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Abstract

Ultra-Wideband is becoming extensively used in many kinds of robot and human position-
ing systems. From industrial robotic tasks to drones used for search and rescue operations,
this high-accuracy technology allows to locate a target with an error of a few centimeters,
outperforming other existing low-cost ranging methods like Bluetooth and Wi-Fi. This
fact also lead Apple to equip the latest IPhone 11 with an UWB module specifically for
precise localization applications. Unfortunately, this technology is very accurate only in
Line-Of-Sight. Indeed, performances degrade significantly in Non-Line-Of-Sight sce-
narios, in which walls, furniture or people obstruct the direct path between the antennas.
Moreover, reflections constitute another source of error, causing the receiver to detect
multiple signals with different delays. The aim of this thesis is to compensate NLOS and
multi-path errors and obtain a precise and reliable positioning system, that could allow
to develop several service robotics applications that are now limited by unsatisfactory ac-
curacies. Another fundamental goal is to guarantee a good scalability of the system to
unseen scenarios, that is where even modern mitigation methods still fail. For this scope,
a large dataset is built taking both LOS and NLOS measurements in different environ-
ments and experimenting on different types of obstacles. Then, modern deep learning
methods are used to design a Convolutional Neural Network that estimates the error of
the range estimates directly from raw Channel Impulse Response samples. Finally, a po-
sitioning test is conducted to verify the effectiveness of the method in a real scenario.

The rest of the work is organized as follows. Chapter 1 introduces the theoretical bases
that are needed to understand the context and the development of the thesis: UWB defi-
nition and features, main ranging methods, positioning algorithms, machine learning and
deep neural networks. In Chapter 2, an overview of the state of the art is addressed, high-
lighting strenghts and limits of each of the existing methods. Chapter 3 describes the
experimental set adopted for the range measurements and the building of the dataset, also
comprehending the characteristics of low-cost sensors and all the employed hardware and
software. Chapter 4 addresses the design of the Deep Learning models used to perform
the correction of the range estimate and the strategy adopted to optimally train and test
different variants. Chapter 5 shows and comments the results reached after the training
of the models, highlighting the effect of environment and obstacles on the prediction ac-
curacy. It also presents the final positioning test conducted in real-time. Finally, Chapter
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6 draws conclusions on the presented work, pointing at some improvable aspects of the
method and suggesting future objectives to pursuit.
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“The same thrill, the same awe and
mystery, come again and again when we
look at any problem deeply enough.
With more knowledge comes deeper, more
wonderful mystery, luring one on to
penetrate deeper still.
Never concerned that the answer may prove
disappointment, but with pleasure and
confidence we turn over each new stone to
find unimagined strangeness leading on to
more wonderful questions and mysteries -
certainly a grand adventure!”
[R. Feynman]



Chapter 1

Introduction

The outstanding progress of robotics in the last two decades, aided by the increasing de-
velopment of disciplines like control theory and machine learning, has led to the design
of countless automated solutions for a wide variety of application fields. In particular,
recent years have seen a growing interest in employing robots in everyday life contexts,
pushed by the enormous innovation that this could bring in houses, offices and hospitals.
Clearly, though, using moving robotic systems in uncontrolled and continuously chang-
ing environments gives rise to numerous issues. The presence of obstacles like people
or objects, for example, requires the robot to have a very high confidence of the world
around to travel from point to point in security. Dealing with these criticalities, the avail-
ability of a precise localization system is of paramount importance as the construction of
a map is the first step for the unmanned vehicle to navigate in a complex environment.
For this purpose, UWB is becoming extensively used in many kinds of applications for
its high-accuracy technology, allowing to locate a target with an error of a few centime-
ters, and its low cost. This thesis aims at studying and compensating the errors in UWB
positioning caused by NLOS conditions and reflections. In this first chapter, an overview
of all the theoretical concepts at the base of the proposed work is presented. Firstly, the
main notions about UWB are summarised, from its communications features to the local-
ization applications. Then a brief introduction of machine learning and deep learning is
addressed, focusing on both common shallow algorithms and recent deep methodologies.

1.1 Ultra-Wideband

1.1.1 Definition and Legislation
According to the definition given by the Federal Communication Commission (FCC), an
UWB signal is “any signal which has a fractional bandwidth 𝐵𝑓 larger than 0.20, or which
occupies a bandwidth 𝐵𝑊 greater than 500 MHz” [1], i.e.,

𝐵𝑓 ≥ 0.2 𝑜𝑟 𝐵𝑊 > 500 MHz (1.1)
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The fractional bandwidth is defined as the ratio between the bandwidth of the signal
and its center frequency

𝐵𝑓 = 𝐵𝑊
𝑓𝑐

=
𝑓ℎ − 𝑓𝑙

𝑓ℎ+𝑓𝑙
2

(1.2)

Being 𝑓ℎ and 𝑓𝑙 respectively the highest and lowest transmitted frequencies at the
−10 dB emission point and 𝑓𝑐 the center frequency. To avoid interference with other ex-
isting communication systems, FCC and the European Commission’s Radio Spectrum
Committee defined specific spectral masks to regulate the use of UWB transmitters re-
spectively in the USA and in the European Union. These masks (5.1) fix the maximum
Power Spectral Density (PSD) transmittable for different frequency bands.
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B
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FCC (USA)

Figure 1.1. UWB spectral masks: FCC and EU.

1.1.2 Main Features
The main feature that makes UWB a unique and useful technology in many applications
is that its huge bandwidth means very fine time resolution. This allows to have a better
noise rejection with respect to other wireless communication systems and, hence, precise
positioning.
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1.1 – Ultra-Wideband
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Figure 1.2. UWB bandwidth compared to Wi-Fi, Bluetooth and GPS.

To practically realize this narrow signal shape Impulse Radio (IR) is usually adopted,
which is based on transmitting extremely short and low power pulses (1.3). As can be
seen in 5.2, the center frequency of the signal is relatively low. This feature causes the
UWB signal to suffer of small attenuations when passing through materials, contrary to
systems at higher frequencies, and perform well for long range communication.

Finally, a low transmit power (in the order of 𝜇𝑊) makes UWB the optimal low-cost
technology that guarantees precise communication and positioning.

1.1.3 Transmission
As mentioned before, the most common transmission method for UWB is Impulse Radio
(IR). It is based on the transmission of baseband pulses that code information through
signal polaruty and the time position inside a transmission window. The pulses’ length
is typically in the order of sub-nanosecond and can have diverse shapes, usually starting
from a Gaussian pulse (1.4).

𝑥(𝑡) = 𝐴
√2𝜋𝜎2

𝑒
−𝑡2

2𝜎2 (1.3)

In 1.3, 𝐴 is the pulse amplitude and sigma is the standard deviation.
IR is a carrier-less transmission, and this allows to have very low power consumption.

1.1.4 Modulation
In IR-UWB communication systems data can be modulated using different schemes (1.5):
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Figure 1.3. UWB pulse.

• Bi-Phase Modulation (BPM), in which the data is encoded in the polarity of the
impulses,

• Pulse Amplitude Modulation (PAM), which is based on the amplitude of the pulses,

• On-Off Keying (OOK), in which the transmission of a pulse represents a bit “1” of
data and its absence represents a “0”,

• Pulse Position Modulation (PPM), in which the data is encoded by adding a shift to
the impulse.

Among all the possibilities PPM has proven to be the most preferable one, because
it smoothens the frequency spectrum of the signal. In fact, in UWB pulses are sent at a
constant rate called Pulse Repetition Frequency (PRF), but this normally generates peaks
in the spectrum that reduce the maximum transmitted power. Shifting the pulses their
occurrence is not perfectly periodic and so the frequency spectrum appears smoothened
(1.6).
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Figure 1.4. UWB Gaussian pulse.

1.1.5 Channel Model
The UWB wireless communication channel can be described with the aid of the channel
impulse response (CIR) function ℎ(𝑡), stochastically modelled as

ℎ(𝑡) =
𝑁

∑
𝑛=1

𝑎𝑛𝛿(𝑡 − 𝜏𝑛)) (1.4)

where 𝑁 is the number of multipath components of amplitude 𝑎𝑛, delay 𝜏𝑛 and phase 𝜃𝑛;
𝛿 is the dirac’s delta function. In Non-Line-of-Sight cases, more complex models can be
used, also accounting for phase shifts.

ℎ(𝑡) =
𝑁

∑
𝑛=1

𝑎𝑛𝛿(𝑡 − 𝜏𝑛) 𝑒𝑗𝜃𝑛 (1.5)

In 1.5, 𝜃𝑛 is the angle representing the phase shifting caused by the signal passing through
an obstacle. The CIR is also equivalent to the inverse Fourier transform of the complex
transfer function 𝐻(𝑗𝜔). If the channel is modeled in such way, the response 𝑦(𝑡) of any
transmitted signal 𝑠(𝑡) is found computing the convolution integral and adding a complex
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Figure 1.5. Modulation techniques: BPM, PAM, OOK and PPM.

Gaussian noise:
𝑦(𝑡) = ∫

𝑖𝑛𝑓

−𝑖𝑛𝑓
𝑠(𝑥)ℎ(𝑡 − 𝑥) 𝑑𝑥 + 𝑛(𝑡) (1.6)

1.2 UWB for Localization

1.2.1 Ranging Setup and Terminology
To introduce the section about positioning methods, the typical experimental scenario
will be presented, and the main specific terminology will be defined.

Referring to 1.7, the main elements are:

18



1.2 – UWB for Localization

Figure 1.6. The spectrum generated by constant rate pulses (a) and the one
generated by PPM (b).

• Anchor: fixed UWB transmitter/receiver, used as reference point for the positioning
problem;
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Figure 1.7. Ranging measurement setting.

• Tag: moving UWB node, attached to the point to locate and periodically communi-
cating with all the anchors;

• Direct Path: straight line connecting an anchor to a tag;

• Obstacle: fixed or moving object obstructing the direct path between one or more
anchor/tag couples;

• Multipath components: non-direct path signals (deriving from reflections, for ex-
ample) arriving at the receiver.

1.2.2 Ranging Methods
There are four main methods to estimate the distance between two UWB sensors:

• Received Signal Strength (RSS), that estimates the distance from the amplitude of
the received signal. An accurate knowledge of the path loss is vital for the effective-
ness of the system;

• Angle of Arrival (AOA), that estimates the direction of the main signal path. Mul-
tipath components, as well as Non-Line-of-Sight, dramatically affect the result;

• Time of Arrival (TOA), that estimates the distance by measuring the propagation
time of the signal. It requires synchronization between anchors and tags, and cor-
rectly identifying the first path is an important issue;

• Time Delay of Arrival (TDOA), which is a variant of TOA measuring time differ-
ences between the measurements and reducing synchronization errors.

20



1.2 – UWB for Localization

Considering the very large bandwidth of an UWB system and its fine time resolution,
TDOA and TOA methods are the most suitable and precise for this technique. In the
following, the TOA method will be presented in detail and discussed.

Time of Arrival (TOA) Ranging

For the sake of simplicity, only the Line-of-Sight (LOS) condition will be discussed. In
this case the phase delay of the signal is negligible, and the CIR can be modeled as

∞

∑
𝑛=1

𝑎𝑛𝛿(𝑡 − 𝜏𝑛) (1.7)

The principle is intuitive: the distance 𝑑 between two nodes can be estimated from the
time interval 𝑠 that it takes the signal to travel from one point to another. Knowing the
wave speed is comparable to the speed of light 𝑐, the relation is

𝑑 = 𝑡𝑐 (1.8)

𝑡 is usually computed as a difference of timestamps. Let’s consider the transmission
scheme in 1.8: 𝑇𝑟𝑜𝑢𝑛𝑑 is the time interval between the transmission of the message from
Device A and the reception of the answer, while 𝑇𝑟𝑒𝑝𝑙𝑦 is the time Device B takes to receive
and send back the response. The difference between the intervals is the total travel time
of the signal back and forth, so

𝑇𝑝𝑟𝑜𝑝 =
𝑇𝑟𝑜𝑢𝑛𝑑 − 𝑇𝑟𝑒𝑝𝑙𝑦

2
(1.9)

Figure 1.8. Single-Sided Two-Way Ranging (SS-TWR) transmission scheme.

This is the simplest transmission protocol and is called Single-Sided Two-Way Rang-
ing (SS-TWR), as it needs only the transmission of two messages between Device A (the
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anchor) and B (the tag). Moreover, global synchronization between the sensors is not nec-
essary. Other more sophisticated protocols can be used to increase the accuracy of the
measurements, but in most of the cases the drawback is the need to exchange more mes-
sages. An example is the Symmetrical Double-Sided Two-Way Ranging, in which one
more message is exchanged. In this case, estimates are less affected by errors induced by
the crystal that generates the clock.

1.2.3 Main Sources of Error
Now the principal phenomena causing errors in the range measurements will be briefly
discussed [2]. The focus will be on the problem of NLOS, as it is the issue that this thesis
aims at tackling.

Multipath propagation

In conventional TOA algorithms, the estimate of the time of arrival is the time shift of
a template signal producing the maximum correlation with the received signal. How-
ever, in multipath environments this method is not optimal since many reflections of the
transmitted signal interfere and lead to errors. Fortunately, the large bandwidth of UWB
allows to distinguish multipath components from direct path without the use of complex
algorithms, making it a minor issue for ranging estimations.

Multiple Access Interference

In environments in which multiple nodes are active, signals can interfere with each other
and degrade the performance of the ranging method. Many techniques have been devel-
oped to tackle this problem, and most of them are based on a specific training code that
helps the transmitter and the receiver to properly set-up.

