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Abstract

The global population is growing exponentially and the actual agricultural tech-
niques and resources will not be able to feed every person on the Earth in a few
years. To account for this serious problem, groups of research are focusing their
attention on precision agriculture, because it looks for the improvement of the
productivity and efficiency of both agricultural and farming production processes,
while reducing the environmental impact, exploiting automation and robotics.
The thesis aims to design and develop a solution, based on GPS, for the autonomous
navigation problem in precision agriculture, using only few sensors: an Inertial
Measurement Unit, a GPS receiver and a depth camera, in order to be cost effec-
tive. The proposed goal has been achieved through a system of inter-operating
sub-components, that have to share information and collaborate each other in order
to provide a complete autonomous navigation. In particular, the main involved
entities are: a localization filter, a global and a local path planning algorithms and
an obstacle avoidance approach, that have been developed and can cooperate each
other by means of the Robot Operating System.
Eventually, the proposed solution has been tested in a simulation environment,
through different possible scenarios providing good results in each of them. However,
it may be considered as a starting point for future improvement in the field of
autonomous navigation for precision agriculture.
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Chapter 1

Introduction

This introductory chapter deals with the meaning of precision agriculture (PA)
and the main motivations to look for innovative agricultural techniques. Moreover,
there will be presented the main objective of the thesis as well as its relationship
with two already existing projects. Eventually, an overview of the main thesis’
topics will be given.

1.1 Precision agriculture
“Precision Agriculture (PA) is no longer a new term in global agriculture”, as
stated in [1]. “The concept of precision agriculture first emerged in the United
States in the early 1980s”([2]) and “the first substantial PA workshop was held in
Minneapolis in 1992”([1]).
“Precision Agriculture is an integrated information- and production-based farming
system that is designed to increase long term, site-specific and whole farm produc-
tion efficiency, productivity and profitability while minimizing unintended impacts
on wildlife and the environment”, as written in [1]. It is the first formal definition
of PA formulated by the US House of Representatives in 1997.
The previous definition is quite general and encompasses a wide range of interpre-
tations and meanings. First of all, PA deals with the “application of precise and
correct amount of inputs like water, fertilizer, pesticides etc. at the correct time to
the crop for increasing its productivity, maximizing its yields”([2]) and saving on
amount of inputs and related costs. In addition, another most important benefit of
PA is the reduced environmental impacts, because“applying the right amount of
chemicals in the right place and at the right time benefits crops, soils and groundwa-
ter, and thus the entire crop cycle”, as stated in [2]. Furthermore, PA involves the
usage of robotics and innovative technologies to achieve the automation of typical
agriculture tasks (e.g. the harvesting, the ploughing, etc.) without the human
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intervention. All considered, “precision agriculture has become a cornerstone of
sustainable agriculture, since it respects crops, soils and farmers”([2]).
Moreover, PA is often referred to cropping industries, but it may involve also
fisheries, animal industries and forestry.

Figure 1.1: Example of a precision agriculture application

1.1.1 Why precision agriculture?
The actual world’s population is about 7.7 billion1 and “it is expected that by
2050, the global population will reach about 9.6 billion, and food production must
effectively double from current levels in order to feed every mouth”, as stated in
[2]. Thanks to new precision farming techniques, “each farmer will be able to feed
265 people on the same acreage”([2]), that is a great step forward compared to 155
people in the 1960s.

1.1.2 Enabling Technologies
The most important enabling technologies is the Global Positioning System (GPS),
that is part of the Global Navigation Satellite Systems (GNSS). It allows farmers to
precisely identify a position in a field exploiting some corrections algorithms. As a
consequence, it “allows for the creation of maps of the spatial variability of as many
variables as can be measured (e.g. crop yield, terrain features/topography, organic
matter content, moisture levels, nitrogen levels, pH, EC, Mg, K, and others)”([2]).
The data, related to the variables of interests, are collected by sensors mounted on
GPS-enabled vehicles. “However, recent technological advances have enabled the

1https://it.wikipedia.org/wiki/Popolazione_mondiale
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use of real-time sensors directly in soil, which can wirelessly transmit data without
the need of human presence”, as written in [2].
The second enabling technology are the Unmanned Aerial Vehicles (UAVs) “equipped
with multispectral or RGB cameras”([2]), that allows to take high quality images
to be used for creating maps and optimizing crop inputs.
In addition to UAVs and GNSS, the GPS-based autonomous guidance allows trac-
tors and agricultural machinery to autonomously perform their tasks (e.g. spread
fertilizer or plow land), without human intervention unless in case of emergency.
Furthermore, the relatively recent advancements in Internet of Things (IoT) allows
the farmers to collect and aggregate a lot of data, through a network of physical
objects as well as send commands to IoT devices located in specific places of the
farm or fields. Moreover, IoT can be also used for the welfare of animals.
Eventually, machine learning (ML) algorithms can be effectively used in conjunction
with autonomous vehicles (e.g. tractors), UAVs and IoT devices, in order to analyse
the collected data and send “the appropriate actions back to these devices”([2]).

1.2 Starting points and objective of the thesis
The thesis is focused on the autonomous navigation problem for precision agriculture
and it can be considered as the final step to complete two already existing projects.
The first one involves autonomous navigation algorithms, based on machine learning
and computer vision, while the second project is an innovative approach, which
aims to automatically compute a path throughout a vineyard, exploiting Unmanned
Aerial Vehicle (UAV) imagery. The two involved projects will be briefly described,
while the objective of the thesis will be deeply analysed.

1.2.1 Vine rows autonomous navigation
In [3] and [4] Diego Aghi, Vittorio Mazzia and Marcello Chiaberge propose “a
low-cost, power-efficient local motion planner for autonomous navigation in vine-
yards based only on an RGB-D camera, low range hardware, and a dual layer
control algorithm”. “The first algorithm makes use of the disparity map and its
depth representation to generate a proportional control for the robotic platform.
Concurrently, a second back-up algorithm, based on representations learning and
resilient to illumination variations, can take control of the machine in case of a
momentaneous failure of the first block generating high-level motion primitives”,
as written in [4]. The designed and developed local motion planner “after several
trials with different vineyard rows but similar weather conditions, proved to be able
to perform an autonomous navigation along the given paths”([4]). However, the
proposed solution is not able to switch from one vine row to the next automatically,
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because it was designed “for vineyards rows autonomous navigation”, as stated in
[4].

1.2.2 Automatic path planning using UAV imagery
In [5] Jurgen Zoto, Maria Angela Musci, Aleem Khaliq, Marcello Chiaberge and
Irene Aicardi aim to design and develop “a workflow to generate an automatic
coverage path plan for unmanned ground vehicles (UGVs) using georeferenced
imagery taken by an unmanned aerial vehicle (UAV)”. “First, image acquisition
is performed over a vineyard to generate an orthomosaic and a digital surface
model, which are then used to identify the vine rows and inter-row terrain. This
information is then used by the algorithm to generate a path plan for UGV”, as
written in [5]. Eventually, “the experimental results show that the work as a whole
presents some significant contribution in coverage path planning for UGV in the
challenging environment like hilly vineyards”, as stated in [5].
The computed global path, through the use of the A* algorithm, is expressed by
means of GPS waypoints, that can be directly used by an UGV.
Eventually, the authors has proposed a solution to the problem of ordering the GPS
waypoints such that the UGV follows them in the right order. They has developed
a sorting functions, which “minimizes the euclidian distance between the current
position and the following one”([5]). Where, the current position is referred to the
actual position of the UGV, that should be computed before applying the sorting
algorithm.

1.2.3 Objective of the thesis
The goal of the thesis is to design and develop an autonomous navigation system
based on GPS, that is able to autonomously navigate throughout a vineyard,
avoiding dynamical obstacles and switching from one vine row to the next in the
most precise way. First of all, a global path made of GPS waypoints should be
available thank to the existing methods and algorithms described in [5]. Second,
the autonomous navigation inside the vine rows can be easily performed by the
local motion planner developed by Diego Aghi, Vittorio Mazzia and Marcello
Chiaberge. Eventually, the real purpose of the autonomous navigation system is to
given support to the local navigation algorithm inside the vine rows and take the
complete control of the autonomous vehicle when it is required to switch from one
vine row to the next. All considered, the solution to the autonomous navigation
problem should act as a local planner, that is able to follow the GPS waypoints
and, at the same time, to work together with the already existing local motion
planner presented in [4], in order to achieve the complete autonomous navigation
in a vineyard.
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Figure 1.2: Main phases of the used approach. “From left to right: overview,
vineyard enhancement, path plan”([5])

1.3 Contents organization
The thesis covers different topics that are organized in chapters as follows:

• Chapter 2: it starts with a short introduction to field robotics in order to
understand its the relationship with the main purpose of the thesis. In addition,
this chapter describes the main issues related to the application of field robotics
in precision agriculture and deeply illustrates the vineyard environment with
the related problems.

• Chapter 3: this chapter provides detailed descriptions of tools, approaches,
methods and algorithms described in literature and related to the goal of the
thesis.

• Chapter 4: it describes the algorithms and software components that has been
used to develop the GPS-based autonomous navigation system.

• Chapter 5: it illustrates the simulation tools and the procedures that has been
exploited to observe the behavior of the autonomous navigation system in a
virtual environment. Eventually, it shows the results coming from simulations.

• Chapter 6: it provides an overview of the most important aspects of the
proposed solution as well as the future improvements and works that may be
taken into account.
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Chapter 2

Challenges in precision
agriculture

The following part deals with a brief introduction to field robotics and the challenges
that such technology has to face with. In particular, there will be described the
issues related to precision agriculture and to the vineyard environment.

2.1 Field Robotics
Field robotics is the wide branch of the robotics world, that deals with “the automa-
tion of vehicles and platforms operating in harsh, unstructured environments”([6]).
This branch “encompasses the automation of many land, sea and air platforms in
applications such as mining, cargo handling, agriculture, underwater exploration
and exploitation, highways, planetary exploration, coastal surveillance and rescue,
for example”, as stated in [6]. In general, “field robots are mobile platforms that
work outdoors, often producing forceful interactions with their environments, with
no human supervision”([6]).
Field robotics encompasses a wide range of applications, as a consequence it has to
face with a lot of challenges, but in the following part there will be described only
those related to the precision agriculture application.

2.1.1 Localization issues
“The problem of localization has been the subject of considerable work”, as stated
in [6]. However, it has become more tractable thanks to the GPS in different
field robotics applications. “This is particularly true in environments where good
views of the sky can be guaranteed”([6]), otherwise the GPS does not work well,
as it is explained in 3.3. In the last years, “the development of low cost inertial
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sensing has also been a major advance for these applications”([6]), that have lead
to the commonly used combined GPS inertial systems. In addition, when the GPS
localization is very poor, “there has been a common use of lasers and radar to
observe the relative location of artificial landmarks or beacons and, by referencing
these to a map, to deduce position” as stated in [6]. Eventually, “the use of natural
landmarks for relative navigation is also reasonably well developed. Good examples
include the use of vision to delineate crop lines in agricultural applications”, as
written in [6]. All considered, the localization problem is still open and depends
on the specific robotics application. Nevertheless, it can be partially solved by
employing different sensors to acquire the position information and merging such
information together through sensor fusion techniques (described later in 3.4).

2.1.2 Perception issues

“Probably the most complex and demanding research issue facing field robotics is
the full 3D perception and understanding of typical unstructured environments”, as
stated by Chuck Thorpe and Hugh Durrant-Whyte in [6]. For instance, “the problem
of land-vehicle terrain estimation from sensors such as vision and lasers”([6]). “The
reliable construction and understanding of terrain models is still some way off”([6]),
although many research groups have employed their efforts to better understand and
solve the problem. All considered, “perception systems are becoming adequate for
well-defined tasks and well-defined objects”([6]), but the “more general recognition
is still difficult”, as stated in [6]. “Parts of the problem could be solved by better
sensors or innovative combinations of sensing”, as written in [6].

2.1.3 Outdoor environment issues

The outdoor environments are often unstructured and some problems coming from
them are strictly related to the perception sensors, since a robot can increase its
knowledge about the surrounding environment only through sensing. The main
problem arising from an unstructured environment is to deal with terrain, because
“perception works adequately for some indoor mobility tasks”([6]), but “existing
sensing systems are inadequate for driving over outdoor terrain”([6]). “New sensors
or sensing strategies need to be developed for detecting surface conditions (mud,
ice, loose gravel), inferring partially-observable surfaces (rocks and ditches covered
by grass), and estimating other surface properties (bearing strength of dirt, slip
angle of sand)”, as stated in [6]. “A second major issue is how to plan and make
robust decisions in environments with little structure or model”([6]).
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2.2 The vineyard environment
A vineyard is composed of vine plants arranged in parallel straight lines, called
vine rows, that have almost the same length. Both the plants in the same vine
row and different vine rows are placed at fixed distance from each other. This
kind of organization can be considered as a partially structured environment or
semi-structured environment, because vineyards share almost the same skeleton,
though vine plants can be different each other, in terms of dimensions. The
main morphological characteristics of a vineyard that can make the autonomous
navigation a challenging task are:

• The soil: the vineyard terrain is mainly rough, bumpy and has a different
consistency from one place to another (as can be seen in Fig. 2.1). This may
cause the wheel slippage event very frequent and make the robot platform
wobble, as a consequence the on-board sensor measurements will be very noisy
(not considering the GPS).

• The vegetative state of the environment: during different seasons the vegetative
aspects of a vineyard can change a lot. In autumn and winter the vineyard
is mainly barren, while in spring and summer the vine plants are completely
covered with leaves and the ground terrain is plenty of grass and weeds. The
main issues are caused by a lush vegetation (e.g. weeds and leaves), because
the exteroceptive sensors, as vision sensors or LiDAR, may have problems in
identifying real obstacles (different from weeds) and the size of vine rows is
enlarged to the robot eyes. This may lead to path planning issues, because the
planner tries to find a collision-free path among the huge number of obstacles,
although a lot of them are fictitious.

• The crops type: the vineyard can be located on terrains with different slopes
and it is possible to identify three main types of crops:

1. Flat crop: the vineyard is placed on a flat terrain almost on the same
sea-level.

2. Hillside crop: the terrain has a slope less than 40%.
3. Mountainside crop: the vine plants are placed on a terrain with more

than 40% of slope.

Moreover, the vine rows can be placed horizontally or vertically with respect
to the terrain slope (as can be seen in Fig. 2.2). All considered, the slope
influences the battery consumption and motion control, as well as other
navigation aspects.
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Figure 2.1: Three different kind of vineyard soils

Figure 2.2: Two kind of vine rows disposal
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Chapter 3

State of the Art

This chapter deals with the required background and tools to suitably achieve the
thesis objective. The software components of the autonomous navigation system
will be developed by exploiting the Robot Operating System (ROS) and taking into
account the relevant theoretical and/or practical information related to autonomous
navigation and described in literature.

3.1 ROS
Robot Operating System (ROS) is an open-source, not real-time, meta-operating
system largely used in robotics. It offers, almost the same, services as a standard
operating system, such as: “hardware abstraction, low-level device control, message
passing between processes and package management”([7]). As stated in [7],“It
also provides tools and libraries for obtaining, building, writing, and running code
across multiple computers”, as some of the available robot frameworks.
At run-time ROS can be represented as “a peer-to-peer network of processes
that are loosely coupled using the ROS communication infrastructure”([7]) and
possibly distributed over different machines. It supports both the synchronous and
asynchronous communication among processes, in order to satisfy the different user
needs.
The main goals of ROS are:

• Sharing and Collaboration: supporting the development of distributed software
as a collection of loosely coupled processes, that can be grouped into packages
and can be reused by different users for different purposes.

• Agnostic libraries: to develop “ROS-agnostic libraries with clean functional
interfaces” ([7]).
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• Language independence: “the ROS framework can be easily implemented in
any modern programming language and it has been already implemented in
Python, C++ and Lisp”, as written in [7].

• Easy testing: “It has a builtin unit/integration test framework called rostest,
that makes the testing phase easy”, as stated in [7].

• Scaling: “It is appropriate for large runtime systems and for large development
processes” as can be read in [7].

ROS can run on different operating systems, but the official supported one is:
Ubuntu Linux.

3.1.1 ROS Filesystem
The ROS Filesystem describes the main ROS resources, that can be stored on a
disk:

• Packages: “They are the main unit for organizing software in ROS. A package
may contain ROS runtime processes, a ROS-dependent library, datasets,
configuration files, or anything else that is usefully organized together”, as
written in [8]. They are the most granular ROS items, that can be built and
released.

• Metapackages: “They are special kind of packages which only serve to represent
a group of related other packages” ([8]).

• Package Manifest: “It (package.xml) provides metadata about a package,
including its name, version, description, license information, dependencies,
and other meta information like exported packages”([8]).

• Message types: A message is the unit of data exchange among ROS processes.
Each message has a predefined structure described by its message type.

• Service types: ROS processes may ask for a particular task (service) to each
others. A service is composed of a request and a response, that have a
predefined data structure, described by a service type.

3.1.2 ROS Computation Graph
The Computation Graph is a representation of “the peer-to-peer network of ROS
processes (Fig. 3.1), that are processing data together”, as stated in [8]. The main
Computation Graph concepts of ROS are:
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Figure 3.1: Basic peer-to-peer network of ROS processes

• Nodes: “A node is a process that performs computation. ROS is designed
to be modular at a fine-grained scale, thus a robot control system usually
comprises many nodes”([8]), that communicate and collaborate to each other
in order to achieve an advanced task. “A ROS node is written with the use of
a ROS client library”([8]).

