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Abstract

Context : Issue reports are used to store the problems that occur using a software
and them are submitted by developers and testers. After the software issue is de-
tected then is redirect to an expert that operates in order to solve the problem.
This operation is very time consuming, because in this process of creation of the
bug report there is possible to find a wrong classification due to human misjudging.

Goal : In this thesis’ work, we build a tool, that using machine learning techniques,
to classify in an automatic way the issue report with the most probable label class.

Method : This works is based over the Mozilla bugs stored in Bugzilla, a bug
tracker for general purposes, and it is focused to the correct classification of a new
bug. The model works over an implemented version based on the Bugbug project
and it creates a classifier with labeled bugs, that can be used with two implemen-
tation: OneVsRest or a Binary.

Results: Ours work is testes over two different scenarios: and a single class be-
haviour, the class examined is considered as the positive class against all the others,
and a multiple classes that groups different classes analyzed individually. The total
accuracy obtained is higher than 73% with the OveVsRest approach, while with
the Binary analysis, the higher result is higher than 80% obtained with the most
prevailing cases, while the other class labels with minor weight obtained an accu-
racy slightly lower than 50%.

Conclusions: Our tool works successful to fulfil the main goal it was designed for.
This work can be further expanded in the future with a more homogeneous data
set in its classes. It is also possible to improve slightly the precision of the classifier
with some minor changes.



Contents

List of Figures 4

List of Tables 5

1 Background and related works 6

1.1 Introduction to bug classification . . . . . . . . . . . . . . . . . . . 6
1.1.1 Example of bug classification . . . . . . . . . . . . . . . . . 7

1.2 Steps of bug classification . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.1 The cost of bug classification . . . . . . . . . . . . . . . . . . 9

1.3 Introduction to bugs taxonomy . . . . . . . . . . . . . . . . . . . . 11
1.4 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 State of the art and existing tools . . . . . . . . . . . . . . . . . . . 12

1.5.1 BugBug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Architecture and design 17

2.1 Bug’s Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.1 Proposed metrics . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.2 The Cohen’s Kappa . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Bugs Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.1 Categories and Sub-Categories . . . . . . . . . . . . . . . . . 21

2.3 Building the Data Set . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.1 Bug Report Analysis . . . . . . . . . . . . . . . . . . . . . . 27
2.3.2 Batch Classification . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.3 The Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Experiment design 31

3.1 The Machine Learning Model . . . . . . . . . . . . . . . . . . . . . 31

2



3.1.1 BugBug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.2 OneVsRest Classifier . . . . . . . . . . . . . . . . . . . . . . 32
3.1.3 Binary Classifier . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.1 Balancing Technique . . . . . . . . . . . . . . . . . . . . . . 38
3.2.2 Minimum matching threshold . . . . . . . . . . . . . . . . . 38

4 Results 41
4.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.1 Results OneVsRest Classifier . . . . . . . . . . . . . . . . . 43
4.1.2 Results Binary Classifier . . . . . . . . . . . . . . . . . . . . 47

5 Conclusions 51
5.1 Summary of the results . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3



List of Figures

1.1 ex of bug report title . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 ex of bug report information . . . . . . . . . . . . . . . . . . . . . . 8
1.3 ex of bug report attachments . . . . . . . . . . . . . . . . . . . . . . 8
1.4 ex of bug report comments . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 ex of bug report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 BugBug high-level training and operations . . . . . . . . . . . . . . 14
1.7 BugBug high-level model . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 High level view of the basic model . . . . . . . . . . . . . . . . . . . 18

4.1 The average precision score obtained with the rbf kernel . . . . . . 44
4.2 The average precision score obtained with the poly kernel . . . . . . 45
4.3 The average precision score obtained with the sigmoid kernel . . . . 45
4.4 The average precision score obtained with the linear kernel . . . . . 46

4



List of Tables

2.1 Statistics for the Cohen’s Kappa coefficient . . . . . . . . . . . . . 21

4.1 Summary of OneVsRest approach statistics with the KNN classifier 43
4.2 Summary of OneVsRest approach statistics with the Naive Bayes

classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 The final statistics for the OneVsRest . . . . . . . . . . . . . . . . . 47
4.4 Statistics for the general labels with the binary classifier . . . . . . 49
4.5 Statistics for the subcategory labels with the binary classifier . . . . 50

5



Chapter 1

Background and related works

1.1 Introduction to bug classification

The bug classification activity is of paramount importance to produce bug-free soft-
ware. Bug classification process exists, because human produces software, that will
never be free of bugs. This is an expensive and long task for the behaviour that
correlated to the line of code in a program, in fact the faster those rise the LOC1

and the more bugs can be founded.

Nowadays, those expensive tasks are solved by experts with different tools corre-
lated to the machine learning and the artificial intelligence, that can reduce the
overall time to process and solve a bug classification. The development of an au-
tomatic bug classifier would speed up the classification and consequently the bug
removal process.

It is possible to define a list of steps to follow in order to characterize and classify
a bug classification. Once a bug is reported, developers are requested to analyse
the bug report and classify the bug. After that, it is assigned to the most skilled
developers in the specific area of interested given by the classification. Each classi-
fication generally involves more than one person classifying the bug separately and
then discuss the classification, this could take days.

As bug classification is mainly focused in assigning the bug removal work to the

1The line of code in a program
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most qualified developer or team, reaching an high accuracy in the classification
becomes the firs and most time-consuming step (Akila et al., 2015), especially since
a wrongly classified bug might cause problem during the removal process.

Using a machine learning algorithm, in order to classify the bugs automatically,
reduces not only the exploitation of resources and time, but this would limit the
possible error correlated to the human behaviour, ie. generally issues in codes are
reported in a wrong way from the developers, the tester or the customers. When
a bug is misjudged and classified as a different issue category, it would be assigned
to a developers that more likely do not have the desired skills needed to resolve
the issue and the process can take more time than the expected. Moreover the
maintenance of such code would be trivial in most of the cases.

We argue that removing errors made by developers in the process of understanding
the bug type can be beneficial in the process. It will properly identify the devel-
oper who should be assigned to its debugging, speeding-up the bug analysis and
resolution process.
The removal of this type of errors greatly affects the quality of the classifier and
therefore the aim of great importance is to achieve an high accuracy with the model.
Otherwise, after a wrong classification there are an increase time expense to solve
the bug, because we have to reassign the bug to the better developer.

1.1.1 Example of bug classification

In Figures 1.1, 1.2, 1.3 and 1.4 this is a brefly presentation of the different infor-
mation that it is possible to find in a bug report taken from the BugZilla database.
From this example the main steps of a bug classification can be analysed.