High Time Resolution

The extremely large bandwidth of UWB signals enables very accurate estimations, but
also creates some challenges in practical implementations. In fact, high time resolution
means that phenomena like clock drift and jitter become very relevant to guarantee a
certain accuracy. Moreover, it happens to be very impractical to sample the received
signal at above the Nyquist rate, which is on the order of tens of GHz

Non-Line-of-Sight

It occurs in whatever case in which an obstacle blocks the direct path between tag and an-
chor. Considering the typical environment for service robotics applications, the obstacle
could be static like a wall or a piece of furniture, or dynamic, caused by the presence of
people. In this case two sub-scenarios are possible:
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• Soft NLOS: the direct path of the signal arrives to the receiver with a lower amplitude
than the reflections because of the attenuation given by the material;

• Hard NLOS: the direct path does not arrive with a sufficient amplitude to be distin-
guished from the noise, so the reflections are the first detected signals.

In this thesis both the situations will be tackled. The consequence is that the estimate of
TOA, and thus the range, is generally greater than the true value as it represents the length
of a non-direct path. This problem is considered as the main drawback of UWB, as a small
error determination of the first path leads to a great bias on the measurements. Several
techniques have been adopted to solve this problem, as it will be further discussed in
Chapter 2. The most effective method consists in identifying the NLOS measures in real-
time and exclude them from the positioning algorithm. Many techniques have proven to
achieve very good results in the identification, starting from statistical methods to modern
machine learning algorithms. The main drawback, although, is that a high number of
anchors is required to obtain a univocal position even when some anchors are excluded
from the computation; for this purpose, it is interesting to develop mitigation methods
allowing to use all the anchors regardless the situation.

1.2.4 Trilateration

The estimation of the position of the tag from the range measurements can be performed
using different algorithms, all based on a geometric problem of trilateration. Considering,
for clarity, the two-dimensional case, the location (𝑥, 𝑦) of the tag can be found at the
intersection of the circles having center in the anchor position (𝑥𝑖, 𝑦𝑖) and radius equal to
the measured range 𝑑𝑖. This implies that, ideally, a minimum number of three anchors is
needed to univocally determine the position (1.9).

In the ideal 3D case, it is sufficient to solve the non-linear system containing the equa-
tions of four circles:

⎧⎪
⎪
⎨
⎪
⎪⎩

(𝑥 − 𝑥1)2 + (𝑦 − 𝑦1)2 + (𝑧 − 𝑧1)2 = 𝑑2
1

(𝑥 − 𝑥2)2 + (𝑦 − 𝑦2)2 + (𝑧 − 𝑧2)2 = 𝑑2
2

(𝑥 − 𝑥3)2 + (𝑦 − 𝑦3)2 + (𝑧 − 𝑧3)2 = 𝑑2
3

(𝑥 − 𝑥4)2 + (𝑦 − 𝑦4)2 + (𝑧 − 𝑧4)2 = 𝑑2
4

(1.10)

However, in practical cases it is likely that the intersection is not found due to the error
on the range estimates. It is also common to use five or more anchors to increase the
accuracy of positioning. In both the cases the problem is no more univocally determined,
as it is respectively underdetermined and overdetermined problem. This means that an
optimality criterion should be found to determine the point. Typical approaches use nu-
merical algorithms that minimize the distance between real and estimated positions.
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Figure 1.9. Two-dimensional positioning problem using three anchors.

Gauss-Newton

The Gauss-Newton method is an iterative process used to solve nonlinear problems of
least-square approximation. The goal is to minimize the sum of the squares of the resid-
uals

𝑆 =
𝑚

∑
𝑖=1

𝑟2
𝑖 (1.11)

Where m is the number of anchors and 𝑟𝑖 is the residual, defined as

𝑟𝑖 = 𝑑𝑖 − √(𝑥 − 𝑥𝑖)2 + (𝑦 − 𝑦𝑖)2 + (𝑧 − 𝑧𝑖)2 (1.12)

𝑑𝑖 is the distance between anchor i and the tag, x = [𝑥, 𝑦, 𝑧] is the position vector of
the tag and x𝑖 = [𝑥𝑖, 𝑦𝑖, 𝑧𝑖] the position vector of the 𝑖𝑡ℎ anchor. At each step, starting
from an initial estimate x0, the algorithm computes the value x𝑘+1 as follows:
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x𝑘+1 = x𝑘 − (J𝑇J)−1J𝑇r(x𝑘) (1.13)

Where r is the vector of the residuals and J is the Jacobian matrix of the system.

J =
⎡
⎢
⎢
⎢
⎣

−(𝑥𝑘−𝑥1)
√(𝑥−𝑥1)2+(𝑦−𝑦1)2+(𝑧−𝑧1)2

⋯ −(𝑧𝑘−𝑧1)
√(𝑥−𝑥1)2+(𝑦−𝑦1)2+(𝑧−𝑧1)2

⋮ ⋱ ⋮
−(𝑥𝑘−𝑥𝑚)

√(𝑥−𝑥𝑚)2+(𝑦−𝑦𝑚)2+(𝑧−𝑧𝑚)2
⋯ −(𝑧𝑘−𝑧𝑚)

√(𝑥−𝑥𝑚)2+(𝑦−𝑦𝑚)2+(𝑧−𝑧𝑚)2

⎤
⎥
⎥
⎥
⎦

(1.14)

The algorithm stops once a certain precision threshold is reached, or the number of
iterations exceeds the imposed limit. As many other estimation algorithms, the choice of
the initial estimate is crucial for the convergence.

Extended Kalman Filter

The Kalman filter (KF) is ”an optimal Bayesian recursive estimator for linear dynamic
systems from noisy measurements” [3]. The generic state equations for a dynamic system
are

x𝑘 = f𝑘−1(x𝑘−1,u𝑘−1, v𝑘−1), z𝑘 = h𝑘(x𝑘,u𝑘,w𝑘), (1.15)

Where x is the system state, u is the input and z is the measured output. f and h are
nonlinear functions and v, w are noises. To apply standard KF, the following assumptions
must be made:

• The disturbances v𝑘 and w𝑘 are gaussian density functions of known parameters and
are additive

v𝑘 ∼ 𝒩 (0,Q𝑘), w𝑘 ∼ 𝒩 (0,R𝑘) (1.16)

• The function f𝑘−1 is known and linear with respect to (x𝑘−1,u𝑘−1) and v𝑘−1

• The function h𝑘 is known and linear with respect to x𝑘 and w𝑘

In cases where the dependency between the state and the measurements is nonlinear, like
positioning, more complex methods must be used. The Extended Kalman Filter aims at
achieving optimal estimation linearizing the state equations through a Taylor expansion
around a certain mean value and apply the linear Kalman Filter to this linearized model.
The algorithm is a succession of prediction and update. At each time step:

1. Prediction:

(a) Estimate the predicted state

̂x𝑘|𝑘−1 = F𝑘 ⋅ ̂x𝑘−1|𝑘−1 + B𝑘,u𝑘 (1.17)
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Where B is the input matrix and F is the linearized state matrix defined as

F𝑘 = ∇xf𝑘(x,u)|x=x′ (1.18)

That is the Jacobian of f(x,u) with respect on x, taking x′ as linearization point
(b) Estimate the predicted covariance matrix ̂P based on prior knowledge

P̂𝑘|𝑘−1 = F𝑘 ⋅ ̂P𝑘−1|𝑘−1 ⋅ F𝑇
𝑘 + Q𝑘 (1.19)

2. Update:

(a) Compute the innovation as the difference between the measurement and its pre-
diction

ỹ𝑘 = z𝑘 − h(x̂𝑘|𝑘−1) (1.20)

(b) Compute the Kalman gain matrix

K𝑘 = ̂P𝑘|𝑘−1 ⋅ H𝑇
𝑘 ⋅ (H𝑘 ⋅ P̂𝑘|𝑘−1 ⋅ H𝑇

𝑘 + R𝑘)−1 (1.21)

Where R represents the covariance matrix related to the observation vector,
while H is the linearized observation matrix defined as

H𝑘 = ∇xh𝑘(x) (1.22)

(c) Compute the a posteriori state estimate

̂x𝑘|𝑘 = ̂x𝑘|𝑘−1 + K𝑘 ⋅ ̃y𝑘 (1.23)

(d) Compute the a posteriori state covariance matrix

̂P𝑘|𝑘 = (I𝑛 − K𝑘 ⋅ H𝑘) ⋅ ̂P𝑘|𝑘−1 (1.24)

Where I𝑛 is the identity matrix

1.3 Deep Learning

1.3.1 Definition of Machine Learning
According to [4], the engineering-oriented definition of machine learning was originally
created by computer scientist Tom Mitchell in 1997: “A computer program is said to learn
from experience 𝐸 with respect to some task 𝑇 and some performance measure 𝑃, if its
performance on 𝑇, as measured by 𝑃, improves with experience 𝐸”. Machine learning is,
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Figure 1.10. The different learning cycles for the classic approach and ML.

in practice, the ability of computers to learn without being explicitly programmed but ex-
tracting information from examples and deriving more general conclusions by induction.

As can be seen in 1.10, the main advantage with respect to classical programming
and machine learning is that the optimization cycle, called training, is automatic, and this
allows to push optimization to unpreceded levels without manually altering the model.
Obviously, the more the problem is complex, the higher amount of data is required to
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properly train the algorithm. A correct selection of the data and of the evaluation strategy
is of paramount importance and should be assessed during the preliminary study of the
problem. There are different types of machine learning systems, based on the following
criteria:

• Supervised/Unsupervised, whether they are trained with the supervision of a human;

• Online/Batch learning, whether they learn incrementally on the run;

• Instance-based/Model-based, whether they work just comparing new data to known
data or try to detect patterns and build a predictive model;

• Classification/Regression, whether the model predicts a discrete label for each data
point or a continuous value.

1.3.2 Challenges in Machine Learning
As said before, the potentiality of machine learning is enormous and can span through
many different contexts. However, some critical issues must be considered and correctly
managed to achieve good results with ML methods.

Quantity, Quality and Representativeness of Data

First, machine learning has its foundation on data, so it is paramount importance that the
learning process feeds the algorithm with a reasonable amount of good-quality data. In
2001, a research from Microsoft [5] showed that even simple algorithms can achieve very
good performance if they are given enough data. This led the authors to reconsider the
trade-off between algorithm and dataset development.
On the other hand, it is not always easy, or at least cheap, to build a dataset big enough
to show such results. Small and medium datasets are very common, so it is often more
feasible to work on an optimal learning model than collecting millions of data-points.
Nevertheless, a large amount of data does not always guarantee a correct representation
of the phenomenon under study. In fact, the dataset should also guarantee representative-
ness, i.e. a correct coverage and balance between all the possible cases. A model trained
on a set that is plenty of examples extracted under the same conditions will be biased to
work well only under those conditions and be bad on something it is not prepared for. The
more an algorithm is expected to generalize the examples, the more it should be trained
on data from different conditions.
Another important rule to follow is to select only the meaningful features from the data
before feeding it into the algorithm and discard the futile ones. The process of feature
engineering is crucial not to get the model stuck into trying to learn from irrelevant data
and emphasize the important markers.
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Overfitting and Underfitting

Overfitting is one of the most common problems in modern machine learning algorithms,
in which huge quantities of data are used to train very complex models. When the algo-
rithms try to fit the data with the best possible accuracy it models very fine trends in the
samples. Doing so, wrong generalizations can occur, either caused by chance (like irrel-
evant features, for example) or noise in the data. This leads to critical errors in the testing
phase where a simpler model could have performed better. An example can be observed
in 1.11, where the goal is separate the blue data points from the red ones. The correctly
fitting model is represented by the black line and leaves some outliers in the wrong half
of the plane. The green line, however, puts every point in the right-side overfitting the
data: it models something that is casual or irrelevant (in this case noise) leading to a loss
of accuracy in testing.
Underfitting is the opposite problem, although it happens more rarely. It occurs when a
too simple model is used to fit the data, resulting in a very bad performance also on the
training set. In 1.11, underfitting is represented by the orange line.

Figure 1.11. Example of correct fitting (black), overfitting (green) and underfitting (orange).
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1.3.3 Common Learning Algorithms

In the following paragraphs, the most used machine learning algorithms will be briefly
explained, starting from the simpler ones and going towards more recent methods. The
explanation aims at giving some context about the main techniques that can be found in
literature.

Linear Regressor

It is the simplest learning model possible since it is realized by a weighted sum of the
input features. The weights are the tunable parameters of the model and an additional
bias term could be present.

̂𝑦 = 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 + ⋯ + 𝜃𝑛𝑥𝑛 (1.25)

In 1.25 ̂𝑦 is the predicted value, 𝑛 is the number of features, 𝑥𝑖 is the i-th feature value
and 𝜃𝑖 is the j-th model parameter (including the bias 𝜃0 and all the feature weights). The
expression can also be written in vectorial form as follows:

̂𝑦 = ℎ𝜃(𝑥) = 𝜃 ⋅ x (1.26)

To train this model properly we need to find the value of 𝜃 that minimizes the error of
the predictions. The most used metric for this purpose is the mean squared error (MSE):

MSE(X,𝜃) = 1
𝑚

𝑚

∑
𝑖=1

(𝜃𝑇x(𝑖) − 𝑦(𝑖))2 (1.27)

So, the optimization problem to solve is the following:

̂𝜃 = 𝑎𝑟𝑔 min
𝜃

𝑀𝑆𝐸(𝜃) (1.28)

Since the model is linear, the functional associated to this problem is convex. This
means that the absolute minimum can be computed in closed form, and corresponds to
the so-called least square (or normal equation) solution:

�̂� = (X𝑇X)−1X𝑇𝑦 (1.29)

Where �̂� is the value of 𝜃 that minimizes the cost function and 𝑦 is the vector of target
data-points. This method is very light and fast, and leads to good results in simple cases,
where a linear model is able to describe the data under study. This is not always possible,
so kernels and nonlinear models have been developed.
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Support Vector Machine

A Support Vector Machine (SVM) is a powerful tool to perform linear or nonlinear clas-
sification and regression. Its base concept is described in 1.12a: the algorithm finds the
largest possible strip of plane between the data points on the margin. This method is com-
putationally very effective because it only uses the closest points (called support vectors)
and ignores the others. When the complete separation of the classes is not possible, an
approach called soft margin classification must be applied: the outliers are allowed to stay
on the wrong side of the margin and the algorithm tries to minimize their number (1.12b).
When the data is not linearly separable, a kernel trick must be used to project features in
a new data space and obtain a nonlinear classifier.

