
POLITECNICO DI TORINO

Master degree

in

Computer Science - Software Engineering

Improving the scalability of modern

applications by applying operating system

optimizations and parallel paradigms

Supervisor

Stefano Quer

Associate Professor

Candidate

Andrea Calabrese

Matr. 265340

A.A. 2019/2020

Abstract

While technology advances, CPUs are developed with a multi-core approach

in mind. General purpose computing on graphic processing units (GPGPU)

is becoming a viable approach for massive parallelization approaches, exploit-

ing a higher number of cores and the many-core approach.

The work of thesis focuses two distinct problems: a flying-probes test

optimization algorithm, exploiting the capabilities of the GPU computation

using CUDA, and an EVCD file analyzer, which exploits the power of multi-

threading on the CPU along with operating system level optimizations.

Testing on PCBs (printed circuit boards) can be achieved by using flying

probes instrumentation or the bed-of-nails technique; while the latter is very

fast, it is dependent on the board layout; instead, flying probes machines

can perform tests on different boards, providing that they receive the correct

test information; the instrumentation has constraints, in particular probe

movement is not completely free and depends on other probes, and it is

imperative being able to optimize tests in such a way that their duration is

minimized, by moving the probes as least as possible. We divided the problem

in three sections: a first prefetch where we calculate possible collision of

probes with zones that do not allow movement on them, then the problem of

the calculation of the optimal test sequence, end eventually the path finding

from one probe positioning to another one.

Results show, for the first problem, that the GPU is not only an available

approach, but provides up to 13 times faster computation without in-depth

optimizations, only bound by the CPU and the data structures used in order

to memorize collisions; by using a more speed-optimized data structure, it

is possible to perform 73 times faster computations on the GPU compared

with the CPU speed.

i

ii

Regarding the second problem, a simplified approach has been developed,

using, for simplicity, the Microsoft PPL (Parallel Patterns Library), taking

advantage of the parallel for in order to compute the distance between as

many test points as possible in parallel, using, depending on internal perfor-

mance metrics, either the CPU or the GPU; using the PPL library provides

a significant advantage in terms of computation, between 2 and 4 times using

a CPU with 8 threads available. Work is still in development in order to im-

prove the current status, having less simplifications and providing a possible

optimization that can be implemented in the future.

Regarding the last problem, a small proof of concept has been developed,

yet it is still a work to be discussed; due to its nature to be a potentially ex-

pensive calculation, we propose a solution that can be implemented through

triangulation of the board, simplifying the problem, yet possibly providing a

useful help also for the research of the optimal test sequence.

Simulations are becoming more and more important for safety-related

applications and the computation of failure modes. The outputs of the sim-

ulations are in the EVCD format (Extended Value Change Dump), repre-

senting a list of value changes in the circuit at given times. The nature of the

file is sequential, divided into three main parts: first, there is the declaration

section; withing this section, we can find declarations of buses and gates of

a board; a gate configuration consists in a single state memorized, while a

bus configuration consists in the combination of a generic amount of states,

where a state consists in a logical 0, a logical 1, a high impedance state (z)

or a don’t care value (x); a signal is a generalization of a gate, while buses

are generalized as agglomerates of signals; the second part of the file is the

dump of the initial values of the signals; the third part is a list of changes

grouped for each timestamp.

While the first two parts of the EVCD file do not represent an issue for

the elaboration time, the third part is the longest one in the file, consisting

in a large amount of changes; this means that the number of signals, that

can vary between each case, is much lower than the number of changes. In

order to optimize the program, we first optimized the file reading in order for

it not to be an issue, using binary reading and a double buffering technique

in order not to wait for the reading to be complete, already having part of

the file ready to perform additional parsing.

iii

Other optimizations are using the least amount of heap possible or, if

used, ensuring that the memory is local enough to be cached together.

Smaller optimizations to standard functions have also been implemented,

saving smaller amounts of time that become significant on the long term.

These operating system dependent optimization can speed up the elabora-

tion up to 5 to 6 times, while using the least amount of pointers by using

dynamic arrays instead of linked lists saves gigabytes of RAM.

After those optimizations have been developed, we implemented a 1 ap-

proach aiming to parse the file and insert the values in the correct structure,

in order to perform different types of analysis. While multithreading results

are generally good during the parallel part of the analysis (parsing and cal-

culating the coverage of the simulation), the overall process is slowed down

by a necessary sequential part, needed to store data in a precise order.

An improved approach is already being developed, where order is auto-

matically guaranteed. Also, different approaches are being experimented in

order to improve the analysis time.

iv

Acknowledgement

This work of thesis has been taking a lot of time, thinking and work, but it

also gave me quite many satisfactions.

Thanks to my supervisor, Stefano Quer, for providing many useful advices

and sharing his experience, also providing always different points of view

worth of notice.

Thanks to Paolo Bernardi and Giovanni Squillero, providing the practical

applications to work for and helping me understand the problems they

provided.

Thanks to my family, who always supported and born me and the

discussions for all those years, helping me when I was in the need.

Thanks to my friends, supporting me, exchanging ideas; we shared precious

slices of life within each other, memories to keep with us.

Contents

1 Introduction 1

2 Technical background 3

2.1 C++ . 4

2.2 Concurrency and parallelism 4

2.3 Amdahl’s law . 5

2.4 Collision detection . 6

2.5 Triangulation . 10

3 NVIDIA CUDA 11

3.1 GPGPU history . 11

3.2 About GPUs . 12

3.3 Threads, blocks, grids and warps 12

3.4 Kernels . 13

3.5 Memory . 14

3.6 Asynchronous operation execution 15

4 Flying probes test optimization 16

4.1 The problem . 16

4.2 Board generation . 19

4.3 First approach to the problem 24

4.4 An improved approach to the problem 32

4.5 An alternative approach . 34

4.6 Conclusions and future work 36

5 EVCD analyzer 37

5.1 The problem . 37

v

CONTENTS vi

5.2 File structure . 37

5.3 Definition: full analysis . 40

5.4 Definition: statistical analysis 41

5.5 General approach . 41

5.6 Full analysis . 46

5.7 Statistical analysis . 56

5.8 Conclusions . 62

List of Figures

2.1 The triangulation process . 10

3.1 NVIDIA PASCAL micro-architecture 13

4.1 Example of generated board 23

4.2 Collision detection elaboration time comparison with increas-

ing number of atomic points 29

4.3 Graph calculations timings with increasing test blocks 33

5.1 Empirical durations of sscanf compared to strtoull on the same

data . 42

5.2 The principle of the producer-consumer approach 46

5.3 The pipeline stages . 49

5.4 The main idea of how the threads elaborate the file 50

5.5 Timing trends with increasing file size (small files) 52

5.6 Timing trends with increasing file size (large files) 53

5.7 RAM trends with increasing file size 55

5.8 Graph statistical analysis improvements on whole analysis . . 59

5.9 Graph statistical analysis improvements parallel version only . 61

vii

List of Tables

4.1 Empirical time measurements and comparisons between dif-

ferent implementations of collision detection 28

4.2 Comparison between single threaded approach, GPU approach

and GPU using matrix approach 30

4.3 Empirical time measurements and comparisons between sin-

gle threaded and parallel pattern implementations of the test

planning. 32

5.1 Empirical time measurements and comparisons between the

original approach (reconstructed) and the optimized ones on

small files . 51

5.2 Empirical time measurements and comparisons between the

single threaded approach and the multithreaded ones on large

files . 52

5.3 Empirical timing comparisons between the original approach

(reconstructed) and the optimized ones 54

5.4 Empirical timings and improvements of the whole statistical

analysis . 58

5.5 Empirical timings and improvements of the simulation section

statistical analysis . 60

viii

Chapter 1

Introduction

The increase in number of cores in modern CPUs leads to an overall per-

formance improvement in many applications; yet, most of the algorithmic

thinking is done in a sequential fashion, not taking advantage of the ability

of the current hardware to implement parallel computation techniques.

Moreover, GPUs are becoming fully programmable, with the main spe-

cialization being floating point operations to be performed taking advantage

of a massive parallelism.

In this thesis, we chose to work on two problems, showing different ways

to implement a parallel computation within the testing domain; in particular,

one of the projects makes mainly use of the GPU computation techniques,

while the other one focuses more on multithreading and on operating system

dependent optimization techniques.

In chapter 2 there is an explanation of the technology and the mathe-

matics that will be used; in particular, we describe some of the advantages

of C++ that we exploit in order to have a working program, we talk about

parallelism and its different software implementations, choosing the one avail-

able on the systems we work on, also providing an overview of the Amdahl’s

law, very well known in computer science, and its limitations; there also is

the mathematics needed to understand the proposed solutions: in particular,

a collision detection algorithm, needed for the flying probes test optimizer,

and the triangulation process, which can be useful in order to improve the

current work.

In chapter 3 we discuss about the GPU parallelism, how it is imple-

1

CHAPTER 1. INTRODUCTION 2

mented and why it can provide great advantages in terms of computation

performance, thanks to its huge number of cores, even increasing in number

in the most recent NVIDIA GPUs; in this chapter we discuss about threads,

what slows down the GPU computation, how to perform parallel operations

on both GPU and CPU and how its memory is managed inside CUDA, the

programming language designed by NVIDIA to perform general-purpose cal-

culations on their own GPUs.

In chapter 4 we describe the problem of the flying probes test optimizer,

how test on PCBs (Printed Circuit Boards) are performed today and how the

GPU can help in calculating an acceptable test path; tests performed using

flying probes machines require a significant amount of path optimization

in order to be performed as fast as possible, knowing all the points that the

board can be tested on; however, this optimization costs a significant amount

of time due to the quantity of data to be processed; we think that the data

can be processed in parallel and that geometry concepts such as triangulation

can help in solving the whole problem.

In chapter 5 we discuss about a parallel implementation of the elaboration

of a EVCD (Extended Value Change Dump) file, that provides information

about stress tests performed on a simulated board; EVCD files can vary in

size from few megabytes to hundreds of gigabytes, that can be time con-

suming in terms of elaboration; because of this, operating system dependent

optimizations are being used for the current solution in conjunction with

multithreading techniques.

The work of this thesis is, however, only the beginning of a path of im-

provements that are going to be implemented and discussed. Results are

already available, yet there is still work to do in order to define a new state

of the art.

Chapter 2

Technical background

In this chapter we will discuss about some notions that are used in order

to understand the work done later. In particular, chapter 3, the collision

detection algorithm described in section 2.4 and the geometry concepts de-

scribed in section 2.5 are used for chapter 4; in particular, collision detection

is used in order to detect if a probe is going to pass through a no-fly zone

or a no-touch zone, the geometry section is useful for a possible future work

while the CUDA part explains how a GPU works programmatically, what are

the possible optimizations and helps understand why the collision detection

algorithm scales very well on it (this is also discussed in section 4.3.3).

Amdahl’s law and the concept of span are used in chapter 5; in particular,

Amdahl’s law provides the theoretical maximum speed-up of an algorithm,

coupled with the concept of the algorithm span.