The bug report can be divided in four sections taken in account:

• title of the bug, it can be meaningful for the classification since in many cases
synthesizes perfectly the problem at hand

Figure 1.1: ex of bug report title

7



Background and related works

• the description in tags and labels of the bug: priority and severity, category,
the people to which it is assigned, tracking point and useful flags

Figure 1.2: ex of bug report information

• the attachments of the bug: in most of the cases those can be pictures, videos
or link to the section code of the error presented in the report

Figure 1.3: ex of bug report attachments

• the comments of the bug: in this section the developers assigned to the bug
can exchanges ideas an insights on the bug taken in analysis (Figure 1.4)

(a) comments (b) comments

Figure 1.4: ex of bug report comments

The bug report changes and it can update its priority, severity and developers
assigned during the resolving process, ie. the bug was wrongly classified.
In case the bug is wrongly classified the wrong developers will received and they will
signal the mistake. This process lead to a new classification and a new assignation
of the bug, losing time and resources.
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1.2 – Steps of bug classification

1.2 Steps of bug classification

Classifying a bug is a challenging and time consuming procedure. Here are the
steps:

- two or more parties are created

- each of the party analyses the same bug report, ex. in Figures 1.5

- the parties classify separately the bug

- a discussion is made between the parties to decide the final classification of
the bug

1.2.1 The cost of bug classification

It is possible to give a value to the duration time, that is needed to classify correctly
the bug, and the effort amount of developers to achieve the task. The union of those
factors is considered the cost of bug classification.
It is important to remind that a bug requires takes longer time to be classified, the
more complex the bug is. On the other side dedicate a larger number of people
for a specific task, it will increase the cost related to the classification, with a
reduction of the process duration. In conclusion automatic bug classification will
have a fundamental role in cost reduction.

It is possible to speculate over a generic bug and the cost related to it. The
process cost of finding and removing a bug can change, if it is started during the
development and test phases, or during the production phase. In order to be a
little more practical, we take in consideration the last phase and in this one the
classification and solving cost can reach $ 10,000.00 2. The more expensive part of
this process is called bug triaging phase, in which the bug was previously labeled,
by the classification teams, and it is discussed between them in order to gain shared
label classification, only at this point its sends to the right developer to be solved.
Our work goal points to remove as much as possible this cost.

In addition, the cost increases when possible errors in the classification process are

2Celerity: The true cost of a Software Bug
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Figure 1.5: ex of bug report

considered.In the case that a bug is assigned to a wrong solver, the developers will
be asked to fix it also without the needed skills and this can be translated in a
waste of time and resources.
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1.3 Introduction to bugs taxonomy

The first goal of this work is to produce a correct taxonomy2.2 for the bugs, that
will be taken in analysis.

In software testing, the taxonomy aims to define the feature categories and group
up the largest possible number of issue in each category. In our work, we set as a
starting point, as it is suggested to help the selection of the categorization list, a
previous work (Catolino, Palomba, Zaidman, & Ferrucci, 2019), and from that our
work is pointed to figure out some defined macro groups and after that we define
some different sub category related to the general one. We work closely with the
tool of Mozilla Bugzilla3, that contains all the bugs reported. With the analysis of
different part of the bug report, i.e. the title name and the tags, we have continued
the brainstorming and discussion concerning the nomenclature to adopt.

1.4 Goals

The goal of this thesis is to analyze and provide a valid tool for the solution of the
bug classification. The nature of the topic indicate that the use of the machine
learning approach in order to solve this problem.

Our approach is based on a tool, that extracts the most significant information
from a bug report and the algorithm will returns the most probable classes for the
bug taken in analysis. The aim will be to obtain a model that can assign different
categories for a single instance taken in consideration.

The focus will be on the automation of the presented problem, to permit a impor-
tant cost reduction in the bug classification approach, and in the future this work
can be expanded to implement inside the model not only the classification phase,
but also the assignment to the expert to work on the issue solution.

3Bugzilla
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1.5 State of the art and existing tools

The work proposed here revolves around triaging bugs according to their type
with the goal of supporting and eventually speed-up this tasks. This section will
provide an overview of the previous studies and existing tools for automated bug
classification. A comprehensive overview of the research conducted in the context
of bug triaging is presented by Zhang et al. (2016).

• a machine learning model to discriminate between bugs and new features
requests was defined by Antoniol et al. (2008). The model was able to dis-
criminate the two with a precision of 77% and a recall of 82%.

• to classify the impact of bugs, Hernández-González et al. (2018) proposed
an approach that with the empirical study conducted on two systems, i.e.,
Compendium and Mozilla, showed good results. The approach was designed
according to the ODC taxonomy (Chillarege et al. (2018)).

• AutoODC, again based on the ODC classification, for automatic ODC clas-
sification, developed by Huang et al. (2015). This tool cast the problem in
a supervised text classification. This approach was augmented by the inte-
gration of experts’ ODC experience and domain knowledge. They built two
models trained with two different classifiers such as Naive Bayes and Support
Vector Machine on a larger defect list extracted from FileZilla.

• in 2012 Thung, Lo, and Jiang developed a classification based approach
that could automatically classify defects into three super-categories, that are
comprised of ODC categories: control and data flow, structural, and non-
functional.

• the previous tool was extended in 2015 (Thung, Le, and Lo), where the defect
categorisation was enlarged. In more details, they combined active learning
and semi-supervised learning algorithms to automatically categorize defects.
They evaluated their approach on 500 defects collected from JIRA repositories
of three software systems.

• analyzing the natural-language description of bug reports, evaluating their
solution on 4 datasets, e.g., Linux, MySQL (for a total of 809 bug reports)

12
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Xia et al. (2014) was able to categorize defects into fault trigger categories
using a text mining technique.

• using LDA Nagwani, Verma, and Mehta in 2013 proposed a method for gen-
erating taxonomic terms in order to label software bugs.

• in 2016 Zhou, Tong, Gu, and Gall combined structured data (e.g., priority
and severity) with text mining on the defect descriptions to identify corrective
bugs.

• in order the have bugs assigned to the right developers, text-categorization
based machine learning techniques have been applied for bug triaging activi-
ties (Murphy and Cubranic (2004), Javed et al. (2012)).

Our work is mainly based on the concepts developed by Murphy and Cubranic and
Javed et al.: use text-categorization and text mining machine learning techniques
in order to correctly label a bug.
Our tool does not take in consideration new features as bug report, those bug
reports were removed from the dataset (Section 2.3). In addition our taxonomy
was developed by Catolino et al. and will be presented in full details in the next
chapter.

1.5.1 BugBug

The algorithm used as a starting point for this thesis was BugBug4, a program
developed by Marco Castelluccio5 and other Mozilla developers in order to get
bugs in front of the right Firefox engineers. As previously discussed, it is possible
to decrease the time consumption to fix a new software bug, if the new one are
quickly triage and classify by the owners.
This tool was the follow up work of a previous project that used a technique to
differentiate between bug reports and feature requests.

This project lays the foundation in over twenty years of bugs that have been
studied and review by the Mozilla community, the Mozillians6, and those are used

4https://hacks.mozilla.org/2019/04/teaching-machines-to-triage-firefox-bugs/
5Marco Castelluccio
6Mozilla community
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Figure 1.6: BugBug high-level training and operations

to improve the categorization and the overall work around the bug report.

In order to train the model using the same amount of information it would have
during real operation, a "roll back" of the bug report to the time it was originally
filed was performed. In this way any change to the bug after triage has been re-
moved, indeed these information are inaccessible during real operation.
Also the taxonomy has been modified since in the past 2 years, out of 396 com-
ponents, only 225 components had more than 49 bugs. In more details, all the
components that had a number of bugs that was at least 1% of the number of
bugs of the largest component were selected. This implies that only that subset is
meaningful and can be analysed.
The features under analysis were the title, the first comment, and the keyword-
s/flags that characterise the bug, meanwhile the training was performed using an
XGBoost model.