Figure 1.12. Example of SVM for classification: hard margin (a) and soft margin (b).

K-Nearest Neighbor

KNN is a non-parametric method that can be used for classification or regression. The
input for the algorithm consists of the k closest data-points to the sample under test in
the feature space. In case of classification, the point is assigned the most frequent label
among the neighbors, while for regression the output is the average of the values of the
neighbors. The algorithm relies on the concept of distance, so the choice of the metric is
critical as well as data normalization. A peculiarity of this method is that it is affected by
the local structure of the data in different ways varying the value of k 1.13.

1.3.4 Convolutional Neural Networks
Convolutional Neural Networks first came out in the 1980s from the study of the brain’s
visual cortex. In the last decade, thanks to the outstanding progress of technology lead to a
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Figure 1.13. Example of KNN classification for different values of k.

great increase of the computational power of machines. This made possible to train CNN
with great amounts of data reaching superhuman performance on complex visual tasks
like classification, segmentation and identification. One of the most impressive results
are the one reached by autonomous driving systems and natural language processing. In
this section the basic building blocks and the typical project workflow will be presented.

Convolutional Layer

The most important block of a CNN is the convolutional layer (1.14). Its goal is to extract
features from the input and optimization makes it possible to learn how to do it in the best
way. Each pixel on the layer is connected to a specific receptive field, concentrating the
input in small low-level features. Stacking convolutional layers more complex (or high
level) features can be extracted.

Figure 1.14. Convolutional layers with rectangular receptive fields [4].
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This method leverages the fact that different levels of structure are present in an image:
the direction of lines, the dimension of objects, their disposition, many types of patterns
can be found and elaborated. Each cell weights its convolutions with a certain value that
is learnt through the training phase thanks to a mechanism called backpropagation.

Figure 1.15. Connection between layers, filter dimensions and zero padding [4]

Referring to 1.15, 𝑓ℎ and 𝑓𝑤 are the dimensions of the receptive field, 𝑖 and 𝑗 are the
dimensions of the layer. The darker pixels represent the so called “zero padding”: to feed
each pixel with the correct number of inputs, a contour of zeros is added to the image.
The distance between the receptive fields of adjacent pixels is called stride (in this case
equal to 1): when a reduction of the number of parameters is needed, strides greater than
one can be adopted, leading to a less complex model. Images are usually not made of a
single layer: in fact, color images contain three levels, one for the red channel, one for
blue and one for green. In the same way, convolutional layers can be designed to contain
multiple filters, increasing the variety of extracted features and, of course, computational
weight.

Pooling Layer

Another way to reduce the complexity of the model is pooling. It is usually performed
after feature extraction (so after convolutional layers) and consists in keeping only the
features showing the highest values or “activations”. So, for each group of pixels the most
significant value is considered, and all the others are deleted. This method is called Max
Pooling and significantly reduces the dimensions of the net. Other pooling techniques are
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possible: for example, Average Pooling considers the mean value among the considered
space.

Fully Connected Layer

Fully connected (FC) layers connect every neuron from one layer to every neuron of the
next (1.16). This creates 2𝑛 connections, where n is the number of neurons of the layer.
FC layers are used to process the features extracted by the previous layers, and generally
end with a single neuron preparing the output to be generated. Every neuron holds a
trainable weight.

Figure 1.16. Fully connected layer with N neurons.

Activation Function

Activation functions determine the output of a certain layer, determining not only the
overall output of the algorithm, but also its convergence speed. They are mathematical
expressions that regulate neurons’ activation, such that their output value is high if the
input is relevant. Typically, the output is rescaled between 0 and 1 or between -1 and
1. Computational efficiency is of fundamental importance, as activation functions must
be run for each neuron: for this reason, many different functions have been developed to
achieve the best trade-off between performance and simplicity. Some examples can be
found in 1.17
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Figure 1.17. Some of the most used activation functions

Loss

To make the neural network work effectively, all the weights present in the structure must
be optimized in the so called “training phase”. In this phase, the net is fed with a huge
number of examples and its ability of outputting the expected result is measured by some
loss function. Like activation functions, losses must be fast to compute and precise in
describing how the model is wrong with respect to the collected data. The most common
loss functions are:

• MSE (Mean Squared Error)

MSE (𝑦, 𝑓(𝑥)) = 1
𝑚

𝑚

∑
𝑖=1

(𝑥(𝑖) − 𝑦(𝑖))2 (1.30)

• MAE (Mean Absolute Error)

MAE (𝑦, 𝑓(𝑥)) = 1
𝑚

𝑚

∑
𝑖=1

|𝑥(𝑖) − 𝑦(𝑖)| (1.31)

• Huber loss

𝐻(𝑦, 𝑓(𝑥)) = {

1
2 [𝑦 − 𝑓(𝑥)]2 for |𝑦 − 𝑓(𝑥)| ≤ 𝛿,

𝛿 (|𝑦 − 𝑓(𝑥)| − 𝛿/2) otherwise.
(1.32)
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Optimizer

The optimizer has the responsibility of updating the weight of every neuron at each train-
ing step through backpropagation. As the goal is to reach the absolute minimum of the
loss function

𝑊 = 𝑎𝑟𝑔 min
𝑊

MSE(𝑊 ) (1.33)

the optimizer typically exploits the gradient of the function to descend towards lower
and lower minima.

𝑊𝑡+1 = 𝑊𝑡 − 𝜂∇𝑊 (1.34)

where W is the parameter of the model, 𝜂 is a weight applied to the correction and
called Learning Rate (LR), and 𝛿𝑊 is the partial derivative of the loss function with
respect to 𝑊. This approach is called Gradient Descent (GD) and is the base of many other
optimizers, which add more sophisticated mechanisms to guarantee a good convergence
in short time. The most used optimizer nowadays is Adam [6], which adds to the standard
GD three main features:

• Stochasticity: instead of running the optimizer on all the data points at each step, a
small set of them is considered. This dramatically reduces computational time and
still guarantees fast convergence even if the computed gradient is just an approxi-
mation of the real one.

• Per-parameter Learning Rate: the learning rate is not the same for all the parameters,
so the optimizer updates some of them faster than others. This is very effectful for
computer vision problems, in which sparse gradients are frequent.

• Momentum: to prevent the optimizer from getting stuck in local minima, the step of
each instant is influenced also on past gradient values.

1.3.5 Deep Learning
Now that the main blocks and strategies used in Convolutional Neural Networks have been
presented, a short recap of how “deep” and “very deep” convolutional networks evolved
in the last years evolved is addressed. As mentioned before, progress in computational
power of machines lead to a growth in model complexity. For what concerns CNNs,
this meant deepness: stacking more and more layers allows to extract more meaningful
features from data and reach higher accuracy in many tasks. The first outstanding result
in this direction was achieved by Alex Krizhevsky in 2012 with AlexNet [7]. The primary
discover was that depth is essential for high performance models, and the second was that
such deepness can be feasible using graphic processing units (GPUs) for training. As
can be seen in 1.18, the net used multiple convolutional layers, max pooling and fully
connected layers before the output.
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Figure 1.18. Structure of Alexnet

AlexNet outperformed every other image classification algorithm, drastically raising
the bar for every machine learning competition. In the next few years an explosion in
deep learning research lead to the development of several new methods and structures for
neural networks, that will be mentioned in the next chapters.
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Chapter 2

State of the Art

This chapter is dedicated to the presentation of the techniques that have been developed in
the last years to tackle the problem of NLOS for positioning purposes. The papers that will
be referenced are the theoretical bases on which this thesis is grounded, and the starting
point for the development of a new and better mitigation method. As the two aspects are
strongly correlated, both classification and mitigation techniques are presented, alongside
some recent advance in neural networks that has been adopted for the design.

2.1 NLOS Classification
As mentioned before, one first way to compensate NLOS errors is to properly identify
what range measurements are affected by error and exclude them from the computation
of the position estimate. This technique proved to work fine in many scenarios but shows
a strong drawback: it needs many more anchors than the minimum, and still does not
provide a good solution for the limit cases in which the anchors to exclude are too much.
In such a limit case the number of available range measurements could be insufficient for
the determination of the position. Anyways, if the anchor position is chosen wisely that
should be unlikely to happen, so classification can still be a good choice for some appli-
cations. Here some of the most relevant contributions present in literature are explained
and commented, starting from classic statistical approaches, to shallow machine learning
methods and recent deep learning experiments.

2.1.1 Statistical Approach
The very first methods that aimed at performing classification relied only on simple data
like received signal strength (RSS) and total signal energy, trying to fix some simple
rule to distinguish LOS from NLOS measurements without too much computation. It is
the case of [8], in which a threshold on RSS does the job, obtaining good results. The
value of the threshold, though, is strongly dependent on the measurement scenario and
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the distances between the tag and the anchors.
Then, other statistical strategies have been developed: [9] applies Bayesian methods based
on the estimation of the density function of the data, while [10] introduces a fingerprint-
based algorithm using a vocabulary. For each measurement, sample signals are compared
to the CIR to determine the channel type.

2.1.2 Shallow Learning
The explosion of machine learning in the last decade has led to the development of novel
techniques to achieve better and better results. Shallow learning algorithms do not re-
quire huge amounts of data, so tools like KNN and others have become largely used.
Among the most relevant ones, SVMs have been adopted by [11] and [12] and used in
combination with a least squares (LS) algorithm by [13] and [14]. For [15], instead, the
AdaBoost (Adaptive Boost) technique has been used [16]. It consists in a meta-algorithm
that transforms several low-accuracy methods, called “weak learners”, in a more per-
forming “strong learner”. To do so, it corrects the errors in the learners and keeps their
strength. In [17] a Multi-Layer Perceptron (MLP) starts introducing some deepness with
a very small neural network, although a Binary Decision Tree (BDT) still performs better
with an accuracy of 87%.
The main flaw of shallow algorithms, although they perform very well for classification,
is that the features need to be extracted manually from the CIR signal. The choice of the
features is crucial for the effectiveness of the method and can depend on the scenario: the
most used are:

• Received Signal Power Level

RSL = 10 𝑙𝑜𝑔10 (
𝐶 ⋅ 217

𝑁2 ) − 𝐴 dBm (2.1)

• Received Signal Power to First Path Power Level

RFPR = RSL − FSL (2.2)

where FSL is the estimated First path Signal power Level, computed as

FSL = 10 𝑙𝑜𝑔10 (
𝐹 2

1 + 𝐹 2
2 + 𝐹 2

3

𝑁2 )
− 𝐴 dBm (2.3)

• Signal Energy

𝜖𝑟 = ∫𝑇
|𝑟(𝑡)|2𝑑𝑡 (2.4)
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• Mean Excess Delay Spread

𝜏MED = ∫𝑇
𝑡
|𝑟(𝑡)|2

𝜖𝑟
𝑑𝑡 (2.5)

• Variance

𝜎2
|𝑟| = 1

𝑇 ∫𝑇
[|𝑟(𝑡)| − 𝜇|𝑟|]

2 𝑑𝑡 (2.6)

• Mean Value

𝜇𝑟 = 1
𝑇 ∫𝑇

|𝑟(𝑡)|𝑑𝑡 (2.7)

• Kurtosis

𝜅 = 1
𝜎4

|𝑟|𝑇 ∫𝑇
[|𝑟(𝑡)| − 𝜇|𝑟|]

4 𝑑𝑡 (2.8)

• Amplitude

𝐴 = max (|𝑟(𝑡)|) (2.9)

2.1.3 Deep Learning
Since shallow algorithms reach very high accuracy values, not many deep learning has
been used for classification if not for the previous issue regarding features. Nevertheless,
neural networks demonstrated to allow even better performances in many scenarios. In
[18] a CNN is used and compared with SVMs. The result is a 20% to 45% improvement
in overall classification (2.1). A Recurrent Neural Network (RNN) is applied for classi-
fication in [19], yielding very high accuracy. An RNN is a neural network in which the
outputs of upper layers are used as inputs for lower ones, transforming a layer in a mem-
ory cell. The presence of feedback connections builds the so-called Long Short-Term
Memory (LSTM) structure.

2.2 Error Compensation
Trying to compensate the error caused by NLOS condition is a way harder task for any
algorithm. When simply identifying the problem can be tackled efficiently from simple
models, a regressor that traces it back to the measurement error has to take into account
multiple factors: different materials give different delays to the signal, and the walls that
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Figure 2.1. Structure of the CNN used for classification in [18]

waves find on their way generate different reflections depending on their position and
orientation. This leads to a wide variety of situations that should be covered by a method
that aims at generalizing the phenomenon, but still this goal does not seem to be achieved
from modern techniques, although good results have been reached for the single scenario.

2.2.1 Statistical Approach
Kalman Filter (KF), in many variants, is one of the most used statistical methods adopted
for mitigation. In [20] KF is aided by a machine learning classification method reaching
good results. Unscented Kalman Filters (UKF) are adopted in [21]: it is a nonlinear
extension of KF based on unscented transformations. In [22] a Schmidt-Kalman filter
(SKF) is used to reduce the complexity that a standard KF would carry to the computation
and still yield acceptable results. Finally, a Biased Kalman Filter (BKF) is adopted in [23],
demonstrating the effectiveness of the method. Moreover, other methods have proven to
improve the precision of ranging, like fuzzy theory [24], non-parametric error modelling
[25] and expectation maximization [26].

