
POLITECNICO DI TORINO

Corso di Laurea Magistrale
in Mechatronic Engineering

Tesi di Laurea Magistrale

Coaxial quadcopter trajectory optimization and control

Relatori Candidato
Prof. Giorgio Guglieri Mattia Dambrosio
Prof. Diego Regruto
Ing. Luigi Mascolo

Anno Accademico 2019/2020

I

Abstract The use of mobile robots is growing exponentially in civil and

industrial applications, using technologies like GPS and Lidar to guarantee

an accurate localization of the robot and a precise environment mapping.

However, there are many situations in which such solutions are impossible

to adopt due to physical or technological limitations (e.g., the GPS is

impossible to use in indoor environments or in place in which the satellite

coverage is not guaranteed). This thesis aims to design a possible trajectory

planning of a drone without using the GPS signal and the Lidar, traditionally

adopted elements in drone operations. This solution is applied in the

framework of the motion planning of the coaxial quadcopter designed by

the DRAFT Polito of Politecnico di Torino for the Leonardo Drone Contest

launched by Leonardo, in which the objective is to navigate in an unknown

environment without the adoption of a GPS signal and a Lidar sensor. The

drone uses for its navigation only visual and inertial sensors, and its software

is internally based on ROS (Robotic Operating System). To achieve this

peculiar result in navigation, the motion planning is divided into two

separate parts: a global path planning, using the search algorithm A*; and a

local path planning that adopts the Dynamic-Window-Approach (DWA) in

order to take into account the presence of uninspected obstacles. A genetic

algorithm with fuzzy aggregation is applied to evaluate the best solution that

satisfies both the conflicting requests, namely better performances in terms

of mission duration and electrical consumption during the flight.
Successively, the solution is tested in a simulation environment, and it can

be a starting point for future improvements.

II

INDEX

Abstract .. I

Summary ...V

CHAPTER 1 State of the Art of Path Planning
and Trajectory Planning 1

1.2 A* theory ... 2

1.3 DWA theory .. 5

CHAPTER 2 State of the Art of Genetic
Algorithm and Fuzzy Logic 8

2.1 Genetic Algorithms ... 8

2.1.1 Structure of a GA .. 9

2.1.2. Chromosome encoding ... 9

2.1.3 Fitness Function ... 10

2.1.4 Selection .. 10

2.1.5 Recombination ... 11

2.1.6 Evolution scheme ... 13

2.1.7 GA design ... 13

2.2 Fuzzy Logic .. 14

2.2.1 Fuzzy aggregation .. 16

2.2.2 Fuzzy iterative refinement .. 17

III

CHAPTER 3 Case study: The Leonardo Drone
Contest 19

3.1 Introduction to the Leonardo Drone Contest rules . 20

3.2 Drone description .. 23

3.3 Flight controller and its application 27

3.3.1 Choice of the autopilot software ... 28

3.3.2 ROS ... 30

3.4 Reconnaissance phase ... 37

3.4.1 Serpentine + DWA ... 38

3.5 Race phase .. 42

3.5.1 A* + DWA .. 43

3.6 DWA optimization ... 46

4. Conclusion .. 56

APPENDIX: Pseudo-codes 58

A.1 Test velocity commands ... 58

A.2 Serpentine .. 65

A.3 A* ... 67

A.4 DWA .. 72

Bibliography .. 77

IV

Figure Index

Figure 1 A* search algorithm flow-chart 4
Figure 2 One-point crossover method ... 12
Figure 3 Two-point crossover and Uniform crossover methods 12
Figure 4 Gaussian and sigmoidal applied to fuzzy logic 16
Figure 5 Fuzzy aggregation scheme .. 17
Figure 6 Evolution of the Leonardo Drone Contest 20
Figure 7 Race field .. 22
Figure 8 Example of obstacles ... 23
Figure 9 Example of target and starting platforms 23
Figure 10 Coaxial quadcopter frame .. 24
Figure 11 View from above of the drone 26
Figure 12 Bottom view of the drone .. 26
Figure 13 PixHawk 2.4.8... 27
Figure 14 PX4 Multicopter Position Controller........................... 28
Figure 15 Ardupilot Copter Attitude Controller 29
Figure 16 ROS network scheme .. 33
Figure 17 Test trajectory .. 35
Figure 18 SITL and pose monitoring .. 36
Figure 19 Gazebo simulation ... 36
Figure 20 Scheme of the reconnaissance procedure 38
Figure 21 Obstacle avoidance .. 42
Figure 22 Example of a performed trajectory 44
Figure 23 Scheme of the race procedure 45
Figure 24 Test field ... 47
Figure 25 Execution time and accelerations in the race test 50
Figure 26 The reconnaissance test field .. 52
Figure 27 Time and accelerations in the reconnaissance test 54

V

Summary

The use of drones has improved in recent years thanks to the multitude of

applications this technology may have, such as successful application in

agricultural, industrial, and transportation fields. Today, one of the drone

application limits is related to the localization of it in a zone not covered

by GPS signal. Another problem is how to map the drone's environment

without using a traditional sensor system (e.g. Lidar, Radar, etc.) that can

present physical or technological limitations to be adopted in complex

urban environments. The scope of this thesis is to investigate the

possibility of adopting an autonomous navigation system using mainly

visual and inertial sensors, without using GNS(Global Navigation

Satellite) positioning system and Lidar sensor, with a focus on the possible

solution for an automatic trajectory planning. In the first part of the work,

the state of the art of some path and trajectory planning techniques is

exposed, lingering on A* search algorithm and DWA (Dynamic Window

Approach) algorithm and their possible implementation. Then, the

Genetic Algorithms' and fuzzy logic's state of the art are treated as possible

methods to apply in the trajectory optimization. In the second part of the

thesis, it is present the Leonardo Drone Contest as case study, its rules are

exposed as the solution adopted by the DRAFT Polito team with a focus

on the flight controller, the ROS(Robotic Operating System)-based

software architecture with its features, the implemented path and trajectory

planning and its optimization in term of execution time and power

consumption. At the end of the work, the test results are evaluated and

discussed, and eventual future developments are proposed

1

CHAPTER 1

State of the Art of Path Planning and

Trajectory Planning

An essential aspect of robot navigation is the path planning field, which

can be divided into two different aspects: the global planning, used to

create paths for a goal in the map, and the local path planning, used to

create paths in the nearby distance of the drone and avoid obstacles. For

our project, after a detailed research among the most used yet fast and

effective algorithms, the A* algorithm and Dynamic Window Approach

(DWA) are chosen as global and local planner, respectively. Another

critical aspect of path planning is the creation of a map to use for the

generation of the path. To achieve this result, a costmap is generated for

the information of different sensors of the drone. The costmap is a map of

the environment divided into cells that include information about the

navigation cost expressed as a number spanning from 0, if the cell is free,

to 1, if there is an obstacle inside the cell. Both discrete and continuous

value can be used, for example if also a risk-map is included. A discrete

approach is here considered, and to be sure that there is enough space

between the drone and the obstacles, all the obstacles are enlarged with an

2

inflation process that guarantees a safe distance of 0.25m from each of

them.

1.2 A* theory

The A* is one of the most famous search algorithms and it is widely used

as a method for solving path planning problems. This algorithm combines

features of uniform-cost algorithms with heuristic search ones, returning

the path that has the minimum value among all the available ones. This

path is composed of a series of nodes, named "waypoints". The connection

between the different waypoints is evaluated through the path cost function

f(i) which can be expressed as [1]:

 f(i) = g(i)+d(i)

where g(i) is the cost function representing the cost from the start point to

the waypoint i, d(i) represents the heuristic function for estimating the cost

of the possible paths from waypoint i to the target point.

The standard procedure to implement the A* algorithm [2] is essentially:

1) Create a search graph G, consisting of the start waypoint, and put

it on a list called OPEN

2) Create an empty list called CLOSED

3) If OPEN is empty, the process returns and error, instead enter in the

loop:

3

a. Select the first element of OPEN, named it as n, remove it

from OPEN and move it to CLOSED

b. If n is the goal, exit successfully with the solution obtained

by tracing a path along the pointers from n to the start

waypoint in G

c. Expand node n, generating the set M of its possible successive

waypoint and install them as successors of n in G

d. Establish a pointer to n from those members of M that were

not already in G (not already on either OPEN or CLOSED).

Add these members of M to OPEN. For each member of M

already in OPEN or CLOSED, decide whether or not to

redirect its pointer to n. For each member of M already on

CLOSED, decide for each its descendent in G whether or not

to redirect its pointer.

e. Reorder the list OPEN

4

Figure 1 A* search algorithm flow-chart

5

1.3 DWA theory

The global path planning is useful to minimize the time-space in order to

reach a target, but it presents two main critical issues:

• The path is based only on geometrical consideration, without taking

into account the dynamics of the system.

• Global path planning can be applied in a well-known environment

only.