In order to avoid wrong labelling, the assignment of the bug is performed only
when the model has a confidence higher than a certain threshold. Using a 60%
confidence threshold, the model ended up having a very low false positive ratio (it
had a precision greater than 80%, using a validation set of bugs that were triaged
between December 2018 and March 2019).

Tests showed that training a model on a 6-core machine with 32 GB of RAM and
using a dataset of around 100,000 bugs (more than two years of data) takes roughly
40 minutes. Once the model has been produced, it label a new bug in matter of

14
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Figure 1.7: BugBug high-level model

milliseconds, it never pauses, meaning that its always ready to act. The tool’s
classification is much faster than manual assignment, that takes around a week on
average.

This thesis tool uses BugBug’s algorithm has starting point. Some changes were
performed, especially in the feature selection component and in the taxonomy con-
sidered for the classification.
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The remainder of this thesis is structured as follows:

• Chapter 2 will cover the definition of the characteristics of the tool, along
with the explanation of the process to build the dataset;

• Chapter 3 describes the two approaches followed in our work, OneVsRest and
Binary classifier;

• Chapter 4 covers the result obtained by all the experiments done;

• Chapter 5 presents our conclusions and suggestions for possible future works.

16



Chapter 2

Architecture and design

In order to help with the software bug classification and assignment process to the
correct developer, we have developed our thesis work. Our tool is written in Python
and it can work in two different mode, that can be managed on the fly passing the
desired arguments:

• OneVsRest Classifier, it exploits the multiple label and class classifier and it
is possible to execute a specific set of labels, i.e. there are two label sets, the
first one, that is also the default one, it is composed by all the labels collected
in the macro sets, the second is a specification for the first one, in fact this
contains the previous and add the more specific labels in each class (Section
2.2)

• Binary Classification, it works as a simple binary classifier, where the chosen
label is treated as the positive one and its against all the other joined together.
Also in this use mode, its possible to execute the model with the a desired
label from one of both the sets (Section 2.2)

The configuration is chosen using the arguments passed to the algorithm.
In particular, we have three main components:

1. A Feature Extractor, which is one of the main components in a machine
learning algorithm, since the input data may have too many attributes, some
of them are removed in order to avoid the curse of dimensionality. It takes as
input all the available features and returns a subset of them.

17
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2. A Column Transformer, that comes from the sci-kit learn "sklearn" li-
brary 1 and allows to apply transformers to column array or to a pandas 2

DataFrame. A transformer is a function that takes as input all the values of
an attribute and applies a function to those values in order to return a new
list of values. A Column Transformer allows different columns or column
subsets of the input to be transformed separately and the features generated
by each transformer will be concatenated to form a single feature space.
This and the first components are organised in a pipeline. A pipeline is com-
posed of a list of transformers, two in our case, and eventually terminated by
an estimator, absent in our case.

3. And a Classifier. This is the last and most important component, is the one
responsible for the classification of the bug. It receives as input the output of
the pipeline and its output is a model.

Figure 2.1: High level view of the basic model

2.1 Bug’s Analysis

In order to reach our thesis goal, we started studying and analyzing how a human
can classify in the right way a bug report. Our work followed again the footsteps
of a previous paper(2019).

1sci-kit learn
2pandas
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2.1 – Bug’s Analysis

After the study over the classification method, we have split in two separated
groups, in order to make the triage over a set of incremental bug report. Initially
we started with a small amount of elements and every iteration we increased the
number. At the end we had classified 250 bug reports (Section 2.3), and this was
used as data set for the first analysis base to test the model prototype. This phase
and also the following are characterized by the weekly meeting. This routine was
done in order to keep up to date all the members in this work and also it is used to
obtain feedback over the work done. At the end of the iteration, the data set was
updated with the analyzed bug reports. After the last iteration it was updated the
data set with the bug report previously classified in this paper3

Summing up briefly, the initial part is re presentable through a module, i.e. a
sequence of actions, that are iterate different times. There are the assignment with
the new bug list to classify manually, during the classification is presented some
time spot where there are described the proposed classification and one is chosen,
some time it was difficult to find a common classification; in those cases, during
the meeting kept on Monday, those were discussed with the all members team, in
order to find a right classification for the unsure bug reports.

2.1.1 Proposed metrics

At the end of each iteration, and before each meeting, we computed a value that
measured the goodness of our classification; for this reason we used the Cohen’s
Kappa coefficient (Section 2.1.2), which measures the degree of accuracy and re-
liability in a statistical classification. Another relevant metrics, that we used to
evaluate the goodness of the model, were the precision and accuracy values.

2.1.2 The Cohen’s Kappa

The Cohen’s kappa coefficient is a valid way to express the level of agreement
between two judges, i.e. the two human that in initial part of this work had
classify the bugs. The Cohen’s kappa is a statistical coefficient that represents
the degree of accuracy and reliability in a statistical classification. It measures
the agreement between two raters (judges) who each classify items into mutually

3Understanding, Characterizing, and Classifying Bug Types
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exclusive categories4. This statistic was introduced by Jacob Cohen in the journal
Educational and Psychological Measurement in 1960.

k =
p0 − pe
1− pe

where p0 is the relative observed agreement among raters, and pe is the hypo-
thetical probability of chance agreement.

To interpret Cohen’s kappa results we refer to the following guidelines (see
Landis and Koch (1977)):

• 0.01 - 0.20 slight agreement

• 0.21 - 0.40 fair agreement

• 0.41 - 0.60 moderate agreement

• 0.61 - 0.80 substantial agreement

• 0.81 - 1.00 almost perfect or perfect agreement

kappa is always less than or equal to 1. A value of 1 implies perfect agreement
and values less than 1 imply less than perfect agreement.

It’s possible that kappa is negative. This means that the two observers agreed
less than would be expected just by chance.

In our study, this coefficient value increased every time regard the previous itera-
tions, this is an interesting analysis point where the two judges after some itera-
tions had more experience and confidence with the classification topic. The latest
iterations had an higher agreement coefficient, but also a shorter needed time to
perform the individual classification. Another measure considered was the percent-
age of agreement, ie. the value of p0 in the Coehn’s kappa equation. The following
table shows all the element computed for each iteration.

4I Do Statistics
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N. of Iteration Po Py Pn Kappa Agreement
1 0.5671641 0.3653374 0.1563822 0.09501630 56.72%
2 0.6356589 0.3797848 0.1472267 0.2297039 63.57%
3 0.6774193 0.3625563 0.1582552 0.3268186 67.74%
4 0.6643598 0.3813412 0.1460471 0.2898183 66.44%

Table 2.1: Statistics for the Cohen’s Kappa coefficient

2.2 Bugs Taxonomy

In this thesis, as mentioned earlier, the main focus was to obtain the best possible
accuracy when labeling a bug, achieving a reduction in costs and time in the bug
triaging process.
Th starting point of our analyses was the work of our colleagues Catolino Gemma
and Palomba Fabio (2019), who defined the bug’s taxonomy in full details in their
paper and presented later.

2.2.1 Categories and Sub-Categories

In this section the taxonomy used in this thesis will be presented in full details:

• API: this category regards bugs concerned with building configuration files.
Most of them are related to problems caused by (i) external libraries that
should be updated or fixed and (ii) wrong directory or file paths in XML or
manifest artifacts.

Example summary.