2.2.2 Shallow Learning
Like for classification, machine learning allows to reach much higher performance than
classic models and has been largely experimented. In [27] the idea of a kernel-based
regressor is applied guaranteeing robustness to fingerprinting approaches. A Relevance
Vector Machine (RVM) is used in [28], while a least square version of SVM is developed
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in [13]. A complete comparison between SVMs and Gaussian Processes (GP) is con-
ducted in [29] and [30], showing that such non-parametric techniques have the potential
to significantly improve localization. In [31] all the main shallow methods are considered
and compared: Binary Decision Tree, SVM, KNN, Gaussian Process and Generalized
Linear Models.
This paper proved that unless some improvement can be obtained, mitigation is a much
more challenge with respect to classification, and that results strongly depend on the mea-
surement scenario. This discourages from using shallow methods because the undue
specificity could be derived from the fact that the features are extracted manually: some
higher-level patterns in the CIR may hide the key to generalize the phenomenon.

2.2.3 Deep Learning
This last consideration led many researchers to start big measurement campaigns and
experiment on deeper algorithms. In [32] an artificial neural network is used: it consists
in a deep stack of fully connected layers intercut with batch normalization layers and
ReLU activation functions (2.2).

Figure 2.2. Structure of the ANN used for mitigation in [32]

Batch normalization is a method developed in 2015 to make NNs work faster: it scales
and center the output of each layer mitigating the problem of internal covariate shift [33].
Convolutional Neural Networks are adopted in some recent papers: in [34] it is showed
that mitigation is not very effective in environments different from the one in which train-
ing takes place, [35] applies specifically to the error given by the orientation of the an-
tenna, showing good results, and [36] proposes a direct position estimation for enhanced
precision, but not focusing on the NLOS issue.
Many methods try to combine Neural Networks with other techniques. In [37], for ex-
ample, a NN is combined to fingerprinting using raytracing, but this implies to have a
detailed description of the environment and, hence, is not easily generalizable to other
situations. Same consideration can be made for [38], that combines fingerprinting with
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a Deep Belief Network (DBN), and [39], that uses a Supervised Autoencoder (SAE) to
model the environment in which the positioning takes place. An autoencoder is a neu-
ral network that learns to copy its input to the output, encoding and then decoding data.
The inner layer holds the feature representation of the input and carries the meaningful
information. Teaching the SAE to model and reproduce CIR signals, it learns intrinsic
properties about the transmission channels, but they are still too specific to be translated
to a different context. In [40], instead, a CNN is applied jointly with a Weighted Least
Squares positioning algorithm.

Although this method achieves good results in improving position accuracy, the au-
thors state that the tests have been conducted in the same environment in which the dataset
was built, not guaranteeing generality.
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Chapter 3

Experimental Set

As seen in Chapter 2, all the NLOS mitigation techniques suffer from the fact that results
are strongly dependent on the measurement scenario and difficult to generalize. For this
reason, the goal of this thesis is to develop a novel mitigation method that goes deeper
and extracts higher level features: in this way, it is possible to achieve a better scalability
of the model to different environments. As deeper learning techniques require larger
amounts of data, the first step is collecting a sufficiently big set of ranging measurements
in the first experimental scenario further described in this chapter. Then, the meaningful
information must be extracted and prepared to be used from the mitigation algorithm.
After the algorithm has been properly trained and tuned, the method is tested “online”,
that is in a real scenario in which the position of a tag has to be estimated in real time.
This scenario is described and commented further on. Finally, some issues regarding the
sensors are reported, pointing at the critical aspects and possible workarounds.

3.1 Hardware and Software

3.1.1 Decawave TREK1000

TREK1000 is an UWB positioning evaluation kit from DecaWave (3.1). As demonstrated
in [41], this system has the best performance compared with other systems available on
the market. Each TREK100 kit contains four EVB1000 units that can operate as anchors
or tags. Each board is equipped with DecaWave’s DW1000 IEEE802.15.4-2011 UWB
compliant wireless transceiver Integrated Circuit (IC), STM32F105 ARM Cortex M3
processor, micro-USB interface, LCD display and off-board antenna. The system has
a minimum accuracy of ±10 cm using two-way ranging time-of-flight technique. The
minimum positioning accuracy estimated by the manufacturer is ±30 cm for a moving tag
and the nominal maximum measurable distance in LOS condition is about 300 m. The
EVB1000 boards have different working modes that can be configured using dip-switches.
It is possible to choose between two channels (2 and 5), which have two different central
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frequencies (3.99 GHz and 6.48 GHz), and two data rates (110 kbps or 6.8 Mbps). Table
3.1.1 contains all the details about the board: the default setting (3.99 GHz and 110 kbps)
is suggested for long distance ranging and it guarantees an update rate of 3.5 Hz confirmed
by experimental tests. The TREK1000 kit is also supplied with the software DecaRanging
that allows to save the acquired ranging data, while 3D positioning needs to be performed
with custom methods. The structure and functioning of DecaRanging is presented in
Section 3.1.3.

UWB Antenna

DWM1000 IC
Reset

ARM Microprocessor

ARM JTAG Header

Dip-Switches

USB Connector

Figure 3.1. Decawave EVB1000 device.

3.1.2 Leica AT403

The absolute laser tracker AT403 is used to obtain a precise ground truth for both range
and position measurements. The tracker is able to accurately follow the movement of a
reflector and measure the absolute position at regular intervals in time or in space. This
feature is particularly interesting for the scope of the thesis, as the required number of
samples is high and taking range estimates singularly would require a huge amount of
time. The list of measurements taken in each session is saved, thanks to the software Leica
Tracker Pilot, into a log file reporting the 3D coordinates of the reflector with respect to
the tracker reference frame and the timestamp of the result. In 3.1.2 the main features of
the tracker are presented [42].
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Board Dimensions 120x70 mm (including the antenna)

Weight 39 g

Operating Band
3.5-6.5 GHz
6 Channels (500 MHz width)
U.S. FCC Compliant

Center Frequency
2 Channels:
Ch.2: 3993.6 MHz
Ch.5: 6489.6 MHz

Max Power Spectral Density -41.3 dBm/MHz

Antenna WB002 Omni-directional Planar

Ranging Techniques Pulsed TWR (Two Way Ranging)

Max Range 290 m (LOS)

Ranging Precision 10 cm

Localization Technique RTL software provided by Decawave

Network Protocols TDMA

Max Positioning Update Rate
(3 anchors, 1 tag) 3.57 Hz / 10 Hz (Depending on the operating mode)

Table 3.1. TREK1000 technical datasheet.

Figure 3.2. Leica AT403.
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Laser Tracker

Tripod
Remote
Control

Figure 3.3. Leica AT403 on its tripod.

3.1.3 DecaRanging
Decawave’s DecaRanging is a demonstration application that drives DW1000 integrated
circuit, to prove the accurate measurements that can be made between a pair of units us-
ing two-way ranging. The DecaRanging PC application offers an alternative to the ARM
embedded DecaRanging application allowing for additional configuration and diagnos-
tic display possibilities. A DW1000 controlled by the DecaRanging PC application can
perform two-way ranging to another DW1000 controlled by either the DecaRanging PC
application or the DecaRanging ARM application.
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Figure 3.4. Leica Red Ring Reflector 0.5”.

Sensor Unit Dimensions and Weight 290x221x188 mm / 7.3 kg

Controller Dimensions and Weight 250x112x63 mm / 0.8 kg

Measurement Angle Horizontal ±360°, Vertical ±145°

Dynamic Measuring Speed Maximum 10 Hz

Range 320 m

Accuracy ±15 µm + 6 µm/m

Laser Class 2

Laser Type 635 nm, < 1 mW

Operating Temperature -15°C to +45°C

Relative Humidity < 95%

Reflector diameter 0.5”

Table 3.2. AT403 technical datasheet [42].

There are two ways for the DecaRanging PC application to connect and control the DW1000
IC on the DW1000 evaluation boards. That is either via the USB interface or via the SPI
interface header (and employing a Cheetah USB-to-SPI convertor). In either case the
DecaRanging PC application essentially has control of the DW1000 which it drives to
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exchange messages between a pair of devices, calculate the time-of-flight of those mes-
sages and display the resultant distance between the two units. Ranging operations can be
performed in both LOS and NLOS conditions in all supported modes and configurations.

Figure 3.5. Decaranging window.

Looking at 3.5, the main elements of the DecaRanging window are visible. In the up-
per part, counters keep trace of the number of sent and received messages and of different
kind of errors. A bit below, the data of the current measurement are present alongside
statistic reports like mean and standard deviation. The commands for the configuration
of the pair of boards is in the lower part of the screen, allowing to change the settings,
modify antenna delay for calibration and assign roles to the sensors to pair them.

Through the View menu it is possible to view the CIR graph in real time, as shown in
3.6. As CIR is an array of complex values, the red line is the plot of the real values, the
green line is the imaginary signal, and the blue line is the computed magnitude. The time
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Figure 3.6. Decaranging CIR plot.

index at which the first path is detected is signed with an orange vertical line and the value
in the lower part of the graph. In the upper-left part the maximum amplitude is reported,
while information about noise and received power are in the upper-right one. From the
Debug menu it is possible to toggle CIR logging, that saves all the information about the
measures in a file. As the software is not customizable and only allows to manage one
tag and one anchor, the Contiki-UWB system is preferred. DecaRanging is mainly used
for the first tests and to precisely calibrate the sensors.

3.1.4 Contiki-UWB

Contiki is an open source operating system that runs on constrained embedded systems
and provides standardized low-power wireless communication. This OS was ported in
2011 for the Decawave EVB1000 and DWM1001 platforms as described in [43], and
includes the implementation of two communication protocols with UWB ranging prim-
itives. To correctly test the performance of a mitigation algorithm on 3D positioning, at
least four anchors and a tag are required, and DecaRanging only allows to manage two
boards. For this reason, the Contiki-UWB source code (written in C and available at
[43] ) is modified to have full management of any number of anchors. In particular, the
customized firmware allows to set the desired configuration for all the nodes, perform
ranging between the tag and each anchor sequentially and output all the important infor-
mation needed to run the algorithm: anchor label, CIR vector, range estimate and first
path index. In the next sections it will be better discussed how the data are exported and
processed to obtain the final position estimate.
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3.2 Range Measurement Campaign

Now that the main hardware and software tools have been presented, the experimental
procedure to collect the ranging estimates and build the dataset is presented. The relevant
data are transmitted by the devices via serial port and saved in memory, while a simple
Python script is used to extract the meaningful information from the log files, process it
and prepare it for the deep learning algorithm.

3.2.1 Configuration and Calibration

First, the DWM1000 boards must be configured and prepared for the measurement ses-
sion. The adopted configuration, described in 4.1, guarantees long distance ranging and
an update frequency of at least 3.5 Hz. According with the user manuals [44] and [45],
the calibration procedure is performed with a distance of 9 m between the nodes by tuning
the antenna delay such that the measured range is correct. This parameter represents the
propagation delay through the DW1000 devices from the points at which the transmitter
timestamps are applied to the points at which the receiver timestamps are captured. The
antenna delay must be the same for all the nodes, a value of 515.462 ns is assigned to both
of them.

Channel 2 - Centre 4.0 GHz (500 MHz width)

Preamble Length 1024

SFD Non Standard

Preamble Code 9

Pulse Repetition Frequency 64 MHz

Data Rate 110 kbit/s

Antenna Delay 515.462 ns

Tag Blink Period 1000 ms

Tag Poll Period 1000 ms

Anchor Response Delay 150 ms

Tag Response Delay 200 ms

Table 3.3. TREK1000 configuration for the measurement campaign.
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3.2.2 Measurement Scenario
The measurement campaign is conducted in four different environments, trying to cover a
wide variety of LOS and NLOS scenarios. In the outdoor environment the only source of
error is the presence of obstacles and the consequent signal delay. In the three rooms used
for indoor measurements, also the effect of multipath components strongly influences the
CIR signal. Taking measurements in different conditions allows also to perform training,
validation and testing on completely different datasets, and hence avoid overfitting and
encouraging the deep learning model to learn domain-independent features.
As shown in 3.7, the measurements are taken by using the laser tracker as ground truth.
First, the reflector is placed on the anchor to precisely measure its position with the laser
tracker and have a landmark. Then, AT403 follows the reflector placed on the moving
tag estimating its position ten times per second. Meanwhile, tag and anchor perform two-
way ranging. The tag follows a path that spans around the selected environment, that is
filled with obstacles to give rise to both LOS and NLOS measurements. After a satisfying
amount of samples have been obtained from an environment, the configuration is changed
by changing the position of the anchor or the type and position of the obstacles. When
a sufficient number of alternatives has been tested, the environment is changed. Three
rooms with different dimensions are chosen: one small, one medium and one big 3.4. The
shape of the rooms, although, is similar in order to consider only the effect of dimension
scaling. To consider also the effect of walls, some measurements are taken across two
rooms (the small and the medium one). For each set, the room and the obstacles are
noted down to be inserted in the dataset. The complete list of obstacles is reported in 3.5
and shown in 3.8.

Room Dimensions

Large 10m x 5m

Medium 5m x 5m

Small 5m x 3.50m

Table 3.4. Dimensions of the rooms.

3.2.3 Data Extraction and Processing
The Contiki firmware saves its log files with a specific syntax, so to recover only the useful
information from them in an automated way a parser is needed. So, a simple Python script
has been written to read from the files, filter the information and perform all the needed
operations. The data to be extracted for each range measurement are:

• Range estimate;
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Anchor
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Range
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CIR
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Figure 3.7. Range measurement setting.