The multithreading introduction is common to all the works, providing a

general overview of what is the current technology with the parallelism by a

programmatic point of view.

The language used mainly in both works is C++; in the flying probes

test optimizer, it is also coupled with CUDA, with which it is interoperable.

3

CHAPTER 2. TECHNICAL BACKGROUND 4

2.1 C++

C++ is a programming language aiming to be the successor to the C pro-

gramming language; it expands the C library and toolset by providing a

standard library for common data structures, an OOP (Object Oriented

Programming) paradigm and becoming more and more operating system

independent.

In both works, it is used for many reasons:

• its std::vector structure, a very well optimized dynamic array

wrapper, allowing the programmer to forget about pointers and au-

tomatically resizing when needed;

• the thread library, providing standard thread function definitions for

every operating system;

• since it has many standard structures, it is easy to pass from one to the

other and compute the advantages of one over the other in practical

cases;

• standard structures help in avoiding memory overflows by having an

exception system and boundary checking.

2.2 Concurrency and parallelism

Definition 1 Concurrency is the ability of different parts or units of a

program, algorithm, or problem to be executed out-of-order or in partial order,

without affecting the final outcome.

Hardware level concurrency is mainly achieved by having multiple cores on

the same CPU, leading to parallelism, which is achieved when instructions

to achieve the final result run at the same time.

Software level concurrency is achieved by operating systems by using three

main paradigms:

• process-based parallelism: parallelism is achieved by dividing the

process in two, effectively cloning the current running program. This

CHAPTER 2. TECHNICAL BACKGROUND 5

approach is expensive in terms of time and resources, since the whole

process is copied in RAM once again and memory is not shared between

processes;

• thread-based parallelism: parallelism is achieved by mapping the

hardware threads (usually corresponding to the number of cores on the

CPU) to a larger number of software threads. This approach provides

lower, yet still significant, overhead. In this case, memory is shared

between threads and the program is not loaded again into memory;

those features make this approach compatible with GPUs, which also

work using the thread model; This is the paradigm that will be used

during the work of this thesis.

• task-based parallelism: it is a relatively new approach; tasks are

thread-independent abstractions, assigned to threads at runtime. The

low overhead of tasks makes them theoretically preferable to threads

in some cases, but they lack many synchronization primitives such as

semaphores.

2.2.1 Microsoft PPL

In chapter 4 Microsoft PPL (Parallel Patterns Library) is used in order to

reduce the work to achieve a parallel for loop. PPL provides an imperative

programming model that promotes scalability and ease-of-use for developing

concurrent applications [10].

2.3 Amdahl’s law

Amdahl’s law provides a theoretical limit to the speed-up of the program

given the number of cores and the ratio of the program that runs in parallel.

It is formulated in the following way:

S =
1

(1− p) + p
N

(2.1)

where:

CHAPTER 2. TECHNICAL BACKGROUND 6

• S is the speed-up that the computation will receive;

• N is the speed-up of the part of the task that benefits from the paral-

lelism; in this case, it roughly represents the number of threads;

• p is the proportion of the execution time that benefits from the paral-

lelism.

A theoretical superior limit is achievable by letting N tend to infinity. In this

case, the formula can be written as follows:

S =
1

1− p
(2.2)

While Amdahl’s law is a theoretical superior limits, it does not take into

account technical details about the overhead of threads and synchronization.

Since Amdahl’s law is a general concept, due to its theoretical nature

it does not take into account many relevant factors about the GPU; this is

why it is not used to calculate the optimal speed-up on GPU algorithm, even

though it is a general concept.

2.3.1 Span

The concept of span completes to Amdahl’s law, defined as follows. The

span is the time it takes to perform the longest chain of tasks that must be

performed sequentially [9]. We can identify more spans in a program, taking

into account only the ones being interesting to our purpose.

2.4 Collision detection

Collision detection is a geometrical problem that aims to uncover if two or

more geometrical objects intersect each other. Many algorithms have been

developed in order to solve this problem, some of them being approximated

in order to save computational power, since a precise collision detection can

take a significant amount of time if many geometrical objects are involved.

In chapter 4, collision detection is used to find incompatible points (see

section 4.1.4). Since paths between points are modeled as rectangles and

CHAPTER 2. TECHNICAL BACKGROUND 7

No-fly zones are generic polygons, a simple solution is applying a segment-

segment collision detection and reproduce it four times the number of seg-

ments composing the polygon, each time on one side of the rectangle. While

optimizations can be done, those are not considered in this section.

CHAPTER 2. TECHNICAL BACKGROUND 8

2.4.1 Segment-segment collision detection algorithm

Data structures

The data structure needed is the line. Each line contains two points: start

and finish.

Each point is identified by two coordinates: x and y. This allows the

algorithm to retrieve informations on the parametric line passing through

the two points.

Overview

A generic line is defined by the following mathematical formula:

Ax + By + C = 0 (2.3)

This is called the implicit form of the line. It is preferrable to the explicit

form since it allows the representation of vertical lines without recurring to

limits theory.

In the first part of the algorithm parameters A, B and C are retrieved from

the line segment endpoints coordinates. Then, the denominator represents

both a useful value and a check to detect if the line segments are parallel. If

they are parallel, they do not touch (or they touch infinitely, but this case is

ignored).

If the line segments are not parallel, we find the x and y coordinates of

the collision. Since we are interested in line segments instead of lines, even if

the segments are not parallel they may not collide. The part with the checks

ensures this is respected by calculating the ratio of the distance between the

collision point over the one using the extremes. If this ratio is not between

1 and 0, this means that the segments do not collide; otherwise, they do

collide.

In the final results, we are not interested in the collision point, so a simple

boolean is returned as result of the check.

CHAPTER 2. TECHNICAL BACKGROUND 9

The algorithm

Algorithm 1 Segment to segment collision detection

1: function lineToLineCollisionDetection(firstLine, secondLine)
2: A1 ← firstLine.finish.y − firstLine.start.y
3: B1 ← firstLine.start.x− firstLine.finish.x
4: C1 ← A1 ∗ firstLine.start.x + B1firstLine.start.y
5: A2 ← secondLine.finish.y − secondLine.start.y
6: B2 ← secondLine.start.x− secondLine.finish.x
7: C2 ← A2 ∗ secondLine.start.x + B2secondLine.start.y
8: denominator ← A1 ∗B2 − A2 ∗B1

9: if abs(denominator) == 0 then return false

10: x ← (B2 ∗ C1 −B1 ∗ C2)/denominator
11: y ← (A1 ∗ C2 − A2 ∗ C1)/denominator
12: check0 ← firstLine.finish.x! = firstLine.start.x
13: check1 ← firstLine.finish.y! = firstLine.start.y
14: check2 ← secondLine.finish.x! = secondLine.start.x
15: check3 ← secondLine.finish.y! = secondLine.start.y
16: if check0 then
17: r ← (x− firstLine.start.x)/−B1

18: check0 ← r >= 0 and r <= 1

19: if check1 then
20: r ← (y − firstLine.start.y)/A1

21: check1 ← r >= 0 and r <= 1

22: if check2 then
23: r ← (x− secondLine.start.x)/−B2

24: check0 ← r >= 0 and r <= 1

25: if check3 then
26: r ← (x− secondLine.start.y)/A2

27: check0 ← r >= 0 and r <= 1
return (check0 or check1) and (check2 or check3)

CHAPTER 2. TECHNICAL BACKGROUND 10

2.5 Triangulation

As for a possible future work, an approach o the problem described in chapter

4 requires a triangulation process of a polygon. Triangulation is the operation

of dividing a polygon into triangular sections.

Figure 2.1: The triangulation process

Many algorithms have been developed for triangulation, some using opti-

mizations for special cases, such as convex polygons, polygons without holes

or monotone polygons.

Monotone polygons are polygons that, given a line L belonging to it, any

line orthogonal to L intersects the polygon at most twice. Our polygon is not

convex neither monotone and can have many holes, so it does not fall into

such particular cases. Yet, non-monotone polygons can be split into many

monotone ones, providing a possible divide and conquer approach between

the left side and the right side.

Using a sweep line algorithm in 2 dimensions, it is possible to divide the

polygon into monotone parts; the sweep line approach consists in having a

sort of scan line going from one direction to the other in 2D space (from left to

right or the opposite). It is possible to split the polygon in two halves using

a vertical line and compute the triangulation on each half polygon. This

may result in a small overhead of triangles, but would improve the splitting

algorithm.

Chapter 3

NVIDIA CUDA

NVIDIA CUDA (Compute Unified Device Architecture) is a technology pro-

viding a set of APIs (Application Programming Interfaces) for general pur-

pose programming on NVIDIA GPUs (Graphics Processing Units). It was

first released in 2007 and it is frequently updated; it is designed to work along

with Fortran, Python, MATLAB, C and C++ programming languages [12].

In this thesis, we will use CUDA version 10.2 along with C++.

3.1 GPGPU history

GPUs are becoming more and more powerful in terms of performance every

year; In the late 2000s, the industry was moving from a GPU architecture

with limited programming capabilities to a completely programmable one;

the paradigm for programming on GPU is called GPGPU (General Purpose

computing on Graphic Processing Units). Libraries such as DirectX and

OpenGL require a good amount of experience in order to be used, thus

OpenCL was born in order to solve those issues. OpenCL was one of the

first GPGPU languages. Since it is usable on all types of GPU supporting

them, they are not optimized for NVIDIA GPUs. NVIDIA created their own

language, CUDA, providing an easy way to enable GPGPU in a simple way

on their GPUs.

11

CHAPTER 3. NVIDIA CUDA 12

3.2 About GPUs

GPUs have been used for graphics processing for a long time. Graphics

processing requires single operations to be performed on a large set of data

repeatedly; being the single operations all the same in every stage, it made

sense to think to GPUs as a SIMD (Single Instruction on Multiple Data)

accelerator for general purpose applications. The SIMD paradigm allows

a single instruction to be performed on a large set of data. GPUs have

been optimized during the years for managing large sets of floating points

data, thus their computation power is measured in FLOPS (FLoating point

Operations Per Second), in later years increasing the capabilities to the order

of the TeraFLOPS (1012 FLOPS) even in home computing GPUs.

3.3 Threads, blocks, grids and warps

Figure 3.1 shows the architecture of the Pascal micro-architecture, available

in the NVIDIA GTX 10xx series. In the figure, each green square is a CUDA

core of the SM (Streaming Multi-processor). CUDA, through its high-level

APIs, allows the programmer to abstract the number of CUDA cores from

the hardware, implementing software threads for each core, similarly

to how a CPU is used by operating systems. While the number of software

threads is limited, it is large enough not to be an issue.

The CUDA APIs group software threads in blocks, which are grouped

in a grid. The maximum number of threads in a block and blocks in a grid

is also implementation dependent, yet again it is large enough not to be an

issue with the vast majority of the applications.