"Properly promote unexpected plugin wmode values to direct on Windows"

[Bugzilla] - Bug report: 1620453

Subcategories :

– Add-on or Plug-in Incompatibility: the program does not work
correctly for a major add-on/plug-in or many add-ons/plug-ins due to
incompatible APIs or libraries, or a functionality, which was removed on
purpose, but is still used in the wild.
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Example summary.

"Firefox 72 no longer loads Shockwave Flash. (after setting plu-
gin.load_flash_only pref is false)"

[Bugzilla] - Bug report: 1609257

– Web Incompatibility: here the program does not work correctly for a
major website or many websites due to incompatible APIs or libraries,
or a functionality, which was removed on purpose, but is still used in the
wild.

Example summary.

"VoiceOver doesn’t announce clickable item" in the Disability Access
APIs categories

[Bugzilla] - Bug report: 1616679

– Permission/Deprecation: bugs in this category are related to two
main causes: on the one hand, they are due to the presence, modifica-
tion, or removal of deprecated method calls or APIs; on the other hand,
problems related to unused API permissions are included.

Example summary.

"Enable additional permission for a specific bugzilla account"

[Bugzilla] - Bug report: 78453

– Incompatibility: refers to generic errors that do not belong to any of
the categories above.

Example summary.

"CloseTab is not received when using deprecated TabDelegate"

[Bugzilla] - Bug report: 1620364

• Database-related: collects bugs that report problems with the connection
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between the main application and a database. For example, this type of bug
report describes issues related to failed queries or connection.

Example summary.

"TypeError: IndexedDB: clear() can not access property"

[Bugzilla] - Bug report: 1623481

• Development: are issues related to errors made during the development,
it can be due to the addition of a new feature or a change in the code that
causes the breakage of a test case or a failure in the built.

Example summary.

"Update verify failures in 74.0 build1"

[Bugzilla] - Bug report: 1619469

Subcategories :

– Test Code: is concerned with bugs appearing in test code. They are
usually related to problems due to (i) running, fixing, or updating test
cases, (ii) intermittent tests, and (iii) the inability of a test to find de-
localized bugs.

Example summary.

"../test/browser/browser_aboutprofiling-features.js | Uncaught exception
- NS_ERROR_ILLEGAL_VALUE"

[Bugzilla] - Bug report: 1606082

– Compile: compiling errors.

Example summary.

"Fix up some declarations used in bug 1512471 that break when chunking
changes (or presumably non-unified builds)"

[Bugzilla] - Bug report: 1622016
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• GUI-related: refers to the possible bugs occurring within the Graphical
User Interface (GUI) of a software project. It includes issues referring to (i)
stylistic errors, i.e., screen layouts, elements colors and padding, text box ap-
pearance, and buttons, as well as (ii) unexpected failures appearing to the
users in form of unusual error messages.

Example summary.

"Overlapping content on about:networking page with reduced width"

[Bugzilla] - Bug report: 1620281

• Network Usage: this category is related to bugs having connection or server
issues, due to network problems, unexpected server shutdowns, or communi-
cation protocols that are not properly used within the source code.

Example summary.

"BroadcastChannel receives messages in onmessage after channel has been
closed"

[Bugzilla] - Bug report: 1622124

• Performance: collects bugs that report performance issues, including mem-
ory overuse, energy leaks, and methods causing endless loops. It can also
refer to correct functionalities that have a slow response or are delayed.

Example summary.

"GeckoView re-sets some preferences unnecessarily"

[Bugzilla] - Bug report: 1620105

• Program Anomaly: this are bugs introduced by developers when enhancing
existing source code, and that are concerned with specific circumstances such
as exceptions, problems with return values, and unexpected crashes due to
issues in the logic (rather than, e.g., the GUI) of the program. It is important
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to note that bugs due to wrong SQL statements do not belong to this cat-
egory but are classified as database-related issues because they conceptually
relate to issues in the communications between the application and an exter-
nal database, rather than characterizing issues arising within the application.
It is also worth noting that in these bug reports developers tend to include
entire portions of source code, so that the discussion around a possible fix can
be accelerated.

Example summary.

"about:downloads shows an XML error"

[Bugzilla] - Bug report: 1609898

Subcategories :

– Crash:

Example summary.

"Prevent early crashes in non-content/plugin processes from crashing the
main process"

[Bugzilla] - Bug report: 1616262

– Hang:

Example summary.

"repeating . and a letter (s) causes firefox to hang in browser"

[Bugzilla] - Bug report: 1603316

– Incorrect Rendering:

Example summary.

"synthetic bold on color emoji looks bad"

[Bugzilla] - Bug report: 1600470
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– Wrong Functionality:

Example summary.

"Copy Image fails if image open in other than initial tab"

[Bugzilla] - Bug report: 1604003

• Security: vulnerability and other security-related problems are included in
this category. These types of bugs usually refer to reload certain parameters
and removal of unused permissions that might decrease the overall reliability
of the system. They signal that there is one or more vulnerabilities in the code.

Example summary.

"Use MOZ_WIDGET_ANDROID instead of ANDROID for the enterprise
roots for geckoview"

[Bugzilla] - Bug report: 1630031

In this classification taxonomy, it is possible to see thanks to the examples
provided in the previous list, that when there is a subcategory label, this one can
be defined also with the general one. In our taxonomy the general labels can be
used also in the analysis with the subcategories classes, because we decided as
assumption that a specific bug report can be identified at least with one label from
the general classes otherwise there is the possibility the a issue do not have a right
classification in the subcategory and it is labeled with the general class.

2.3 Building the Data Set

At the end of the first phase, based on the analysis and brainstorming regarding
the taxonomy, we focused on the second part of our work: build a data set. All the
bug reports taken in consideration during this phases were already resolved5 bugs,
taken from the Bugzilla database.

5A resolved bug is a bug that has been already labeled, assigned to the correct developers and
removed
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2.3.1 Bug Report Analysis

Each bug was considered individually, after the classification and triaging it was
inserted in the data set. As mentioned in the previous chapter and as the Figure
1.5 depicts, a bug report has multiple information that can be used to label the
bug.

There are some bug reports, that are always self explained from the title, i.e. the
classes like Security and Performance can also been individuated by the tag labels.

When is not possible to detect the correct classification with only the title and the
tags, it possible to reading the comment section where is present the discussion
between the solver assigned to the issue. Thanks to their insights the nature of the
bug can be discovered. For instance in many cases one of the firsts comments is a
description of the bug behaviour.

In the case that it is not already classified the bug with the steps before, there one
more resource, at the end of the report it is possible to find a section that would
link to the code. Sometimes the code can be the key to label the bug to the correct
class.

2.3.2 Batch Classification

The classification phase is divided in four batch, each of those moment was focused
on a different set of issue reports, that needed to be classified. All the intermediate
steps had to be completed by two person:

1. each one separately analyzed and tried to classify with one or more labels the
bug;

2. then them discuss the two results for a specific bug, and they checked the
meaning for a specific decision for the classification, and then is released the
bug with the best label or labels;

3. those two step are repeated for each bug in the bug set;

The batches had respectively 50, 50, 50 and 100 bugs, for a total of 250 bugs.
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2.3.3 The Data Set

After classifying all the batch, removing the duplicate bugs and the one that weren’t
bugs 6, the data set contained 181 bugs.
Since 181 is not enough for a good analysis, the bug reports classified previously
in this article(2019) were added to the data set, reaching a total of 243 bugs. In
the above mentioned work there are a number of bugs coming from different issue-
tracking system, i.e. there are bug reports from Apache, Mozilla and Eclipse,but
we only kept the bugs related to the Bugzilla system and the total amount of bugs7

is 63.