Figure 3.8. Objects used as obstacles.

• CIR vector;

• First path index.

The range estimate only needs to be read, as it is already in the log file as a float number.
The first path index is also a float in the file, so it must be converted to integer to be used:
indeed, it is needed to cut the CIR signal and consider only the meaningful part, that is the
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Obstacle Dimensions

Polystyrene Plate 1m x 0,5m x 0,09m

Plastic Bins 0,6m x 0,3m x 0,3m

Wooden Plate 1m x 0,4m x 0,03m

Cardboard Box 0,6m x 0,4m x 0,2m

TV 0,5m x 0,3m x 0,04m

Glass Plate 1,50m x 0,5m x 0,01m

Aluminum Plate 1,50m x 0,4m x 0,001m

Wooden Door 2m x 0,5m x 0,05m

Metal Window 1m x 1m x 0,06m

Table 3.5. Dimensions of the obstacles.

portion between the first path arrival and the last path. According to [40], 152 samples
should be sufficient to capture it all (3.9). To be sure to consider all the information carried
by the signal, 5 additional samples are taken before the first path index: indeed, device’s
built-in first path detection algorithm could be less reliable in critical NLOS cases.

For what concerns CIR, the log file provides real and imaginary parts for each of
the 1016 samples. As the proposed method uses the amplitude of the vector, the script
computes it as

|CIR| = √CIR2
𝑅 + CIR2

𝐼 (3.1)

Then, the UWB sample is matched with the ground-truth range measured by the laser
tracker by comparing the time-stamps of the measures. The actual range is computed by
difference knowing the fixed position of the anchor and the coordinates of the moving
tag:

𝑟0 = √(𝑥𝑇 − 𝑥𝐴)2 + (𝑦𝑇 − 𝑦𝐴)2 + (𝑧𝑇 − 𝑧𝐴)2 (3.2)

Finally, the range estimate is compared to the ground truth distance and the error is
computed as

𝑟err = 𝑟𝑚 − 𝑟0 (3.3)

The value 𝑟𝑒𝑟𝑟 is what the CNN will learn to predict being based only on the CNN sam-
ples. The room in which the measurement has taken place is included 3.6 as well as the
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Figure 3.9. CIR signal with cropping window.

Environment Code

Cross-Room 0

Large Room 1

Medium Room 2

Small Room 3

Outdoor 4

Table 3.6. Environment encoding.

vector of the adopted obstacles using one-hot coding 3.7. For the sake of completeness,
also the UWB estimate of the range and the ground-truth distances are present.

So, in summary, each data-point in the dataset carries the information shown in 3.10.
The whole dataset is packed in a single structure using the Pandas library and Python
object serialization tool Pickle, and is publicly released to be useful for future works on
this subject. The data file is completed with a file of instructions that explains how to
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Obstacle Code

Wall 1000000000

Polystyrene 0100000000

Plastic 0010000000

Wooden Plate 0001000000

Cardboard Box 0000100000

TV 0000010000

Glass Plate 0000001000

Aluminum Plate 0000000100

Wooden Door 0000000010

Metal Window 0000000001

Table 3.7. Obstacle 1-hot encoding.

properly read and interpret the dataset and the coding used for all the features [46]. The
way the samples are used by the algorithm is described in the next chapter.

CIR Magnitude
(157 samples)

Ranging Error
[m]

Room Obstacles
Range
UWB

Range
Ground Truth

Figure 3.10. Structure of the samples.

3.3 Position Estimation Test

This section describes the experimental procedure to finally test the proposed method in a
real scenario for a positioning task. The methodologies are very similar to those adopted
for the ranging measurement campaign, with the difference that in this case five UWB
sensors are used at the same time to obtain an estimate of the 3D position of the tag.
Two different positioning algorithms are implemented to assess their precision and take
the best. Finally, the position estimates are compared to the ones obtained without range
mitigation to evaluate the effect of the method on the final accuracy.
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3.3.1 Measurement Scenario
The experimental setting is similar to the one set-up for the creation of the dataset, but
in this case the tag collects the information of each range estimate performed with all the
anchors and sends it to a PC via a serial port. Differently from the ranging measurement
scenario, here the tag is put in a fixed position, as the presence of a person moving it
around the room would inevitably affect the position estimate. So, the measurements are
all static and the AT403 is no more used to track the tag but only to obtain a precise
ground-truth on the fixed positions of the sensors. Two rooms are chosen to conduct the
test: one is the big room in which part of the dataset has been collected, while the other is
a completely new room of smaller dimension. In both cases, the four anchors are placed
near the corners of the room to surround the tag and to have the possibility of placing
obstacles in between. For each room, a LOS and two NLOS scenarios are tested. For
each configuration around a hundred ranges for each anchor are collected and written to
a log file.

3.3.2 Data Extraction and Processing
While the log file is being written, a Python script reads it and extracts the necessary
information exactly as done for the ranging measurement campaign. Then, the range
samples are passed to the ML model for the mitigation after they are normalized with the
same mean and standard deviation computed from the training set. For this test, the multi-
layer perceptron is adopted as it is lighter and faster than the convolutional neural network.
After the mitigation, both raw and corrected ranges feed the positioning algorithm to
obtain two estimates of the final position. Both Gauss-Newton and the Extended Kalman
Filter are used to discover which guarantees the highest accuracy for this application.
Finally, the outputs are compared to prove which one is estimating the actual position at
best.

3.4 Board Issues
Some problems have been reported during the measurement campaign regarding the
DWM1000 boards. The scope of this section is to report the main issues, trying to identify
a possible cause and describe, when possible, how these have been solved.

3.4.1 Bias Correction
Decawave’s user manual [44] specifies the distance to execute the calibration of the boards
to compensate bias errors in range measurements. As described in [47], there is a bias
which varies with received signal level (RSL) that leads to a bias in the calculated time
of flight. This is illustrated in 3.11, where the red line, labelled “Ideal”, indicates the
ideal result (constant) and the blue line, labelled “Actual”, indicates the actual measured
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result (which varies with RSL). For most applications this bias can be ignored, however
higher precision ranging applications must correct for this effect. Knowing the calibration
distance, the firmware can compensate this bias following a table of adjustment. As in
some cases this method seems too coarse and imprecise, it is auspicable that the deep
learning algorithm also tackles at correcting this bias. So, the proposed method will also
compensate bias error alongside NLOS conditions.

Figure 3.11. Bias effect caused by RSL.

3.4.2 Measurement Variance and Loss of Calibration
During long sessions of measurements, some strange behaviors are observed: series of
range estimates show very high variance due to oscillations in the values, while the mean
estimated distance deviates from the actual one with a sort of drift. This phenomenon
cannot be caused by obstacles as it occurs even in LOS conditions, and it disappears after
some minutes. According to [47] it is not a clock issue, as its drift in time is way more
negligible. Another possible cause could be temperature: indeed, the technical notes
report an antenna delay drift due to over-heating. Considering the long working time
during the measurement campaign, this is the most plausible origin for the bad behavior of
the boards. Moreover, the oscillation in range estimates could have the same cause as the
increment of instrumentation noise generates wrong identifications of the first received
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path and, hence, wrong time of arrival estimates. To overcome this problem, that also
caused NLOS measurements to absurdly underestimate ranges, some precautions against
over-heating are taken: the boards are used without their plastic case and as far as possible
from any object to facilitate heat exchange, and prolonged use is avoided. With these
tricks, a significant improvement in performance has been noticed and nearly no more
strange behaviors are reported.
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Chapter 4

Mitigation

In this chapter, the deep learning method adopted to enhance positioning is described.
All the design phases are reported and commented, from the structure of the model to the
optimization strategy.

4.1 Development Environment

The development environment in which the algorithm is built is Jupyter, a web-based
interactive computational environment for creating notebook documents coded in many
different languages [48]. It is an open-source service for cloud computing using one or
more remote GPUs. It allows to create virtual environments for the developing of deep
learning applications using popular libraries such as Keras, TensorFlow, PyTorch and
Pandas. For this thesis, Jupyter is used to connect to the Synapses computational system
at PIC4SeR. This system provides an NVIDIA RTX 2080 GPU with 8 GB of dedicated
RAM and an NVIDIA RTX 2080 with 11 GB 3.1.1, that is suitable for medium-sized
projects like this work of thesis, considerably speeding up the training process. The li-
braries Tensorflow and Keras are used to implement the deep learning model and all the
tools used to train and evaluate it: together, they allow to realize complex network struc-
tures, to experiment a wide variety of activations and losses and to collect and visualize
results in a simple way. For this reason, they constitute a complete and powerful tool for
the purpose of this thesis.

4.2 Data Preprocessing

The first step to make a model learn is to feed it with an appropriate and well-built dataset,
and to prepare the one created during the measurement campaign some simple prepro-
cessing operations are needed:
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GPU Model RTX 2080 RTX 2080 Ti

Architecture Type Turing Turing

RTX-OPS 60T 78T

Boost Clock 1800 MHz (OC) 1635 MHz (OC)

Frame Buffer 8 GB GDDR6 11GB GDDR6

Memory Speed 14 Gbps 14 Gbps

Table 4.1. GPU Specifications.

4.2.1 Normalization
As pointed out by many papers and reported in [4], feature scaling is the most important
transformations to apply to data, as machine learning models perform better if attributes
have all the same scale. The most common way, that is applied here, is standardization.
The mean value and standard deviation are computed among the whole dataset as

𝑥 = 1
𝑛 ⋅ 𝑚

𝑛

∑
𝑖=1

𝑚

∑
𝑗=1

𝑥𝑖𝑗 (4.1)

𝜎𝑥 = √
∑𝑛

𝑖=1 ∑𝑚
𝑗=1(𝑥𝑖𝑗 − 𝑥)2

𝑛 ⋅ 𝑚
(4.2)

Where 𝑛 is the number of data-points in the dataset and 𝑚 is the number of samples
in each CIR vector. In this case 𝑚 is equal to 157. Then, each feature is normalized
subtracting 𝑥 and dividing by 𝜎𝑥: the result is a distribution with zero mean and ranging
between 0 and 1.

𝑥norm
𝑖𝑗 =

𝑥𝑖𝑗 − 𝑥
𝜎𝑥

(4.3)

This technique is minimally affected by outliers, differently from other scaling meth-
ods like min-max. Moreover, to be sure to properly normalize the data, a Batch Normal-
ization layer is put on the input of the Deep Learning models. In this way, the network
autonomously learn the optimal scaling to apply.

4.2.2 Shuffling
Since the data have been collected in blocks and need to be splitted in groups, the model
should not be influenced by the order in which samples arrive. To avoid any bias or
deviation in the learning phase, the whole dataset is shuffled before the use preserving
the stochasticity of the process.
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4.2.3 Splitting
Finally, the dataset is divided in three splits to optimize the model. As it is common
practice to do in deep learning, nearly 64% of the samples are used to directly train the
network, while 20% of them form the final test set. The remaining 16% is employed
for validation: it is a way to control, during the training phase, how the model performs
on data it has not been trained on. This concept is better explained in Section 4.4. To
highlight the effect of obstacles and rooms on mitigation accuracy, several experiments
are conducted choosing different splits for training and testing, as better explained in
Chapter 5. This also alows to evaluate how general is the representation that the net
builds of the physical phenomenon, and determines whether this method can be applied
in scenarios that differ from the ones considered in the dataset.

4.3 Models
In this section the focus is on the designed Deep Neural Network models. First, the
structure of the configurations is presented, commenting the main aspects and the cru-
cial project choices. During the tuning of the net many different configurations have
been experimented: the next chapter shows comparison between the results of alternative
structures. Nevertheless, all the methods adopted and tested are listed and explained in
the following sections, or alternatively in Section 1.3.

4.3.1 Structure
Two main structures are tested to evaluate the validity of the proposed approach and es-
timate the effect of different scenarios on the mitigation task. The first is a simple Multi
Layer Perceptron (MLP), consisting of a series of five Fully Connected layers interleaved
with batch normalization modules. At the end a dropout layer regularizes the model and
the last one-neuron layer gives the output through a linear activation function (4.1). The
second model is a CNN similar to common state-of-the-art examples for classification
or regression tasks. Following an AlexNet-like structure, a series of convolutional layers
is responsible of extracting the best features from the data. Obviously, as the CIR vec-
tor is one-dimensional, the adopted convolutional layers are 1D, too. To extract higher
and higher-level features, the number of stacked filters increases while their dimension
remains constant at 3x1. The activation function for the layers is ReLU, while a Batch
Normalization layer is interposed between convolutionals.
Then, the series is interrupted by a Global Average Pooling layer and a Dropout layer, the
functioning of which is explained in the next section. These blocks introduce to the last
part of the network, where the features are used to predict the value of the ranging error
using a fully connected layer. The last layer collapses in a single neuron that estimates
the ranging error and hence needs a linear activation function (4.2). In general, relatively
simple models are preferred to guarantee the possibility of running mitigation in real time
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and, eventually, the deployment on a Tensor Processing Unit (TPU).

Figure 4.1. Structure of the proposed MLP: the circles represent the neurons of each layer.
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(157x1)
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Figure 4.2. Structure of the proposed CNN: Convolutional layers (C), Batch
Normalization (BN), Global Average Pooling (GAP), Dropout (D) and Fully
Connected layers (FC).
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4.3.2 Layers
Now that the main structure has been presented, a focus on the adopted techniques is
addressed to explain all the design choices done in the experimentation of different solu-
tions. Some basic concepts are already introduced in 1.3, so they are not repeated: in this
context more recently developed techniques are described.