Due to the micro-architecture, threads are grouped in a small hardware

matrix containing 32 of them. This matrix is called a warp. Each call

to a GPU function spawns automatically a number of threads multiple of

the warp size. If a single thread is issued by the programmer, a warp is

allocated for the task, leaving the remaining 31 threads occupied but not

working. Each thread warp, moreover, reaches its optimal computational

speed when no decisional branching code paths are present (no if s) or when

the branching path is uniformly chosen, leaving the other branch unused

for the warp; if the decisional path between the warp diverges, branching

CHAPTER 3. NVIDIA CUDA 13

Figure 3.1: NVIDIA PASCAL micro-architecture

instructions are executed sequentially in order; if a thread does not need to

execute the instruction, the code for that thread is filled with nop assembly

instructions[11].

Blocks limit the working threads in a warp: the active threads in more

blocks are not optimally distributed in warps. This means that if the number

of threads in a block is not multiple of the warp size, then the number of

threads used is the warp size multiplied by the number of blocks, while the

active threads are only the ones declared in the block size.

3.4 Kernels

GPU functions that can be launched through API calls from the CPU are

called kernels. A kernel can be executed in parallel on an arbitrary number

CHAPTER 3. NVIDIA CUDA 14

of threads, providing an easy way to perform parallel computations. Kernels

can accept an arbitrary number of parameters, such as functions in C, and

need two mandatory parameters: the number of blocks used and the number

of threads for each block. Kernels are declared similarly to functions, using

the global declaration specifier. A kernel can be called by using the

<<<...>>> execution syntax, similar to the following example:

1 // Declaration

2 __global__ myKernel(param1, param2, ...);

3 // Usage

4 myKernel<<<n_blocks, n_threads>>>(param1, param2, ...);

When calling myKernel, n blocks is the number of thread blocks allocated on

the device and n threads is the number of threads for each block. As a rule

of thumb, it is advisable to dimension the blocks in such a way that their

dimension is a multiple of the block size, as mentioned above.

3.5 Memory

GPUs have their own RAM, called V-RAM (Video-RAM), separated from

the main memory of the CPU. V-RAM is physically closer to the GPU cores

than RAM is to the CPU, reducing latency, and is usually faster than the

current RAM generation for CPUs.

Memory in CUDA is divided into sections: global memory, local

memory, constant memory, shared memory and texture and surface

memory. Since the application described in chapter 4 is not a graphical one,

texture and surface memory are not used.

3.5.1 Global memory

Global memory is the slowest one on the GPU, since it can contain all kind of

data. In order to improve computational speed, data must be well aligned to

32, 64 or 128 byte segments. In global memory resides everything memorized

through cudaMalloc() calls, which are the equivalent for malloc() in

C. CPU can not operate on this memory directly, except for the operations

of allocating it and copying the values from and to it, using CUDA functions.

CHAPTER 3. NVIDIA CUDA 15

Since it is not the fastest memory available, it is advisable to use different

types of memory whenever possible.

3.5.2 Local memory

Local memory occurs when data is explicitly declared as shared, device or

constant. It is mainly used when the compiler does not know if an array is

indexed with constant quantities or when data structures would not fit into

the register space.

3.5.3 Constant memory

Constant memory resides in the device memory and is usually cached in the

constant cache, in order to speed up their access. Constant memory is useful

when non mutable data needs to be used frequently, providing an increased

throughput.

3.5.4 Shared memory

Shared memory is an on-chip memory, closer to the actual cores. It is shared

within a block, with the lifetime of the block itself. It is useful when we have

partial data to collect or frequent operations on those data. Shared memory

is also synchronous, meaning that threads are automatically stalled if one

is writing on a particular memory address. A simple trick in order to have

independent data is allocating a shared array on which each thread can work.

3.6 Asynchronous operation execution

CUDA also provides a set of API used for asynchronous operation execution.

This means that it is possible to perform an asynchronous memory copy

coupled with an asynchronous kernel execution, allowing the parallel usage

of both GPU and CPU for computation. This is headache via the CUDA

streams. Using a stream and passing it through operations that need to be

performed in order (such as memory copying and the execution of a kernel

accessing that memory) allows the programmer to order operations naturally

as they are be called in code.

Chapter 4

Flying probes test optimization

4.1 The problem

Manufacturing PCBs (Printed Circuit Boards) is a complex process requir-

ing extensive testing in order to be acceptable. Test phases are often im-

plemented starting at intermediate steps during the manufacturing process

[3].

Final tests focus on finding the defect introduced during the board assem-

bly process, and many approaches are used in order to define the defects in-

troduced by this process by providing scores for the defect coverage[6]. Board

testing using flying probes is one of the most used methodology in order to

verify the correct operation of PCBs. While it is not the only methodology,

its advantages reside in the possibility of re-using the same hardware to test

different boards. The main disadvantage, compared to the other most used

method, the bed of nails, is that testing is much slower, due to the lower

number of points tested simultaneously.

Some work has already been done in the test optimization techniques[5][1].

This work aims to extend this work in a many-core environment, exploiting

the advantages of GPGPU.

4.1.1 The testing machine

We modeled the testing machine thinking of one having 4 arms on each side,

on which there is a probe. The arms move, in a first approximation, in a 2D

16

CHAPTER 4. FLYING PROBES TEST OPTIMIZATION 17

space. Each arm can move on the x axis. On each arm is attached a probe,

with the possibility of moving on the y axis with a different velocity than the

x axis, being generally faster.

When probes are moved, there are 2 possible height values, being low or

high; the height cannot be specified for one probe only, but is common to

all of them. Raising a probe to the high value takes a considerable amount

of time, and might be used to reach points on the board avoiding lower

components.

Each side of the machine is theoretically independent, but tests may not

be: for this reason, tests must be optimized on both sides of the board.

While the number of probes has an impact on the test timing, it is not

the only factor that plays a significant role today: minimizing the number of

tests has a large impact on the time spent testing[14], but also optimization

.

4.1.2 The tests

We modeled the test in such a way that is possible to have equivalent tests

in different points. First, we defined what is an atomic point :

Definition 2 An Atomic Point P is a point in a 2D space. It is also

simply referred as a point.

Then, we defined a test point :

Definition 3 Equivalent Points are a set of equivalent atomic points

such that there is no difference on having a probe located in one atomic point

or another one in the same set in order to perform a test.

Definition 4 A Test Point can be an atomic point or a set of equivalent

points.

A complete test requires the positioning of two or more probes in different

test points simultaneously. Tests are grouped in test blocks, with the following

characteristics:

Definition 5 A Test Block or Test Group is an ordered set of tests

points to be reached simultaneously. The number of test points in each test

block can not exceed the number of probes.

CHAPTER 4. FLYING PROBES TEST OPTIMIZATION 18

4.1.3 The probes

Each probe can move in a 3D space following the rules here described:

• Movement on the z axis (vertical axis) is always applied to all probes;

• Movement on x and y axis are independent;

• Probes can not change their order in the x axis; this means, for instance,

that the leftmost probe will always be the leftmost probe;

• Probes do not move in a straight line; the worst case scenario of move-

ment is a rectangle, which models their ability to move from a point to

another.

Since probes have an order, we can label them from left to right as p0, p1...

With N probes, we can define a probe configuration as a set of points having

(x, y) coordinates, where each point represents the position of the probes in

order according to their labeling. Using those rules, a configuration is defined

as follows:

Definition 6 A Probe configuration is a set of coordinates defining the

positioning of all probes.

A valid configuration is a configuration that follows the rules listed above.

4.1.4 No-touch zones and No-fly zones

On each board, it is likely to find zones where the probes would touch a

component they should not. If the zone presents an high component, the

probe can not pass over it, leaving a circumnavigation as only solution to

avoid a collision with it.

Definition 7 A No-touch zone is a zone where probes need to be raised

higher than usual in order to avoid it.

Definition 8 A No-fly zone is a zone where probes can not fly over.

Because of the No-fly zones, we may find with incompatible points.

CHAPTER 4. FLYING PROBES TEST OPTIMIZATION 19

Definition 9 A couple of points is incompatible if the path leading from

one to the other intersects a No-fly zone.

While it is possible defining also the equivalent of incompatible points for No-

touch zones, these zones are an easier problem to manage, since the worst

case scenario requires raising all the probes.

An obvious consideration is that no-fly zones and no-touch zones cannot

contain test points.

4.2 Board generation

In order to be able to get some significant results, it is necessary to have or

to generate a board taking into consideration all of what has been defined

above.

4.2.1 First board generator

Approach

The first solution was generating the board starting from a generic file, ran-

domly choosing atomic points, equivalent points and test blocks, while mod-

eling no-fly zones and no-touch zones as rectangles.

The board has some user-defined areas, within which there is a uniform

distribution of atomic points; each area can be more or less populated by

setting a weight parameter.

Among the various signals, ground was considered the most significant in

order to have a good number of equivalent points; for this reasons, parameters

such as the ground frequency, indicating the number of equivalent ground

points, and the special test point named GND were designed to manage this

special case.

Equivalent points are generated by joining random points. A parameter

defines the probability of having Equivalent points with 2, 3 or 4 equiva-

lent atomic points. In order to generate random test blocks, test points are

shuffled within the array and then grouped in blocks. Blocks are generated

considering equivalent points from first to last, while randomly choosing the

ground for some of them.

CHAPTER 4. FLYING PROBES TEST OPTIMIZATION 20

Advantages and disadvantages

An advantage of this approach is the ability to generate a board with few

parameters. This allows a fast generation of different types of boards.

However, it presents the following disadvantages:

• there is no direct control over the generation of equivalent points, lead-

ing to a high probability to have meaningless ones; ground is the most

controllable point, and it can have meaningless points too;

• an issue is the modeling of no-fly zones and no-touch zones as rectan-

gles; in the second version of the generator, this has been taken care

of;

• atomic points are distributed randomly but their distribution may have

no meaning in a real case.

4.2.2 Second board generator

In order to overcome the disadvantages, a second, more precise board genera-

tor was later developed. This aims to give more control to the user generating

the board, by effectively providing a layout description of the board. Some

of the old parameters were deprecated and some were changed, in order to

have a board with meaningful test points.

In order to ease the process of generating the board, a board viewer has

been developed using Python, depicting the most important components.

Approach

In order to give more meaning to the generated point, the abstraction of a

component has been created; a component can represent anything from a full

system on chip to a simple resistor. Components are modeled as rectangles,

with the number of pins defined for each side; each pin represents an atomic

point and it is given a unique ID in order to retrieve it.

the generation also allows for user-defined point to be created with a

custom identifier; this way, points are stored within a std::map and can

be retrieved by their IDs.

CHAPTER 4. FLYING PROBES TEST OPTIMIZATION 21

To generate equivalent points, nets can be defined by users, providing

strands joining each atomic point. This way, the ground signal does not

become a special case, but falls in the general case, being particular only

because of the larger amount of connections. A net optimizer has been

developed when generating the board, joining nets if they have points in

common before generating the board. This provides the effective number of

meaningful equivalent points.

Test blocks are generated randomly; they test each atomic point in a net,

leaving the user the rest of the test groups definition.

