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Summary

Nowadays, quantum computers are capturing the attention of researchers because
of their potential capability to solve problems otherwise not easily solvable with
classical computers. In parallel to the constant research aimed at solving problems
related to the physical implementation of such computers, there is also another
branch of research trying to develop quantum algorithms, many of which need to
perform arithmetic operations.
In this thesis, the development of a software library of quantum arithmetic circuits
- capable of interfacing with Quantum Computing frameworks such as Qiskit, Cirq
and T-ket - is presented. With the aim of implementing this software library, the
basics of quantum computation were first studied (chapter 1) and subsequently an
extensive bibliographic research was carried out, aimed at identifying the best per-
forming arithmetic circuits currently available (chapter 2). After determining the
circuits to be implemented, the software development has begun using the Python
language (chapter 3). During the development of the library, with the aim of making
simpler future development, code’s modularity - by organizing the general package
in many subpackages - and readability - by respecting the guidelines proposed in
the PEP8 style guide - were looked for. In addition to what has already been said,
a detailed documentation has been produced using Sphinx. Once the development
of the library was completed, the functionality of each circuit was tested with sim-
ulations on classical computers; moreover, some components were tested on real
free-accessible quantum computers, in order to characterize their behavior (chapter
4).
Even though the results obtained on real hardware proved that many of the circuits
implemented in this library will be reliably executed by more sophisticated and per-
forming quantum computers, this library can be currently employed in an effective
way for simulating quantum circuits on classical computers.
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2.21 Circuit depth (Thapliyal, Muñoz-Coreas, Varun and Humble restor-
ing divider) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
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non restoring divider) . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

IV



2.25 Circuit depth (Thapliyal, Muñoz-Coreas, Varun and Humble non
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Chapter 1

Fundamental concepts

“We can only see a short distance ahead,

but we can see plenty there that needs to be done.”

Alan Turing

A quantum computer is a system that exploits quantum mechanics principles in

order to run algorithms computationally cheaper than their corresponding to be run

on a classical computer. What makes the race for quantum supremacy beautiful and

compelling are the applications that are supposed to be achievable with the advent of

quantum computers. The fields of application of Quantum Computing may involve

sectors such as medicine, finance, logistics, telecommunications, cryptography and

many more. The innovative charge linked to the world of Quantum Computing

pushes giants such as Google, IBM and many others to invest a lot of money and

brilliant minds in exploring this partially unknown field.

The aim of this chapter is to give an overview about the basic concepts necessary

to understand what will be shown in the next chapters. Starting from the essential

mathematical tools, the focus will be the fundamentals of quantum computation.

It was decided to avoid a strict formalism in favor of a simpler and clearer presen-

tation of the various concepts, so that a reader who knows nothing about Quantum

Computing will be able to understand the core of the thesis.

1



1 – Fundamental concepts

1.1 Linear Algebra Recalls

In this first section all the mathematical tools needed to understand the content of

the thesis will be listed briefly.

Matrices: transpose, conjugate, adjoint

• Transpose: the transposed matrix of a matrix is the one obtained by ex-

changing its rows with columns.

A =


a11 a12 . . .
...

. . .
...

am1 . . . amn

 −→ AT =


a11 . . . am1

a12
. . .

...
... . . . amn


• Conjugate: the conjugate matrix of a matrix is obtained by performing the

complex conjugate of each element.

A =


a11 a12 . . .
...

. . .
...

am1 . . . amn

 −→ A =


a11 a12 . . .
...

. . .
...

am1 . . . amn


• Adjoint (or Dagger): the adjoint of a matrix is obtained by conjugating

and transposing the matrix.

A =


a11 a12 . . .
...

. . .
...

am1 . . . amn

 −→ A† = (A)T =


a11 . . . am1

a12
. . .

...
... . . . amn


It is noted that, in general, these three operations are idempotent and respect both

addition and scalar multiplication. The only exception is the scalar multiplication

for the case of Adjoint:

(c · A)† = c · A†

2



1 – Fundamental concepts

Dirac notation In Quantum Mechanics the Dirac notation is widely used to in-

dicate vectors:

• ket: |Ψ〉 = [c0,c1,...,cn−1]
T

• bra: 〈Ψ | = |Ψ〉† = [c0,c1,...,cn−1]

Inner product The inner product is a product between two vectors, e.g |Ψ〉 and

|Ψ ′〉, and it is defined as follows:

〈Ψ ′|Ψ〉 =
[
c′0 c′1 ... c′n−1

]

c0

c1
...

cn−1

 = c′0 · c0 + c′1 · c1 + ...

Tensor product Assume to have two matrices as follows:

A =


a11 a12 . . .
...

. . .
...

am1 . . . amn

 B =


b11 b12 . . .
...

. . .
...

bm1 . . . bmn


The tensor product between A and B can be defined as:

A⊗B =



a11


b11 b12 . . .
...

. . .
...

bm1 . . . bmn

 a12


b11 b12 . . .
...

. . .
...

bm1 . . . bmn

 . . . . . . a1n


b11 b12 . . .
...

. . .
...

bm1 . . . bmn


...

. . . . . .
...

...
...

. . . . . .
...

...

am1


b11 b12 . . .
...

. . .
...

bm1 . . . bmn

 . . . . . . . . . amn


b11 b12 . . .
...

. . .
...

bm1 . . . bmn




3



1 – Fundamental concepts

Equivalently:

A⊗B =



a11 · b11 a11 · b12 . . . . . . a12 · b11 a12 · b12 . . . . . . . . .
...

. . . . . .
...

...
. . . . . .

...
. . .

a11 · bm1 . . . . . . a11 · bmn a12 · bm1 . . . . . . a12 · bmn . . .
...

. . . . . .
...

...
. . . . . .

...
. . .

...
. . . . . .

...
...

. . . . . .
...

. . .

am1 · b11 am1 · b12 . . . . . . am2 · b11 am2 · b12 . . . . . . . . .
...

. . . . . .
...

...
. . . . . .

...
. . .

am1 · bm1 . . . . . . am1 · bmn am2 · bm1 . . . . . . am2 · bmn . . .


Unitary matrix A complex square matrix U is called unitary if its adjoint and

its inverse coincide, i.e.:

U †U = UU † = I (1.1)

where I is the identity matrix, i.e. a diagonal matrix whose non-zero elements are

equal to 1:

I =



1 0 0 . . . 0 0 0

0 1 0 . . . 0 0 0

0 0 1 . . . 0 0 0

0 0 0
. . . 0 0 0

0 0 0 . . . 1 0 0

0 0 0 . . . 0 1 0

0 0 0 . . . 0 0 1



1.2 Qubit

Qubit stays for “Quantum Bit” and it is the fundamental element when speaking

about quantum information. Particularly, even if in reality a qubit can be encoded

onto different physical quantities (e.g. spins, quantized electrical quantities, etc.),

there is a mathematical representation that allows to consider qubits regardless

their physical implementation. A single qubit can be used to represent a two-state

quantum-mechanical system, and it can be expressed as shown in Equation 1.2.

4



1 – Fundamental concepts

|Ψ〉 = α |0〉+ β |1〉 =

[
α

β

]
where α,β ∈ C (1.2)

If classical bits are expressed by using vectors, it becomes simpler to explain the

key difference among bits and qubits: while a standard bit can assume only two

values - either 0 or 1 - a qubit can ideally assume infinite values, which are linear

combinations of the two basis states. More precisely, the state of a qubit is fully

described by the two complex coefficients α and β, which can assume any complex

value with magnitude square between 0 and 1 (it will be clarified later). It results

that the state of a single qubit can be the superposition of the two basis states

|0〉 and |1〉.

CLASSICAL COMPUTING

A bit can assume a value which is either 0 or 1 (suppose to call them |0〉 and

|1〉 even if they do not represent quantum states).

|0〉 =
000

111

[
1

0

]
|1〉 =

000

111

[
0

1

]

It is noted that in this notation if one value is equal to 1, the other is 0.

The row labels represent the binary values. The column vector may represent

either the binary value 0 or 1, depending on which entry is set to 1.

QUANTUM COMPUTING

A qubit, in general, can be expressed as a superposition of the orthonormal

basis states |0〉 and |1〉:

|Ψ〉 = α |0〉+ β |1〉 = α

[
1

0

]
+β

[
0

1

]
=

000

111

[
α

β

]

5



1 – Fundamental concepts

1.2.1 Measurement

By looking at the Equation 1.2, it is possible to imagine that by measuring a qubit

an infinite number of outcomes can be obtained. This is false.

When measuring a qubit, it is stated by Quantum Mechanics postulates (detailed

later) that the result of a measurement can be:

• |0〉 with probability |α|2

• |1〉 with probability |β|2

These are the only two kinds of outputs one can expect from a measurement. Thus,

it is not possible - with a single measurement - to measure all the superposition states

a qubit can assume, but only the basis states |0〉 and |1〉 with a given probability.

Since the measuring operation has to do with probability, it is as shown in Equation

1.3.

|α|2 + |β|2 = 1 (1.3)

The Equaton 1.3 also clarifies the contraints on the magnitude square of α and

β: they are equal to probabilities whose sum must be necessarily equal to 1. For

these reasons, α and β are called probability amplitudes. There is something

more about the measuring operation: if a qubit which is in a certain superposition

of states is measured - in addition to the fact that the outcome will be one of the

two basis states - it also results that the qubit state will collapse into the measured

state. In this way, if further measurements on the same qubit are performed, the

same result with probability 1 will always be obtained. Thus, the measurement

operation is irreversible. The following example can help clarifying this concept.

Assume to have a qubit which is in a generic state |Ψ〉:

|Ψ〉 =

[
α

β

]

6
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Assuming that the outcome of the first measurement will be |1〉, then the state |Ψ ′〉
of the qubit after the measurement will be:

|Ψ ′〉 =

[
0

1

]

Performing further measurements on this qubit, the result will be always |1〉.

1.2.2 Superposition

From Equation 1.2 it is known that the state of a qubit can be a superposition

of the two basis states, while Equation 1.3 tells that the sum of the square of the

magnitudes of the two coefficients α and β must be equal to 1.

This means that - if either α or β is equal to 0 - the qubit state is something similar

to the standard bits.

β = 0 −→ |0〉 =
000

111

[
1

0

]
α = 0 −→ |1〉 =

000

111

[
0

1

]

Instead, if both coefficients are different from zero, the qubit becomes something

more powerful than a standard bit, since it becomes an entity able to handle “more

information”.

The concept of superposition can be applied to an arbitrary number of qubits, but

before doing that, it is necessary to see how to assemble quantum systems in order to

understand how to represent a system composed by an arbitrary number of qubits.

Assembling Quantum Systems

To assemble quantum systems, it is necessary to perform the tensor product

between them.

For example, having two different two-level quantum systems,

|Ψ〉 =

[
a

b

]
|φ〉 =

[
c

d

]
,

7
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it is necessary to perform their tensor product in order to “mingle” them. The

state of the overall system can therefore be expressed as:

|Ψ〉 ⊗ |φ〉 =

[
a

b

]
⊗

[
c

d

]
=


a · c
a · d
b · c
b · d



Returning on the topic of superposition, having more than one quibit determines

that:

2 qubits −→ |Ψ〉 =

00

01

10

11


a

b

c

d

 where |a|2 + |b|2 + |c|2 + |d|2 = 1

In this case, it is possible to observe a superposition of four different basis states,

i.e. four complex numbers are needed in order to fully describe the superposition of

states.

See now the general case of N qubits:

N qubits −→ |Ψ〉 =

00..00

00..01

......

......

......

11..10

11..11



a1

a2

...

ai

...

aN−1

aN


where

N∑
i=1

|ai|2 = 1

In this case, it has been obtained a superposition of 2N basis states, so 2N complex

numbers are needed to describe the system.

It is noted that there are several equivalent ways to indicate a couple of qubits (or

8



1 – Fundamental concepts

in general N qubits):

|Q1〉 ⊗ |Q2〉 , |Q1⊗Q2〉 , |Q1〉 |Q2〉 , |Q1,Q2〉 , |Q1Q2〉

Now put together what is known about measurement and superposition.

As made clear right above, 2N probability amplitudes are needed to fully

describe an N -qubit quantum state. Thus, in order to exploit this kind of

quantum information there is the need to develop algorithms which might be

able of taking advantage of superposition of different basis states but that, in

the end, leave the system in a state such that it is possible to measure one of

the basis states - corresponding to the problem’s solution - with a very high

probability.

Intuitive example

In order to better understand the advantage that superposition can provide, an

intuitive example (not formally correct) is reported in the following.

Assume to have four items, and to associate to each of them a binary code as shown

in Figure 1.1.

Figure 1.1: Example: items.

The aim is to detect the yellow item.

Assume to have a function f which is able to find the yellow item, i.e. the one

labelled with 10. To do that, the function receives as input a four-element vector

column (one entry for each item) and gives as output the same vector column but

with a minus sign on the third element, i.e. the one corresponding to the yellow

item.

9
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Figure 1.2: Example: function f able to “find” the yellow item

By using this setup, the same problem is solved with two different approaches:

classical approach and quantum approach.

Classical Approach When using a traditional approach, it is necessary to analyze

one item at the time in order to find the right one. In the worst case scenario - i.e.

the case in which the correct item is the last to be analyzed - four iterations are

required.

Figure 1.3: Example: classical approach

10
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Quantum Approach When following the quantum approach, it is possible to

create a superposition of the inputs and proceed as shown in Figure 1.4.

Figure 1.4: Example: quantum approach - first step

In this way it is possible to evaluate all possible input patterns at the same time,

obtaining the output shown in Figure 1.4, in which the wanted item - the yellow one

- is marked with a minus sign.

At this point it should be clear what people mean when - referring to Quantum

Computing - talk about “concurrent evaluation”. Now it should be explained why

the quantum approach proves to be favourable even if the measurement process is

probabilistic. Two problems must be still overcome in order to have some quantum

advantage:

1. at least 22 measurements should be performed in order to find the correct

result;

2. the measurement operation is not reversible.

It is clear that something more is necessary. What actually quantum algorithms

do is to perform a sort of “boost” which significantly increases the probability of

measuring the solution of the problem, as shown in Figure 1.5, where the “boost”

tries to force a final state close to |10〉.1

1This example is actually a simplified (and not mathematically correct) version of what is called
“Grover’s algorithm”.

11
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Figure 1.5: Example: quantum approach - complete solution

1.2.3 Entanglement

Entanglement is a form of quantum mechanical correlation which tells that - in some

cases - the state of a single quantum system could depend “instantly” on the state

of other quantum systems. To say it in other words, entanglement tells that not

always an assembled complex system can be understood in terms of its constituents.

According to what has just been stated, two important definitions can be intro-

duced([3]):

• States separable into the tensor product of states from the constituent subsys-

tems are referred to as separable states.

• States that are not separable are called entangled states.

A very famous example of entangled states are the EPR pairs (or Bell states):

|Ψ1〉 =
|00〉+ |11〉√

2
|Ψ2〉 =

|00〉 − |11〉√
2

|Ψ3〉 =
|01〉+ |10〉√

2
|Ψ4〉 =

|01〉 − |10〉√
2

Take as example |Ψ1〉. If the first qubit is measured, and the result is |0〉, then also

the measurement of the second qubit will give |0〉 as a result. In general, for these

states, it holds that measured one of the two qubits, also the state of the other qubit

is well determined.

12
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1.2.4 Quantum Mechanics Postulates

All things that have been said are nothing more than an intuitive and partial expla-

nation of Quantum Mechanics postulates. To have a broader and more formal view

of the topic, Quantum Mechanics postulates have to get involved.

It is noted that there are several equivalent versions of these postulates; here it is

decided to follow the one proposed by [6].

Postulate 1 Any isolated physical system has its own state space, which is

a Hilbert spacea. The system can be fully described by a unit vector in the

system’s state space, i.e. the state vector of the system.

aA complex vector space equipped with an inner product.

Comment This postulate justifies Equation 1.2, according to which the state

vector of a qubit can be expressed as a linear combination of the elements |0〉 and

|1〉, which are an orthonormal basis for the state space.