• Master: The ROS Master is a particular node, “that provides name registration
and lookup to the rest of the Computation Graph. Without the Master, nodes
would not be able to find each other, exchange messages, or invoke services”,
as written in [8].

• Messages: “Nodes communicate with each other by passing messages. A
message is simply a data structure, comprising typed fields.”([8])

• Topics: “Messages are routed via a transport system”([8]) based on the
publish/subscribe communication paradigm. “A node sends out a message
by publishing it to a given topic. The topic is a name that is used”([8]) to
identify a communication flow between publishers and subscribers. “A node
that is interested in a certain kind of data will subscribe to the appropriate
topic. There may be multiple concurrent publishers and subscribers for a
single topic, and a single node may publish and/or subscribe to multiple
topics. The general idea is to decouple the production of information from
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its consumption”([8]), thus publishers and subscribers are not aware of each
others’ existence.

• Services: The communication paradigm used by topics is a very flexible model,
“but its many-to-many, one-way transport is not appropriate for request/re-
sponse interactions, which are often required in a distributed system”([8]).
Request / response can be obtained via services, “which are defined by a pair
of message structures: one for the request and one for the reply. A providing
node offers a service under a name and a client uses the service by sending
the request message and awaiting the reply”, as stated in [8].

• Bags: They are a way “for saving and playing back ROS message data. Bags
are an important mechanism for storing data, such as sensors data, that can
be difficult to collect but are necessary for developing and testing algorithms”,
as written in [8].

“The most common communication protocol used in ROS is called TCPROS, which
uses standard TCP/IP sockets”([8]).

3.1.3 ROS Community
The ROS Community is made of resources, “that enable separate communities
to exchange software and knowledge”([8]), to achieve collaboration. The main
involved ROS resources are:

• Distributions: “They are collections of versioned stacks that you can install.
Distributions play a similar role to Linux distributions, making easier to install
a collection of software, and they also maintain consistent versions across a
set of software”, as stated in [8] .

• Repositories: “A collection of packages (or a single package) which share
a common Version Control System (VCS). A repository is a virtual-place
where different institutions can develop and release their own robot software
components (packages)”([8]).

• The ROS Wiki: “It is the main forum for documenting information about ROS.
Anyone can sign up for an account and contribute their own documentation,
provide corrections or updates, write tutorials, and more”([8]).

• Mailing Lists: “The ros-users mailing list is the primary communication
channel about new updates to ROS, as well as a forum to ask questions about
ROS software”, as stated in [8].
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3.2 Map-based autonomous navigation
The map-based autonomous navigation problem can be easily subdivided into
the general concepts of localization, path planning and obstacle avoidance, that
can be roughly summed up as: where I am? (localization) and how can I move
from point A to point B without hurting anything or anyone? (path planning and
obstacle avoidance). Moreover, an autonomous vehicle is expected to be equipped
with sensors in order to perceive the surrounding environment and act in the most
appropriate way.
Path planning deals with the computation of a collision-free path from a starting
point to an ending point inside a given map taking into account: static obstacles,
the motion model of the autonomous vehicle under study and some optimization
functions, such as minimum time, minimum energy etc. There exist path planning
algorithms for both 3D map and 2D map, but only those related to 2D map will be
described, since the thesis deals with autonomous navigation for UGV. In addition,
the path planning task is commonly divided into: global path planning and local
path planning. The former, also called off-line path planning, exploits the map
information and an optimization function (listed before) to plan a global collision-
free path from a point A to a point B, while the latter, also called on-line path
planning, is usually responsible for computing a local collision-free path, exploiting
sensors information (to detect dynamic obstacles), the dynamical constraints and
the dynamical model of the specific vehicle.

3.2.1 Sensors for autonomous navigation
In general, autonomous vehicles, as the unmanned ground vehicles (UGV), are
equipped with a set of sensors in order to sense the surrounding spaces, to monitor
the internal state of the vehicle and to provide specific information to the navigation
and localization algorithms. Furthermore, sensing devices can be divided into two
classes: proprioceptive and exteroceptive sensors([9]).

Exteroceptive sensors

This kind of sensors is used to extrapolate (sense) information from the surrounding
environment. The most used exteroceptive sensors are:

• GPS receivers: The GPS is based on the global navigation satellite system
and can be used to obtain global positioning of an autonomous vehicle as
explained in 3.3.

• Laser: It is a range sensor used to obtain information about the objects in the
surrounding environment and is commonly known as LiDAR (light detection
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and ranging). It is mainly composed of a source of light (laser), which emits
light impulses of electromagnetic waves and a receiver, that detects the reflected
light from the surrounding obstacles. It exploits the time of arrival (TOA),
that is the difference in time between the detection and the emission of a
particular light pulse, to compute the range and bearing of an object (obstacle).
There exist two dimensional (2-D) and three dimensional (3-D) LiDAR sensors,
that are based on the same principle of TOA, though the way to determine
the distance vary among the manufactures. This kind of sensors is able to
detect from the small particle in the atmosphere (aerosol, 1µm − 1nm) to
greater visible objects, thanks to the small wavelength (10µm − 250nm) of the
emitted light. This particular characteristic allows to adopt a LiDAR sensor
in a huge number of different applications, though makes it very sensitive to
atmospheric conditions. Moreover, a LiDAR sensor is able to observe wide
field-of-view (FOV), long ranges and it is precise. All considered, LiDAR are
very good range sensors, but they are more expensive compared to other range
sensors.

• Radar: It is similar to the LiDAR sensor in terms of working principle, but it
exploits a different kind of wave. In particular, it is uses radio waves, that,
compared to the light waves, travel at the same speed, but have much lower
frequencies and greater wavelength. Moreover, it is able to take into account
the Doppler shift of the echo, so it can determine the velocity of a moving
object without further numerical processing. With respect to the LiDAR,
the radar can operate over longer distances, it is less sensitive to weather
conditions, but it has a lower resolution due to the greater wavelength. In
addition, the radar FOV is usually wider compared to the LiDAR one, though
the bearing measurement of radar is less accurate. Eventually, a radar is
cheaper than a LiDAR and, all considered, the radar is better than the LiDAR
to detect or track objects.

• Vision sensor: The stereo camera is the most common vision sensor used in
autonomous navigation system. It is a particular camera, that exploits two
separate lenses to retrieve the same scene from different perspectives, then
comparing the two different images a 3D representation of the observed scene
can be obtained. Triangulation is the commonly used technique to reconstruct
the 3D image, starting from two or more 2D images. To better understand
triangulation the ideal case will be described and some considerations about
the real approach will be addressed.
In the ideal case, two different lenses are approximated by two separate pinhole
camera, placed on the same horizontal axis, at different positions and with
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parallel focal axis, as can be seen in Fig. 3.3. The pinhole camera model1 has
no lenses, as a consequence no distortion due to them can occur. In Fig. 3.3

Figure 3.2: Example of a pinhole camera working principle

the focal points of the two cameras are placed behind the corresponding image
planes, so that the projected image is no upside down as shown in Fig.3.2
and calculations are more intuitive. However, in reality, they are in front of
them. f (focal length) is the distance between image plane and focal point,
b (baseline) is the distance between the two focal points, while the global
reference frame (X|, Y|, Z|) is set at the origin of the left camera’s focal point.
P (xp, yp, zp) is the 3D real point, P1(u1, v1) is the projection of P on the left
image plane and P2(u2, v2) is the projection of P on the right image plane.
Starting from P1 and P2 and exploiting geometrical considerations about
similar triangles, it is possible to reconstruct P as follows:

u1 = f
xp

zp

u2 = f
xp − b

zp

v1 = v2 = f
yp

zp

d = u1 − u2 = f
b

zp

xp = b
u1

d
yp = b

v1

d
zp = b

f

d

where d is the visual disparity. In a real approach each 3D point is mapped
into 2D points on the image plane, through pixels. Each 2D image has a huge

1https://en.wikipedia.org/wiki/Pinhole_camera_model
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Figure 3.3: Triangulation working principle

number of pixels, so it may be computationally expensive to compare one pixel
of the one image plane with all the other pixels (in the worst case scenario)
of the second image plane , in order to find the corresponding point P2, that
is the counterpart of P1. Moreover, the two cameras may not have parallel
focal axis and may have different orientation from each other. However, this
process can be simplified, thanks to a set of geometric relations between the 3D
points and their projections onto the 2D images that lead to some constraints
between the image points, described by the epipolar geometry2. As can be
observed in Fig. 3.4 X, X1, X2, X3 are represented by the same xL on the left
image plane, but can be represented by different xR on the same line (epipolar
line) in the right image plane. eL and eR are the projection of the two focal
centers, respectively OR and OL, in the opposite camera’s image plane and
are called epipolse or epipolar points. OR, OL eL, eR lie on the same 3D line

2https://en.wikipedia.org/wiki/Epipolar_geometry
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Figure 3.4: Epipolar geometry between real world and image planes

and OR, OL with X form the epipolar plane. Eventually, different 3D points
form different epipolar planes with OR, OL and , as a consequence, different
epipolar lines. The previous described geometrical constraints can simplify
the computation of the 3D point coordinates supposing to know the relative
position of the two cameras, the projection xL and the epipolar line formed by
eR and xr. For each 3D point X projected on the left image plane (xL), there
exist a projection on the right image plane (xR), that lies on a specific epipolar
line (formed by eR and xr) (epipolar constraint). The epipolar constraints may
be described by the 3x3 fundamental matrix F, which relates corresponding
points in stereo images and can be estimated through a process, that involves
point correspondences. After the epipolar constraints have been applied, xR

and xL are supposed to be known, as a consequence, also their projection lines
are known. Finally, the triangulation method can be easily applied to the
projection lines, in order to find the right 3D coordinates of X.
In a real approach, cameras uses lenses to take a picture of the surrounding
environment and (as stated before) they may not have parallel focal axis.
Indeed “several pre-processing steps are required”([10]), in order to make
comparable the two images of the same scene, because they may be affected
by distortion and may be not co-planar as in Fig. 3.3. The main steps to be
taken into account are:

– Correction of undistorted images: “Distortion is a deviation from rectilin-
ear projection”([11]), caused by lenses; it may be of different types (as
shown in Fig. 3.6), but the most common are the radial and the tangential
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distortions. Depending on the lens types, different kind of radial distor-
tions may occur, such as: barrel distortion or pincushion distortion, while
the tangential distortion occurs when the image plane and the lens are not
parallel. Compensating for this undesired lens effect, “ensures that the
observed image matches the projection of an ideal pinhole camera”([10]).

– Image rectification3: It is a process, based on a transformation matrix,
to project images onto a common image plane (as represented in Fig.
3.7), in order to make them co-planar. The used transformation matrix
strictly depends on the relative position of the cameras and other cameras’
coefficients, that can be obtained through the camera calibration process
(described later). Moreover, it could be advisable to eliminate distortion
effects from images, before applying image rectification, in order to simplify
the whole process.

All considered, stereo vision cameras are complex vision sensors, that involves
a lot of intrinsic (focal length and location of the optical center) and extrinsic
(position of the camera with respect to the 3D world) parameters. They must
be estimated in the most precise manner, through camera calibration4, in
order to allow a correct representation of the surrounding environment. To
easily understand how the camera calibration process works, it will be applied
to a pinhole camera model, thus it does not take into account any form of
distortions due to lenses. The 3D environment is mapped to the 2D image
plane, through the following process:

pixel =

u
v
1

 X =


xw

yw

zw

1

 K =

αx γ u0 0
0 αy y0 0
0 0 1 0


where: pixel contains the 2D point position in pixel coordinates, X contains
the 3D point position in world coordinates, K is the matrix of the intrinsic
parameters, αx and αy represent the focal length in terms of pixels, u0 and
y0 represent the principal point (ideally in the center of the image), γ is the
skew coefficient between the x and y axis.
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 (3.1)

3https://en.wikipedia.org/wiki/Image_rectification
4https://en.wikipedia.org/wiki/Camera_resectioning
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Eq. 3.1 is the 3D-2D mapping equation, where: w is a scaling factor, R and T
are, respectively, the rotation and the translation matrix between the 3D world
coordinates frame and the 3D camera coordinates frame, thus they contain
the extrinsic parameters. Eventually, the unknown camera parameters can
be found through different methods, such as: Direct Linear Transformation
(DLT), Zhang’s method and Tsai’s method, while the distortion effects should
be taken into account through specific transformations, depending on the
lenses type.

Figure 3.5: From world coordinates frame to camera coordinates frame([12])

Proprioceptive sensors

The proprioceptive sensors are usually used to collect data about the internal state
of dynamical systems. In the particular case of UGV, the velocity, the steering
angle, the orientation among the principal axis (x, y, z) and the heading with respect
to the magnetic north. Among the proprioceptive sensors, the most common and
used are:

• Encoders: they are vehicle motion sensors, typically used to estimate the
velocity and the steering angle of a ground vehicle. Among different types,
the optical incremental encoders are the most suitable to measure the velocity,
while the optical absolute encoders are typically used to estimate the steering
angle. The former are composed of a grid disk, a light source and an optical
detector. The grid disk is usually attached to the rotating axle of the vehicle,
so that when the vehicle moves the light passes through the holes on the disk
and the light detector can observe the varying amount of light. The process
output is usually a square wave, in which high represents the presence of light
and low means absence of light. Starting from the square wave is possible to
estimate the angular velocity of the axle, with two main methods. The first
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(a) barrel distortion (b) pincushion distortion

(c) tangential distortion([13])

Figure 3.6: Image distortions

one is the pulse-counting method, that works as follows:

t = N
T

n
ω(rad/s) = 2π

t
= 2π

n

TN

where n is the number of pulses in the T sampling period, N is the number
of windows on the disk, t is the average time for one revolution and ω is the
estimated wheels rotational velocity, from which the linear velocity of the
vehicle can straightforwardly be obtained.
The second one is the pulse-timing method, that is based on an high frequency
clock:
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Figure 3.7: Image rectification process

t = N
m

f
ω(rad/s) = 2π

t
= 2π

f

Nm

where, f is the clock frequency, m is the number of counted pulses during the
time interval between two adjacent windows of the disk, t is the average time
for one revolution and ω is the estimated rotational velocity.
If the disk is equipped with a second pair of light source and optical detector,
suitably positioned, it is possible to obtain the rotational direction, measuring
the phase difference between the two square waves.
The optical absolute encoder is composed of a coded disk “imprinted with rows
of broken arcs”([9]), light sources and light detectors. “The arcs are arranged
in patterns to be encoded”, as stated in [9]. Each pattern is uniquely identified
by means of light sources and sensors to observe them. This kind of encoders
are used to measure the angle of the wheels with respect to the forward
direction of the vehicle, so that it is possible to estimate the steering angle. As
the wheel rotates, a specific pattern is detected and the corresponding wheel’s
angle is obtained.
The encoder’s resolution depends on many factors, but the main ones are:

22



State of the Art

number of windows on the disk, number of bits used to encode the output, the
gear ratio (a gear usually is placed between the axle and the encoder), sampling
period T and clock frequency f . Moreover, they are very accurate transducers,
although they may estimate inaccurate measurements under certain conditions,
such as: wheel slippage, skidding and different wheel diameters among wheels.

(a) Incremental encoder
(b) Absolute encoder

Figure 3.8: Optical encoders

• Inertial Measurement Unit (IMU): it is an inertial sensor, typically used to
estimate the linear and rotational motion of a vehicle. The most common
IMUs are equipped with: three orthogonal accelerometers, three orthogonal
rate gyroscopes and they may contain magnetometers. The accelerometers
are used to estimate the acceleration along the three principal axes of motion
(x, y, z), while the gyroscopes are used to measure the angular velocity along
the same axes of motion. The presence of magnetometers can be exploited to
measure the heading of the vehicle with respect to the magnetic north.

3.2.2 Localization in a known environment

Localization is a difficult task and one of the main current challenges in autonomous
navigation system. It can be divided into: pure localization when the surrounding
environment is known (map-based localization) or simultaneous localization and
mapping (SLAM), when the autonomous vehicle does not have a map of the
environment and is expected to simultaneously build a map and localize itself.
Since, one of the starting points of the thesis is a known geo-referenced map,
only the map-based localization technique will be analysed, although some of the
described approaches can be used both for map-based localization and SLAM.
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Global Localization

The global localization is particularly required in outdoor environments, in which
the autonomous vehicle is expected to travel relatively long distances, that may
includes different maps, since a map can only contain a bounded portion of the
global environment. The main global localization technique is the GPS (described
in 3.3), based on the GNSS. It is usually used together (through sensor fusion 3.4)
with vehicle motion sensors and/or inertial sensors, in order to compensate the lack
of the GPS signals in some specific outdoor environment conditions, such as: the
presence of tall trees or any other tall obstacles, that obstruct the receiver-satellite
view.

Relative Localization

Autonomous vehicles can exploit their on-board sensors information to estimate
their current position and heading with respect to a known initial position. The
main and commonly used approaches are:

• Dead reckoning: it is the oldest method used to relatively localize a vehicle.
The easiest solution is to integrate over the time the information (velocity
and steering angle) coming from the wheel encoders to obtain an estimate
of the current position and heading. More advanced technique exploits the
fusion of different on-board sensor information to provide an approximate
pose (it is a vector, that contains information about position and heading of a
vehicle). However, this approach is very weak in presence of wheel slippage,
skidding or dynamical variations of some sensor parameters, because the error
accumulates over the time, unless it is periodically compensated with the
exact and current pose of the vehicle.

