x2 ++;
280 eNodeB11 .x2++ <--> Eth10G <--> eNodeB16 .x2 ++;
281 eNodeB11 .x2++ <--> Eth10G <--> eNodeB17 .x2 ++;
282 eNodeB11 .x2++ <--> Eth10G <--> eNodeB18 .x2 ++;
283 eNodeB11 .x2++ <--> Eth10G <--> eNodeB19 .x2 ++;
284 eNodeB11 .x2++ <--> Eth10G <--> eNodeB20 .x2 ++;
285 eNodeB11 .x2++ <--> Eth10G <--> eNodeB21 .x2 ++;
286 eNodeB11 .x2++ <--> Eth10G <--> eNodeB22 .x2 ++;
287 eNodeB11 .x2++ <--> Eth10G <--> eNodeB23 .x2 ++;
288 // eNodeB12 //
289 eNodeB12 .x2++ <--> Eth10G <--> eNodeB13 .x2 ++;
290 eNodeB12 .x2++ <--> Eth10G <--> eNodeB14 .x2 ++;
291 eNodeB12 .x2++ <--> Eth10G <--> eNodeB15 .x2 ++;
292 eNodeB12 .x2++ <--> Eth10G <--> eNodeB16 .x2 ++;
293 eNodeB12 .x2++ <--> Eth10G <--> eNodeB17 .x2 ++;
294 eNodeB12 .x2++ <--> Eth10G <--> eNodeB18 .x2 ++;
295 eNodeB12 .x2++ <--> Eth10G <--> eNodeB19 .x2 ++;
296 eNodeB12 .x2++ <--> Eth10G <--> eNodeB20 .x2 ++;
297 eNodeB12 .x2++ <--> Eth10G <--> eNodeB21 .x2 ++;
298 eNodeB12 .x2++ <--> Eth10G <--> eNodeB22 .x2 ++;