The data set considering the general labels was composed of:

• 33 API

• 10 Database-related

• 42 Development

• 49 GUI-related

• 8 Network Usage

• 3 Performance

• 131 Program Anomaly

• 10 Security

while the classification using the specific sub-category labels was:

• 11 Add-on or plug-in incompatibility

• 2 Web incompatibility

• 1 Permission-Deprecation issue

6Some bug report are opened like they are bug but at the end they are new feature request or
some other changes, not actual errors in the code

7Those bugs were previously classified with a different taxonomy, we have reconverted the
classification according to the new taxonomy
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• 6 Incompatibility

• 37 Test code

• 5 Compile

• 34 Crash

• 3 Hang

• 9 Incorrect Rendering

• 60 Wrong Functionality

as its clear by the numbers some the bug were only classified with a general label,
due to lack of information to select a specific sub-category.

The entire data set will be used for training and validation of the model. In more
details it will be divided in two sets: a training set of 243 records and a test set of
8, which means the former is 90% of the data set while the latter is the remaining
10%. Of course the generation of the two sets is performed randomly.

The classes population is highly unbalanced, going from 131 bugs for Program
Anomaly down to 10 for Security, considering the general labels. Indeed this is also
clear if we focus on the sub-categories. This kind of behaviour can lead to a wrong
analyses and can result in a wrong model, ie. a model with a low accuracy on the
test set.

During our experiments we have added 100 items for each of these three classes:

• Performance

• Program Anomaly

• Security

this was done in order to fix the unbalance of the data set, the new elements
were automatically classified by a script that which only extrapolates these specific
classes from Bugzilla using keywords.
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Chapter 3

Experiment design

3.1 The Machine Learning Model

This chapter presents the chosen machine learning model with the related advan-
tages, disadvantages and the main part regards the two configurations used.

The aim of our work was to train a model on previously labeled bugs, classified
by two humans (Chapter 2.3), and then to use that model to classify untriaged1

bugs.

The presented work started, as previously mentioned, with the Bugbug2 project
analysis. Initially we focused, in particular, over the structure comprehension.
As starting point we used the bugtype model3 available in the Bugbug GitHub
repository. The model, that were built up from those general premises, is subdivided
by two different possible use modes:

• OneVsRest, this is a classifier where all the classes are taken one by one and
there are produced different classifiers one for each class. This process can
assign more than one label to a single instance.

• Binary, this is a classifier that considers only one class at time and the con-
sidered label is placed against the others, those are considered as a single

1Bugs that have to be labeled
2Bugbug
3Bugtype model - Bugbug section
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indistinguishable instance. This process can assign only one label, in particu-
lar the classifier specifies if the considered class is represented by the instance
or not.

3.1.1 BugBug

Bugbug is a project thought to help with bug and quality management, and other
software engineering tasks using different techniques from the leveraging machine
learning. All the data inside Bugzilla4 is used to track anything, from the feature
request to hardware/software malfunction passing through different bug categories.
Bugbug has a specific area of competence, that is related only to the categories of
bug5 and the fake-bug6. The main reasons, why Bugbug works in this direction,
are the quality analysis of a project, this can be used to measure different statistics
over the overall release cycle, and the bug prediction, that can use the development
history in order to identify a possible changes to solve the issue.

3.1.2 OneVsRest Classifier

We started ours work over the bug type classifier and we build a new model, that
takes in consideration the studied taxonomy (Chapter 2.2) and uses as input a bug
set classified by the team members. During the model development some bug sets
are add to the analyzed pool, and in a couple of iteration the bug number arrives
at the value of 253. The peculiarity of this classifier is characterised by two label
sets, all the bugs are described by two classification, a generic and a specific one.
This second classification extends the generic one, because a generic bug must be
classified at least with one label from the generic set, but it is not mandatory that
the same bug has a label from the specific set, for that reason when we decided to
work also with the specific labels, we merged the two sets.

The classifier chosen was the OneVsRest7, this performs a multiple class classifica-
tion, because we had respectively for each label set: 8 labels for the generic one

4Bugzilla
5Bugs that actually are bugs
6Bugs that are not actually bugs
7OneVsRest Classifier
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and 19, the 8 of the generals and the other new 11 labels of the specific set, for
the specific classification. This is also a multi label classifier, this means that there
aren’t constraint on how many classes a bug is assigned to. The classifier behaviour
can be split in three parts. In the first one, one classifier is fitted over a single class,
in the next step all the classifier are taken individually and the class is fitted against
all the other classes. The last part each classifier is used to predict more than one
labels for a single instance, this is made using a two dimensional matrix and it’s
fitted with the following relationship, is given a generic matrix cell as [i, j], with
the respectively symbols i is the sample and j is the label:if i has j, 1

otherwise, 0

One of the most strength aspect is the possibility to gain knowledge about one class
by analyzing the classifier related to this.

3.1.3 Binary Classifier

During ours work with the OneVsRest classifier we found that the overall accuracy is
not too much high, for this reason we had implemented in our model the possibility
to choose the classifier use mode, with the multiple label classification, that is
explained in the previous section, and the binary classifier is able to analyze a single
class at time with the relative characteristic features. In ours implementation we
decided from the design of this second model part to keep as much as possible
homogeneous with the already presented code model, for this reason it is possible
to specify the desired class to study. The classification tasks is related with only
two classes, the selected one is considered as the positive label for the bug analyzed.
This classifier is defined by n independent random couples of (Xi, Yi) ∈ χ× {0, 1},
where X represents the features and Y the labels. The goal of this algorithm is
to build a rule that is able to predict the output Y given the input X, that rule
is a function called classifier and its defined as h : χ → {0, 1}. There are different
classifiers, and each one is much suitable for a specific data prediction with the
specific input data features, in the next section there are some practical cases taken
in account during this work thesis.
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3.2 The Model

In machine learning the classification methods are considered instances of super-
vised learning, this is a machine learning task that creates a function able to map
a given input to an output based on example input output pairs. The main goal is
to build up a inferred function that can map new examples from the same space of
the training data. It is also possible to generalize in order to classify unseen situa-
tion in the most "probable" way from the training data. The main difference with
the unsupervised learning is the data identification, in the supervised approach the
learning is based on the observation of the training data that were correctly identi-
fied previously. Meanwhile, the other one tries to group up the data into categories
based on measure of the similarity or the distance.

In our work we started with an approach that is focused over the XGBoost li-
brary 3.2. The entire thesis project has been designed and developed in a modular
way, this allowed us to perform different tests even parallel in order to find the best
configuration of our model. The different experiments led us to generate different
scenarios for the model, in fact you can run the program with the desired data set
or you can specify the operating mode of it.

During our tests we implemented several applications including a grid search,
that is able to find the best hyper parameters for our data set, and a script that
from the Bugbug section that we have modified in order to extract Bugzilla bug
reports using keywords and tags8. However, the main part of our model is definitely
the choice of the classifier, and that is why we have performed several analysis and
tests with different algorithms to classify bug reports in order to get a better pre-
diction.

The following list is composed of the classification algorithms used in our work.