No-fly zones and no-touch zones are now modeled as polygons; to define

the polygon, the program uses a list of (x, y) coordinates. In order to speed-

up the generation of the board, now the generator does not check if a point is

inside a no-fly zone or no-touch zone. This can be done by inspection using

the board viewer.

Given the input, the output is translated in a similar file, lacking the

information of the components, presenting the information of all generated

points and with joined nets. IDs for all test points and nets are represented

by positive integer numbers instead of strings. The generator assigns each

point an integer ID and all the string references contained in test groups and

nets are translated into integer references.

Advantages and disadvantages

Advantages of this approach are:

• users have the control of where to put test points, aided by the definition

of components

• components give meaning to atomic points

• nets help with the generation of equivalent points; ground is not a

particular case

The main disadvantage is having to work longer in order to generate a board,

by placing components and verifying by inspection to not violate constraints

for the test points. A program with a GUI can be used in order to simplify

the generation of the file, but it is out of the scope of this thesis.

CHAPTER 4. FLYING PROBES TEST OPTIMIZATION 22

Board viewer example

On the top, we have the code that generates the board. On the bottom,

there is the view of the board itself.

Board name

.name fake_board.txt

.width 1200

.height 800

.component, name, x_left, y_bottom, x_right, y_top, pinTop,

pinBottom, pinLeft, pinRight

.component CPU 500 500 600 600 20 20 20 20

.component el0 300 100 400 150 8 8 2 2

.component el1 300 200 400 250 8 8 2 2

.component el2 300 300 400 350 8 8 2 2

.component el3 300 400 400 450 8 8 2 2

.component el4 300 500 400 550 8 8 2 2

.component el5 300 600 400 650 8 8 2 2

.component debug 700 550 750 600 8 8 8 8

.component R0 440 300 470 310 0 0 1 1

.component I0 440 400 500 420 0 0 1 1

.component stick0 800 340 840 380 1 1 1 0

.component stick1 800 400 840 440 1 1 1 0

.point, name, x, y

.point GND_point 600 750

.point CPU_to_gnd0 600 700

.point el5_to_GND 300 750

.point stick_to_GND 820 700

#.net, name, point1, point2...

.net CPU_GND_net GND_point CPU_to_gnd0 CPU.bottom.0

.net el_GND_net GND_point el5_to_GND el5.bottom.7 el5.top.7

el4.bottom.7 el4.top.7 el3.bottom.7

el3.top.7 el2.bottom.7 el2.top.7

el1.bottom.7 el1.top.7 el0.bottom.7

.net debug_GND_net debug.bottom.0 CPU_to_gnd0

#debugger-CPU nets

.net CPU_dbg0 CPU.right.0 debug.left.0

.net CPU_dbg1 CPU.right.2 debug.left.1

.net CPU_dbg2 CPU.right.19 debug.left.7

.net CPU_dbg3 CPU.right.18 debug.left.6

.net CPU_dbg4 CPU.bottom.19 debug.bottom.7

.net CPU_dbg5 CPU.bottom.18 debug.bottom.6

.net el2_R0 el2.right.0 R0.left.0

CHAPTER 4. FLYING PROBES TEST OPTIMIZATION 23

.net R0_CPU R0.right.0 CPU.top.0

.net GND_lnk1 CPU_to_gnd0 stick_to_GND

.net stick0_GND stick0.bottom.0 stick_to_GND

.net stick1_GND stick1.bottom.0 stick0.bottom.0

.net CPU_to_stick0 stick0.left.0 CPU.top.16

.net CPU_to_stick1 stick1.left.0 CPU.top.18

.net CPU_to_stick0_fb stick0.top.0 CPU.top.17

.net CPU_to_stick1_fb stick1.top.0 CPU.top.19

.net I0_to_CPU I0.right.0 CPU.top.1

.net I0_to_el3 el3.right.0 I0.left.0

#each couple of values is an extreme of a segment, each line is

a no fly zone

.nofly nfzI0 450 390 490 390 490 430 450 430 450 390

.nofly nfzStick0 805 360 820 375 835 360 820 345 805 360

.nofly nfzStick1 805 420 820 435 835 420 820 405 805 420

Figure 4.1: Example of generated board

CHAPTER 4. FLYING PROBES TEST OPTIMIZATION 24

Legend

• Blue dots are test points

• Orange rectangles are components

• Blue lines are nets

• Black lines are no-fly zones

4.3 First approach to the problem

Using the first board generator shown in section 4.2.1, boards could be gen-

erated in a very fast way, given few parameters; the boards generated with

this approach vary in size and in number of atomic points. The most used

boards are the ones with 100, 10000 and 30000 test points, and the latter has

two versions: one with heavy focus on having collisions, the other having less

collisions. The board with the most collisions is an invalid one, since some

atomic points were generated inside the no-fly zones; the check was added

later, but it can show some speed-ups in a worse case than the one using

valid boards.

4.3.1 The test optimizer

In order to simplify the problem, a tester with only one probe has been

selected; this is because our intention is to apply the leader/follower pattern,

where the probes on the left shall be the leaders and the probes on the right

act as followers, in such a way that the leader decides what is his part of

the next configuration, and the followers adapt to the situation finding their

positioning based on the points that they can reach.

A first hypothesis was also that the board could be split into N parts,

where N is the number of probes, and each probe would be assigned to its

part; since a hard rule would not work due to test blocks having the possibility

of contacting near points, this should have been a soft rule, where the zone

should have been preferable.

Since only one probe is present, test groups are, in this case, managed

similarly to test equivalent points. It is not distant from their true meaning,

CHAPTER 4. FLYING PROBES TEST OPTIMIZATION 25

since the leader has to decide which is the nearest point and the follower

should adapt in this paradigm.

4.3.2 Data structures

Math library Since 2D space concepts are frequently used, a mathematical

library is needed in order to implement them. In the mathematical library

are implemented the concept of a 3 dimensions vector, the concept of Point

(which is also used as a 2 dimensions vector), the Rectangle and the Line

segment. The math library is also where the GPU is mainly used, since it

also manages the collision detections.

Test library It contains the TestAtomicPoint class, the TestPoint

class, which is used for managing equivalent points and atomic points them-

selves (if a TestPoint is related only to one atomic point, it is effectively an

atomic point; if it is related to more points, it manages equivalent points) and

the TestGroup class. The TestPoint and the TestGroup have a string ID

identifying them, while the TestAtomicPoint has a numerical ID representing

its position in an array of atomic points.

The TestAtomicPoint class also keeps the information of incompatible

points and points that can be reached by touching no-touch zones. Later,

the information of what no-touch zone is involved in the incompatibility has

been memorized.

Board The Board class has the information about the probes, the no-

touch zones, the no-fly zones and the test points; it also manages the initial

collision detection between the probe paths and the no-fly and no-touch zones

and the high-level view for the probe movement.

Since it manages the collisions through the no-fly and no-touch zones, it

contains also the pointers to the data on the GPU, managing their high-level

allocation.

4.3.3 Collision detection

Since the collision detection algorithm has very few branching paths, it is

reasonable thinking of an algorithm for the collision detection working on

CHAPTER 4. FLYING PROBES TEST OPTIMIZATION 26

GPU. While the algorithm stays the same, a wrapper has been built around

it in order to exploit the SIMD nature of GPU computation. In order to

do this, a simple way to achieve significant improvements is calculating each

couple of points on each thread. This solution is more simple, selecting only

one atomic point at the time and calculating the couples formed between

that atomic point and the others on the board. The connection between

unreachable points can be modeled as bidirectional edges on a graph, thus

if the first point is incompatible with the second, we can derive that the

second is incompatible with the first; because of this, a couple of points can

be tested once and the information about incompatibility is complete; the

board function managing the collision detection ensures that computation of

incompatibility is performed only once per couple of atomic points, saving

a significant amount of time. The CPU ensures, through frequent synchro-

nization, that the GPU threads calculate the collision one at the time. This

simplifies the wrapper function, yet it offloads the weight of a for loop from

the GPU, which has a higher impact than on the CPU because of the lack

of a branch prediction unit.

Algorithm overview and implementation

The implementation for the wrapper uses a boolean array for results. this

function was used in the first implementation of the algorithm, that did not

track which no-fly zone or no-touch zone was involved with the collision.

points and rects are arrays of 2D points, representing atomic points, and

rectangles; rectangles are divided into two arrays, one of no-fly zones and one

of no-touch zones; by having rectangles as inputs, the kernel can be used for

both no-fly and no-touch zones.

In line 10 we retrieve the index of the second point of the couple, while

the index for the first one is currentPoint . Since it does not make sense

to calculate the incompatibility between the same atomic point, it is not

considered in calculations, along with already calculated incompatibilities.

In this version of the algorithm, the path between points is modeled as

a line, while no-fly and no-touch zones are modeled as rectangles, due to

missing requirements.

Since every point is outside of every rectangle, it is easy to demonstrate

CHAPTER 4. FLYING PROBES TEST OPTIMIZATION 27

by method of exhaustion that it is sufficient to test the collision with the

diagonals of the rectangle in order to establish if there is one, except for

the particular case in which they are on the same side along the rectangle

positions; in this case, the collision is not detected, but it is a borderline case

that never happens due to the no-fly zones constraints.

The function segmentToSegmentCollision is the one described by

the algorithm 1.

1 __global__ void GPU::segmentToRectangleCollision(

2 bool* results,

3 const Point* points,

4 const Rectangle* rects,

5 const size_t currentPoint,

6 const size_t currentRectangle,

7 const size_t max

8)

9 {

10 int index = threadIdx.x + blockIdx.x * blockDim.x +

currentPoint + 1;

11 if(results[index] || index >= max) return;

12 Rectangle rect = rects[currentRectangle];

13 Line currentLine, l1, l2;

14 currentLine = Line(points[currentPoint], points[index]);

15 l1 = Line(Point(rect.x, rect.y), Point(rect.x + rect.w,

rect.y + rect.h));

16 l2 = Line(Point(rect.x, rect.y + rect.h), Point(rect.x

+ rect.w, rect.y));

17 results[index] = segmentToSegmentCollision(currentLine,

l1);

18 if(!results[index]) results[index] =

segmentToSegmentCollision(currentLine, l2);

19 }

4.3.4 Experimental results in collision detection

Tests have been performed using a computer with the following specifications:

• CPU: Intel i7-9700k (8 cores, 8 threads)

• RAM: 32 GB DDR4

CHAPTER 4. FLYING PROBES TEST OPTIMIZATION 28

• GPU: NVIDIA GeForce GTX 1060

Results may vary with different configurations.

Tests have been performed with boards having 12 no-fly zones, with col-

lisions calculated using the algorithm described above.

As we can see in table 4.1, improvemens are significant with 10000 atomic

points, while we start gaining an advantage using the parallel approach al-

ready with 1000 points. Since incompatible points need to be saved in lists,

however, those insertion must be atomic operation.

