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Abstract

Technological progress has brought artificial intelligence closer to people,
assuming an important role in many fields thanks to its support. Artifi-
cial Intelligence, AI, is a technology capable of being transversal in many
fields, from medicine to finance, from legal to security, from autonomous
driving to military and so on. As AI becomes involved in context of high
sensitivity and risk, the user needs more to be able to understand what
the AI decision-making process suggests. The understanding, and so also
the comprehensibility, of the result is closely linked to the interpretability
that the model is capable of providing through its result’s explanations.
Although AI systems are becoming more useful providing huge benefits,
their involvement is limited by the model’s inability in explaining to users
a given decision and action. This leads many user to consider it as un-
trustworthy. Today’s challenge is to make AI explainable, gaining users
trust and helping them to understand and manage AI outcomes. Not all
AI models have this lack of interpretability, some of the simpler ones are
interpretable by nature, which, although less accurate, make them prefer-
able to user. So trust and understanding are key to a growing adoption
of AI models by users. To achieve them, the generation of the upcom-
ing AI models is also making a greater effort on interpretability, not only
to understand a result but also to validate a model, finding possible is-
sues. Inspection of internal processes of a model is not always possible,
it depends on the model, which could also be a black-box one. This is a
problem for the majority of the most used machine learning algorithms,
for which today’s effort is in developing tools and libraries to understand
what is behind the model outcome, in order to provide a reasonable ex-
planation. The explanation method approaches are divided into two type,
model-dependent and model-agnostic, with the first limited on a single
class of model and the second independent from the applied model. As
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the explanation is the basis and essence of the interpretability of a result,
it influences the name given to the topic, being known as eXplainable Ar-
tificial Intelligence, XAI.
This thesis is focused on exploring the actual available tools and solutions
to provide explanations for unsupervised clustering learning. State-of-
the-art explanation techniques for supervised clustering are tailored and
adapted for unsupervised clustering applications. The proposed approach
is model agnostic, i.e. it is applicable to explain the clustering results of
any unsupervised techniques. Clustering results are firstly learned and
modeled exploiting supervised techniques. State-of-the-art explainers are
then applied to provide explanations. The proposed explanation approach
allows the understanding of clustering results at different scopes. It pro-
vides (i) a global understanding of clustering results (ii) individual cluster
interpretability, highlighting which attributes values mostly contribute to
a specific cluster under analysis, and (iii) a local explanation for a sin-
gle cluster instance. Experimental results on artificial and real datasets
compare multiple explainers and underline which is most suitable for the
scope of interpretability of interest.
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Chapter 1

Introduction

Technological progress has brought artificial intelligence closer to people,
assuming an important role in many fields thanks to its support. Artificial
Intelligence, AI, is a technology capable of being transversal in many fields,
from medicine to finance, from legal to security, from autonomous driving
to military and so on [18]. As AI becomes involved in context of high
sensitivity and risk, the user needs more to be able to understand what
the AI decision-making process suggests. The understanding, and so also
the comprehensibility, of the result is closely linked to the interpretability
that the model is capable of providing through its result’s explanations.
Although AI systems are becoming more useful providing huge benefits,
their involvement is limited by the model’s inability in explaining to users
a given decision and action [19, 20]. This leads many user to consider it
as untrustworthy [2].
Today’s challenge is to make AI explainable, gaining users trust and help-
ing them to understand and manage AI outcomes. Not all AI models have
this lack of interpretability, some of the simpler ones are interpretable by
nature, which, although less accurate, make them preferable to user. So
trust and understanding are key to a growing adoption of AI models by
users [19]. To achieve them, the generation of the upcoming AI models is
also making a greater effort on interpretability, not only to understand a
result but also to validate a model, finding possible issues [21]. Inspection
of internal processes of a model is not always possible, it depends on the
model, which could also be a black-box one. This is a problem for the
majority of the most used machine learning algorithms, for which today’s
effort is in developing tools and libraries to understand what is behind the
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Introduction

model outcome, in order to provide a reasonable explanation [22]. As the
explanation is the basis and essence of the interpretability of a result, it
influences the name given to the topic, being known as eXplainable Arti-
ficial Intelligence, XAI [18].
Also from a legal point of view there is now a higher focus on the ethical
aspect of AI models [20, 22]. In fact, with the approval of General Data
Protection Regulation, GDPR [23], by the European Union Parliament
in April 2016, became law in May 2018, are stated clauses on automated
decision-making process, which introduce a sort of "right of explanation"
for all users of getting a "meaningful explanation about the logic involved",
in cases where an automated decision is made. This ethical aspect of AI
has coined another denomination for the XAI and is that of "Responsible
artificial intelligence" [24].
This thesis is focused on exploring the actual available tools and solutions
to provide explanations for unsupervised clustering learning. State-of-
the-art explanation techniques for supervised clustering are tailored and
adapted for unsupervised clustering applications. The proposed approach
is model agnostic, i.e. it is applicable to explain the clustering results of
any unsupervised techniques. Clustering results are firstly learned and
modeled exploiting supervised techniques. State-of-the-art explainers are
then applied to provide explanations. The proposed explanation approach
allows the understanding of clustering results at different scopes. It pro-
vides (i) a global understanding of clustering results (ii) individual cluster
interpretability, highlighting which attributes values mostly contribute to
a specific cluster under analysis, and (iii) a local explanation for a sin-
gle cluster instance. Experimental results on artificial and real datasets
compare multiple explainers and underline which is most suitable for the
scope of interpretability of interest.

Thesis overview The thesis is structured as follows. Chapter 2 pro-
vides a background on the XAI’s terminology and concepts, in particular
reports examples pointing out the increasing needs in terms of fair and
interpretable outcomes resulting from artificial intelligence’s and machine
learning’s models. The Chapter 3 consists of two main sections. The first
section reports an overview on the current XAI clustering state-of-the-art,
with references to novel approaches and milestones in the development of
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interpretable models. The second section, instead, describes the meth-
ods that are mostly used in clustering XAI approaches, made for Machine
Learning classification. These methods are also involved in the proposed
experimental approach, extensively described in Chapter 4, reason thy are
explained from a technical and conceptual point of view, with a distinction
between global methods, in the first part, and local methods, in the second
part. The Chapter 4 also describes the theory and the technical imple-
mentation of both the clustering and classification algorithms. Chapter
5 focuses on the qualitative and quantitative analysis of the experimen-
tal results obtained on both artificial and real datasets with the proposed
experimental approach. Finally, in Chapter 6 conclusions are collected
and possible future enhancements are illustrated to line out more suitable
solutions for explainable clustering’s topic.
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Chapter 2

Explainable AI
The chapter consists of two sections and its purpose is to provide a contex-
tualization of explainable artificial intelligence. The first section focuses
on defining key concepts and terms, describing their relationship. The
second section illustrates why explanations are becoming even more nec-
essary, providing example for the main motivations.

2.1 Key concepts
When we talk about explainable AI, the attention immediately falls on
the term "explainable" and the first impression is the one of a AI system
that gives explanations. What is meant by the term Explanation? [25]
As defined in [26], "Explanation" is a noun that means "a statement, fact
or situation that tells you why something happened; a reason given for
something". So an explanation makes something clear or interpretable.
Here a reflection arises on how an explanation of AI can be considered
clear or interpretable. For whom does it become such? As anticipated in
the introduction chapter, a limit to the adoption of AI models is above
all the difficulty that humans have in understanding what, for an AI, has
led to obtain a given result or to suggest a specific action [20]. Since the
human is the reference for the explainable AI, we speak of human inter-
pretable [27,28]. What is interpretability? So the interpretability of a
AI model is the ability to explain or to present the choices taken to get a
result, using terms that are human understandable. An important aspect
is to whom the generated explanation is interpretable, which means also
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Explainable AI

that there is not an explanation universally interpretable for all possible
user [22, 27]. For example an end users could be interested to know if it
is been treated fairly, if the decision is contestable or what it is necessary
to improve and getting a positive decision. Another example is a techni-
cian that could be just interested to understand if the system is working
properly, in order to debug it [22,27].

2.1.1 Taxonomy of XAI
Some models by their nature have a good interpretability and are called
white or transparent box, while others are called black box because
their internal structure is almost unknown to the user or even if known
it is not humanly understandable (e.g. Neural Network) [22, 25, 27]. An
example of model interpretable by design is the decision tree, whose result
is easy to explain by looking the decision path taken for a given instance
of interest. An interesting characteristic of decision tree is that provides
both global and local explanations, two key concepts, on which the models
explanations usually differ. A model that is global interpretable has
an internal logic which is clearly understandable, and allows to follow the
inner reasoning that lead to all various possible results. A local inter-
pretable model, instead, offers only the chance to understand a specific
outcome and its reasons, being so limited to the single instance predic-
tion [1, 3, 22].
The interpretability of a model can be also distinguishes in intrinsic or
post-hoc [2, 3]. When the interpretability is given by the restriction of
the internal model complexity, it is defined as intrinsic, or ante-hoc. The
new upcoming generation of AI models, as anticipated in the introduction
chapter, are developed with the aim of being more interpretable by design.
The post-hoc interpretability, instead, is achieved applying interpretation
methods to analyze a trained model, as for example the permutation fea-
ture importance method. It is also possible to apply post-hoc methods on
model that are intrinsically interpretable, for example on decision trees
can be applied the permutation feature importance method.
Another important distinction is on the type of interpretation methods,
which can be model-specific or model-agnostic [3, 22, 25, 27]. As the
name suggests, model-specific methods are limited to specific models. The
model-agnostic methods, instead, are not depending from the model, can
be applied on any model, after it has been trained. The independence
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(a) Explaining a model to a human decision-maker

(b) Explaining individual predictions to a human decision-maker

Figure 2.1: Examples of model and individual explanation [1].

Figure 2.2: Ante-hoc and post-hoc techniques [2]

from the model does not allow so to access the internals of the model, as
structural information or weights. Model-agnostic methods have desirable
aspect, they are not only flexible on the model but have flexibility on the
explanation and on the representation. There is not a limitation on the
form of explanation, sometimes might be preferable to have a graph of
feature importances while in others a linear formula. The model-agnostic
methods can use different feature representation, for example with a text
classifier, that is based on word embedding, can be preferable to use the
word presences for the explanation [3, 25, 27]. An example of explainable
AI process is shown in Figure 2.3, where starting from the real world, the

17



Explainable AI

data passes through many layers, where they are filtered according to the
layer, finally reaching the human with human understandable explana-
tions [3].

Figure 2.3: Example of explainable AI process, from the real world to the
human, passing through artificial intelligence [3].

2.2 Need for explainability
Not always algorithms need to be explainable, this depends a lot on the
context, if at low or high risk [2,19,20,29,30]. For example, if the Netflix
algorithm suggests a wrong movie, the reason for suggesting it has no
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particular importance and impact on a person’s life. The algorithms that
are asked to be explainable are therefore those that have an impact on
people’s lives, whether financial, health, social or political, so the more
an AI’s decision affects a person’s life, the more important it is to get an
explanation from the model [18,20,22]. The needs of explainable AI may
stem from at least four reasons that highlight the different motivations
for interpretability, despite they seems to be overlapping: (i) explain to
discover, (ii) explain to improve, (ii) explain to justify, and (iv) explain
to control [20, 21].

Explain to improve
The explanations also help to improve a model by detecting its weak-

nesses [20,21]. A model able to explain its result in understandable terms
is more easily improved. AI models can take up biases from the data, in
some cases leading to a racists model that discriminates minorities. This
was the case reported by ProPublica in their analysis [4] on the software
COMPAS, Correctional Offender Management Profiling for Alternative
Sanctions, a criminal risk assessment tool. The analysis founds that the
COMPAS predictions were affected by a racial bias, which made them
unreliable. Figure 2.4 represents one of the cases analyzed by ProPub-
lica, that compares two drug possession arrests. An example of the racial
bias in the prediction can be noted comparing the risk scores of the two
candidates with also their respective prior and subsequent offences.

Figure 2.4: Comparison of the predicted risk scores for two drugs posses-
sion arrests [4].
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Explain to justify
So in the past years there were multiple controversies about the adoption

of AI system, in particular because of discriminatory or biased results [20].
This increases the needs of explaining decision, that means understanding
the reason that justify the result. The explanations become even more
important in case of decisions that are unexpected by the user. So AI
systems can only be debugged and audited when it is possible to get an
explanation to justify a behaviour, and also to get a verification of the
system [20,21]. A motivating example for this aspect is the one presented
in [5] where a classifier was trained to distinguish a wolf from an Husky.
By looking only on accuracy score it was seems to be a good classifier
with an high accuracy score, but when asked about a wrong outcome, the
explanation was quite unexpected, as shown in Figure 2.5. In fact the
classifier did not learn to distinguish wolf and husky but become a snow
detector, because it learned to use snow as relevant feature on classifying
instances as wolf one.

(a) Husky classified as wolf (b) Explanation

Figure 2.5: Original data and explanation of a bad model’s prediction in
the “Husky vs Wolf” task by LIME [5]

Explain to control
Explanations are also important from a legal point of view, to control

the fairness of the predictions [20,21]. The European Parliament recently
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adopted the General Data Protection Regulation (GDPR), which has be-
come law in May 2018 [22, 23]. An interesting aspect is the introduction
of a "right of explanation" for all individuals to obtain “meaningful ex-
planations of the logic involved” when automated decision making takes
place. Figure 2.6 shows an example of a loan requests, a scenario where
an automated decision has an important impact on people’s life and needs
a compliance control. A user whose request has been rejected, could ask
for the reasons that lead to the denied loan. So the user by explanations
could understand if the system is fair and trustworthy or also what needs
to be improved to get the loan request accepted.

Figure 2.6: Example of need to control the explanation, scenario of loan
request rejected.

Explain to discover
A system that provides explanations, especially in research, offers the

chance to find new insights on the model and on why certain outcomes are
suggested by the model, allowing to learn from the system. The explana-
tions thus allow to increase the informativeness and to discover causality,
thanks to the huge amount of data processed by the system [20,21].