84

A –

299 eNodeB12 .x2++ <--> Eth10G <--> eNodeB23 .x2 ++;
300 // eNodeB13 //
301 eNodeB13 .x2++ <--> Eth10G <--> eNodeB14 .x2 ++;
302 eNodeB13 .x2++ <--> Eth10G <--> eNodeB15 .x2 ++;
303 eNodeB13 .x2++ <--> Eth10G <--> eNodeB16 .x2 ++;
304 eNodeB13 .x2++ <--> Eth10G <--> eNodeB17 .x2 ++;
305 eNodeB13 .x2++ <--> Eth10G <--> eNodeB18 .x2 ++;
306 eNodeB13 .x2++ <--> Eth10G <--> eNodeB19 .x2 ++;
307 eNodeB13 .x2++ <--> Eth10G <--> eNodeB20 .x2 ++;
308 eNodeB13 .x2++ <--> Eth10G <--> eNodeB21 .x2 ++;
309 eNodeB13 .x2++ <--> Eth10G <--> eNodeB22 .x2 ++;
310 eNodeB13 .x2++ <--> Eth10G <--> eNodeB23 .x2 ++;
311 // eNodeB14 //
312 eNodeB14 .x2++ <--> Eth10G <--> eNodeB15 .x2 ++;
313 eNodeB14 .x2++ <--> Eth10G <--> eNodeB16 .x2 ++;
314 eNodeB14 .x2++ <--> Eth10G <--> eNodeB17 .x2 ++;
315 eNodeB14 .x2++ <--> Eth10G <--> eNodeB18 .x2 ++;
316 eNodeB14 .x2++ <--> Eth10G <--> eNodeB19 .x2 ++;
317 eNodeB14 .x2++ <--> Eth10G <--> eNodeB20 .x2 ++;
318 eNodeB14 .x2++ <--> Eth10G <--> eNodeB21 .x2 ++;
319 eNodeB14 .x2++ <--> Eth10G <--> eNodeB22 .x2 ++;
320 eNodeB14 .x2++ <--> Eth10G <--> eNodeB23 .x2 ++;
321 // eNodeB15 //
322 eNodeB15 .x2++ <--> Eth10G <--> eNodeB16 .x2 ++;
323 eNodeB15 .x2++ <--> Eth10G <--> eNodeB17 .x2 ++;
324 eNodeB15 .x2++ <--> Eth10G <--> eNodeB18 .x2 ++;
325 eNodeB15 .x2++ <--> Eth10G <--> eNodeB19 .x2 ++;
326 eNodeB15 .x2++ <--> Eth10G <--> eNodeB20 .x2 ++;
327 eNodeB15 .x2++ <--> Eth10G <--> eNodeB21 .x2 ++;
328 eNodeB15 .x2++ <--> Eth10G <--> eNodeB22 .x2 ++;
329 eNodeB15 .x2++ <--> Eth10G <--> eNodeB23 .x2 ++;
330 // eNodeB16 //
331 eNodeB16 .x2++ <--> Eth10G <--> eNodeB17 .x2 ++;
332 eNodeB16 .x2++ <--> Eth10G <--> eNodeB18 .x2 ++;
333 eNodeB16 .x2++ <--> Eth10G <--> eNodeB19 .x2 ++;
334 eNodeB16 .x2++ <--> Eth10G <--> eNodeB20 .x2 ++;
335 eNodeB16 .x2++ <--> Eth10G <--> eNodeB21 .x2 ++;
336 eNodeB16 .x2++ <--> Eth10G <--> eNodeB22 .x2 ++;
337 eNodeB16 .x2++ <--> Eth10G <--> eNodeB23 .x2 ++;
338 // eNodeB17 //
339 eNodeB17 .x2++ <--> Eth10G <--> eNodeB18 .x2 ++;
340 eNodeB17 .x2++ <--> Eth10G <--> eNodeB19 .x2 ++;
341 eNodeB17 .x2++ <--> Eth10G <--> eNodeB20 .x2 ++;
342 eNodeB17 .x2++ <--> Eth10G <--> eNodeB21 .x2 ++;
343 eNodeB17 .x2++ <--> Eth10G <--> eNodeB22 .x2 ++;
344 eNodeB17 .x2++ <--> Eth10G <--> eNodeB23 .x2 ++;
345 // eNodeB18 //
346 eNodeB18 .x2++ <--> Eth10G <--> eNodeB19 .x2 ++;
347 eNodeB18 .x2++ <--> Eth10G <--> eNodeB20 .x2 ++;

85

A –

348 eNodeB18 .x2++ <--> Eth10G <--> eNodeB21 .x2 ++;
349 eNodeB18 .x2++ <--> Eth10G <--> eNodeB22 .x2 ++;
350 eNodeB18 .x2++ <--> Eth10G <--> eNodeB23 .x2 ++;
351 // eNodeB19 //
352 eNodeB19 .x2++ <--> Eth10G <--> eNodeB20 .x2 ++;
353 eNodeB19 .x2++ <--> Eth10G <--> eNodeB21 .x2 ++;
354 eNodeB19 .x2++ <--> Eth10G <--> eNodeB22 .x2 ++;
355 eNodeB19 .x2++ <--> Eth10G <--> eNodeB23 .x2 ++;
356 // eNodeB20 //
357 eNodeB20 .x2++ <--> Eth10G <--> eNodeB21 .x2 ++;
358 eNodeB20 .x2++ <--> Eth10G <--> eNodeB22 .x2 ++;
359 eNodeB20 .x2++ <--> Eth10G <--> eNodeB23 .x2 ++;
360 // eNodeB21 //
361 eNodeB21 .x2++ <--> Eth10G <--> eNodeB22 .x2 ++;
362 eNodeB21 .x2++ <--> Eth10G <--> eNodeB23 .x2 ++;
363 // eNodeB22 //
364 eNodeB22 .x2++ <--> Eth10G <--> eNodeB23 .x2 ++;
365 // eNodeB23 //