Because of the large number of collisions, the 30000 invalid file takes

longer in the multithreaded approach, and the performance gain becomes

less significant. This is due to the data structure used to represent collisions:

instead of a graph represented by a matrix, in order to save memory, the

representation is done thrugh a vector of indexes. The algorithm on the

GPU returns the results in a static array, providing the information about

the presence of the collision. Since collisions must be added in a vector, the

algorithm gets slown down.

Number of Single Multithreaded GPU

atomic points thread [s] [s] Speed-up [s] Speed-up

100 0.004 0.006 0.67x 0.019 0.21x

1000 0.300 0.06 4.69x 0.148 2.03x

10000 17.44 9.07 1.92x 4.15 4.20x

30000 267.30 37.87 7.06x 19.43 13.76x

30000 invalid 191.14 59.75 3.20x 46.51 4.11x

Table 4.1: Empirical time measurements and comparisons between different
implementations of collision detection

CHAPTER 4. FLYING PROBES TEST OPTIMIZATION 29

Figure 4.2: Collision detection elaboration time comparison with increasing
number of atomic points

A simulation can be performed only calculating collisions and copying the

results back, simulating a matrix-like graph. This version of the algorithm

shows a significant improvement both over the single-threaded version and

over the GPU multithreaded one. Since it does not require CPU computa-

tion, the only part that slows down the computation is the memory copying

time between VRAM and RAM.

Table 4.2 shows the amount of those improvements; those improvements

can also be useful in the test planning performed later, since the complexity of

the search for an incompatible point becomes O(1) instead of O(N) because

of the nature of a data matrix.

CHAPTER 4. FLYING PROBES TEST OPTIMIZATION 30

Number of Single GPU GPU using GPU speed-up compared GPU speed-up compared

atomic points thread [s] [s] matrix [s] to single thread with current multithreaded

100 0.004 0.019 0.008 0.50x 2.38x

1000 0.300 0.148 0.071 4.23x 2.08x

10000 17.44 4.15 0.86 20.78x 4.83x

30000 267.30 19.43 3.63 73.64x 5.35x

30000 invalid 191.14 46.51 3.61 52.95x 12.88x

Table 4.2: Comparison between single threaded approach, GPU approach
and GPU using matrix approach

4.3.5 Test planning

The first approach to the test planning is simplified. In order to make a

test plan, a first approximation of the probes behavior would be the leader-

follower pattern. Each probe would be bound to the choice that the previous

probe made; this way, p0 becomes the most important probe to manage.

By modeling the problem this way, the first thing to do was deciding the

path for one probe. In order to complete the tests, the probe should contact

one point of each test block.

In this version, in order to emulate the differences between the x and y

speed of the probe, they have a factor assigned to their speed. Movement

has been modeled as linear both on the x axis and on the y axis in a first

approximation, since this is not the path finding algorithm.

In order to find the best path, we have to define the distance metric

between the test blocks considering the point of view of a single probe.

Definition 10 The distance between two atomic points is defined as

the distance between two points in the Cartesian plane, with different factors

between x and y axes.

Definition 11 The distance between two equivalent points is the

minimum distance of atomic points considering each of the atomic points in

the first group of equivalent ones with each one of the second group.

Definition 12 The distance between two test groups is the mini-

mum distance of equivalent points considering each of the equivalent points

in the first test group with each one of the second group.

CHAPTER 4. FLYING PROBES TEST OPTIMIZATION 31

Having multiple probes creates a slightly different definition for the distance

between equivalent points, taking into account the maximum distance for

each of the probes in order to reach it.

Distance calculation is the slowest operation of the procedure, so it makes

sense to optimize it in order to have a reasonable speed-up.

Possible parallel implementations

Distance between atomic points A first approach is parallelizing the

distance between atomic points; CPU parallelization does not give significant

performance improvements, and GPU parallelization gives 1.1x worse results

on average on a single calculation.

Distance between equivalent points This approach gives rise to more

waiting times, due to the cycling between the test points. Results are very

similar to the previous point.

Distance between test groups Using the parallel patterns library, par-

allelizing the distance between test groups improves performance by a signif-

icant amount of time.

Since the program is supposed to run on Windows, in order to lose less

amount of time for the context switching, any mutex is implemented by the

CRITICAL SECTION structure, since it does not operate in kernel space.

4.3.6 Empirical results in test planning

Depending on the number of atomic points and test blocks, given 12 collision

rectangles, in table 4.3 are reported the elapsed times in order for one probe

to touch every test block, using the distances defined above.

In this implementation of the algorithm, atomic point distance between

incompatible points is set as infinite, in order to spend less time on the

calculation of less likely paths; as a first approximation, paths are modeled

as straight lines; in the path finding algorithm, it will be necessary having

the probes moving using the right logic.

CHAPTER 4. FLYING PROBES TEST OPTIMIZATION 32

Number of Single Multithreaded with

test blocks thread [s] parallel patterns [s] speed-up

22 0.138 0.196 0.70x

160 0.042 0.046 0.91x

2156 43.33 18.95 2.29x

5046 15.52 3.53 4.40x

6507 (invalid file) 1084.26 447.26 2.42x

Table 4.3: Empirical time measurements and comparisons between single
threaded and parallel pattern implementations of the test planning.

4.4 An improved approach to the problem

As a work in progress, a second approach has been taken into consideration

for the whole planning task. This approach follows a more in-depth scenario,

where no-fly zones and no-touch zones are modeled as generic polygons in-

stead of rectangles, while paths between points are modeled as rectangles.

4.4.1 Data structures

Data structures remain almost the same. No-fly zones and no-touch zones

are represented by a std::vector of line segments, while paths are calcu-

lated at runtime using a temporary rectangle structure. The declaration of

polygons is a simplified version of the SVG polygon declaration format.

Configuration In path finding, an important class is the configuration,

which replaces the old vector of points to be contacted in order to execute

the tests. Another use of this class is for path finding, where collisions have to

be avoided and the path is colliding with a no-fly or no-touch zone, providing

a safe path for all the probes. A valid configuration respects the constraints

given in section 4.1.3. Probes can only move to one valid configuration to

another valid configuration. Intermediate results are stored in a vector, also

used to compute distance more precisely.

CHAPTER 4. FLYING PROBES TEST OPTIMIZATION 33

Figure 4.3: Graph calculations timings with increasing test blocks

4.4.2 Path finding

The problem of path finding is, given a valid starting configuration and a

valid final configuration, finding, if there are any, all the intermediate con-

figurations in order to pass from the first one to the second one.

Considering the valid configurations, we individuated three main cate-

gories of paths that can be taken:

• a direct path, with no intermediate step. This is the easiest case, where

probes can move directly from one configuration to another;

• a path colliding with a no-fly zone that can be solved by splitting the

line segment joining the 2D points in more segments. This allows the

probe to form smaller rectangles, providing a more accurate control of

the probe;

• a path which collides with a no-fly zone. In this case, a collision avoid-

ance algorithm is needed in order to move the probes;

For no-touch zones, the path finding is easier, since in the worst case scenario

the probes only need to be raised higher than usual.

CHAPTER 4. FLYING PROBES TEST OPTIMIZATION 34

Collision avoidance

Since collisions may happen in various, an algorithm is needed in order to

avoid no-fly zones. Regarding the no-fly zones avoidance, we identified two

main situations that can occur:

• probes can avoid the no-fly zone without moving in the opposite direc-

tion with respect to each other, but the path needs to be split in more

valid configurations;

• at least one probe is moving in the opposite direction with respect to

the others.

Taken separately, these cases are not difficult to manage separately; yet, they

intersect if a new collision may happen when passing from one configuration

to another, or if one of the possible destination points is inside a no-fly zone.

In order to solve those cases, we are likely to need computational power; in

this case, a runtime collision detection using the GPU is likely to save time;

it is also possible using a CPU + GPU multithreaded approach, where each

thread of the CPU manages one probe.

4.5 An alternative approach

4.5.1 About dividing the free space

A possible approach may come from focusing on the space that the probe is

allowed to move freely. Within those free zones, it is possible for the probe

to move without having to worry about collisions; those zones should also

share a link between them, in order for the probe to be able to pass from one

to the other.

By using this approach, there would be no need for collision detection

between paths and no-fly zones, since it is implicit that two linked areas

would not cause a collision through any no-fly zone. Since no collision can

occur through no-fly zones, any path linking two or more zones is a valid

one, and only constraints between probes need to be applied.

The advantage of automatic collision avoidance comes with a disadvan-

tage: if a probe passes through more than one zone, it will likely stop more

CHAPTER 4. FLYING PROBES TEST OPTIMIZATION 35

than once, slowing down the test execution. This situation may rise when

few points are left to be tested, requiring long movements by the probes. In

order to solve this problem, it might be possible to use different techniques:

• collision detection might play a role, but instead of testing every single

point it would be limited on testing few key points in zones;

• simulating ray casting in order to determine the reachable area at run-

time;

• increasing the number of links between zones, creating an undirected

graph linking different zones. This would require an initial computa-

tion in order to build the graph, but it would ensure a faster runtime

computation.

4.5.2 About free zones

Free zones should have a fixed shape in order not to create computational

overhead. A rectangle would seem a good solution, since it is an easy shape

to manage, but since the no-fly zones have generic shapes it is unlikely to be

the best option in order to approximate free spaces without colliding areas;

the solution may come from the graphical field, where triangles are used

to cover entire sections of space without leaving gaps. Triangles are more

difficult to manage, but it is possible to cover the whole free space on the

board by using them.

4.5.3 Dividing the free space

Free space needs to be divided into triangles. This process is called tri-

angulation, and many algorithms have been developed for this purpose,

from generic ones to ones that take advantage of special situations. As we

do not know the shape of the free space with the no-fly zones, the polygon is

generically non-monotone. In order to triangulate the board, the sweep-line

approach can be used in order to divide it into monotone sub-polygons.

CHAPTER 4. FLYING PROBES TEST OPTIMIZATION 36

4.6 Conclusions and future work

Even an unoptimized GPU approach can provide a significant speed-up of

the collision detection, providing possibly a viable runtime calculation of col-

lisions instead of a pre-processed one. This way it would be possible to save

a large amount of memory and have only local data providing info about

collisions. The path finding problem can also benefit from a multithreaded

approach, independently moving each one of the probes with due synchro-

nization.

Some future work can be implemented starting from the theory described

in section 4.5, which we think is a viable approach. Improvements and opti-

mizations can also be performed on the original collision detection.

Chapter 5

EVCD analyzer

5.1 The problem

Chips are increasing in size and software simulations are a major concern

for testing and reliability. While simulation tools are on the market, results

are analyzed separately. Simulation tools, as output, write an EVCD file

(Extended Value Change Dump), which is an extension of the VCD[7] format

(Value Change Dump). EVCD files proved to be more reliable than ATPG

(Automated Test Pattern Generation) engines in order to reach the desired

accuracy of the analysis; thus, simulation dump analysis is a more used

strategy in the field [13][8].