To solve these issues, the DWA is chosen as the preferred local path

planner. The DWA is a local path planning algorithm based on the control

of the linear and angular velocities to perform a precise trajectory that is

not inferred with the obstacles in the environment [3]. Those commands

are limited by dynamic constraints, which depend on the physics of the

problem and the model characteristics. The set of velocities applied to the

drone are in a search space limited by various considerations:

• The trajectories have to be circular in order to limit the search space

at a 2D-space.

𝑉𝑠 = {(𝑣, 𝜔)|(𝑣, 𝜔) ∈ ℜ2}

• The admissible velocities are also limited by the position relative to

the obstacles. The trajectories that do not guarantee the possibility to

stop safely and in time before the collision are excluded. This aspect

is strongly influenced by the allowed maximum braking acceleration,

both linear and angular (vb ,ωb), of the drone.

6

𝑉𝑎 = {𝑣, 𝜔 | 𝑣 ≤ √2 ⋅ 𝑑𝑖𝑠𝑡(𝑣, 𝜔) ∙
𝑑𝑣𝑏

𝑑𝑡
 ⋀ 𝜔 ≤ √2 ⋅ 𝑑𝑖𝑠𝑡(𝑣, 𝜔) ∙

𝑑𝜔𝑏

𝑑𝑡
}

• The velocities are further limited by the maximum amount of

acceleration of the drone. The DWA excludes all the velocities

beyond drone's physical or fixed limitations, starting from its actual

velocities (va,ωa) in the interval time dt in which the DWA is

calculated.

𝑉𝑑 = {𝑣, 𝜔|𝑣 ∈ [𝑣𝑎 −
𝑑𝑣

𝑑𝑡
⋅ 𝑡, 𝑣𝑎 −

𝑑𝑣

𝑑𝑡
⋅ 𝑡] ∧ 𝑣 ∈ [𝜔𝑎 −

𝑑𝜔

𝑑𝑡
⋅ 𝑡, 𝜔𝑎 −

𝑑𝜔

𝑑𝑡
⋅ 𝑡]}

The resulting velocity space Vr is expressed as:

Vr=Vs∩Va∩Vd

All the elements of the velocity set are evaluated by the objective function

G(v,ω):

G(v,ω)=target heading(v,ω)+clearance(v,ω)+speed(v,ω)

that depends on various cost functions, each of them describing an

important aspect of the trajectory.

The target heading is a measure of the misalignment of the robot "head"

with respect to the target. The function estimates the position of the robot

when it decelerates after the next time interval. This behaviour is important

during the obstacle avoidance because it guarantees that the drone will

always turn in the target's direction after a successful avoiding manoeuvre.

Another cost function is the clearance, which represents the distance

between the drone and the closest obstacle that intersects the tested

7

trajectory. The last cost function is the speed cost function that is the

projection of the linear velocity v and gives a measure of the completion

of the trajectory. The cost functions are normalized into the interval [0,1]

and sum up to each other. The smoothest trajectory will be the one with

the highest cost parameter, i.e. summation. This solution guarantees the

presence of all the characteristics expressed by the cost functions and the

set of the chosen velocities will be the best trade-off between the different

requirements of the cost functions. The presence of cost functions that

represent different aspects of the trajectory can be used to obtain a

multitude of different behaviours of the algorithm only modifying the gain

of the cost functions. This makes the DWA a very flexible method that

could be implemented in tasks very different from each other. The

disadvantage of the DWA is the necessity for it to know the location of the

obstacles in the environment in order to compute the correct choice of the

velocity and trajectory. To solve this problem, a very accurate map of the

area is needed or, alternatively, the usage of a dynamic map in which the

obstacles acquired by the sensor are added to the list of obstacles used by

DWA. A possible solution to improve the algorithm is to apply the DWA

to a global path planning [4] in order to obtain the vantages of both the

approaches, with a geometrical optimized path as guide line for the local

one, reducing the time for the execution of the trajectory, but eventually

applies obstacle avoidance strategies when the optimal path intersects one

or more obstacles.

8

CHAPTER 2 State of the Art of Genetic

Algorithm and Fuzzy Logic

2.1 Genetic Algorithms

The Genetic algorithms are a heuristic solution-search for optimization

problems based on the Darwinian principle of evolution through selection.

It was developed by John Holland to solve problems that required high

computational power. The Holland's Schema Theorem provides a

theoretical and conceptual basis for the design of an efficient Genetic

Algorithm. This method is applied to a wide range of practical problems

in different science fields.

To abstract this concept, a set of possible solutions, the "population", is

evaluated through a suited "fitness" function and selected to be recombined

in order to produce a new set of candidates. This process is iterated until

the average valuation of the set reaches a stopping criterion.

9

2.1.1 Structure of a GA

The Genetic Algorithms are constituted from a number of distinct

components, each of them can be re-used with some adaptation to easily

implement different GAs [5].

The main components are:

· Chromosome encoding

· Fitness function

· Selection

· Recombination

· Evolution scheme

2.1.2. Chromosome encoding

The GA population is composed of "chromosomes", which are string

representations of a possible solution. The concept of chromosome comes

from the DNA chromosome, which is represented by a sequence of the

four nucleobases (Cytosine [C], Guanine [G], Adenine [A], Thymine [T]).

The different positions in a chromosome are named as "gene" and the

element inside a gene is an "allele". There are many methods to encode a

solution into a chromosome. The classic application of the GA uses a bit-

string where each allele represents a different parameter related to the

problem and it can assume a binary value. It is common to deal with strings

that are very long (ex. 100 elements) so it is not possible to solve the

10

problem with brute-force strategies because it is impossible to evaluate all

the possible solutions. This representation can be used in different

applications and this allows the development of common processing

routines and operators and making it faster and easier to apply GAs to new

situations. To improve the variety of solutions, the codification can be

made with real numbers, also the one directly used in the problem. The

encoding is easier but there is an improvement in algorithm complexity.

An example of a fitness function is one in the OneMax problem, where the

objective is to maximize the number of 1 in a bit-vector of length n through

an evolutionary process. The fitness function is the count of the number of

1s in each chromosome.

2.1.3 Fitness Function

The fitness function is a mathematical construct for the evaluation of the

chromosomes as a solution for the problem. Every fitness function can be

designed to evaluate a specific object such as completion time, resource

utilisation, cost minimisation or other parameter valuation related to the

problem.

2.1.4 Selection

The selection of the parental chromosomes is based on their fitness value

and it is used to guide the evolution of the population. Usually the

chromosomes with higher fitness have a greater chance to be selected, also

more than one time, following the logic of the Darwinian evolutionary

theory. The traditional method to select the chromosome is the Roulette

Wheel, which gives the probability of the chromosome to be selected based

on its relative fitness. There are many methods used for the selection,

11

where the most common ones are the Random Stochastic Selection (RSS),

the Tournament Selection (ToS) and the Truncation Selection (TrS). In

the RSS, for each chromosome is selected a performance number of times

equal to its expectation of being selected under the fitness proportional

method; the ToS method chooses two chromosomes with uniform

probability and then picks the one with the highest fitness; finally, the TrS

method selects at random from the population having first eliminated a

fixed number of the least fit chromosome.

2.1.5 Recombination

The recombination process is where the selected chromosomes are used as

"parents" to generate new chromosomes. The chromosomes are mixed

with each other and the "child" chromosomes are the recombination of the

parents in a process similar to what happens in the organism's

reproduction. The selection method guarantees the presence of parents

with high fitness, so the evolution hopefully produces an improvement of

the population fitness. The recombination of the chromosomes is based on

two important techniques: Crossover operation and the Mutations. These

methods are based on probabilistic algorithms and give non deterministic

results. The crossover operator is responsible for the mixing rules to obtain

child chromosomes by parent ones. The most common crossover operation

method is the "One-point crossover". In this method, two parent

chromosomes, A and B, are chosen and the algorithm assigns them a

random value in the interval of [0,1] and compares it with a pre-determined

"crossover rate": if the number is greater than the crossover rate, no

crossover operation is performed and the chromosomes pass to the next

stage unchanged. Instead, if a lower value is assigned to the chromosome

couple, the crossover operation makes a division of both chromosomes at

12

a gene position chosen with uniform probability. Then the parts are mixed

together, the first part of chromosome A is linked to the second one of the

chromosome B and the opposite for the remaining parts. Below, a

graphical example with 5-bit vector chromosomes.

Figure 2 One-point crossover method

There are many options to perform a crossover: Similar to the one-point,

the "2-points" and the "Multi-points" are based on the division of the

parent chromosomes into different parts. Then mix together to generate

the child chromosomes. Another method is the 'Uniform crossover where

its resulting constituted by a uniform and casual selection of the alleles of

the parents.