• XGBoost

8This script allows us to expand our data set with additional independently classified items,
even with more than one label if the issue falls into more than one class.
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It is a project called eXtreme Gradient Boosting9, this is an open-source
library designed to have high efficiently and flexibility. It is possible to use this
in a wide range of applications, from the regression to the classification and
the forecasting problems. The others interest points are the portability trough
the different operating systems, the active support for the main programming
languages, i.e. C++, Python and Java, and also the cloud integration.

This project is based on the Gradient Boosting10 technique. This provides
a forecasting model based on a decision trees composed by a set of weak
forecasting models.

In our work this is the first approach to predict the data, but for the lower
accuracy results we decided to try different approach in order to improve the
performances.

• Naive Bayes

This is a set of methods, that apply the Bayes’ theorem11 with the assumption
that every pair of features has the conditional independence. The considered
assumption is a naive approach that considers the conditional independence
between all the pairs for the given class.

The following probability is the Bayes’ theorem, where the y represent the
values and from x1 to xn the features.

P (y|x1, .., xn) =
P (y)P (x1, .., xn|y)

P (x1, .., xn)

The independence condition is expressed like a probability of occurring to-
gether is the product of their individual probabilities.

P (xi|y, x1, .., xi − 1, xi + 1, .., xn) = P (xi|y)

In order to define the P (Xi|y), and since that the P (x1, .., xn) is constant for

9XGBoost
10Gradient Boosting
11
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the given input, it is possible to obtain with the MAP12 use.

The different classifiers differ for the assumption over the data distribution.
In our tests, we founded as the best one that fit our data with the higher
accuracy: the Complement Naive Bayes13. This algorithm is specially suited
for the imbalanced data sets.The CNB15 uses statistics from the complement
of each class to compute the model’s weights.

• Support Vector Machines

The SVM16 are a set of supervised learning methods, that provide meth-
ods able to perform classification, regression or outliers detection. The most
significant point of strength of those are the effective in high dimensional
spaces and the possibility to choose the preferred kernel function17 in order
to improve the quality of the classification. The counterbalancing of those
advantages there is mainly the impossibility to compute directly probability
estimates, and the steps made to compute those are expensive, because it is
needed a five-fold cross validation.

The SVM constructs an hyper-plane or a set of them in an high dimen-
sional space, the best performances are obtained when the margin between
the hyper-plane and the data is large, in the cases that the support vector
cannot be able to separate all the training data, there are set some boundaries
that allow a misleading point to be classified correctly. The classifier, that we
had chose for our experiments, is the LinearSVC18, a fastest implementation
using the SVM, that make use of the hinge loss19.

12Maximum A Posteriori, this is an estimate of an unknown quantity
13This classifier extends the classical one called Multinomial Naive Bayes14, that is generally

used for the text classification.
15The Complement Naive Bayes
16Support Vector Machines
17The kernel function is a set of mathematical operations, that is used to transform the data

in the preferred form
18Linear Support Vector Classification
19The hinge loss is a loss function used to find the most larger margin of the classification
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The statistical formulation can be expressed as the following formula.

min
w,b

1

2
wTw + C

X
i=1

max(0, yi(w
Tφ(xi) + b))

This implementation offers to compute process the data as a binary problem
or a multi-class one with the possibility to choose the penalty and the loss
function for the given data. The Linear-SVC cannot implement different
kernel from the linear one, because is not present the inner products between
the samples, this mean also that it is not possible to apply the kernel trick.20

• Nearest Neighbors

The Nearest Neighbors are a set of both supervised and unsupervised learning
methods. The idea behind this models is to find the much larger number of
similar training in the same area with different mathematics computations.

During our experiments we had work with the K-Nearest Neighbors21, and its
type is the instance-based learning22. This approach assigns to the instance
the label of the most populated class, this count is obtained the greater class
in the K neighbors. The value K need to be choose with the knowledge that
a lower value can increase the noise on the data, but the borders are more
smooth. the There are different solution for the distance algorithm, and the
way it is applied. We tried to use the following two algorithms:

– Brute Force, this algorithm computes all the distance for a single el-
ement with all the other, with large data it becomes infeasible. The
computational cost is O[DN2].

– Ball Tree, with this algorithm the main goal is to reduce the computation
time using a tree structure. This process works with the triaging over
three points, i.e. considering A is distant from B, and this one is closest
to C, the algorithm do not compute the distance between A and C. The

20The kernel trick is a mathematical operation that permits to reduces the complexity of finding
the mapping function.

21Also called KNN, this algorithm is used in the pattern recognition for the classification of
instance based over the distance and the proximity.

22The method saves the instances of the training data without creating a general internal model
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computational cost is reduced to O[D log(N)].

3.2.1 Balancing Technique

In our thesis work, after working on the taxonomy, the composition of the data set
and then the model, we focused on the improvement of this model. In particular,
we performed some balancing operations of the data set within the model itself,
because not all the classes of our set are populated in the same way, and the classes
with fewer instances were penalized.

To balance the model we used the technique of applying different weights for each
class, in order to have each class with the total weight equal among all. This is
obtained through the following formula

wclassi =
nsamples

nclasses ∗ noccurrencesi

as shown in the previous one, you must perform for each class its own weight. This
value obtained is the ratio of the total of the instances present within the model
and the number of occurrences within the selected class for all the classes present.

3.2.2 Minimum matching threshold

In machine learning, there are a model called logistic regression23 that is used to
compute the probability that a certain instance can be classified as zero or one,
in ours case this method is applied to predict the appearance of an instance to a
determinate class. The logistic regression is used to get the probability inherent to
a certain prediction. This value can be read as a simple probability that the event
append, or in ours case that the bug taken in consideration is inside a class of the
set, or it’s possible to convert the obtained value to a binary one. For example, a
model that returns a prediction of 0.001, for a bug to stay inside a class, is predicting
that it is very likely not inside the class taken in analysis, otherwise a value of 0.999
means that there are high chances that the bug is inside the class. The difficult point
is to distinguish the middle cases. In order to map a regression value to a binary

23The logistic regression is a non-linear regression model, that it is used when the dependent
variable is a dichotomous variable.
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identifier, it is mandatory define a classification threshold. This value indicates the
threshold above which is possible to identify an instance with a specific class with a
great margin of confidence. It is necessary the introduction of this new parameter,
because the classification thresholds are problem dependent and this dependency
affects the values that will be tune, for this reason the threshold is not set statically
at the value 0.5. In our work, we have set a range of possible threshold values in
order to find the best one through different evaluations of the results obtained from
these.
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Chapter 4

Results

This thesis work aims to offer a tool able to classify a bug report with one or mul-
tiple labels in a fast way and this generates a lower cost related to the specific issue
report and allowing the experts to focus on the bug removal phase. But the results,
during the first approach, is not as higher as expected, in particular the accuracy is
29.57%, and this value shows that there is error prone in some specific bug report
categories. After several attempts and improvements, such as the one presented in
the data set, through XGBoost obtains an accuracy of 40%.

For this reason we decided to temporarily remove XGBoost and try to focus on
other classifiers. Initially we tried with the Naive Bayer, which gave slightly better
results than previous texts with XGBoost, generating a total accuracy of 33.09%,
and then with an SVM approach using SVC. The results this time were still slightly
better than the Bayer classifier up to a value of 38.69%.