• Inertial sensors: it is possible to implement dead reckoning using only the
information coming from inertial sensors, such as IMUs. In this case, the
current position and heading of the autonomous vehicle is obtained by inte-
grating over the time linear accelerations and angular velocities coming from
the accelerometers and gyroscopes (inside the IMU), respectively. Moreover,
the vehicle’s heading can be directly obtained by the magnetometer (if it is
available) inside the IMU. This approach is not subject to unsystematic errors,
such as wheel slippage or skidding, but it has some intrinsic limitations of
dead reckoning, such as the error drift due to the integration over the time of
physical quantities.

• Visual odometry: “the first known real-time visual odometry was implemented
in 1980”([9]), but only in recent years it is gaining attentions from research
groups and industries, thanks to the improvements in computer vision and
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the availability of hardware computational power. The basic idea of visual
odometry is to process the images captured at each instant (by cameras) in
order to compute the relative transformation by two consecutive images and
estimate the vehicle’s trajectory. Unlike dead reckoning, visual odometry is not
affected by any errors that are terrain or vehicle parameter-dependent, such as
a vehicle skidding or wheel slippage. The vehicle’s pose can be estimated by
means of two main methods: the appearance-based method and the feature-
based method, as stated in [9]. “Both the approaches estimate the vehicle’s
motion by observing the approximate movement of a pixel or a feature from
one image to next”([9]), exploiting computer vision techniques.

• LiDAR-based localization: it is an alternative approach with respect to vi-
sual odometry, that exploits 2D or 3D LiDAR to match what actually the
autonomous vehicle is sensing and the information coming from an available
map, as proposed in [14]. Compared with the visual odometry approach, it
provides more accurate vehicle’s pose information, thanks to the high accuracy
measurements of LiDARs, but it is more expensive due to the higher cost of
LiDARs with respect to modern cameras.

3.2.3 Map and Obstacle representation
The starting point of path planning algorithms may be a map, that contains
information regarding the surrounding environment, such as the presence of static
obstacles, their dimensions and the amount of free space.
A given map should be properly represented, in order to be efficiently used by path
planning algorithms. In literature, as explained in [15], there exist a lot of methods
to suitably represent a map and the relative obstacles, but in the following part,
only the most important ones will be presented:

Cell Decomposition Methods

The cell decomposition methods are the most studied and widely used in outdoor
robotics navigation, as stated in [15]. They basically decomposed the map space
into discrete, non-overlapping regions, called cells, obtaining a graph, in which each
cell is adjacent to other cells. As a consequence, the graph can be efficiently used
by path planning algorithms to look for the desired path, that will be composed
by a sequence of adjacent cells. In addition, the cost of traversing a cell may vary.
The main cell decomposition methods are:

• Approximate decomposition: the entire map is broken up into cells of equal
size and shape. The center of each grid element (cell) becomes a node in the
graph used by the path planning algorithm. Each cell can assume one of three
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predefined value: full (if an obstacle occupies the entire grid element), partially
full (if an obstacle partially occupies the grid element ) or empty (if the cell
is completely free). The approximated map is called either bitmap if each
cell has a binary representation or occupancy grid if each grid element has a
range of values. The main advantages of this technique are: the simplicity,
thanks to equal sized and shaped grid elements and the flexibility as the
size of grid elements can be increased or decreased at run-time, while the
main disadvantages are: the memory occupation as the number of grid cells
increases and the conservativeness, due to the non-traversability of a partially
occupied cell. All considered, it is one of the most used technique in outdoor
robotics thanks to its easy application and flexibility.

• Adaptive cell decomposition: this approach aims to reduce the memory occu-
pation and computation time. It exploits the fact that large areas in outdoor
environments are more likely to be free, as a consequence, as stated in [15],
“The regular shape of the cells is maintained, but the cells are recursively
reduced in size in order to both use the space more efficiently and maintain as
much detail as possible. The result is less memory required and less processing
time”. The main drawback of this technique is the re-computation of the entire
data structure of the map, in case of map update with new sensed obstacles.
One of the most common types of adaptive cell decomposition methods is
called quadtree.

• Exact cell decomposition: this method tries to overcome some problems coming
from regular decomposition grids. The cells have not equal size and shape,
but are determined based on the environment map, the location and shape of
obstacles within it. As stated in [15], “Unfortunately, there is no simple rule
for how to decompose the space into cells. This method is quite difficult to
apply for outdoor environments where obstacles are often poorly defined and
of irregular shape.”

Roadmap Methods

As stated in [15], “Roadmaps are graphs which represent how to get from one place
to another”. This method builds the connections between free space regions as a set
of one dimensional curves, that will be used by some planning algorithm to look for
a desire path. The nodes of the graph are usually created using distinctive locations
that the autonomous vehicle can easily identify. On one hand, as written in [15]:
“Roadmaps provide a huge advantage over cell decompositions in the number of
nodes a planner needs to search through in order to find a path.” On the other
hand, the main disadvantages of roadmaps are: the selection of the most suitable
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(a) Approximate cell decomposition ([16]).
(b) Exact cell decomposition([17]).

(c) Adaptive cell decomposition: quadtree

Figure 3.9: Examples of cell decomposition methods.

nodes and the recomputation of the entire roadmap as new sensor information
arrive. The main type of roadmaps are the following ones:

• Visibility Graphs: it is one of the earliest roadmap methods , that can be
applied to 2D maps. In this case, the set of one dimensional curves are
represented by straight line segments which connect the nodes of the polygonal
obstacles, without crossing the interior of them. The straight line segments are
tangential to the obstacles and the autonomous vehicle may be stuck whenever
it travels close to one of them. One possible solution to this problem is to
enlarge each obstacle region of a certain quantity, in order to provide a safety
margin, although this results in incompleteness and inefficiency of the path
planner. A second drawback is the representation of the obstacles, that must
be approximated by polygons, although in outdoor environments they usually
take on round or amorphous shapes.

• Voronoi Diagrams: the roadmap is made up of paths, called voronoi edges,
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which are equidistant from all the points in the obstacle region. The ver-
tices are the points where the voronoi edges meet and often have a physical
correspondence to aspects of the environment which can be sensed, such as
intersections of hallways. Voronoi paths are build as far as possible from
obstacles, as a consequence the autonomous vehicle, that follows one of them,
will not collide with any modeled obstructions, without growing the size of
occupied regions. “This makes Voronoi methods safe, but the paths generated
inefficient”, as stated in [15].

• Probabilistic Roadmaps: the Probabilistic RoadMap (PRM) is a discrete
version of a given continuous map, that is generated by randomly sampling
the entire map and then connecting the sampled points into a roadmap. The
main idea of PRM is that a relatively small number of points and paths are
usually sufficient to capture the connectivity of free space regions; assumption
that can speed up the planning process. The PRM is divided in two phases:
the construction of the roadmap phase and the path query phase. In the first
phase, randomly chosen points are added to a list of special points, then a
mapping algorithm tries to connect the whole list points, through straight lines.
If a point is contained in an obstacle region is discarded and if a connecting line
between two points intersect an obstacle is discarded. The process of random
selection and connectivity evaluation is repeated a large number of times, until
a suitable list of connections (the roadmap) is created. In the second phase a
suitable algorithm exploits the previous build roadmap, in order to look for
the least-cost path between the initial and the final desired vehicle location.
The main advantage of such technique is the very efficient query path phase,
while the main disadvantage is the slow and computational expensive roadmap
creation process, that should be repeated as soon as obstacles are added or
removed from the map.

• Rapidly Exploring Random Trees (RRT): it is a variation of the PRM, in
which the points are chosen randomly expanding a tree (a path), in order to
cover the whole map. The expansion should be toward the areas which have
not been filled up yet. Moreover, the RRT are well suited to include dynamic
or non-holonomic constraints.

Potential Fields

“Potential Fields is the third major type of representation used in path planning”,
as stated in [15]. It is different from the previous described methods, because it
imposes a mathematical function over the entire considered map. The basic idea is
to model the autonomous vehicle as a point under the influence of attractive forces
generated by the goals and repulsive forces generated by obstacles, like an electron
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(a) Visibility Graph([18])

(b) Probabilistic Roadmap

(c) Voronoi Diagram([19])
(d) Rapidly Exploring Random Trees

Figure 3.10: Examples of roadmap methods.

in an electric field. As explained in [15] “These forces are stronger near to the
obstacle or goal and have less effect at a distance.” This kind of representation was
originally developed for real-time obstacle avoidance, with emphasis on real-time
efficiency, but exploiting particular algorithms it can be also used for global path
planning. The main drawback of this approach is the presence of local minima
different from the goal, in which the autonomous vehicle can get stuck.
The main path planning algorithms based on potential fields are: Navigation
Functions, Depth-First planning, Best-First planning and Wavefront based planning.

3.2.4 Global Path Planning
Once a map representation method has been chosen, it is possible apply some path
planning algorithms in order to find the best path according to an optimization
criteria. The global path planning algorithms tries to find the optimal path working
on a-priori information of the surrounding environment (suitable represented in a
map).
In literature, there exist a lot of algorithms, that solves such problems and they can
be classified into two main categories: heuristic approach and artificial intelligence
(AI) algorithm, as stated in [20]. In the following part the heuristic algorithms will
be deeply analysed, while the artificial intelligence ones will be briefly described.
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Heuristic Approach

The heuristic algorithms can be classified as graph search algorithms and are more
used with cell decomposition methods or roadmap methods, because the result of
such representation methods is a graph, that can be easily used by the path search
algorithm. The main property of an heuristic algorithm is the use of an heuristic
function in order to keep track of the best direction towards the goal. The most
common path search algorithms based on an heuristic functions are the following
ones:

• Dijkstra Algorithm: it does not contain any heuristic function (it is equal to
zero), but it will be described in this section because it is the starting point of
the A* and D* algorithms.
The Dijkstra algorithm was conceived by computer scientist Edsger W. Dijkstra
in 1956 and aims at founding the shortest path from a starting node to a
goal node in a graph. The edges in the graph can have fixed or variable cost
according to the specific application. In the algorithm described later, S is
an empty set, Q is a set containing all the graph nodes, w(u, v) is the weight
of the edge connecting u and v, w is a set containing all the edges, dist[u] is
the minimum distance of u from the starting node s, prec[v] is the previous
node connected to v with the minimum distance. The weight w(u, v) can be
assigned according to the algorithm application; for instance the weight of
an edge can represents how good is the terrain through which an UGV will
travel.
The efficiency of such algorithm is not too high because it visits almost all
the graph nodes before funding the shortest path.

• A* algorithm: it was first published in 1968 by Peter Hart, Nils Nilsson and
Bertram Raphael of Stanford Research Institute (now SRI International). It
is based on the Dijkstra algorithm and aims to achieve better performance
in terms of efficiency. As stated in [15] “A* is probably the most widely
used search algorithm in robotics”, thanks to its higher efficiency to find the
shortest path with respect to other search algorithms. The key property of
the A* algorithm is the usage of an heuristic function h(n) to adjust the cost
of traversing from one node to another one. The h(n) function is usually
considered as the Euclidean distance between two nodes and represents the
nearness to the goal. Defining f(n) = g(n) + h(n) to be the total cost from
the start node to the n node, where g(n) is the cost from the starting node
to the n node and h(n) is the predicted cost of the optimal path from the
node n to the goal node, the shortest path can be found evaluating, at each
step, only the neighbours of the node with the lowest value of the f(n) cost.
Compared to the Dijkstra algorithm, A* is more efficient, because it visits a
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Algorithm 1 Dijkstra Algorithm
1: procedure Dijkstra(Q, s, w)
2: Initialization
3: for each v in Q do
4: dist[v] = ∞
5: prec[v] = null
6: end for
7: dist[s] = 0
8:
9: Compute the best path
10: while Q /= empty do
11: u = vertex with the minimum dist[] in Q
12: remove u from Q
13: if dist[u] = ∞ then
14: break
15: end if
16: for each neighbour v of u do
17: temp = dist[u] + w(u, v)
18: if temp ≤ dist[v] then
19: dist[v] = temp
20: prec[v] = u
21:
22: end if
23: end for
24: end while
25: return dist, prec
26: end procedure
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lower number of cell (as can be seen in Fig. 3.11), although it has to compute
the heuristic function.

Figure 3.11: Visual comparison between Dijkstra and A* algorithm

• D* algorithm: it refers to three implementation variants: the original D*,
the Focussed D* and the D* Lite. The first one is an incremental search
algorithm, while the second one is an incremental heuristic search algorithm,
that combines ideas of the A* and the original D*; both of them have been
developed by Anthony Stentz. The third one is an incremental heuristic search
algorithm developed by Sven Koenig and Maxim Likhachev, that builds on
Life Long Planning A* (LPA*). The D* algorithm can be used whenever a
map is update frequently with new obstacles, since it can re-plan the shortest
path in a more efficient way than repeated A* searches. “The name D* comes
from Dynamic A*, since the algorithm behaves like A* except that the arc
costs can change as the algorithm runs”, as stated in [21].
The nodes can assume one of the following states:

– NEW: “the node has never been placed on the OPEN list”([21]).
– OPEN: “the node is currently on the OPEN list”([21]).
– CLOSED: “the node is no longer on the OPEN list”([21]).
– RAISE: “the cost of the node is higher with respect to the last time that
was in the OPEN list”([21]).
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– LOWER: “the cost of the node is lower with respect to the last time that
was in the OPEN list”([21]).

The OPEN list contains the nodes that have to be evaluated.
The main operation of the D* algorithm is called expansion, in which “the
algorithm iteratively select a node from the OPEN list, evaluates it and
propagates the node’s changes to all of the neighboring nodes and places them
on the OPEN list”([21]). “Each node stores a backpointer to the next node
leading to the target and knows the exact cost to the goal”, as stated in [21].
The expansion process starts from the goal node and terminates when the
start node is the next to be expanded. In case of obstacle detection “along
the intended path, all the affected nodes are again placed on the OPEN list,
marked as RAISE”([21]). “Before raising the node’s cost, the algorithm checks
its neighbors, in order to examine whether it can reduce the node’s cost”, as
written in [21]. “If not, the RAISE state is propagated to all the nodes that
have backpointers to it”([21]), called nodes’ descendants. “When the cost of
a RAISED node can be reduced, its backpointer is updated, and passes the
LOWER state to its neighbors”, as stated in [21]. This propagation of RAISE
and LOWER states is the working principle of D*. Moreover the algorithm
re-visits only the nodes which are affected by change of cost.

All considered, the Dijkstra algorithm is not of practical interest, due to its high
time of computation for an optimal path, the A* algorithm is very useful in case
of static and completely known environment and the D* algorithm is the most
efficient among the three when the environment is partially known and dynamic.

Artificial Intelligence Algorithms

The AI algorithms takes inspiration from the natural and biological world. They
have been employed in several autonomous navigation systems, as stated in [20]. In
the following part, there will be described the main AI algorithms, without going
deep into their implementation details, but providing a general idea of the working
principles for completeness:

• Genetic Algorithm (GA): it was first proposed by Holland in 1975. As
written in [20] “In the GA, all the possible solutions of the problem are
encoded to chromosomes, and all the chromosomes form an initial population”.
Then, applying iteratively the biological operation of crossover, mutation and
selection on the chromosomes, it is possible to compute the right solution.
The main advantages of the GA algorithm are: the simplicity, the robustness,
high search capabilities and high search efficiency. In contrast, the algorithm
is prone to premature convergence.
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• Ant Colony Optimization algorithm (ACO): it was inspired by the ants that
look for food and was proposed by Marco Dorigo in 1992. The basic principle
of the ACO is each ant will release pheromone on the path it walk through
and will perceive the pheromone released by other ants. When the level of
pheromone on a path is higher with respect to other ones, the ant colony will
spontaneously move, avoiding obstacles, to this path releasing more and more
pheromone during the movement, so that the latter ants will be attracted
from the higher and higher level of pheromone. After a period of time, the ant
colony will be concentrated on the shortest path, that is the optimal path. The
shortest path can be easily found whether there are enough ants in the nest.
The whole process can be straightforwardly compared to the path planning
problem in autonomous vehicles.

• Particle Swarm Optimization (PSO): it was first proposed by Eberhart and
Kennedy in 1995 and was based on the regularity of the bird cluster activity.
Starting from a random solution, it finds the optimal one through iteration.
At each step, it evaluates the quality of the solution through a suitable chosen
fitness value, compares the currently searched optimal value and finds the
global optimal solution. “This algorithm is used to solve the robotic path
planning with the advantages of easy implementation, high precision and fast
convergence”, as stated in [20].

3.2.5 Local Path Planning and Obstacle Avoidance
The local path planning problem is strictly related to the obstacle avoidance one. A
well-designed local path planner should able to plan a collision-free local path taking
into account dynamic information, coming from sensors, and dynamical constraints
of the specific autonomous vehicle. The planned path is local, because the planner
exploits only the sensed information coming from the immediate surrounding
environment, rather than a pre-built static map (as the global path planning does).
As stated in [20], “The path search algorithm for the local path planning can be
divided into five categories: artificial potential field method, behavior decomposition
method, cased-based Learning method, rolling windows algorithm, and artificial
intelligence algorithm”. They can be summed up as follows:

• Artificial Potential Field (APF) method: it is based on the same principle of
Potential Fields previously described in 3.2.3.

• Behavior Decomposition method: “it is a relatively new trend in path planning
for mobile robots”([20]), that deals with breaking down the navigation problem
into a set of relatively independent navigation unit, called behavioral primitives,
such as collision avoidance, tracking, target guidance etc. Then, these units
coordinate with each other to accomplish the overall navigation tasks.
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• Cased-based Learning method: First, the autonomous vehicle needs to build a
proper case database before path planning. Then, when it has to solve a new
problem, it will search the needed information from the previous established
database and, based on the results, it will make a comparison and an analysis
to find the solution, that is most similar to the encountered new problem.