A) B)

Figure 3 A) Two-point crossover method, B) Uniform crossover method

After the crossover phase, the child chromosomes pass on the "mutation"

stage. The mutation operator is important to avoid a convergence of the

results to a local optimum. Essentially at every gene of the child

13

chromosome corresponds a random number in the interval [0,1] and it is

compared to the "mutation rate" (commonly a very small number, e.g.

0.001): if the mutation rate is smaller than the chromosome assigned

number, no mutation occurs. Otherwise, the mutation changes the value of

the corresponding allele.

2.1.6 Evolution scheme

After the recombination, a new population is made by the old and the new

chromosomes. This aspect is fundamental in the design of the algorithm

because it is responsible for algorithm performance. The population

evolution can follow different scheme: it can be based on the complete

replacement of the population with a new one generated through selection

and recombination phases or it can use the "steady-state" method where

only one chromosome is generated and uses as replacement for the element

with the lower fitness in the population. A common solution is the

"replacement with elitism" method where all the elements of the

population are replaced except one or two chromosomes with the highest

fitness among the source population. This solution avoids deleting high

fitness chromosomes and helps to obtain a fast convergence of the fitness

population. The choice of the evolutionary method is strongly dependent

on the characteristic of the problem and its solution space.

2.1.7 GA design

In the design of a genetic algorithm there are many choices to make: the

encoding method, the form of the fitness functions, the population size, the

crossover and mutation operations and their rates, the evolutionary method

to apply and the condition to stop the execution of the algorithm.

14

The flow of a generic GA with complete replacement as evolutionary

method is:

1. Random generation of the initial source population

2. Fitness calculation of the source population

3. Selection of the parent chromosomes

4. Possible application of the crossover technique

5. Possible application of the mutation process

6. Generation of the new population

7. If the stopping criteria has not be reach, return to Step 2

8. Block scheme to be inserted

2.2 Fuzzy Logic

The Fuzzy logic is an alternative to the common binary one. There are

many applications where values can be expressed as 0 and 1, or Boolean

True and False, but these may need a more complex representation. The

fuzzy logic uses an interval of continuous values between 0 and 1 in order

to obtain more variety of expression so the represented variables can be

simultaneously partially True or partially False. This value is given by the

"membership function", which transforms the objective function into

15

another one with the value in the interval [0,1] and gives us the "degree of

truth" of the variables. With the fuzzy logic it is possible to translate

logical sentences into mathematical expressions and it is possible to use

logical expressions similar to the Boolean logic ones.

Boolean Fuzzy

AND(x,y) min(x,y)

OR(x,y) max(x,y)

NOT(x) 1-x

Table 1: Fuzzy logic operator

In optimization problems, the membership functions are used to translate

the value of the i-th objective function ƒ into a normalized value µ(ƒi)

which indicates the "degree of satisfaction" of the objective function.

Sometimes these membership functions are called merit functions (MFs)

for ease of readiness, even though the proper origin for MFs is slightly

different. Nevertheless, their aim is common and lies in the selection of the

best objective function given a certain evaluation parameter, therefore they

may be confused in the text without risks. Commonly, the shape of the

membership functions is chosen smoothly to avoid flat zones in which the

degree of satisfaction has a stable value. Generally, gaussian and sigmoidal

functions are used to represent the membership function.

16

Figure 4 Gaussian and sigmoidal applied to membership function

2.2.1 Fuzzy aggregation

The "fuzzification" of the logical sentences performs a natural and logical

normalization of them, allowing to compare the different degrees of

satisfaction and combine them into a global one, the "degree of

acceptance", which is the intersection of the different membership

functions. To perform this intersection the logical operator AND is used;

this operator, in the fuzzy logic, represents the minimum of all the

membership functions.

This operation can be expressed as:

max 𝑚𝑖𝑛
𝑖=1,...,𝑀

{𝜇𝑖(𝑓𝑖(𝒙))}

A map of the logical space from the objective one is performed by the

membership functions. It is possible to define a "Pareto" front where a

solution xµ is "fuzzy-Pareto" optimal if changing its position, trying to

improve one degree of satisfaction, one or more of the other DSs degrade.

17

An exploration of the Pareto front can be performed changing the limits of

the membership function.

Figure 5 Fuzzy aggregation scheme

2.2.2 Fuzzy iterative refinement

Using the fuzzy aggregation, only the minimum values of the objectives

are used in the optimization process, but this can create problems because

different configurations can have the same global fuzzy value. To avoid

this situation, a local refinement can be performed around the local

optimum point, so the new optimization expression can be express as:

µk*=µk(fk(x*))

𝑚𝑎𝑥{𝛿𝑘(𝑥)} = 𝑚𝑎𝑥{µ𝑘(𝑓𝑘(𝒙∗)) − 𝜇𝑘
∗ }

18

If the x* is a Pareto optimal solution, no better solution can be found by

the second optimization. On the contrary, if the solution is not Pareto

optimal, the second optimization increases the µ values in a way usually

hard to reach by the minimization.

19

CHAPTER 3

Case study: The Leonardo Drone Contest

The Leonardo Drone Contest aims to create a national ecosystem in which

universities, start-up and spin-off enterprises can collaborate together to

improve the knowledge of artificial intelligence applied to autonomous

aerial vehicles to lay the foundation for future works in autonomous

transport and mobility. Six Italian universities compete in this challenge:

• Politecnico di Torino

• Politecnico di Milano

• Università di Roma Tor Vergata

• Università di Bologna

• Scuola Superiore Sant'Anna di Pisa

• Università di Napoli Federico II

The contest is composed of three total challenges in which the difficulty

and complexity increase year by year.

20

Figure 6 Evolution of the Leonardo Drone Contest

3.1 Introduction to the Leonardo Drone Contest

rules

For the first edition of the contest (Drone Contest 2020), the competition

is divided into two separate parts:

• The Reconnaissance phase

• The Race phase

In the reconnaissance phase, the drone has to perform a field

reconnaissance in complete autonomy and can exploit two rounds of 15

minutes. Between the two rounds it is possible to work on the drone for

some adjustments or minor changes. The scope of this phase is to map the

competition field and find the platforms labelled with the QR codes that

are the targets of the next part of the competition. The race phase consists

of performing an autonomous flight plan and execution among five

21

different platforms, from the previous ten, in a precise order, and then

returning to the start platform (base). To obtain a valid landing and, thus,

a point, the drone has to land on the platforms without going outside of its

border, rest for a minimum of 5 seconds then pass to the next target. The

number of valid landings is translated into points of the match. The time

measured is a secondary criterion in case of parity between two or more

contenders. For both the phase of the contest, there are some limitation in

term of technology and design to adopt:

• Sensor constraints: it is allowed to use

o Inertial devices as IMU(Inertial Measurement Unit),

magnetometers and barometers;

o Range sensors as infrared, ultrasonic, and single-point laser;

o Cameras as monocular, binocular, multi-view, and RGB-D;

o Speed sensor as optical flow module

o On-board computation

o Prototype total cost not over 10000 Euro

It is forbidden to use

o GNSS (Global Navigation Satellite System) positioning

system

o Lidar (Laser Imaging Detection and Ranging)

22

The challenge field is a rectangular area of 10mx20m with a border

highlighted with a high visibility color line. On the edge of the field, a

protection net is installed with a top net at 3m and there are the presence

of six marker, each one with a specific coloration not present in other

elements of the field, to easy divide the field in two area with different

difficulty: in the easier one the maximum height of the obstacles is 2m, in

the other one the maximum height of the obstacles is 3m to avoid a

reconnaissance at constant altitude.

Figure 7 Race field [Credits to Leonardo Drone Contest, 2020]

Inside the field, the obstacles represent an urban scenario, with the obstacles

as buildings and their borders are highlighted with high visibility lines. The

minimum obstacle area is 0.25 m2. The surfaces of the obstacles are made

to avoid complication for the computer vision process.

23

Figure 8 Example of obstacles [Credits to Leonardo, Drone Contest

Regulation, 2020]

In the field, the target platforms are indicated by the presence of a QR code

of dimensions 0.5mx0.5m. Their total area is 1mx1m and it is guaranteed

a landing volume of 1m3. Their location can be at ground level but also

over an obstacle and some targets can be covered by the obstacles. In total

there are 10 different targets but only 5 are used in the race phase and they

are chosen just before the race phase as the sequence in which they have

to be reached. The starting platform has the same dimension of the target

one and it is easily distinguishable from the target platform.

Figure 9 Example of target and starting platforms [Credits to Leonardo
Drone Contest Regulation, 2020]

24

3.2 Drone description

The drone used by our team is a coaxial quadcopter. This kind of frame is

chosen to decrease dimensions of the drone to obtain a bigger safe space in

the worst conditions (passage in a corridor with 1m as minimum distance

between two obstacles) with a total volume of 0.5x0.5x0.35m3. The frame

structure is a Tarot FY650, entirely made in carbon fiber. The landing gear

is made in plastic with metal reinforcements with a good elasticity to

guarantee a major protection of the ventral camera and to reduce shocks in

the landing phase. The distribution of the different mass is designed to avoid

instability and it is placed under the motor plan to compensate eventual

disturbance during the drone motion. The propulsion system is composed of

eight brushless motors, two ESCs (Electronic Speed Controller) and eight

propellers (four with clockwise blading and four with counterclockwise

blading).