For the sake of completeness we tried an even more statistical approach and
then tried to apply the KNN, which however did not show very good results, as it
did not exceed the threshold of 27.89%, for this reason this classifier will no longer
be taken into account during our analysis.
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4.1 Experiments

The model is composed by two different way of use and those run over the same
configuration of the environment, the difference between the two modes is mainly
the classifier and the focus over the statistics taken in account.

In order to obtain an higher classification accuracy, we performed several runs
with different configuration. The initially analysis were made with the XGBoost
Classifier3.2, and we have focused over the features. In a generic bug report, the
title is the richest resource of information in order to classify the issue, its is followed
by the description with the related tags. After that we added also the comments
as a features to keep in account and in the next experiments we tried to compare
the feature goodness extracted by the different comments separating the first one
from the others, in this way we tried to give more importance to this element.

The great issue, that we found, is into the distribution. The classes had different
element amount and the overall distribution resulted unbalanced, for this reason we
added as an additional transformation in some experiments to balance the classes
with lesser instances.3.2.1 The different weight that each class has within the model
is more visible in the configuration with the subcategory labels, from a certain
moment the various tests will focus on the setup of the generic labels to provide a
more stable model.

As mentioned earlier, all these experiments were led using the same data set, that
was split in train and test set, with a ratio 90% and 10%. The results reported
below are the most significant statistics extrapolated from the various experiments
carried out, for this reason will not be presented all the combinations of the values
obtained, but will be provided an overview for all the various tests and finally will
be presented a full version of the most relevant statistics for the best configuration
of the model.

An important part of the work was focused on finding the best classifier to adopt, in
order to obtain better values the grid-search method was used to maximize accuracy
with the best hyper-parameters. This was obtained by providing a classifier and
a list of hyper-parameters to set, with specific operating ranges. This is made for
all the four classifier presented in the chapter before 3.2. We will initially analyze
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separately the two ways1 of use of the classifier within the implemented model.

4.1.1 Results OneVsRest Classifier

Here the results obtained using the OneVsRest classifier (Section 3.1.2).

As previously described, having a very low accuracy with the XGBoost classifier 2,
we decided to use different classifiers and to parameterize them in order to obtain
the highest possible accuracy. The following tables3 shows the evolution4 of our
model through the different classifiers5 and also through subsequent updates of the
data set6.

Tuning N. of element Accuracy Roc&Auc Precision

No
181 44.44% 0.54 0.31
243 36.23% 0.54 0.28
546 58% 0.66 0.54

Yes
181 46% 0.55 0.31
243 58% 0.66 0.54
546 59.47% 0.68 0.59

Table 4.1: Summary of OneVsRest approach statistics with the KNN classifier

Now the classifier that has provided the best results is SVC7 and it is presented
in its entire path8. First at all, we analyzed the possible kernels we could have used,
the best one turned out to be the linear. The following list shows the respective
accuracy and highlights:

• rbf, this kernel implements the kernel trick, see the section 3.2, and produce a
stable accuracy of 58% with the overall precision equals to 0.48. The partial

1The OneVsRest Classifier (Section 3.1.2) and the Binary Classifier (Section 3.1.3)
2The accuracy obtained with this model is less than 30%.
3Those two tables represent a summary of the experiments with the KNN and the Naive Bayes

Classifier.
4The Naive Bayes has a set of different classifier, in this brief summary is reported only the

most significant one, the Complement Naive Bayes.
5Classifiers that did not generate expected results and were discarded.
6The data set evolution is expressed by the instance amount in the following table.
7Support Vector Machine Classifier
8The experiments performed before the completion of the date set have been excluded.
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Tuning N. of element Accuracy Roc&Auc Precision

No
181 41.97% 0.50 0.7
243 33% 0.51 0.7
546 35.43% 0.57 0.37

Yes
181 49.38% 0.56 0.27
243 58% 0.66 0.54
546 65.98% 0.71 0.66

Table 4.2: Summary of OneVsRest approach statistics with the Naive Bayes classi-
fier

results9 show that the majority of classes, except for Performance, Security
and Program Anomaly issue, are not represented and are not characterized.

Figure 4.1: The average precision score obtained with the rbf kernel

• poly, this one allows the learning of non-linear models, representing the sim-
ilarity of the vectors to a characteristic space in reference to the original
features. the accuracy obtained is quite low, as well as the precision, that is
0.45. This kernel function like the previous one suffers from a bad classifica-
tion due to the unbalance of the data and therefore the inability of the model
to characterize the majority of classes.

9These partial results are all similar in these kernel functions, since the majority of the values
are equal to 0, for this reason there are not fully reported.
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Figure 4.2: The average precision score obtained with the poly kernel

• sigmoid, this kernel function is similar to the sigmoid function in logistic
regression, and the accuracy obtained is equals to 42.97% with the precision
of 0.31. This is the worst of all the functions analyzed, for this reason in this
case there are several classes that are not represented10.

Figure 4.3: The average precision score obtained with the sigmoid kernel

10This trend is the same as for the two cases mentioned above.
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• linear, this is the best kernel function, in fact it generates an accuracy of
73.32% and it has a precision of 0.74. In this case, only the Network Usage
issue class isn’t correctly represented in the model11.

Figure 4.4: The average precision score obtained with the linear kernel

After analyzing the various functions of the kernel and finding the best one in the
linear, we continued the study of the model only with a specific version, which is
called Linear SVC 12.

In order to solve the problem related to the non-representativity of the class Net-
work Usage issue, we have implemented balancing measures on the data set3.2.1.
This has been done by calculating the weight that each class brings in the whole
set.However, this measure has led to an overall improvement of the model, in terms
of accuracy, but has not allowed the class in question to be classified correctly, so
this problem can only be solved by adding other bug reports that also belong to
the Network Usage issue class. From now on we will omit this class and focus on
the remaining classes and the model in general.

After we have found a classifier that fits better over our data, and after cleaning

11This is because this class has too few elements.
12This is already presented in Section 3.2
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up this data in order not to generate unbalanced situations between the different
classes, we have performed a tune operation of the Linear SVC classifier. At this
stage we have researched and established the best hyper-parameters for our model.
In particular in the following list we show how we set the most relevant parameters:

• the loss function was chosen equal to the square of the hinge loss

• the search for optimization of the dual problem optimization

• the adjustment parameter is a parameter that serves as a degree of importance
that is given to miss-classifications

All of these shrewdnesses have led to the formation of a model that has the follow-
ing characteristics, always operating through the OneVsRest approach. The final
accuracy is 73.11% with a global precision of 0.622, while the value of the overall log
function has decreased to 6.3. In the following table the single classes are presented
with the respective statistics.

Class Precision Recall F1-score
API issue 0.36 0.40 0.38
Network Usage issue 0.00 0.00 0.00
Database-related issue 0.67 0.60 0.63
GUI-related issue 0.43 0.52 0.47
Performance issue 1.00 0.98 0.99
Security issue 0.99 0.93 0.96
Program Anomaly issue 0.82 0.85 0.83
Development issue 0.71 0.61 0.66

Table 4.3: The final statistics for the OneVsRest

4.1.2 Results Binary Classifier

The results of the binary classifier (Section 3.1.3). The analysis of the binary ap-
proach classifier will be presented only the best solution, because in section 4.1.1
the various experiments have already been shown, which did not produce a result
as good as the SVC one.

All these experiments have an accuracy of over 50%. Analyzing in more detail
with this mode of use we went each time to select a class to classify against all the
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other elements considered a single set. This analysis has served to study the single
classes and to understand where to intervene and where there could be cases of
errors within the model itself.