• Rolling Windows algorithm: The path planning problem is solved by recursively
calculating a suitable window, based on the local environment information.
Then, in the current rolling window, the real-time planning is implemented
using sub-targets. Such sub-targets are computed by heuristic method and
are updated each time the rolling window moves, until the planning task is
completed.

• Artificial Intelligence algorithms: they have been previously described in 3.2.4.

Among all the existing local path search algorithms, there will be described the
dynamic window approach (DWA), because it is one of the most used local planners
in ROS for what concern the autonomous navigation of UGV.
In addition, local path planning can be solved by recursively applying some of the
previous described path planning algorithms such as A*, D* etc. However, this
approach can be very slow and computationally expensive, as a consequence it may
not be suitable for certain real-time applications.

Dynamic Window Approach

It is a collision avoidance algorithm developed by Dieter Fox, Wolfram Burgard and
Sebastian Thrun in 1997 ([22]). This approach allows “to incorporate the dynamics
of the robot”([22]), “by reducing the search space to the dynamic window , which
consists of the velocities reachable within a short time interval”([22]). Then, “within
the dynamic window it only considers admissible velocities yielding a trajectory on
which the robot is able to stop safely”, as written in [22]. “Among all the velocities
a combination of translational and rotational velocity is chosen by maximizing an
objective function”([22]), which consist of “a measure of progress towards a goal
location, the forward velocity of the robot, and the distance to the next obstacle
on the trajectory”, as stated in [22].
The different steps, employed by the algorithm, can be summed up as follows:

1. Search Space: exploiting a three step procedure, it is possible to reduce the
search space:

• Circular trajectories: as stated in [22], “the dynamic window approach
takes into account only circular trajectories, called curvatures, uniquely
determined by pairs (v, ω) of translational and rotational velocities. This
results in a two-dimensional velocity search space”.
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• Admissible velocities: with this restriction, “only safe trajectories are
considered”([22]). “ A pair of (v, ω) is considered admissible, if the robot
is able to stop before it reaches the closest obstacle on the corresponding
curvature”([22]).

• Dynamic window: “The dynamic window restricts the admissible velocities
to those that can be reached within a short time interval given the
dynamical constraints (e.g. limited accelerations) of the robot”, as stated
in [22].

2. Optimization:

G(v, ω) = σ(α · angle(v, ω) + β · dist(v, ω) + γ · vel(v, ω)) (3.2)

G(v, ω) is the objective function to be maximized and, “with respect to
the current position and orientation of the robot, it trades off the following
aspects”([22]):

• Target heading: as written in [22], “angle is a measure of progress towards
the goal location. It is maximal if the robot moves directly towards the
target.”

• Clearance: “dist is the distance to the closest obstacle on the trajectory.
The smaller the distance to an obstacle the higher is the robot’s desire to
move around it”([22]).

• Velocity: “vel is the forward velocity of the robot and supports fast
movements”, as stated in [22].

σ is a smoothness function.

The trajectories of an autonomous vehicle (e.g. UGV) are approximated by a
sequence of circular arcs (circular trajectories), that can be computed by exploiting
the motion model of the vehicle under study.
The set of admissible velocities can be represented as follows:

Va = {(v, ω)|v ≤
ñ

2 · dist(v, ω) · v̇b ∧ ω ≤
ñ

2 · dist(v, ω) · ω̇b}

where: v̇b and ω̇b are the acceleration required for breakage before colliding.
The dynamic window can be represented by the following set:

Vd = {(v, ω)|vÔ[va − v̇ · t, va + v̇ · t] ∧ ωÔ[ωa − ω̇ · t, ωa + ω̇ · t]}

where: t is the considered time interval, v̇ and ω̇ are the accelerations, that will
be used during the time interval t and (va, ωa) is the actual velocity. The main
drawback of such algorithm is the possibility of getting trapped in local minima
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“in the case where no admissible trajectory allows the autonomous vehicle to
translate”([23]). “In such situations, the robot rotates away from the obstacle until
it is able to translate again”, as written in [23]. Eventually, the DWA “only assumes
geometric information about the relative location of obstacles. As a consequence,
it is well-suited for the usage of ultrasonic transducers, laser-range finders or even
infrared sensors and cameras for the detection of obstacles”([23]).

3.3 Global Positioning System
“The Global Positioning System (GPS), originally NAVSTAR GPS,is a satellite-
based radionavigation system owned by the United States government and operated
by the United States Space Force”, as stated in [24]. “The GPS project was started
by the U.S. Department of Defense in 1973”([24]) and twenty years later “the full
constellation of 24 satellites”([24]) was operative. “Originally, the GPS usage was
limited to the United States military, then, from 1980s, civilian use was allowed
following an executive order from President Ronald Reagan”, as written in [24].
“The GPS service is provided by the United States government, which can selectively
deny access to the system, or degrade the service at any time”([24]). “As a result,
several countries have developed or are in the process of setting up other global or
regional satellite navigation systems”([24]), such as:

• Russia: “The Russian Global Navigation Satellite System (GLONASS) was
developed contemporaneously with GPS, but suffered from incomplete coverage
of the globe until the mid-2000s”([24]).

• China: “The BeiDou Navigation Satellite System began global services in
2018, with full deployment scheduled for 2020”, as stated in [24].

• Europe: “The Global Navigation Satellite System (GNSS) Galileo was created
by the European Union through the European GNSS Agency (GSA) and went
live in 2016”([25]).

• India: “The Indian Regional Navigation Satellite System (IRNSS), with an
operational name of Navigation with Indian Constellation (NavIC) is an
autonomous regional satellite navigation system. It covers India and a region
extending 1,500 km around it, with plans for further extension”, as stated in
[26].

• Japan: “The Quasi-Zenith Satellite System (QZSS) is a GNSS satellite-based
augmentation system to enhance GNSS’s accuracy in Asia-Oceania, with
satellite navigation independent of GPS scheduled for 2023”([24]).
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3.3.1 GPS structure

The actual GPS structure is organized in three segments:

• Space Segment (SS): “It is composed of 24 to 32 satellites, also called Space
Vehicles (SV)”([24]), in medium Earth orbit5, that is the space region around
the Earth between 2.000 km and 35.786 km above the sea level. The Space
Vehicles are organised in “six orbital planes with four satellites each”([24]).
“The orbits are arranged so that at least six satellites are always within line
of sight from everywhere on the Earth’s surface”, as stated in [24]. “The
additional satellites over 24 improve the precision of GPS receiver calculations
by providing redundant measurements”([24]). “Indeed with the expanded
constellation, nine satellites are usually visible from any point on the ground
at any one time, ensuring considerable redundancy”([24]).

• Control Segment (CS):“It is composed of a master control station (MCS),
an alternative master control station, four dedicated ground antennas and
six dedicated monitor stations”, as written in [24]. “The flight paths of the
satellites are tracked by dedicated U.S. Space Force monitoring stations”([24]),
along with shared National Geospatial-Intelligence Agency (NGA) monitor
stations spread around the world. “The tracking information is sent to the
MCS at Schriever Air Force Base 25 km ESE of Colorado Springs, which is
operated by the 2nd Space Operations Squadron (2 SOPS) of the U.S. Space
Force. Then 2 SOPS contacts each GPS satellite regularly with a navigational
update using dedicated or shared ground antennas”, as stated in [24]. The
update procedure is intended for updating some internal parameters of each
satellites.

• User Segment (US): “It is composed of a huge number of U.S. and allied military
users of the secure GPS Precise Positioning Service (PPS), and tens of millions
of civil, commercial and scientific users of the Standard Positioning Service
(SPS)”([24]). “In general, GPS receivers are composed of an antenna, tuned to
the frequencies transmitted by the satellites, receiver-processors, and a highly
stable clock (often a crystal oscillator) and they may also include a display for
providing location and speed information to the user”([24]). The SPS can only
receive the L1 frequency (1.57542 GHz) and the Coarse/Acquisition (C/A)
code due to military security issues.

5https://en.wikipedia.org/wiki/Medium_Earth_orbit

38



State of the Art

3.3.2 How does it work?
Required Concepts

“The GPS is based on time and the known position of GPS specialized satellites,
that carry very stable atomic clocks synchronized with one another and with the
ground clocks”, as written in [24]. “Any drift from time maintained on the ground
is corrected daily and, in the same manner, the satellite locations are known with
great precision”([24]). “GPS receivers have clocks as well, but they are less stable
and less precise”([24]), thus they cannot be synchronized with the atomic clocks of
the GPS satellites.
“Each GPS satellite continuously transmits a radio signal containing the current
time and data about its position. Since the speed of radio waves is constant and
independent of the satellite speed, the time delay between the transmission and
the reception of the signal, it is proportional to the distance satellite-receiver. A
GPS receiver monitors multiple satellites and solves equations to determine the
precise position of the receiver and its deviation from true time”, as stated in [24].
“At a minimum, four satellites must be in view of the receiver”([24]) in order to
allow it to compute the three unknown position coordinates and the unknown clock
deviation from satellite time.
The transmitted radio signal is a carrier wave with modulation, that includes:

• “A sequence of ones and zeros, called pseudorandom code, that is known to
the receiver. By time-aligning a receiver-generated version and the receiver-
measured version of the code, the time of arrival (TOA) of a defined point in
the code sequence, called an epoch, can be found in the receiver clock time
scale”, as written in [24].

• “A message that contains the time of transmission (TOT) of the code epoch
(in GPS time scale) and the satellite position at that time”([24]).

“Each navigation message is transmitted on L1 (1575.42 MHz for public use) and
L2 (1227.60 MHz) frequencies at a rate of 50 bits per second and takes 750 seconds
(twelve and half minutes) to be completely transmitted”([24]). Since “all satellites
broadcast messages at the same frequencies, they use unique code division multiple
access (CDMA) to encode signals, so receivers can distinguish individual satellites
from each other”([24]). “The whole system uses two distinct CDMA encoding
types: the coarse/acquisition (C/A) code, which is accessible by the general public,
and the precise (P(Y)) code, which is encrypted so that only the U.S. military and
other NATO nations who have been given access to the encryption code can use
it”, as stated in [24].
For public use, “all the satellite signals are modulated onto the same L1 carrier
frequency, as a consequence the signals must be separated after demodulation.
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Each satellite has been assigned a unique binary sequence, known as a Gold code,
that is used by the receiver to correctly decode the signals relative to the satellites
monitored by the receiver”([24]).

Basic Procedure

First of all, “the receiver computes the TOAs, using the received signals from four
or more satellites. Then, exploiting the TOAs and the TOTs, the receiver creates
the time of flight (TOF) values, also called pseudo-ranges, which are approximately
equivalent to receiver-satellite distances (or ranges) plus time difference between the
receiver and GPS satellites multiplied by speed of light”, as written in [24]. Finally,
the receiver computes (simultaneously) its three-dimensional position and clock
deviation processing the pre-computed TOFs, by means of the navigation equations.
The receiver position is relative to a three dimensional Cartesian coordinates with
origin at the Earth’s center and can be converted to latitude, longitude and height
using an ellipsoidal Earth model. Moreover, “the height may be transformed to an
altitude relative to the geoid”([24]).

Navigation Equations

(xi, yi, zi) denotes the three-dimensional position of the ith satellite.
si denotes the time of the ith satellite.
tri is the time of message (sent by the ith satellite) reception indicated by the
on-board receiver clock.
b “is the receiver’s clock bias from the much more accurate GPS clocks employed
by the satellites”([24]).
n is the number of the visible satellites by the receiver.
ti = tri − b is the true reception time of message sent by the ith satellite
“Assuming the messages travel at the speed of light”([24]), denoted as c, the traveled
distance is : di = (tri − b − si) c, for i = 1,2, ..., n, that can be also written as
di =

ñ
(x − xi)2 + (y − yi)2 + (y − yi)2 where (x, y, z) are the three-dimensional

components of the receiver’s position.
pi = (tri − si)c are the pseudoranges (a biased version of the true distance), that
can be also written as: pi = di + bc
To suitably solve the above equations in order to find the four unknowns (x, y, z, b),
“signals from at least four different satellites should be available. They can be
solved by algebraic or numerical methods”([24]).

Error sources

The analysis of the errors, that affect the GPS is important to understand how much
bigger is their magnitude and how they can be mitigated. In GPS applications,
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the errors are usually referred as user equivalent range errors (UERE). The main
error sources are:

• Signal arrival time measurement: “To measure the delay (difference between
time of arrival and time of transmission of a message), the receiver compares
the bit sequence received from the satellite with an internally generated
version. By comparing the rising and falling edges of the bit transitions,
modern electronics can measure signal offset to within about one percent of a
bit pulse width. The GPS signals propagate at the speed of light and the C/A
code, for civilian use, transmits data at 1.023 million pulses per second”([27]).
From the previous considerations an approximate error range can be computed
as

∆signal = 0.01 ∗ c

1.023 ∗ 106 Ä ±3m

• Atmospheric effects: “The speed of the GPS signals may change due to
inconsistencies of atmospheric conditions, indeed they pass through the Earth’s
atmosphere, especially the ionosphere. The effects of the ionosphere on a
microwave signal depend on the its frequency, generally change slowly, and can
be averaged over time”, as stated in [27]. Humidity and atmospheric pressure
occur in the troposphere and may also affect the signal reception delay. On
one hand, “the humidity effect is similar to that caused by the ionosphere, but
it changes more quickly and is not frequency dependent, as a consequence it
is more difficult to compensate humidity errors than ionospheric effects”([27]).
On the other hand, “the atmospheric pressure effect is caused by the dry
gases present at the troposphere and it varies with local temperature and
atmospheric pressure in quite a predictable manner using the laws of the ideal
gases”([27]). A possible estimate of the error ranges, caused by the ionospheric
and the tropospheric effects, are:

∆ionospheric Ä ±5m

∆tropospheric Ä ±0.5m

• Multipath effects: “The radio signals, sent by GPS satellites, reflect off
surrounding terrain, buildings, canyon walls, hard ground, etc. These delayed
signals cause measurement errors that are different for each type of GPS signal
due to its dependency on the wavelength”([27]). A possible estimate of the
error range, due to the multipath effect, is:

∆multipath Ä ±1m
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• Ephemeris and clock errors: “The ephemeris6 (it gives the trajectory of
artificial satellites in the sky) data is transmitted every 30 seconds, while the
information itself may be up to two hours old. Variability in solar radiation
pressure has an indirect effect on GPS accuracy due to its effect on ephemeris
errors”, as written in [27]. “The satellites’ atomic clocks experience noise
and clock drift errors. Although the navigation message contains corrections
for these errors and estimates of the accuracy of the atomic clock, they are
based on observations and may not indicate the clock’s current state”([27]).
A possible estimates of the ephemeris and clock error ranges are:

∆ephemeris Ä ±2.5m

∆clock Ä ±2m

• Numerical error: The receiver’s position computation process has a numerical
error with the following estimated value of its standard deviation:

σnumerical Ä 1m

Taking into account, all the previous described sources of error, it is possible to
compute the standard deviation of the user equivalent range errors, related to the
public use of the GPS (C/A code), as follows:

3∗σR =
ñ

∆2
signal + ∆2

ionospheric + ∆2
tropospheric + ∆2

multipath + ∆2
ephemeris + ∆2

clock Ä 6.7m

While the standard deviation of the error in receiver position can be computed as:

σrc =
ñ

PDOP 2 ∗ σ2
R + σ2

numerical

It depends on the Position Dilution Of Precision7 (PDOP), that is a term used in
satellite navigation to describe error caused by the relative position of the GPS
satellites.

3.3.3 Standard GPS
The standard GPS is based on the computation of the GPS receiver’s position,
applying one of the following analytical methods to the navigation equations:

6https://en.wikipedia.org/wiki/Ephemeris
7https://gisgeography.com/gps-accuracy-hdop-pdop-gdop-multipath/
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• Least squares: When the visible satellites are more than four, the system of
equations is over-determined, thus it has not a unique solution. In this case,
it is possible to apply the least squares method, that requires to solve the
following optimization problem:

(x̂, ŷ, ẑ, b̂) = min
(x,y,z,b)

Ø
i

(
ñ

(x − xi)2 + (y − yi)2 + (z − zi)2 + bc − pi)2 (3.3)

• Iterative: The equations to be solved are non linear and required special
methods to be solved. “A common approach is by iteration on a linearized
form of the equations, for example the Gauss–Newton algorithm can be
used”,([24]).

• Closed-form: “S. Bancroft developed a closed-form solution to the above set
of equations”, as stated in [24]. The key step to find a solution is either the
inversion of a 4x4 matrix in the case of four visible satellites or the use of a
pseudoinverse when more than four satellites are visible. “It is an algebraic
method that provides one or two solutions for the unknown quantities. When
there are two (usually the case), only one is a near-Earth sensible solution”,
as written in [24].

To better understand how the receiver is able to compute its position exploiting
GPS signals coming from the satellites, it may be worth to consider the following
geometric interpretations of the solution methods:

• Spheres: “The pseudoranges, contain clock errors, but in a simplified idealiza-
tion in which the satellites and receiver are synchronized, the pseudoranges can
be considered as true ranges, that represent the radii of spheres, each centered
on one of the transmitting satellites. The solution for the position of the
receiver is then at the intersection of the surfaces of these spheres. In this ideal
case, when the visible satellites are three, the spheres intersect exactly in two
points; one point is the location of the receiver, and the other moves rapidly in
successive measurements and would not usually be on Earth’s surface”([24]).
However, the visible satellites usually are more than three and the correspond-
ing spheres will intersect in more than two points, so an approximate unique
intersection should be computed, typically via least-squares.