Figure 10 Coaxial quadcopter frame

25

On board, the drone has a flight controller which manage the different

output signal to send to the motors through the ESCs, a PDB (Power

Distribution Board) to supply energy to all the subsystem, two telemetry

radio to connect the UAV flight controller to the ground station, a receiver

for the radio controller (in this case, the Taranis Q), an emergency stop

which stops the motors in case of control lost or dangerous behaviours

(also controllable by RC controller), two visual sensor (Intel RealSense

T265 and Intel RealSense D435) which guarantee a correct estimation of

the drone position, thanks to an integrated IMU, and give information on

the distance and the color of the elements that compose the framed

environment in a range of 2-3m, a mono camera for the acquisition of the

target QR code, a supplementary IMU, a rangefinder (single-point laser)

for a more precise altitude measurement, 8 ultrasonic sensor (with range

of application of 0.7-1m) for the emergency obstacle avoidance with a

Raspberry Pi4 to manage their information. The Jetson Xavier NX is used

as on-board computer to execute the software of SLAM (Simultaneous

Localization and Mapping), emergency obstacle avoidance, motion

planning and process the information from the cameras through deep

learning and computer vision algorithms. All the components are powered

by a LiPo battery of 4000 mAh.

26

Figure 11 View from above of the drone

Figure 12 Bottom view of the drone

27

3.3 Flight controller and its application

The flight controller is a crucial aspect of the drone design. It is responsible

for motor control and the stabilization of the drone itself. On the market,

there are several solutions, each of them suitable for a specific application.

Mostly used in the industrial and hobby field, the PixHawk 2.4.8 board is

chosen for its flexibility and its potential in managing different kinds of

sensor input signals. After choosing the board, an important step is the

choice of the software to be embedded in the board. Mainly the choice is

between Ardupilot, older control software completely open source, and Px4,

relatively new one but not complete open source.

Figure 13 PixHawk 2.4.8

28

3.3.1 Choice of the autopilot software

Both of the systems have a common origin but emphasis is given to the

software assistance and to the presence of a documentation on the aspect

of our interest. Another important aspect is the presence of a flight mode

that does not depend on the GPS signal, an aspect of great importance for

the task which the drone has to do in the competition. Another uncertainty

is related to the navigation, specifically how to send messages to the flight

control to perform a controlled trajectory. Most applications of these

controllers are related to tasks with human supervisors that send RC

commands by a joystick. In case of autonomous tasks, the GPS signal is

required in order to plan a flight mission. This problem is central to our

research because there is very little documentation about it. Our purpose

is to find a way to send to the controller an instant message for changing

its states without our intervention. To choose between Ardupilot and Px4,

the main aspect to focus on is the system robustness against external

disturbances. Px4 is based on a PID logic in order to control the drone

position in the environment.

Figure 14 PX4 Multicopter Position Controller

29

In this controller, the position estimation comes from an Extended Kalman

Filter (EKF) which processes sensor measurements and provides an

estimate of the vehicle state. The controller structure is a cascaded

position-velocity loop where, depending on the mode, the outer (position)

loop is bypassed (shown as a multiplexer after the outer loop). The position

loop is only used when holding position or when the requested velocity in

an axis is null. For the inner loop (velocity) controller, the integrator

includes an anti-reset windup (ARW) using a clamping method.

The Ardupilot controller also uses an PID controller but with a different

controller architecture:

Figure 15 Ardupilot Copter Attitude Controller

This diagram shows how the attitude control is performed for each axis.

The control is done using a P controller to convert the angle error (the

30

difference between target angle and actual angle) into a desired rotation

rate followed by a PID controller to convert rotate rate error into a high-

level motor command. The "square root controller" portion of the diagram

shows the curve used with the angle control's P controller. This kind of

controller is more sophisticated than the Px4 one and guarantees better

performances in an outer environment, with a complex software for wind

and turbulence compensation. Also, the maturity of the software is of

primary importance in the choice of the software: Ardupilot is more used

in the amateur's scene and it can count on a very vast community. Instead,

Px4 is a relatively recent software, born from a branch of Ardupilot, with

a not large community. Another aspect that led the selection towards

Ardupilot comes from the release quality: all versions of Ardupilot are

tested before their release, ensuring stability and consistency of the system.

3.3.2 ROS

ROS is an open-source, meta-operating system for robot running on Unix-

based platforms. It provides the services one would expect from an

operating system, including hardware abstraction, low-level device

control, implementation of commonly-used functionality, message-

passing between processes, and package management. It also provides

tools and libraries for obtaining, building, writing, and running code across

multiple computers. The ROS runtime "graph" is a peer-to-peer network

of processes (potentially distributed across machines) that are loosely

coupled using the ROS communication infrastructure. The primary goal

of ROS is to support code reuse in robotics research and development.

ROS is a distributed framework of processes (aka Nodes) that enables

executable files to be individually designed and loosely coupled at

runtime. These processes can be grouped into Packages and Stacks, which

31

can be easily shared and distributed. ROS also supports a federated system

of code Repositories that enable collaboration to be distributed as well.

This design, from the filesystem level to the community level, enables

independent decisions about development and implementation, but all can

be brought together with ROS infrastructure tools. In support of this

primary goal of sharing and collaboration, there are several other goals of

the ROS framework:

• Thin: ROS is designed to be as thin as possible so that code written

for ROS can be used with other robot software frameworks. A

corollary to this is that ROS is easy to integrate with other robot

software frameworks.

• ROS-agnostic libraries: the preferred development model is to write

ROS-agnostic libraries with clean functional interfaces.

• Language independence: the ROS framework is easy to implement

in any modern programming language. We have already

implemented it in Python, C++, and Lisp, and we have experimental

libraries in Java and Lua.

• Easy testing: ROS has a built-in unit/integration test framework

called "Rostest" that makes it easy to bring up and tear down test

fixtures.

• Scaling: ROS is appropriate for large runtime systems and for large

development processes.

In ROS, the data are handled by a peer-to-peer network, named

Computation Graph, which is composed by:

32

• Master: The ROS Master is the fulcrum of the network. Without the

Master, all the different parts of the system would not be able to

communicate to each other.

• Nodes: The Nodes are the different processes that are executed in the

robot. ROS is designed to work modular with the logic Dividi et

Impera. Every single node has a very specific task and it shares its

data with the other nodes through the ROS network.

• Topic: The Topics are communication channels between nodes. They

are based on the logic publisher/subscriber: A node publishes a

certain kind of data stream on a specific topic and another node can

subscribe to the same topic to obtain that data. This communication

grants no direct iteration between nodes and the channel can be

linked from multiple nodes.

• Service: The Services are communication protocol for request/reply

interactions. In this situation there is a providing ROS node which

offers a service under a string name, and a client calls the service by

sending the request message and awaiting the reply. A client can

make a persistent connection to a service, which enables higher

performance at the cost of less robustness to service provider

changes.

• Messages: Nodes communicate with each other by passing messages.

A message is simply a data structure, comprising typed fields.

Standard primitive types (integer, floating point, Boolean, etc.) are

supported, as are arrays of primitive types. Messages can include

arbitrarily nested structures and arrays.

33

Figure 16 ROS network scheme

To connect Ardupilot to ROS, it is fundamental to install a specific plug-

in: MavROS. This plug-in provides communication drivers for various

autopilots with MAVLink communication protocol (Protocol internal to

Ardupilot, it is the link between the controller and the actuators).

Additionally, it provides UDP MAVLink bridge for ground control

stations (e.g. QGroundControl, a software to set the controller). With

MAVROS we can control different information of the ArduPilot through

communications between ROS topics and services. This aspect is crucial

because it allows us to use scripts in order to command the drone and

obtain easy information on the copter state through standard ROS Topic.

To control the pose and the task completion, it's useful to use some topic

and service:

Service

• mavros/setpoint_velocity/mav_frame: This service is used to change

the reference frame used by the drone from global to local NED one.

• mavros/cmd/arming: Service to arm the drone rotor.

34

• mavros/set_mode: Service to change the flight modality used by the

drone. This is set by default to "STABILIZED". To perform an

automatic and remote control of the trajectory, "GUIDED" mode is

needed.

• mavros/cmd/takeoff: This service provides an automatic takeoff of

the drone at an altitude chosen by the user.

• mavros/cmd/land: Service that performs an automatic landing. After

the landing, the rotors are disarmed automatically.