Listing A.8: NED code for whole playground scenario for 24 eNodeBs and 200
UEs

1 void LtePhyUe :: doHandover ()
2 {
3 // Delete Old Buffers
4 deleteOldBuffers (masterId_);
5 // amc calls
6 LteAmc * oldAmc = getAmcModule (masterId_);
7 LteAmc * newAmc = getAmcModule (candidateMasterId_);
8 assert (newAmc != NULL);
9 oldAmc -> detachUser (nodeId_ , UL);

10 oldAmc -> detachUser (nodeId_ , DL);
11 newAmc -> attachUser (nodeId_ , UL);
12 newAmc -> attachUser (nodeId_ , DL);
13 // binder calls
14 binder_ -> unregisterNextHop (masterId_ , nodeId_);
15 binder_ -> registerNextHop (candidateMasterId_ , nodeId_);
16 binder_ -> updateUeInfoCellId (nodeId_ , candidateMasterId_);
17 das_ -> setMasterRuSet (candidateMasterId_);
18 // change masterId and notify handover to the MAC layer
19 MacNodeId oldMaster = masterId_ ;
20 masterId_ = candidateMasterId_ ;
21 mac_ -> doHandover (candidateMasterId_); // do MAC operations

for handover
22 currentMasterRssi_ = candidateMasterRssi_ ;
23 hysteresisTh_ = updateHysteresisTh (currentMasterRssi_);
24 // update cellInfo

86

A –

25 LteMacEnb * newMacEnb = check_and_cast < LteMacEnb *>(
getSimulation () ->getModule (binder_ -> getOmnetId (
candidateMasterId_))->getSubmodule (" lteNic ")->getSubmodule ("mac
"));

26 LteCellInfo * newCellInfo = newMacEnb -> getCellInfo ();
27 cellInfo_ -> detachUser (nodeId_);
28 newCellInfo -> attachUser (nodeId_);
29 cellInfo_ = newCellInfo ;
30 // update DL feedback generator
31 LteDlFeedbackGenerator * fbGen = check_and_cast <

LteDlFeedbackGenerator *>(getParentModule () ->getSubmodule ("
dlFbGen "));

32 fbGen -> handleHandover (masterId_);
33 // collect stat
34 emit(servingCell_ , (long) masterId_);
35

36 // ***** collecting per user number of handovers Developed in
this thesis (begin)

37 totalHandovers ++;
38 emit(numHandovers_ , totalHandovers);
39 if (getEnvir () ->isGUI ())
40 getParentModule () ->getParentModule () ->bubble (" Handover

complete !");// show the handover completion on top of each UE or
car

41 // ***** collecting per user number of handovers Developed in
this thesis (end)

42

43 EV << NOW << " LtePhyUe :: doHandover - UE " << nodeId_ << " has
completed handover to eNB " << masterId_ << "... " << endl;

44 binder_ -> removeUeHandoverTriggered (nodeId_);
45 // inform the UE’s IP2lte module to forward held packets
46 IP2lte * ip2lte = check_and_cast < IP2lte *>(getParentModule () ->

getSubmodule (" ip2lte "));
47 ip2lte -> signalHandoverCompleteUe ();
48 // inform the eNB ’s IP2lte module to forward data to the

target eNB
49 IP2lte * enbIp2lte = check_and_cast < IP2lte *>(getSimulation () ->

getModule (binder_ -> getOmnetId (masterId_))->getSubmodule (" lteNic
")->getSubmodule (" ip2lte "));

50 enbIp2lte -> signalHandoverCompleteTarget (nodeId_ , oldMaster);
51 }

Listing A.9: per use number of handovers collection lines 44 to 48(LtePhyUe.cc)

1 void PPP :: handleMessage (cMessage *msg)
2 {
3 // ***** turning the ppp link off or no for 1 base station as a

sample for time <10s (befor car carrying eNodeB arrival and
time >80s after car carrying eNodeB departure (begin)

87

A –

4 if ((simTime () <=10 || simTime () >=80) && strcmp (
getParentModule () ->getParentModule () ->getFullName ()," eNodeB0 ")
==0)