The fact that the state vector |Ψ〉 is unitary warrants Equation 1.3. In fact, it can

be demonstrated that the expression

〈Ψ |Ψ〉 = 1 (1.4)

is equivalent to Equation 1.3.

Equation 1.4 is also known as normalization condition for state vectors.

Postulate 2 Unitary transformations describe the evolution of a closed

quantum system. Thus, a closed quantum system observed in different in-

stants of time - t1 and t2 - will be characterized by two different states - |Ψ〉
and |Ψ ′〉 - in relation with each other through the unitary operator Ua:

|Ψ ′〉 = U |Ψ〉
aIt depends on the considered time instants.

13
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Comment This postulate refers to something not explained so far. Particularly,

it states that if a quantum system is closed, its evolution can be described through

unitary operators (see Equation 1.1). In reality it is impossible to have a completely

isolated system, since there will always be a kind of interaction between systems close

to each others. However, there are some cases in which it is possible to consider a

system closed with good approximation.

By looking at unitary operators in this way:

|Ψ(t+ 1)〉 = U |Ψ(t)〉

and by keeping in mind Equation 1.1, it should be clear that this kind of transfor-

mations are reversible, i.e. if a unitary operator U is applied from t to t+1, it is

always possible to restore the state at the instant of time t by applying a unitary

operator U † from t+1 to t+2.2

Postulate 2’ The evolution in time of the state of a closed quantum system

is defined by the Schrödinger equation,

i}
∂ |Ψ〉
∂t

= Ĥ(t) |Ψ〉 , (1.5)

where } is the reduced Planck’s constant and Ĥ is a fixed Hermitian operator

known as the Hamiltonian of the closed system.a

aSometimes } is absorbed into Ĥ.

Comment This postulate introduces the concept of the Hamiltonian, which is

a mathematical operator that allows to know the total energy3 of a system. The

Hamiltonian is a tool for deriving two important features of a quantum system. First,

the fact that it is contained in the Schrödinger equation - whose solution allows to

know the evolution of a system in the time domain - is a concept that underlies

2In the following a time step i (from t+ i to t+ i+ δt) will be called “time click” (as in [3]).
3Given by the sum of kinetic and potential energies.
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the implementation of quantum gates4. In fact, if an additional contribution to the

internal Hamiltonian of the system is added in a finite time window, it is possible

to obtain a temporal unitary evolution of the system corresponding to the quantum

gate to be implemented. This can be proved analytically as follows:

i}
∂ |Ψ〉
∂t

= Ĥ(t) |Ψ〉

∂ |Ψ〉
|Ψ〉

= − i
}
Ĥ(t)∂t

ln (
|Ψ〉
Ψ0

) = − i
}

∫ τ

0

Ĥ(t)∂t

|Ψ〉 = e−
i
}
∫ τ
0 Ĥ(t)∂t · |Ψ0〉

if Ĥ(t) = H then |Ψ〉 = e−
i
} ·Hτ · |Ψ0〉

|Ψ〉 = U |Ψ0〉 where U is a unitary operator (1.6)

From Equation 1.6 it can be proved that:{
Without external excitations −→ U = I

With external excitations −→ U 6= I

When U is different from the identity matrix, it can represent a given quantum gate

(Rx, Ry, Rz, CX, etc.).

Another important aspect of the Hamiltonian is that it allows to solve the Equa-

tion 1.7, which is called stationary5 Schrödinger equation. The latter is an eigenvalue

equation which allows to know what are the energy levels in which a given system

can be.

H |Ψ〉 = λ |Ψ〉 (1.7)

In summary:

• Solving the stationary Schrödinger equation (see Equation 1.7) allows to un-

derstand what are the energy levels of a system and to understand what are

the states in which the system can be measured.

4Quantum gates are explained in Section 1.3.
5Stationary means that it does not allow evaluations in the time domain.
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• Solving the Schrödinger equation (see Equation 1.5) allows to obtain informa-

tion about the temporal evolution of the system of interest.

Postulate 3 Quantum measurements are defined by a multitude of mea-

surement operators Mm. These operators act on the state space of the system

being measured. Measurement outcomes that may occur in the observation are

referred with the index m. Let |Ψ〉 be the state of the quantum system right

before the measurement then the probability that result m occurs is given by

p(m) = 〈Ψ |M †
mMm |Ψ〉 ,

and the state of the system after the measurement is

Mm |Ψ〉√
〈Ψ |M †

mMm |Ψ〉

The measurement operators satisfy the completeness equation∑
m

M †
mMm = I,

expressing the fact that probabilities sum to one:

1 =
∑
m

p(m) =
∑
m

〈Ψ |M †
mMm |Ψ〉 .

Comment This is a formal version of what has been said about measurement.

Particularly, by considering Equation 1.2, it has been said that a qubit has |α|2

probability of measuring |0〉 and |β|2 of measuring |1〉. Moreover, it was explained

that - after the measurement - its state collapses in the measured basis state. The

goal, now, is to try to demonstrate the rightness of what has been said by applying

this postulate.

Measuring a single qubit in the computational basis {|0〉 , |1〉} can give two possible

outcomes (i.e. the element of the orthonormal basis {|0〉 , |1〉}) defined by the two

16
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(Hermitian) measurement operators:{
M0 = |0〉 〈0| where M2

0 = M0

M1 = |1〉 〈1| where M2
1 = M1

(1.8)

From Equation 1.8 it is possible to see that the completeness equation is satisfied:

1∑
i=0

M †
iMi = M †

0M0 +M †
1M1 = M0 +M1 = I

If the generic state

|Ψ〉 = α |0〉+ β |1〉

is measured, then the probabilities of measuring |0〉 and |1〉 are:{
p(0) = 〈Ψ |M †

0M0 |Ψ〉 = 〈Ψ |M0 |Ψ〉 = |α|2

p(1) = 〈Ψ |M †
1M1 |Ψ〉 = 〈Ψ |M1 |Ψ〉 = |β|2

Therefore the state after measurement in the two cases will be:
M0|Ψ〉
|α| = α

|α| |0〉 ∼ |0〉
M1|Ψ〉
|β| = β

|β| |1〉 ∼ |1〉

Postulate 4 Given a composite physical system, its state space can be de-

scribed by the tensor product of the state spaces of its components. In addition

to that, having n subsystems with the generic system number i prepared in the

state |Ψi〉, then the state of the total system is |Ψ1〉 ⊗ |Ψ2〉 ⊗ ...⊗ |Ψn〉.

Comment This is the last postulate, and it is the formal version of what has been

said about assembling quantum systems.

In addition to that, this postulate allows to talk about entanglement. Consider for

instance the Bell state ∣∣I+〉 =
|00〉+ |11〉√

2
.
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For this state it is not possible to find two single qubit states, |ψ〉 , |φ〉 such that

|I+〉 = |ψ〉 |φ〉. This is due to the fact that this is an entangled state.

1.2.5 Bloch Sphere

The Bloch sphere has a unitary radius and it is centered in the origin. A vector n̂

on the Bloch sphere with a tail at the origin and a head on the surface of the sphere

is called “Bloch vector”. A Bloch vector allows to graphically represent the state of

a qubit.

Figure 1.6: Bloch sphere

By looking at the Bloch sphere, it is possible to obtain an equivalent expression

for a generic qubit state:

|Ψ〉 ∈ C2 ⇐⇒ n̂ ∈ R3

|Ψ〉 =

[
α

β

]
⇐⇒ |Ψ〉 = cos

θ

2
|0〉+ e+iϕsin

θ

2
|1〉 where

{
θ ∈ [0; π]

ϕ ∈ [0; 2π]
(1.9)

It is a common convention to use a real value as coefficient of |0〉. This can be done

since only the relative phase among |0〉 and |1〉 assumes a physical meaning. Global

phase has no effects on the system’s state. Apart from canonical states |0〉 and |1〉 -

which permit to describe the qubit state with a linear combinations of two vectors
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lying on the z-axis - other four remarkable states are shown in Figure 1.6 and Table

1.1. These vectors lie along the x and y axes.

Table 1.1: Remarkable states

State Equation

|+〉|+〉|+〉 |0〉+|1〉√
2

|−〉|−〉|−〉 |0〉−|1〉√
2

|i+〉|i+〉|i+〉 |0〉+i|1〉√
2

|i−〉|i−〉|i−〉 |0〉−i|1〉√
2

1.3 Quantum Gates

Quantum gates are entities represented by unitary matrices that can be used to

manipulate the state of one or more qubits by changing the state vector |Ψ〉, with

the normalization condition (see Equation 1.4) continuing to be valid. Another key

point about quantum gates is that they must be reversible, i.e. when an operator is

applied to a given state, it must be always possible to reconstruct the input state

starting from the output one.

A N qubit operator can be represented with a 2N − by − 2N unitary matrix.

Before proceeding with the discussion of the various gates, it has to be noted

that in the case of quantum circuits there are two different conventions regarding

the order in which the qubits in a circuit have to be read: the “traditional notation”

and the “IBM notation”. In this chapter, the traditional notation - where the top

qubit is the most significant one - will be used.
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Figure 1.7: Traditional notation and IBM notation

1.3.1 One-Qubit Gates

Pauli X-gate This gate is the “quantum equivalent” of the classical “not” gate.

Generally speaking, it is able to flip the |0〉 state in |1〉 state (and vice versa). By

looking at the Bloch sphere, it is possible to interpret the action of this gate in terms

of a rotation around the x-axis of π-radians. Because of the effect this gate has on

the state of a qubit, it is also called bit-flip gate.

X =

[
0 1

1 0

]
Figure 1.8: X gate symbol

In general:

|Ψ ′〉 = X |Ψ〉 =

[
0 1

1 0

][
α

β

]
=

[
β

α

]
It can be observed that the X gate swaps the probability amplitudes of |0〉 and |1〉.

Example: This example shows what hap-

pens if an X gate is applied on a qubit whose

state is |0〉.

|Ψ〉 = X |0〉 = |1〉

Figure 1.9: Example: X gate

Pauli Z-gate This gate is able to flip the |+〉 state in |−〉 state (and vice versa).

The effect of this gate consists in a rotation around the z-axis of π-radians of a
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generic state on the Bloch sphere.

Z =

[
1 0

0 −1

]
Figure 1.10: Z gate symbol

In general:

|Ψ ′〉 = Z |Ψ〉 =

[
1 0

0 −1

]
=

[
α

β

]
=

[
α

−β

]
As it can be seen from the previous calculation, this gate is able to change the

relative phase of a qubit (minus sign on β). For this reason it is also referred as

phase-flip gate.

Example: This example shows what hap-

pens if a Z gate is applied on a qubit whose

state is |+〉.

|Ψ〉 = Z |+〉 = |−〉

Figure 1.11: Example: Z gate

Pauli Y-gate In general, this gate is able to flip the |0〉 state in |1〉 state (and

vice versa). In this case, the final state has both a different relative phase and a

different amplitude probability. Since its action on the qubit state corresponds to

the one that can be achieved by combining a Pauli X gate and a Pauli Z gate, it is

usually called bit-phase-flip gate.

The effect of this gate on a generic state can be observed on the Bloch sphere as a

rotation around the y-axis of π-radians.

Y =

[
0 −i
i 0

]
Figure 1.12: Y gate symbol
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In general:

|Ψ ′〉 = Y |Ψ〉 =

[
0 −i
i 0

][
α

β

]
=

[
−i · β
i · α

]
= −i

[
β

−α

]

Example: This example shows what hap-

pens if a Y gate is applied on a qubit whose

state is |0〉.

|Ψ〉 = Y |0〉 = i |1〉 ∼ |1〉

Figure 1.13: Example: Y gate

Arbitrary rotations There are three gates - Rx, Ry and Rz - that allow to do an

arbitrary rotation around the x, y and z axis, respectively. These operators are:

Rx(θ) =

[
cos θ

2
−i · sin θ

2

−i · sin θ
2

cos θ
2

]
Ry(θ) =

[
cos θ

2
−sin θ

2

sin θ
2

cos θ
2

]
Rz(ϕ) =

[
1 0

0 eiϕ

]

Figure 1.14: Examples: Rx, Ry, Rz
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It must be pointed out that while Rx and Ry change the probabilities of the

system states, Rz does not (i.e. the probability of measuring |0〉 rather than |1〉
remains the same). What Rz changes is the relative phase of the qubit.

RzRzRz: SPECIAL CASES

The two following gates are particular cases of the Rz gate.

T-gate This gate lets the qubit perform a rotation around the z-axis

equal to π
4
-radians.

T =

[
1 0

0 ei
π
4

]
Figure 1.15: T gate symbol

S-gate By looking at the Bloch sphere, it corresponds to a rotation around

the z-axis equal to π
2
-radians.

S =

[
1 0

0 ei
π
2

]
Figure 1.16: S gate symbol

Hadamard gate Generally speaking, it is possible to describe this gate by saying

that it is able to move the state |0〉 to the state |+〉, and the state |1〉 to the state

|−〉.

Figure 1.17: Example: H gate
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The unitary matrix and the circuit symbol characterizing this gate are:

H =
1√
2

[
1 1

1 −1

]
Figure 1.18: H gate symbol

The Hadamard gate is one of the most important one-qubit gates. This is due to the

fact that - when applied to a basis state - it allows to obtain a superposition of basis

states, each of them being characterized by the same probability to be measured.

For instance:

|Ψ ′〉 = H |0〉 =
1√
2

[
1 1

1 −1

][
1

0

]
=

1√
2

[
1

1

]
=
|0〉+ |1〉√

2

By applying what has been said about measurement operation, it is clear that there

are 50% of chances of measuring |1〉 and 50% of chances of measuring |0〉. This fact

is so important since it is exploited by almost all quantum algorithms. In fact, it is

common in quantum algorithms starting from a set of N qubits in a given state (e.g.

one of the basis states), and applying a set of Hadamard gates in order to obtain a

uniform superposition of 2N states. This allows to perform a concurrent evaluation

of all possible patterns.

The Hadamard gate can be seen by another point of view: it allows to move the

frame of reference from the z-axis to the x-axis. In other words, it can be used to

transform one basis to another:

(|0〉 , |1〉) ⇐⇒ (
|0〉+ |1〉√

2
,
|0〉 − |1〉√

2
) = (|+〉 , |−〉)

1.3.2 Two-Qubit Gates

Generic controlled Gate Among the multiple-qubit gates, there is a wide range

of gates which is based on the same principle: a given number of control qubits

decide if a given operation on another set of qubits must be performed or not. To

explain this concept, the two-qubit case - one control qubit and one target qubit -

will be used.
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Figure 1.19: Generic two-qubit controlled gate

It is possible to define the generic operation performed by the single-qubit gate

U as follows:

U =

[
u00 u01

u10 u11

]
Assuming that the action of U on the target qubit must be taken only if the first

qubit is equal to |1〉, for the controlled-U gate it holds that:

cU =


1 0 0 0

0 1 0 0

0 0 u00 u01

0 0 u10 u11

 (1.10)

Referring to Equation 1.10, it is possible to see what happens for all the possible

input patterns:

|Ψ ′〉 = cU · |00〉 =


1 0 0 0

0 1 0 0

0 0 u00 u01

0 0 u10 u11




1

0

0

0

 =


1

0

0

0

 = |00〉

|Ψ ′〉 = cU · |01〉 =


1 0 0 0

0 1 0 0

0 0 u00 u01

0 0 u10 u11




0

1

0

0

 =


0

1

0

0

 = |01〉

|Ψ ′〉 = cU · |10〉 =


1 0 0 0

0 1 0 0

0 0 u00 u01

0 0 u10 u11




0

0

1

0

 =


0

0

u00

u10

 = |1〉 ⊗ U |0〉
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|Ψ ′〉 = cU · |11〉 =


1 0 0 0

0 1 0 0

0 0 u00 u01

0 0 u10 u11




0

0

0

1

 =


0

0

u01

u11

 = |1〉 ⊗ U |1〉

All the single qubit gates previously presented can be theoretically implemented in

the “controlled version”.

Controlled-NOT (CNOT) The controlled-NOT - also known as CNOT or CX

- is the controlled variant of the Pauli X gate, i.e. the X gate is applied to the target

qubit only if the control qubit assumes the value |1〉.