Topic

• mavros/local_position/pose: This topic streams the instantaneous

position of the drone. This information is provided by the simulated

IMU in the SITL simulation. The received messages are

of "PoseStamped" type: they are composed of a first part, named

"Header" (timestamped data in order to individuate the moment in

which the message is published), and a second one, "Pose", in which

the position is expressing in cartesian coordinates, instead the

orientation is expressing through quaternion.

• mavros/setpoint_velocity/cmd_vel_unstamped: Topic used to

publish messages that impose the instantaneous drone velocity. The

message is "Twist" type, with setting to both linear and angular

velocities.

A square trajectory is designed to both test the flight through velocity

commands and to take into account the basic movement of the drone with

this method. In order to have a major control on the action performed by

35

the drone, the trajectory is managed through a "Finite-state machine"

except for the take-off and landing operations in which a service is used.

Figure 17 Test trajectory

Then the script is tested with the SITL method where all the quadrotor

models are simulated in a software that is also embedded in the flight

controller.

36

Figure 18 SITL and pose monitoring

To check the correct execution of the task, in a console is shown the

messages stream by the topic /mavros/local_position/pose. After checking

that the script gives a positive response, the program is simulated with the

robotic simulator Gazebo.

Figure 19 Gazebo simulation

37

After this test, the next step is to adopt this method as standard for the

navigation because it guarantees a good degree of control and a more

precise response of the system. Compared to the other investigated

method, the navigation through waypoints, this solution permits a

continuous control on the drone speed, with an easier application in the

implementation of a trajectory planner. An important aspect of this method

is an easier control of the orientation of the drone, acting directly on the

heading direction. In the navigation through waypoints, the orientation is

very complex to control due to the nature of the method.

3.4 Reconnaissance phase

In the reconnaissance phase, the drone is positioned on the starting

platform and it has to perform an inspection of the field without any

information on it. There are many possible solutions to actuate a

reconnaissance of the field, but all the solution has to have the same goal:

cover the maximum surface without lost energy to visit locations

previously mapped. After comparisons between the different possible

solutions, the serpentine trajectory is chosen as the best trade-off between

efficiency and precision in the mapping task. To cover the maximum

possible surface, the trajectory is repeated at different altitudes (three

levels: 2.5m, 1.5m and 0.5m) to identify easily the QR codes, also eventual

ones covered by obstacles during the inspection at higher altitudes. The

first problem to implement this solution is to locate the drone inside the

contest arena because the coordinates of the starting point are unknown.

To resolve this difficulty, the drone executes a take-off at altitude 2.5m

(the level with less obstacle which can cover the drone view) and performs

a 360° rotation in order to acquire the position of one marker through the

depth camera D435. If the marker is not identified during this procedure,

38

the drone performs some erratic movement in order to find them, moving

in a restricted area (2m2) at very low velocity (0.25 m/s). When the

position is acquired, the drone points the direction of the marker and

proceeds until it is in an area of 0.5m from the presume position of the

marker. Then, the drone sets that point as the origin of the global reference

frame (previously located at the starting point) and orients itself in the right

direction to start the reconnaissance mission (the heading orientation is at

0° respect to the global reference frame).

3.4.1 Serpentine + DWA

The serpentine is generated automatically, based on the dimension of the

field. It is important to remember that the locations of the obstacles are

unknown during the creation of the serpentine, so it is needed a local

trajectory planning to avoid eventual obstacles that intersect the global

trajectory. To achieve this result, a customized DWA is implemented.

Figure 20 Scheme of the reconnaissance procedure

39

The choice of using the DWA as local planner is due to its flexibility and

usability, with the possibility to easily implement custom solutions. Also

the use of the Ardupilot flight controller led to the choice of use this

algorithm: tests highlight that the application of commands of roll and

pitch can cause an irremediable instability of the system and this contrast

the stabilizing action of Ardupilot with a cancellation of the command by

Ardupilot as result. Another reason is the modality of acquisition of the

obstacles by the drone, with the frontal camera as unique sensors to obtain

information on the area around us so it is needed to point the heading

direction of the drone always in the direction of the motion to avoid

collision to unknow obstacles. Moreover, with the DWA it is possible to

set a circle around the center of mass of the drone to take into account the

drone size (in 3D, it became a sphere) and it can be represented as a point

mass, reducing the complexity of the problem. The main modifications

with respect to the traditional DWA algorithm previously exposed are the

addiction of the path cost function which takes into account the presence

of a path to follow in order to reach the target and the modification of the

to goal cost function which it is used mainly to set a privileged direction

when the drone has to go far from the path to avoid an obstacle. Its weight

becomes more relevant near the target to obtain a correct position with

respect to it.

The total cost function (G(v,ω)) is expressed as:

 G(v,ω)=𝛼 ⋅ 𝑡𝑜 𝑔𝑜𝑎𝑙(𝑥, 𝑦) + 𝛽 ⋅ 𝑐𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒(𝑥, 𝑦) + 𝛾 ⋅ 𝑠𝑝𝑒𝑒𝑑(𝑣) + 𝛿 ⋅ 𝑝𝑎𝑡ℎ(𝑥, 𝑦)

40

where:

• to goal(x,y): Cost function that measures the distance of the drone in

a precise position (xi , yi , θi) from the goal (goalx , goaly). The

dist_to_goal gain is an additional gain that becomes relevant in an

area of radius 2 m from the goal position

𝑡𝑜 𝑔𝑜𝑎𝑙(𝑥, 𝑦) = (
1 + ||𝑑𝑥

2 − 𝑑𝑦
2||

𝑐𝑜𝑠𝑡 ⋅ 𝑑𝑖𝑠𝑡 𝑡𝑜 𝑔𝑜𝑎𝑙 𝑔𝑎𝑖𝑛
) ⋅ 𝑐𝑜𝑠𝑡

with: dx = goalx-xi

 dy = goaly-yi

 𝑐𝑜𝑠𝑡 = ‖𝑎𝑡𝑎𝑛2 (
𝑠𝑖𝑛(𝑐𝑜𝑠𝑡 𝑎𝑛𝑔𝑙𝑒)

𝑐𝑜𝑠(𝑐𝑜𝑠𝑡 𝑎𝑛𝑔𝑙𝑒)
)‖

 cost angle = error angle -θi

 𝑒𝑟𝑟𝑜𝑟 𝑎𝑛𝑔𝑙𝑒 = 𝑎𝑡𝑎𝑛2 (
dy

dx
)

• clearance(x,y): Function which evaluates the distance between the

drone and the nearest obstacles (xjobst , yjobst).

𝑟𝑗 = √(𝑥𝑖 − 𝑥𝑗
𝑜𝑏𝑠𝑡)

2
+ (𝑦𝑖 − 𝑦𝑗

𝑜𝑏𝑠𝑡)
2

≤ 𝑟𝑑𝑟𝑜𝑛𝑒 → 𝑐𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒(𝑥, 𝑦) = ∞

𝑟𝑗 = √(𝑥𝑖 − 𝑥𝑗
𝑜𝑏𝑠𝑡)

2
+ (𝑦𝑖 − 𝑦𝑗

𝑜𝑏𝑠𝑡)
2

≥ 𝑟𝑑𝑟𝑜𝑛𝑒 → 𝑐𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒(𝑥, 𝑦) =
1

𝑚𝑖𝑛(𝑟𝑗)

41

• speed(v,ω): This cost function is evaluated as difference between the

maximum linear velocity reachable by the drone (vmax) and the

velocity in the proposed trajectory (vi).

 speed(v,ω) = vmax-vi

• path(x,y): It's the cost function that measure the divergence of the

actual drone position (xi , yi)from the waypoint (px , py) geometrical

optimal path computed by the A*

if ‖𝑥𝑖 − 𝑝𝑥‖ < 𝐾√2 ⋀‖𝑦𝑖 − 𝑝𝑦‖ < 𝐾√2 ⟶ 𝑝𝑎𝑡ℎ(𝑥𝑖, 𝑦𝑖) = 𝑝𝑎𝑡ℎ(𝑥𝑖−1, 𝑦𝑖−1)

else → 𝑝𝑎𝑡ℎ(𝑥𝑖 , 𝑦
𝑖
) = 𝑝𝑎𝑡ℎ(𝑥𝑖−1 , 𝑦

𝑖−1
) + 1

If the drone goes far away from the path, a penalty is imposed on the

trajectory cost. The space of the possible velocities is limited by the

condition of planar motion, with control only of the linear velocity on the

x-axis and the angular velocity on the z-axis, by their reachable linear and

angular accelerations (Dynamic Window Approach) and by the limitation

of velocities imposed by the image acquisition processes which limits the

maximum linear velocity to 2m/s. To take into account the presence of

obstacles that suddenly appear in the field of view of the camera, the

obstacle positions in global coordinates are elaborated in real time in form

of a tensor which is sent to the DWA's list of obstacle coordinates in order

to identify those points as zones to avoid. The serpentine is sent to DWA

as a series of waypoints to follow and if one or more obstacles intersect the

serpentine path, the DWA permits the drone to avoid the obstacle and it

moves in the direction of the target trying to return to the previous path as

soon as possible.