5 {
6 isOperational =false;
7 }
8 else
9 isOperational =true;

10 // ***** turning the ppp link off or on for 1 base station as a
sample for time <10s (befor car carrying eNodeB arrival and

time >80s after car carrying eNodeB departure (end)
11 if (! isOperational) {
12 handleMessageWhenDown (msg);
13 return ;
14 }
15 if (msg == endTransmissionEvent) {
16 // Transmission finished , we can start next one.
17 EV_INFO << " Transmission successfully completed .\n";
18 emit(txStateSignal , 0L);
19 // fire notification
20 notifDetails . setPacket (nullptr);
21 emit(NF_PP_TX_END , & notifDetails);
22 if (! txQueue . isEmpty ()) {
23 cPacket *pk = (cPacket *) txQueue .pop ();
24 startTransmitting (pk);
25 }
26 else if (queueModule && 0 == queueModule ->

getNumPendingRequests ()) {
27 queueModule -> requestPacket ();
28 }
29 }
30 else if (msg -> arrivedOn (" phys$i ")) {
31 EV_INFO << " Received " << msg << " from network .\n";
32 notifDetails . setPacket (PK(msg));
33 emit(NF_PP_RX_END , & notifDetails);
34 emit(packetReceivedFromLowerSignal , msg);
35 // check for bit errors
36 if (PK(msg)->hasBitError ()) {
37 EV_WARN << "Bit error in " << msg << endl;
38 emit(dropPkBitErrorSignal , msg);
39 numBitErr ++;
40 delete msg;
41 }
42 else {
43 // pass up payload
44 PPPFrame * pppFrame = check_and_cast < PPPFrame *>(msg);
45 emit(rxPkOkSignal , pppFrame);
46 cPacket * payload = decapsulate (pppFrame);
47 numRcvdOK ++;

88

A –

48 emit(packetSentToUpperSignal , payload);
49 EV_INFO << " Sending " << payload << " to upper layer .\

n";
50 send(payload , " netwOut ");
51 }
52 }
53 else { // arrived on gate " netwIn "
54 EV_INFO << " Received " << msg << " from upper layer .\n";
55 if (datarateChannel == nullptr) {
56 EV_WARN << " Interface is not connected , dropping

packet " << msg << endl;
57 numDroppedIfaceDown ++;
58 emit(dropPkIfaceDownSignal , msg);
59 delete msg;
60 if (queueModule && 0 == queueModule ->

getNumPendingRequests ())
61 queueModule -> requestPacket ();
62 }
63 else {
64 emit(packetReceivedFromUpperSignal , msg);
65

66 if (endTransmissionEvent -> isScheduled ()) {
67 // We are currently busy , so just queue up the

packet .
68 EV_DETAIL << " Received " << msg << " for

transmission but transmitter busy , queueing .\n";
69 if (txQueueLimit && txQueue . getLength () >

txQueueLimit)
70 throw cRuntimeError (" txQueue length exceeds %d

-- this is probably due to "
71 "a bogus app model

generating excessive traffic "
72 "(or if this is normal ,

increase txQueueLimit !)",
73 txQueueLimit);
74 txQueue . insert (msg);
75 }
76 else {
77 // We are idle , so we can start transmitting right

away.
78 startTransmitting (PK(msg));
79 }
80 }
81 }
82 }

Listing A.10: turn on and off ppp of base station at lines 3 to 10
(inet/linklayer/ppp.cc)

89

A –

1 void LtePhyEnb :: handleAirFrame (cMessage * msg)
2 {
3 UserControlInfo * lteInfo = check_and_cast < UserControlInfo *>(

msg -> removeControlInfo ());
4 if (! lteInfo)
5 {
6

7 return ;
8 }
9 // ***** turning the radio link off or no for 1 base station as

a sample for time <10s (befor car carrying eNodeB arrival and
time >80s after car carrying eNodeB departure (begin)