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


Figure 1.20: CNOT gate symbol

Swap gate This gate allows to swap two qubits. It is defined as follows:

SWAP =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


Figure 1.21: SWAP gate symbol

In general, it acts in this way:

|Ψ ′〉 = SWAP · |Ψ〉 =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1



a

b

c

d

 =


a

c

b

d


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It can be seen that:

InputState : |00〉 =


1

0

0

0

 −→ OutputState : |00〉 =


1

0

0

0



InputState : |01〉 =


0

1

0

0

 −→ OutputState : |10〉 =


0

0

1

0


Similar reasoning can be done for input states |10〉 and |11〉.
A final observation that can be made about the SWAP gate is that it can be imple-

mented, for example, using three CNOT gates as shown in Figure 1.22.

Figure 1.22: Implement the SWAP gate using CNOT gates

1.3.3 Three-Qubit Gates

Toffoli (CCNOT) The Toffoli gate has two control qubits and one target qubit.

The X operation is applied to the target qubit if and only if both control qubits are

set to |1〉.
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CCNOT =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0


Figure 1.23: Toffoli gate symbol

Fredkin(CSWAP) This gate has one control qubit and two target qubits: the

SWAP operation is performed on the target qubits if and only if the control qubit

is set to |1〉.

CSWAP =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1


Figure 1.24: Fredkin gate symbol

1.4 Typical Notation for Other Circuit Elements

In Table 1.2 other symbols needed to understand quantum circuits are summarized.
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Table 1.2: Some circuit symbols

Name Meaning Symbol

Bit This symbol is used to represent a classical bit

Qubit This symbol is used to represent a qubit

N Qubits This symbol is used to represent N qubits /n

Measurement This symbol is used to represent the measurement operator

1.5 How To Analyze a Quantum Circuit

In Section 1.3 it was explained that quantum operators are described by means of

unitary matrices. Then, a quantum circuit can be seen as set of gates - each one

represented by a proper unitary matrix - connected to each other. There can be

two kinds of connections between gates belonging to the same circuit: series and

parallel connections.

In order to be able to understand the behaviour of a given circuit, it is necessary

to understand how to compute the overall unitary matrix describing the action of

gates placed in parallel or in series. Before moving on by explaining how to compute

what just said, it is important to clarify one concept inherent to quantum circuits,

that will be more clear in the next paragraphs.

The “time-flow” is to be understood from left to right, i.e. the evolution of

the state of a qubit has a physical meaning if considered from left to right.

However, when the “matrix transfer function” of the whole circuit (or of a

part of the circuit) has to be computed, unitary matrices must be written

from right to left, i.e. the first (leftmost) gate in the circuit is described by

the rightmost unitary matrix.
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1.5.1 Gates Connected in Series

The overall transfer function of two gates connected in series can be computed as

shown in Figure 1.25.

Figure 1.25: Series of two generic one-qubit quantum gates

It is clear that this concept can be extended to an arbitrary number of gates N .

1.5.2 Gates Connected in Parallel

When two gates are placed in parallel, and there is the need to compute the overall

unitary matrix acting on the two qubits, the procedure shown in Figure 1.26 can be

applied.

Figure 1.26: Parallel of two generic one-qubit quantum gates

Also in this case the computation can be extended to the fully general case of

N qubits. It is noted that - if a quantum gate is applied only to a subset of qubits

- qubits where no gates are acting can be treated as affected by an identity (see

Figure 1.27).

Figure 1.27: Parallel connection - particular case
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1.5.3 Circuit Composition

In the following an example showing how to analyze a quantum circuit is proposed.

Example: how to read a quantum circuit

Compute the output state of the circuit shown in Figure 1.28, where A, B, C

and D represent generic gates.

Figure 1.28: Example: generic quantum circuit

Solution

To analyze this circuit two steps have to be followed:

1. Write a unique expression for the three input qubits by performing the

tensor product among them:

|Ψ1Ψ2Ψ3〉 = |Ψ1〉 ⊗ |Ψ2〉 ⊗ |Ψ3〉

2. Compute the overall matrix transfer function by looking at the circuit

from right to left (according to what stated before):

|Ψout〉 = (I2 ⊗D ⊗ I2) · (C ⊗ I4) · (A⊗ I2 ⊗B) |Ψ1Ψ2Ψ3〉

where Ik is an identity matrix of order k.

A step-by-step analysis is presented in Figure 1.29.
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Figure 1.29: Example: generic quantum circuit - step by step solution

Knowing equivalences between quantum gates can sometimes speed-up the cir-

cuit analysis, for this reason some useful equivalences are listed in Table 1.3.

Table 1.3: Some equivalences between gates

X2 = Y 2 = Z2 = I H = 1√
2
(X + Z)

S = T 2 Z = HXH

−1Y = HYH −1Y = XYX

1.5.4 Example of Quantum Circuits

This section shows an example in which a real quantum circuit is analyzed by fol-

lowing two different strategies:

• Exploiting the matrix calculation, as done before.

• Adopting a faster method based on truth tables of different gates.

Given the quantum circuit in Figure 1.30, define the states |Ψ1〉 , |Ψ2〉 and |Ψ3〉.
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Figure 1.30: Example: analyzing a quantum circuit

Method 1: matrix calculation

In this simple quantum circuit two operators are involved: the Hadamard gate and

the CNOT gate. They are represented by the two following unitary matrices:

H =
1√
2

[
1 1

1 −1

]
CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


The steps to follow to compute the states |Ψ1〉 , |Ψ2〉 and |Ψ3〉 are set out below.

Step 1: Compute |Ψ1〉

|Ψ1〉 = |0〉 ⊗ |0〉 = |00〉 =


1

0

0

0


Step 2: Compute |Ψ2〉

|Ψ2〉 = (H ⊗ I) · |00〉 =
1√
2


1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1




1

0

0

0

 =
1√
2


1

0

1

0

 =
|00〉+ |10〉√

2
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Step 3: Compute |Ψ3〉

|Ψ3〉 = CNOT · ( |00〉+ |10〉√
2

) =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 1√
2


1

0

1

0

 =
1√
2


1

0

0

1

 =
|00〉+ |11〉√

2

Method 2: operators truth tables

This approach - typically much quicker to apply than the previous one - exploits the

truth tables shown in Table 1.4 for the involved operators.

Table 1.4: Truth tables for H and CNOT

Hadamard CNOT

H |0〉 = |0〉+|1〉√
2

CNOT |0x〉 = |0x〉

H |1〉 = |0〉−|1〉√
2

CNOT |1x〉 = |1x〉

Step 1: Compute |Ψ1〉

|Ψ1〉 = |0〉 ⊗ |0〉 = |00〉

Step 2: Compute |Ψ2〉

|Ψ2〉 = H |0〉 ⊗ |0〉 =
|0〉+ |1〉√

2
⊗ |0〉 =

|00〉+ |11〉√
2

Step 3: Compute |Ψ3〉

|Ψ3〉 =
CNOT |00〉+ CNOT |10〉√

2
=
|00〉+ |11〉√

2
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1.6 Universal Sets of Quantum Gates

For the classical computation, the NAND gate can be considered a universal gate,

that is to say all the functions can be created using only NAND gates. It is now

interesting to understand which sets of quantum gates can be considered universal

in the world of Quantum Computing.

The first point to clarify is that the classical world is a subspace of the quantum

one; this means that - by using the quantum approach - one is able to implement

all classical functions with quantum gates, while the contrary is not possible.

There are therefore two aspects to highlight: which set of quantum gates allows

to implement any kind of “classical function” and which set of quantum gates is

capable to implement any kind of “quantum function”.

Quantum gates and classical functions It can be demonstrated that the CC-

NOT (Toffoli) and X gates can be used to implement any kind of “classical function”.

Figure 1.31 shows that an equivalent of the NAND gate can be implemented by us-

ing a Toffoli gate, assuming that an ancilla qubit can be initialized to |1〉. If a qubit

is initialized to |0〉, a X gate is clearly sufficient for having |1〉.

Figure 1.31: NAND gate using Toffoli

Quantum gates and quantum functions Before showing some examples of

universal quantum sets, it is good to note that these sets can be said “universal”

by implicitly accepting a given tolerance. This is to say that even in presence of

a set of gates allow performing an arbitrary rotation around the three axes of the

Bloch sphere, an “infinitely precise” hardware is required to be able to implement

any kind of quantum circuit without errors, and this is clearly not feasible.

Some universal quantum sets are listed below:
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• H, S, CNOT, T (Clifford + T)

• H, CCNOT

• Rx,Ry,Rz,CNOT

1.7 Physical Implementation of Qubits

The aim of this section is to show how qubits are actually implemented on real

systems. Quantum computers have not yet reached such stable and performing

solutions as to be reproduced on a large scale and many different technologies are

being explored today. Among the existing technologies to implement qubits, it is

possible to mention superconducting qubits, trapped-ion qubits, electron-spin qubits

etc.

In this section, whose purpose is only to provide an introduction to the subject,

without going too much into detail, only superconducting technology will be taken

into consideration. The choice of explaining only the superconducting technology

arises from the fact that some of the library’s circuits have been tested on IBM’s

free access quantum computers, which are based on this technology. For this reason,

having an overview of the hardware implementation of such quantum computers can

help the reader to interpret the graphs proposed in chapter 4 more effectively.

1.7.1 Superconducting quantum computers

Before proceeding with the explanation of the key aspects related to superconducting

qubits, it is noted that this explanation takes inspiration from [13], which the reader

is invited to read to have a more rigorous vision of the topic.

Qubits Implementation

Transmon qubit The simplest way to represent a transmon qubit is by using

a LC resonator. Studying this system from a quantum point of view, the circuit

can be seen as a quantum mechanical system whose behavior can be described by

the Quantum Harmonic Oscillator equations. Generally speaking, the latter is the

quantum version of the well-known harmonic oscillator. The evolution over time of
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this system - assumed to be “closed” - is described by the Schrödinger equation. By

obtaining the Hamiltonian and solving the equation, it can be demonstrated that

the energy diagram describing this kind of system is like the one shown in Figure

1.32.6

Figure 1.32: Quantum Harmonic Oscillator: qualitative behaviour

In the energy diagram shown in Figure 1.32, it can be observed that the states

in which the system can evolve are many. In fact, each horizontal line represents a

possible state in which the system may be. Since the aim is to implement a qubit -

i.e. a quantum mechanical system characterized by only two possible basis states -

it is necessary to ensure that the system is able to “move” only between two energy

levels, which typically are those characterized by the lowest energy. To do this, a

Josephson junction7 is employed in place of the inductor.

Figure 1.33: Transmon qubit: qualitative behaviour

6It is emphasized that the speech is deliberately qualitative, as a rigorous mathematical treat-
ment of this topic is beyond the scope of this thesis.

7It makes that the potential energy shapes cosinusoidal instead of parabolic.
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The fact of having inserted a Josephson junction instead of the inductor modifies

the energy diagram as shown in Figure 1.33, ensuring that any excess energy supplied

to the system does not result in a qubit’s transition to a state that is different

from the two computational states.8 To be more precise, the oscillator becomes

anharmonic. At this point, it can be demonstrated ([13]) that the Hamiltonian of

the system can be written as the sum of two terms depending respectively on the

energy required to charge the capacitor (EC) and on the Josephson energy (EJ). To

minimize what is called charge noise, a regime where the Josephson energy is much

greater than the one related to the capacitor charges is going to be reached. This

is the case of the transmon qubit of IBM quantum computers. Now that the reader

has a very basic knowledge about superconducting qubits9, it is good to see how

multiple qubits can interact to each other.

Qubits interaction When dealing with quantum circuits, the need to let different

qubits “communicate” to each other - in order to implement multi-qubit gates - often

arises. There are two possibilities to couple different qubits:

• Direct coupling (see Figure 1.34);

• Coupling using coupler (see Figure 1.35).

A capacitive coupling allows the interaction of the two systems through the electric

field; vice versa, the magnetic coupling lets the two systems “communicate” through

the magnetic field. Once two qubits are coupled, a unique Hamiltonian can be used

to describe the evolution of the two. This Hamiltonian can be obtained by adding

three terms: the Hamiltonians of the two systems and what is called the interaction

Hamiltonian. The latter depends mainly on the kind of coupling implemented.

8It should be noted that the states described by higher energies are still part of the system,
although the system state cannot easily “access them” with a proper device engineering.

9It should be noted that the structure presented is only a basic scheme. Current quantum
computers adopt more sophisticated implementations of superconducting qubits, such as flux qubits
or fluxonium qubits. Their analysis is beyond the scope of this thesis.
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(a) Direct capacitive coupling (b) Direct inductive coupling

Figure 1.34: Transmon qubits: direct coupling

(a) Capacitive coupling using a coupler

(b) Inductive coupling using a coupler

Figure 1.35: Transmon qubits: coupling via coupler

Qubit Noise

In this section, the purpose is to mention which are the noise sources that make

the behavior of the superconducting qubit not ideal, and which parameters allow

describing how good a qubit is.

Effects of noise In the previous paragraphs each qubit was considered to be

a “closed” quantum system, such that its time evolution was well determined by

its Hamiltonian. If noise is added to this ideal system, what happens is that the

evolution of the system does not respect anymore what stated by the Schrödinger

equation. To say it better, the system is no more deterministic and its evolution

can be “predictable” - with the Schrödinger equation - only for a “short period”.
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The effects of noise on a two-level quantum system can be generally described by

referring to two quantities: the relaxation time and the decoherence time.

Relaxation time The phenomenon of relaxation is a mechanism that describes

how a system that is located at a higher energy level tends, over time, to reduce its

energy. It is also equivalent to say that, if the system is initialized to |1〉, the prob-

ability of measuring |1〉 gradually reduces. It is experimentally demonstrated that,

in most cases, the probability associated with the high energy state is characterized

by an exponential decay. Relaxation time constant is typically called T1.

Figure 1.36: Relaxation

Relaxation phenomena are usually due to interactions with the external environ-

ment, as it is not possible in practice to obtain a completely isolated system.

Decoherence time Decoherence is a phenomenon for which, after a given

amount of time, it is no longer possible to describe the state of a qubit as a single

vector on the Bloch sphere. For example, starting from the state |+〉, which is

described by the state vector |0〉+|1〉√
2

, after a certain time interval, it is no more

possible to represent that state with a single vector on the Bloch sphere. In other

words, while the initial state was a coherent superposition of states, that is, described

by a single vector, the state that is generated after a given amount of time is a

decoherent mixture of different superposition states.
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Figure 1.37: Decoherence

Again, decoherence is due to phenomena related to the external environment. In

this context, the qubit is described by the so-called density matrix, the explanation

of which is beyond the scope of this thesis. Decoherence - similarly to relaxation -

experimentally shows an exponential decay with the time constant T2 called deco-

herence time.

Noise sources Now that the problem, at least in broad terms, should be clear, it

is interesting to investigate the main sources of noise that can be found in a super-

conducting qubit. Noise sources can be divided in two main categories: systematic

and stochastic noise sources.

Systematic noise This category includes all sources of noise such that it is

possible to know the value of the error introduced and compensate for it. In other

words, they are those sources of noise that do not change, or change predictably,

every time they occur. For this reason they are easy to compensate. An example

would be a pulse that rotates the phase of a qubit a little more or a little less than

expected.

Stochastic noise Noises belonging to this category are the most dangerous.

Such noises have a random behavior and are more difficult to compensate. Examples

of stochastic noises can be unwanted electric or magnetic fields, thermal noise of

components in control circuits etc. Decoherence and other critical parameters of

qubits typically depend largely on noises belonging to this category.
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Gates Implementation

The purpose of this section is to show how quantum gates are physically imple-

mented.

Single qubit gates Suppose to have two levels - |0〉 and |1〉 - separated by an

energy equal to }ω0, where ω0 is the qubit resonant frequency. In order to implement

the desired gate, the idea is to apply for a finite time a sine wave electromagnetic

oscillation10 with frequency ω0, amplitude A and phase ϕ.