2.2.1 Summary of XAI desiderata
A model that is able to explain its outcomes allows to verify important
aspect as [31]:
Privacy: assuring the protection of sensitive information
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Reliability or Robustness: guarantee that small variations in the in-
put do not make great differences in prediction.

Causality: verify that are considered only causal relationship
Trust: if humans are able to understand the decisions explained by the

system, they can easily place more trust in it.
Fairness: ensuring that the model makes unbiased predictions, without

doing any discrimination, as implicit or explicit.
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Chapter 3

Related works
This chapter has the goal of providing an overview of the state-of-the-
art in XAI, with a distinction on clustering and classification approaches.
In the first section are described the two main philosophies of XAI ap-
proaches for clustering tasks and the current litereature’s approaches.The
second section is focused on the methods that are used for machine learn-
ing classification task, which are exploited in existing approaches for XAI
clustering. The described method are also used in this thesis work, to
understand the linkage between the XAI clustering and the existing ap-
proaches.

3.1 XAI in Clustering
In recent years, the research concerning the Explainable AI has been fo-
cused mainly in the classification’s field, only a few years ago there has
been an increase in clustering’s studies. This delay is given by its concept,
in fact the clustering is understood as intrinsically interpretable as it is
suitable for grouping similar entities.
The two main lines of research are quite distinct, on one hand researchers
try to generate explanations from a black-box model, while the other is fo-
cused on improving the transparency of decision-making processes thanks
to more interpretable models. Before the advent of AI explainability,
clustering researches were all heavily focused on improving performance
metrics, such as execution time, scalability and accuracy, while leaving out
any aspect of interpretability [32]. To overcome this, some studies applied
soft clustering methods, while remaining far from guaranteeing solutions.
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Other methods, instead, are aimed to specific application domains, on
which fairness can be increased [33,34].

3.1.1 Research philosophies
There are mainly two philosophies, which distinguish the research, the
first one regards the creation of new clustering algorithms, made with ex-
plainability purposes and parameters interpretable oriented. The other
philosophy has a two steps approach, that combines two models, one of
which also involves a classifier (e.g from unsupervised to supervised, with
a clustering method followed by a classification model, so from unsuper-
vised to supervised, or through an explanatory framework on a trained
classifier). Some studies of both philosophies have an interesting effort in
generating rules and exploiting prior knowledge.

Creation of algorithms interpretable by design

Starting from research on the formulation of new algorithms, some give
importance to prior-knowledge that can help to better identify some pat-
terns. Two interesting examples are proposed by [35] and [36]. The first
method, Discriminative Rectangle Mixture also called DReaM, offers a
probabilistic discriminative model, which is able to learn rectangular de-
cision rules for each cluster. The DReaM model is opposite to the model
proposed by Pelleg and Moore [37], which is a probabilistic generative one
and assumes tailed rectangular distributions. DReaM allows to use do-
main expert’s knowledge, introducing informative prior distribution to the
decision boundaries, that influence the generation of soft decision rectan-
gles, the key element of this clustering methods [35]. DReaM extracts two
type of rules, one related to clusters structure’s preservation, which are
represented as set of feature called "cluster-preserving features", instead
the other set, called "rule-generating features", is used to extract the ex-
planation by taking also in consideration the features of interest suggested
by domain experts. The method proposed by S. Saisubramanian, S. Gal-
hotra and S. Zilberstein [36] addresses the problem of extracting clusters
that are interpretable, considering features that are meaningful for the
end-user. The proposed algorithm has also a parameter that gives to the
user the chance to ask for a certain level of explainability, that is ensured
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as strong when it is equal to 1. This method measures the cluster’s inter-
pretability based on the homogeneity of the cluster’s nodes, respect to the
given feature of interest. To quantify the interpretability is computed an
Interpretability score, that refers to a cluster respect to a feature’s value
and it is bounded between zero and one. The interpretability score of a
cluster is given by the maximum of the feature’s value scores, while the
Interpretability score of clustering is the minimum cluster interpretability
score respect to a feature of interest.

Two steps approaches

Some researches are focused on the generation of tree-based rules, using
unsupervised decision trees and different metrics [38,39]. The researchers
of ExKMC (Expanding Explainable k-Means Clustering) method [40] pro-
pose a novel extension of their previous explainable k-means algorithm [41],
which is based on the traditional k-means clustering, and returns a tree-
based k-clustering of a dataset. The algorithm proposed in [42] is a two-
step process, with a first stage for traditional clustering, to extract the
class label of cluster assignments, and a second stage for tree-based su-
pervised classification, that exploits the class labels. As the authors men-
tioned, the algorithm leverages the Mixed Integer Optimization techniques
to generate interpretable tree-based clustering models. It provides user de-
fined inputs to give flexibility on cluster quality measure and tree depth
and complexity. The score given to the assignment considers the intra-
cluster compactness of the sample and its separation from other cluster’s
samples. Two common measure are the Silhouette Metric [43] and the
Dunn Index [44], the first compares the internal distances between samples
of the same cluster with the distances from samples of the second closer
cluster, while the latter considers the compactness as the biggest intra-
cluster distance and the separation as minimum inter-cluster distance,
so an high score means that the inter-cluster distance is proportionally
high respect to the intra-cluster distance. Also interesting are similar ap-
proaches as the one proposed by E. Horel, K. Giesecke, V. Storchan and
N. Chittar [45] that, after the classification stage, for each cluster runs a
Single Feature Introduction Test method, called SFIT, that identifies the
statistically significant features, characterizing a given cluster.
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The IBM’s research group in their work "Interpretable Clustering for Pro-
totypical patient understanding" [46], defines a pipeline in which firstly is
computed a similarity estimation of the patients, applying their Locally
Supervised Metric Learner (LSML) method. The next stage employs a
hierarchical clustering, generating sub-groups and learning the main fea-
ture that define the different outcomes. As described in [47] the clustering
stage is at the beginning of a personalized prediction model, in fact also
a single patient can be considered for patient similarity, that so identifies
the K similar patient, which are used for the classification stage and which
influence the subset of feature to consider.
Another interesting approach is the one proposed in [48], which is focused
on learning concise rule on single instance. The SECPI algorithm, that
stands for Search for Explanations for Clusters of Process Instances, takes
in input the single instance to explain and returns as output a set of rule
as explanation. For the classification stage, in this cited work is adopted
a Support Vector Machine as a classifier. In Politecnico di Torino is de-
veloped an interesting framework for Unsupervised Network Traffic Anal-
ysis [49]. Also this approach is based on multiple steps, but it exploits
the explanations given by a notorious framework called LIME [1], that
provides local explanations, as can be see in the following Section 3.2.3.
As [48] this work uses a Support Vector Machine for the classification step.

3.2 XAI in Machine Learning Classification

The development of XAI methods is divided into two macro areas, which
differ in the granularity of the explanation, on one side there are meth-
ods focused on obtaining a global explanation, which involves the whole
dataset, while on the other side there are methods which aim is to under-
stand the explanation of a single sample. Both approaches are described
in the following sections, with an overview of the available related meth-
ods. A particular mention is given to SHAP [50], a library which methods
are able to extract both global and example explanations, described in the
following dedicated chapter.
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3.2.1 Global insight
The global insight is a first approach to broadly understand what charac-
terized the model, bringing to light the most influential features for that
model. This information is usually obtained by investigating the trained
model [22].

Random Forest’s feature importance
For Random Forest model, the scikit-learn’s [51] implementation allows

to extract the feature importance by an inner function that returns the
features with their importance score respect the whole dataset, so it rep-
resents a score of global importance. As stated by scikit-learn developers,
their method is impurity-based, and computes the importance score as
the normalized total reduction of the criterion brought by that feature. It
is also known as the Gini importance. Although this computation is fast,
it can be misleading for continuous features or high-cardinality features,
so with many unique values. A proper alternative is the Permutation
Importance, which is suggested [51] and compared [52] by scikit-learn.

Permutation feature importance
Permutation feature importance is a technique that measures the in-

crease in the prediction error of the model after a feature’s value permu-
tation. In that way, the relationship between the feature and the true
outcome is broken. A feature is considered important when shuffling its
values the model error increases, that means the model relies on that fea-
ture for the prediction. Otherwise when the model error is unchanged, the
feature is not considered as important because it is ignored by the model
for the prediction.
This kind of measurement was introduced by Breiman [53] for random
forests, and starting form this idea was proposed a model-agnostic version
called model reliance [54]. Permutation importance method has advan-
tages, one is its highly compressed global insight of the model’s behavior,
another advantage is that provides measurements that are comparable
across different problem thanks to the usage of error ratio. The feature
permutation allows to save time because it does not require to retrain the
model, considering so a fixed model. All the feature interaction are taken
into account by the importance measure, in fact the feature’s permutation
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destroys the interaction effect with the other features, which also repre-
sents a disadvantages from a feature’s dependencies point of view. The
method is applicable to any model and is a reliable technique. An unclear
aspect is whether compute the feature importance on training or test data.
Being linked to the error of the model, in some cases is a disadvantage be-
cause it is not clear on the robustness of the model’s output when features
are tweaked and how much of the model’s output variance is explained
by each feature. The randomness given by the feature’s shuffling allows
repeated permutation which results might vary greatly, stabilizing the
measure thanks to the averaging of the results but requiring more time
for the computation. As anticipated, feature dependencies can be bro-
ken by permutation that may create unrealistic data instances that are
considered for the importance measure computation (i.e. A 2 meter tall
person weighting 30 kg). Another critic aspect is that adding a correlated
feature can decrease the importance of the associated feature by splitting
the importance between both features.

3.2.2 Local insight

Sometimes explanations are requested to better understand a specific in-
stance o subgroup of instances, so an explanation focused on the instance’s
locality is necessary. If global explanations try to answer questions like
"How does the trained model make predictions?", the local explanations,
instead, try to answer questions like "Why did the model make a certain
prediction for an instance or group of instances?" [3]. The main, and also
the first, research for local explanation is done with LIME [5]. A novel
interesting approach is LORE [55], which is a rule-based explanations ap-
proach.

3.2.3 LIME

One of the first approach created with a focus on the machine learn-
ing interpretability is LIME, acronym that stands for Local Interpretable
Model-Agnostic Explanations [5].
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Intuition behind LIME

LIME’s authors Ribeiro, Singh and Guestrin proposed it as a model-
agnostic method, so with the purpose of explaining predictions of any
classifier [5]. The method emphasizes the local analysis for the single
explanation, differently from previous methods which were looking for a
global explanation. As the authors state, to be model-agnostic, they learn
the behaviour of the underlying model perturbing the input and observ-
ing how the prediction changes [1]. LIME is interesting because it merges

Figure 3.1: Visual presentation of LIME’s intuition on global and local
explanations [5].

two aspects, (i) a simple model is more interpretable and (ii) a complex
model can be approximated locally with a simpler model. Figure 3.1 is a
visual presentation of LIME’s intuition. The blue and pink background
represents the complex decision function given by the black-box model.
The dashed line is the local explanation, which is the linear model approx-
imation for the bold red cross, the instance to be explained [5]. Observing
Figure 3.1, we can feel how it is difficult to explain a single prediction of
interest with the global context. LIME focuses on the local of the pre-
diction to be explained. A simpler linear model is used to approximate
the local behaviour of the complex model, learning an interpretable model
only on that region of interest. The local linear model is learned on the
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perturbations of the original instance of interest, which are weighted by
their similarity respect to the instance to explain. The impact of the lo-
cality is reflected only on local and not global behavior, therefore what is
extracted for the region of interest may not be reflected in the context of
the global model [5].

How is the explanation computed?

The computation is based on the following building blocks [5]:
g : an explanation is defined as a model g ∈ G, one of the potential

interpretable models of the class G. That class is composed of models
such as linear one, decision trees, or falling rule lists. The model
domain is {0,1}d’, i.e. the model g acts over the absence or presence
of the interpretable features.

Ω(g) : is a measure of complexity of the explanation g ∈ G, it is the
opposite of interpretability and it is defined because not every model
may be clearly interpretable. For example, as proposed by its authors,
a decision trees the measure Ω(g) may be the depth of the tree, instead
for linear models it may refer to the number of non-zero weights.

x : it is the original representation on d feature, x ∈ Rd, of an instance
being explained

f : it represents the model being explained, which is denoted f : R d→R,
while f(x) is the probability that a given instance x belongs to a cer-
tain class.

πx(z) : is a proximity measure of x with an instance z, defining so the
locality of x.

L(f, g, πx) : it is a measure of how wrongly g is approximating f in the
πx locality.

To achieve a good local fidelity-interpretability trade-off it must be mini-
mized the L(f, g, πx) while Ω(g) needs to be low with a tolerance given by
the human’s interpretability [5]. For these reasons the explanation given
by LIME is obtained by the following formula, that can consider differ-
ent explanation families G, fidelity functions L, and complexity measures
Ω [5]:

ξ(x) =g ∈ G L(f, g, πx) + Ω(g) (3.1)
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LIME provides explanations depending on the type of data used, like
Tabular data, text data or image. Figure 3.2 shows an example of LIME
explanations on image, in particular is explaining an image classification
prediction made by Google’s Inception neural network. The classes with
highest prediction score are “Electric Guitar” (p = 0.32), “Acoustic gui-
tar” (p = 0.24) and “Labrador” (p = 0.21). Considering now the benefits

(a) Original Image

Figure 3.2: LIME’s image explanations [5].

of LIME, it offers an intuitive explanation based on weighted sum com-
putation of the prediction, it is also simple to compute, in fact requires
short time of computation [3]. The disadvantages are mostly linked to the
local linear approximation, that can only represent linear relationships.
So with a lack of predictive performance because the model can only learn
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restricted and oversimplified relationships.