• Hyperboloids: “If the pseudorange between the receiver and satellite i and
the pseudorange between the receiver and satellite j are subtracted, pi − pj,
the common receiver clock bias (b) cancels out, resulting in a difference of
distances di − dj . The locus of points having a constant difference in distance
to two points (here, two satellites) is a hyperbola on a plane and a hyperboloid
of revolution in 3D space. Thus, from four pseudorange measurements, the
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receiver can be placed at the intersection of the surfaces of three hyperboloids
each with foci at a pair of satellites. In the case of additional satellites, the
multiple intersections are not necessarily unique, and a best-fitting solution is
sought instead”, as stated in [24].

• Spherical cones: “The clock on-board the receiver is usually not of the same
quality as the ones used in the satellites and will not be accurately synchronised
to them. This produces large errors in the computed distances to the satellites.
Therefore, in practice, the time difference between the receiver clock and the
satellite time is defined as an unknown clock bias b. The equations are then
solved simultaneously for the receiver position and the clock bias. The solution
space (x, y, z, b) can be seen as a four-dimensional geometric space. In that
case each of the equations describes a spherical cone with the cusp located at
the satellite, and the base a sphere around the satellite. The receiver is at the
intersection of four or more of such cones”([24]).

The modern GPS receivers,that does not employ any technique to compensate
the errors (previously described), usually have an accuracy of about 5 meters
horizontally.

3.3.4 Differential GPS

Figure 3.12: An example of DGPS working principle
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Figure 3.13: Example of a ground/reference station

The GNSS should employ some strategies to attenuate or, possibly, cancel out
most of the errors coming from satellites signals transmission, in order to improve
the accuracy of the position computation in GPS receivers. An available approach
is the so called Differential GPS (DGPS), a figured example is illustrated in Fig.
3.12. It is based on some GPS ground (or reference) stations (shown in Fig. 3.13),
scattered around the world, which position is computed with very high precision,
through geodetic techniques and additional high precision tools. The main function
of the ground stations is to compute the error between the measured pseudorange
(satellite-receiver distance) and the real pseudorange (internally computed, thanks
to its known position with high precision). Then, there are mainly two ways8 to
broadcast the correction message to GPS receivers:

• Satellite-Based Augmentation System(SBAS): SBAS is sometimes synony-
mous with wide-area Differential GPS (WADGPS). The ground stations send
correction messagges to some geostationary9 satellites (they are at a specific
height above the Earth’s equator), so that they can broadcast the correction
signals to one or more GPS receivers on the Earth.

• Ground-Based Augmentation System (GBAS) and Ground-Based Regional

8https://it.wikipedia.org/wiki/GNSS_augmentation
9https://it.wikipedia.org/wiki/Orbita_geostazionaria
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Augmentation System (GRAS): GBAS system works on limited local area
(about 23 km, i.e. airports), while GRAS system can cover wider regional
area. The ground stations can be equipped by a radio transmitter and directly
send the correction messages to the GPS receivers. This approach has a main
drawback: the accuracy of the correction messages decreases proportionally
with ground station-GPS receivers distance. This effect can be caused by
either the ground station and GPS receiver do not receive the GPS signals
from the same satellites or they are too far from each other on the Earth’s
surface, so that the correction cannot be considered adequate.

Both the SBAS10 approach and GBAS11 approach can increase the accuracy with
position errors below 1 meter, but the latter degrades its accuracy with ground
station-receiver distance increasing.

3.3.5 RTK-GPS
“Real Time Kinematic (RTK) is an additional satellite navigation technique used
to enhance the precision of position data derived from satellite-based positioning
systems, such as GPS”, as stated in [28]. In particular, when it is applied to
the GPS, it is commonly known as carrier phase enhancement, or carrier phase
GPS (CPGPS), or RTK-GPS. This system is similar to DGPS, because it exploits
ground/reference stations at known locations to communicate with GPS receivers.
However, the RTK-GPS is based on a different approach to compute the error
corrections, that can be summed up as follows: the main involved entities are a
reference station and a mobile unit (rover).“RTK uses the satellite signal’s carrier
wave as its signal, ignoring the information contained within”([28]). In addition,
“the range to a satellite is essentially calculated by multiplying the carrier wavelength
times the number of whole cycles between the satellite and the rover and adding the
phase difference”, as stated in [28]. “Determining the number of cycles is non-trivial,
since signals may be shifted in phase by one or more cycles, as a consequence the
error is equal to the error in the estimated number of cycles times the wavelength,
which is 19 cm for the L1 signal (civilian use). Solving this problem, called integer
ambiguity search problem, results in centimeter precision” ([28]). “The error can
be reduced with sophisticated statistical methods that compare the measurements
from the C/A signals and by comparing the resulting ranges between multiple
satellites”, as written in [28]. “In practice, RTK systems use a single base-station
that re-broadcasts (through radio signal) the phase of the observed carrier wave
to a number of mobile units, that compare their own phase measurements with

10https://gssc.esa.int/navipedia/index.php/SBAS_Fundamentals
11https://gssc.esa.int/navipedia/index.php/GBAS_Fundamentals
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the one received from the base station”([28]). “This allows the units to calculate
their relative position to within millimeters, although their absolute position is
accurate only to the same accuracy as the computed position of the base station.
The typical nominal accuracy for these systems is 1 centimetre horizontally and 2
centimetres vertically”([28]). The RTK technique provides accuracy enhancements
up to about 20 km from the reference station.

Figure 3.14: RTK working principle

3.4 Sensor Fusion for localization

Sensor fusion is a way of simultaneously taking into account different sources of
information to achieve the highest accuracy of a measure. In particular, it can be
used to properly localize an autonomous vehicle, exploiting several data coming
from different sensors.
Among the different approaches to estimate a particular quantity (in this case the
vehicle’s pose), there will be described the Kalman Filter, the Extended Kalman
Filter (EKF), the Unescent Kalman Filter and the Particle Filter, that are based
on the Bayesian filtering approach.
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3.4.1 System representation
Each physical system can be associated to a mathematical model, that describes
the evolution over time of some variable of interests, such as position, linear velocity,
angular acceleration etc. There exist linear or non-linear, time-invariant or time-
variant, continuous or discrete system, that can be suitably approximated by a
mathematical model. For instance, a continuous, linear, time variant system can
be represented by the following state-space model:

ẋ(t) = A(t)x(t) + B(t)u(t) + v1(t) (3.4)
z(t) = C(t)x(t) + v2(t) (3.5)

where: x(t) is the state vector, that contains the variables of interest, A(t) is the
state matrix, B(t) is the input matrix, u(t) is the input vector, v1(t) is the process
noise, C(t) is the output matrix, z(t) is the output (or measurement) vector and
v2(t) is the measurements noise. The same continuous model can be described in
discrete-time as follows:

x(k + 1) = A(k)x(k) + B(k)u(k) + v1(k) (3.6)
z(k) = C(k)x(k) + v2(k) (3.7)

System models as well as sensor measurements are affected by uncertainties, since
they cannot perfectly match the real physical system. Among different approaches
of representing uncertainties, the probabilistic one is the most common used for
data fusion.

3.4.2 Bayes Filter
It is one of the most used filters in estimation problems with probabilistic framework.
It strongly relies on the well-known Bayes’ rule:

P (x|z) = P (z|x)P (x)
P (z) (3.8)

where, in the particular case of localization, x can be the vehicle’s pose to be
estimated, z is a sensor measurement and P (x|z) is the conditional probability of
x given z. In case of different sensors data the Bayes’ rule can be rewritten as
follows:

P (xk|z1:k) = P (z1:k|xk)P (xk)
P (z1:k) = P (z1, z2, ..., zk|xk)P (xk)

P (z1, z2, ..., zk) (3.9)

where z1:k contains all the available sensors information up to the discrete-time k
and xk is the state vector at discrete-time k. In practice, it is very hard to use
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the equation 3.9 as it is, because it requires to know the common and conditional
distribution of probability P (z1, z2, ..., zk|xk). However, assuming that each sensor
information zi, given a particular state xk, is independent from each other, it is
possible to write:

P (zi|xk, z1, ..., zi−1, zi+1, ..., zk) = P (zi|xk) (3.10)
P (z1, z2, ..., zk|xk) = P (z1|xk)...P (zk|xk) =

Ù
i

P (zi|xk) (3.11)

Substituting the eq. 3.11 in eq. 3.9 a more practical application of Bayes’ rule,
called Bayes filter, is obtained:

P (xk|z1:k) = P (z1:k|xk)P (xk)
P (z1:k) =

r
i P (zi|xk)P (xk)
P (z1, z2, ..., zk) (3.12)

where P (z1, z2, ..., zk) /= r
i P (zi) because each sensor data zi has in common a

particular state of the system under study, as a consequence each P (zi) depends
on each other.

Bayesian recursive filter

The equation 3.12 requires to store all the past information to compute the prob-
ability of a particular state and as a new information arrives the probability
should be recomputed. To overcome this issue, it is possible to implement the
Bayesian filter in a recursive way. Assuming that, as a new sensor data is available,
z1:k = {zk, z1:k−1} and each sensor measurement is independent from each other,
given a particular state, the recursive implementation can be derived as follows:

P (xk, z1:k) = P (xk|z1:k)P (z1:k)
= P (zk, z1:k−1|xk)P (xk)
= P (zk|xk)P (z1:k−1|xk)P (xk)

that can be rewritten as:

P (xk|z1:k)P (z1:k) = P (zk|xk)P (z1:k−1|xk)P (xk)
= P (zk|xk)P (xk|z1:k−1)P (z1:k−1)

from which the final form of the Bayesian recursive filter can be obtained considering
that P (z1:k)/P (z1:k−1) = P (zk|z1:k−1):

P (xk|z1:k) = P (zk|xk)P (xk|z1:k−1)
P (zk|z1:k−1) (3.13)

where P (xk|z1:k−1) =
s

P (xk|xk−1)P (xk−1|z1:k−1)dxk−1. P (xk|xk−1) is computed
using the dynamical model related to the physical system under study. The
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advantage of the recursive form is to store and update only P (xk|z1:k), as new
sensors data are available. Both the Bayes filter and its recursive form have been
described not taking into account any input u, however, it is possible to include it
and derive the corresponding filters in a straightforwardly way.

3.4.3 Kalman Filter
Kalman filter is a linear recursive estimator, based on the following assumptions:

• The dynamical system can be described by a linear mathematical model as
3.4.

• The process and the measurement noises are both white and Gaussian, that
means, v1(t) ∼ WN(0, V 1(t)) and v2(t) ∼ WN(0, V 2(t)), where V 1(t) and
V 2(t) are the known variance matrices.

• v1(t) and v2(t) are uncorrelated with each other at different time instants, but
correlated if considered at the same time instant, with a covariance matrix
given by V12(t).

The Kalman filter can be applied whenever a quantity or some quantities should be
estimated, as in the case of a vehicle’s pose. The estimation algorithm is divided
into two steps: a prediction step and a correction step and it involves some gains,
that are chosen such that the estimate x̂(t) minimizes:

L(t) =
Ú ∞
−∞

(x(t) − x̂(t))T (x(t) − x̂(t))P (x(t)|Zk)dx

To solve this problem, the derivative with respect to x̂(t) is applied on L(t), then
it is imposed equal zero and after some calculations:

x̂(t) =
Ú ∞
−∞

x(t)P (x(t)|Zk)dx = E(x(t)|Zk)

that is the conditional mean estimate or Bayesian estimate.
Since the Kalman filter algorithm is typically implemented on a calculator, that
works with discrete values, it is worth to consider the discrete-time version of
the state-space model of a physical system (3.6). Moreover, taking into account
the recursive Bayesian estimation approach, the estimate of a particular state at
discrete-time instant k + 1 can be written as follows:

x̂(k + 1|k) = E(x(k + 1)|Zk)
= E(x(k + 1)|zk, Zk−1)
= E(x(k + 1)|Zk−1) + E(x(k + 1)|e(k))
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where e(k) is the innovation of zk given Zk−1 and defined by:

e(k) = zk − E(zk|Zk−1)

where E(zk|Zk−1) = ẑ(k|k − 1) is the estimate of the output measure at discrete-
time instant k. Considering the state-space model 3.6, the previous estimate can
be written as:

ẑ(k|k − 1) = C(k)E(x(k)|Zk−1) + E(v2(k)) = C(k)x̂(k|k − 1)

All considered, the recursive one-step state prediction can be written as:

x̂(k + 1|k) = A(k)E(x(k)|Zk−1) + B(k)u(k) + Σx(k+1)e(k)Σ−1
e(k)e(k)e(k)

= A(k)x̂(k|k − 1) + B(k)u(k) + K(k)e(k)

where K(k) is the one-step Kalman prediction gain matrix and involves the following
equations:

Σx(k+1)e(k) = A(k)P (k)C(k)T + V12(k)
Σe(k)e(k) = C(k)P (k)C(k)T + V 2(k)

K(k) = Σx(k+1)e(k)Σ−1
e(k)e(k)

= (A(k)P (k)C(k)T + V 12(k))(C(k)P (k)C(k)T + V 2(k))−1

P (k + 1) = A(k)P (k)A(k)T + V 1(k) − K(k)(C(k)P (k)C(k)T + V 2(k))K(k)T

P (k) is the prediction error variance matrix of the state x(k) and is computed
using the Difference Riccati Equation (DRE).
Starting from the state prediction is possible to estimate the current state x(k)
given the current measurements, as follows:

x̂(k|k) = E(x(k)|Zk) = E(x(k)|Zk−1, zk)
= E(x(k)|Zk−1) + E(x(k)|e(k)) = x̂(k|k − 1) + E(x(k)|e(k))
= x̂(k|k − 1) + Σx(k)e(k)Σ−1

e(k)e(k)e(k) = x̂(k|k − 1) + K0(k)e(k)

where K0(k) is the Kalman filter gain matrix and involves the following equations:

Σx(k)e(k) = P (k)C(k)T

Σe(k)e(k) = C(k)P (k)C(k)T + V 2(k)
K0(k) = Σx(k)e(k)Σ−1

e(k)e(k)

= P (k)C(k)T (C(k)P (k)C(k)T + V 2(k))−1
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All considered, the Kalman filter is based on the following equations:

x̂(k + 1|k) = A(k)x̂(k|k − 1) + B(k)u(k) + K(k)e(k) (3.14)
ẑ(k|k − 1) = C(k)x̂(k|k − 1) (3.15)

x̂(k|k) = x̂(k|k − 1) + K0(k)e(k) (3.16)
e(k) = z(k) − z(k|k − 1) (3.17)

that, can be implemented recursively on a calculator and are represented in a
schematic way in Fig. 3.15.

Figure 3.15: Block scheme diagram of Kalman filter

3.4.4 Extended Kalman Filter
Sometimes physical system cannot be represented by linear state-space model,
especially in robotic fields. However, it is possible to model such systems with non
linear relationship as follows:

x(k + 1) = f(k, x(k), u(k)) + v1(k) (3.18)
z(k) = h(k, x(k)) + v2(k) (3.19)

that is the representation of a discrete-time, non-linear, time-variant, dynamic
system. The assumptions on v1(k) and v2(k) are the same of those described for

52



State of the Art

the Kalman filter in 3.4.3
The Extended Kalman Filter is usually used to estimate the state of non-linear
system. It exploits the same approach of the Kalman filter, but the matrices A(k)
and C(k) are computed by linearizing the system around the last state estimate as
follows:

Â(k|k − 1) = ∂f(t, x, u)
∂x

-----
t=k,u=u(k),x=x(k|k−1)

Ĉ(k|k − 1) = ∂h(t, x)
∂x

-----
t=k,x=x(k|k−1)

Eventually, the equations of the EKF are the following ones:
x̂(k + 1|k) = f(k, x̂(k|k − 1), u(k)) + K̂(k)e(k) (3.20)
ẑ(k|k − 1) = h(k, x̂(k|k − 1)) (3.21)

x̂(k|k) = x̂(k|k − 1) + K̂0(k)e(k) (3.22)
e(k) = z(k) − z(k|k − 1) (3.23)

where K̂(k) is the extended Kalman predictor gain matrix and K̂0(k) is the extended
Kalman filter gain matrix. They are computed replacing A(k) with Â(k|k − 1) and
C(k) with Ĉ(k|k − 1) in the previous described equation of K(k) and K0(k).

3.4.5 Unscented Kalman Filter
The described Kalman filters (classical KF, EKF and UKF) are based on the
assumptions of having Gaussian process and measurements noises. This assumption
is usually realistic and leads to consider the state distribution as a Gaussian random
variable (GRV).
The EKF propagates the state distribution (represented as a GRV) through the
first-order linearization of the non-linear system and this may lead to large errors
in the true posterior mean and covariance of the transformed GRV, obtaining
sub-optimal performance and sometimes divergence of the filter.
The UKF aims to compensate the lack of accuracy of the EKF, approximating
the state distribution as a GRV, but representing it through a set of carefully
chosen sample points (deterministic sampling approach). As stated in [29], “These
sample points completely capture the true mean and covariance of the GRV,
and when propagated through the true nonlinear system, captures the posterior
mean and covariance accurately to the 2nd order (Taylor series expansion) for
any nonlinearity”. Moreover, the UKF algorithm strongly relies on the unscented
transformation (UT).