Tools exist and have been developed for analysis of EVCD files; a tool

from professor Paolo Bernardi is available for this type of analysis; the re-

quest is building a new tool which should use the least RAM possible while

exploiting the power of the multi-core approach to speed up the different

types of analysis. The proposed approach is a multithreaded computation,

which would decrease the time needed to perform both full and statistical

analysis.

5.2 File structure

5.2.1 EVCD files

An EVCD file is formatted as follows:

37

CHAPTER 5. EVCD ANALYZER 38

• the header section with generic information;

• the declaration section, where all the relevant gates, buses and mod-

ules are declared and assigned to an ID represented by an increasing

number;

• the initial values assignment section;

• the simulation section

5.2.2 Header

$date

Date of creation

$end

$version

Tool used

$end

$timescale

Time scale

$end

While the importance of those information is low, the timescale can be useful

in future analyses.

Gates and modules declarations

Each gate lives within a module. Modules represent parts of the chip in

a hierarchical structure. Modules can have a parent-child relationship or a

sibling relationship. The declaration follows the pattern:

$scope module module_name $end

$scope module child_module_name $end

...

$upscope $end

$scope module child_sibiling_module_name $end

...

$upscope $end

...

$upscope $end

CHAPTER 5. EVCD ANALYZER 39

Within each scope, gates and buses are declared. The difference between

a bus and a gate consists in how many signals define its state: a gate state

is defined by only one signal, while bus states contain many signals.

A gate declaration has the following syntax:

$var port 1 <ID gate_name $end

A bus declaration has the following syntax:

$var port [first:last] <ID bus_name $end

First and last are integer numbers defining the range internal bus IDs. To

discern the internal identifiers of a bus from what we call IDs, those will be

called sub-IDs.

5.2.3 Assignments and values

A gate value assignment has the following syntax:

Value <ID

A bus value assignment has the following syntax:

ValuesubID0
ValuesubID1

... <ID

Allowed values for both buses and gates are:

• 0: logical value;

• 1: logical value;

• x: don’t care value; it means it can be either 1 or 0;

• z: high impedance value.

Initial values

$enddefinitions $end

#time

$dumpports

assignment

assignment

...

$end

where time is a positive integer number. This section must contain assign-

ments for each gate and bus.

CHAPTER 5. EVCD ANALYZER 40

Simulation

#time

assignment

assignment

...

#time

assignment

...

The simulation section is similar to a repeated assignment section, while

having the following rules:

• times are strictly increasing;

• IDs and values only appear if the state changed in the current time;

bus assignments might show repeated sub-ID values when they appear.

5.3 Definition: full analysis

A full analysis of a simulation result, given a EVCD input file, transforms

the time to list of changes relationship grouping, instead, changes with the

respective bus or gate; this simplifies the study of the full toggle activity on

a single gate or bus. The main problem of the process is its duration with

files that have the tendency to grow in size; dimensions of the files can vary

from few megabytes to hundreds of gigabytes.

The output states can be F (falling edge) if a bus sub-ID or gate toggles

from any value except 0 to 0 or from any value to x, or R (raising edge) if

the toggle is from any value except 1 to 1.

The output format has the following syntax for buses:

bus_path <ID-sub_ID time state

and the following syntax for gates:

gate_path <ID--1 time state

Bus path and gate path are the modules of the chip, written as a Unix-like

file system path.

CHAPTER 5. EVCD ANALYZER 41

5.4 Definition: statistical analysis

A statistical analysis of a simulation results gives partial information about

the toggle activity; more precisely, it tells if the signal value changes follow

the pattern 1-0-1 or 0-1-0. If the full pattern is matched, then the coverage

of the toggle analysis is 100% of the possible significant changes; if only

half of the pattern is matched, the coverage is 50% of the possible changes;

otherwise, the coverage is 0%.

we do not consider toggle from a value to x or z in the statistics, since

ideally they would appear only as initial values and should not appear when

the system is fully operational. Cases in which those values appear as initial

values are managed by substituting them with the first change found.

5.5 General approach

The first approach to the problem was developing a new single-threaded

version of the program. Starting from professor Bernardi original tool, in

order to ease the development and avoid memory leaks wherever possible,

the first version of the new tool is a simple C++ port of the old parser

written in C.

5.5.1 Original approach

The original approach uses an hash map in order to memorize and retrieve

signals, while each change is put in a linked list structure. The advantage

of the hash map is the capability of being general purpose and working with

strings, while providing access time of O(1) complexity; while this is a good

general solution, in practice the signals found on the EVCD files are iden-

tified by increasing numbers. Moreover, signal references are inserted in a

hierarchical structure provided by an N-branches tree, which requires a sig-

nificant amount of RAM with more and more signals being added. In section

5.5.3 an overview of the data structures used is shown.

A remarkable memory issue happens when changes get pushed to the lists

contained in the signal structure, the new state is represented by a character

dynamically allocated, in order to have the possibility of having a null value

CHAPTER 5. EVCD ANALYZER 42

as an invalid change.

5.5.2 General optimizations

File parsing: sscanf

General details While sscanf is a powerful function, its nature of being

general-purpose function based on formatting leads to slower performance.

A first optimization was the removal of sscanf, replacing it with the corre-

spondent std::strtoull function calls. A basic unoptimized version of

the algorithm substituting the sscanf call is 5 times faster on average, as

shown in figure 5.1.

Figure 5.1: Empirical durations of sscanf compared to strtoull on the same
data

Technical implementation Below, we can see a short example of the code

changes between the usage of sscanf and the usage of std::strtoull .

sscanf code:

1 int32_t index_start, index_stop;

2 sscanf(line[3], "[%d:%d]", &index_start, &index_stop);

std::strtoull code:

1 int32_t index_start, index_stop, i, wordIndex;

2 for(i = 1, wordIndex = 0; line[3][i] != ’:’; ++i) {

3 word[wordIndex++] = line[3][i];

4 }

5 index_start = std::stoull(word);

CHAPTER 5. EVCD ANALYZER 43

6 for(i = i + 1, wordIndex = 0; line[3][i] != ’]’; ++i) {

7 word[wordIndex++] = line[3][i];

8 }

9 index_stop = std::stoull(word);

File reading

General idea While fscanf is already a well working function to read

files, the formatting required using sscanf can take time to be executed.

Two approaches have been explored: the usage of memory mapping and

the usage of the read Unix system call.

Memory mapping Memory mapping directly maps an arbitrary number

of bytes of the file in RAM. This allows the operating system to automati-

cally manage the file loading in memory, accessible as an array of bytes. This

approach proved to be slightly faster than the sscanf function, yet it comes

with the downside of having a maximum number of file mappings available

per process; this means that large enough files can never be read completely,

providing only partial information. Another downside of the memory map-

ping is that the system call performs lazy loading of the file, moving the

data into RAM only when requested; while lazy loading is something we can

avoid by requesting the data soon after the mmap call, the issue above still

remains.

Binary file reading Using this approach, each byte is copied in memory

when read is called. This call is faster than the memory mapping, since

it does not use lazy loading, and can be called as many times as the pro-

grammer wants. The absence of lazy loading is also useful to use a double

buffering technique, similar to the one used on GPUs: while a single part of

the file is being elaborated, the next one is being loaded into memory. This

way, the file loading does not slow down the computation. This is achieved

through having two FileIterator structures, one for each file part that has

to be elaborated. By swapping the FileIterators when necessary, the elab-

oration works without stopping. The speed-up achieved by this approach

is hardware-dependent; testing the double buffering on an SSD with the 6

GB file, the process is about 3 seconds faster. On a traditional hard drive,

CHAPTER 5. EVCD ANALYZER 44

however, more than 10 seconds of speed-up have been achieved by using this

technique.

Smaller optimizations

String length whenever needed is offered by the file reader structure; this way

it does not need to be calculated later, since the value is already available

when words are copied in memory.

In order to further optimize the program, std::stoull has been re-

placed with a custom function that does not require the calculation of the

string length.

5.5.3 Main data structures

Signals Each gate or bus has been represented by a class called Signal,

identified by an ID and a sub-ID. During the reading of Signals in the declara-

tion section, each Signal is pushed in a standard vector; a parallel structure

is also filled, where the position of the first signal with a particular ID is

memorized in order to decrease the computational cost of the Signal search

from O(N) to O(1).

Changes Each Signal contains a dynamically allocated array of Changes,

which represent the state of a signal at a given time. The timing reason for

not using the list is having all the values in cache when writing the output

to file; while the insertion might be slower, due to the copy of the vector

when reallocating it, it is noticeably faster when writing the results to an

output file, since an array always exploits cache memory, due to it being a

contiguous location in RAM.

File iterator Since the standard C function for file I/O are slow, a FileIt-

erator class has been created, using the native Unix I/O system calls. Since

the C functions have been replaced, the class takes care of reading N bytes

of the input EVCD file; after the reading, each operation is done directly in

RAM.

CHAPTER 5. EVCD ANALYZER 45

RAM optimizations

Data structure optimization Data structures are declared taking into

account memory alignment and optimizing smaller char values. More opti-

mizations can be performed by using bitwise operations in conjunction with

union structures, yet this would increase the effort for the programmer in

order to be able to insert and retrieve change values.

Dynamic memory allocation The RAM cost of dynamic memory allo-

cating a state change is of 8 bytes for the pointer + 1 byte for the character

+ 7 bytes of alignment, making it 16 bytes; moreover, the dynamic RAM al-

location costs time due to its need to request RAM from the OS. A small but

effective optimization for RAM consumption is using a statically allocated

character, using in total 8 bytes due to alignment, and assigning an unused

value as invalid.

Hierarchical structure The hierarchical structure has been substituted

by a dynamically allocated array of signals coupled with another one of inte-

gers due to the offset generated by the sub-ID presence. Since the ID is the

reference for each signal in the EVCD file, the hierarchy is preserved only

through memorization of the full hierarchy as a string resembling a Unix

path.

Avoiding lists As mentioned in section 5.5.3, the data structure of choice

for memorizing changes is an array. Another advantage of the array over

the list is the RAM usage. A single-linked list uses 8 byte per each change

in order to point to the next one. Since each change contains 16 bytes of

data, the RAM usage of the link would be 33% of the Change structure.

Since changes are many more than signals, the RAM usage would drastically

increase.

CHAPTER 5. EVCD ANALYZER 46

5.6 Full analysis

5.6.1 The sequential approach

The sequential approach follows the old C program parsing rules, while

adding directly in the right Signal structure each Change found already in

the format of the output.

5.6.2 The producer-consumer approach

A first implementation of the parallel version of the algorithm was using a

producer-consumer approach, where the producer is the file reader, sends the

line to the consumer through a thread-safe FIFO queue, and the consumer

takes care of the parsing. This pipeline is unbalanced, resulting in the con-

sumer spending more time to elaborate a single line than the producer to

read it from memory. This lead to the queue being full most of the time.

This lead to computation times being up to 7 times longer than the sequen-

tial approach, being similar to its timings only with a long enough queue

(around 10000 elements).