Figure 1.38: Single-qubit gates: physical implementation

By applying this signal, the amount of rotation θ is proportional to A and θ as

shown in Equation 1.11,

θ ∝ A · τ (1.11)

where θ is a rotation around the x or y axis depending on the value assumed by

phase ϕ. In particular: {
Rx : ϕ = 0

Ry : ϕ = π
2

This model - called Magnetic Resonance - allows to implement in a “direct” way

only the Rx and Ry gates. There are several ways to implement the RZ gate. For

example, it can be implemented using gates Rx and Ry as shown in Equation 1.12.{
Rz(θ) = HRx(θ)H

H = Rx(π)Ry(
π
2
)
−→ Rz(θ) = Rx(π)Ry(

π

2
)Rx(θ)Rx(π)Ry(

π

2
) (1.12)

10It is noted that, in reality, the modulating signal is not a rectangular pulse, but a Gaussian
one.
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However, there are some problems with this solution. The first, quite obvious, is the

high number of gates required. The second is that, typically, the various technologies

tend to maintain a fixed amplitude and to vary the duration11. This fact makes gates

slower. Another approach that allows to implement the Rz gate more efficiently is

that it is possible to demonstrate that a rotation of the state vector around the z-axis

equal to θ, can be achieved by rotating the x and y axes of −θ, i.e. by changing the

reference system. In other words, it is possible to software implement the Rz gate

by manipulating the x and y phases as shown in Equation 1.13, where θ represents

the desired rotation around the z axis.{
ϕxnew = ϕxold − θ

ϕynew = ϕyold − θ
where ϕyold =

π

2
+ ϕxold (1.13)

In this way, Rz gates are virtually implemented without any electromagnetic wave.

Two qubits gates The aim of this paragraph is to show how two-qubit gates are

implemented. To do this, the CNOT gate will be used as example.

Suppose to have two transmon qubits as shown in Figure 1.34a. Also assume that

each qubit has its own resonance frequency - ω1 and ω2 (typically ω1 and ω2 are very

close to each other) - and that an electromagnetic wave oscillating at the frequency

of the target is applied to the control qubit.

Figure 1.39: Cross-resonance

11For instance, if the amplitude is kept constant, the duration of an Rx(π/2) is half of Rx(π).
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In this situation it can be shown that, when a qubit is not excited at its resonance,

but at a neighbor to it, i.e. if the detuning δ12 is small enough (δ � ω1), the overall

effect on the system is a small rotation around the z-axis of the control qubit and

a rotation around the x-axis of plus or minus θ of the state of the target qubit,

where the sign for the rotation depends on the value of the control qubit, as shown

in Table 1.5. This mechanism is called cross-resonance and it is at the basis of IBM

quantum hardware.

Table 1.5: Effect of cross resonance on target qubit

Control Target

|0〉 Rx(θ)

|1〉 Rx(−θ)

The last step for implementing a CNOT gate is to compensate the cross resonance

effect on the target qubit when the control qubit state is |0〉, and to make the overall

rotation equal to π when the state of the control qubit is equal to |1〉. This can be

achieved by placing appropriate single qubit gates before and after cross resonance.

Figure 1.40: CNOT physical implementation

1.8 Quantum Computers: Instruction Sets

The purpose of this section is to emphasize that different quantum computers can

be characterized by different instruction sets, i.e. different sets of native gates. This

translates into the fact that all the quantum gates presented up to this point are

12δ = ω1 − ω2
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“translated” by each quantum computer in accordance with its set of characteristic

gates.

In this section IBM superconducting qubits will be considered.

1.8.1 IBM Superconducting Native Set

As stated in [11], IBM quantum computers, based on superconductors, are charac-

terized by four basis gates: U1, U2, U3 and CNOT. The first two gates are actually

a subcase of the U3 one.

U1 It is called phase gate, and its action is equivalent to the one of the RZ ,

previously presented. By using this gate, it is possible to implement the Z, T, S

gates and their inverse.

U1(λ) =

[
1 0

0 eiλ

]

U2 Its duration is one unit of gate time. The unitary matrix representing this

gate is:

U2(ϕ,λ) =
1√
2

[
1 −eiλ

eiϕ eiλ+iϕ

]
It is important since it allows to implement the Hadamard gate.

H = U2(0,π)

U3 It allows to construct any kind of single-qubit gate and its duration is twice

that of U2. The matrix representation is:

U3(θ,ϕ,λ) =
1√
2

[
cos( θ

2
) −eiλsin( θ

2
)

eiϕsin( θ
2
) eiλ+iϕcos( θ

2
)

]
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CX It is the CNOT gate previously presented.

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


To get an idea of how the gates presented up to this point are actually im-

plemented in IBM quantum computers, it is recommended to take a look at the

appendix A.
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Chapter 2

Quantum arithmetic circuits:

state of the art

“I keep six honest serving-men

(They taught me all I knew);

Their names are What and Why and When

And How and Where and Who.”

Rudyard Kipling

Many quantum algorithms require arithmetic circuits in order to be implemented.

This chapter gives an overview about the quantum arithmetic circuits imple-

mented in the proposed software library. The first section provides an introduction

to the OpenQASM language, widely used hereinafter. The next one aims to show

how to construct equivalents of the elementary classical logic gates using quantum

gates. The remaining sections are dedicated to the four main operations: addition,

subtraction, multiplication and division. In general, in each of the sections dedicated

to the fundamental operations, there is an emphasis on the parallelism that exists in

the way in which the various operations are carried out in the two worlds: classical

and quantum ones. Going into detail, it was decided to highlight two aspects of

each quantum circuit: how it is implemented - i.e. necessary steps expressed in a

pseudo OpenQASM language - and what are its main characteristics. For further

details on the circuits in question, it is recommended to consult the references in

the bibliography.
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2.1 OpenQASM: a Basic Guide

Although the developed library can be used with different frameworks for Quantum

Computing, it is worth pointing out that it was born with the idea of generating

quantum circuits described using the OpenQASM language. It is therefore good to

take an overview of this language. It is noted that this language is presented in

this chapter as here it will be used a pseudo OpenQASM language to describe the

various circuits.

Programming languages Generally speaking, programming languages for Quan-

tum Computing are born with the idea of simplifying the process of running a quan-

tum algorithm on real hardware, where “simplifying” means adding a layer of ab-

straction between the operations that the algorithm needs to execute and how they

have to be applied on real systems, in order to “manipulate” qubits appropriately.

In other words, programming languages allow to translate algorithms operations

into abstract entities - gates - which in turn will be translated into the sequence

of operations necessary to change in the desired way the state of the target qubits.

Using this additional layer of abstraction, the programmer does not have to care

about the specific characteristics of the target where the algorithm is going to be

run, as they will be taken into account when compiling the code. To make this

concept clearer, it is good to highlight the main steps that are performed whenever

an algorithm runs on a real quantum computer:1

Compilation This first step is performed on classical computers and its aim is

to generate a quantum circuit on which offline optimizations have been per-

formed;

Circuit generation This second step is also typically performed on a classical

computer. It aims to generate an optimized circuit in such a way that it can

be compatible with the limits of the target architecture;

Execution In this phase the circuit is executed on the target quantum computer;

1See [8] for a more detailed explanation of the topic.
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Post-processing This last phase is about the analysis of the output results. It is

done on classical computers.

Now that the reader should have an idea of what Quantum Computing program-

ming frameworks are and what they are for, it is possible to proceed with a brief

introduction to the OpenQASM language.

General rules OpenQASM stays for Open Quantum Assembly Language. It is a

programming language for Quantum Computing defined at IBM which follows these

general rules ([8]):

• The first line of code (excluding comments) must be OPENQASM M.m, with

the two “m”, upper and lower case, to indicate the version. This line can occur

only once in the code;

• Semicolons are used to separate statements;

• Whitespace are not considered;

• The language is case sensitive;

• Comments begin with // and end with a newline.

Main statements The OpenQASM language allows to define quantum and clas-

sical registers as follows:

Quantum Register→ qreg name[size]; Classical Register→ creg name[size];

IBM quantum gates - corresponding to those seen in chapter 1 - can be used im-

porting the “qelib1.inc” file. To import files, the following syntax has to be used:

include “filename”;

In general, a gate can be inserted into the circuit description using the following

syntax:

gate name qreg name[i],... ;
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For example, assume to have a two-qubit quantum register q (qreg q[2];). In order

to apply a CNOT gate on the two qubits - assuming that the control qubit is q[0]

and the target qubit is q[1] - it is possible to proceed as follows:

cx q[0], q[1];

Within an OpenQASM file, it is also possible to define custom gates that can be

reused multiple times within code. To do this, proceed as follows:

gate gate name q1, q2, ...

{

...

gate description

...

}

The last of the “main” statements is the one related to the measurement operator,

which can be inserted into the circuit as follows:

measure qbit − > cbit;

The reader should note that the description provided of the language is not complete,

and that only the basic notions necessary to correctly interpret the codes proposed

later in this and subsequent chapters have been covered. For further details [8] is

suggested.

2.2 Quantum gates as classical

In order to understand the behaviour of the quantum arithmetic circuits presented

in the following, it could be useful to introduce an approach that allows to perform

a kind of parallelism between classical and quantum gates ([12]). Please note that

although some gate implementations may seem redundant, they find their usefulness
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in boolean oracle designs, i.e. a kind of black box needed in different quantum

algorithms.

NOT The classical NOT gate can be implemented in the quantum world by using

one X gate or two X gates combined with a CNOT one.

Figure 2.1: NOT gate using quantum gates

AND The Toffoli gate can be used to obtain an equivalent of the classical AND

gate:

Figure 2.2: AND gate using quantum gates

OR The quantum version of the classical OR gate makes use of five X gates and

one Toffoli:

Figure 2.3: OR gates using quantum gates
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XOR There are different ways to implement an equivalent of the classical XOR

gate using quantum gates:

Figure 2.4: XOR gates using quantum gates

2.3 Addition

2.3.1 Classical computation: Full Adder, Half Adder

When dealing with digital computation, the most straightforward technique to im-

plement addition of integer numbers is the ripple carry adder, based on a chain of

full adders.

Full Adder (FA) A full adder is a component having three input bits and two

output bits.
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Figure 2.5: Classical FA

Particularly, the three inputs ai, bi and ci have the same weight, while the two

outputs have different weights: the sum bit’s (si) weight is the same of the three

inputs, while the one of the carry out (ci+1) is one more than the weight of the

incoming bits.

The full adder behaviour is detailed in Table 2.1.

Table 2.1: FA truth table

aiaiai bibibi cicici sisisi ci+1ci+1ci+1

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1
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From Table 2.1 a couple of equations describing the FA behaviour can be ob-

tained: {
si = ai ⊕ bi ⊕ ci

ci+1 = ci(ai ⊕ bi) + aibi
(2.1)

Half Adder (HA) If ci is always equal to zero, the sum between two bits can be

calculated using a half adder (HA), where the sum bit (si) and the carry out bit

(ci+1) are defined as follows: {
si = ai ⊕ bi

ci+1 = aibi
(2.2)

2.3.2 Classical computation: Ripple Carry Adder

By allocating in parallel n full adders, it is possible to obtain an n bits integer adder.

Figure 2.6: Classical RCA

In digital electronics literature there exist several more efficient ways, in terms of

cost and delay, to implement integer adders; but the implementation of this kind of

adders goes beyond the aims of this thesis.

The classical FA, HA and RCA have been introduced since the purpose now is to

introduce their quantum counterparts.

2.3.3 Quantum computation: Full Adder and Half Adder

Quantum Half Adder (QHA) By keeping in mind what stated in Section 2.2,

it is quite easy to implement classical circuits by using quantum gates. In particular,
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it has been said that an equivalent of the XOR gate can be implemented by using

a CNOT quantum gate, while an AND gate making use of a Toffoli gate. The

“quantum version” of the Half Adder - whose behaviour is described by Equation

2.2 - is shown in Figure 2.7.

Figure 2.7: Quantum Half Adder

Quantum Full Adder (QFA) Similarly to what has been done in the HA case,

a “quantum version” of the FA - whose behaviour is described by Equation 2.12 -

can be obtained as shown in Figure 2.8.

Figure 2.8: Quantum Full Adder

2.3.4 Quantum computation: addition - advanced solutions

There are several solutions that allow performing addition in an efficient way. Three

different kinds of adders - found in the literature - have been implemented in this li-

brary. The following sections will give an overview of these three different solutions.

The reader is suggested to examine [2], [4] and [7] for further details.

2It can be observed that - in classical electronics - an OR gate is typically used for the carry
out calculation (see Equation 2.1 and Figure 2.5). Although in the quantum case a XOR gate is
used rather than an OR, the behaviour of the FA remains unchanged.
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Before proceeding, please note that from here on, IBM notation (see Figure 1.7)

will be used in the representation of the circuits.

Integer quantum adder - Cuccaro, Draper, Moulton, Kutin

In [2] the same approach - except for small modifications - is used to implement two

versions of the same adder: with and without carry in.

Adder without carry in

This version of the adder makes use of an ancillary qubit. As detailed in [2], the

design of this adder is achieved by following two steps:

1. Development of the basic structure;

2. Optimization by visual inspection of the basic structure.

Basic structure This adder makes use of two building blocks: MAJ and UMA.

These are three qubits components that allow to implement a reversible version of

the “classical” ripple carry adder. The behaviour of these gates is detailed in Figure

2.9.

Figure 2.9: MAJ and UMA gates
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As already stated, the two blocks above allow - if correctly ordered - to implement

an integer adder. An example of a three-qubit integer adder is shown in Figure 2.10.

Figure 2.10: Integer quantum adder with three-qubit operands (without simplifica-
tions) - Cuccaro, Draper, Moulton, Kutin

From Figure 2.10 it can be seen how the MAJ gates cascade is used to generate

the carry outs related to the various stages, while the UMA gate sequence is used

both to write the output result and to restore the initial value of the addend a.

Before proceeding with optimization step, it is good to illustrate how to implement

a version of this adder having n qubits addends. To this end, assume that all qubits

are stored within the same quantum register q. If the number of qubits of each

addend is n, considering the two additional qubits - the carry in3 and the carry out

qubits - the adder is characterized by a total number of qubits equal to 2n+ 2. The

quantum register can therefore be considered as follows4:

qreg q[2n+ 2];

where:

• Addend A: q[i] with i(even) ∈ [2,2n]

• Addend B: q[i] with i(odd) ∈ [1,2n-1]

3In the “without carry in” version of the adder, this bit becomes an ancilla qubit.
4From here on, unless otherwise indicated, a pseudo OpenQASM notation will be used to explain

the various algorithms.
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• Carry in5: q[0]

• Carry out: q[2n+1]

The steps necessary to implement an adder with n-qubit operands are detailed below.

Step 1 Apply n− 1 MAJ gates such as:6

MAJ q[i− 1] q[i] q[i+ 1]; with i(odd) from 1 to 2n− 1

Step 2 Apply a CNOT gate:

cx q[2n] q[2n+ 1];

Step 3 Apply n− 1 UMA gates as follows:

UMA q[i− 1] q[i] q[i+ 1]; with i(odd) from 2n− 1 to 1

Circuit optimization It was previously shown that there are two versions of the

UMA gate: 2-CX and 3-CX. By choosing to use the more complex version of the

two - i.e. the 3-CX - it is possible to apply a greater number of simplifications and

thus obtain a more performing circuit. Therefore, looking at the structure shown in

Figure 2.10, the various blocks can be replaced with their implementations (using

the 3-CX version for the UMA gates) thus obtaining the structure shown in Figure

2.11.

5See footnote 3.
6The index i can range from 0 to 2n+1.
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Figure 2.11: Integer quantum adder with three-qubit operands using UMA gates of
type 3-CX(without simplifications) - Cuccaro, Draper, Moulton, Kutin

The previous implementation can be simplified in order to reduce both the circuit

depth and the number of quantum gates. Below all the simplifications are detailed.

Optimization 1 The first optimization is to move the first CNOT of the MAJ

gates to the beginning of the circuit and the last CNOT of the UMA gates to the

end of the circuit, as shown in Figure 2.12.