3.2.4 SHAP
SHAP is the acronym of SHapley Additive exPlanations, as the name sug-
gests, it is a method which takes inspiration by the optimal Shapley values
from game theory [50], but with a kernel-based estimation approach, which
is also reflected on the name of the proposed estimator KernelSHAP [3].
SHAP’s aim is to explain a single prediction, computing the contribu-
tion of each feature contribution in the resulting prediction. The way of
extracting the explanation via single contribution is taken from the coali-
tional game theory, so SHAP considers a feature value as a player in a
coalition [50]. The Shapley values point out how distinguish the feature
values impact on a prediction, among the involved features. The player
involved depends on the nature of data, e.g. for tabular data it can be
a single feature value, instead for an image, the player is a group of fea-
ture values, the pixels that are grouped to significant super pixels. SHAP
method is used taking two optional assumptions that simplifies the com-
putation of the expected value, they are feature independence and model
linearity, so KernelSHAP merges two philosophy, the Linear LIME and
the Shapley values [50]. SHAP is based also on additive feature attribu-
tion methods, that have an explanation model that is a linear function of
binary variables [50]:

g(zÍ) = φ0 +
MØ
i=1

φiz
Í
i (3.2)

where M is the number of simplified input features, φi ∈ R and zÍ ∈
{0, 1}M . The explanation model that follows the (3.2) assigns to each
feature an effect φi and then sums the effects of all feature attributions
approximates the original model output f(x), where f is the original pre-
diction model to be explained and g the explanation model, x is the single
input [3]. The shap values guarantee three important properties like local
accuracy, missingness and consistency [50]. For the first property, when
the original model f is approximated for a given instance x, local accuracy
imposes a match with the explanation model output of f for the simplified
input xÍ, that corresponds to the original instance x.

f(x) = g(xÍ) = φ0 +
MØ
i=1

φix
Í
i (3.3)
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The explanation model matches the original model when x = hx(xÍ) and
where φ0 = f(hx(0)), which means that all simplified inputs are toggled
off. The missingness property can be considered as the dual of the sim-
plified input, so instead of taking into account the impact for a feature
presence, considers a missing feature as one that does not provide any
impact [50].

xÍ
i = 0 =⇒ φi = 0 (3.4)

Consistency property states that the attribution of a given instance, inde-
pendently of other instances, should not decrease when the model changes
in a way that the impact of the simplified input increases or stays the
same [50].

φi(f, x) =
MØ

zÍ⊆xÍ

|zÍ|!(M − |zÍ| − 1)!
M ! [fx(zÍ) − fx(zÍ\i)] (3.5)

These properties are encountered in the definition of φ 3.5, where |zÍ| is
the number of non-zero features in zÍ, with zÍ ⊆ xÍ represents all zÍ vectors
where the non-zero features are a subset from the non-zero features in
x [50]. Figure 3.3 shows two example of simplified instances. In Figure
3.3a the simplified instance is computed on a tabular data, so the coalition
represent the presence of the features [3]. In the example only the value
of the feature Age is maintained, while for the features that are not in
the coalition, the feature value is replaced by random feature value from
data. Figure 3.3b is the equivalent in case of images, where the feature is
intended as a super pixels and whose absence is represented with a grey
area [3]. The SHAP authors propose explainers with different approaches,
the main are BruteForceExplainer, KernelExplainer, SamplingExplainer
and TreeExplainer, DeepExplainer [6,50,56]. The main functions for these
explainers are shap_values and explain. As the name suggests shap_values
is in charge of estimating the SHAP values for the passed dataset. For
models with a single output is returned a matrix of SHAP values of SxF
dimension, where S is the number of samples and F is the number of
features. Each sample is represented with a row that sums to the difference
between the expected value of the model output and the one observed by
the model for that sample. In case of models with a vector of output,
the function returns a list of that per-output matrices. The explainers
BruteForceExplainer, KernelExplainer, SamplingExplainer share the same
shap_values function, the one defined for KernelExplainer, but have a
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(a) Tabular data

(b) Image

Figure 3.3: Examples of simplified input [3].

different philosophy on the computation of samples behind the explain
function. The DeepExplainer is a high-speed approximation algorithm for
SHAP values computed for deep learning models.

BruteForceExplainer
This explainer is a brute force implementation of SHAP values intended
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for unit tests, because of its high computation costs in terms of time and
resources [6]. The explain method defined for this approach, as for others,
works on a single instance to explain. Given that instance, given the model
used for the prediction, is built up a section for the estimation of the φ
values for each possible feature combination. For each feature in analy-
sis are computed the combination taking only in consideration the other
features. The intuition behind this is that it is possible to learn most on
a single feature if it is possible to understand its effect in isolation [3]. A
coalition of a single feature allows to understand the feature isolated main
effect on the prediction, instead when the coalition consists of all but one
feature, it is possible to understand about the features total effect, com-
pounding the main effect with the feature interactions. If are considered
only half of the features, the coalition provides little understanding about
individual feature contribution, because of the high number of coalition
made with half of the features [6]. Then the mask is built up for the pre-
diction without the feature of interest, starting from a mask of zeros and
taking only the value for the feature in a given combination. The masker
function is in charge of changing the values of the whole dataset for the
present feature, in this manner for all the instances the present feature
value is the same. The masked dataset and the original one are passed to
the classification model, which returns back the predictions. The weighted
difference between the predictions made on the original dataset and those
of the masked dataset, define the φ value for the considered combination
and i-th feature. So the φ value for the i-th feature is an incremental up-
date from the weighted difference between ipresent and iabsent results, over
all possible presence combination made considering all but one feature.

KernelExplainer
KernelExplainer uses a special weighted linear regression to compute the

importance of each feature, which are shapley values from game theory and
coefficients from the local linear regression [57]. From some points of view
this explainer can be seen as the fusion of linear LIME with Shapley values.
LIME’s equation 3.1 allows to recover Shap values, but differently from
linear LIME, the parameters can not be chosen heuristically. Equation
3.6 shows how to find the proper loss function L, weighting kernel πxÍ ,
and regularization term Ω to recover the Shapley values, according to the
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definition of additive feature attribution methods 3.2 [50].

Ω(g) = 0

πxÍ = (M − 1)
(Mchoose|zÍ|)|zÍ|(M − |zÍ|)

L(f, g, πx’) =
Ø
zÍ∈Z

[f(hx(zÍ))− g(zÍ)]2 πÍ
x(zÍ)

(3.6)

where |zÍ| is the number of non-zero elements in zÍ.

SamplingExplainer
SamplingExplainer computes SHAP values under the assumption of fea-

ture independence and extends the algorithm proposed in [58]. Even if it
is based on a KernelExplainer class, it is an alternative especially for cases
with a large dataset as background set, instead of a single instance. Differ-
ently from the KernelExplainer the passed data can be the whole training
dataset, even if a high dimensional one, and this is possible thanks to
the sampling on the dataset done by the SamplingExplainer. The explain
method allows the user to define the number of samples to generate, a
way to speed up the method.

TreeExplainer
As stated by SHAP’s authors in their paper [56], despite the compelling

theoretical advantages of shap values, their practical use is hindered by
two problems: the challenge of estimating efficiently the shap value and
the exponential complexity of the Equation 3.5. TreeExplainer, also called
TreeShap, is focused on tree models and proposes fast SHAP value esti-
mation methods for trees and ensembles of trees, this is reason why it has
its own definition for shap_values. Starting from a definition of a slow
but straightforward algorithm the TreeShap one is a more complex and
faster version, that allows to a memory usage of O(D2 + M) and an es-
timation time of O(TLD2) instead of O(TL2M), where T is the number
of trees, L is the maximum number of leaves in any tree, M is the num-
ber of features and D is the depth of the trees, that becomes D = log L
for balanced trees [56]. Since the weights in the equation depend on |z’|,
to get a proper weighting of subsets, the algorithm keeps track of each
possible subset size during the recursion. The TreeShap method has three
main functions recurse, extend and unwind. The last two are in charge
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of creating or removing the extension of the path in exam. The extend
method grows the set of subsets, considering a given mask of ones and
zeros, so this method is used to descend the tree whereas the unwind is
used to undo the previous when the current split is on the same feature
twice, and to undo the extension of the path inside a leaf, to compute
weights for all the features involved in the path [56].

SHAP explanation visualization
SHAP offers the methods Summary_Plot, Dependence_Plot, Deci-

sion_Plot, Force_Plot, which are described below [6]. The summary plot
provides a global interpretation, not only for the model but also for the
single classes, it distinguish each feature’s impact for each class. The de-
pendence plot is a scatter plot which shows the effect of a single feature
on the model’s predictions. The decision plots show how complex models
arrive at their predictions. The force plot gives a visual representation of
the impact of each feature for a group of explanations or for a single one,
its equivalent for image data is Image_Plot. Figure 3.4 shows an example
of the Image_Plot applied on a MNIST data. It explains, for each of the
four different images, the output for each possible result, which are the
digits from 0 to 9. The pixel in red are the one that drive to a given out-
put by increasing its score, on the other hand the blue pixels decrease the
outcome score. The images on the left are the input, while the images in
a nearly transparent grayscale, provide a visual match with explainations.
It is interesting to observe how for the zero is important the blank in the
middle, while for the four is important the absence of a line on the top to
do not consider it as nine instead of four.

3.3 XAI tool development rush
The growing interest on artificial intelligence fairness has taken also the
interest of important IT companies, that now are more involved in new
accountable, fair and transparent tool development. One of the most re-
cent tool is WIT (What-If Tool) [59] by Google, which offers the chance of
testing performance in hypothetical situations, analyzing the importance
of different data features, visualizing the given scenario across multiple
models and subsets of data, considering different fairness metrics [59]. Mi-
crosoft is releasing the alpha of its open-source package, InterpretML [60],
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Figure 3.4: Example of feature attributions obtained with image_plot on
MNIST data [6].

that incorporates state-of-the-art machine learning interpretability tech-
niques under one roof. It also allows to train interpretable glass-box
models and explain black-box systems [60]. Like Microsoft, H2O has
also focused on interpretability in its closed-source platform called H2O
Driverless AI [61]. Finally, IBM has released an open-source tool, AI
Explainability 360, that implements the state-of-the-art algorithms for in-
terpretability and explainability of machine learning models [62].
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Explanation extraction’s
approach
This chapter introduce the thesis work approach, with a focus on the theo-
retical background of the algorithms used for clustering and classification,
explaining the possible configurations.

4.1 Proposed experimental approach
The approaches for explainable clustering, as already said in the Sec-
tion 3, offer a limited set of possibilities. The clustering techniques are
often used for exploration phases, thanks to their ability in identifying
groups of subjects, a peculiarity on which the proposed approach is based.
The proposed approach belongs to the two phases approaches philoso-
phy described in Section 3. As the aim is to address the extraction of
explanation for unsupervised learning problems, by clustering, the input
dataset is assumed to be suitable for the clustering. This assumption is
important to grant the applicability of the proposed approach. Moreover
the dataset is pre-processed, removing empty or null values. Once the
dataset is ready, the approach can begin, following the schema shown in
Figure 4.1, which steps are described next. The first phase has the goal of
labeling the dataset instances, by clustering algorithm. Depending on the
considered algorithm, the number of clusters can be required as parame-
ter. If it is not known from the given problem, it is tuned over a range of
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possible numbers of cluster, by comparing the Silhouette scores achieved
by the different cluster numbers. The chosen number of cluster is the one
with the highest Silhouette score. The labels extracted by the clustering
algorithm of the first phase are used in the second phase. The main actors
of the second phase are the classifier and the explainer. Firstly a classifier
is trained on the input dataset, considering the labels extracted in the first
phase. After that is possible to use an explainer, by passing the dataset
and the classifier model. This approach is suitable to both the used fami-
lies of interpretability methods, LIME and SHAP. At this point by using
SHAP’s methods it is possible to visualize global explanations about the
processed dataset, with a well defined contribute of each cluster on the
model explanation.
When it is request to process a single instance, it is passed to the explainer
together with the classifier model.

Figure 4.1: Conceptual scheme of the proposed approach

4.1.1 Algorithms lineup
To obtain a wide variety of possible cases, for each analyzed data set, the
clusters are extracted and classified considering singularly all the possible
algorithm’s combinations, both for clustering and classification. Also for
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the explanations are exploited all the explainable functions presented in
Section 3.2.3 and 3.2.4. It is so necessary to get a background knowledge
of the used algorithms, also for clustering and classification, on which are
focused the next sections.

4.2 Clustering
This section explains the chosen clustering algorithm and the given con-
figuration for the experiments with artificial data set and real data set.
The clustering phase is done using the scikit-learn implementation of the
following algorithms: KMeans, DBSCAN, OPTICS, Spectral and Agglom-
erative [7, 63].

4.2.1 KMeans
It is an iterative algorithm which identifies K subgroups, not overlapped,
called clusters, where K is specified by the user. Each cluster is composed
of data points that are as much as possible similar between them [64].

How does it work? [7, 63]
1. First of all is specified the K number of clusters.
2. The algorithm initialize K-centroids, it can be done passing an ndarray

of shape (K, number of features) or can be randomly defined by the
algorithm that choose K random samples from the data set.

3. After that the K-means starts to loop the following two steps:
(a) For each sample computes the distance from all the centroids and

assign the sample to the nearest one.
(b) New centroids are created considering the new mean value given

by the data points belonging to the appropriated centroid.
The loop stops when the difference between the old centroids and the new
one is under a certain threshold. The algorithm choose centroids that
minimize the within-cluster sum of squares, where xi is the sample and
the µj is the j-th centroid, so the mean of the j-th cluster.

nØ
i=0

min
µj∈C

(||xi − µj||2)
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KMeans has some limitations. It has problem when data contains outliers,
and also when it is composed by clusters that are different in density, size
or when their shape is non globular. As shown in Figure 4.2, respect to

Figure 4.2: Importance of centroids initialization [7]

the original point, the KMeans algorithm could extract optimal or not
optimal clusters. In both the cases are detected three clusters from the
data, but they are different because of the initialization of centroids. A
wrong choice of initial centroids cause a sub-optimal clustering, as shown
in Figure 4.2, where the big cluster in the middle is divided in two clusters
and the two small clusters on the sides are considered as a unique one.