Unscented Transformation

It is a technique to compute the statistic of a random variable subject to a non-linear
transformation. Starting from a random variable x (dimension L) with mean x̄ and
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covariance matrix Px , that is subject to the non-linear transformation y = f(x), it
is possible to obtain the statistic of y forming a matrix X of 2L + 1 sigma vectors
Xi computed as follows:

X0 = x̄

Xi = x̄ +
3

γ
ñ

Px

4
i

i = 1, ..., L

Xi = x̄ −
3

γ
ñ

Px

4
i−L

i = L + 1, ...,2L

where γ =
ñ

(L + λ) and λ = α2(L + k) − L. α is a constant, that determines the
spread of the sigma points around x̄ and it usually assumes small positive values.
k is a secondary scaling parameter and (γ

√
Px)i is the ith column of the matrix

square root. Then, each sigma vector is propagated through the non-linear function
as follows:

Yi = f(Xi) i = 0, ...,2L

from which the mean (ȳ) and the covariance (Py) of y are approximated using a
weighted sample mean and covariance of posterior sigma points, represented by:

ȳ ≈
2LØ
i=0

W
(m)
i Yi Py ≈

2LØ
i=0

W
(c)
i (Yi − ȳ)(Yi − ȳ)T

where each weights Wi is computed as follows:

W
(m)
0 = λ

(L + λ) W
(c)
0 = λ

(L + λ) + (1 − α2 + β)

W
(m)
i = W

(c)
i = 1

2(L + λ) i = 1, ...,2L

β is used to include prior knowledge on the distribution on x.

Unscented Kalman Filter

The UKF is a straightforward extension of the UT, since it exploits recursively
the equations defined by the unscented transformation. In the general case (when
the noises are not simply additive), an augmented state should be used: xa

k =
[xT

k v1T
k v2T

k ]T . However, without loss of generality, the non-linear model 3.18
will be taken into account, in order to make the UKF comparable with the EKF.
In the considered model, the noises are additive, so the augmented state is not
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require and the overall UKF’s equations can be written as follows:
Initialization step:

x̂0 = E[x0] (3.24)
P0 = E[(x0 − x̂0)(x0 − x̂0)T ] (3.25)

then, for each k ∈ {1, ..., ∞}, compute the sigma points:

Xk−1 = [x̂k−1 x̂k−1 + γ
√

Pk−1 x̂k−1 − γ
√

Pk−1] (3.26)

Time update step:

Xk|k−1 = f(Xk−1, uk−1) (3.27)

x̂k|k−1 =
2LØ
i=0

W
(m)
i Xi,k|k−1 (3.28)

Pk|k−1 =
2LØ
i=0

W
(c)
i [Xi,k|k−1 − x̂k|k−1][Xi,k|k−1 − x̂k|k−1]T + V 1 (3.29)

Yk|k−1 = h(Xk|k−1) (3.30)

ŷk|k−1 =
2LØ
i=0

W
(m)
i Yi,k|k−1 (3.31)

(3.32)

Measurement update step:

Pykyk
=

2LØ
i=0

W
(c)
i [Yi,k|k−1 − ŷk|k−1][Yi,k|k−1 − ŷk|k−1]T + V 2 (3.33)

Pxkyk
=

2LØ
i=0

W
(c)
i [Xi,k|k−1 − x̂k|k−1][Yi,k|k−1 − ŷk|k−1]T (3.34)

Kk = Pxkyk
P−1

ykyk
(3.35)

x̂k|k = x̂k|k−1 + Kk(yk − ŷk|k−1) (3.36)
Pk = Pk|k−1 − KkPykyk

KT
k (3.37)

As can be seen in Fig. 3.16 the state estimate provided by the UKF is more accurate
than that furnished by the EKF, although the former is more computationally
expensive than the latter.

3.4.6 Particle Filter
The particle filters are Bayesian filters used whenever no assumptions about the
kind of noise can be made. In the particular case of localization, they are also
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Figure 3.16: Comparison between EKF and UKF

called Monte Carlo Localization (MCL).
The MCL filter approximates the belief about the state of an autonomous vehicle
(e.g. the pose) as a set of weighted particles:

Bel(xk) = {wi
k, xi

k} i = 1, ..., N

where: xk is the current state (to be estimated), N is the number of samples
(particles), xi

k is the ith particle associated with the ith normalized weight wi
k at

discrete-time instant k. Each particle (xi
k) represents an hypothesis about the

current state, while the related weight is a measure of the hypothesis’ confidence.
The normalized weights are such that: qN

i=1 wi
k = 1.

Since particle filters are based on the Bayesian filtering approach the belief about
the current state xk can be written as:

Bel(xk) = ηkP (zk|xk)
Ø

∀Nparticles

P (xk|xk−1)Bel(xk−1) (3.38)

In the particular case of localization, the particle filter algorithm can be summed
up as follows:

1. Motion update: propagate each particle by using the motion model of the
system under study and evaluate: q

∀Nparticles P (xk|xk−1)Bel(xk−1).
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2. Observation update: compute the new weights by exploiting sensors informa-
tion as follows: wi

k = ηip(zk|xi
k), where ηi is a normalization factor and can

be chosen equal to wi
k−1.

3. Resampling: sample a new set of weighted particles from the probability
distribution generated by the particles generated at step 1. The main pur-
pose of resampling is to select only the particles with large weights, in order
to propagate only the most significant ones. In literature there exist differ-
ent methods to account for this problem: multinomial resampling, residual
sampling, systematic resampling, etc.

4. Compute the estimate: among the existing different approaches to estimate
the state xk, one possible solution can be: x̂k = qN

i=1 wi
kxi

k.

5. Time update: set k = k + 1 and repeat from step 1.

All considered, the main advantages of using a particle filters are:

• The ability “to model non-linear system dynamics”([30]).

• The noise can assume whatever form different from the Gaussian model.

• “In practice, it performs well in presence of a large amount of noise”([30]).

• “Simple implementation”, as written in [30].

In contrast, the main drawbacks [30] of this filtering technique are:

• It is more computationally expensive compare to other filters (EKF or UKF).

• “Computational complexity grows exponentially”([30]) as the size of the state
vector increases.

• “It is more likely to diverge with more accurate measurements”, as stated in
[30].

This kind of filter seems to work well in a noisy environment, because the noise
affect in a good manner the resampling step. In presence of small amount of noise
the resampling step could select the wrong particles and neglect the most significant
one (the particles that are close to the real pose of the vehicle), as a consequence
the filter tends to diverge.
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3.5 Existing projects related to autonomous nav-
igation for precision agriculture

Through different years, research groups, engineers, companies etc. have tried to
develop several autonomous navigation system for precision agriculture, exploiting
different approaches. Among all the existing projects related to autonomous navi-
gation for precision agriculture, there will be briefly described only some of them,
that deal with the autonomous navigation in vineyards, orchards and farms.

3.5.1 Autonomous navigation in orchards
Flavio Callegati, Alessandro Samorì, Roberto Tazzari, Nicola Mimmo and Lorenzo
Marconi in [31], proposed an autonomous tracked UGV able to detect the beginning
and the end of rows in an orchards, “to keep almost fixed lateral distance from
trees”()[31] and to stop “once it has exited a row”([31]). The UGV is equipped “with
GPS receiver, 3D laser scanner and an inertial measurement unit, which provide
to the robot the capability of navigating and localizing itself in the agricultural
environment”, as stated in [31]. The overall system is mainly composed by a Human
Machine Interface (HMI) based on Windows and a control system implemented via
ROS. The HMI is used to check the rover position and/or send commands/mission,
while ROS is used by the rover to compute an estimate of its position, send
commands to the actuators and perform autonomous navigation in the rows.
Eventually, the developed autonomous system has been tested in a plum field and
in a vineyard and in both cases it gives good results, as stated in [31].

3.5.2 Autonomous navigation in farms
Mark A. Post, Alessandro Bianco and Xiu T. Yan in [32] proposed an autonomous
UGV based on ROS for agricultural fields. The main purpose of their project “is to
combine several approaches to navigation and control into one autonomous rover,
which shall be able to navigate autonomously in a farm field while constructing
a map of the environment”, as stated in [32]. The project has been developed
using cost-effective and off the shelf hardware such as: “an NVidia Jetson TK1
single-board computer (SBC), an SPI-connected Arduino board that handles fast
kinematic control of the drive and steering motors, and a SparkFun Razor attitude
and heading reference system (AHRS) board. Four sensors allow the perception
of the environment: the Razor AHRS board containing a three degree of freedom
accelerometer, angular rate sensor, and magnetometer, a Hokuyo UTM-30LX-EW
scanning laser rangefinder mounted on the front of the chassis, a Stereolabs ZED
stereo vision camera mounted on top of the laser and a global navigation satellite
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system (GNSS) receiver mounted on top of the camera”, as written in [32]. In
order to achieve their goal, they have been used some already implemented ROS
nodes for autonomous navigation combined with custom nodes to deal with the
specific and challenging farming environment.

3.5.3 Autonomous navigation in vineyards
In [33] Pietro Astolfi, Alessandro Gabrielli, Luca Bascetta and Matteo Matteucci
have proposed an autonomous navigation system for UGVs in a vineyard. The
main component of the project is a rover “based on the Husky platform12”([33]).
“It is equipped with frontal Hokuyo laser range finder, a Velodyne Puck, a common
PC with WiFi module, and an IMU sensor. In addition, the rover mounts a robotic
arm, a Kinova Jaco2 6 which incorporates a low range Hokuyo, and a vertical
support for the GPS antenna and a Zed stereo camera”, as written in [33]. The
interesting characteristic of such project is the usage of standard ROS packages for
indoor navigation, such as the move base package, the AMCL localization package
etc. to achieve outdoor autonomous navigation and mapping. All considered,
“the resulting navigation system has proved his reliability first in simulation and
then in on-field validation tests, which has highlighted strengths, i.e., an accurate
and robust pose estimate (odometry estimation), the ability to build navigable
maps despite a rough and complex vineyard scenario, a flexible structure in which
components can easily be swapped or substituted based on the task assigned to
the robot”, as stated in [33].

12http://www.clearpathrobotics.com/husky-unmanned-ground-vehicle-robot
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Chapter 4

Autonomous GPS-based
navigation in vineyards

In the following part will be given a detailed description of the proposed solution
to perform the autonomous GPS-based navigation in precision agriculture. First of
all, the outdoor localization problem will be tackled and a possible solution will be
described exploiting an already available ROS package. Then, the core software
components for the autonomous navigation will be shown making an explicit
difference to what has been exploited from ROS and what has been developed from
scratch.

4.1 Outdoor Localization
Among the existing localization filters described in literature and summed up in 3.4,
the EKF has been chosen as possible candidate to solve the outdoor localization
problem. It exploites the non-linear dynamical model of the system under study
to predict the pose of the vehicle and correct the prediction with the sensors
information. In this case, the vehicle is represented by the Jackal UGV (described
in A), which is related to a non-linear model (as shown in A), while the available
sensors are: an IMU, a RTK capable GPS receiver and a depth camera (listed in
the Table 4.1). The camera will not be used for localization, but only for obstacle
avoidance purposes.
The usage of UKF has been discarded because of the need of choosing the sigma
points, required for the unescented transformation (as explained in 3.4.5). This
task may be complex and hard, although the UKF is more precise compared to
EKF.
The particle filter, in particular the MCL, has not been used because of its growing
complexity with the increase of the state vector. Moreover, as written before in

60



Autonomous GPS-based navigation in vineyards

Table 4.1: Available sensors

Sensor Model
IMU Provided with the Jackal. It contains a gyroscope, an accelerometer

and a magnetometer.
GPS receiver Novatel FlexPak6 (deeply described in B.1)
Depth camera Intel RealSense D435i (described in details in B.2)

3.4.6, it works quite well in presence of noisy sensor measurements, but, in this
case, the GPS receiver with RTK corrections is supposed to be quite accurate,
although the IMU may produce noisy measurements due to the uneven terrain.
All considered, the EKF has been chosen as localization filter for the autonomous
navigation system, thank to its support for the non-linear systems, its simple
implementation and the quite accurate pose estimation, without choosing neither
sigma points (as in the UKF) nor the number of particles (as in the MCL).

4.1.1 Robot localization ROS package
ROS offers a ready-to-use package for localization, called robot_localization. It
mainly contains two state estimation nodes, the ekf_localization_node and the
ukf_localization_node. Moreover, it allows the integration of GPS data into the esti-
mation nodes through the navsat_transform_node. Both the ekf_localization_node
and the ukf_localization_node shares common features, such as:

• “Fusion of an arbitrary number of sensors”, as stated in [34]. For instance,
they allow to fuse “multiple IMUs or multiple sources of odometry informa-
tion”([34]).

• “Support for multiple ROS message types”([34]).

• Each sensor can have a customized input. “If a given sensor message contains
data that you do not want to include in your state estimate, the state estimation
nodes allow you to exclude that data on a per-sensor basis”([34]).

• Continuous estimation. “Each state estimation node begins estimating the
vehicle’s state as soon as it receives a single measurement”, as written in [34].
If sensors do not send data for a long time, “the filter will continue to estimate
the robot’s state via an internal motion model”([34]).

The estimated state is a 15-dimensional vector composed by

(X, Y, Z, roll, pitch, yaw, Ẋ, Ẏ , Ż, ˙roll, ˙pitch, ˙yaw, Ẍ, Ÿ , Z̈)
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The internal motion model, used for state prediction, is an omnidirectional motion
model. In this case, the Jackal UGV is not represented by an omndirectional motion
model, but the state estimation may be precise enough thank to the correction of
state prediction through the perceived sensor data. That means, the error due to
the prediction step may be very large in some cases, but they can be mitigated
by applying a correction through the information coming from the IMU and the
RTK-GPS receiver. The internal motion model of the state estimation nodes has
not been modified, in order to not add computational complexity.

4.1.2 EKF localization node
The ekf_localization_node implements the extended kalman filter and allows to
set a large number of parameters to control the accuracy of the filter as well as
what sensors data include in the estimation process. In order to properly set each
parameter, they are grouped together in configurations files, that are represented by
file_name.yaml, in ROS. Among all the parameters to set, the two most important
are: the configuration matrix relative to a specific source of information and the
process covariance matrix. The former is composed as follows:

X Y Z
roll pitch yaw
Ẋ Ẏ Ż

ṙoll ṗitch ẏaw
Ẍ Ÿ Z̈


Setting to true or false each element in the matrix, the filter will take into account
only those set to true, when it fuse the sensor data. For instance, setting to true
the first three elements of the matrix, the filter will consider only the (X, Y, Z)
information coming from a specific sensor, although the sensing device is able to
provide also (roll, pitch, yaw).
The latter is a 15 by 15 matrix, that controls the amount of uncertainty in the
prediction phase of the filter, that means how much the internal motion model of
the filter matches the real motion model of the physical system. It is customizable,
in order to choose the right values for a specific filter application, although it is
difficult to tune each single parameter.
The ekf_localization_node can obtain the sensors data by subscribing to ROS
topics on which each sensor publishes the sensed information written in a specific
ROS message format. It accepts odometry messages as well as IMU messages. In
this case the odometry information are obtained from the RTK-GPS receiver, that
is supposed to be quite accurate. The GPS data are transformed from GPS message
format to the odometry message format by means of the navsat_transform_node,
that takes as inputs: the information coming from the RTK-GPS receiver, the
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odometry information produced by the ekf_localization_node and the IMU data
(for the robot’s heading), in order to provide (as output) odometry messages
represented in the robot’s world frame.
In the Fig. 4.1 are represented the main ROS nodes (ellipses) and topics (rectangles)

Figure 4.1: Main nodes and topics involved in the outdoor localization

used in the outdoor localization, by means of a ROS graph. Furthermore, the
sensor data have not been included in the graphical representation to make the
figure more understandable. The main involved nodes are:

• /baselink_odom_tf : it is a custom node used only to publish the transfor-
mation from the base_link coordinate frame (attached to the robot) to the
odom coordinate frame. It takes as inputs: the odometry information com-
ing from the /jackal_auto_nav/ekf_map node and provides the right data
transformation.

• /jackal_auto_nav/ekf_map: it is a ekf_localization_node used for pose esti-
mation (including sensor data) and it is also responsible for the transformation
between the odom coordinate frame and the map coordinate frame. The filter
inputs are: the IMU and the GPS data, so that in case of wheels slippage the
estimated pose does not suffer from big errors.

• /jackal_auto_nav/navsat_transform: it computes the conversion between
GPS and odometry message formats.

This particular setup is required because ROS is not able to publish directly the
base_link → map transformation.
In this case, the reference frame is map, that is a global reference frame in ROS
and it is used for navigation systems that exploite the GNSS, in order to obtain a
global position. On the other hand, the odom reference frame is used mainly for
navigation system that are based on relative localization.
All the transformations are obtained and published by means of the tf package
(deeply described in C.2). Moreover, the conversion from one coordinate frame to
another is always required in a ROS-based robot, because ROS associates to each
robot’s component (e.g. wheels, shaft, sensors, etc.) a specific coordinate frame (as
better explained in C.1).
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4.2 Autonomous GPS-based Navigation
ROS provides a ready-to-use stack for UGV navigation, called navigation stack and
shown in Fig. 4.2. The major component of such stack is the move_base package,
that is commonly used for 2D autonomous navigation in indoor evironments and is
composed by the following nodes (as can be seen in Fig. 4.2):

• Global planner: it is responsible for computing a collision-free global plan
between a starting point and a goal point, basing on the available global
costmap and a path search algorithm.