Figure 2.12: First optimization (Cuccaro, Draper, Moulton, Kutin)

In Figure 2.12 it is now possible to identify two groups of CNOT gates aligned

with each other, one at the beginning of the circuit and one at the end. It is

therefore possible to perform each group of CNOT gates in a single time-slice7,

7It is supposed to work on a quantum computer that can run an arbitrary number of gates in
parallel.
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without changing the overall behavior of the adder.

Optimization 2 The second possible optimization consists in properly order-

ing the gates of the MAJ components. Specifically, the order of the Toffoli gate and

of the CNOT gate of two consecutive MAJ components can be inverted as shown in

Figure 2.13.

Figure 2.13: Second optimization (Cuccaro, Draper, Moulton, Kutin)

The improvement consists in the fact that now two gates - Toffoli and CNOT - are

aligned with each other, and it is therefore possible to execute them simultaneously.

Optimization 3 This optimization is similar to the previous one. The differ-

ence is that, in this case, gates of UMA components are swapped.

Figure 2.14: Third optimization (Cuccaro, Draper, Moulton, Kutin)
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Similarly to what observed in the previous optimization, also in this case it is

possible to simultaneously execute a Toffoli gate and a CNOT gate.

Optimization 4 Taking into account the fact that the aim is to implement an

adder where the carry in is always zero, it is possible to simplify the structures of

the first MAJ component and of the last UMA component as shown in Figure 2.15.

Figure 2.15: Fourth optimization (Cuccaro, Draper, Moulton, Kutin)

In this case, in addition to improving the depth of the circuit, the cost in terms

of number of gates is also improved, as it is possible to remove from the circuit two

X gates and four CNOT gates.

Optimization 5 The last optimization that can be carried out concerns the

central part of the circuit, which can be simplified as shown in Figure 2.16.

Figure 2.16: Fifth optimization (Cuccaro, Draper, Moulton, Kutin)

This optimization saves two X gates and one Toffoli gate.

Optimized circuit Having applied all the previous optimizations, the circuit be-

comes as in Figure 2.17.
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Figure 2.17: Integer quantum adder optimized (Cuccaro, Draper, Moulton, Kutin)

It is noted that, for sake of simplicity, all the simplifications have been applied

to a three-qubit operands version of the adder, but the procedure can be easily

generalized to the case of an adder with parallelism N .

Adder with carry in

To manage a possible carry in, it is possible to reuse the structure seen above, as

long as the optimization number four is not applied.

Figure 2.18: Integer quantum adder with carry in (Cuccaro, Draper, Moulton,
Kutin)
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Key features

The tables shown below summarize the main characteristics of the two adders pro-

posed in [2].

Table 2.2: No. of qubits (Cuccaro, Draper, Moulton, Kutin adder)

Carry in version Operands A and B Carry in Carry out Ancilla Tot.

No 2n 0 1 1 2n+2

Yes 2n 1 1 0 2n+2

Table 2.3: Implementation cost (Cuccaro, Draper, Moulton, Kutin adder)

Carry in version No. X gates No. CX gates No. Toffoli gates

No 2n-4 5n-3 2n-1

Yes 2n-2 5n+1 2n-1

Table 2.4: Circuit depth (Cuccaro, Draper, Moulton, Kutin adder)

Carry in version CX depth Toffoli depth Total depth

No 5 2n-1 5*CXweight+(2n-1)*CCXweight

Yes 7 2n-1 7*CXweight+(2n-1)*CCXweight

Integer quantum adder - Takahashi, Tani, Kunihiro

In [4] an adder without carry in is proposed. This adder can be implemented fol-

lowing a series of six steps, as highlighted in Figure 2.19, where a three-qubit adder

is implemented.
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Figure 2.19: Integer quantum adder: Takahashi, Tani, Kunihiro

In order to show the steps to follow to build an adder of a generic parallelism n,

assume that all qubits are stored within the same quantum register q. If the number

of qubits of each operand is n, considering the additional qubit necessary for the

carry out, the adder is characterized by a total number of qubits equal to 2n + 1.

The quantum register can therefore be considered as follows8:

qreg q[2n+ 1];

where:

• Addend A: q[i] with i(odd) ∈ [1,2n-1]

• Addend B: q[i] with i(even) ∈ [0,2n-2]

• Carry out: q[2n]

The steps necessary to implement an adder with operands of n qubits are detailed

below.

8From here on, unless otherwise indicated, a pseudo OpenQASM notation will be used to explain
the various algorithms.
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Step 1 Apply n− 1 CNOT gates such as:9

cx q[i] q[i− 1]; with i(odd) from 3 to 2n− 1

Step 2 Apply n− 1 CNOT gates such as:

cx q[2n− 1] q[2n];

cx q[i] q[i+ 2]; with i(odd) from 2n− 3 to 3

Step 3 Apply n Toffoli gate as follows:

ccx q[i] q[i+ 1] q[i+ 3]; with i(even) from 0 to 2n− 4

ccx q[2n− 2] q[2n− 1] q[2n];

Step 4 Apply n− 1 CNOT gates and n− 1 Toffoli gates as follows:

for i(odd) from 2n− 1 to 3:

cx q[i] q[i− 1];

ccx q[i− 3] q[i− 2] q[i];

Step 5 Apply n− 2 CNOT gates such as:

cx q[i] q[i+ 2]; with i(odd) from 3 to 2n− 3

Step 6 Apply n CNOT gates such as:

cx q[i] q[i− 1]; with i(odd) from 1 to 2n− 1

Key features

The key features of this adder are presented in the following.

9The index i can range from 0 to 2n.
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Table 2.5: No. of qubits (Takahashi, Tani, Kunihiro adder)

Operands A and B Carry in Carry out Ancilla Tot.

2n 0 1 0 2n+1

Table 2.6: Implementation cost (Takahashi, Tani, Kunihiro adder)

No. X gates No. CX gates No. Toffoli gates

0 5n-5 2n-1

Table 2.7: Circuit depth (Takahashi, Tani, Kunihiro adder)

CX depth Toffoli depth Total depth

3n-2 2n-1 (3n-2)*CXweight+(2n-1)*CCXweight

Integer quantum adder - Thapliyal, Ranganathan

In [7], two adders - with and without carry in - are proposed.

Before showing the key features of these two kinds of adders, it is necessary to explain

some new quantum gates which work like building blocks for the two circuits.

Controlled square root of X gate The square root of X (
√
X) is a quantum

gate which owes its name to the following properties:

√
X ·
√
X = X

√
X† ·
√
X† = X

√
X ·
√
X† =

√
X† ·
√
X = I

Possible implementations for the controlled square root of X and for its inverse are

shown in Figures 2.20 and 2.21 respectively.
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Figure 2.20: Controlled square root of X gate: a possible implementation

Figure 2.21: Controlled square root of X gate (dag): a possible implementation

Peres gate The Peres gate is a three inputs/three outputs quantum gate that can

be considered universal in the classical domain, since it allows to implement NOT

and AND, thus any logic function. A possible implementation is shown in Figure

2.22.

Figure 2.22: Peres gate

TR gate The TR gate, proposed in [5] by Thapliyal and Ranganathan, is a three

inputs/three outputs gate. The implementation of this gate is shown in Figure 2.23.
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Figure 2.23: TR gate

This gate can be very useful when designing quantum arithmetic circuits since

it allows to perform the following three different functions:

a⊕ b a · b⊕ c a · b if c is set to 0

Adder without carry in

The aim is now to illustrate the generic algorithm which allows to build the adder

in question. To do this with greater clarity, a version with three-qubit operands of

the adder itself is proposed in Figure 2.24.

Figure 2.24: Integer quantum adder without carry in (Thapliyal, Ranganathan)

To show the steps to follow to build an adder of a generic parallelism n, assume
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that all qubits are stored within the same quantum register q. If the number of

qubits of each operand is n, considering the additional qubit necessary for the carry

out, the adder is characterized by a total number of qubits equal to 2n + 1. The

quantum register can therefore be considered as follows10:

qreg q[2n+ 1];

where:

• Addend A: q[i] with i(odd) ∈ [1,2n-1]

• Addend B: q[i] with i(even) ∈ [0,2n-2]

• Carry out: q[2n]

The necessary steps are the following.

Step 1 Apply n− 1 CNOT gates such as:

cx q[i] q[i− 1]; with i(odd) from 3 to 2n− 1

Step 2 Apply n− 1 CNOT gates such as:

cx q[2n− 1] q[2n];

cx q[i] q[i+ 2]; with i(odd) from 2n− 3 to 3

Step 3 Apply n− 1 Toffoli gate as follows:

ccx q[i] q[i+ 1] q[i+ 3]; with i(even) from 0 to 2n− 4

Step 4 Apply n Peres11 gates as follows:

prs q[2n− 1] q[2n− 2] q[2n];

prs q[i+ 1] q[i] q[i+ 3]; with i(even) from 2n− 4 to 0

10The index i can range from 0 to 2n.
11The Peres gate is not a native OpenQASM gate. Here it is called ’prs’ since this is the name

used within the developed quantum arithmetic library.
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Step 5 : Apply n− 2 CNOT gates such as:

cx q[i] q[i+ 2]; with i(odd) from 3 to 2n− 3

Step 6 Apply n− 1 CNOT gates such as:

cx q[i] q[i− 1]; with i(odd) from 3 to 2n− 1

Adder with carry in

In Figure 2.25 is presented a three-qubit version of the adder which is able to handle

a carry in.

Figure 2.25: Integer quantum adder with carry in (Thapliyal, Ranganathan)

Similarly to what has been done for the version without carry in of the adder,

it is possible to proceed showing the steps necessary to build this circuit. Before

proceeding, it should be noted that, in this case, the number of qubits is 2n + 2,

as an additional qubit to handle the carry in is needed this time. So, the generic
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quantum register can be written as12:

qreg q[2n+ 2];

where:

• Carry in: q[0]

• Addend A: q[i] with i(even) ∈ [2,2n]

• Addend B: q[i] with i(odd) ∈ [1,2n-1]

• Carry out: q[2n+1]

The steps to follow to build a generic adder are as follows.

Step 1 Apply n CNOT gates such as:

cx q[i] q[i− 1]; with i(even) from 2 to 2n

Step 2 Apply n+ 1 CNOT gates and n− 1 Toffoli gates such as:

cx q[i] q[i− 2]; with i(even) from 2 to 2n

cx q[2n] q[2n+ 1];

ccx q[i] q[i+ 1]q[i+ 2]; with i(even) from 0 to 2n− 4

Step 3 Apply n− 2 X gates and a Peres gate as follows:

x q[i]; with i(odd) from 1 to 2n− 3

prs q[n] q[2n− 1] q[2n+ 1];

12This time the index i can range from 0 to 2n+1.
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Step 4 Apply n− 1 TR13 gates, n− 1 X gates and n CNOT gates as follows:

tr q[i] q[i+ 1] q[i+ 2]; with i(even) from 2n− 4 to 0

x q[i]; with i(odd) from 2n− 3 to 1

cx q[i] q[i− 2]; with i(even) from 2n to 2

Step 5 Apply n CNOT gates such as:

cx q[i] q[i− 1]; with i(even) from 2 to 2n

Key features

Now that the reader has an idea of the “new” gates used to build these adders and

of the adders themselves, it is possible to show the key features.

Table 2.8: No. of qubits (Thapliyal, Ranganathan adder)

Carry in version Operands A and B Carry in Carry out Ancilla Tot.

No 2n 0 1 0 2n+1

Yes 2n 1 1 0 2n+2

Table 2.9: Implementation cost (Thapliyal, Ranganathan adder)

Carry in version No. X gates No. CX gates No. Toffoli gates

No 0 4n-5 n-1

Yes 2n-2 4n+1 n-1

13The TR gate is not a native OpenQASM gate. Here it is called ’tr’ since this is the name used
within the developed quantum arithmetic library.
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Table 2.10: Implementation cost (cont’d) (Thapliyal, Ranganathan adder)

Carry in version Peres gates TR gates

No n 0

Yes 1 n-1

Table 2.11: Circuit depth (Thapliyal, Ranganathan adder)

Carry in version CX depth Toffoli depth Peres depth TR depth

No 2n-1 n-1 n 0

Yes 5 n-1 1 n-1

Table 2.12: Circuit depth (cont’d) (Thapliyal, Ranganathan adder)

Carry in version Total depth

No (2n-1)*CXweight+(n-1)*CCXweight+(n-1)*Peresweight+0*TRweight

Yes 5*CXweight+(n-1)*CCXweight+1*Peresweight+(n-1)*TRweight
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2.4 Subtraction

The subtractors implemented in the proposed quantum arithmetic library are based

on the adder structures explained in the previous section. The mathematical re-

lationships that allow to exploit an adder as if it were a subtractor are shown in

Equation 2.3.14 {
a− b = (a+ b)

a− b = a+ b+ 1
(2.3)

Against this background, it is clear that it is sufficient to add properly X gates

in order to obtain the subtraction between operands a and b. Therefore, without

explaining again the same structures seen previously, the latter are reported directly

with the modifications applied in order to obtain a subtractor.

Integer quantum subtractor - Cuccaro, Draper, Moulton and Kutin

Figure 2.26: Integer quantum subtractor: a−b = (a+ b) (Cuccaro, Draper, Moulton
and Kutin)

14The relationship a−b = a+b+1 requires an adder able to handle a carry in, so the Takahashi,
Tani and Kunihiro adder cannot be used in this case.
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Figure 2.27: Integer quantum subtractor: a−b = a+b+1(Cuccaro, Draper, Moulton
and Kutin)

Integer quantum subtractor - Takahashi, Tani and Kunihiro

Figure 2.28: Integer quantum subtractor: a − b = (a+ b) (Takahashi, Tani and
Kunihiro)
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Integer quantum subtractor - Thapliyal and Ranganathan

Figure 2.29: Integer quantum subtractor: a − b = (a+ b) (Thapliyal and Ran-
ganathan)

Figure 2.30: Integer quantum subtractor: a − b = a + b + 1(Thapliyal and Ran-
ganathan)
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2.5 Multiplication

2.5.1 Classical computation: multiplication

When talking about binary multiplication, two operands - the multiplicand (A) and

the multiplier (X) - of n bits each have to be considered. Using this notation, it is

possible to express the product between A and X as:

A ·X = P −→ [an−1an−2...a1a0] · [xn−1xn−2...x1x0] = [p2n−1p2n−2...p1p0],

so the final product will be a binary number on 2n bits. A very useful notation

to represent this type of operation is the dot notation. An example in which two

numbers of four bits each are multiplied together is shown in Figure 2.31.

Figure 2.31: Dot notation example: multiplication

As shown in Figure 2.31, the final product between the multiplicand A and the

multiplier X can be calculated as the sum of the various partial products, i.e.:

P =
n−1∑
i=0

xi · A · 2i

In the world of classical computation, two algorithms that allow an efficient hardware

implementation of the previous formula - i.e. of the binary multiplication - are called

R-shift and L-shift methods; however, their description is beyond the scope of this

thesis.
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2.5.2 Quantum computation: multiplication - advanced so-

lutions

Integer quantum multiplier - Muñoz-Coreas, Thapliyal

A possible implementation of a quantum multiplier is proposed in [9]. This imple-

mentation mirrors what is shown in Figure 2.31: multiplier qubits (xn1..x1x0) are

taken one at a time to decide whether a certain partial product (xi · A · 2i) should

be added or not. For this purpose, a controlled component which is able to perform

the sum or not - depending on the value of the control qubit - is employed. Hence,

before showing the complete structure of the multipliers and its main characteristics,

it is good to illustrate how the controlled Add-Nop is implemented.

Controlled Add-Nop This component, as already mentioned, is able to perform

a sum or do nothing according to the value assumed by the control qubit. Its

implementation is proposed in [9]. Figure 2.32 shows an example of this components

with operands of three qubits each.

Figure 2.32: Controlled Add-Nop

Generally speaking, the number of qubits necessary to implement this circuit is

2n + 3, where n is the operands parallelism. So, the generic quantum register can

78



2 – Quantum arithmetic circuits: state of the art

be written as15:

qreg q[2n+ 3];

where:

• Control: q[0]

• Addend A: q[i] with i(even) ∈ [2,2n]

• Addend B: q[i] with i(odd) ∈ [1,2n-1]

• Carry out: q[2n+1]

• Extra output qubit: q[2n+2]

The steps to follow to build a generic controlled Add-Nop are the following.