Global Average Pooling

As explained in the previous chapters, pooling consists in a down-sampling of the input:
it is a very effective way of reducing the size of the features extracted from the convo-
lutional layers, and hence decrease the complexity of the model. Moreover, it provides
invariance to shifts in position and other minor transformations of an object, thus im-
proving generalization performance. However, recent studies questioned the benefits of
pooling, and specifically max pooling, as it does not seem to provide invariance in many
modern scenarios where very deep networks are used. What happens to be a better choice
is to apply a single Global Average Pooling (GAP) layer between the convolutional series
and fully connected layers. GAP takes the average value for each of the feature maps and
group all in a one-dimensional vector (4.3).

Figure 4.3. Example of the functioning of Global Average pooling.

This computation is way more efficient than flattening, that was usually done to obtain
a 1D vector to feed FC layers: flattening just forms a long vector concatenating all the
feature maps, causing an enormous quantity of parameters. In synthesis, GAP can replace
a fully connected layer and a flattening operator, recognizing in a more native way the
meaningful features as it does not need to train its parameter. Moreover, it reduces the
complexity of the GAP part of the network and, hence, the risk of overfitting the training
data.
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Monte Carlo Dropout

Speaking of overfitting, Dropout is an efficient regularization strategy to encourage the net
to generalize its representation without sticking too much on training data. It consists in
casually turning off part of the neurons of a fully connected layer during the training phase,
with a probability that can be tuned properly (4.4). Dropout generates a non-deterministic
training, compensating fitting biases. With normal dropout, dropout is not applied during
test time; instead, all connections are present, but the weights are adjusted accordingly
multiplying the dropout ratio. Such a model during test time can be understood as an
average of an ensemble of different neural networks. This means determinism: without
other source of randomness, given one test data point, the model will always predict the
same label or value. In Monte Carlo dropout, the dropout is applied at both training and
test time. At test time, the prediction is no longer deterministic, but depending on which
links you randomly choose to keep. Therefore, given the same datapoint, the model could
predict different values each time. So, the primary goal of Monte Carlo dropout is to gen-
erate random predictions and interpret them as samples from a probabilistic distribution.
In the authors’ words, they call it Bayesian interpretation [49].

FC Layer After Dropout

Figure 4.4. Example of the functioning of Dropout.

Activation Functions

As said in previous chapters, the role of activation functions is to determine whether a
neuron should be activated or not, based on whether its input is relevant for the model’s
prediction. They also help normalizing the output of each neuron to a range between 1
and 0 or between -1 and 1. Four different activation functions are tested in this work (4.5):

• ReLU: it is the most used function in deep learning, for its optimal performance and
easy computation.

𝑓(𝑥) = max(0, 𝑥) (4.4)
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• Mish: as reported in [50], Mish is a very recent nonlinear activation function that
showed better results than other common alternatives. In this work, it is compared
to ReLU to find an optimal configuration for the net.

𝑓(𝑥) = 𝑥 tanh(log(1 + 𝑒𝑥)) (4.5)

• Sigmoid: this function is used exclusively on top of the binary classifier, as it must
output values close to +1 or -1 depending on the most likely class.

𝑓(𝑥) = 1
1 + 𝑒−𝑥 (4.6)

• Linear: this function is used exclusively for the regressor’s output, as the prediction
must be a measure of the error.

𝑓(𝑥) = 𝑐𝑥 (4.7)

Figure 4.5. Comparison between the activation functions used for the CNN.
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4.4 Learning Strategy
In this section, the procedure followed to properly train the CNN is described, comment-
ing the adopted tools and the values chosen for the main hyper-parameters.

4.4.1 Loss Functions and Metrics
The loss function is responsible to quantify the error of the predictions, allowing the
model to improve itself. The functions adopted for the regressor are all described in
detail in Section 1.3 (MSE, MAE, Huber). Nevertheless, the case under study needs to
properly choose some metrics that quantify the effectiveness of the mitigation. The Mean
Absolute Error is selected to evaluate how close the predicted errors are to the real ones,
while two metrics are adopted to describe the ranging errors after the mitigation. The
two statistical distributions of the error are compared computing the ratio between the
means and the standard deviations, obtaining the percentage of improvement given by
the method.

4.4.2 Optimizer
The optimizer is the agent that allows the network to learn. It computes the gradients with
respect to each parameter through backpropagation and then updates all the values. The
procedure is repeated for each sample (or group of samples) that enters the CNN, aiming
at the set of parameters that minimizes the loss function. As in this case two tasks are
executed at once, the optimizer minimizes the sum of the loss functions. Three different
alternatives are tested:

• SGD: Stochastic Gradient Descent, as explained in Section 1.3

• RMSprop: The central idea of RMSprop is keep the moving average of the squared
gradients for each weight. Then, the gradient is divided by the square root of the
mean square. Therefore, it is called RMS (Root Mean Square) propagation. The
update rule is

𝐸[𝑔2]𝑡 = 𝛽𝐸[𝑔2]𝑡−1 + (1 − 𝛽) (
𝛿𝐶
𝛿𝑤)

2
(4.8)

𝑤𝑡 = 𝑤𝑡−1 −
𝜂

√𝐸[𝑔2]𝑡

𝛿𝐶
𝛿𝑤

(4.9)

• Adam: a stochastic gradient descent algorithm including momentum and specific
learning rate for each parameter, as explained in Section 1.3. This is the most recent
and most used of the considered optimizers.

68



4.4 – Learning Strategy

The effectiveness of an optimizer also strongly depends on the choice of its parameters,
so they must be tuned properly in the model evaluation phase. For example, Adam has
four main parameters:

• Learning Rate: the step size in weight updates. Larger values result in faster learn-
ing, while smaller ones mean small initial learning steps. Adam automatically changes
the learning rate for each parameter, but always uses the initial learning rate as an
upper limit.

• 𝛽1: the exponential decay rate for the first moment estimates.

• 𝛽2: the exponential decay rate for the second-moment estimates.

• 𝜀: a very small number that preserves stability preventing any division by zero in
the implementation.

In addition, a Learning Rate scheduler is used to enhance the work of the optimizer.
Its scope is to reduce the learning rate with the passing of epochs, and consequently force
the net to take smaller and smaller steps. This makes the optimization more stable and the
convergence smoother. The used scheduler updates the learning rate every twenty epochs
following the formula:

LR𝑖 = LR0 ⋅ 𝑠⌊
1+𝑖

𝑒 ⌋ (4.10)

where LR0 is the initial learning rate, LR𝑖 is the value at epoch 𝑖. 𝑠 is the step and 𝑒 is
the number of epochs between two updates.

4.4.3 Validation
As already mentioned in the preprocessing section, the dataset is split in three parts, each
with a specific task. The training set is what the network learns from and the test set is the
final benchmark assessing how the model performs on instances it has never seen before.
The advantage of using an additional portion, called validation split, is that it gives a
feedback of the model accuracy during the training phase. This allows to see in real time
and quantify the generalization error, that is the error rate on new cases. In this way the
net can be modified and tuned to reduce generalization error by avoiding overfitting. For
the case of this project, validation is run at the end of each epoch, and the results are saved
and plotted at the end of training phase to be compared with the accuracy reported on the
training dataset.

4.4.4 Early Stopping
Early stopping is a form of regularization used to avoid overfitting in long training itera-
tions. Indeed, when the number of epochs is high, the learner continues learning at the
expense of increasing generalization error. Early stopping aims at detecting the moment
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when this deviation begins and stop the training before the net is compromised. The im-
plementation is simple, as looking at validation loss it easy to spot overfitting: when it
starts to increase contrary to training loss, the net has stopped learning.

Training Loss

Validation Loss

Early
Stopping

Epochs

Loss

Figure 4.6. Importance of Early Stopping in training phase
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Chapter 5

Experimental Tests and Results

In this chapter, the main experimental results are resumed, analyzed and commented.
First, a look is given to the ranging measurements dataset, reporting the relevant features
and statistics of the different sets of samples. Then, the results of the network training are
presented, comparing the different tested combinations and highlighting some important
insights. Finally, the outcomes of the positioning test conducted in a real scenario are
shown and commented, to determine whether a significant improvement has been reached
or not.

5.1 Dataset Analysis
The measurement campaign has led to the creation of a dataset with over 55.000 sam-
ples containing all the relevant information for the application of a mitigation task: CIR,
ranging error, room label, obstacle labels, estimated and ground-truth range. In this sec-
tion, a brief analysis of the collected data is conducted, trying to visualize and recognize
patterns that can be seen to the naked eye. This preliminary step is of fundamental im-
portance when dealing with deep algorithms, as it allows to make some rough hypotheses
on the strong correlations between the data and to know what to expect from the model
to learn. For this reason, 5.1 and 5.1 show some important characteristics for each sub-
set, separated by room and by obstacle. The rooms are simply split considering the three
rooms singularly, the measurements taken between adjacent rooms and finally outdoor
samples. As the number of different obstacles is much higher, the objects are clustered
based on the type of material: plastic, cardboard and polystyrene are grouped as light
materials, metal objects like the aluminum plate, the TV, the glass plate and the window
are classified as heavy, wooden obstacles are considered together. The last two groups
are represented respectively by walls and measurements without any obstacle, to have an
idea of the difference between LOS and NLOS samples. The MAE, the mean CIR signal
and statistical distribution of the error are reported, in order to know what the starting
point of the mitigation process is. For the sake of completeness, in the Appendix (6) the
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complete tables including also other interesting metrics are present.

Subset MAE [m] Mean CIR Error Distribution

All 0,12423939

Big room 0,12527636

Medium room 0,13911064

Small room 0,10685123

Outdoor 0,13446487

Cross-room 0,1658175

Table 5.1. Dataset metrics and graphs for different environments.

A quick look is sufficient to notice important differences between the splits: the overall
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Subset MAE [m] Mean CIR Error Distribution

All 0,12423939

Light materials 0,0733789

Heavy materials 0,19614786

Wall 0,1658175

Wood 0,07835419

LOS 0,05942106

Table 5.2. Dataset metrics and graphs for different materials.

error distribution is approximating a Gaussian, as it is for all the three rooms. Outdoor and
cross-room measurements, instead, present a more irregular and unbalanced histogram,
while the CIR signal shows a different tail effect. This is probably caused by the absence
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of multipath components and reflections. For what concerns materials, there is a deeper
difference in terms of MAE as values go from 6 cm to 20 cm. Excluding the wall subset,
the shapes of the histograms are more similar, but there is a big difference in terms of
mean and standard deviation: for example, heavy materials present a larger distribution
than light materials and wood. Also CIR signals reflect this phenomenon, as very diverse
shapes can be observed.

To visualize the distribution of the different clusters in the dataspace, Principal Com-
ponent Analysis (PCA) is used to project the 157 dimensions of each sample into a 3D
space conserving most of the information. For this scope, the Tensorboard Projector pro-
vided by Tensorflow is used to plot the samples labelled by room and by material. In the
first case, the three rooms are included as well as the outdoor set, as shown in 5.1: an
evident prevalence of samples from the big room can be found in the lower central part
of the plot, while the medium room samples are more present in in the left side of the
distribution and the CIR signals measured in the small room are on the right. Finally, the
outdoor set is the more recognizable in the upper part of the plot, highly concentrated.

For what concerns materials, an analogue procedure is carried out considering consid-
ering three objects for clearness: the aluminum plate, the plastic bins and the wooden door
(5.2). Again, a remarkable separation can be seen by eye, as the metal samples occupy
all the upper part of the graph and light objects like plastic and wood take the lower zone.
Moreover, also the spatial distribution of wood occupies specific zones showing different
features from plastic. In conclusion, this qualitative analysis allows to have a first prove
of the representativity of data and draw some conclusion on how the model will perform:
for example, from the second group of images it is evident that a model trained on mea-
sures taken in presence of plastic will more easily mitigate the error caused by wood and
will predict less accurate corrections for metal samples.

5.2 Range Correction

In this section the results of the proposed deep learning algorithm are presented. The
first test is conducted by taking the whole dataset and splitting it in train, validation and
test set. The aim of this first benchmark is to evaluate the overall effectiveness of the
method, without focusing too much on reaching the best mitigation performances. More
performant models can surely be designed and optimized, but as simple algorithms are
being used, it is sufficient to see a significant improvement to confirm the validity of the
approach. In 5.3, the results of the test are summaried: MSE and MAE are reported,
as well as the ratio between them and the raw benchmarks, expressed in percentage. The
metrics show a considerable mitigation effect: the resulting MAE is about 6.75 cm, which
means a reduction of 46%. This improvement is reflected also by the other metrics, and in
particular by the error distribution parameters, which are fully reported in the Appendix
(6). It is evident that the model shifts the distribution to zero with great precision, and
simultaneously reduces the standard deviation tapering the error distribution, as shown
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Big Room

Medium
Room

Small
Room

Outdoor

Figure 5.1. Principal component analysis on the dataset separed by room.
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Heavy Materials

Light Materials Wood

Figure 5.2. Principal component analysis on the dataset separed by material.

in 5.3. Only the results of the MLP are reported in the following tables and graphs, as the
accuracies achieved with the CNN are very similar. Again, all the results are consultable
inthe Appendix (6).

Train Set Test Set MSE MAE [m] MSE % MAE %

All All 0,01411715 0,06753542 36,237585 54,3591065

Table 5.3. Results obtained from the initial tests on the whole dataset.

To have an additional and more restrictive benchmark of the accuracy of the model,
a test is conducted training the models on all the dataset excluding a single environment
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Figure 5.3. Statistical distribution of the error for the first test: raw values, model pre-
dictions and corrected output.

and then evaluating it on that environment. In this way it is impossible for the net to take
advantage of overfitting as the scenario is completely unseen. The results, summed up in
5.4, show a good result for what concerns the rooms: an MAE of about 7-8 cm is achieved,
proving that the net learns general features with respect to the room shape and dimension.
Outdoor samples obtain an MAE of 10 cm, still meaning a 23% improvement on the raw,
which is good if we consider the radical difference between indoor and outdoor scenarios.
5.4 shows how the model prediction changes the statistical distribution of the error, both
shifting the mean close to zero and reducing the standard deviation.