• Local planner: it provides a local path, basing on the global path and the
local costmap, that will be exploited to send the right velocity (both linear
and angular) commands to the controller.

• Global costmap: it allows the user to set some parameters (e.g. the global
reference frame, the update frequency, the usage of static or dynamic map,
etc.) in order to adapt its usage for different applications. It is represented as
an occupancy grid map with customizable dimensions and resolution.

• Local costmap: it shares the same characteristics of the global costmap.

• Recovery behaviors: it works as a backup node, when the robot is stuck, that
means it is not able to find a valid path between a starting point and a goal
point. The two main backup actions are: the in-place robot’s rotation and the
costmaps clearing, in order to look for an alternative path to reach the goal.

They share messages, through topics, and collaborate each other in order to achieve
a complete autonomous navigation.
Referring to the Fig. 4.2, the map_server node and the amcl node have not been
used. The first one is responsible for providing a map in the right format, but (as
will be described later in 4.2.1) the navigation will be performed without a map.
While, the second one, is a localization node based on the Adaptive MCL (AMCL),
mainly used for localize a vehicle in a know environment, however the robot’s pose
information is provided by an EKF localization node, as stated in 4.1.

4.2.1 Known environment VS Unknown environment
Both the global and the local costmaps accepts static or dynamic maps, where
dynamic means the map is updated in real-time through sensors information. As a
consequence, the choice, about what kind of map to use, should be made.
The EKF localization node is able to provide a quite accurate pose of the UGV
both in a know environment and an unknown environment, because the estimation
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Figure 4.2: ROS navigation stack ([35])

process exploites an internal motion model combined with sensors data, without
making reference to a map. The starting point of the thesis is the availability of
GPS waypoints, that the UGV should follow in the most precise manner, as stated
in 1.2.3. These GPS route points are computed on a know geo-referenced map,
as a consequence the environment, in which the vehicle should navigate, can be
assumed as know. However, the available geo-referenced map should be processed,
in order to obtain a ROS-compatible map format.
On the other hand, there is the chance of assuming the environment as completely
unknown and make the UGV navigate throughout it. The main problem of this
approach is to avoid obstacles dynamically, since there is not a pre-computed static
map, on which the navigation algorithm can base its path calculations.
All considered, the second option has been chosen, in order to avoid the computa-
tion of ROS-compatible map, each time the vehicle changes place of navigation.
Moreover, the available GPS waypoints form a collision-free global path, because
they have been computed basing a known geo-referenced map, in which the static
obstacles are well defined. As a consequence, the issue of avoiding obstacles dy-
namically is partially solved, because if the UGV follows the provided global path
in a quite accurate manner, it will not collide any static obstacles (e.g. vine plants,
wooden poles, etc.) for sure. While, in case of dynamic obstacles, that means
obstructions not stored on the geo-referenced map, the DWA will be used (as
described later in 4.2.2) in order to avoid them.

4.2.2 Local autonomous navigation
The move_base package has been used as a starting point to develop the au-
tonomous navigation system. On one hand, this package contains an already
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built-in global_planner node, that cannot be eliminated due to the strong relation-
ship with the local_planner node. On the other hand the global plan is already
available and composed by GPS waypoints. The solution is to substitute the global
planner with a fake one, that it takes as input the GPS waypoints and provides time
by time the global plan to the local_planner node, without making any complex
computations.

Fake global planner

The fake global planner computes the global plan as a simple straight line, that
connects the actual robot’s pose with the next GPS waypoint to be reached. The
desired node does not exist, so it has been developed and named Gps_planner. It
publishes the generated global plan and the goal on specific topics subscribed by
the local_planner node.
The GPS waypoints are provided to the fake global planner by an additional
custom node, named ReadWaypoints. Actually, it reads the waypoints on a file,
although, for future improvements, the GPS waypoints can be furnished through a
pre-defined ROS topic. Then, the ReadWaypoints node transform each GPS route
point into UTM1 (Universal Transverse of Mercator) format, through a function of
navsat_transform_node and from UTM to cartesian coordinate thank to the tf
package. After this step, it sends each waypoints, as a goal request, to the fake
global planner using an already defined ROS action of the move_base package
and waits until the UGV is inside an imaginary circle, that has as center the
sent waypoint and as radius a tunable parameter. Eventually, when the UGV has
reached the imaginary circle, the node sends another GPS route point, following
the above procedure, until all the waypoints has been visited.
The imaginary circle has been obtained by computing the Euclidean distance
between the pose of the UGV (provided by the ekf_localization node) and the
GPS waypoint to be reached. In addition, the radius is a tunable parameter to
allow the user to change the UGV’s speed at which a route point is attained. This
step is necessary to not stop at each waypoint, that is seen as a goal point by the
local_planner node and to be robust against poor accuracy pose estimates.
The goal sent to the fake global planner has a specific ROS message format,
named PoseStamped, in which it stores the cartesian coordinates of the waypoint
and the orientation (expressed in quaternion form) at which the UGV should
reach the specified goal. In this case, the orientation has been computed by the
ReadWaypoints node as the angle of a straight line, that connects the current
waypoint with the next one, with respect to the x axes defined in the map frame.
The computed angle represents the yaw, while the pitch and the roll are set to

1https://it.wikipedia.org/wiki/Proiezione_universale_trasversa_di_Mercatore
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zero, because it has been assumed that the UGV moves in a quite planar surface,
although some vineyards may have a huge slope. Then, the yaw, expressed in
radians, is converted to the quaternion form through a function of the tf package.

Local planner

Then, the local planner, based on the DWA (deeply described in 3.2.5), looks for
the right velocity commands to send to the base_controller node. The velocity
commands are generated taking into account the global plan, the dynamic obstacles
and the goal point. Among the local planning algorithms available in literature,
the DWA approach has been chosen because it is highly employed for collision
avoidance purposes in ROS-enables robots and it has tunable gains, that are used
to compute the cost functions related to each sampled trajectory. In this case, the
used cost function is the following one:

Cost =path_gain × distance_path + goal_gain × goal_distance

+ obstacle_gain × obstacle_cost

where

• path_gain, goal_gain, obstacle_gain represent the weightings for how much
the generated local trajectory should stay close to the global path, should
attempt to reach the local goal and should try to avoid obstacles, respectively.
They are tunable parameters and have been chosen by exploiting a trial and
error approach, through different simulations.

• distance_path is the distance from the global path.

• goal_distance is the distance from the local goal.

• obstacle_cost is the maximum obstacle cost along the considered local trajec-
tory, represented in the range 0-254.

the distance_path and goal_distance are computed from the endpoint of the
actual local trajectory in meters or map cells, according to the chosen option.
The required obstacle information are provided by the local_costmap node, through
an updated costmap, as described in the following section.

Local costmap

The dynamic obstacles are provided by the local_costmap node, that constantly
updates the costmap by taking as inputs the pointcloud generated by the depth
camera. Moreover, it provides a plugin called inflation layer, that allows to properly
represent the obstacles and free-spaces inside the costmap, such that the local
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Figure 4.3: Navigation nodes

planner is able to compute a collision-free local plan. The inflation layer assign a
cost value (from 0 to 254) to each cell of the costmap according to the shape of the
UGV and the data coming from the camera. Although each cell can assume 255
different cost values, the local_costmap node assigns to each of them one of three
states: occupied, free and unknown. This choice is made by taking the cost values
produced by the inflation layer and according to a threshold (that can be easily
changed) one of the three state is assigned to each cell. Eventually, through the
inflation process, the obstacles are represented with an increased size proportional
to the robot’s size. as shown in Fig. 4.4.

(a) Virtual environment (b) Obstacles representation

Figure 4.4: Comparison between simulation environment and what the robot
senses.
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Chapter 5

Simulation

Simulation is one of the most important task in case of development of software
components based on new algorithms, that has never been used and tested. A
good simulation environment allows developers to verify the correct behavior of
a new software item and, at the same time, to observe the interaction with the
simulated surrounding environment without causing damages to objects or people.
The autonomous navigation system (illustrated in 4) has been tested using the
Gazebo simulator and the Rviz 3D visualization tool because they work very well
with ROS and offer a lot of customization options. Besides a brief description of
Gazebo and Rviz, the following part deals with the creation of a custom simulated
environment as well as the presentation of the obtained results.

5.1 Gazebo
Gazebo1 is a 3D simulator, that works well with ROS and offers several tools
and options to make the simulation environment as much as possible realistic. It
provides an easy to use Graphical User Interface (GUI) (as can seen in Fig. 5.1),
that allows users to add, delete or update their 3D models. In addition, the main
technical characteristics of Gazebo are:

• Dynamics simulation: it support dynamics simulation of 3D robot model,
through high-performance physics engine (e.g. ODE, Simbody, DART).

• Advanced 3D graphics: Exploiting OGRE2, it is possible to render realistic
scenarios (as can be seen in 5.2), including high-quality lighting, textures or
shadows.

1http://gazebosim.org/
2https://www.ogre3d.org/
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• Sensors and noise: it provides a way to simulate a huge number of sensors,
like LiDARs, cameras, GPS receivers, etc. as well as the noise associated with
them.

• Robot models: either it offers ready to use 3D robot models or it is possible
to build your own 3D model following the SDF3 format.

Figure 5.1: GUI of Gazebo

Figure 5.2: Example of a realistic simulated uphill terrain

3http://sdformat.org/
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5.2 Rviz
RViz is a ROS 3D visualization tool, that allows users to be aware of how robots
perceive and interact with the surrounding environment. Through an intuitive GUI
(represented in Fig. 5.3), it is possible to choose a variety of different information to
visualize, such as sensor incoming data, maps of the surrounding environment, how
robots perceive the obstacles etc. Moreover, RViz allows to interact with robots in
real-time, through a tool, called interactive markers. Eventually, RViz is highly
employed with Gazebo for simulation and testing purposes of newly developed
algorithms, such as navigation, localization and obstacle avoidance algorithms.

Figure 5.3: GUI of RViz

5.3 Simulation environments and results
The developed autonomous GPS-based navigation system has been tested through
two different virtual environments, in order to check the functionalities in different
scenarios. The main properties, that have been verified are:

• the obstacle avoidance: it can be tested only visually, because there is no
other ways of doing that.

• the achievement of GPS waypoints: it can be verified both visually and
comparing the UGV’s pose with the route point to be reached.
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• the localization: it can be checked by comparing the pose provided by the
EKF localization node and the real UGV’s pose furnished by a Gazebo plugin.

The simulation environments are composed by three main models: the Jakcal model
(equipped with the used sensors), the terrain model and the vine plant model.
The first one is provided by the Clearpath Robotics through the Unified Robot
Description Format (URDF), that “is an XML format for representing a robot
model”([36]). The furnished URDF file contains all the mechanical specifications
to correctly simulate the Jackal UGV. Moreover, it is possible to add or remove
sensors’ models according to the applications. In this case, Gazebo provides ready
to use plugins to simulate the GPS receiver, the IMU sensor and the Intel RealSense
depth camera, although it is not possible to simulate an RTK-GPS receiver. For
each simulated sensor, it is possible to set a variety of parameters, such as the
amount and the type of noise, the sample frequency, etc.
The second one should represent a real 3D vineyard terrain, that is often uneven
and may cause wheel slippage. Gazebo allows to represent a real terrain through
the Simulation Description Format (SDF), which is an XML format used for envi-
ronment or robot modelling. In particular, a real terrain surface can be simulated
in Gazebo exploiting the heightmap option of the simulator. An heightmap can be
easily rendered in Gazebo by providing a 8-bit grey scale image to the SDF file,
specifing its dimension, the minimum and the maximum height of the terrain that
should be simulated. Then, Gazebo will take the grey scale image as input and
assign a specific value to each pixel according to the minimum and the maximum
pre-defined heights as well as the pixel value (between 0 to 254).
Eventually, the vine plant model can be rendered by Gazebo, through an SDF file
in which there is a reference to a 3D model of the vine plant in the COLLADA
format.
Each simulation environment has wooden poles instead of simulated vine plants
because a single model of a real vine plant is quite huge in terms of memory
occupancy and slows done the entire simulation. However, this does not affect too
much the testing purposes.

5.3.1 First simulation environment
The first simulation environment (shown in Fig. 5.4) contains wooden poles
organized in such a way to reproduce a vine row, but it does not contain the
vineyard terrain in order to not add too much noise to sensor measurements.
Taking into account Fig. 5.5, it is possible to observe that the EKF localization
filter works quite well since the green line and the dashed dot red line are very
similar. The True pose line has been obtained through a Gazebo plugin, that
provides the true pose of the robot inside the simulation environment. In addition,
the autonomous navigation system is able to follow the provided GPS route points
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Figure 5.4: First simulation environment

Figure 5.5: Simulation results

in a quite accurate manner without hurting any obstacles. All considered, the
overall obtained results are very good, although in some cases, the UGV does not
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enter in the vine row in a smooth way due to the obstacles size increasing, as will
be better explained in 5.3.3.

5.3.2 Second simulation environment

The second simulation environment (shown in Fig. 5.6) is similar to the first one
in terms of wooden poles organization and it contains also the simulated vineyard
terrain in order to check if the autonomous system performs well in presence of
uneven terrain.
Taking into account Fig. 5.7, it is possible to observe that the EKF localization

Figure 5.6: Second simulation environment

filter works reasonably well also in presence of uneven terrain, that may cause noisy
IMU measurements. In addition, the autonomous navigation system is able to
follow the provided GPS route points in a quite accurate manner without hurting
any obstacles, as in 5.3.1. Also in this simulated scenario, sometimes the UGV
does not enter in the vine row in a smooth way due to the obstacles size increasing.
All considered, the overall obtained results are pretty good, although in some cases
the UGV slides either left or right, due to the terrain and it has to perform some
back and forth maneuvers to avoid the obstacles, as highlighted in Fig. 5.7 with
the two orange ellipses.
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Figure 5.7: Simulation results

5.3.3 Common issue
The common simulation problem is the entry point of a vine row, because, in
some cases, the UGV has to perform some additional maneuvers (as can be seen
in Fig. 5.8) in order to be able to safely enter in the vine row. This problem is
mainly caused by the increased size of the obstacles in the costmap used by the
local planner, as can be obeserved in Fig. 5.9. Indeed, the DWA (used in the
local planner) tries to find a local optimal path, trading off the distance from the
global path, the goal achievement and the obstacle avoidance, and in some cases it
prefers to perform additional maneuvers in order to be better aligned with respect
to the next goal and as much as possible far away from obstacles. However, these
anomalous situations does not happen frequently and does not penalize so much
the whole path in terms of time and performances. Moreover, it may be mitigated
by the collaboration with the local planner (described in 1.2.1) once the vine row
entry has been reached.
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Figure 5.8: Three examples of difficult entry in the vine row

(a) Simulation in Gazebo (b) Rviz view

Figure 5.9: Entry point of a vine row
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Chapter 6

Conclusions and future
works

This chapter deals with the peculiar characteristics of the proposed solution to the
autonomous navigation problem in precision agriculture applications. In particular,
there will be described its strengths and weakness as well as the future improvements
and works, that may be made in order to achieve a more effective autonomous
navigation.

6.1 Key properties of the autonomous naviga-
tion system

The previous illustrated solution has been designed and developed in order to be:

• Flexible: it is mainly focused on the vineyards scenario, but it can be employed
in different agricultural environments provided that a global path made of
GPS route points is available.

• Modular: thank to ROS, the proposed solution is highly modular, so that
software updates and bug corrections can be made in the most easy way,
wasting less time.

• Robust against uneven terrains: in agricultural scenarios the terrain is often
irregular and bumpy, as a consequence the UGV’s pose, estimated using wheel
encoders, may be very inaccurate. However, in this case the localization task
has been solved through an EKF, that includes only IMU and GPS receiver
measurements, so that the wheel slippage phenomena cannot influences in
a bad way the estimation process, although the IMU measurements may be
noisy due to the irregularity of the terrain.
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• Safe: it exploits the depth camera to detect dynamical obstacles and avoids
them through the Dynamic Window Approach.

Besides the previous strengths, the autonomous navigation algorithm is affected by
the following limitations:

• Conservativeness against obstacles: the agricultural environments may be
surrounded by a lush vegetation, such as grass, weeds and leaves of the plants
(as happened in a vineyard during the spring and summer seasons). In such
cases, the depth camera recognizes as obstacles also the surrounding vegetation,
because it is not able to make a difference between a solid obstruction with
respect to grass or weeds that can be easily trampled on. However, it assumed
that the agricultural scenario in which the UGV should operate is well-
maintained, so that the navigation algorithm is able to perform its task.

• Difficult entry in vine rows: as previously described in 5.3.3, sometimes the
Dynamic Window Approach experiences some troubles to enter in a new
vine row. However, such minor issue can be easily solved by integrating
the provided solution with the local planner, based on machine learning and
described in 1.2.1.

All considered and as shown in 5.3.1 and in 5.3.2, the overall autonomous navigation
has provided very good results in a simulated environment and can be tested in a
real environment.

6.2 Next works
The proposed solution should be deployed and integrated on the Jackal UGV, with
the local planner developed by Diego Aghi, Vittorio Mazzia, Marcello Chiaberge
and briefly described in 1.2.1, in order to perform some field tests and check the
behaviour of the overall system in a real scenario. Moreover, some improvements
are required in order to solve some limitations described in 6.1. For instance, the
information provided by the depth camera should be processed by an advanced
algorithm, maybe based on machine learning, to classify the real obstacles and the
fictitious ones.
All considered, the provided solution can be a starting point for future developments
in the field of autonomous navigation for precision agriculture applications.
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Appendix A

Jackal UGV

Jackal is an unmanned ground vehicle (UGV) developed by the Clearpath Robotics.
“It is a small, fast, entry-level field robotics research platform, equipped with an
onboard computer, GPS and IMU fully integrated with ROS for out-of-the-box
autonomous capability. As with all Clearpath robots, Jackal is plug-and-play
compatible with a huge list of robot accessories to quickly expand your research
and development”, as stated in [37].