Step 1 Apply n− 1 CNOT gates such as:

cx q[i] q[i− 1]; with i(even) from 4 to 2n

Step 2 Apply a Toffoli gate and n− 2 CNOT gates such as:

ccx q[0] q[2n] q[2n+ 2];

cx q[i] q[i+ 2]; with i(even) from 2n− 2 to 4

Step 3 Apply n− 1 Toffoli gates as follows:

ccx q[i] q[i+ 1] q[i+ 3]; with i(odd) from 1 to 2n− 3

Step 4 Apply three Toffoli gates as follows:

ccx q[2n− 1] q[2n] q[2n+ 2];

ccx q[0] q[2n+ 2] q[2n+ 1];

ccx q[2n− 1] q[2n] q[2n+ 2];

15This time the index i can range from 0 to 2n+2
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Step 5 Apply 2n− 1 Toffoli gates as follows:

for i(even) from 2n to 4:

ccx q[0] q[i] q[i− 1];

ccx q[i− 3] q[i− 2] q[i];

ccx q[0] q[2] q[1];

Step 6 Apply n− 2 CNOT gates such as:

cx q[i] q[i+ 2]; with i(even) from 4 to 2n− 2

Step 7 Apply n− 1 CNOT gates such as:

cx q[i] q[i− 1]; with i(even) from 4 to 2n

Key features

The key features of this component are illustrated below.

Table 2.13: No. of qubits (Muñoz-Coreas, Thapliyal controlled Add-Nop)

Operands A and B Control Carry out Extra qubit Tot.

2n 1 1 1 2n+3

Table 2.14: Implementation cost (Muñoz-Coreas, Thapliyal controlled Add-Nop)

No. CX gates No. Toffoli gates

4n-6 3n+2
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Table 2.15: Circuit depth (Muñoz-Coreas, Thapliyal controlled Add-Nop)

CX depth Toffoli depth Total depth

2n-3 3n+2 (2n-3)*CXweight+(3n+2)*CCXweight

Integer multiplier A three-qubit version of the multiplier is presented in Figure

2.33.

Figure 2.33: Integer quantum multiplier (Muñoz-Coreas, Thapliyal)

To show the steps to follow to build a multiplier of a generic parallelism n, assume

that all qubits are stored within the same quantum register q. The required number

of qubits is 4n+ 1:

• 2n qubits to store the two operands

• 2n ancilla qubits to store the final product
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• 1 ancilla qubits necessary to implement the multiplier

So, the generic quantum register can be written as:

qreg q[4n+ 1];

where:

• Multiplicand A: q[i] with i ∈ [n,2n-1]

• Multiplier B: q[i] with i ∈ [0,n-1]

• Product: q[i] with i ∈ [2n,4n-1]

• Extra qubit: q[4n]

Below the steps to follow:

Step 1 Apply n Toffoli gates such as:

ccx q[0] q[i] q[i+ 3]; with i from n to 2n− 1

Step 2 Apply n−1 controlled Add-Nop components of parallelism n as follows:

ctrlAddNop q[i] q[n]...q[2n− 1]︸ ︷︷ ︸
multiplicand

q[2n+ i]...q[3n+ i+ 1]︸ ︷︷ ︸
partial product qubits

; with i(odd) from 1 to n− 1

Key features

The key features of this multiplier are presented below.

Table 2.16: No. of qubits (Muñoz-Coreas, Thapliyal multiplier)

Operands A and B Ancilla Tot.

2n 2n+1 4n+1

82



2 – Quantum arithmetic circuits: state of the art

Table 2.17: Implementation cost (Muñoz-Coreas, Thapliyal multiplier)

No. Toffoli gates No. ctrlAdd-Nop

n n-1

Table 2.18: Circuit depth (Muñoz-Coreas, Thapliyal multiplier)

Toffoli depth CtrlAdd-Nop depth Total depth

n n-1 n*CCXweight+(n-1)*ctrlAddNopweight

2.6 Division

2.6.1 Classical computation: division

When dealing with division in classical computation approach, the following notation

can be used:16

• dividend Z (2n bits)

• divisor D (n bits)

• quotient Q (n bits)

• remainder S (n bits)

Also in this case it is possible to use the dot notation in order to imagine how a

possible division algorithm works. For instance, if n is equal to four, it is possible

to represent the computation as shown in Figure 2.34.

16In quantum integer dividers presented in the following section, the operands parallelism can
be different from the one shown here. However the concept still remain the same. So, do not care
about these different parallelisms.
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Figure 2.34: Dot notation example: division

Four subtractions from Z have to be performed in order to obtain the final

remainder (S), that will be consisting of four digits. There is one thing to clarify.

When dealing with division, two outputs have to be computed: the quotient Q and

the remainder S. As the reader will have already noticed from Figure 2.34, digits

of quotient Q are used as if they were known in order to calculate the remainder

S. Therefore it is necessary to explain how it is possible to use the digits of Q if

they are not known at the beginning of the computation. Here things are rather

simple because of the fact that a binary format is involved, so every qi, by itself,

is equal either to 0 or to 1 (there are not other options). If qi is equal to 1, a

subtraction −qi · d · 2i have to be performed, while if the same digit of q is equal

to 0, the subtraction has to be skipped. Therefore the solution consists in making

all the subtractions, and seeing from time to time which is the sign of the partial

result obtained: if the sign is negative, this means that the subtraction should not

have been carried out (i.e. qi = 0); vice versa, if the sign of the result is positive,

the subtraction had to be carried out (i.e. qi = 1). In order to implement this

mechanism, there are two ways to go:

• Restoring algorithm

• Non restoring algorithm

Restoring algorithm A restoring divider simply follows what has been explained

above. It looks at the sign of the partial remainder after every calculation in order to

decide if the current value of the partial remainder has to be kept or not. In other

words, given a certain iteration, if the sign of the partial remainder is negative,
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the reverse operation is carried out in the same iteration, i.e. add to the partial

remainder an amount equal to the subtracted amount. If the partial remainder sign

is positive, everything is left as it is, without performing further operations.

Non restoring algorithm The key idea for the non-restoring algorithm is to ac-

cept a negative partial remainder, an try to compensate at a later step this kind

of error by doing a slightly different operation. So, rather than avoiding the gener-

ation of a negative remainder, the idea is to temporarily accept a negative partial

remainder and to compensate it in the following iteration.

2.6.2 Quantum computation: division - advanced solutions

Integer quantum dividers - Thapliyal, Muñoz-Coreas, Varun and Humble

In [10] two different methods are proposed for implementing a quantum divider:

one based on the restoring algorithm, and the other based on the non restoring

algorithm.

Background

Before going on with the description of the two quantum dividers, it is good to

explore the building blocks used to develop the two proposed quantum dividers.

Restoring divider building blocks This divider makes use of two type of com-

ponents that have already been discussed in detail in the previous sections:

• Subtractor (see Section 2.4)

• Controlled Add-Nop (see Section 2.5.2)

There is just one note to make: the controlled Add-Nop used in this divider is slightly

different from the one shown in Section 2.5.2. In particular, since there is no need to

manage the carry out, it is possible to reduce the depth and the implementation cost

of the component. In Figure 2.35 is shown how the previously presented controlled

Add-Nop is transformed when implementing the restoring divider.
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Figure 2.35: Controlled Add-Nop: restoring divider

Generally speaking, cost and performances are very similar to the controlled

Add-Nop detailed in Section 2.5.2. In particular, both cost and total delay are

reduced by four Toffoli gates compared to the original case.

Non restoring divider building blocks The main components used in this kind

of divder are:

• Subtractor (see Section 2.4)

• Controlled Add-Nop (see Section 2.5.2)

• Controlled Add-Sub

As far as the controlled Add-Nop is concerned, the observation to be made is the

same as that of the restoring case. The controlled Add-Sub, on the other hand,

can be easily obtained by considering that the various subtractors presented in this

library have been implemented by properly adding X gates to the adders structures,

in order to satisfy one of the two Equations 2.3. Making a similar reasoning, it can

be seen that, in order to obtain a controlled Add-Sub, it is possible to take an adder

and to perform two steps:

• Add a control qubit to the adder structure;

• Implement one of the Equations 2.3 by applying CNOT gates (controlled by

the control qubit) instead of X gates.
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The divider implemented in this library makes use of the adder described in Section

2.3.4 to implement the controlled Add-Sub. An example of three-qubit controlled

Add-Sub is proposed in Figure 2.36.

Figure 2.36: Controlled Add-Sub: non restoring divider

Without repeating all the analysis made in the case of the adder, it can be

observed that - in this case - it is necessary to add to the implementation cost a

number equal to 2n CNOT gates and to the overall delay a factor equal to 2n ·
CNOTweight.

Divider: restoring algorithm

In Figure 2.37 is presented a three-qubit version of the restoring divider.

Figure 2.37: Integer quantum restoring divider (Thapliyal, Muñoz-Coreas, Varun
and Humble)
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To show the steps to follow to build a restoring divider of a generic parallelism n,

assume that all qubits are stored within the same quantum register q. The required

number of qubits is 3n:

• 2n qubits to store the two operands

• n ancilla qubits to store the final quotient

So, the generic quantum register can be written as:

qreg q[3n];

where:

• Dividend A: q[i] with i ∈ [0,n-1]

• Ancilla: q[i] with i ∈ [n,2n-1]

• Divisor B: q[i] with i ∈ [2n,3n-1]

In this case, the implementation can be described as a single step.

Step 1 Apply n subtractors, n controlled Add-Nop, n CNOT and n X gates

as follows:

for i from n− 1 to 0:

sub q[i]...q[n− 1 + i]︸ ︷︷ ︸
partial remainder

q[2n]...q[3n− 1]︸ ︷︷ ︸
divisor

;

cx q[i+ n− 1] q[i+ n];

ctrlAddNop q[i+ n]︸ ︷︷ ︸
control

q[i]...q[n− 1 + i]︸ ︷︷ ︸
partial remainder

q[2n]...q[3n− 1]︸ ︷︷ ︸
divisor

;

x q[i+ n];
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Key features

The key features of this divider are presented below.

Table 2.19: No. of qubits (Thapliyal, Muñoz-Coreas, Varun and Humble restoring
divider)

Operands A and B Ancilla Tot.

2n n 3n

Table 2.20: Implementation cost (Thapliyal, Muñoz-Coreas, Varun and Humble
restoring divider)

No. X gates No. CX gates No. subtractors No. ctrlAdd-Nop

n n n n

Table 2.21: Circuit depth (Thapliyal, Muñoz-Coreas, Varun and Humble restoring
divider)

CX depth Subtractor depth CtrlAdd-Nop depth

n n n

Table 2.22: Circuit depth (Thapliyal, Muñoz-Coreas, Varun and Humble restoring
divider) (cont’d)

Total depth

n*CXweight+n*subweight+n*ctrlAddNopweight

Divider: non restoring algorithm

In Figure 2.38 is presented a three-qubit version of the non restoring divider.
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Figure 2.38: Integer quantum non restoring divider (Thapliyal, Muñoz-Coreas,
Varun and Humble)

To show the steps to follow to build a non restoring divider of a generic parallelism

n, assume that all qubits are stored within the same quantum register q. The

required number of qubits is 3n− 1:

• 2n qubits to store the two operands

• n− 1 ancilla qubits to store the final remainder

So, the generic quantum register can be written as:

qreg q[3n− 1];

where:

• Dividend A: q[i] with i ∈ [n,2n-1]

• Divisor B: q[i] with i ∈ [0,n-1]

• Ancilla: q[i] with i ∈ [2n,3n-2]

Below the steps to follow:

Step 1 Apply a subtractor such as:

sub q[0]...q[n− 1]︸ ︷︷ ︸
divisor

q[2n− 1]...q[3n− 2]︸ ︷︷ ︸
partial remainder

;
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Step 2 Apply n−1 controlled Add-Sub components of parallelism n and n−1

X gates as follows:

for i from 3n− 2 to 2n :

x q[i];

ctrlAddSub q[i]...q[n− 1 + i]︸ ︷︷ ︸
partial remainder

q[2n]...q[3n− 1]︸ ︷︷ ︸
divisor

q[i]︸︷︷︸
control

Step 3 Apply a controlled Add-Nop of parallelism n− 1 and a X gate such as:

ctrlAddNop q[2n− 1]︸ ︷︷ ︸
control

q[0]...q[n− 1]︸ ︷︷ ︸
divisor

q[n]...q[2n− 1]︸ ︷︷ ︸
partial remainder

x q[2n− 1];

Key features

The key features of this divider are presented below.

Table 2.23: No. of qubits (Thapliyal, Muñoz-Coreas, Varun and Humble non restor-
ing divider)

Operands A and B Ancilla Tot.

2n n-1 3n-1

Table 2.24: Implementation cost (Thapliyal, Muñoz-Coreas, Varun and Humble non
restoring divider)

No. subtractors No. ctrlAdd-Nop ctrlAdd-Sub

1 1 n-1
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Table 2.25: Circuit depth (Thapliyal, Muñoz-Coreas, Varun and Humble non restor-
ing divider)

Subtractor depth CtrlAdd-Nop depth CtrlAdd-Sub depth

1 1 n-1

Table 2.26: Circuit depth (Thapliyal, Muñoz-Coreas, Varun and Humble non restor-
ing divider) (cont’d)

Total depth

1*subweight+1*ctrlAddNopweight+(n-1)*ctrlAddSubweight
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Chapter 3

Quantum arithmetic circuits:

software library

“La mer

Qu’on voit danser le long des golfes clairs

À des reflets d’argent”

Charles Trenet

Translating algorithms for Quantum Computing into quantum circuits is a nec-

essary operation in order to run them on real hardware. This operation requires

that each algorithmic step - such as a generic arithmetic operation between two

operands - is translated into a circuit description through the use of quantum gates.

Therefore, in order to speed up the algorithm to circuit translation, it was decided to

develop a library - the Quantum Arithmetic Library (QAL) - capable of generating

OpenQASM descriptions of arithmetic operators of arbitrary parallelism.

The aim of this chapter is to give an overview about the developed software

library. The first section aims to provide a general overview of the contents and

organization of the library, providing a brief description of all the implemented

functions. The next section, on the other hand, is intended to show the reader

what this library is capable of. For this purpose, different circuits are used as an

example in order to show all the steps, from the creation of the circuit to the final

testing on the quantum simulator for the validation of the circuit itself. Finally,

the third and last section explains how to use the blocks generated by this library

in other well known Quantum Computing frameworks as Qiskit, Cirq and T-Ket,

also emphasizing the fact that the circuits produced by this library can be used as

building-blocks in larger circuits with a very high degree of freedom regarding the

qubits connection.
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3.1 An Overview of the Library

The Quantum Arithmetic Library (QAL) is made-up of several packages which allow

generating OpenQASM files of arithmetic components such as adders, subtractors,

multipliers and dividers. With the aim of making simpler future development, code’s

modularity - by organizing the general package in many subpackages - and readabil-

ity - by respecting the guidelines proposed in the PEP8 style guide ([1]) - were looked

for. A detailed documentation has been also produced using Sphinx. The library is

organized as shown in Figure 3.1.

Figure 3.1: QAL: organization

It is noted that the directory “relatedArticles”, if any, contains all the articles

on which implemented circuits are based.

At this point it is possible to proceed with a brief description of each subpackage

and its modules. It should be noted that, in this case, the description of the various

modules will be very concise. For further details the reader is invited to consult the

94



3 – Quantum arithmetic circuits: software library

extensive documentation produced using Sphinx. An overview of the documentation

is given in the appendix B.

3.1.1 QAL.addition subpackage

This subpackage is conceived with the idea of inserting all the modules related to

addition. In the current version of the library, only one module - intAdd.py - belongs

to this subpackage.

intAdd.py module

The “intAdd” module contains functions capable of generating OpenQASM descrip-

tions of integer adders. In particular, circuits presented in Section 2.3.4 have been

implemented. The implemented functions are set out in Table 3.1.