4.2.2 DBSCAN
DBSCAN, which is the acronym for Density Based Spatial Clustering of
Application with Noise, is one of the most famous unsupervised learning
method [8]. In fact, differently from the previous algorithm, it does not
requires a number of cluster to find, which instead are considered as high
density areas separated from low density ones. For that reason DBSCAN
can identify clusters of any shape, differently from the K-Means that as-
sumes clusters have a convex shape [63]. The concept of density is given
by the two parameters min_samples and eps, the first one defines the
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number of neighborhood to consider a point as a core one, so it defines
the tolerance of the algorithm towards noise, the second one defines the
core distance measure, the maximum distance between samples to be con-
sidered neighbors. The default distance metric used by this algorithm is
the euclidean one. The eps definition is particularly important because
it states the local neighborhood of the data, and should be choose coher-
ently with the data set values. A small eps will consider most of the data
as not clustered samples, labeled as noise, on the other hand a large eps
value will cause the collapse of close clusters in a single one [63]. A cluster
is composed of a set of core samples and a set of non-core, or border,
samples, the first are samples, from the dataset, that have min_samples
other samples within an eps distance, the seconds are neighbors samples
of a core one but are not themselves a core sample. The non-core samples
can be formally considered as the edge of the cluster, out of it there are
outliers, samples that have a distance of at least eps from any other sam-
ple. Figure 4.3 provides an example of DSCAN application, considering
min_samples equal to 4. The core point is represented with red dot, while
the blue dot are used to identify the noise point, that dos not belong to
any cluster. The yellow dot represents the border point, that is still part
of the cluster thanks to a distance within eps respect to a core point, but
it can not be consider as a core point because it does not satisfies the
min_samples criteria [8].

Figure 4.3: DBSCAN example [8]
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4.2.3 OPTICS
This algorithm takes inspiration from the DBSCAN, of which can be con-
sidered a generalization [65]. The main parameters of the algorithm are
min_samples and max_eps, the first is the same of the DBSCAN, the sec-
ond one, instead, represents the maximum distance between two samples
to be considered neighbors, differently from the DBSCAN it has infinite as
default value, which means it identifies clusters across all scales, this also
means that requires more memory and computational power. The most
important difference is that the OPTICS extract a reachability graph,
which gives to each sample a reachability distance, that enables this al-
gorithm to identify clusters with variable density [63]. The reachability
distance is computed for a sample respect to a core sample and returns
the smallest distance from the core sample, so it cannot be smaller than
the core distance of that core sample. A core distance is the minimum
eps to consider a point as a core one, satisfying the min_samples crite-
ria. The default distance metric used by this algorithm is the minkowski
one [65]. Figure 4.4 shows an example that visualize the already described
concepts of core-distance and reachability distance. The example under-
lined the different reachability distance for the point p respect to q1 and
q2. The reachability distance respect to q1 is influenced from the smaller
core distance of p, which is ÔÍ, instead the reachability distance respect to
q2 is equal to the distance from p.

Figure 4.4: OPTICS example [9]
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4.2.4 Spectral
This algorithm has become popular thanks to its easy configuration and
interesting performance with graph-based clustering [66]. The algorithm
was built to address the complex cluster shape problem, which is an issue
for the KMeans and DBSCAN application, for the first one because of
its ability to find spherical clusters and for the second one because of its
parameter sensitivity. It is based on 3 phases [66]:
1. First of all it is necessary to build up a similarity graph between the

samples. The similarity graph can be computed in many ways, the
most used are the k-nearest neighbors and the eps-neighborhood, which
respectively use a K numbers of samples and a sample’s distance eps
to get the local structure of the data.

2. Then are calculated the first K eigenvectors of its Laplacian matrix.
The eigenvectors are used to compute the sample’s feature vectors.

3. On that feature is executed a K-Means algorithm, to identify the K
clusters.

A similarity graph represents the dataset as a weighted graph, where all
vertices that can be reached from each other by a path form a connected
component. When there is only one connected component in the graph,
it is defined fully connected [10]. Figure 4.5 is an example of similarity
graph build on 6 vertices, that represent the data points, composed of 8
weighted edges showing pairwise similarity between points. The two main

Figure 4.5: Example of similarity graph [10]

type of graph are k-nearest neighbors and eps-neighborhood. The eps-
neighborhood computes pairwise distance between any couple of points,
and connects each point to all other points having a distance smaller than
a threshold eps. This approach can be unweighted and so there is an
edge if a point belongs to the eps–neighborhood of another point, instead
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when the graph is weighted, the distance is transformed to similarity,
that is considered as edge weight [10]. The k-nearest neighbors approach
defines edges between a point and its k-nearest neighbors, each point is
connected to at least k points. The kNN graph considers a single edge
between to points ( e.g. considering xi and xj, there is an edge that
can be from xi to xj or from xj to xi), while the MutualkNN considers
the edge set as a subset of that in the kNN graph, then edges are taken
for both the directions [10]. An example of the described approaches is
shown in Figure 4.6, where for a given dataset are computed similarity
graph considering different approaches. On the top right corner it is used
an eps-neighborhood approach, with an epsilon equal to 0,3, instead the
two approaches on the bottom of image are based on the two approaches
of k-nearest neighbors [10].

Figure 4.6: Different similarity graphs [10]
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4.2.5 Agglomerative
This algorithm is one of the most used of the hierarchical clustering meth-
ods [63]. The clusters obtained with this family of clustering algorithms
are build by merging or splitting them afterwards. The results can be
displayed with a dendrogram or a tree, which root represents the unique
clusters, that collects the whole dataset, and the leaves represent the stan-
dalone sample’s cluster. For these algorithms is not necessary to assume
a given number of cluster, because it can be obtained by cutting the den-
drogram at a suitable threshold. The Agglomerative clustering algorithm
has a bottom-up approach [63]:
- At the beginning, each sample is considered as a single cluster
- At each step, the two closest clusters are merged and the distance matrix

is updated. It stops when remains a number of clusters equal to 1 or
K, if given.

The merging strategy is determined by the linkage criteria [7, 63]:
MAX or Complete : minimizes the maximum distance between obser-

vations of two clusters.
MIN or Single : minimizes the distance between the closest samples of

two clusters.
Average : minimizes the average of the distances between all samples of

two clusters.
Ward : minimizes the sum of squared differences within all clusters.
Centroid distance : The distance between two clusters is computed con-

sidering their centroid, which are the center of the cluster.
An example of how the linkage strategy influences the cluster detection
is provided in Figure 4.7, where for a given set of points are shown the
result by using as linkage the min, the max, the average and the Ward.

4.3 Classification
The obtained cluster labels and the related data sets are classified with
the following classification methods: Random Forest, Decision Tree, SVM,
K-Nearest Neighbors, Neural Network Multi Layer Perceptron.
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Figure 4.7: Different linkage strategies [7].

4.3.1 Decision Tree
Decision Tree is a supervised learning method with the aim of defining a
model by learning decision rules from the dataset [11]. The decision path
is made step by step, for each one the algorithm defines the best feature to
split on, rewarding the feature with the most homogeneous class distribu-
tion, that also means a lowest impurity. The measure of impurity can be
computed with many different methods, depending from the algorithm.
The most used are Gini Index [67], Entropy [68] and Misclassification er-
ror [11]. The decision path ends when all the records belong to the same
class or have similar attribute values. Advantages of decision trees [11]:

- Is easy to understand to such an extent that it is interpretable for nature,
thanks to its easy visualization.

- Is able to handle both numerical and categorical data, requiring little
data preparation.

- Has a cost that is logarithmic in the number of data points used to train
the tree and offers the possibility to validate a model by statistical
tests, providing a certain reliability to the model.

Disadvantages of decision trees [11]:

- Could end up to over-complex trees that do not generalize the data well,
taking to overfitting. A partial solution is the prune the decision tree
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limiting the minimum number of samples required at a leaf node or
setting a maximum depth of the tree.

- Can be unstable because small variations in the data may completely
change the generated tree.

- Cab be created biased trees if some classes dominate, reason why it is
recommended to balance the dataset prior to fitting with the decision
tree.

- Is sensible to missing values, data fragmentation and Tree Replication.
The example in Figure 4.8 shows a decision tree extracted for the IRIS [69]
dataset, using the Gini Index as measure of impurity, a minimum number
of sample for the split equal to 2, which becomes one for the leaf nodes.
All the leafs that classify samples as belonging to a class are represented
with the same color, so to each class is associated a color. The color of
the internal node is referred to the class most represented in the set of
samples considered in that path.

Figure 4.8: Visualization of a Decision Tree on Iris dataset [11]

4.3.2 Random Forest
Random Forest is an ensemble learning technique based on Decision Trees,
which are combined to avoid overfitting and improve accuracy [12, 70].
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Each tree of the ensemble is created from a sample drawn with replace-
ment (i.e. a bootstrap sample) from the training dataset. The best split
of a node can be found in two ways, considering all input features or
a random subset, also known as feature bagging [12]. These sources of
randomness helps to decrease the variance of the forest estimator and
reducing overfitting, and also decorrelates the trees [70]. The main ad-
vantages of this technique is that it has an higher accuracy than decision
trees, it is robust to noise and outliers, it has a fast training phase and
provides global feature importance, i.e. an estimate of which features are
important in the classification. The drawbacks are a slight increase in bias
and the chance of making results that are difficult to interpret [12]. Figure
4.9 represents an example of the random forest approach, that defines the
class by majority voting.

Figure 4.9: Random Forest example [12].
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4.3.3 Support vector machine

The support vector machine, as known as SVM, is a supervised learning
method which aim is to find an hyperplane that well separates and classi-
fies data points [71]. There are many possible hyperplanes that could be
chosen to separate classes of sample, for that reason is necessary to find
the hyperplane that has the maximum margin from the nearest points.
Hyperplanes are decision boundaries that allow the classification of sam-
ples and its dimension is related to the sample’s number of features. When
there are two features the hyperplane is simply a line, instead when the
features are three the hyperplane is a bi-dimensional plane [71]. The sam-
ples that are closer to the hyperplane compose the support vector, which
defines the position and the orientation of the hyperplane, with the goal of
maximizing the margin. As shown in Figure 4.10 the margin can be of two
types, hard margin or soft margin. SVMs implementing the hard margin
are more sensible to outliers, because the margin is intended to strictly
separating the classes. When the SVM implements a soft margin, it has a
tolerance on samples that are closer to the hyperplane but on the side of
the other class. This technique has advantages like being effective in high

Figure 4.10: Hard margin vs Soft margin [13]

dimensional spaces, even when the number of dimensions is greater than
samples one [72]. It also memory efficient thanks to the support vector
that help the decision function considering a subset of training samples.
It is really versatile thanks to its different possible kernel’s function, that
can be specified and customized. The example in Figure 4.11 shows how
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the SVM, with an appropriate kernel, can separate samples through non-
linear boundaries projecting the input into a higher dimensional space, to
make it linearly separable [72]. Some important disadvantages are that

Figure 4.11: Feature space by kernel trick [14].

if the number of features is much higher than the number of samples, is
necessary to fine tune well the choice of kernel functions and the regular-
ization term, to avoid overfitting. This technique does not provide any
direct probability estimates, which are computed by cross-validation [72].

4.3.4 K-Nearest Neighbors

The K-Nearest Neighbors is a neighbors-based algorithm, a kind of method
that implements instance-based learning or non-generalizing learning, in
fact it does not build a general model, but stores the instances of the
training data [73]. The classification is defined by majority voting of
the nearest neighbors of each sample, the winning class is the one with
the most representatives within the nearest neighbors of the sample [15].
Parameter K defines the number of closest points to be considered for
the voting phase of the sample in exam. Choosing the value of K, as
shown in Figure 4.12, is not simple because if K is too small it makes
the classification algorithm sensitive to noise points, otherwise if K is too
large, the neighborhood could include points from other classes [15]. One
of the issues of this algorithm is the feature domain, that usually needs to
be normalized, to avoid distance measures from being dominated by one
of the features. The distance measures can also provoke another issue, the
curse of dimensionality, which is caused by high dimensional data.
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(a) 1-Nearest Neighbor (b) 2-Nearest Neighbor

(c) 3-Nearest Neighbor (d) Large K-Nearest Neighbor

Figure 4.12: Definition of K-Nearest Neighbor [15]

4.3.5 Neural Network Multi Layer Perceptron

Neural Network Multi-layer Perceptron (NN-MLP) is a nonlinear super-
vised learning algorithm that is used in this work as a representative of
Neural Network classifiers [74]. This model is inspired to the structure of
the human brain, in fact the perceptron, the fundamental building block
of a neural network, is also called neuron because it mimics the human
brain’s functions done by the neuron [17]. An example of a Neural Net-
work Multi-Layer Perceptron is shown in Figure 4.13. The input is taken
from the layers on the left, a set of neurons representing the input fea-
tures. The middle layers, also called hidden layers, transform the values
from the previous layer with a weighted linear summation then followed
by a non-linear activation function. The output layer gets the values from
the last hidden layers, transforming them into output values [16]. Looking
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Figure 4.13: Structure of a neural network [16]

more strictly on a single node, the neuron’s structure is the one of Figure
4.14. At the beginning are assigned random values to weights and off-
sets [17]. Training samples are processed one at a time. For each neuron
the result is given applying weights, offset and activation function for the
instance. A forward propagation is done until the output is computed.
The computed output is then compared with the expected output and is
evaluated the error, which is back propagated, updating weights and offset
for each neuron. The training process ends when the percentage of accu-
racy is above a given threshold or the percentage of parameter variation
(error) is below a given threshold or when the maximum number of epochs
is reached [17]. The most relevant advantages are the high accuracy, the
robustness to noise and outliers but also the support to both discrete and
continuous output [17, 74]. The drawbacks are that this classifiers take a
long training time, is weakly scalable in training data size, it has a com-
plex configuration, the application domain knowledge cannot be exploited
in the model. The heaviest disadvantage, from the thesis work point of
view, is that the model is not interpretable [17,74].
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Figure 4.14: Structure of a neuron [17]
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Chapter 5

Experiments

The chapter consists of three sections, the first two are provide the results
and analysis for the datasets, of which the first section is on artificial
datasets while the second one is on real datasets. Finally, the third section
is dedicated to observations on time’s performances, considering for the
first part all the experiments on artificial datasets and on the second one
all the experiments on real datasets.
In the first part are used artificial data sets, in order to take in account
how much this methods gives us back what we expect as background truth.
The reason behind that choice is that, to be enough sure of the answer,
in this case is truly important knowing, in advance, the true answer. In
that way the explanation given by the explainer is really comparable with
the expected features relationship. Another interesting aspect is that this
data sets also allow to compare the explanations given by the different
explainers, which are depending by the model and its configuration. This
provides us some insight on the model behind the explanation.
The second part is focused on the analysis of real data sets. These data
sets are chosen taking in consideration aspects as their dimensionality,
intended in terms of both number of samples and features cardinality.
Some of the data sets are chosen as literature knowledge example, so it
helps to stress and recognise some relationship. Since in real cases data
scientists do not have the complete knowledge on the dataset problem,
the main feature for the relationship are provided by domain experts, that
suggest the feature to take into account, also called "feature of interest"
(FOI).
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5.1 Artificial data sets experiments
I have created two different couples of data sets, which are made with the
intent of stressing some importance’s relationship. All the data set are
build on a set of five features, named X, Y, Z, K, W. The first couple is
named "Blobs" and its data sets are called 2D-Blobs and 3D-Blobs,
while the second couple is composed by a data set called Moons and
another called Circles.