10 if((simTime () <=10 || simTime () >=80) && strcmp (getParentModule
() ->getParentModule () ->getFullName ()," eNodeB0 ")==0

11 {
12 txPower_ =0;
13 return ;
14 }
15 else
16 txPower_ = eNodeBtxPower_ ;
17 // ***** turning the ppp link off or no for 1 base station as a

sample for time <10s (befor car carrying eNodeB arrival and
time >80s after car carrying eNodeB departure (begin)

18 LteAirFrame * frame = static_cast < LteAirFrame *>(msg);
19 EV << " LtePhy : received new LteAirFrame with ID " << frame ->

getId () << " from channel " << endl;
20 if (lteInfo -> getUserTxParams () != NULL)
21 {
22 double cqi = lteInfo -> getUserTxParams () ->readCqiVector ()[

lteInfo ->getCw ()];
23 // handle broadcast packet sent by another eNB
24 if (lteInfo -> getFrameType () == HANDOVERPKT)
25 {
26 EV << " LtePhyEnb :: handleAirFrame - received handover

packet from another eNodeB . Ignore it." << endl;
27 delete lteInfo ;
28 delete frame;
29 return ;
30 }
31 if (binder_ -> getNextHop (lteInfo -> getSourceId ()) != nodeId_)
32 {
33 EV << " WARNING : frame from a UE that is leaving this cell

(handover): deleted " << endl;
34 EV << " Source MacNodeId : " << lteInfo -> getSourceId () <<

endl;
35 EV << " Master MacNodeId : " << nodeId_ << endl;
36 delete lteInfo ;
37 delete frame;

90

A –

38 return ;
39 }
40 connectedNodeId_ = lteInfo -> getSourceId ();
41 int sourceId = getBinder () ->getOmnetId (connectedNodeId_);
42 int senderId = getBinder () ->getOmnetId (lteInfo -> getDestId ());
43 if(sourceId == 0 || senderId == 0)
44 {
45 // either source or destination have left the simulation
46 delete msg;
47 return ;
48 }
49 // handle all control pkt
50 if (handleControlPkt (lteInfo , frame))
51 return ; // If frame contain a control pkt no further

action is needed
52 bool result = true;
53 RemoteSet r = lteInfo -> getUserTxParams () ->readAntennaSet ();
54 if (r.size () > 1)
55 {
56 // Use DAS
57 // Message from ue
58 for (RemoteSet :: iterator it = r.begin (); it != r.end (); it

++)
59 {
60 EV << " LtePhy : Receiving Packet from antenna " << (*it

) << "\n";
61 RemoteUnitPhyData data;
62 data. txPower = lteInfo -> getTxPower ();
63 data.m = getRadioPosition ();
64 frame -> addRemoteUnitPhyDataVector (data);
65 }
66 result = channelModel_ -> isCorruptedDas (frame , lteInfo);
67 }
68 else
69 {
70 result = channelModel_ -> isCorrupted (frame , lteInfo);
71 }
72 if (result)
73 numAirFrameReceived_ ++;
74 else
75 numAirFrameNotReceived_ ++;
76 EV << " Handled LteAirframe with ID " << frame ->getId () << "

with result "
77 << (result ? " RECEIVED " : "NOT RECEIVED ") << endl;
78 cPacket * pkt = frame -> decapsulate ();
79 // here frame has to be destroyed since it is no more useful
80 delete frame;
81 // attach the decider result to the packet as control info
82 lteInfo -> setDeciderResult (result);

91

A –

83 pkt -> setControlInfo (lteInfo);
84 // send decapsulated message along with result control info to

upperGateOut_
85 send(pkt , upperGateOut_);
86 if (getEnvir () ->isGUI ())
87 updateDisplayString ();
88 }

Listing A.11: turn on and off radio of base station at lines 3 to 10
(inet/linklayer/ppp.cc)

1 double DistanceBasedConflictGraph :: getDbmFromDistance (double
distance)