Table 3.1: QAL library - “intAdd.py” module

Function Description

cuccaro2004add() It generates an OpenQASM description of the Cuccaro,

Draper, Moulton, Kutin adder ([2]).

takahashi2009add() It generates an OpenQASM description of the Taka-

hashi, Tani, Kunihiro adder ([4]).

thapliyal2013add() It generates an OpenQASM description of the Thapliyal,

Ranganathan adder ([7]).

3.1.2 QAL.subtraction subpackage

Modules whose functions are designed to generate OpenQASM descripton of sub-

tractors have to be placed inside this subpackage. In the current version of the

library, only one module - intSub.py - belongs to this subpackage.
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intSub.py module

The “intSub” module contains functions capable of generating OpenQASM descrip-

tions of integer subtractors. In particular, circuits presented in Section 2.4 have

been implemented. The available functions are set out in Table 3.2.

Table 3.2: QAL library - “intSub.py” module

Function Description

cuccaro2004sub() It generates an OpenQASM description of the Cuccaro,

Draper, Moulton, Kutin subtractor ([2]).

takahashi2009sub() It generates an OpenQASM description of the Taka-

hashi, Tani, Kunihiro subtractor ([4]).

thapliyal2013sub() It generates an OpenQASM description of the Thapliyal,

Ranganathan subtractor ([7]).

3.1.3 QAL.multiplication subpackage

This subpackage is designed to collect modules related to multiplication. In the

current version of the library, only one module - intMul.py - is present in this sub-

package.

intMul.py module

The “intMul” module contains functions capable of generating OpenQASM descrip-

tions of integer multipliers. In particular, circuit presented in Section 2.5.2 has been

implemented. The implemented functions are set out in Table 3.3.
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Table 3.3: QAL library - “intMul.py” module

Function Description

coreas2017mul() It generates an OpenQASM description of the Muñoz-

Coreas, Thapliyal multiplier ([9]).

3.1.4 QAL.division subpackage

This subpackage is conceived with the idea of inserting all the modules related to the

division operation inside it. In the current version of the library, only one module -

intDiv.py - is present in this subpackage.

intDiv.py module

It contains functions capable of generating OpenQASM descriptions of integer di-

viders. In particular, circuits presented in Section 2.6.2 have been implemented.

The implemented functions are set out in Table 3.4.

Table 3.4: QAL library - “intDiv.py” module

Function Description

thapliyal2018divRestoring() It generates an OpenQASM description of

the Thapliyal, Muñoz-Coreas, Varun and

Humble restoring divider ([10]).

thapliyal2018divNonRestoring() It generates an OpenQASM description of

the Thapliyal, Muñoz-Coreas, Varun and

Humble non restoring divider ([10]).
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3.1.5 QAL.controlled subpackage

This subpackage is designed to collect modules related to quantum arithmetic cir-

cuits whose behaviour depends on the value of a control qubit. In the current version

of the library, only one module - intCtrl.py - belongs to this subpackage.

intCtrl.py module

The “intCtrl” module contains functions capable of generating OpenQASM descrip-

tions of quantum arithmetic circuits able to perform operations on integer number

depending on the value of a given control qubit. In particular, controlled circuits

employed in multiplication and division quantum circuits have been implemented.

The implemented functions are set out in Table 3.5.

Table 3.5: QAL library - “intCtrl.py” module

Function Description

thapliyal2017ctrlAddNop() It generates an OpenQASM description of the

Muñoz-Coreas, Thapliyal controlled Add-Nop

([9]).

thapliyal2017ctrlAddSub() It generates an OpenQASM description of the

Thapliyal, Muñoz-Coreas, Varun and Humble con-

trolled Add-Sub ([10]).

3.1.6 QAL.miscellaneous subpackage

This package contains modules that can be used to handle files generated by using

this library and to perform circuit analysis. A fair number of modules are present

in this subpackage. This is due to the fact that, while some of them have been

designed to be used directly by the user, others serve as support to other modules

with the aim of making the code more modular, reusable and readable. All the

modules present in this subpackage are set out below.
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tools.py module

The functions defined in this module can be used by the user to manipulate files

generated with this library and to perform other operations such as generating

a testbench version of an arithmetic circuit, remove “gate” statements from files

produced by this library etc. All the available functions are listed in Table 3.6.

Table 3.6: QAL library - “tools.py” module

Function Description

incFileMerger() It allows to merge different .inc files

tbFormatQasmSimulator() It allows to generate a “testbench version” of

OpenQASM files produced by this library. See

Section 3.2.3 for further details.

readCSVfromTB() It allows to analyze the .csv file produced by IBM

quantum experience. It is designed with the aim of

analyzing a .csv file. See Section 3.2.3 for further

details.

noGateVersion() It removes “gate” statements from an OpenQASM

description of a circuit generated by using this li-

brary. This may be required for compatibility rea-

sons with other languages.

circuitAnalysis. py module

This module contains functions that allow the user to perform analysis on a quantum

circuit described using the OpenQASM language. Generally speaking, functions

defined in this module can also be used on circuits not generated by this library. In

Table 3.7 all the available functions are listed.
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Table 3.7: QAL library - “circuitAnalysis.py” module

Function Description

extractAvailableQubits() Given an OpenQASM decription where

one or more quantum register are de-

clared, it returns a list containing all

the available qubits. For instance, if

a three-qubit quantum register q is

defined in the OpenQASM file (qreg

q[3];), this function will return the fol-

lowing list:

[q[0], q[1], q[2]]

getQubitsDependencies() Given an OpenQASM description, it al-

lows to find qubit dependencies, i.e. it

is able to detect if a qubit is connected

to another one and the relation control-

target which exists between the two.

gateCountPerQubit() Given an OpenQASM description, it al-

lows to find the number and the type

of gates acting on each qubit of the cir-

cuit.

longestPath() It performs an analysis of qubits’ paths

and detects the most critical one.

pathsOrderedByCriticality() It returns qubits ordered by decreasing

delay.

devices.py module

Typically quantum computers parameters (e.g. decoherence time, relaxation time,

etc.) are updated daily. In order to allow the user to save these parameters on

file and to retrieve them at a later date, the library provides the “device” module,

containing functions capable of generating device files and reading information from
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these files. The available functions are set out in Table 3.8. It is noted that - as

with the other modules - the reader is invited to consult the code documentation

for further details.

Table 3.8: QAL library - “devices.py” module

Function Description

creatingDeviceFile() It can be used to generate device file.

extractDeviceParam() It can be used to generate read a device file.

integerReadersCSV.py module

This module contains functions which support the readCSVfromTB() function an-

alyzing an input .csv file (see Section 3.2.3). Available functions are presented in

Table 3.9.

Table 3.9: QAL library - “integerReadersCSV.py” module

Function Description

twoComp() Convert a 2’s complement value to int.

integerAddersCSV() Analyze csv files of integer adders.

integerSubtractorsCSV() Analyze csv files of integer subtractors.

integerMultipliersCSV() Analyze csv files of integer multipliers.

integerDividersCSV() Analyze csv files of integer dividers.

integerAddNopCSV() Analyze csv files of integer controlled Add-Nop.

integerAddSubCSV() Analyze csv files of integer controlled Add-Sub.
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integerTBgenerators.py module

This module contains functions which support the tbFormatQasmSimulator() func-

tion building the “testbench version” (see Section 3.2.3) of a given OpenQASM

quantum circuit generated by this library. The available functions are set out in

Table 3.10.

Table 3.10: QAL library - ’integerTBgenerators.py’ module

Function Description

extractInfoForTBgen() Extract information regarding quantum registers

and circuit type.

integerAddersTBgen() Testbench generator for integer adders.

integerSubtractorsTBgen() Testbench generator for integer subtractors.

integerMultipliersTBgen() Testbench generator for integer multipliers.

integerDividersTBgen() Testbench generator for integer dividers.

integerControlledTBgen() Testbench generator for integer controlled compo-

nents.

3.1.7 QAL.development subpackage

This subpackage contains modules that are used by other modules in this library. It

is thought for ensuring that new functionalities are properly developed. The content

of this subpackage consists of two modules, detailed in the following.

checkArguments.py module

Functions defined in this module can be used to check arguments format and to

extract informations from them. All the available functions are set out in Table

3.11.
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Table 3.11: QAL library - “checkArguments.py” module

Function Description

check arguments format() It performs the parsing of the input arguments.

extract qreg names() It returns names of passed quantum registers.

extract qreg contents() It returns the contentent of passed quantum regis-

ters.

extract qreg lengths() It returns the lengths of passed quantum registers.

create qreg and usage() It returns the qreg declaration and comments on

qubits meaning.

complexGates.py module

Functions defined in this module can be used to generate a “gate” statement to be

employed in the OpenQASM files. In particular, all the functions contained in this

module return a string describing the gate to be used. The implemented functions

are set out in Table 3.12.

Table 3.12: QAL library - “complexGates.py” module

Function Description

controlledSqrtX() It can be used to generate a gate in Open-

QASM language corresponding to the con-

trolled square root of not. By doing this,

it is possible to use the “controlledSqrtX q1

q2;” statement in the qasm file.

controlledSqrtXdg() It can be used to generate a gate in Open-

QASM language corresponding to the adjoint

of the controlled square root of not. By do-

ing this, it is possible to use the “controlled-

SqrtXdg q1 q2;” statement in the qasm file.

Continued on next page
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Table 3.12 – continued from previous page

Function Description

prs() It can be used to generate a gate in Open-

QASM language corresponding to the Peres

gate. By doing this, it is possible to use the

“prs q1 q2 q3;” statement in the qasm file.

tr() It can be used to generate a gate in Open-

QASM language corresponding to the TR

gate. By doing this, it is possible to use the

“tr q1 q2 q3;” statement in the qasm file.

thapliyal2013sub gate() It can be used to generate a gate in Open-

QASM language corresponding to the thap-

liyal2013sub gate. By doing this, it is possi-

ble to use the “thapliyal2013sub q1 q2 q3...;”

statement in the qasm file.

thapliyal2017ctrlAddNop gate() It can be used to generate a gate in

OpenQASM language corresponding to the

thapliyal2017ctrlAddNop gate. By do-

ing this, it is possible to use the “thap-

liyal2017ctrlAddNop q1 q2 q3...;” statement

in the qasm file.

thapliyal2017ctrlAddSub gate() It can be used to generate a gate in Open-

QASM language corresponding to the thap-

liyal2017ctrlAddSub gate. By doing this, it is

possible to use the “thapliyal2017ctrlAddSub

q1 q2 q3...;” statement in the qasm file.

3.2 User Guide

The purpose of this section is to illustrate what the QAL library allows to do. In

this regard, different arithmetic circuits will be used. Note that in the following
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explanation, in addition to show how to generate OpenQASM descriptions of arith-

metic circuits, some of the support functions that this library provides will be also

discussed.

3.2.1 Arithmetic Functions: a Standard Interface

All functions capable of generating arithmetic circuits have been designed in order to

have a common interface1. The prototype of a generic arithmetic function is shown

below, so that the parameters common to all arithmetic functions implemented in

the QAL library can be illustrated.

def arithmeticFunction(file_name, flag, reg_a=False,

reg_b=False, reg_c=False, qasm=True):↪→

Although all arithmetic functions have the purpose of generating an OpenQASM

circuit description, through the parameters shown in the previous function definition

it is possible to define different aspects such as: whether an output file should be

generated or not, the number of quantum registers and the order in which qubits

need to be connected. The meaning of each parameter is detailed in the following.

file name Each arithmetic function, by default, returns a string containing the

OpenQASM description of its defined circuit. Through this parameter, however,

the user can decide whether to generate an output file or not. If this parameter is

set to “None”, no files will be generated; otherwise the name to be given to the file

to be generated has to be passed.

flag, reg a, reg b, reg c Generally speaking, an arithmetic circuit for Quantum

Computing is characterized by two operands - A and B in the following - and by

a set of extra qubits - C in the following - that can include either qubits necessary

for the particular operator (e.g. carry in, carry out etc.) or ancilla qubits. This

library allows five different possibilities to map into real quantum registers these

1Depending on the function, there may be some additional parameters needed to define specific
characteristics of the circuit in question. For more details, see the code documentation.
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three groups of qubits. All the possibilities are illustrated in the following.2

Case 1 A, B and C belong to the same quantum register. So, when calling the

generic arithmeticFunction, flag has to be equal to 1 and reg a has to be defined as

follows:3:

my_circ = arithmeticFunction(file_name, 1, ['regOneName',[[[A

indexes],[B indexes],[C indexes]]])↪→

Figure 3.2: QAL: case 1

Case 2 A and B belong to the same quantum register while C belongs to

another one. So, when arithmeticFunction is called, flag has to be equal to 2 and

reg a and reg b have to be defined as follows4:

my_circ = arithmeticFunction(file_name, 2, ['regOneName',[[[A

indexes],[B indexes]]], ['regTwoName',[C indexes]])↪→

Figure 3.3: QAL: case 2

2How qubits indexes have to be passed will be clarified in the next few paragraphs. In the
following examples a generic notation -A indexes, B indexes, C indexes - will be used.

3If a register is not used, it has to be omitted when calling the function.
4See footnote 3.
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Case 3 A and C belong to the same quantum register while B belongs to

another one. In this case, the call to arithmeticFunction has to occur by passing

flag equal to 3 and reg a and reg b as follows5:

my_circ = arithmeticFunction(file_name, 3, ['regOneName',[[A

indexes],[C indexes]]], ['regTwoName',[B indexes]])↪→

Figure 3.4: QAL: case 3

Case 4 B and C belong to the same quantum register while A belongs to

another one. So, when calling arithmeticFunction, flag has to be equal to 4 and

reg a and reg b have to be defined as follows6:

my_circ = arithmeticFunction(file_name, 4, ['regOneName',[A

indexes]], ['regTwoName',[[B indexes],[C indexes]]])↪→

Figure 3.5: QAL: case 4

Case 5 A, B and C belong to different quantum registers. So, when arith-

meticFunction is called, flag has to be equal to 5 and reg a, reg b and reg c have to

be defined as follows.

5See footnote 3.
6See footnote 3.
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my_circ = arithmeticFunction(file_name, 5, ['regOneName',[A

indexes]], ['regTwoName',[B indexes]], ['regThreeName',[C

indexes]])

↪→

↪→

Figure 3.6: QAL: case 5

qasm As already mentioned, this library allows to both generate complete Open-

QASM files, i.e. circuit descriptions in their own right, and to generate include files,

i.e. files containing “gate” statements that can be imported into other projects. In

this regard, the qasm parameter determines what it is intended to generate: if it is

equal to True (the default value), a “standard” OpenQASM file will be generated,

conversely, if it is set to False, an include file will be generated.

3.2.2 Basic Functionalities: Practical Examples

Now that the main parameters necessary to use the arithmetic functions have been

defined, it is possible to proceed with some examples to show in detail the various

functionalities of this library.

Import the library

The first thing to do in order to use the functions defined in the library is importing

them. It is possible to import functions in three different ways:

#Import all functions

from QAL.quantumArithmetic import *

#Import a specific module
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from QAL.subpackage import module

#Import a specific function

from QAL.subpackage.module import my_function

Dynamic directories allocation

Since the next examples will show how to generate files and what types of files can

be generated, it is good to explain where these files will be saved. The QAL library

dynamically allocates only the directories needed to save the generated files. The

way this happens is explained by the graph shown in Figure 3.7.

Figure 3.7: Dynamic directories allocation

Mapping operators in real quantum registers

The purpose now is to show in practice what is said in Section 3.2.1. In this regard,

a two-qubit version of the adder proposed by Cuccaro, Draper, Moulton and Kutin

will be used as an example. The total number of qubits involved will therefore be
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six: two for operand A, two for operand B and two as extra qubits (C).