5.1.1 Dataset description
2D-Blobs

This dataset provides two main features, X and Y, which are the only use-
ful to define the designed clusters, while the other features can not provide
any contribution, as for example the feature Z in the 3-dimensional plot
shown in Figure 5.1. So the aim of the dataset is getting different impor-
tance for a single feature, depending on the associated cluster. As shown

Figure 5.1: 2D-Blobs of 2000 samples, clusters extracted by KMeans al-
gorithm

in Figure 5.1, the data set is composed of three globular clusters, its struc-
ture stresses an higher importance of feature Y for a specific cluster (the
violet one), that is placed in a way that the data in its range probably
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belongs to it, so that enables to increase its weight as probable solution.
Feature X, on the other hand, emphasizes the difference between the clus-
ters on the top, which are not distinguishable by the feature Y, but that
are clearly distinct on the X’s space. It is also given a global consideration,
in fact along feature Y, is possible to clearly distinguish only one cluster,
while feature X allows to a partial distinction of two or three cluster.

3D-Blobs

The 3D-Blobs is a modified version of the 2D-Blobs, which difference is
on the domain space of the feature Z. In this data set, also the feature
Z as an impact on defining the cluster, and its values are chosen to have
the same behaviour as the ones of feature Y. In Figure 5.1 is possible to

Figure 5.2: 3D-Blobs of 2000 samples, clusters extracted by OPTICS
algorithm

observe that feature Y, on the XY cartesian plane, distinguish the violet
cluster from the green and yellow ones. Moreover Z feature’s values are
created to clearly separate the yellow cluster from the green and violet
one, considering only that feature. In that way we can evaluate if the
feature Z has more importance, influencing the explanation.
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Moons

Respect to the previous data sets, data set Moons provides a more chal-
lenging importance definition for the features X and Y, for the position
and the shape given to the two clusters. The first cluster is placed cen-

Figure 5.3: Moons of 2000 samples, clusters extracted by OPTICS algo-
rithm

tered on the top of the XY cartesian plane, and has a full moon’s shape,
while the second cluster has an halfmoon shape, a lower semi circumfer-
ence which has the center that point the center of the first cluster. It is
clearly up to the explainer to give an importance’s gap between the two
feature, that are both important.

Circles

The Circles is a data set used to better investigate the influence of a
feature, given by the shape of clusters, which, respect to the Moons ones,
is the same for the internal cluster, instead the external one has a closed
circular shape, a full moon instead of the half moon.
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Figure 5.4: Circles of 2000 samples, clusters extracted by Spectral algo-
rithm

5.1.2 Experimental settings
All the experiments done with this data sets are made with different data
set size: 300, 500, 1000, 2000 and 3000 samples.

Clustering algorithms configurations

For these artificial data sets I used algorithms with the following configura-
tions, common for each experiment. When is required a random number,
it is used a common seed number, that ensure reproducibility.

K-Means For the parameters of this algorithm I used the default val-
ues.

DBSCAN DBSCAN required a tuning of parameters, to better identify
the appropriate parameters for the artificial dataset. The resulting setting
is with eps value of 0.9 and a minimum number of samples equal to 10.

OPTICS The parameters for OPTICS algorithm are the minimum
number of samples, which has a value of 20 and the minimum cluster size
of 0,1, while for the parameters max_eps, distance metric and xi are used
the default values. The maximum default eps is infinite, to get cluster
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across all scales, as distance metric the Minkowski is the default one. The
parameter xi represent the minimum steepness, that defines the cluster
boundary, and its default value is 0,05.

Spectral Clustering For the Spectral clustering it is passed the correct
number of clusters in the tested data set, while the affinity matrix is
constructed by computing a graph of nearest neighbors. The eigenvectors
are computed with one of the most used strategy for large scale eigenvalues
problem, the ARPACK. The K number of cluster, as already said, is the
real one, but thanks to the projection of the samples into a non-linear
embedding, It is also possible to obtain the number of cluster by analyzing
the eigenvalues of the Laplacian matrix. This because when a similarity
graph is not fully connected, the number of cluster estimation is given by
the multiplicity of eigenvalue with 0 value.

Agglomerative Clustering The only parameter needed to the Ag-
glomerative clustering algorithm is the number of clusters of the data set
in exam, for which a number of clusters equal to those expected from the
dataset is passed.

Classification algorithms configurations

For all the artificial experiment were used the same algorithm’s setting.
When required by the algorithm setting, the random state is common for
all methods, for reproducibility.

Decision Tree The only parameter defined for the Decision Tree is the
minimum number of samples for a leaf, which is defined with at least 5
samples. The quality measure of a split is given by the "gini" [67] criteria,
that measure the Gini impurity and the entropy for the information gain.
As splitting strategy, the chosen one is the "best" that considers the best
split over all the possible features. The maximum depth is defined as
"None", in that way the nodes are expanded until all leaves are pure or
with less than the minimum needed samples for a split, which is 2 as
default.
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Random Forest Some of the Decision Tree’s paremeters are unchanged
for the Random Forest, as the quality measure of a split, the splitting
strategy and the minimum samples for a split. The maximum depth, for
this classifier is 6, even if the nature of the artificial datasets mostly let the
algorithm reach less than 6 features, it is limited to 6 to avoid too specific
path in the generated trees. As number of estimators, 10 trees resulted
enough, because of the low feature dimensionality and variability.

Support Vector Machine In scikit-learn the SVM implementation
for classification task is called SVC and offers different kernel type that
can be used in the algorithm as linear, polynomial, rbf and sigmoid. In
this work I have selected the rbf kernel, which stands for Radial Basis
Function. This kernel is one of the most used in literature, also thanks to
its capability to extract non-linear boundaries. Regularization parameter
C used is the default one, which value is 1. The probability estimates are
enabled even if it slows the classifier’s execution, because internally it uses
a cross-validation.

K-Nearest Neighbors
The parameters tuned for this algorithm are the n_ neighbors and the

weight function. The first one is influenced by the nature of the artificial
dataset, so it is defined a small number of neighbors equal to 2. The chosen
weight function is the uniform one, all points in each neighborhood are
weighted equally. The algorithm used to compute the nearest neighbors is
auto, it will attempt to settle the most appropriate algorithm based on the
values passed to fit method. The distance metric to used is minkowski,
which is the default one for scikit-learn.

Neural Network Multi Layer Perceptron
The neural network adopted is the same used by SHAP’s creator, to get

a reasonable simple model. It is build on 5 hidden layers, with a lbfgs solver
for the weight optimization, an optimizer in the family of quasi-Newton
methods.

Why scikit-learn’s algorithms implementations?
There are many other Machine Learning packages providing an imple-

mentation of these clustering algorithms but I choose scikit-learn because
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of its more extended community of developers, which means its methods
are well tested and optimized in resources usage. For the permutation
importance I used the Eli5 [75] implementation, instead of the scikit-learn
one, because it provides a colored representation, which visually makes
the order of importance of the features clearer.

5.1.3 Experimental results
This section reports the importance weights extracted from each com-
bination of the clustering and classification algorithms. The results of
each dataset are divided in three parts. In the first part are shown the
results extracted by combining clustering algorithms with the Random
Forest classifier. For this model, in Figures 5.5, 5.8, 5.11 and 5.14 are dis-
played the importance weights of SHAP’s explainers BruteForce, Kernel,
Sampling, Tree and in addition are shown the results from the feature im-
portance function by Random Forest model. The second part shows the
results extracted for the Decision Tree classifier, for which 5.6, 5.9, 5.12
and 5.15 displays the importance weights of SHAP’s explainers Brute-
Force, Kernel, Sampling and Tree. Finally, the third part provides the
results for the single combinations of clustering algorithms with the re-
maining classifiers, Support Vector Machine, K-Nearest Neighbors and
Neural Network Multi Layer Perceptron. The importance weights in
5.7, 5.10, 5.13 and 5.16 refer only to the ones by SHAP’s explainers Brute-
Force, Kernel, Sampling and Tree.
SHAP’s results are intended as the absolute values of the mean of the
SHAP values [50], while the feature importance’s results are computed as
Gini importances [51,67].
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Importance weights extracted on 2D Blobs

Figure 5.5: Importance weights by Random Forest

Figure 5.6: Importance weights by Decision Tree
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Figure 5.7: 2D Blobs classified by SVM, K-NN and NN-MLP

Importance weights extracted on 3D Blobs

Figure 5.8: Importance weights by Random Forest
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Figure 5.9: Importance weights by Decision Tree

Figure 5.10: 3D Blobs classified by SVM, K-NN and NN-MLP
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Importance weights extracted on Moons

Figure 5.11: Importance weights by Random Forest

Figure 5.12: Importance weights by Decision Tree
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Figure 5.13: Moons classified by SVM, K-NN and NN-MLP

Importance weights extracted on Circles

Figure 5.14: Importance weights by Random Forest
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Figure 5.15: Importance weights by Decision Tree

Figure 5.16: Circles classified by SVM, K-NN and NN-MLP
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5.1.4 Explanations
This section is focused on the explanation analysis of Section 5.1.3 results,
taking care of individuating the driving features for a cluster attribution.
The SHAP explainers Kernel, Sampling and BruteForce have similar, al-
most identical behavior, however even if the Tree Explainer follows the
trend of the other explainers it stresses less certain differences (basically
all the features tend to be more relevant, almost reaching to equalize the
X with the Y).

2D Blobs and 3D Blobs

The aim of this comparison is to understand the influence given by a dif-
ferent domain of a feature. The main features expected for 2D Blobs are
the X and the Y, while for 3D Blobs it is also important the feature Z.
The SHAP’s explanations find Y as most relevant feature and are almost
completely in agreement on all the tested classifiers. For Random Forest
and NN-MLP the difference on the X is so little that in some cases it
becomes more relevant than the Y, in particular on small datasets. The
explanations resulting from the 3D Blobs are more oscillating on identi-
fying the most relevant feature, this is due to the nature of the features
Y and Z, that are designed with the same criteria, as already described
in the datasets description’s section. Only the tree-based classifiers give
a little weight to the X, instead of zero. A focused observation needs to
be done on the Random Forest results, that, differently from the other
classifiers, alternates the X to the Y as main feature, instead of the Z. In
fact for this classifier the X alternates on the first and third place in the
importance’s rank, while the Z alternates the second and the third place.
The described behaviour depends on the role given to the Y, because
when it is considered as main feature, the X is always the third one, while
when the X is the main feature the Z is always the third in importance.
The results on the 2DBlobs dataset are more coherent for Tree explainer,
which almost always indicates the X as main feature for Random Forest,
while for Decision Tree the more relevant one is Y. For the 3D Blobs data
set, as the other explainers, the Decision Tree returns Z and Y as the two
main features, instead the Random Forest explanations stress an higher
weight for the Y, alternating the X and the Z as second one. Note that
the weights difference is smaller for the TreeExplainer.
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Figure 5.17 shows two graphs for each of the two datasets. The first

(a) 2D Blobs

(b) 3D Blobs

Figure 5.17: Global weight comparison

graph, on the top, provides the singles feature’s contributions for each
cluster, highlighting the global importance that each feature has on the
dataset and also on single cluster. The second graph of each pair pro-
vides the feature importance on a single cluster, in these case it refers
to Cluster 0. The importance weights are expressed as the mean of the
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SHAP values, differently from the first graph, where the impact is com-
puted as mean of the absolute SHAP values. Another relevant difference
is that provides also the trend on the feature’s value, for example in Fig-
ure 5.17a an high value of both X and Y gives a positive importance score
to identify the Cluster 0, the yellow cluster in Figure 5.1. An interesting
observation can be done on the 3D Blobs’s graphs in Figure 5.17b. In this
case the feature’s imporance order for Cluster 0 differs from the global
model one. In fact, it considers Y more important than Z to identify the
Cluster 0, while considering the whole dataset, the feature Z is slightly
more important than Y to distinguish all the clusters. From the feature
importance function, provided by the Random Forest, can be observed
that on 2D Blobs dataset the function fully agrees on all the experiments,
that recognise the feature X as first in importance and the Y as second.
It states the same feature importance given by the TreeExplainer, but
partially disagrees with the other SHAP’s explainers that invert the Y
and X’s importance roles on increasing dimensions. It disagrees on all the
Spectral’s evaluations. For the 3D blobs dataset the explainers strongly
disagree with the features importance of Random Forest, in fact, the lat-
ter, almost always considers feature X as the main, alternating it in a few
cases with the Y and indicating the Z as 3rd in importance. The SHAP’s
explainers usually considers the Y as the most important, alternating with
the X which, however, turns out to be the 3rd, on almost half of the tests,
alternating with the Z. So the SHAP’s explainers are able to find a cer-
tain confirmation between the features Y and Z, which, as the data set
is designed, they can clearly identify one of the three clusters. The same
results are extracted from the permutation importance’s methods, as is
shown in Figure 5.18. From Figure 5.19 we can understand the impact

(a) Weights on 2D Blobs. (b) Weights on 3D Blobs.