2 {
3 // get the reference to the channel model of the eNB
4 LteChannelModel * channelModel = phyEnb_ -> getChannelModel ();
5 // ***** In order to sent eNodeB id to computePathloss method (

begin)
6 MacNodeId eNbId= phyEnb_ ->getId ();
7 // ***** In order to sent eNodeB id to computePathloss method (

end)
8 // obtain path loss in dBm
9 bool los = false; // TODO make it configurable

10 double dbp = 0;
11 double pLoss = channelModel -> computePathLoss (distance ,eNbId ,

dbp , los);// Masoud
12 return pLoss;
13 }

Listing A.12: modified version of getDbmFromDistance Method

92

Bibliography

[1] M. Ajmone Marsan, F. Mohammadnia, C. Vitale, M. Fiore, and V. Mancuso.
«Towards mobile radio access infrastructures for mobile users». In: 14 (Mar.
2019), pp. 1–4 (cit. on pp. 3–5).

[2] http://www.dael.com/en/telecom/cell-on-wheels. In: () (cit. on p. 3).
[3] F. Mohammadnia, M. Fiore, and M.A. Marsan. «Adaptive densification of

mobile net- works: Exploring correlations in vehicular and telecom traffic».
In: The 17th An- nual Mediterranean Ad Hoc Networking Workshop. Capri,
Italy, 2018, pp. 20–22 (cit. on p. 4).

[4] https://www.physiome.org/jsim/ (cit. on p. 9).
[5] https://www.nsnam.org/ (cit. on p. 9).
[6] M. Saidallah, A. El Fergougui, and A. Elbelrhiti Elalaoui. «A Comparative

Study of Urban Road Traffic Simulators». In: 6 (2016), p. 2 (cit. on pp. 11,
12).

[7] G. Kotusevski and K.A. Hawick. «A Review of Traffic Simulation Software».
In: 20 (2009), p. 2 (cit. on pp. 12, 13).

[8] http://veins.car2x.org/ (cit. on p. 13).
[9] http://veins-lte.car2x.org/ (cit. on p. 14).
[10] G. Nardini, A. Virdis, and G. Stea. «Simulating cellular communications in

vehicular networks: making SimuLTE interoperable with Veins». In: 4 (2016),
p. 1 (cit. on p. 14).

[11] A. Virdis, G. Nardini, and G. Stea. «Simulating LTE/LTE-Advanced networks
with SimuLTE». In: 18 (Jan. 2016), p. 1 (cit. on p. 14).

[12] https://inet.omnetpp.org/docs/showcases/mobility/basic/doc/index.html. In:
() (cit. on p. 36).

93

	List of Tables
	List of Figures
	Introduction To Moving Base Stations
	Introduction
	Why Moving Base Stations?
	Moving Base Stations
	Issues And Challenges
	The goal of this work

	Extendable Simulator?
	What do we need?
	A test-bed for network simulation
	JSim
	ns-3
	OMNeT++
	Comparison table

	A simulator for road traffic
	MATSim
	Treiber's Microsimulation
	SUMO
	Comparison table

	An extensible cellular network simulator project on OMNeT++
	VeinsLTE
	SimuLTE-Veins
	Comparison table

	SimuLTE-Veins
	SimuLTE
	Veins and SUMO
	INET
	SimuLTE integration on OMNeT++

	Network Elements
	Zone settings
	Server
	Router
	Packet Gateway (PGW)
	EnodeB
	User Equipment (UE)
	Cars

	Developing ENodeB for Moving Base Stations (Moving Small Cells)
	Approaches and challenge
	Moving eNodeB
	Mobility models
	BonnMotionMobility utilization

	Increase eNodeB population
	Appear and disappear eNodeB
	Appear eNodeB
	Disppear eNodeB

	Macro and micro eNodeBs
	eNodeB height

	Statistic collection
	Physical layer throughput and delay
	Uplink SINR
	Per User number of Handovers

	Experiments and results
	Funtional experiments
	EnodeB movement experiment
	eNodeB On and off experiment

	Performance test experiment
	Conclusion

	Bibliography