Train Set Test Set MSE MAE [m] MSE % MAE %

All - Big room Big room 0,02666005 0,08040226 58,6798374 64,179912

All - Medium room Medium room 0,01539912 0,0797291 37,4236211 57,3134432

Table 5.4. Results obtained from the restrictive benchmark computed excluding a single
room from the training dataset and testing on that room.

After demonstrating the effectiveness of the proposed method, numerous tests are con-
ducted to highlight and evaluate the effect of changing the room on the mitigation task.

5.2.1 Environmental Influence
Changing room modifies the geometry of the walls and hence affects the multipath com-
ponents arriving to the UWB receiver, that outdoor measurements totally lack. To do
this test, the net is trained on the data coming from a single room subset and tested on the
same room with different data. The only exception is the subset containing the cross-room
measurements, that is used only for testing as it contains less than a thousand samples and
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Figure 5.4. Statistical distribution of the error for the restrictive tests on big room (on the
left) and medium room (on the right).

it is not enough to properly train a model. Then, the same model is evaluated on the data
coming from all the other rooms: the result shows how much the performance degrades
in a different environment. The complete table with the results for all the metrics can be
found in the Appendix (6), while here some observations are presented alongside MSE
and its percentage reduction as a summary score (5.5).

As expected, the best correction is found testing the model in the same environment it
has been trained for, with a little difference between the two models. However, the metrics
show that transfer learning between the three rooms leads to very small losses (less than
2 cm) compared to those caused by cross-room and outdoor measurements. The samples
taken in open space show the worst results, because they are taken in a completely different
scenario and the models struggle to adapt to that situation. The cross room also lead to a
considerable loss as the walls are very different obstacles from other objects used inside
rooms. In conclusion, both the nets seem to learn features that allow generalization with
respect to the environment. In fact, the effect of the geometry of the room is strongly
reduced and a sensible improvement is shown also for very different scenarios like outdoor
and cross-room. The only pejorative results are found when training on outdoor samples
and trying to model multipath components derived from reflections, as in this case the
model finds itself in a completely unseen situation. This explanation is confirmed by the
fact that the loss is more pronounced in the small room, in which reflections are certainly
more dominant. Finally, the only significant difference between the two models is that the
CNN shows less variance between the results. This means that the net eventually learns
more general features from the data.

5.2.2 Obstacle Influence
The second most important factor determining the ranging error is the way obstacles at-
tenuate and delay the received signal, so a series of tests is conducted to measure the effect
of different materials on the proposed method. Similarly to what done with rooms, the
models are trained on a certain category of obstacles and tested on all the other materials.
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Big Room Medium Room Small Room Outdoor Cross-room

MAE [m]

0,07787607 0,08550771 0,07873359 0,10559664 0,09618016

MAE / RAW %
Big
Room

62,1634183 61,46741 73,68524538 78,5310221 58,00362399

MAE [m]

0,08834743 0,07738681 0,08228663 0,10208596 0,09822902

MAE / RAW %
Medium
Room

70,5220261 55,6296827 77,0104632 75,92016925 59,23923542

MAE [m]

0,08452915 0,08284867 0,06609059 0,12467928 0,09493756

MAE / RAW %
Small
Room

67,4741407 59,5559531 61,852906 92,72256478 57,25424591

MAE [m]

0,12747252 0,14105202 0,11191515 0,05970919 0,16872023

MAE / RAW %Outdoor

101,753049 101,395562 104,7392252 44,4050466 101,7505562

Table 5.5. Summary of the results obtained for the test on environmental influence.

The obstacles are arranged in the following custers: light materials (plastic, polystyrene
and cardboard), heavy materials (TV, aluminum and glass), wall and wood. An additional
split is created with all the LOS samples, to evaluate whether a net trained on NLOS data
can improve the precision of such measurements. The table with the results for all the
metrics is reported in the Appendix (6), while here a summary of the most important
insights is presented 5.6.

As previously thought, there is a sensible decrease in model absolute accuracy trans-
ferring the knowledge of the net to different obstacles. However, in nearly all the tests
there still is an improvement with respect to the raw estimates, meaning that part of what
the algorithms learn does not relate to the kind of obstacle. Only in two cases the situa-
tion is worsened by mitigation: the first is the one obtained when the models are tested
on the LOS split, while the second is the specific case in which the models are trained on
heavy materials and tested on light ones. In both cases, the cause is a marked difference
between training and testing samples, highlighting the fact that obstacles have a higher
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Light
Materials

Heavy
Materials Wood LOS Wall

MAE [m]

0,06050171 0,14163822 0,06247131 0,07362957 0,1165821

MAE / RAW %
Light
Materials

82,451099 72,2099226 79,72938314 123,911563 70,30747601

MAE [m]

0,08750228 0,0955946 0,07483216 0,07795361 0,09275154

MAE / RAW %
Heavy
Materials

119,247194 48,7359885 95,50499191 131,188511 55,93591704

MAE [m]

0,06828006 0,13794212 0,04708451 0,06202191 0,1058047

MAE / RAW %Wood

93,0513533 70,3255788 60,09188759 104,3769753 63,80792083

MAE [m]

0,06650509 0,160725 0,05933153 0,04647238 0,13225417

MAE / RAW %LOS

90,6324427 81,9407347 75,72222013 78,20859529 79,7588728

Table 5.6. Summary of the results obtained for the test on obstacle influence.

impact on the effectiveness of the method than rooms. Speaking in absolute terms, heavy
and wall subsets still keep the highest values, but they both improve strongly compared
to the raw values, especially the wall split that obtains an MAE of about 10 cm. The
best result reached on the wall subset (9 cm MAE) is the one trained on heavy materi-
als, confirming the similarity between the two in screening the UWB signal. For what
concerns the other groups, a strong correspondence is found between light materials and
wood measurements, deriving in a small loss of accuracy when switching from a subset
to the other. In conclusion, the tests conducted on the effect of materials show that a com-
plete and effective dataset needs the presence of a sufficient number of different obstacles
more than it needs different environments. In particular, metallic objects and walls cause
the strongest effect on ranging estimates for their ability to screen radio signals. On the
contrary, also a considerable number of LOS samples are needed to keep the model from
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worsening raw measurements. As noticed for the tests on the rooms, the two models per-
form in a very similar way, with the same difference: again, the convolutional network
seems to lead to lower losses when changing test set.

5.3 Position Correction
This section presents the main results of the last test conducted to verify the validity of
the proposed method in a real 3D positioning scenario. As explained in 3.3, both LOS
and NLOS test are conducted in two different rooms, one of which completely new. As
description for the results of these tests, the graphs of the position estimates are reported
as well as a comparison between the distance between the final outcome of the algorithms
and the actual tag position. For clarity, only the results of the Extended Kalman Filter
are reported, since it gives more accurate estimates than Gauss-Newton. As shown in 5.7
and in 5.5, mitigation is always improving the estimation accuracy in the big room. This
demonstrates that the method is, at least, effective in the same scenario it has been trained
for even if the position of the nodes and the configuration of the obstacles are different,
and that correction on range values involves an improvement in position accuracy. In the
new room even better results are obtained as the mitigated estimate is always closer than
the raw one to the ground-truth reaching very high accuracy (about 8 cm in the LOS case
and 7 cm in NLOS).

These results demonstrate that the proposed method provides generality with respect
to room shape and dimensions, and hence can be a very useful tool in any indoor envi-
ronment. Unfortunately, the test involves objects that are very similar to the ones used
to build the dataset, so no further conclusion can be drawn on the effect of using differ-
ent obstacles. However, the set of materials included in the dataset appears to be a good
representation of what can be found in a typical office-like or domestic indoor environ-
ment, and further experimentations including new objects, and eventually people, can be
conducted in future works.
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Experimental Tests and Results

Room Condition Mitigation Error ON/OFF %

Big
Room

LOS OFF 0,33751641 60,7952471
ON 0,20519394

NLOS

OFF 0,12168457 86,7879935
ON 0,1056076

OFF 0,37282038 61,8176997
ON 0,23046899

New
Room

LOS OFF 0,15784129 53,2814495
ON 0,08410013

NLOS

OFF 0,47329691 41,0136498
ON 0,19411634

OFF 0,21085436 34,0450994
ON 0,07178558

Table 5.7. Results of the positioning tests.
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LOS LOS

NLOS NLOS

NLOS NLOS

Figure 5.5. 3D representation of the position estimates: big room on the left col-
umn, new room on the right one.
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Chapter 6

Conclusions

The principal aim of this thesis was to compensate NLOS and multipath errors in UWB
positioning using deep learning models that automatically extract features from raw CIR
samples in order to predict the error of the single range measurements. The interest in
developing such a method lies in the great potentiality of deep algorithms, which are able
to recognize complex underlying correlations in data and exploiting to learn patterns that
generalize to a wide variety of situations. Hence, the goal was to obtain a compensation
system scalable to unseen and unexpected scenarios. Finally, the work aimed at verifying
the thesis that a correction on range estimates actually improves the accuracy of simple
positioning algorithms and, if so, how much.

To guarantee a proper training for the deep learning models and to reach the maximum
generalization, a dataset of over 55 thousand range samples has been built. The measure-
ments covered a wide variety of LOS and NLOS scenarios, as five different environments
and ten different obstacles have been included. A multi-layer perceptron and a CNN were
chosen to be trained and tested on the dataset, and both proved the validity of the proposed
idea. The results show that using the whole dataset to feed the models led to a reduction
of the mean absolute error of over 45%, reaching the value of 6.7 cm. Such an outcome
reached with these simple models is impressive considering that the MAE of the LOS
ranges of the dataset is 5.9 cm. To have a more restrictive benchmark, another test has
been conducted by excluding a room from the training set and using it only for testing.
Although there is a further loss of about 1 cm, the result is still important as it proves that
the influence of the environment can be learnt from deep models. Clearly, transfer knowl-
edge from a room to an outdoor scenario causes a greater loss because of the completely
different propagation of the signals and, in particular, because of the absence of multipath
components. Still, an improvement of 27% for the MAE was detected. After the validity
of the method had been verified, a series of cross tests were conducted to study the effect
of different environments and obstacles on the performance of the neural networks. In
summary, the main cause of the error given by the change of environment has resulted
to be the reflections of the signal on walls and objects, and this is confirmed by the fact
that the two most different settings were the outdoor and the small room, the latter being
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largely influenced by multipath components. Between the rooms, instead, the difference
in terms of performance was minimum. As far as obstacles are concerned, a more marked
distinction was noticed: heavy objects (like metal and walls) have a very different impact
on UWB signals than wood, plastic or cardboard. Therefore, a net trained for the former
performs badly for the latter. The major problem, indeed, is found when a net trained on
NLOS samples tries to correct LOS measurements. Nevertheless, an improvement of the
raw MAE was detected in almost all cases: this means that the models are able to learn
a way to compensate part of the error independently from the type of obstacle and that a
dataset with a sufficient number of examples for a wide variety of materials can lead to
excellent results in many different scenarios.

Finally, a positioning test was conducted in a typical real-time scenario, using Gauss-
Newton and an Extended Kalman Filter for 3D localization. The estimation was per-
formed simultaneously both on raw range measurements and corrected ones and the re-
sults have been compared. The test took place in two different rooms, one already used
to build the dataset and one completely new. All the results of both rooms showed an
improvement in the estimation accuracy, ranging between 13% and 65%, with a mean of
44%. It is interesting to notice that a significant enhancement can be achieved even for
LOS scenarios, and that the results observed in the new room are better than those re-
ported in the known one. This confirms that the shape and dimension of the environment
affects the proposed method only marginally and that, even with very simple positioning
algorithms, the compensation of range errors leads to an important improvement on the
position estimation.

However, some critical aspects of the work and a few imprecisions must be reported
and commented. Firstly, to a certain extent the dataset lacks in completeness, as pointed
out by some of the results from the cross tests. As highlighted by the study on the distri-
bution of the error in different subsets, the UWB sensors have rarely been challenged by
critical situations. This caused the data splits to be quite similar with an MAE never over
20 cm. Including more screening materials in the measurement campaign and focusing
more on walls and cross-room situations could have led to an additional strength for the
dataset, improving its robustness. Secondly, another missing but useful aspect is the study
of how human obstacles affect ranging precision, as the situation is very common in en-
vironments frequented by people. Thirdly, an additional weakness of the method is that
little time has been dedicated to the optimization of the deep learning models in order to
seek better and better results. Actually, the main scope of this work was to confirm the
validity of the overall approach and to evaluate the influence of different measurement
conditions on its accuracy, and for this reason the fine tuning of the learning methodolo-
gies has been left to future developments. As far as the localization tests are concerned,
a criticality of the method as it is now is the precision of positioning algorithms. Indeed,
two very simple techniques have been used, but their accuracy leaves room for improve-
ment even in LOS conditions. That is why investing more time in multiple tests to tune
the Extended Kalman Filter, for example, could have led to a better convergence and to
smaller errors. Finally, the final tests suffer from the lack of completely new obstacles,

86



Conclusions

as very similar materials have been employed to create NLOS conditions. Evaluating
the effectiveness of the proposed method on a set of different objects would have added
scientific value to the whole work.