Figure 5.18: Eli5 Permutation Importance on KMeans clusters with Ran-
dom Forest
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of the feature X, when combined with the Y, on the prediction of single
cluster, noting its correlation on the X’s range of the three clusters. In

(a) Cluster 0 (b) Cluster 1 (c) Cluster 2

Figure 5.19: 2D Blobs’s dependence plot on X and Y

Figure 5.20, instead, we can observe how the equal philosophy for the Y
and Z samples generation is reflected on their dependencies, which are the
same.

(a) X-Y on Cluster 0 (b) X-Y on Cluster 1 (c) X-Y on Cluster 2

(d) X-Z on Cluster 0 (e) X-Z on Cluster 1 (f) X-Z on Cluster 2

Figure 5.20: 3D Blobs’s dependence plot comparison on X-Y and X-Z
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Single sample’s explanations
The knowledge that can be extracted from global importance charac-

terizes the clusters, but does not provide any certainty on singles samples
characteristics and their variability. For these more strict observations,
both SHAP and LIME, as already said in SHAP’s Section 3.2.4, provides
function for single sample prediction’s explanation.

SHAP
Each cluster has its own dependencies, as already observed in the global

weights plot made by singles cluster contributions, but these dependencies
can be better understood with singles explanation as in Figure 5.21. In
fact Figure 5.21a stresses the importance of Y, which is predominant,
especially for clusters 0 and 1 as shown in Figure 5.17a. In Figure 5.21b
is interesting observing a higher importance given to the feature X for
Cluster 1 and in particular for Cluster 0, respect to its 3rd position in the
rank of global importance.

(a) Explained sample from 2D Blobs

(b) Explained sample from 3D Blobs

Figure 5.21: SHAP’s single explanation
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To get an idea of the model inner workings, the decision plot shows
how models make decisions and how a single feature can drive them [76].
The contribution given by X is evident in Figure 5.22, where it is always
present as one of the first two features that drive the prediction.

(a) Cluster 1 - 2D Blobs (b) Cluster 2 - 2D Blobs

(c) Cluster 0 - 3D Blobs (d) Cluster 1 - 3D Blobs

Figure 5.22: Decision plots for single prediction
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LIME
Considering local explanations provided by LIME, the modification on

most characterizing features increases the chance of different prediction
result, respect to the original sample one, even if in some cases lead to a
uncertain prediction, as shown in Figure 5.23.

(a) LIME on 2D Blobs

(b) LIME on 3D Blobs

Figure 5.23: Local explanations
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Moons and Circles

From this couple of dataset the comparison is focused only on the two
main features, X and Y, taking also in observation the weight’s distance
on the third main feature. It is important to point out that for wrong
generated clusters, the weights are conditioned from the clusters bound-
aries. In fact, considering a classic XY cartesian plane, when there is a
vertical boundary, it increases the weight on the feature X, instead when
it is horizontal, a bigger weight is given to the feature Y. In case of di-
agonal boundaries, it depends on slope, but tends to get a more similar
weights on X and Y when it is a 45 degree’s slope. This behaviour is ob-
served on the datasets clustered with the algorithms Agglomerative and
K-Means, that have vertical boundaries for the Moons datasets and di-
agonals for Circle ones. The OPTICS algorithm gives correct results for
datasets with at least 2000 samples, instead the DBSCAN and the Spec-
tral always get correct clusters. The SVM, KNN and NN-MLP classifiers
agrees on giving an higher importance value to the feature X, respect to
the Y, with a slightly difference for SVM and KNN, in particular on the
Spectral 1000 samples results, where their weights are equal. The expla-
nation of the tree based models are less certain on giving more importance
to the feature X, in particular for Moons datasets on DBSCAN, where the
difference is little but for Random Forest is always in advantage of X,
while for the Decision Tree has an alternated attribution on the two fea-
tures. An interesting difference on this two methods is that the Decision
Tree almost always gives a zero value also from the third feature weight,
stressing more the difference between the first two features. The explana-
tion, on Moons dataset, with TreeExplainer agrees for the Random Forest
experiments, stressing more the importance of the Y, being in disagree
only few times, when the two main weights are almost equal. For the
Decision Tree result, instead, the X is always the main feature, also when
other explainers consider Y as first feature, even if with a little advantage
on the second one. For the Circles data set, is interesting to note how
the Random Forest explanations hardly point the feature X as main one
according with other explainers, even if the Decision Tree completely dis-
agree, taking the feature Y as most relevant. In Figure 5.24 is possible to
observe the described behaviour, extracted by Shape, on clusters given by
Spectral algorithm and learned the classification with a SVM. Also with
the function feature importance for the Moons dataset, where the clusters
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(a) Moons

(b) Circles

Figure 5.24: Global weight comparison on Spectral clusters

are identified as designed, the X is always the main feature, even if with a
little difference on the Y. This keep the feature importance function in a
divergent position respect to the SHAP one. Also for the Circle dataset,
like for the Moons one, the X is often considered as the main feature, but
respect to it the feature Y acquires more importance. So in this case the
shape of external cluster shows an influence on the score of the features.
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The permutation importance’s results, shown in Figure 5.25, confirm that
the weights of X and Y are more similar in Moons dataset.

(a) Weights on Moons. (b) Weights on Circles.

Figure 5.25: Eli5 Permutation Importance on Spectral clusters with SVM

The dependence plots in Figure 5.26 are particularly interesting because,
especially for Moons, is stressed the correlation on the value of Y, in fact
the central part of the X range is composed of two distinct group of Y’s
values, the blue one that represents low values of Y and the red one that
point the Y’s values related also to the internal cluster.

(a) Cluster 0 - Moons (b) Cluster 1 - Moons

(c) Cluster 0 - Circles (d) Cluster 1 - Circles

Figure 5.26: Dependence plot comparison on X-Y
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Single sample’s explanations
For this couple of dataset is considered the experimental setting with

Spectral Clustering and SVM.

SHAP
From the single explanation in Figure 5.27 and the correspondent deci-

sion plot of Figure 5.28, extracted from Sampling Explainer, is not possible
to note such difference between the features X and Y of the two datasets,
observed for the global weights.

(a) Explained sample from Moons

(b) Explained sample from Circles

Figure 5.27: SHAP’s single explanation
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(a) Cluster 0 - Moons (b) Cluster 1 - Moons

(c) Cluster 0 - Circles (d) Cluster 1 - Circles

Figure 5.28: Decision plots for single prediction
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LIME
The local explanations provided in Figure 5.29 shows that tweak on

an important feature could also create indecision in the prediction of the
model, perhaps identifying its boundaries with other clusters, as for Figure
5.29a, while for Figure 5.29b the tweak on both the two main features gives
a more stable prediction.

(a) LIME on Moons

(b) LIME on Circles

Figure 5.29: Local explanations
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5.2 Real datasets experiments
The purpose of this section is to verify how good are the methods used
for artificial datasets and the validity of the explainer’s results.
The first dataset of this section is Iris [69], well known in the literature
and one of the most used to test new methodologies on a dataset with
few samples and few features. The second dataset is Mall customers [77],
and it relies on the customer segmentation, a way to better profile the
customers. As the Iris, also this dataset has a low number of features,
just five. Given the size of the first two dataset, a third one is chosen with
the purpose of testing a dataset with a higher feature dimension. To do
so, the dataset Adult is taken in analysis.

5.2.1 Dataset description
Iris

The Iris flower dataset was introduced by Ronald Fisher in his paper [69] in
1936, and it is one of the most famous and used dataset in literature, espe-
cially for classification tasks. The dataset contains morphological variation
on Iris flowers of three species, which are Setosa, Virginica and Versicolor.
Each species is represented with 50 samples, containing the measures of
the four features "Petal length", "Petal width", "Sepal length" and "Sepal
width". Because of its values, is not common for cluster analysis, in fact
the dataset contains only two separated clusters, one representing the Iris
Setosa while the other contains both Iris Virginica and Iris Versicolor.
Thanks to those characteristics, the Iris dataset is a good example for
differentiating the supervised techniques from the unsupervised ones.
Figure 5.30 shows the real classified samples, considering a pair of mea-
sure at each block. The red dots are the samples from Setosa class, while
the green ones are from Versicolor and the blue dots are the samples of
Virginica specie.
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Figure 5.30: Scatter plot of original Iris dataset.

Mall customers

The mall customers is a dataset used in literature for the customer seg-
mentation [77]. The customer segmentation is a practice similar to the
clustering one, in fact the intent is to define groups of customer, under-
standing their common characteristics. This results reflect on the interac-
tion to have with a specific cluster of customer, with the aim of maximizing
the business.
The dataset is composed by 200 samples of 5 features each and does not
provide any label. For that lack of labels, it s necessary to tune the number
of clusters to identify, which is an important parameters for some cluster-
ing algorithms. (For an exhaustive investigation, the optimal number of
clusters was also searched for the Iris dataset, which was two, as expected
due to the strong similarity of the two species Virginica and Versicolor.
But knowing that the number of real clusters is three it was decided to
use it as a parameter value.) The metric chosen to identify the number
of clusters is the Silhouette, which is often used in literature to evaluate
dataset when a ground truth labels is not known [42, 43]. The Silhouette
coefficient is calculated using the mean intra-cluster distance and the mean
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nearest-cluster distance for each sample. The best Silhouette score is 1,
which means the cluster’s sample are better defined, while the worst is -1.
A zero’s value, instead, gives a warning on the cluster overlapping [43].

Figure 5.31: Example of tuning for the number of clusters

As shown in Figure 5.31 the difference between the two silhouette score
is so little that also 5 can be a correct value for the parameter "number
of cluster". To better understand which one can be more appropriated,
I’ve analyzed combinations of features in pairs, and, thanks to this pair
plot, come out a pair of feature where the cluster can be more distinct.
From Figure 5.32 is possible to compare the clusters extracted for the two
setting, having also a better idea on their quality. Even if the silhouette is
greater with a number of cluster equal to 6, for a parameter value of 5, the
extracted clusters do not overlap, which also means a better inter-cluster
distinction. This observation leads me to consider 5 the real number of
dataset’s clusters.

Framingham Heart Study

This dataset is from the Framingham Heart Study, which is a large-scale
clinical study. This study is one of the most famous for research into
heart disease risk, to the point of giving its name to a risk score. Most
of the framingham risk score calculators (as [78] or [79]) are based on
some of the features present in the framingham study dataset, of which,
for this work, it is used a subset of 3658 samples of 16 features each [80].
Framingham dataset is chosen to have an experiment over a higher number
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(a) Pair plot for 6 clusters

(b) Pair plot for 5 clusters

Figure 5.32: Comparison between 6 and 5 cluster’s result

of features, respect to the previous ones, analysing so how time scales
over more complex dataset. The goal of the Framingham risk factor is
to identify patients at high risk of developing a heart attack or coronary
artery disease in the next 10 years.

5.2.2 Experimental settings
Clustering algorithms configurations

For Iris and Mall customer datasets, the experimental settings of Kmeans,
Spectral and Agglomerative are the same used for the artificial dataset
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experiments, while for density based algorithms the tuning of parameters
has been omitted due to the complexity in finding parameters capable of
correctly identifying the clusters known from the literature.

Classification algorithms configurations

The settings of classification algorithms used for the artificial dataset ex-
periments is valid also for experiments on the considered real datasets, so
it was not necessary to modify them.

5.2.3 Experimental results
This section provides the results for real datasets, for each one there are
three parts. The first part is for Random Forest results ( 5.33, 5.36),
the second one is for Decision Tree results ( 5.34, 5.37), while the third
one is for the results of Support Vector Machine, K-Nearest Neighbors
and Neural Network Multi Layer Perceptron classifiers ( 5.35, 5.38). For
some configurations the explainer was not able to extract the importance
weights, in these cases no value was reported, replaced by a - symbol.
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Importance weights extracted on IRIS

Figure 5.33: Importance weights by Random Forest

Figure 5.34: Importance weights by Decision Tree

Figure 5.35: IRIS classified by SVM, K-NN and NN-MLP

88



Experiments

Importance weights extracted on Mall Customers

Figure 5.36: Importance weights by Random Forest

Figure 5.37: Importance weights by Decision Tree

Figure 5.38: Mall Customers classified by SVM, K-NN and NN-MLP
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Importance weights extracted on Framingham

(a) Results on 300 samples.

(b) Results on 3000 samples.

Figure 5.39: Framingham importance weights
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5.2.4 Explanations
Iris

Almost all of the experiments detect Petal Length as most important fea-
ture, followed by the Petal Width. For both Random Forest and Decision
Tree the explanations given on the DBSCAN and OPTICS, disagree this
rank of relevance, in particular because these two density based algorithms
are the only to detect 2 clusters instead of 3. TreeExplainer ’s explanations
for the Random Forest agree on the main importance of Petal Length,
while for the Decision Tree the explanations over Spectral and Agglom-
erative algorithm’s results, take Petal Width as most relevant. Also the
Random Forest’s feature importance function agrees on the importance
of these two feature, even if with a slightly difference between them. The
Neural Network’s experiments failed on this dataset, returning a valid re-
sult only for the DBSCAN’s run, that confirms the Petal Length as main
feature. The results described next refer to the experiment with Spectral

Figure 5.40: Partial feature representation of IRIS dataset.