42

Figure 21 Obstacle avoidance

To force the drone to cover most of the area, intermediate points of the

serpentine trajectory are set as targets for the DWA. If an obstacle position

coincides with a target, the previous waypoint becomes the target.

Sometimes the DWA may not find a possible set of velocities to proceed

to the task: in these situations, counterclockwise rotation of 90 degree is

performed in order to help the algorithm to find a new trajectory to reach

the goal. When the drone reaches the last target on the level, it descends in

altitude and starts another serpentine in the opposite direction.

3.5 Race phase

In the race phase, the drone has to reach the chosen targets in the correct

sequence and in the minimum amount of time. The topography of the field

is known but some precautions are needed due to possible problems during

the reconnaissance phase or during the elaboration of the map in post-

processing caused by errors in the measurements. It is necessary to adopt

a local path planning combined with a global one to minimize the time

spent to move between the different targets and to reduce the possibility of

collisions with unknown obstacles.

43

3.5.1 A* + DWA

As global path planning, a custom A* search algorithm is implemented to

plan the optimal path to reach the target. The field is discretized with a

resolution of 0.25 m to obtain a grid map in which cells can be represented

as 0 if free or as 1 if they are included in an obstacle to have an easier

representation of the environment in which the algorithm has to operate.

The obstacles presented in the map are incremented by a safety factor equal

to additional omnidirectional 0.25 m to guarantee an additional safety

measure that also limits eventual disturbances caused by wall proximity.

Usually the A* is implemented in 2D path planning but in this situation is

needed to extend it in the 3D space. The additional dimension is added in

all the computation of distance to achieve this result.

To obtain a more rectilinear path, a gain K is added to the cost function:

 f(i) = g(i)*K+d(i)

This adjustment causes a more focus expansion of the search area, with a

sensible reduction of the computational time. A possible source of failure

can be the presence of an equal discretization of the map in all the cartesian

directions: the algorithm does not take into account the size of the drone,

considering it as a point. The trajectories in the Y-Z plane and X-Z plane

are impossible to execute because they are too close to the obstacles. The

field is discretized not uniformly to solve this criticality: the plane X-Y are

discretized with a resolution of 0.25x0.25 m2 instead the Z-axis is

discretized in three levels (0.5 m, 1.5 m, 2.5 m) in order to guarantee the

needed space to move on the level. The waypoints between two levels are

collapsed in the one where the drone is present to adapt the A* to this

44

situation. In this way the change of level is a translation on the Z-axis, easy

to implement and control. The DWA is adopted as local path planning to

avoid potential collisions to take into account eventual errors in the

mapping task. The DWA used in this phase is similar to the one

implemented for the reconnaissance phase with some additional features:

a control of the heading orientation, a more sophisticated protocol to

change the altitude level.

Figure 22 Example of a performed trajectory

The control of the heading direction is necessary to permit a correct start

of the task where the drone is directed in the direction of the first waypoint

in order to facilitate the following of the global path planning. Without this

adjustment, the DWA may ignore the presence of the global path and tries

to reach the target without following a minimum-time path and risking

being blocked by eventual unknown obstacles. The change of the altitude

level is regulated by a function that recognizes the next level and

automatically sends commands to move the drone up or down with respect

to its actual altitude. This is performed by a control of the pose of the drone

obtained from the ROS topic /mavros/local_position/pose.

45

Figure 23 Scheme of the race procedure

If the drone stops its motion due to the impossibility to find a possible

trajectory, the A* algorithm is relaunched in order to find an alternative

path to reach the target. This feature is useful in case an unknown obstacle

intersects the global path. In that case, the DWA stops the drone before the

collision and the A* algorithm is launched taking into account an updated

list of the obstacles. This solution guarantees a reduction of the

computational cost of the task and limits the time in which the drone is

inactive, occupied to run the A* algorithm. To avoid flight in plan with a

high density of obstacle, the starting point of every navigation is at the

maximum altitude reachable in the starting position. This solution

minimizes the possibility of collision and decreases the time needed to

reach the target because permits to obtain very straight trajectories to

perform at high speed. After reaching the target location, a landing

procedure is performed through the ROS service mavros/cmd/land that

guarantees a sufficiently correct and precise drone descent and, after the

disarming of the motors, a timer measures the necessary 5s of stop to

validate the point. Then, the successive target position is sent to the

algorithm, a take-off is performed, the optimal path is computed, and the

drone is directed to the first waypoint, ready to execute the new trajectory

using the DWA.

46

3.6 DWA optimization

The DWA is efficiently applied in both the phases of the contest but each

session has their peculiarities. In the reconnaissance phase the electrical

consumption is an aspect to monitoring because the drone can exhaust the

energy before the task completion. On the other hand, the time execution

is the most important aspect to minimize in the race phase. To modify the

behaviour of the algorithm, the choice of the cost function gains is a

possible solution of a setting to the DWA. These parameters represent the

different weights of aspects that the algorithm wants to maximize: an high

gain value in the to goal causes a trajectory that tend to converge to the

goal, in the clearance causes a trajectory that avoids to pass near obstacles,

in the speed the trajectory is the one that maximize the velocity an in the

path is the one that minimize the distance between the local position and

the global path waypoints to be followed. The setting operation can be a

long try-and-error procedure and the influence of each of these parameters

is not easy to predict. To solve these critical issues, a genetic algorithm is

implemented in order to find the correct set of gain in order to obtain the

respect of chosen requirements. The optimized values are the time spent to

execute the trajectory and the consumption of the motors in terms of

energy. The last value is difficult to obtain in a direct way because the data

related to the motor speeds are not available without using the Gazebo

simulator (also using that solution, the data are not very reliable). A

possible solution is to evaluate the accelerations imposed by the DWA:

accelerations consume more power and the total acceleration can be used

as an index of the electrical power consumed during the drone motions.

The GA has the same structure of a traditional one but with a significant

difference: the application of the fuzzy logic in order to achieve a setting

47

that is the right trade-off between the two contrast membership functions,

one related to the task execution time, the other taking into account the

consumption of electrical energy. Essentially, the GA generates the first

population modifying randomly a tested set of gain used as starting point

for the analysis, then the two parameters are evaluated for all the

component of the population running the A*+DWA algorithm in a test

field that tests the critical aspects of the DWA that are highlighted in the

first step of the implementation, mostly related to the difficulty of

execution of following the optimal path made by the A*.

Figure 24 Test field

After the simulation, the two measurements (f1 , f2) are normalized through

fuzzification using a sigmoid where its extremes are the range of

acceptability of the two parameters (𝑓𝑖
+, 𝑓𝑖

−), limited the possible value of

µ=(µ1,µ2)in the range of [0.1, 0.9].

𝜇𝑖 = 1 −
1

1+𝑒(𝑎𝑥0+𝑏) for i=1,2

with 𝑎 =
𝑙𝑛[

1
(1−0.1)−1

] − 𝑙𝑛[
1

(1−0.9)−1
]

𝑓𝑖
+−𝑓𝑖

− , 𝑏 = 𝑙𝑛 (
1

(1−0.1)−1
 − 𝑎 𝑓𝑖

+)

48

µ1 and µ2 are compared and the minimum between them is chosen as

identification value of the chromosome. These values are normalized and

a random probability value is assigned to all of them. Then, the fitness of

the population is evaluated and a child chromosome is generated by them

through a process of crossover. It was deliberately chosen to impose an

iterative and adaptive mutation probability to exploit its characteristics

without falling into excessive unwanted mutations. Specifically, a

mutation may happen if the number of generations is big enough and if the

minimum fitness value does not change from the previous 10 generations,

with a significant increase of the mutation rate (incrementally up to

+22.5%). If these requirements are not respected, the mutation rate

increases only to +2.5%. Then the process is repeated for all the

generations and the set of parameters with the best fitness value is chosen

as the result of the algorithm.

The model evaluated by the GA is characterized by:

• Max velocity on the x-axis (body reference frame): vx,max = 2.0 m\s

• Min velocity on the x-axis: vx,min = -1.0 m\s

• Max angular velocity on z-axis: ωmax = 3.14159 rad/s

• Max acceleration on the x- axis: ax,max = 60 m\s2

• Max angular acceleration on z-axis: pmax = 0.087266 rad\s2

• Tick time for the motion prediction: dt = 0.1 s

• Prediction time: tp = 0.5 s

49

• Robot area: circle of radius rdrone = 0.25 m

The set of gain from which the first population is generated is identified

through first hand-made settings focused on finding the correct set that

guaranteess the trajectory's execution without a high number of stops and

path re-calculations.