Since the validity of the deep learning approach has been demonstrated and a study
of the effects of different factors on its accuracy has been conducted, a path for future re-
search is open and a good number of goals of improvements can be identified. First of all,
the weak points and limits of the present work, highlighted in the previous paragraphs,
should be tackled, from the inclusion of uninvestigated measurement scenarios in the
dataset to the developing of more precise localization algorithms that take advantage of
ranging error compensation. Moreover, great importance resides on the possibility of im-
plementing the compensation model and the positioning algorithm directly on the UWB
sensors to perform the estimation refinement on board. For this reason, a deep analysis
of the trade-off between model complexity and achieved accuracy should be conducted
with particular attention to power consumption and physical dimensions. The results of
this thesis, showing how very good accuracies can be achieved with simple models, pave
the way to the design of an all-in-one compensated UWB positioning system.
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Appendix

Subset MSE MAE Mean Std. Deviation

All 0,0389572 0,12423939 0,10607736 0,16644909

Big room 0,04543307 0,12527636 0,10575347 0,18507061

Medium room 0,04114813 0,13911064 0,12435696 0,16026671

Small room 0,03049724 0,10685123 0,08813608 0,15076658

Outdoor 0,03635124 0,13446487 0,11236741 0,1540441

Cross-room 0,05323144 0,1658175 0,15745018 0,16873271

Table 6.1. Raw dataset metrics and graphs for different environments.

Subset MSE MAE Mean Std. Deviation

All 0,0389572 0,12423939 0,10607736 0,16644909

Light materials 0,01566282 0,0733789 0,04974112 0,11484878

Heavy materials 0,0775372 0,19614786 0,18050533 0,21203252

Wall 0,05323144 0,1658175 0,15745018 0,16873271

Wood 0,01165025 0,07835419 0,06781103 0,08398317

LOS 0,00597477 0,05942106 0,03003114 0,07123189

Table 6.2. Raw dataset metrics for different materials.
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Model MSE MAE MSE % MAE % Mean % Std. Deviation %

MLP 0,01411715 0,06753542 36,237585 54,3591065 3,658232598 70,5067287

CNN 0,01549805 0,06748596 39,7822439 54,3192962 0,81462759 72,4951442

Table 6.3. Results obtained from the initial tests on the whole dataset.

Train Set Test Set MSE MAE MSE % MAE % Mean % Std. Deviation %

All - Room 1 Room 1 0,02666005 0,08040226 58,6798374 64,179912 7,38334447 88,1267432

All - Room 2 Room 2 0,01539912 0,0797291 37,4236211 57,3134432 14,2513598 76,6383726

All - Room 3 Room 3 0,01562999 0,07319096 51,2505097 68,4980096 7,54634576 82,8077845

All - Outdoor Outdoor 0,02261999 0,10383502 62,2261771 77,2209253 33,4999017 94,5360045

All - Cross-room Cross-room 0,01608017 0,08803432 30,2080286 53,0910907 21,9676362 72,341225

Table 6.4. Results obtained from the restrictive benchmark computed excluding a single
room from the training dataset and testing on that room (with the MLP).

Room Big Room Medium Room Small Room Outdoor Cross-room

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

0,02467988 0,07787607 0,0161449 0,08550771 0,01646831 0,07873359 0,02134021 0,10559664 0,01862305 0,09618016

MSE % MAE % MSE % MAE % MSE % MAE % MSE % MAE % MSE % MAE %

54,321404 62,1634183 39,2360486 61,46741 53,99934948 73,68524538 58,7055824 78,5310221 34,98505474 58,00362399

MEAN % STD % MEAN % STD % MEAN % STD % MEAN % STD % MEAN % STD %

Big
Room

4,01798708 83,9266147 11,2294558 78,8046762 5,93640802 85,0492603 32,8329907 91,76694462 18,0056615 79,15423904

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

0,02736029 0,08834743 0,01405944 0,07738681 0,018028569 0,08228663 0,01941089 0,10208596 0,01922299 0,09822902

MSE % MAE % MSE % MAE % MSE % MAE % MSE % MAE % MSE % MAE %

60,2210937 70,5220261 34,1678716 55,6296827 59,11541741 77,0104632 53,3981438 75,92016925 36,11209535 59,23923542

MEAN % STD % MEAN % STD % MEAN % STD % MEAN % STD % MEAN % STD %

Medium
Room

9,906148841 89,1993915 22,4620665 68,7190741 3,609721626 89,0360708 3,9469242 90,40682772 23,7169094 79,17468705

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

0,026333 0,08452915 0,01567311 0,08284867 0,01359128 0,06609059 0,03565791 0,12467928 0,01812906 0,09493756

MSE % MAE % MSE % MAE % MSE % MAE % MSE % MAE % MSE % MAE %

57,9599873 67,4741407 38,0894837 59,5559531 44,56560986 61,852906 98,0926792 92,72256478 34,05705061 57,25424591

MEAN % STD % MEAN % STD % MEAN % STD % MEAN % STD % MEAN % STD %

Small
Room

6,26009362 87,6118449 10,6473349 77,6797807 4,336044147 79,695335 56,6666499 115,4159095 19,3308738 77,7725764

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

0,04722738 0,12747252 0,04153212 0,14105202 0,032127373 0,11191515 0,00702039 0,05970919 0,05371977 0,16872023

MSE % MAE % MSE % MAE % MSE % MAE % MSE % MAE % MSE % MAE %

103,949354 101,753049 100,933191 101,395562 105,3451891 104,7392252 19,31265361 44,4050466 100,9173628 101,7505562

MEAN % STD % MEAN % STD % MEAN % STD % MEAN % STD % MEAN % STD %
Outdoor

98,95735456 102,915679 99,7306318 100,905428 101,4142107 103,052646 13,8234327 53,96402088 99,6639222 101,1444023

Table 6.5. Results obtained by the MLP in the environmental influence test.
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Room Big Room Medium Room Small Room Outdoor Cross-room

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

0,02430015 0,07523015 0,01309175 0,0740025 0,01437539 0,06646964 0,01670577 0,08992542 0,01573104 0,08676665

MSE % MAE % MSE % MAE % MSE % MAE % MSE % MAE % MSE % MAE %

53,485603 60,0513518 31,81614868 53,19686386 47,1366896 62,2076511 45,9565279 66,8765137 29,5521569 52,3265936

MEAN % STD % MEAN % STD % MEAN % STD % MEAN % STD % MEAN % STD %

Big
Room

15,110193 81,9384443 12,5815811 70,7250223 17,1183779 78,89529079 25,39284535 81,8432215 19,19075614 72,18115906

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

0,02354875 0,0774286 0,01094638 0,06630033 0,01503517 0,070367329 0,0131093 0,08692176 0,01038965 0,07260749

MSE % MAE % MSE % MAE % MSE % MAE % MSE % MAE % MSE % MAE %

51,8317415 61,806232 26,60237582 47,6601416 49,3000983 65,8554232 36,062864 64,6427259 19,517881 43,7875914

MEAN % STD % MEAN % STD % MEAN % STD % MEAN % STD % MEAN % STD %

Medium
Room

0,13801662 82,9197794 3,36966249 64,5605494 8,0473112 81,19582276 8,086138577 74,09969927 7,830113333 59,99689508

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

0,02497546 0,09225181 0,01449335 0,08785396 0,015953 0,0782483 0,02017894 0,10785439 0,01393093 0,09242873

MSE % MAE % MSE % MAE % MSE % MAE % MSE % MAE % MSE % MAE %

54,9719874 73,6386396 35,22237886 63,15401709 52,3096555 73,2310718 55,5110013 80,2100851 26,1704903 55,7412392

MEAN % STD % MEAN % STD % MEAN % STD % MEAN % STD % MEAN % STD %

Small
Room

39,360392 82,3794213 38,111729 69,0541622 43,7128376 75,41238417 56,54131915 82,48638708 30,36263488 63,98935403

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

0,0394199 0,13824739 0,02412871 0,11858151 0,02865731 0,123739503 0,0114687 0,07872491 0,02172962 0,11046717

MSE % MAE % MSE % MAE % MSE % MAE % MSE % MAE % MSE % MAE %

86,7647781 110,353929 58,63865601 85,24258564 93,9669173 115,80541 31,5496761 58,5468216 40,8210226 66,619729

MEAN % STD % MEAN % STD % MEAN % STD % MEAN % STD % MEAN % STD %
Outdoor

75,6578964 98,1862776 51,1485774 88,4272579 91,5040587 98,72462388 10,4019234 66,00072511 19,27673939 85,53581282

Table 6.6. Results obtained by the CNN in the environmental influence test.
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Appendix

Obstacle Light Materials Heavy Materials Wood LOS Wall

Light
Materials

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

0,01045379 0,06050171 0,05175483 0,14163822 0,00784166 0,06247131 0,00829849 0,07362957 0,02828939 0,1165821

MSE % MAE % MSE % MAE % MSE % MAE % MSE % MAE % MSE % MAE %

66,7427234 82,451099 66,7483855 72,2099226 67,30892259 79,72938314 138,8922121 123,911563 53,14413362 70,30747601

MEAN % STD % MEAN % STD % MEAN % STD % MEAN % STD % MEAN % STD %

67,51573966 89,2785766 45,4984634 100,061087 34,30785473 101,7467 186,015122 101,0293567 28,0881473 96,22395323

Heavy
Materials

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

0,01826684 0,08750228 0,03009475 0,0955946 34,30785473 101,7467 0,0098499 0,07795361 0,01659004 0,09275154

MSE % MAE % MSE % MAE % MSE % MAE % MSE % MAE % MSE % MAE %

116,625516 119,247194 38,8133045 48,7359885 84,597302 95,50499191 164,8582333 131,188511 31,16586475 55,93591704

MEAN % STD % MEAN % STD % MEAN % STD % MEAN % STD % MEAN % STD %

73,46752963 113,304334 6,94601505 79,0664258 49,01959492 111,396557 161,549637 121,5602825 4,84908724 76,24086328

Wood

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

0,01405245 0,06828006 0,04891188 0,13794212 0,00386083 0,04708451 0,00632522 0,06202191 0,02532679 0,1058047

MSE % MAE % MSE % MAE % MSE % MAE % MSE % MAE % MSE % MAE %

89,7185407 93,0513533 63,0818229 70,3255788 33,13945103 60,09188759 105,8655006 104,3769753 47,57862619 63,80792083

MEAN % STD % MEAN % STD % MEAN % STD % MEAN % STD % MEAN % STD %

27,96187221 102,509971 42,9101256 97,7019605 6,069968276 80,4054303 122,09439 99,08805464 29,643663 90,21698562

LOS

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

0,01397264 0,06650509 0,06122711 0,160725 0,00721748 0,05933153 0,00351147 0,04647238 0,03645505 0,13225417

MSE % MAE % MSE % MAE % MSE % MAE % MSE % MAE % MSE % MAE %

89,2089899 90,6324427 78,9648182 81,9407347 61,95127085 75,72222013 58,77163631 78,20859529 68,48405174 79,7588728

MEAN % STD % MEAN % STD % MEAN % STD % MEAN % STD % MEAN % STD %

35,49649416 101,774624 73,2458591 98,6471616 48,13130182 93,4032991 1,69536716 81,74716599 69,5577252 92,73909205

Table 6.7. Results obtained by the MLP in the obstacle influence test.
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Appendix

Obstacle Light Materials Heavy Materials Wood LOS Wall

Light
Materials

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

0,00921336 0,05569007 0,05589486 0,14504856 0,0052337 0,04642639 0,00480115 0,05482112 0,02667527 0,10518509

MSE % MAE % MSE % MAE % MSE % MAE % MSE % MAE % MSE % MAE %

58,8231386 75,8938463 72,08779667 73,94858033 44,9234866 59,251958 80,3570703 92,2587306 50,1118657 63,434251

MEAN % STD % MEAN % STD % MEAN % STD % MEAN % STD % MEAN % STD %

26,9165842 90,5483023 61,1202964 98,6203849 9,84021641 85,78185466 106,1012313 86,3883175 42,5779291 88,31193996

Heavy
Materials

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

0,02191028 0,09977915 0,00921336 0,05569007 0,01363681 0,08753617 0,01111186 0,08222251 0,0133337 0,09071007

MSE % MAE % MSE % MAE % MSE % MAE % MSE % MAE % MSE % MAE %

139,887233 135,977984 11,88250265 28,3918821 117,051618 111,718561 185,979716 138,372664 25,0485406 54,7047623

MEAN % STD % MEAN % STD % MEAN % STD % MEAN % STD % MEAN % STD %

95,6308065 122,054724 26,9165842 90,5483023 76,6906387 124,5095234 178,3709499 127,4676858 27,44373552 63,4958627

Wood

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

0,01184395 0,05508218 0,0518572 0,1458458 0,00317958 0,04099512 0,00335696 0,04511035 0,02262894 0,10455675

MSE % MAE % MSE % MAE % MSE % MAE % MSE % MAE % MSE % MAE %

75,6182665 75,0654201 66,88041243 74,3550288 27,2919387 52,3202672 56,1855953 75,9164283 42,5104752 63,0553163

MEAN % STD % MEAN % STD % MEAN % STD % MEAN % STD % MEAN % STD %

4,80179883 94,7422583 61,5831062 93,7372196 27,5766114 63,85572782 50,44688146 78,51753265 49,18174786 76,47282215

LOS

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

0,01267488 0,05851574 0,06250627 0,16230033 0,00720045 0,05803423 0,00300621 0,04175818 0,03675226 0,12892334

MSE % MAE % MSE % MAE % MSE % MAE % MSE % MAE % MSE % MAE %

80,923379 79,7446399 80,6145553 82,74386861 61,8050938 74,0665332 50,3150762 70,2750451 69,0423871 77,7501403

MEAN % STD % MEAN % STD % MEAN % STD % MEAN % STD % MEAN % STD %

58,0768372 94,7507312 78,7293078 97,0145179 70,2089218 83,64446292 42,69144567 72,30024418 73,63160511 90,53492619

Table 6.8. Results obtained by the CNN in the obstacle influence test.
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