Clustering and SVM. The obtained clusters, shown in Figure 5.40, when
learned by a SVM, provides interesting global results, as the ones given
by Kernel Explainer displayed in Figure 5.41. As can be easily note, the
length of the petal, as already said, is clearly the most important feature,
but is interesting to point out the difference between the second and third
feature, that is little also for the permutation importance results of Figure
5.42. To better understand the difference with the Petal length is useful to
observe the dependence plots shown in Figure 5.43 and Figure 5.44, that
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Figure 5.41: Global weights extracted by Kernel Explainer.

(a) Scikit-learn weights.

(b) Eli5 weights.

Figure 5.42: Permutation Importance on Spectral clusters with SVM

highlight a similar trend when considered the petal length’s value. This
observation not only gives an idea of the petal length’s relevance but also
suggests how the sepal width and the petal width can be interchangeable,
resulting similarly weighted.

Single sample’s explanations
As for the previous datasets, also for IRIS dataset is run a test on singles

samples, randomly chosen from the test set, to extract explanations for
single sample’s predictions.
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(a) Cluster 0 (b) Cluster 1 (c) Cluster 2

Figure 5.43: Dependence plot on petal length and petal width

(a) Cluster 0 (b) Cluster 1 (c) Cluster 2

Figure 5.44: Dependence plot on petal length and sepal width

SHAP
The single explanation reflects the base of knowledge learned on the

whole dataset, as can be observed in Figure 5.45. It is clear the relevance
of petal length over all the clusters, but is interesting also to note the main-
tained weight rapport between petal width and sepal length, especially for
cluster 2. Even from Figure 5.46 we can observe these behaviours, with
also a more clear visualization for each cluster’s feature rank.
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Figure 5.45: Single explanation for Iris sample extracted by SHAP

(a) Cluster 0 (b) Cluster 1 (c) Cluster 2

Figure 5.46: Decision plots for single prediction

LIME
From the local explanations of Figure 5.47, with LIME is also possible to

understand the influence of a value on the feature’s impact over a cluster’s
prediction. The performed tweak is inspired by the SHAP’s one, in which a
random sample is considered as source of the modified data, which replace
the original ones, in order to extract the new prediction explanation. The
two couples of prediction show how the feature’s impact differs when the
two most important feature are modified. In fact, for the first couple, the
feature have a collaborative influence to drive the prediction of both the
original sample and the modified one. In the second couple, the features
has a contrasting influence, with the petal width in favour of predicting
the sample as belonging to cluster 1 and the petal length in disagree.
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Figure 5.47: LIME explanations on single feature’s tweak

Mall customers

This dataset underlined the importance of tuning properly the clustering
algorithms, also as a way to preliminary understand which algorithm could
be inadequate. In fact, for this dataset, it is possible to obtain meaning-
ful results only for some algorithms, the ones that are not density based.
The results obtained for the remaining clustering algorithms, agrees on
considering "Spending Score" and "Annual Income" as most relevant fea-
tures. This is a results that is coherent with the considerations done on
figure. An interesting observation is on the difference of weight that are
given to this features, that for the Random Forest’s function, the so called
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feature importance, is smaller than the SHAP’s. In most of the combi-
nation of clustering and classification algorithms, SHAP gives a slightly
higher importance to the "Spending Score" attribute. Only the Decision
Tree gives more importance to the "Annual Income" feature, in particular
for the clusters obtained with the Agglomerative algorithm, where it dou-
bles the weight respect to the "Spending Score" one. From Figure 5.48 it

Figure 5.48: Shap summary plot of a Sampling Explainer on KMeans
clusters and Random Forest

is possible to get an insight on how feature’s weight changes considering
each cluster. For Class 0 the feature Spending Score is more important
than Annual Income, instead for Class 4 the Annual Income has an higher
specific weight respect to the Spending Score one. Not only SHAP’s result
finds this global insight, also the permutation importance results agree on
giving an higher importance to the Spending Score, even if it is almost the
same of Annual Income. An interesting observation, from Figure 5.49, is
on the Age weight, that gains importance respect to the SHAP one. Some
interesting insights can be observed putting the focus on what character-
izes a specific feature weight. As represented by SHAP’s dependence plot
in Figure 5.50, which shows the SHAP value of Spending Score, consider-
ing also the value of Annual Income of the associated sample, for cluster
1 is important that the Spending Score belongs to the range of 40 to 60,
that usually means that the Annual Income is around 40/70 k$.
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(a) Scikit-learn weights (b) Eli5 weights

Figure 5.49: Permutation Importance on KMeans clusters with Random
Forest

Figure 5.50: SHAP dependence plot made by Sampling Explainer on
KMeans clusters and Random Forest

Single sample’s explanations
Also for this dataset is run a test for a single sample, randomly taken

from the test set, with the aim of explaining single sample’s predictions.
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SHAP
As reported in Figure 5.51 the chosen sample has a prediction that is

strongly driven by the two most relevant feature.The explanation provided
for the prediction of cluster 2, stresses the importance of a Spending Score
value out of cluster’s range, that has so a negative influence for the predic-
tion as a sample of cluster 2, despite of the positive score for the Annual
Income’s value, that is in favour of that association. The same hint can

Figure 5.51: Single explanation from BruteForce Explainer

be observed with the decision plot of Figure 5.52, with the cluster 0 con-
ditioned more by Annual Income and the cluster 2 strongly influenced by
Spending Score.

(a) Cluster 0 (b) Cluster 1

Figure 5.52: Decision plot of BruteForce Explainer
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LIME
Thanks to its local explanation, LIME provides other interesting insight,

that more strictly reflects the relevance of a value, extracting its weight,
related to a feature’s value interval. Also for this sample, are reported an
extract of an exhaustive research of sample feature’s tweaking.

Figure 5.53: LIME explanations on single feature’s tweak

In the first test sample of Figure 5.53, an augmented value for Spending
Score, radically change the features weights and the associated class. In
fact while the original sample is associated to cluster 3, thanks to the
positive weights combination of Spending Score and Annual Income, the
modified sample gets a less sure association, which is strongly influenced
by Spending score, despite the Annual Income and Age would drive to
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different associations, with a 20% of probability for a cluster 0 prediction
and a 10% probability of association as cluster 1. Also for the second
test is tweaked only a feature’s value, in that case the Annual Income.
The prediction remains the same, though the Annual Income’s weight
is less supporting the cluster 1 prediction, in favour of cluster 0, which
gains prediction’s probability from 0% up to 30%. The tests reported in
Figure 5.54 are based on a combined tweak of two features, taken from the
same random sample source. The features modified for Test 2 are Annual

Figure 5.54: LIME explanations on multiple feature’s tweak

Income and Age, the two that influence the original sample prediction to
cluster 2, but for that modification downgrade the prediction probability
of cluster 2 from 80% to 10% , while the one for cluster 1 increases up to
50% and the probability for cluster 2 became 40%. The small difference
between this two last probability, highlights how the sample could be
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at the edge of two clusters. The last test sees the Gender change, a
feature considered not influential and the modification of which does not
contribute to the new prediction. In fact, even the prediction has changed,
the credit for this is due to the tweak of Annual Income’s value.

Framingham Heart Study

Due to the nature of the Framingham study dataset and its clustering re-
sults, some experiments were not considered, particularly those involving
density-based clustering algorithms. For this dataset are considered two
versions, one of 300 samples and one of 3000 samples, which aim to un-
derstand the impact of the number of features on the computational time.
The classes for this dataset are two: low risk of a coronary artery disease
and high risk. The classifiers return mutually agreed results, identifying
the first two features for importance in "totChol" and "sysBP". For clusters
extracted with the KMeans and Spectral algorithms the most important
feature is "totChol", while for clusters extracted with Agglomerative the
"sysBP" is the main one, with the exception of the results on 300 samples,
obtained with the Random Forest and Decision Tree classifiers, which indi-
cate "totChol" as the main feature. Compared to the 300 samples version,
in the 3000 samples version the third feature is more often associated to the
feature "Age". The explainers finds that the most relevant features to pre-
dict the risk of a coronary heart disease are "totChol", which identifies the
total cholesterol of a patient, and "sysBP", that stands for systolic blood
pressure and indicates the pressure in the arteries when the heart beats
and pumps out blood [81]. Other important features are "Age", "BMI"
(Body Mass Index), "Glucose", "CigsPerDay" and "heartRate". The BMI
is a metric that considers weight and height of a patient into account to
measure body size and defines six obesity class range, from underweight
to severe obesity [82].
The following reported analyzes refer to the dataset of 3000 samples. The
example in Figure 5.55a shows the global importances extracted by a Sam-
pling Explainer on Agglomerative clusters and Nearest Neighbors. The
first feature has a much greater importance than the second, as can also
be seen from the results shown in Figure 5.39. As shown in Figure 5.56,
the permutation importance’s results agree on the first two features but
not on the next ones. The insight from the dependencies of the two main
features in Figure 5.57, points out how low values for both "totChol" and
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(a) Global feature importance (b) Cluster 0 feature importance

Figure 5.55: Shap summary plot of a Sampling Explainer on Agglomera-
tive clusters and Nearest Neighbors

(a) Scikit-learn weights (b) Eli5 weights

Figure 5.56: Permutation Importance on Agglomerative clusters with
Nearest Neighbors

"sysBP" positively influence the association to the cluster 1, that refers to
a low risk of coronary artery disease. This observation can also be con-
firmed by the importance of the features of cluster 0, provided in Figure
5.55b.
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(a) Cluster 0 (b) Cluster 1

Figure 5.57: SHAP dependence plot made by Sampling Explainer on Ag-
glomerative clusters and Nearest Neighbors

Single sample’s explanations
Also for this dataset is run a test for a single sample, randomly taken

from the test set, with the aim of explaining single sample’s predictions.

SHAP
Figure 5.58 reports the single prediction for a sample that belongs to the

cluster 1. For both the clusters explanations the main feature is "totChol",
followed by "sysBP" and "heartRate", showing an evident opposite in-
fluence on the cluster’s associations. Figure 5.59 highlights the features

Figure 5.58: Single explanation from Sampling Explainer
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that influenced the decision-making process, with a clear impact of the
"totChol" value importance, which drives in favour of the association to
cluster 1.

(a) Cluster 0 (b) Cluster 1

Figure 5.59: Decision plots of Sampling Explainer

LIME
Figure 5.60 provides an example run on the LIME explainer, which

reports an interesting case where the uncertainty of the original sample,
is strongly influenced by tweaking a feature with a low importance. Al-
though the tweak on the BMI consists of a slight increase in the value,
belonging to the same BMI class as the original sample, it has a huge
impact on cluster association, according to local LIME explanations.
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(a) Original sample

(b) Sample with modified BMI value

Figure 5.60: LIME explanations on single feature’s tweak
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5.3 Time performance analysis
This section shows the time performances of each used explainer over all
experiments of the treated datasets. All values refer to a time performance
in seconds.

5.3.1 Artificial datasets
2D Blobs execution times

Figure 5.61: Times for Random Forest and Decision Tree experiments

Figure 5.62: Times for SVM and K-Nearest Neighbors experiments
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Figure 5.63: Times for NN-MLP experiments

3D Blobs execution times

Figure 5.64: Times for Random Forest and Decision Tree experiments

Figure 5.65: Times for SVM and K-Nearest Neighbors experiments
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Figure 5.66: Times for NN-MLP experiments

Moons execution times

Figure 5.67: Times for Random Forest and Decision Tree experiments
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Figure 5.68: Times for SVM and K-Nearest Neighbors experiments

Figure 5.69: Times for NN-MLP experiments

Circles execution times

Figure 5.70: Times for Random Forest and Decision Tree experiments
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Figure 5.71: Times for SVM and K-Nearest Neighbors experiments

Figure 5.72: Times for NN-MLP experiments

Time comparisons

The first observation, taken from the comparison between the various
tests, is that the processing times of the explainer do not depend on the
type of dataset. In fact, regardless of the value’s distributions of the
considered dataset, for the same size, the computational times were very
similar. The classifier that takes less time is the Decision Tree, for which
the heaviest dataset took less than 300 seconds, times that are higher for
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KernelExplainer than for BruteForceExplainer. With Random Forest the
times are slightly higher than those of the Decision Tree, but they are
comparable, in particular the BruteForce and the Kernel times are very
similar. The tests with the SVM took a little more time, on average 500
seconds, but reporting a slight difference between the BruteForce and the
Kernel, with the latter slightly faster. The most difficult classifier in terms
of temporal performance was the KNN, which takes 19 minutes for almost
all datasets, with the exception of the 3D Blobs for which it required 25
minutes for the 3000 samples version. For this classifier the time required
by the BruteForce is particularly longer than the Kernel. The NN-MLP,
on the other hand, has times comparable with the other methods but,
as seen for the treatment of weights, it extracts very low or zero weights.
With all the classifiers, the times for BruteForce and Kernel explainers are
increased, with an almost exponential trend, while the SamplingExplainer
has a processing time with a much lower growth than the other explainer.
This growth is moderate because, for the SamplingExplainer, it is possi-
ble to take up to a maximum number of background samples, therefore
after the background data set (the one used by the classifier as training)
has exceeded the maximum size, there is no increase of the times. For
the Circles dataset, the differences between Kernel and BruteForce were
much more stressed on Decision Tree and NeuralNetwork, while for the
other classifiers there were significant peaks for the tests with K-Means
and DBSCAN, also with SamplingExplainer. The TreeExplainer ’s time
performance are referring only to the Random Forest and Decision Tree’s
tests. It results to be the fastest over all the SHAP’s explainers, taking
less than 16 ms in tests with a dataset of 3000 samples. This explainer is
quick also due to the low number of features, so as said in the treatment of
the explainer’s implementation, it limits the evaluation path. The graphs
in Figure 5.73, provide an insight on how the nature of the classifier is
relevant with respect to the time needed to the explainer.
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(a) Decision Tree

(b) K-Nearest Neighbors

Figure 5.73: Time performances comparison
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5.3.2 Real datasets
IRIS

Figure 5.74: Time performances over all classifiers experiments on IRIS

Mall Customers execution times

Figure 5.75: Time performances over all classifiers experiments on Mall
Customers
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Framingham execution times

(a) Time performances on 300 samples

(b) Time performances on 3000 samples

Figure 5.76: Time performances over all classifiers experiments on Fram-
ingham

Time comparisons

The datasets Iris and Mall customer, as mentioned above, are small datasets
with few features, which is why they take a very little amount of time to
compute explanations. Figure 5.77 shows that the needed time is almost
comparable among all the classifiers instances. An interesting observation
is on the SamplingExplainer ’s computational times, which are higher than
BruteForce and Kernel, with an exception on the Random Forest where
the slowest explainer is the BruteForce.
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Figure 5.77: Comparison of real datasets time performances

Figure 5.76 reports the times needed to KernelExplainer and Sampling-
Explainer to compute the explanation depending on the algorithms used
for clustering and classification. Figure 5.76 provides the time perfor-
mances on a single prediction and on a test dataset equal to 20% of the
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considered dataset. Despite the higher number of feature respect to the
other datasets, the performances of the TreeExplainer were not affected,
all being on a time of 1 ms. Explanations could not be extracted with
BruteForceExplainer because the time needed for a single explanation was
so long that the explainer was unable to provide a predicted time for the
explanation. Time performances are similar for small dataset, while, as
shown in Figure 5.78, for 3000 samples dataset the time performances
become really different, highlighting the time effort needed to get a expla-
nations from KernelExplainer.