The values used as preliminary guesses for the test are:

• to goal cost gain: 0.001

• speed cost gain: 2.00

• clearance cost gain: 0.05

• path cost gain: 10.00

These settings already denote a critical consideration: optimal trajectories

may have to weigh the importance of these parameters with strong

different measures to perform correctly. The path following steers mainly

the total gain, followed by the speed constraints with some nuances

provided by the clearance and the goal gains. It is noteworthy that low

values of clearance, for instance, do not necessarily imply that the specific

value has little importance: indeed, since its cost function goes to infinity

as soon as the parameter is not respected, the averaged weight is the one

that influences the total merit.

50

The performance achieved using these settings are:

• Execution time: 106.7546 s

• Total accelerations: 36.6412 m/s2

These values are used to set the limits of the sigmoid used for the

fuzzification of the results obtained by the simulation, with limits in the

interval [-50%, +50%] of the two values.

The setting for the GA is:

• Number of population individuals: 8

• Number of generations: 70

• Initial chance of mutation in the child chromosomes: 0.05

A) B)

Figure 25 Distribution of the execution time (A) and total acceleration
through the different generations in the race test

51

After the simulations, the solution of the GA is the set [0.03590, 0.99907,

0.08957, 0.99954] and its performances are:

• Trajectory execution time: 88.781775 s (-16,836%)

• Total accelerations: 26.5750 m/s2 (-27,472%)

There is an evident improvement in the task execution with a significant

reduction of the energy consumption. It is clear that both the number 2

and 4 gains are set towards their maximum value, indicating their high

value in the optimization phase. The other two show a minor value even

though their presence and their equilibrium are vital to find optimal

solutions. Even if the overall performance is improved with respect to the

original setting, there are numerous stops and re-calculations during the

execution of the trajectory. To limit them, a bigger prediction time is set

(2 s) and tested with the original setting: the stops are absent and also the

accelerations are lower (18.9909 m/s2) but the execution time is increased

(141.983126 s). Using the set provided by the GA, evident improvements

are present in both the performances (133.0458178 s / 14.0586 m/s2). To

obtain an optimized setting for the reconnaissance phase, the same

procedure is applied to a test serpentine trajectory (of area 10x10 m2) that

includes the presence of an unexpected obstacle.

52

Figure 26 The reconnaissance test field

The model evaluated by this GA is characterized by:

• vx,max = 1.0 m\s

• vx,min = -1.0 m\s

• ωmax = = 3.14159 rad/s

• ax,max = 30 m\s2

• pmax =0.087266 rad\s2

• dt = 0.1 s

• tp =1.0 s

• rdrone = 0.25 m

53

The base set of gain is:

• to goal cost gain: 0.25

• speed cost gain: 0.25

• clearance cost gain: 0.05

• path cost gain: 0.02

The performance achieved using this setting are:

• Execution time: 28.5 s

• Total acceleration: 42.9623 m/s2

These values are used to set the limits of the sigmoid used for the

fuzzification of the results obtained by the simulation, with limits in the

interval [-50%, +50%] of the two values.

The setting for the GA is:

• Number of population individuals: 8

• Number of generations: 70

• Initial chance of mutation in the child chromosomes: 0.05

54

A) B)

Figure 27 Distribution of the execution time (A) and total acceleration
through the different generations in the reconnaissance test

After the simulations, the solution of the GA is the set [0.108192 0.477140

0.000040 0.014011] and its performances are:

• Trajectory execution time: 26.425706 s (-7,2782%)

• Total accelerations: 32.0367 m/s2 (-25,4307%)

The total acceleration of the drone significantly decreases and also a

reduction of the execution time is present. there is a significant increase of

the gain number 2 and decrease of the gain number 3 and number 4. The

low value of the gain number 3 causes a more aggressive trajectory. An

increase of the robot radius and some change in the settings of the limits

of velocities and acceleration are used to obtain a more conservative

trajectory without increasing the total accelerations.

The modifications are:

• vx, max = 0.7 m\s

• vx,min = -0.5 m\s

55

• ax,max = 60 m\s2

• rdrone = 0.35 m

With these modifications, there is a slight increment of the total

acceleration (33.0950 m/s2) but the time of execution is decreased (24.2 s)

and the serpentine path is better followed.

56

4. Conclusion

This thesis's main target is to investigate the possibility of performing an

autonomous drone flight in an unknown environment without GNSS and

Lidar sensor, with particular emphasis on the path and trajectory planning.

The study of the State of Art of the global path planning leads to focus on

the A* search algorithm due to its lightness and rapidity. Potential

drawbacks of the A* are related to some inaccuracy in the mapping of the

environment. A possible solution involves the implementation of the

DWA as local trajectory planning with a description of its traditional

implementation. Between the possible methods to obtain an optimization

of the trajectory, the work investigates the application of the Genetic

Algorithm in synergy with fuzzy logic to obtain a multi-factor optimization

using requirements in contrast to each other. Then, the Leonardo Drone

Contest is presented as a case study for the application of these

technologies in a team challenge contest. After the presentation of the rules

of the contest, the focus is on the technologic choices applied to the

competition with a description of the coaxial quadcopter, entirely

developed by the DRAFT PoliTo, and of the strategies actuated in the

different phases of the challenge. In the reconnaissance phase, after a

navigation to position the drone at the desired starting position, a

serpentine trajectory executed with the use of a custom DWA is described.

In the race phase, the DWA is coupled to a custom A* search algorithm to

57

obtain a geometrical optimized path to follow. The setting of the DWA is

obtained through the application of a Genetic Algorithm with fuzzy logic

implemented to find the best trade-off between trajectory execution time

and power consumption using modifications in the set of cost function

gain. The results of the GA underline an evident improvement in the

performance, guaranteeing the drone to perform complex trajectory in a

smoothest way with respect to the performance obtained with an

approximate hand-made setting. Future studies on the model dynamics are

needed to obtain further improvement. The global path planning can be

improved to take into account the dimension of the drone also in the

motions on the z-axis and energetic considerations, substituting the A*

with more complex search algorithms as the Theta*[6], to obtain smoother

changes of altitude and reduce the path length, or the Kinematic A* that

takes into account the drone dynamic constraints to avoid unfeasible

trajectories[7] .The GA used for the test was not optimized to find a faster

and more performing solution: this criticity can be overtaken using other

evolutionary methods as the Particle Swarm Optimization[8] or the Grey-

wolf Optimization[9]. Another possible improvement of this methodology

is to apply the "Escape warning" method, usually used to analyze strongly

chaotic space orbit, to improve the trajectory optimization. Due to physical

complications and lack of time caused by the Covid-19 global pandemic,

it was impossible to test these algorithms physically on the drone, a

necessary step to evaluate these solutions' limits.

58

APPENDIX:

Pseudo-codes

All the following pseudo-codes are implemented in Python3 and present

integration with the ROS meta-operative system.

A.1 Test velocity commands

Start

Initialize the ROS node

Add the subscription to the topic /mavros/local_position/pose

Add the publishing on the topic

/mavros/setpoint_position/cmd_vel_unstamped

Import and initialize the command class

Call the set flight mode service

59

Call the arming service

Call the take-off service

Call the change reference frame service

cnt = 0

state = 0

while state != 12

 Initialize message

 if state == 0

 cmd_vel_lin_x = 0.5

 if cnt >= 100

 cnt = 0

 state = 1

 END IF

 if state == 1

60

 cmd_vel_lin_x = 0.0

 cmd_vel_lin_z = 0.1

 if cnt >= 100

 cnt = 0

 state = 2

 END IF

if state == 2

 cmd_vel_lin_z = 0.0

 cmd_vel_ang_z = 0.15708

 if cnt >= 100

 cnt = 0

 state = 3

 END IF

 if state == 3

 cmd_vel_lin_x = 0.5

61

 cmd_vel_ang_z = 0.0

 if cnt >= 100

 cnt = 0

 state = 4

 END IF

 if state == 4

 cmd_vel_lin_x = 0.0

 cmd_vel_lin_z = -0.1

 if cnt >= 100

 cnt = 0

 state = 5

 END IF

 if state == 5

 cmd_vel_lin_z = 0.0

 cmd_vel_ang_z = 0.15708

62

 if cnt >= 100

 cnt = 0

 state = 6

 END IF

 if state == 6

 cmd_vel_lin_x = 0.5

 cmd_vel_ang_z = 0.0

 if cnt >= 100

 cnt = 0

 state = 7

 END IF

 if state == 7

 cmd_vel_lin_x = 0.0

 cmd_vel_lin_z = 0.1

 if cnt >= 100

63

 cnt = 0

 state = 8

 END IF

 if state == 8

 cmd_vel_lin_z = 0.0

 cmd_vel_ang_z = 0.15708

 if cnt >= 100

 cnt = 0

 state = 9

 END IF

 if state == 9

 cmd_vel_lin_x = 0.5

 cmd_vel_ang_z = 0.0

 if cnt >= 100

 cnt = 0

64

 state = 10

 END IF

 if state == 10

 cmd_vel_lin_z = -0.1

 cmd_vel_lin_x = 0.0

 if cnt >= 100

 cnt = 0

 state = 11

 END IF

 if state == 11

 cmd_vel_lin_x = 0.0

 cmd_vel_lin_z = 0.0

 if cnt >= 100

 cnt = 0

 state = 12

65

 END IF

 cnt = cnt+1

END WHILE

Call the landing service

END

A.2 Serpentine

Require: map_x, map_y, altitude

Start

waypoint_total = []

goal_total = []

for all the x-coordinate until map_x

 wpt = []

 for all the y-coordinate until map_y

 Add x-coordinate, y-coordinate and altitude to wpt

66

 Add wpt to waypoint_total

 if x-coordinate % 2== 1 and y-coordinate == map_y - 1

 goal = []