It was very important the attention we paid to the features, in fact several tests
were carried out and from these we realized that the feature extraction module
captured different parameters, but in particular it often happened that the most
important feature was the article ’the’. To solve this problem we have excluded
from the extraction method features that were not important for the development
of the model and that could potentially create over fitting situations13 of the model.

Once the model modeling problem was solved we tried to apply the classifier with
its settings that generated the best accuracy14. Below are the various results of
each individual analysis for each class15. For the general label the first relevant ex-
periment was done without using the balancing technique and the next with these
technique, the results are in Table 4.4, while another experiment was led applying
the same routines over the remaining labels, the sub-categories one, and the results
are in the Table 4.5.

In this approach16, using the model with balancing techniques is not always the
best choice, as there are cases where the imbalance between the two classes17 is
excessive. It is also very important to note that especially in the label classification
of subcategories, the classes are composed of very few elements, and this makes it
difficult to generate the model. Generally again as in the OneVsRest results4.1.1,
the best accuracy is obtained from generic classes and not from more specific ones.
In the generic label only Network Usage issue turned out to be the weakest, just
because it is the class with fewer elements than the others.

13Over fitting is created when the model is modeled not only on data features, but also on data
noise.

14The reported results are computed over the last data set.
15The general classes are presented only once, and are therefore not reported in the collection of

sub categories, because the values are the same from the moment that only the class is analyzed
without the context of the set to which it belongs.

16The approach with the binary classifier
17The class examined and all the others gathered together.
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Label N. of Bugs Balancing Accuracy Precision Recall

API issue 33 No 63% 0.63 0.63
Yes 65% 0.65 0.64

Development issue 42 No 78% 0.78 0.78
Yes 75% 0.75 0.75

GUI-related issue 49 No 80% 0.82 0.80
Yes 81% 0.82 0.81

Network Usage issue 8 No 41% 0.40 0.42
Yes 50% 0.5 0.5

Performance issue 104 No 97% 0.97 0.97
Yes 98% 0.98 0.98

Program Anomaly issue 232 No 83% 0.83 0.83
Yes 85% 0.85 0.85

Security issue 111 No 97% 0.98 0.97
Yes 96% 0.96 0.96

Table 4.4: Statistics for the general labels with the binary classifier

To summarize the results obtained, it is possible to see how classes with fewer
elements have gained some more precision and accuracy in the binary version than
the version calculated in OneVsRest, while classes such as Security issue or Program
Anomaly issue, have seen a slight decreased the accuracy in the binary version.
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Label N. of Bugs Balancing Accuracy Precision Recall

Add-on or Plug-in Incomp. 11 No 90% 0.92 0.90
Yes 90% 0.92 0.90

Compile 5 No 40% 0.38 0.4
Yes 40% 0.38 0.4

Crash 135 No 95% 0.95 0.95
Yes 95% 0.96 0.95

Hang 3 No 0.0 0.0 0.0
Yes 75% 0.83 0.75

Incompatibility 6 No 60% 0.6 0.6
Yes 70% 0.71 0.70

Incorrect Rendering 9 No 50% 0.5 0.5
Yes 50% 0.5 0.5

Permission/Deprecation 111 No 0% 0.0 0.0
Yes 0% 0.0 0.0

Test code 37 No 86% 0.86 0.85
Yes 84% 0.84 0.84

Web Incompatibility 2 No 0.0 0.0 0.0
Yes 50% 0.5 0.5

Wrong Functionality 60 No 73% 0.74 0.73
Yes 70% 0.71 0.70

Table 4.5: Statistics for the subcategory labels with the binary classifier
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Chapter 5

Conclusions

The bug classification task is really significance and expensive nowadays, a company
can not afford to keep bugs in their software, in particular the much is dangerous the
issue and the much is needed to resolved, i.e. the exposure of sensible data or the
inefficiency program, that slows down the hardware performance. For this reason
the automation of this task can help a lot the company to define the typology of the
bug and to assign it to the right developers to solve the issue as soon as possible.
Another important aspect is that the software will hardly be replaced within a few
years, when those are adopted over a specific environment. In an other way, thanks
to the modular structure of the tool, it is possible to update its for future uses also
external this environment.
This can be achieved changing the Bugbug(Section 1.5.1) function that allow to
read the bug report and then extract the features retained important. In second
place it is also needed to update the data set composition, because our project is
based and works with the bugs related to Mozilla1.

With this work it is proposed a tool that will avoid useless work for the developers,
that need to be focused on the bug fixing, and this model automate the classification
process.

The model is based on the bugs classified by the human classifier, which are bugs
that were randomly picked from the database. This operation may result in a

1We tried in a naive way to use also bug reports from different systems, but as we expected
the accuracy went down a lot because the feature extraction module was not implemented except
for bugs from Bugzilla.
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biased model, since the classes are unbalanced and some classes in the taxonomy
are never classified, like bugs related to API.

5.1 Summary of the results

In the previous chapter 4 were presented the two configuration related with this
work. Each model can be executed more times with every time different hyper-
parameters using a tuning library as help during the optimization process. Each
test is made with the same train and test ratio between the train and the test set.

5.2 Future work

In this section, we show a set of possible points of view or tips, that can be done to
increase the performance and improve the tool. Those suggestions can be aimed to-
wards increasing its accuracy for all the classes and setting up a minimum threshold
higher with the possibility of the feature addition.

• Add more instances to the data set. The data can be more homogeneous
and have minor unbalanced between classes.You need to implement specific
classes that have few elements, i.e. the Network Usage issue for the general
labels, and also re-balance the more specific classes, that in our work have
produced the worst results.

• Implement different modules, for reading and extracting features from dif-
ferent issue tracking systems different from Bugzilla, some examples can be
Apache and Eclipse.

• Add before the test phase of the model a evaluation phase, that evaluates the
goodness of the model just created and trained. This further phase needs a
wider data set for the model that does not count many elements.

• Develop the last step of the automated work for this study, which is the direct
assignment of the best developer to fix the bug report, because this face now
remains the most critical and often also the most expensive one when it is
done incorrectly.
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• At the moment it is not foreseen to search for possible duplicates inside our
data set, we have manually classified the bug reports, we could eliminate the
duplicates beforehand, but in the future this work could be done by a module
that will recognize the duplicate bugs.

• In our work we have considered only and always cases of bugs belonging to
well-defined classes, but in reality there are often fake bugs or no-bugs2, these
need to be recognized and then classified as such.

• A further development could be regression bug, implementing a call back to
the previous bug that generated the unexpected situation in the code after
the last update. It is important to prevent this kind of bug3, but in the case
this is not possible, this must be have the highest priority to be solve.

• Will also be a possible future development, the prediction of a priority order
for the allocation and resolution of bugs4, giving more importance to bugs that
affect the proper functioning of the software and those that undermine the
security of the user, below come all the others according to the functionality of
the problem, i.e. if a problem was only graphic, it would certainly have a lower
priority than the resolution of a problem related to the drop in performance
on a specific device.

2These are all those bug reports that do not present a problem that has occurred, but requests
or different versions for the same.

3This kind of bugs erode the trust between the vendor and the customers, that can also leave
the specific company when there are too much and too frequently bug of this category.

4A priority in the right sense, just as it is now when a new report is created.
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