A.1 Main characteristics
Jackal is a versatile UGV, suitable for different robotics applications, because it is:

• powerful and customizable: it is possible to easily add and connect sensors
(e.g. cameras, LiDARs, etc.). In addition, the internal area has some empty
spaces for additional computing power or storage.

• adapt for all-terrain and weatherproof: “Jackal is built from a sturdy aluminum
chassis made with a high torque 4×4 drivetrain for rugged all-terrain operation.
It has an IP62 weatherproof casing and is rated to operate from -20 Celsius
or +45 Celsius”, as written in [37]. IP62 is the Ingress Protection Code, that
indicates the level of protection against water, dust, etc.

Moreover, the Clearpath Robotics provides a ready to use Gazebo model of the
Jackal UGV, through an URDF file from which the main technical specifications
have been obtained and summed up in Tab. A.1

A.2 Mathematical modeling
The Jackal UGV has four fixed wheels (two for each side) and it is able to make
curvilinear trajectories by differentially driving the wheel pairs. This mechanical
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Table A.1: Main parameters of Jackal

Parameter Value
length body 0.42 [m]
width body 0.31 [m]
height body 0.184 [m]
wheelbase 0.262 [m]
track width 0.37559 [m]
wheel width 0.04 [m]
wheel radius 0.098 [m]
mass body 16.523 [kg]
mass wheel 0.477 [kg]
inertia body around z-axis 0.4485 [kg · m2]

Figure A.1: Jackal by Clearpath Robotics

configuration make it a skid-steering mobile robot (SSMR) and “the control of
an SSMR is a challenging task because the wheels must skid laterally to follow
a curved path”, as stated in [38]. In the following part the kinematic and the
dynamical model of a skid-steering mobile robot will be presented, assuming that
the mobile platform is moving on a planar surface (to make the calculations easier).

A.2.1 Kinematic Model
Referring to the Fig. A.2, the inertial reference frame is denoted by (Xg, Yg, Zg),
while the local reference frame attached to the center of mass (COM) is denoted
by (xl, yl, zl). The coordinate of the COM can be written as (X, Y, Z) in the
inertial reference frame. Supposing that the UGV moves in the plane with a linear
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(a) Body diagram (b) Velocities diagram

Figure A.2: Skid-steering mobile robots diagrams [38]

velocity v = [vx, vy,0]T and an angular velocity ω = [0,0, ω]T , it is possible to
represents the generalized coordinates as q = [X, Y, θ] and the generalized velocities
as q̇ = [Ẋ, Ẏ , θ̇]. In the planar case, θ̇ = ω. All considered, the following equation
represents the free-body kinematics of the robot:C

Ẋ
Ẏ

D
=

C
cosθ −sinθ
sinθ cosθ

D C
vx

vy

D
(A.1)

Then, taking into account the relationship between wheel angular velocities and
local velocities of the robot, it is possible to compute some constraints on the robot
movements. In the following part ωi(t) with i = 1,2,3,4 are the wheels angular
velocities and the thickness of the wheels will be neglected, such that each wheel has
only one contact point with the plane denoted as Pi. Moreover, it is assumed that
there is no longitudinal slippage between the wheel and the surface. Considering
all the previous assumptions the following equations have been derived:

vix = ri · ωi

di = [dix, diy]T

dC = [dCx, dCy]T

where vix, di and dC are represented in the local reference frame taking into account
the instantaneous center of rotation (ICR) and ri is the effective rolling radius of
the ith wheel.
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Basing this analysis on the geometry described in Fig. A.2, the following expression
has been derived:

ëvië
ëdië

= ëvë
ëdCë

= |ω| (A.2)

that, in a more detailed form can be written as:
vix

−diy

= vx

−dCy

= viy

dix

= vy

dCx

= ω (A.3)

The equality A.3 can be re-written as:
vx

yICR

= − vy

xICR

= ω (A.4)

considering the local coordinates of the ICR=(xICR, yICR) = (−dxC , −dyC).
In addition, (always taking into account the Fig.A.2) it is possible to define the
following relationships:

d1y = d2y = dCy + c

d3y = d4y = dCy − c

d1x = d4x = dCx − a

d2x = d3x = dCx + b

(A.5)

“where a, b and c are positive kinematic parameters”, as written in [38]. Combining
the equations A.3 and A.5 “the following relationships between wheel velocities
can be obtained”([38]):

vL = v1x = v2x

vR = v3x = v4x

vF = v2y = v3y

vB = v1y = v4y

(A.6)

“where vL and vR denote the longitudinal coordinates of the left and right wheel
velocities, vF and vB are the lateral coordinates of the velocities of the front and
rear wheels, respectively”, as stated in [38].
Moreover, exploiting the equations A.3 and A.6, the following additional relationship
has been derived: 

vL

vR

vF

vB

 =


1 −c
1 c
0 −xICR + b
0 −xICR − a

 =
C
vx

ω

D
(A.7)

then, assuming ri = r for each wheel, it is possible to write:

ωω =
C
ωL

ωR

D
= 1

r

C
vL

vR

D
(A.8)
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“where ωL and ωR are the angular velocities of the left and right wheels, respec-
tively”([38]).
Eventually, combining the equations A.7 and A.8, the relationship between the
velocities of the robot and the angular wheel velocities has been obtained:

η =
C
vx

ω

D
= r

C
ωL+ωR

2−ωL+ωR

2c

D
(A.9)

the accuracy of the above relations decreases proportionally to the increase of
the slippage phenomena. To complete the Eq. A.9, it is necessary to define the
following additional constraint, that comes from the Eq. A.4:

vy + xICRθ̇ = 0 (A.10)

it can be expressed in Pfaffian form as follows:

è
−sinθ cosθ xICR

é Ẋ
Ẏ

θ̇

 = A(q)q̇ = 0

All considered, the following equation defines the kinematic model of a SSMR:

q̇ = S(q)η (A.11)

where: ST (q)AT (q) = 0 and

S(q) =

cosθ xICRsinθ
sinθ −xICRcosθ

0 1


The above kinematic model describes a non-holonomic system due to the constraint
expressed in the Eq. A.10; such equation is not integrable as a consequence it
defines a non-holonomic constraint.

A.2.2 Dynamical Model
The dynamical model will be described “using the Lagrange-Euler formula with
Lagrange multipliers to include the nonholonomic constraint”([38]). In the La-
grangian will not be included the potential energy, since it is zero due to the plane
motion assumption. As a consequence the Lagrangian can be defined as follows:

L(q, q̇) = T (q, q̇)

where T (q, q̇) is computed taking into account “the kinetic energy of the vehicle
and neglecting the energy of rotating wheels”([38]).

T = 1
2mvT v + 1

2Iω2 (A.12)
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Figure A.3: Forces applied on the robot [38]

In the above equation, m is the mass of the robot, I is the moment of inertia of the
robot about its COM and vT v = v2

x + v2
y = Ẋ2 + Ẏ 2, that leads to rewrite Eq.A.12

as follows:

T = 1
2m(Ẋ2 + Ẏ 2) + 1

2Iθ̇2 (A.13)

Applying the partial derivative and the time derivative to T (q, q̇) (that is the kinetic
energy), the following inertial forces have been obtained:

d

dt

∂T

∂q̇
=

mẌ
mŸ

Iθ̈

 = M(q)q̈ (A.14)

where:

M(q) =

m 0 0
0 m 0
0 0 I


Moreover the following generalized resistive forces vector has been taken into
account:

R(q̇) =
è
Frx(q̇) Fry(q̇) Mr(q̇)

éT
(A.15)
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where Frx and Fry are resultant forces expressed in the inertial reference frame and
can be defined as follows:

Frx(q̇) = cosθ
4Ø

i=1
Fsi(vxi) − sinθ

4Ø
i=1

Fli(vyi)

Fry(q̇) = sinθ
4Ø

i=1
Fsi(vxi) + cosθ

4Ø
i=1

Fli(vyi)

and Mr is the resistant moment around the COM and can be computed as follows:

Mr(q̇) = −a
Ø

i=1,4
Fli(vyi) + b

Ø
i=2,3

Fli(vyi) − c
Ø

i=1,2
Fsi(vxi) + c

Ø
i=3,4

Fsi(vxi)

In the above equations, Fli and Fsi are the lateral and longitudinal friction forces,
respectively, for the ith wheel. They can be computed using the friction coefficients
and some considerations on the normal forces applied from the plane to the robot’s
wheels.
“The active forces generated by the actuators which make the robot move can be
expressed in the inertial frame as follows”([38]):

Fx = cosθ
4Ø

i=1
Fi = 1

r
cosθ

4Ø
i=1

τi (A.16)

Fy = sinθ
4Ø

i=1
Fi = 1

r
sinθ

4Ø
i=1

τi (A.17)

while, the active torque around the center of mass can be computed as:

M = c(−F1 − F2 + F3 + F4) = 1
r

c(−τ1 − τ2 + τ3 + τ4) (A.18)

where τi is the torque applied by the actuator on the ith wheel. The active forces
and the active torque can be grouped in the following vector:

F =
è
Fx Fy M

éT
(A.19)

and, defining τL and τR as “the torques produced by the wheels on the left and
right sides of the vehicle, respectively”([38]), it is possible to write:

τ =
C
τL

τR

D
=

C
τ1 + τ2
τ3 + τ4

D
(A.20)

Combining the vector F and the vector τ , the following relationship has been
obtained:

F = B(q)τ (A.21)
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where B “is the input transformation matrix defined as”([38]):

B(q) = 1
r

cosθ cosθ
sinθ sinθ
−c c


All considered, combining the equations A.14, A.15, A.21 and using a vector of
Lagrange multipliers (λ), in order to take into account the non-holonomic constraint
(defined previously), it is possible to obtain the following dynamical model:

M(q)q̈ + R(q̇) = B(q)τ + AT (q)λ (A.22)
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Appendix B

Sensors

In the following part there will be described the technical specifications of the used
sensors.

B.1 GPS receiver
The FlexPak6 (shown in Fig. B.1) by Novatel1 is “capable of tracking all present
and upcoming Global Navigation Satellite System (GNSS) constellations and
satellite signals including GPS L1/L2/L2C/L5, GLONASS L1/L2/L2C, Galileo
E1/E5a/E5b/AltBOC and BeiDou B1/B2 signals”([39]). It provides several cus-
tomization options to meet the user needs, for instance the accuracy of positioning
can range from metre to centimeter-level. As written in [39], it is “compact,
lightweight, easy to integrate and ideal for low payload UAV and robotics applica-
tions”. Moreover, it provides “navigation output support for NMEA 0183”([39])
communication protocol, that is deeply described in B.1.2 and necessary for the
integration with ROS.
The main technical characteristics of the receiver are summed up in the Table B.1.

B.1.1 GPS receiver testing

The verification of the GPS receiver has been carried out in the following way:
the antenna has been placed on a point with known GPS coordinates, then, after
an initial phase of signal tracking, the position solutions provided by the receiver
has been stored on a file. The known point has the following GPS coordinates,

1https://novatel.com/
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Figure B.1: FlexPak6 module by Novatel

Table B.1: Main technical characteristics of FlexPak6 module

Features Description
Dimensions 147 × 113 × 45mm
Weight 337g
Operating temperature −40◦C to +75◦C
Single Point L1 horizontal position accuracy 1.5m(RMS)
Single Point L1/L2 horizontal position accuracy 1.2m(RMS)
SBAS horizontal position accuracy 0.6m(RMS)
DGPS horizontal position accuracy 0.4m(RMS)
RTK horizontal position accuracy 1cm + 1ppm(RMS)
Time to first fix < 50s(cold start),< 35s(hot start)
Maximum data rate 100Hz

expressed in decimal degrees:

Latitude = 45.0620986N Longitude = 7.663334E

The GPS signals have been tracked for about 15 minutes, storing 839 points and
the position solutions provided by the receiver have been computed employing
the differential corrections coming from a Satellite-based Augmentation System
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(SBAS). The obtained results are shown in Fig. B.2 expressed in latitude and
longitude coordinates, while in Fig. B.3 the same results have been transformed
in kilometers, in order to have a metre of comparison. Eventually, in Fig. B.4,
all the points have been transformed in meters relatively to the known point, in
order to check for the maximum and minimum Euclidean distance from that point,
obtaining:

maximum_distance = 1.2519m minimum_distance = 0.2359m

The shown results are quite good taking into account that 15 minutes is a relatively

Figure B.2: Latitude and longitude coordinates

short time to obtain very accurate measurements also exploiting the differential
corrections.

B.1.2 NMEA protocol
The National Marine Electronics Association (NMEA) has defined and, currently
mantains, the NMEA standard of communication. It has been developed and
improved through different versions. Actually, the most recent and used version is
the NMEA 0183. This standard “is a combined electrical and data specification for
communication between marine electronics such as echo sounder, sonars, anemome-
ter, gyrocompass, autopilot, GPS receivers and many other types of instruments”,
as stated in [40]. “The NMEA 0183 standard uses a simple ASCII, serial com-
munications protocol”([40]), in order to establish how data can be transmitted in
a sequence of characters, called sentence, from one device (a talker), to multiple
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Figure B.3: Results expressed in kilometers

Figure B.4: Relative distance from the known point

receivers (listeners), at a time. While, the used electrical standard is EIA-4222,
also known as RS-422. Moreover, at the user level, the transmitted sentences have
a well defined structure and contents, as shown in Fig. B.5, that can be summed
up as follows:

2https://en.wikipedia.org/wiki/RS-422
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• Length: each message has a maximum length of 82 characters, including the
starting and ending characters.

• Start character: “the start character for each message can be either a $ (For
conventional field delimited messages) or ! (for messages that have special
encapsulation in them)”, as written in [40].

• Talker identifier: the two characters after the starting one defines the type of
communicating devices.

• Message type: it is identify by three characters after the first three ones.

• Data fields: they are comma separated, in case of unavailable data the
corresponding field is leaved blank.

• Checksum: it is “represented as a two-digit hexadecimal number”([40]) and
obtained through “the bitwise exclusive OR of ASCII codes of all characters
between the $ and *, not inclusive”([40]). It “is optional for most data
sentences, but is compulsory for”([40]) some others. When the checksum is
present, the last data field character is followed by an asterisk, that delimits
the starting point of the checksum.

• Ending characters: each message is ended by <CR><LF>.

Figure B.5: Example of some NMEA messages
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B.2 Camera
The Intel RealSense D435i is a depth camera with an integrated IMU, in order
to “refine its depth awareness in any situation where the camera moves”([41]). It
is the preferred solution for object recognition and robotic navigation, “thank to
the combination of a wide field of view and global shutter sensor”([41]). Fig. B.6
shows the main components of the depth camera, while in Table B.2 are described
the main technical characteristics.

Figure B.6: The main components of the RealSense D435i ([41]).
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Figure B.7: The Intel RealSense D435i

Table B.2: Technical characteristics of the Intel RealSense D435i

Features Description
Length × Depth × Height 90mm × 25mm × 25mm
Use environment Indoor and Outdoor
Image sensor technology Global shutter, 3µm × 3µm pixel size
Maximum range Approximately 10 meters. Accuracy varies depend-

ing on calibration, scene, and lighting condition.
Depth technology Active IR stereo
Minimum depth distance 0.105m
Depth Field of View (FOV) 86° × 57°(±3°)
Depth output resolution up to 1280 × 720
Depth frame rate up to 90 fps
RGB sensor resolution 1920 × 1080
RGB frame rate 30 fps
RGB sensor FOV (H × V × D) 69.4° × 42.5° × 77°(±3°)
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Appendix C

Coordinate frames and tf
ROS package

In this section, there will be described how ROS is aware of the robot’s position
and orientation in the space.

C.1 Coordinate frames in ROS

A physical system (e.g. a robot) is usually very complex and composed by a lot of
rigid components (e.g. wheels, shafts, etc.). Each system’s element has well defined
position and orientation in the space, that can be easily represented by a coordinate
frame, which is virtually attached to the considered component. Furthermore, it
is necessary to fixed a common reference frame to which the different coordinate
frames should be referred. Eventually, making use of transformations between
frames, it is possible to define the relationships among them.
ROS exploits the above described approach, in order to represent ROS-based robots
in the space. The robot model is defined by means of an URDF file, which contain
the mechanical characteristics, the used sensors and the coordinate frames attached
to each component.
The two main fixed reference frames used in ROS are: odom and map. The
former is mainly used for local navigation, while the latter is commonly used for
global navigation purposes. Eventually, the Fig. C.1 shows an example of visual
representation of frames.
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Figure C.1: Example of ROS frames

C.2 tf ROS package
The tf ROS package is highly employed in every ROS-based robot applications, in
order to keep track of the relationship among the frames attached to each robot’s
component or sensor, exploiting the information in the URDF files. As the robot
moves, the coordinate frames of components or sensors change in position and
orientation and the tf package computes the new transformations among them.
The up to date relationship among coordinate frames are represented in a tree-like
structure, as can be seen in Fig. C.2.
A ROS node may obtain a particular transformation between two coordinate
frames by listening on a specific topic, on which the tf package publishes the
transformations.
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Figure C.2: Partial transformation tree of Jackal model
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