Add x-coordinate, y-coordinate and altitude to goal

 Add goal to goal_total

 elif x-coordinate % 2 == 0 and y-coordinate == map_y - 1

 goal = []

Add x-coordinate, y-coordinate-map_y+2 and…

 altitude to goal

 Add goal to goal_total

 END IF

 END FOR

 Add wpt to waypoint_total

END FOR

67

A.3 A*

Require: start = [start_x,start_y,start_z], target = [target_x,…

 target_y, target_z], discretization,obstacle_list,x_max,y_max,z_max

Start

Initialize the gain_cost

Initialize CLOSED = start

Initialize closed_count

Add all the obstacle_list in CLOSED

Update the CLOSED dimensions

xNode = start_x

yNode = start_y

zNode = start_z

path_cost = 0

goal_dist = sqrt((target_x-start_x)^2+(target_x-start_x)^2+…

 (target_x-start_x)^2)*gain_cost

68

Initialize OPEN = [0,0,0,0,0,0,0,0,0,0]

Add to OPEN the row [0, xNode, yNode, zNode, xNode, yNode…

 , zNode, path_cost, goal_dist, path_cost+goal_dist]

Update the OPEN dimensions

Initialize open_count

NoPath = 0

new_node = []

while xNode != target_x or yNode !=target_y or zNode != target_z …

 or NoPath == 0

exp_node = expand_array(xNode, yNode, zNode,…

 path_cost, target_x, target_y, target_z , CLOSED,…

 x_max, y_max, z_max, gain_cost)

Initialize exp_count

if exp_node is not empty

 for i=0 until exp_count

69

new_node = 1

for j=1 until open_count

if exp__node(i)==OPEN(j)

OPEN(j,-1)=min(OPEN(j,-1),…

exp_node(i,-1))

 new_node = 0

END IF

 if OPEN(j,-1) == exp_node(i,-1)

 OPEN(j,4) = xNode

 OPEN(j,5) = yNode

 OPEN(j,6) = zNode

 OPEN(j,-3) = exp_node(i,-3)

 OPEN(j,-2) = exp_node(i,-2)

END IF

END FOR

if new_node == 1

70

Node = [xNode,yNode,zNode]

OPEN=insert_open(exp_node,Node)

open_count = open_count+1

END IF

END FOR

END IF

index_min_node=min_fn(OPEN,open_count,target)

if index_min_node != -1

xNode = int(OPEN(index_min_node,1))

yNode = int(OPEN(index_min_node,2))

zNode = int(OPEN(index_min_node,3))

path_cost = OPEN(index_min_node,-3)

Add to CLOSED the row [xNode,yNode,zNode]

closed_count = closed_count+1

OPEN(index_min_node,0)=0

71

else

NoPath = 1

END IF

END WHILE

parent = CLOSE(-1)

if parent == target

 Optimal_path = parent

 while parent != start

 Add to Optimal_path the array parent

 inode = node_index(OPEN,parent)

 parent = int(OPEN(inode))

 END WHILE

 Optimal_path = Optimal_path*discretization

 for i=0 until i=length(Optimal_path)

 Optimal_path[i][2]=Optimal_path[i][2]/discretization

72

 END FOR

END IF

END

A.4 DWA

Require: start, target, gx, gy, gz, obstacle_list, waypoint, z_max,…

side_step=1, robot_type=circle, done

Start

Import the obstacle_list

x = [start(0), start(1), start(3), 0, 0]

goal = [gx, gy]

x = change_orientation(x,waypoint(0,0), waypoint(1,0))

config = Config()

config.robot_type = robot_type

trajectory = x

73

time_ellapsed = 0

dist_to_goal = 0

fermo = 0

while done is True

x_init = x[:]

min_cost = float(“inf”)

best_u = [0.0, 0.0]

best_trajectory = x

to_goal_cost = 0

speed_cost = 0

clearance_cost = 0

path_cost = 0

final_cost = 0

for v between (v_min, v_max)

for y between (y_min, y_max)

74

trajectory = predict_trajectory(x_init, v, y, config)

to_goal_cost =

config.to_goal_cost_gain*calc_to_goal_cost(trajec

tory,goal,config)

speed_cost =

config.speed_cost_gain*calc_speed_cost(trajectory

,config)

clearance_cost =

config.clearance_cost_gain*calc_clearance_cost(tr

ajectory,obstacle_list, config)

path_cost =

config.path_cost_gain*calc_path_cost(trajectory,w

aypoint)

final_cost =

to_goal_cost+speed_cost+clearance_cost+path_co

st

if min_cost >= final_cost

 min_cost = final_cost

 best_u = [v,y]

 best_trajectory = trajectory

75

END IF

END FOR

END FOR

x = motion(x, best_u, config.dt)

if x(3) > -0.001 and x(3) < 0.001 and x(4) > -0.05 and …

 x(4) < 0.05

fermo = fermo+1

else fermo = 0

END IF

Add to trajectory the array x

time_ellapsed = time_ellapsed + config.dt

if fermo*config.dt > 1

fermo = 0

x = (x(0)/dx, x(1)/dx, gz, x(2), 0, 0)

Call for the A* path re-calculation

76

END IF

dist_to_goal = math.hypot(x(0)-goal(0), x(1)-goal(1))

if dist_to_goal <= 1

config.dist_goal_cost_gain = 10

if dist_to_goal <= 0.2

u(0) = 0

u(1) = 0

break

END IF

else config.dist_goal_cost_gain = 0

END IF

if norm(x-target)<0.2

 x = (x(0), x(1), 0, x(2), 0, 0)

END IF

END

77

Bibliography

[1] Syaiful A. Gunawan, Gilang N. P. Pratama, Adha I. Cahyadi, Bondhan

Winduratna, Yohannes C. H. Yuwono and Oyas Wahyunggoro,

Smoothed A-star Algorithm for Nonholonomic Mobile Robot Path

Planning , 24-25 July 2019, 2019 International Conference on

Information and Communications Technology (ICOIACT), DOI:

10.1109/ICOIACT46704.2019.8938467

[2] Qinghe Liu, Lijun Zhao, Zhibin Tan and Wen Chen, Global path

planning for autonomous vehicles in off-road environment via an A-star

algorithm, January 2017, International Journal of Vehicle Autonomous

Systems 13(4), DOI: 10.1504/IJVAS.2017.087148

[3] Dieter Fox, Wolfram Burgard and Sebastian Thrun, The Dynamic

Window Approach to Collision Avoidance, April 1997, IEEE Robotics

& Automation Magazine 4(1):23 – 33, DOI: 10.1109/100.580977

[4] Marija Seder and Ivan Petrovic, Dynamic window based approach to

mobile robot motion control in the presence of moving obstacle, May

2007 IEEE International Conference on Robotics and Automation,

DOI: 10.1109/ROBOT.2007.363613

78

[5] John McCall, Genetic algorithms for modelling and optimisation,

December 2005, Journal of Computational and Applied Mathematics

184(1):205-222 DOI: 10.1016/j.cam.2004.07.034

[6] Luca De Filippis, Giorgio Guglieri, Fulvia Quagliotti, Path Planning

Strategies for UAVS in 3D Environments, January 2012, Journal of

Intelligent and Robotic Systems 65(1-4):247-264, DOI:

10.1007/s10846-011-9568-2

[7] Luca De Filippis, Giorgio Guglieri, Advanced Graph Search Algorithms

for Path Planning of Flight Vehicles, February 2012, Recent Advances

in Aircraft Technology, DOI: 10.5772/37033

[8] Coello Coello C., Lechuga M.S., MOPSO: A Proposal for Multiple

Objective Particle Swarm Optimization, February 2002, Evolutionary

Computation, 2002. CEC '02. Proceedings of the 2002 Congress on

Volume 2, DOI: 10.1109/CEC.2002.1004388

[9] S. Mirjalili, S. M. Mirjalili, and A. Lewis, Grey Wolf Optimizer, March

2014, Advances in Engineering Software 69:46–61, DOI:

10.1016/j.advengsoft.2013.12.007