Figure 5.78: Time performances on single instance for 3000 samples Fram-
ingham dataset

5.3.3 Feature based time performances
For the Framingham dataset, times were measured for two versions of
the dataset, the first consisting of 300 samples and the second of 3000
samples. This choice allows a comparison with datasets with few features,
having a low number of samples as for the first version, while the second
provides a comparison with datasets with more samples but less features
than Framingham. By comparing the graphs of Figure 5.79 and Figure
5.73, given the same number of samples, the impact given by the number
of features on the time needed to extract a strip is evident.
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Figure 5.79: Time performances on test dataset from 3000 samples Fram-
ingham dataset
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Chapter 6

Novel explanation
approach
The first part of this chapter is dedicated to the presentation of a new
approach. In the second part are presented the results obtained by using
the proposed approach on the datasets described in Section 5.

6.1 Explanation approach definition
The approach is model agnostic, so it explains clustering results regard-
less of the algorithm that generated them. The idea behind the proposed
solution is to overcome the intermediate stage of supervised techniques,
extracting knowledge by exploiting cluster’s algorithms and details. The
goal is to gain global and individual cluster explanations, two methods
have been implemented to achieve them. The proposed methods are in-
spired by related works like [35], already described in Section 3, and [75].
Figure 6.1 shows a schematic representation of the methods described be-
low.

6.1.1 Permutation importance for clustering
This method is focused on the extraction of global explanations, consid-
ering the clusters provided on the entire dataset. To define the global
importance of a feature, the method is based on the perturbation of fea-
ture’s values.
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Figure 6.1: Novel explanation approach schema

The key idea is that the global importance of a feature can be measured
considering the scores obtained by the cluster assignments on instances
with perturbed feature’s values. Since the object of the similarity dis-
tance is a categorical value, to measure the difference of cluster assignment
between original instance and perturbed one are considered the distance
metrics Cosine [83, 84] and Hamming [85]. The Hamming distance is the
proportion of disagreeing components of two vectors.

The feature’s value perturbation has the aim of emulating the feature’s
absence, for which a common approach is to replace the original feature’s
value with a feature’s value taken from a random instance. Because of
that perturbation approach, the method is a feature permutation one.
The importance’s scores are computed by considering single feature’s per-
mutation. Once the instance feature’s value is perturbed, it is computed
the cluster assignment. For each cluster the method extracts K represen-
tative instances, with the input parameter K defined by the user. These
instances are the centroids computed over the single cluster instances. By
reducing the number of instances, the process of cluster assignment is sim-
plified, because the distances needed to assign a cluster to an instance are
less respect to the whole dataset.
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The extracted global explanations are computed considering the mean
of the distance results. Each feature’s permutation consist of n_round
permutation’s rounds, due to the random perturbation that characterize
the sampling approach of this method.

6.1.2 Feature intervals intersections
This method focuses on finding cluster’s explanations. The intuition be-
hind this method is that when a cluster is well separated from others on
a single feature, that feature might be important to associate a sample to
that cluster. That knowledge is gained by comparing the feature’s pres-
ence intervals of each cluster, which represent the range of feature’s values
defined by the cluster’s instances. The presence interval of each feature is
extracted over each individual cluster, allowing so a grid representation of
clusters in the space of each couple of features. For a cluster i the impor-
tance score of a feature is computed by considering the overlap on others
cluster. So a feature’s interval with a low global overlap may characterize
more a cluster from others. The feature importance score is extracted for
each cluster, by considering all the cluster pairs.
As expressed in Equation 6.1, from the comparison of two feature k inter-
vals only their intersection is taken into account for the score computation.

feat_p_scorek,i = 1
N − 1

NØ
j=0,j /=i

1− feat_int_Ck,i ∩ feat_int_Ck,j

feat_int_Ck,i

(6.1)
In Equation 6.1, the partial score of a feature k, for cluster i, depends on
the mean of ratios of the intersection intervals to the cluster i feature’s
interval. For the final score are considered others feature’s partial scores,
scaling the sum of partial scores to 1 and than scaling each score to the
corresponding proportion (Equation 6.2).

feat_scaled_scorek,i = feat_p_scorek,iqN
j=0,j /=k feat_p_scorej,i

(6.2)

To mitigate zeros scores, the Sigmoid function in Equation 6.3 is applied
to all scores.

feature_scorek,i = 1
1 + efeat_scaled_scorek,i

(6.3)
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6.2 Experiments results
This section shows the results obtained by applying the novel proposed
approach to the artificial and real datasets used in the experiments of
Section 5.

6.2.1 Artificial datasets
As described in Section 5, each artificial dataset type is created on five
different sizes, from 300 samples up to 3000 samples. For simplicity, the
results reported for global explanations on artificial datasets are the aver-
age of the results on different dataset size’s experiments. Since cluster’s
explanations are agreeing on feature’s importance score over most of the
experiments, in the following sections, for each dataset, are reported only
the result on two experiments.

Figure 6.2: Permutation importance feature’s scores on 2D Blobs and 3D
Blobs datasets

Figure 6.2 shows how the proposed permutation importance method
identifies the feature Y as main one, with a result that is mostly the same
over all the used clustering algorithms for the scores based on Hamming
distance. Despite some differences, the feature Y is considered more im-
portant than feature X even for the scores based on Cosine distance. The
scores computed on the other features are zero for both the distance met-
rics. The scores based on Hamming distance of the two main feature on
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3D Blobs datasets are the same of the respective 2D Blobs ones. For 3D
Blobs the proposed permutation importance method finds that feature Z
is the main one, followed by feature Y. This result reflects the philosophy
used to the generation of values for features Y and Z.
The results of feature intervals intersections method, shown in Figure 6.3,
highlight the features that mostly characterize a specific cluster. The
scores extracted on 2D Blobs experiments provide an intuition on the
cluster identification, in fact over all experiments two clusters on three
have almost the same score on all features. These clusters are the yellow
and green ones in Figure 5.1, while the third one is the violet one. Those
clusters are referred next as Cl. Y, Cl. G and Cl. V.
It is interesting to observe how the feature intervals intersections method
recognize an higher importance on feature Y, with a score’s gap that
increases with the dataset size. 3D Blobs’s scores reflect the feature gen-
eration process, the feature intervals intersections method identifies that
for yellow cluster the feature Z is the most important, while for the cluster
in violet the main feature is the Y one. The importance of these charac-
terizing features, increases as the dataset size increases.

(a) 2D Blobs cluster’s explanation extracted on KMeans and DBSCAN results

(b) 3D Blobs cluster’s explanation extracted on DBSCAN and Spectral results

Figure 6.3: Feature intervals intersections method’s scores on 2D Blobs
and 3D Blobs clusters
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Figure 6.4 provides the results extracted on Moons and Circles dataset,
which agree on the recognition of feature X as more relevant than feature
Y.

Figure 6.4: Permutation importance feature’s scores on Moons and Circles
datasets

In Figure 6.5 are provided cluster’s explanations for Moons and Circles,
showing both a correct and incorrect cluster results, respect to the struc-
tured ones. Such datasets does not have an expected and clear result,
as already discussed in Section 5. From both the dataset, the Spectral
clustering recognize the cluster as expected, providing always an equal
score over all features, with a little difference in some cases. Those cases
differs from the others because of a more extended interval, due to some
border sample. The scores related to wrong clustering results, highlight
the feature that dominates the cluster result, that is often the feature X
because of clusters boundaries on that feature.
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(a) Moons cluster’s explanation extracted on Spectral and Agglomerative re-
sults

(b) Circles cluster’s explanation extracted on Spectral and Agglomerative re-
sults

Figure 6.5: Feature intervals intersections method’s scores on Moons and
Circles clusters

6.2.2 Real datasets

The first analyzed dataset is IRIS, which permutation importance’s results
are shown in Figure 6.6a. It is interesting to note that the results extracted
on Iris reveal that petal length is the main feature, a result confirmed by
the literature on the IRIS dataset. The feature intervals intersections
method’s scores on IRIS clusters, shown in Figure 6.6b, found that for the
Setosa class the two main features are "petal length" and "petal width",
as also known in literature. The other two classes, as already mentioned
in the Section 5, are close to each other, but it is possible to distinguish
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(a) Permutation importance feature’s scores on IRIS datasets

(b) Feature intervals intersections method’s scores on IRIS datasets clusters

Figure 6.6: Global and cluster explanations on IRIS dataset

them considering the feature "sepal length".
The second analyzed dataset is Mall customers, which permutation im-

portance feature’s scores are shown in Figure 6.7. For this dataset are
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considered the five clusters shown in Figure 5.32, referred next as Cluster
Yellow, Cluster Green, Cluster Cyan, Cluster Blue and Cluster Violet.
The two main features of this dataset are Spending Score and Annual
Income, which are also the main features for literature and supervised
technique based proposed approach. For the permutation importance fea-
ture’s scores based on Hamming distance, the Spending Score is always
the most important feature, while for the Cosine distance based scores, the
Annual Income is the main feature for the experiments where the clusters
are computed via KMeans or Agglomerative.

The importance scores shown in Figure 6.7a refers to Mall customer
dataset, also for the feature intervals intersections method not all the
clustering algorithm provides a correct clustering result. The global ex-
planations reveal that "Annual Income" and "Spending Score" represent
the two main features, with a little gap, higher on clusters by Spectral.
Figure 6.7b provides the cluster’s explanation that confirm the global ex-
planation, recognizing an almost equal score for the two main features,
also for Spectral’s clusters.
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(a) Permutation importance feature’s scores on Mall customers datasets

(b) Feature intervals intersections method’s scores on Mall customers
datasets clusters

Figure 6.7: Global and cluster explanations on Mall customers dataset
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Chapter 7

Conclusion

In recent years, AI has become increasingly present in society, being used
in the most disparate fields, from finance to medicine, from justice to
security and transport. With the growth of employment contexts, the
need to understand the results of AI models has also increased. In fact,
there are more and more high-risk tasks in which AI models are applied
and for which it is necessary to be able to explain the result, making it
responsible, as it can affect people’s lives. The growing importance of
the explainability of a result now leads to a crossroads with respect to
accuracy. While some tasks require accuracy, although at the expense of
explainability, for other tasks the compromise of less accuracy in favor of
greater explainability is accepted.

In this thesis are analyzed the actual solutions aimed to increase the
interpretability of existing models, addressing the imbalance regarding
the offer of solutions based on clustering respect to the classification ones.
Therefore, two approaches are proposed for the explainability of clustering
results.

The first approach is based on state-of-the-art explanation techniques
for supervised clustering, which are tailored and adapted for unsupervised
clustering applications.The approach is model-agnostic, so it is indepen-
dent from the type of used supervised algorithm and it is inspired by what
is proposed in the literature mentioned in Chapter 3. The explanations are
extracted on the trained supervised model using post-hoc interpretation
methods. This methods allow not only to get a global explanation about
the model build on the clusters results, highlighting which are the main
features for the cluster association, but they also provide single sample’s
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explanation. This approach has the advantage of being model-agnostic,
which grant to use any type of supervised model, exploiting well known
methods in XAI literature. A limitation of this approach is the usage of
an intermediate model between clusters results and explanation methods,
because of possible influences due to the supervised-based techniques and
to the need of retraining of the model for the state-of-the-art explainer.

The second approach is based on the cluster results analysis, extracting
features importance globally and for each single cluster. The idea is that
the global explanation can be achieved by single features contributions,
observing how the prediction change when a feature changed. Even if
a cluster is part of the model, it could not reflecting totally the global
explanation’s insight. Each cluster is characterized differently from fea-
tures. This intuition is the basis of the cluster’s explanations obtained by
the feature intervals intersections method. The approach does not require
retraining, providing a fast update of clusters details for new samples. The
time needed to extract explanation is less respect to the supervised based
approach. Being extracted directly on clustering results, the explanations
are more sensitive on them.

7.1 Future work
To date, the research on explainable clustering has been marginal respect
to the explainable classification, in some cases leaning on the usage of
classification-based methods. This leaded to a growing interest in develop-
ing methods capable of increasing the interpretability of cluster results and
developing new algorithms able to extract clusters which are interpretable
by design. In future work the proposed methods could be supported by
comparative methods such as counterfactual explanations, analyzing the
differences identified between two similar objects belonging to different
clusters. In such a way can be provided a single sample’s explanation,
focused on identifying the driving features for a given cluster association.
Exploiting explanation on different granularity, from global to local, the
future work can support domain expert to confirm their prior knowledge
or to reveal new insights.
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