Figure 5.2: The principle of the producer-consumer approach

One producer, many consumers In order to leverage the work for the

consumer, a possible improvement could be adding consumers. This ap-

CHAPTER 5. EVCD ANALYZER 47

proach proved to be unsuccessful, since it lead to longer parsing time; the

culprit, in this case, is the waiting time in context switching: profiling tools

show that the waiting time for the threads keeps increasing and the queue

has the tendency to be filled before those waiting times expire.

Since the insertion of each change must be in order, the approach chosen

is for each thread filling a temporary queue, which will be later elaborated

by the main thread.

Avoiding system calls A possible optimization can be using busy waiting

instead of fully relying on the scheduler expiration times for the waiting. This

approach turned out to be more successful than the previous one, yet it was

not enough to reach the performance of the sequential approach.

5.6.3 The file part splitting approach

Instead of reading each line and then leaving the heavy computation to a

secondary thread, this approach is about splitting the loaded file part in

almost equally-sized chunks and leaving the computation of each smaller

chunk to the threads involved.

The file division problem By splitting the file equally among threads,

we can obtain three different situations:

• the first line that a thread elaborates is a time information

• the time information is not in the first line

• the time information is not present in the section of file managed by

the thread

While the first is the ideal situation, it is unlikely that it is always the case;

when the second case or the third case happens, the time information for

the signal changes is lost. In order to solve this issue, each thread fills a

queue with partial information about the signal; when the working threads

complete the elaboration on their divided file, the main thread starts reading

the values in each queue, always memorizing the last valid time information

and filtering changes that do not represent a toggle. By keeping the last valid

CHAPTER 5. EVCD ANALYZER 48

time information, it is possible to reconstruct the following ones; in order to

achieve this, queues have to be read in order.

The main thread The logic for the main thread consists in launching

the threads, starting them through a barrier mechanism, computing the last

line (since each FileIterator holds a buffer unaware of lines, it might be

necessary swapping the iterators to read the entire line). After the reading,

the loading of the next part of the file is done completely in parallel with

the remaining threads, and the main thread waits for their computation to

be finished through an optimized barrier technique: for each thread, it waits

for an ending in-order, so that the elaboration can possibly be parallel to

the other threads work. For each ending thread, the main one empties the

relative queue and fills the Signal structures with those temporary changes.

In figure 5.3 a parallelism between the CPU stages of the pipeline and the

file elaboration has been developed:

• Fetch: this stage is represented by the input file reading from disk;

• Decode: this state is represented by the division of the work for the

threads;

• Execute: represented by the file parsing; this stage is executed in

parallel by the worker threads;

• Memory: represented by the main thread filling the correct structures;

this is the longest stage in the pipeline in terms of duration, since it is

work that cannot be performed in parallel; while small optimizations

have been developed to reduce its length, it still takes a significant time

of the execution;

• Write-back: represented by the final result being written on disk.

The worker threads The other threads do the same parsing as before,

but fill temporary queues in order for them to be processed by the main

thread. An optimization has been done for the first worker thread: the order

clause is already satisfied, since it works on the first chunk of the buffer, it

CHAPTER 5. EVCD ANALYZER 49

Figure 5.3: The pipeline stages

directly adds the changes to the Signal structures and updates the current

time.

5.6.4 Experimental results

Experimental results are retrieved using the file part splitting approach, on

a server with the following specificatons:

• CPU: AMD EPYC 7301 16-Core Processor (16 core, 64 threads)

• RAM: 128 GB

• Magnetic HDD

Files which are not of 600 MB, 6 GB or 66 GB are simulations with an

increasing number of changes based on the 66 GB file; because of this, the

multithreaded approach gives us worse results, since the number of signals is

much larger than the number of changes, representing the worst case scenario;

however, the most frequent case is the one where we have the number of

CHAPTER 5. EVCD ANALYZER 50

Figure 5.4: The main idea of how the threads elaborate the file

changes much larger than the number of signals. Table 5.1 shows the timings

obtained using different files with different sizes, using the reconstructed time

of the original program; speed-ups are measured comparing with respect to

the original approach. It is possible for some cases that the program fails

to execute: this happens because the program ran on a safe environment

provided by Runlim, limiting the RAM usage to 120 GB.

Since files larger than 6 GB can not be analyzed using the original ap-

proach, speed-ups and comparisons in table 5.2 are measured with respect

to the single threaded approach.

CHAPTER 5. EVCD ANALYZER 51

a b Single 4 8

[GB] [s] thread [s] * threads [s] ** threads [s] ***

0.6 67.01 13.55 4.95 7.99 10.00 6.68 10.03

1.2 122.52 48.84 2.51 43.54 2.81 45.02 2.72

1.5 170.69 56.66 3.01 51.42 3.32 49.54 3.45

1.8 229.57 65.71 3.49 58.15 3.95 56.96 4.03

2.1 325.87 83.63 3.90 66.92 4.87 58.97 5.53

2.5 346.87 78.59 4.41 73.35 4.73 65.02 5.33

2.8 332.41 86.07 3.86 74.31 4.47 66.77 4.98

3.0 354.93 94.52 3.76 79.70 4.45 77.03 4.61

3.4 416.58 104.11 4.00 88.80 4.69 85.88 4.85

3.7 490.74 114.11 4.30 108.15 4.54 86.59 5.67

4.0 585.11 125.66 4.66 115.24 5.08 89.84 6.51

4.3 610.04 144.59 4.22 94.12 6.48 114.72 5.32

4.6 722.65 160.18 5.51 129.10 5.60 118.32 6.11

4.9 716.39 153.64 4.66 139.58 5.13 90.07 7.95

5.2 753.24 160.41 4.70 115.02 6.55 105.01 7.17

5.5 792.94 163.15 4.86 128.99 6.15 99.53 7.97

5.8 N/A 171.05 N/A 135.46 N/A 132.95 N/A

6.0 715.68 214.74 3.33 150.28 4.76 119.27 6.00

a File size
b Original approach
* Speed-up single thread VS original approach [times]
** Speed-up 4 threads VS original approach [times]
*** Speed-up 8 threads VS original approach [times]

Table 5.1: Empirical time measurements and comparisons between the orig-
inal approach (reconstructed) and the optimized ones on small files

Figures 5.5 and 5.6 provide a graphical overview of the elaboration time

trend with the increasing of the file size.

CHAPTER 5. EVCD ANALYZER 52

File Single 4 8

size [GB] thread [s] threads [s] Speed-up threads [s] Speed-up

10 309.00 199.23 1.55x 170.46 1.81x

20 639.81 340.49 1.88x 490.84 1.30x

29 1012.83 677.22 1.50x 526.95 1.92x

38 1482.35 885.97 1.67x 772.29 1.92x

47 1834.59 1148.19 1.60x 972.44 1.89x

57 2305.86 1359.37 1.70x 1421.55 1.62x

66 2840.83 1523.77 1.86x 1480.52 1.91x

67 2350.59 1802.15 1.30x 1294.69 1.82x

Table 5.2: Empirical time measurements and comparisons between the single
threaded approach and the multithreaded ones on large files

Figure 5.5: Timing trends with increasing file size (small files)

RAM usage Table 5.3 shows the RAM usage for each file size, comparing

the original approach to the single threaded and the 4 threaded ones. some

files, the RAM usage could be imprecise; this happens because the servers

CHAPTER 5. EVCD ANALYZER 53

Figure 5.6: Timing trends with increasing file size (large files)

starts swapping in order to keep the memory usable. In some cases, the

original approach is not suitable anymore for the full analisys, since the

program ran with resources artificially limited to 120 GB by using Runlim.

When the number of changes increases, it is possible to notice that the

amount of RAM required is approximately 100 MB per each thread running

in the background; an exception is the 6 GB file, which uses much more RAM

than forseen, while still remaining a valid approach for the file analysis. Tests

using 8 threads confirm this trend.

CHAPTER 5. EVCD ANALYZER 54

File size Original approach Single thread Improvement 4 threads

[GB] [GB] [GB] [times] [GB]

0.6 6.5 0.7 138.27 1.0

1.2 103.6 6.8 15.25 6.9

1.5 103.6 6.8 15.15 6.9

1.8 103.6 6.8 15.15 6.8

2.1 103.6 6.9 14.94 7.2

2.5 103.6 7.3 14.14 7.6

2.8 103.6 7.8 13.29 8.1

3.0 103.6 8.1 12.82 8.4

3.4 103.8 8.5 12.25 8.8

3.7 105.9 8.9 11.84 9.2

4.0 108.4 9.5 11.36 9.9

4.3 108.4 9.8 11.01 10.2

4.6 112.9 10.1 11.20 10.4

4.9 115.2 10.3 11.20 10.6

5.2 117.5 10.5 11.15 10.9

5.5 119.8 10.9 10.95 11.3

5.8 N/A 11.5 N/A 11.8

6.0 70.3 6.0 11.70 7.6

66 N/A 75.2 N/A 75.6

Table 5.3: Empirical timing comparisons between the original approach
(reconstructed) and the optimized ones

Figure 5.7 shows how much the RAM usage tends to increase between the

various scenarios. While the RAM usage is remarkably high on worst-case

files, it is possible to see a trend with the increase of the number of changes

in signals.

CHAPTER 5. EVCD ANALYZER 55

Figure 5.7: RAM trends with increasing file size

Time data considering only the simulation part is not shown, due to the

fact that the signal declaration and initialization are much less significant

in this case. They are, however, much more significant in the statistical

analysis.

5.6.5 Considerations about full analysis

Advantages become less significant when threads are added above 8.

An approximate calculation of the Amdahl’s law shows the theoretical

limit to the speed-up; with the aid of a profiler, the complete analysis runs

in parallel around the 70% of the time (with few oscillations).

In the current state, the theoretical speed-up limit is between 3 and 3.5

times using the formula 2.2; using the formula 2.1 mentioned in section 2.3

with 8 threads, the theoretical limit is 2.96. Amdahl’s law does not take

into account many parameters such as how synchronization is implemented;

because of this, it is only a theoretical limit which is reachable in ideal cases.

Timings and speed-ups refer to the complete execution of the program.

Files with smaller size (except the 0.6 GB file) spend most of the time loading

signals instead of loading and elaborating changes. Parallelization advantages

CHAPTER 5. EVCD ANALYZER 56

tend to be limited considering those files, yet as files grow in size it is more

and more noticeable the improvement of the parallel implementation.

The algorithm is mainly stuck on a serial operation; considering the span

of the execution stage and the one of the memory stage, more in-depth exper-

iments show that the slowest part is the memory stage, being almost balanced

by using 4 working threads for the execution part, representing most of the

span of the operations. The in-order insertion of of values from the queues is

only doable in a single-threaded environment in order not to order the values

later; With 8 threads, the memory stage is between 1.5 and 4 times slower

than the execution stage; increasing the number of threads linearly decreases

the execution time of the parallel part.

A possible approach that might be worth trying is one where every inser-

tion is done out-of-order, unifying the memory stage and the execution stage,

leaving a final sorting stage that can be processed in a parallel fashion. This,

however, can cause a memory overhead in the case of repeated bus values;

moreover, because of this case, it is necessary to implement a data filter when

writing the output on file.

5.7 Statistical analysis

5.7.1 The general approach

The declaration and the initial assignment sections work the same way as

the full analysis ones, while the Signal structure and the Change structure

received drastic changes.

The Change structure now contains two data: the time and a sub-time.

Since the time given by the simulation result is not needed in this analysis,

in this case the time and the sub-time are data related to threads; they are

needed because the order in which we find 0 or 1 still matters, because of the

existence of the buses.

The time represents the thread index; this allows the program to under-

stand in which chunk of the partial file a change has been found.

The sub-time is an internal counter and gives information about the

order in which a change has been found in the same thread; this is mandatory

if we do not assume that a change appears only once per thread.

CHAPTER 5. EVCD ANALYZER 57

The Signal structure for the statistical analysis contains, instead of a

dynamic vector of changes, a static one: we only need two toggle events to

cover all the cases needed for this analysis. Value changes are added using

the following rules:

• changes[1] contains the change with the same final value as the initial

value;

• changes[0] contains the change with the opposite final value compared

to the initial one;

• if the starting value is not 0 or 1, the first change replaces it with its

value;

• only the first time changes[0] has been found is relevant;

• changes[1] is overwritten until a value is found having the time ref-

erence > changes[0]

5.7.2 The file part splitting approach

The approach is similar to the full analysis, with small changes.

The Signal logic for adding changes allows each thread to work completely

concurrently, being synchronized only when the new file chunk has been read

and split. This way, we avoid the memory stage on the main thread, dividing

the work among all the threads.

5.7.3 Experimental results on statistical analysis

Full time analysis

Table 5.4 shows improvements on the whole program; figure 5.8 shows the

results in a graphical way, focusing on how multithreading effectively im-

proves the analysis time. It is noticeable how timings are similar with files

of smaller size, while the difference increases with larger files. In particular,

the 16 threads approach is the one that gives more advantages overall.

CHAPTER 5. EVCD ANALYZER 58

File size Single thread 16 threads speed-up 32 threads speed-up

[GB] [s] [s] [times] [s] [times]

0.6 3.58 1.60 2.24 1.13 3.17

1.2 44.39 46.22 0.96 42.28 1.05

1.5 49.48 43.53 1.14 44.07 1.12

1.8 49.38 44.65 1.11 47.75 1.03

2.1 54.30 45.47 1.19 44.91 1.21

2.5 56.46 50.02 1.13 48.08 1.17

2.8 62.43 46.63 1.34 49.50 1.26

3.0 62.18 48.40 1.28 47.99 1.30

3.4 69.09 49.55 1.39 48.29 1.43

3.7 68.53 48.18 1.42 47.94 1.43

4.0 68.45 46.25 1.48 47.75 1.43

4.3 87.64 52.87 1.66 49.37 1.78

4.6 87.37 49.91 1.75 50.64 1.73

4.9 82.81 47.66 1.73 55.30 1.50

5.2 88.05 52.20 1.69 51.34 1.72

5.5 86.66 52.61 1.65 49.40 1.75

5.8 83.11 57.48 1.46 50.43 1.67

6.0 58.04 13.26 4.38 11.50 5.05

10 115.97 58.43 1.98 57.49 2.02

20 118.96 72.89 2.56 72.06 2.62

29 269.37 88.53 3.04 89.01 3.03

38 320.51 103.35 3.10 101.98 3.14

47 366.78 116.88 3.14 140.64 2.61

57 465.25 131.41 3.54 166.79 2.79

66 498.79 148.89 3.35 264.89 1.88

67 487.05 142.11 3.43 219.64 2.22

Table 5.4: Empirical timings and improvements of the whole statistical
analysis

CHAPTER 5. EVCD ANALYZER 59

Figure 5.8: Graph statistical analysis improvements on whole analysis

Parallel part analysis

Advantages of the parallel approach are also confirmed by table 5.5 and figure

5.9, showing only the improvements of the parallel part of the statistical

analysis.

The parallel part consists in the elaboration of the change list, having

the only synchronization when the next part of the file has been read and is

ready to be elaborated.

CHAPTER 5. EVCD ANALYZER 60

File size Single thread 16 threads speed-up 32 threads speed-up

[GB] [s] [s] [times] [s] [times]

0.6 3.06 1.05 2.91 0.61 5.02

1.2 0.0007 0.002 0.35 0.003 0.23

1.5 4.43 0.46 9.63 0.58 7.64

1.8 5.74 0.95 6.04 0.91 6.31

2.1 10.01 1.70 5.94 1.61 6.27

2.5 12.26 1.95 6.29 1.87 6.56

2.8 19.09 2.61 7.31 2.41 7.92

3.0 16.50 3.03 5.45 2.84 5.81

3.4 23.61 3.45 6.84 2.09 11.30

3.7 23.96 3.94 6.08 3.84 6.24

4.0 24.65 4.40 5.60 4.23 5.83

4.3 36.39 5.23 6.96 4.75 7.66

4.6 41.54 5.48 7.58 5.28 7.87

4.9 36.93 5.89 6.27 6.06 6.09

5.2 41.66 6.27 6.64 6.20 6.72

5.5 44.15 6.81 6.48 6.58 6.71

5.8 39.78 7.46 5.33 7.01 5.67

6.0 52.31 7.93 6.60 4.88 10.72

10 69.99 14.19 4.93 14.07 4.97

20 140.28 28.38 4.94 28.08 5.00

29 224.42 48.66 4.61 42.98 5.22

38 275.07 57.64 4.77 56.96 4.83

47 324.28 69.92 4.64 86.51 3.75

57 419.33 88.36 4.75 113.08 3.71

66 455.48 104.58 4.36 213.35 2.13

67 443.39 99.46 4.46 166.43 2.66

Table 5.5: Empirical timings and improvements of the simulation section
statistical analysis

CHAPTER 5. EVCD ANALYZER 61

Figure 5.9: Graph statistical analysis improvements parallel version only

5.7.4 Considerations about the results

While this analysis does not provide the complete view about the simulation,

its duration makes it more frequently usable. While the speed-up of the

whole program can never reach the number of threads involved, it receives

significant advantages by using the multithreaded approach and the RAM

cost is much cheaper than the full analysis.

Memory requirements are also decreased using the statistical analysis,

depending only on the number of signals loaded, which is supposed to be

much lower in number than the number of changes to all the signals. On

average, the parallel paradigm improves by 5.6 times the duration of the

whole computation if we only consider the changes analysis using 16 threads;

a little less using 32 threads.

In this case, the whole span of the algorithm is used by the thread parallel

sequence and a small synchronization part, which can lead the CPU to idle

for more time than necessary. It could be possible to implement a busy

waiting system after this part in order to reduce system calls.

CHAPTER 5. EVCD ANALYZER 62

5.8 Conclusions

While it is possible to gain significant advantages by using the multithreaded

approach, it is difficult to get an advantage proportional only to the num-

ber of threads. While semaphore system calls are inherently slow, context

switching, due to the discovery of CPU security issues, became even slower,

making it more difficult to rely on cache. A more comprehensive study for

the limited performance gain is show in the article [4], showing through the

speed-up stack model how non-idealities affect performance. In particular,

the main issues with this implementation are the spinning on the synchro-

nization barrier ensuring that the new file part is loaded and possibly some

hardware costs, since the CPU is dated for today standards.

Future improvements may come by using the latest features of C++20,

coroutines, that are much lighter than threads. During the analysis, since

synchronization primitives are used only to form a barrier, it could be more

useful using communication through coroutines in order to achieve paral-

lelism with less effort from the point of view of the CPU.

Another future work might be thinking about a parallel-only approach,

using the GPU in order to do the parsing, using frequent synchronization

between CPU and GPU and frequent memory copy on a server where there

is at least one available. This would not be advisable in the current state,

where results need to be put in order in the final structure.

It is in development a version on a wait-free data structure, having as

many file iterators as twice the number of threads (due to the double buffering

technique). In conjunction to this, the Signal class has been modified in order

to be a wait-free structure. Wait-free data structures have the property of

allowing all of the threads to run concurrently [15]. The first results are

promising, while the current issue with this approach is the memory overhead

produced. The current work and possibly the future work will be reported

in [2].

Bibliography

[1] Luciano Bonaria et al. Test-Plan Optimization for Flying-Probes In-

Circuit-Testers. 2019 ITC-Asia. 2019.

[2] Andrea Calabrese et al. Accelerated Analysis of Simulation Dumps

through Parallelization on Multicore Architectures. ITC 2020. 2020.

[3] Clyde Coombs and Happy Holden. Coombs’ Printed Circuits Handbook.

Ed. by McGraw-Hill Education. 2016.

[4] S. Eyerman, K. Du Bois, and L. Eeckhout. “Speedup stacks: Identifying

scaling bottlenecks in multi-threaded applications”. In: 2012 IEEE In-

ternational Symposium on Performance Analysis of Systems Software.

2012, pp. 145–155.

[5] Y. Hiratsuka et al. “A design method for minimum cost path of flying

probe in-circuit testers”. In: Proceedings of SICE Annual Conference

2010. 2010, pp. 2933–2936.

[6] K. Hird, K. P. Parker, and B. Follis. “Test coverage: what does it

mean when a board test passes?” In: Proceedings. International Test

Conference. 2002, pp. 1066–1074.

[7] “IEEE Standard for Verilog Hardware Description Language”. In: IEEE

Std 1364-2005 (Revision of IEEE Std 1364-2001) (2006), pp. 1–590.

[8] K. Marcinek and W. A. Pleskacz. “AGATE - towards designing a low-

power chip multithreading processor for mobile software defined radio

systems”. In: 2012 IEEE 15th International Symposium on Design and

Diagnostics of Electronic Circuits Systems (DDECS). 2012, pp. 26–29.

63

BIBLIOGRAPHY 64

[9] Michael McCool, Arch D. Robison, and James Reinders. Structured par-

allel programming: Patterns for Efficient Computation. Ed. by Morgan

Kaufmann. 2012.

[10] Microsoft. Parallel Patterns Library. 2016. url: https://docs.

microsoft.com/it-it/cpp/parallel/concrt/parallel-

patterns-library-ppl?view=vs-2019.

[11] NVIDIA. CUDA toolkit documentation v11.1.0. url: https://docs.

nvidia.com/cuda/.

[12] NVIDIA. CUDA zone. url: https://developer.nvidia.com/

cuda-zone.

[13] K. Tsai, R. Guo, and W. Cheng. “A Robust Automated Scan Pat-

tern Mismatch Debugger”. In: 2008 17th Asian Test Symposium. 2008,

pp. 309–314.

[14] H. van Schaaijk, M. Spierings, and E. J. Marinissen. “Automatic gen-

eration of in-circuit tests for board assembly defects”. In: 2018 IEEE

23rd European Test Symposium (ETS). 2018, pp. 1–2.

[15] Anthony Williams. C++ concurrency in action - Practical Multithread-

ing. Ed. by Manning. 2012.