#Case 1:

#Mapping:

# �A[0,1]→a[0,1] �B[0,1]→a[2,3] �C[0,1]→a[4,5]

circ = cuccaro2004add("cuccaro_adder_case1",1,['a',[[0,1],[2,3],

[4,5]]])↪→

#Case 2

#Mapping:

# �A[0,1]→a[0,1] �B[0,1]→a[2,3] �C[0,1]→b[0,1]

circ = cuccaro2004add("cuccaro_adder_case2",2,['a',[[0,1],

[2,3]],['b',[0,1]])↪→

#Case 3

#Mapping:

# �A[0,1]→a[0,1] �B[0,1]→b[0,1] �C[0,1]→a[2,3]

circ = cuccaro2004add("cuccaro_adder_case3",3,['a',[[0,1],

[2,3]],['b',[0,1]])↪→

#Case 4

#Mapping:

# �A[0,1]→a[0,1] �B[0,1]→b[0,1] �C[0,1]→b[2,3]

circ = cuccaro2004add("cuccaro_adder_case4",4,['a',[0,1]],['b',

[[0,1],[2,3]]])↪→

#Case 5

#Mapping:

# �A[0,1]→a[0,1] �B[0,1]→b[0,1] �C[0,1]→c[0,1]

circ = cuccaro2004add("cuccaro_adder_case5",5,['a',[0,1]],

['b',[0,1]],['c',[0,1]])↪→

The generated output file can be seen as two “independent” sections as high-

lighted in Figure 3.8. The first section is common in all five cases, and essentially
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contains the OpenQASM language header, several comments, and the general gate

definition. How the second part is generated, on the other hand, depends on the

case in question.

Figure 3.8: Example: cuccaro2004add(), output file
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Return value

As already mentioned, all the arithmetic functions that this library provides return

a string corresponding to the OpenQASM description of the circuit. The aim of

this section is to emphasize that the returned value, for compatibility reasons with

the employed Quantum Computing frameworks, differs from what is written into

the file. Particularly, since some frameworks do not support the OpenQASM “gate”

statement, a circuit description functionally identical to the one written on the file,

but not using “gate” statement, is returned. In the following snippet of code, it is

possible to observe what has been said. The reader is invited to make a comparison

with Figure 3.8.

#Case 1:

circ = cuccaro2004add(None,1,['a',[[0,1],[2,3], [4,5]]])

print(circ)

Output:

OPENQASM 2.0;

include ”qelib1.inc”;

//Component type: integer adder

//Info: cuccaro2004add: no carry in version

qreg a[6];

//Aqubits: a[0],a[1]

//Bqubits: a[2],a[3]

//Cqubits: a[4],a[5]

cx a[1],a[3];

cx a[1],a[4];

cx a[1],a[5];

ccx a[2],a[0],a[4];

ccx a[4],a[3],a[5];
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cx a[4],a[3];

ccx a[2],a[0],a[4];

cx a[1],a[4];

cx a[0],a[2];

cx a[1],a[3];

Include file

The OpenQASM language allows to import custom libraries into project files. In this

case, libraries are files containing components defined using the “gate” statement.

The QAL library, as already mentioned, allows to choose whether the file or return

value to be generated should be a stand-alone OpenQASM file or a library file7.

How to generate include files is shown in the following example.

#Case 1:

circ = cuccaro2004add("cuccaro_adder_include",1,['a',[[0,1],

[2,3],[4,5]]], qasm = False)↪→

Figure 3.9: Example: cuccaro2004add(), include file

7In the case of include files there is no difference between the generated file and the return
value.
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It is noted that when a library file is generated, the called function - in addition

to generate the desired file - prints to standard output how that component must

be invoked to have the qubits mapped as specified in the parameters passed to the

function. Referring to the previous example, the statements printed on the standard

output will be the following.

Output:

#==========Usage==========#

include ”cuccaro adder.inc”;

...

...

cuccaro2004add a[2],a[0],a[4],a[3],a[1],a[5];

#========================#

3.2.3 Test on simulator

During library development, it was necessary to test the proper functioning of the

implemented circuits. In this regard, instead of proceeding with a traditional ap-

proach, i.e. testing all possible combinations one at a time, it was decided to take

advantage of the concept of “superposition of states” offered by Quantum Mechan-

ics in order to be able to evaluate all possible inputs and their outputs in a “single

shot”. The strategy in question is based on three main steps:

Step 1 Modifying the Circuit Under Test to create the conditions for which all

possible combinations can be evaluated at the same time, taking advantage of the

principle of superposition of states;

Step 2 Running the circuit on a “quantum simulator” using the IBM quantum

experience platform;

Step 3 Analyze the results.
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In the following all the various steps are explained in detail.

Step 1: Testbench Generation At this stage the aim is to modify the circuit so

that all possible combinations could be evaluated simultaneously. Assuming that the

C.U.T is a generic arithmetic component with two-qubit operands8, the modification

made to the circuit is the one shown in Figure 3.10.

Figure 3.10: Testbench version of a C.U.T.

As shown in the previous figure, Hadamard gates, CNOT gates and measuring

operators have been added to the C.U.T. Therefore, before proceeding with an

analytical demonstration of the method in question, it is good to explain the role of

each added element.

Hadamard gates These gates - applied to the two operands of the analyzed arith-

metic circuit - aim to achieve a coherent superposition of all possible incoming

values, thus giving the possibility to simultaneously evaluate all possible com-

binations of the inputs and their outcomes.

CNOT gates Having the need to measure the superposition of states generated

by the Hadamard gates, and not being able to do so by applying measure-

ment operators directly on the qubits related to the two operands9, CNOT

8The example shows the reasoning on a circuit where operands have a parallelism of two qubits.
However, this approach can be generalized to circuits of parallelism N.

9As explained in Section 1.2.1, the measurement operation is irreversible, i.e. it is not possible
to measure a superposition of states without “destroying” the superposition itself. Since the aim
is to use the state generated by the Hadamard gates as input for the C.U.T., there is the need to
find a way to know the input state without “destroying” it.
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gates were inserted with the aim of “copying” the superposition generated by

Hadamard gates on ancilla qubits. It should be noted that, although the term

“copying” was used to make the concept more immediate, it is not formally

correct. In Quantum Mechanics, in fact, the non-cloning theorem states that

it is not possible to “clone” an unknown quantum state a priori. However,

without violating the non-cloning theorem, it is possible to use Hadamard and

CNOT gates in combination to generate an entanglement between a pair of

qubits, one associated to an operand register, the other related to an ancilla

register. In this way the measurement value provided by the ancilla register

permits to immediately know which was the corresponding entangled operand.

Measurements As visible in the Figure 3.10, measurement operators have been

added so that it is possible to evaluate both the two input states and the

output state.

Before proceeding with the explanation of the simulation phase, the analytical

demonstration that justifies this approach is proposed in the following.

Figure 3.11: Demonstration of test methodology

Proof. Let A and B operands of N qubits each and aA and aB two ancilla registers.

Each of them can therefore represent an integer number in the range [0,2N − 1].{
A = k with k ∈ [0,2N − 1]

B = l with l ∈ [0,2N − 1]
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Hence the state |Ψ1〉 (see Figure 3.11) can be expressed as10:

|Ψ1〉 =
1√
2N

∑
k

|k〉A ⊗
1√
2N

∑
l

|l〉B ⊗ |0〉
⊗N
aA ⊗ |0〉

⊗N
aB

It is possible now to calculate the |Ψ2〉 state.

|Ψ2〉 =
1√
2N

∑
k

|k〉A |k〉aA ⊗
1√
2N

∑
l

|l〉B |l〉aB =

=
1√
2N

∑
k

∑
l

|k〉A |l〉B |k〉aA |l〉aB =

=
1√
2N

(|0〉A |0〉B |0〉aA |0〉aB + |0〉A |1〉B |0〉aA |1〉aB +

+ |0〉A |2〉B |0〉aA |2〉aB + ...+ |0〉A
∣∣2N − 1

〉
B
|0〉aA

∣∣2N − 1
〉
aB

+

+ |1〉A |0〉B |1〉aA |0〉aB + |1〉A |1〉B |1〉aA |1〉aB +

+ |1〉A |2〉B |1〉aA |2〉aB + ...)

Assuming that the C.U.T. acts on two generic x and y inputs with an unitary

evolution U as follows:

UC.U.T. |x〉A |y〉B = |f(x,y)〉 ,

state |Ψ3〉 can be written as:

|Ψ3〉 =
1

2N

∑
k

∑
l

|f(k,l)〉AB |k〉aA |l〉aB =

=
1

2N
(|f(0,0)〉AB |0〉aA |0〉aB + ...+

∣∣f(0,2N − 1)
〉
AB
|0〉aA

∣∣2N − 1
〉
aB

+

+ |f(1,0)〉AB |1〉aA |0〉aB + ...+
∣∣f(1,2N − 1)

〉
AB
|1〉aA

∣∣2N − 1
〉
aB

+ ...+

+
∣∣f(2N − 1,0)

〉
AB

∣∣2N − 1
〉
aA
|0〉aB + ...+

+
∣∣f(2N − 1,2N − 1)

〉
AB

∣∣2N − 1
〉
aA

∣∣2N − 1
〉
aB

10It is noted that quantum registers are ordered from top to bottom, while their parallelism is
oriented according to IBM notation, as shown in Figure 3.11.
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It can be clearly observed a uniform distribution of state where ancilla registers

contain the operands and the qubits related to registers A and B contain the result.

It is important to precise that this parallel evaluation requires a quantum circuit

with a number of qubits which is the double of that of a purely sequential test.

Step 2: Simulation This step is to simulate the “testbench version” of the circuit

on a quantum simulator using the IBM quantum experience platform. The choice to

use this platform arises from the fact that it allows to download a csv file containing

the results of the simulation.

Step 3: Data Analysis In this last step, the results are analyzed. In particular,

the aim is to verify that the output produced by each input pair is consistent with

what is expected by the operator under analysis.

Test on Simulator: a Practical Example

Now that the theory behind this testing methodology should be clear, it is possible

to proceed with a practical example. In particular, suppose to test the proper func-

tioning of the multiplier proposed by Muñoz-Coreas and Thapliyal by choosing for

the operands a parallelism of two qubits. This multiplier can be implemented by

using the coreas2017mul() function.

coreas = coreas2017mul(None,1,['a',[[0,1],[2,3],[4,5,6,7,8]]])

print(coreas)

Output:

OPENQASM 2.0;

include ”qelib1.inc”;

//Component type: integer multiplier

//Info: coreas2017mul: integer multiplier
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qreg a[9];

//Aqubits: a[0],a[1]

//Bqubits: a[2],a[3]

//Cqubits: a[4],a[5],a[6],a[7],a[8]

ccx a[2],a[0],a[4];

ccx a[2],a[1],a[5];

cx a[1],a[6];

ccx a[3],a[1],a[7];

ccx a[5],a[0],a[1];

ccx a[6],a[1],a[8];

ccx a[3],a[8],a[7];

ccx a[6],a[1],a[8];

ccx a[3],a[1],a[6];

ccx a[5],a[0],a[1];

ccx a[3],a[0],a[5];

cx a[1],a[6];

It is noted that in the previous snippet of code no file has been generated. This

choice is due to the fact that the tbFormatQasmSimulator() function, used in the

following, can accept an OpenQASM description in input or via file, or through a

string. In this case, it is decided to pass the circuit description as a string. The

reader is recommended to consult the documentation for more detailed information

about how the functions work.

Once the multiplier file has been generated, the first step is to generate the “test-

bench version” of this circuit. This is possible thanks to the tbFormatQasmSimula-

tor() function in the library. The file for the multiplier in its testbench version will

then appear as follows.

coreas_tb = tbFormatQasmSimulator(False,coreas,"my_mul_tb")

print(coreas_tb)
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Output:

OPENQASM 2.0;

include ”qelib1.inc”;

//Component type: integer multiplier

//Info: coreas2017mul: integer multiplier

qreg a[9];

qreg aancilla[2];

qreg bancilla[2];

creg ameas[2];

creg bmeas[2];

creg res[4];

h a[0];

h a[1];

h a[2];

h a[3];

cx a[0],aancilla[0];

cx a[1],aancilla[1];

cx a[2],bancilla[0];

cx a[3],bancilla[1];

measure aancilla -> ameas;

measure bancilla -> bmeas;

//Aqubits: a[0],a[1]

//Bqubits: a[2],a[3]

//Cqubits: a[4],a[5],a[6],a[7],a[8]

ccx a[2],a[0],a[4];

ccx a[2],a[1],a[5];

cx a[1],a[6];
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ccx a[3],a[1],a[7];

ccx a[5],a[0],a[1];

ccx a[6],a[1],a[8];

ccx a[3],a[8],a[7];

ccx a[6],a[1],a[8];

ccx a[3],a[1],a[6];

ccx a[5],a[0],a[1];

ccx a[3],a[0],a[5];

cx a[1],a[6];

measure a[4]->res[0];

measure a[5]->res[1];

measure a[6]->res[2];

measure a[7]->res[3];

At this point, the “my mul tb.qasm” file, which contains the testbench ver-

sion of the circuit, has been generated, so it is possible to proceed uploading the

file to the IBM quantum experience platform and launching the simulation on the

“ibmq qasm simulator”. When the simulation is finished, the downloadable csv file

will be as shown in Figure 3.12.

Figure 3.12: Example: coreas2017mul(), two-qubit, simulation, csv file
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Each line in the csv file, excluding the header, corresponds to one of the possible

input-output combinations. In particular, reading the binary numbers in column

“Computational basis states” from left to right, it can be seen that the first four

digits represent the final product, while the last two pairs of digits represent the two

operands.

Instead of proceeding with a visual inspection of the generated file, it is possible

to use the proposed readCSVfromTB() function in the library to analyze the file. The

function in question can assume two different behaviors depending on the analysis

results: if all the results are correct, it prints a message on standard output that

reports the success of the scan; conversely, if errors have been found in the csv file,

an error message is printed on the standard output and a log file is also generated.

In the following both cases are illustrated.

Correct behaviour The following snippet of code shows the output of the read-

CSVfromTB() function if the parsed csv file is correct.

err = readCSVfromTB("intmul","my_mul_results",2)

Output:

Correct behaviour.

Wrong behaviour At this point, it is good to see the case in which there is an

error in the csv file. To do this, suppose to change some values in the generated csv

file in order to make some of the results wrong. In this case, the behaviour of the

readCSVfromTB() function will be as follows.

err = readCSVfromTB("intmul","my_mul_results",2)

Output:

Errors in csv file. A .log file with details has been generated.

The generated log file is shown in Figure 3.13.
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Figure 3.13: Example: coreas2017mul(), two-qubit, simulation, log file

3.2.4 Use with Other Languages

This library has been designed to be compatible with well-known frameworks related

to the world of Quantum Computing, such as Qiskit, Cirq and T-ket. Below is

shown how to use it in various cases. It is noted that, in each paragraph, before

illustrating the example of using the QAL library with the various languages, a brief

introduction is made to the languages themselves, in order to make the reader able

to understand the code proposed as example.

Qiskit

Introduction Qiskit11 is an open-source framework developed by IBM that allows

to describe quantum circuits and to run them either on a simulator or on real

11First release in 2017.
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quantum computers. It is composed by four different components (Terra, Aqua,

Aer, Ignis), each of them allowing a given set of functionalities. Since the purpose

of this brief introduction is only to allow the reader to correctly interpret the example

code proposed in the next paragraph, in the following, a rundown of basic commands

will be proposed. In general, Qiskit allows the user to generate a QuantumCircuit

object and hang all the necessary gates to it. The syntax to use to create an object

of type QuantumCircuit is as follows:

qc = QuantumCircuit(No.qubits, No.bits)

To define gates, instead, it is possible to proceed as follows12:

qc.gate(qubits)

To use the OpenQASM circuit descriptions produced by the Quantum Arithmetic

Library, the statement sequence to use is like this:

#Create an OpenQASM description of the desired component

my arithmetic = arithmeticFunction(...)

#Define a QuantumCircuit using the OpenQASM description

qc arithmetic = QuantumCircuit.from qasm str(my arithmetic)

#Give a name to the QuantumCircuit object

qc arithmetic.name = “arithmeticComponentName′′

#Translate the QuantumCircuit into an instruction

arithmetic gate = qc arithmetic.to instruction()

At this point it is possible to use the generated instruction an arbitrary number of

times. To do that, proceed in this way:

qc.append(arithmetic gate, qubits)

One final aspect concerns the measurement operators, which can be inserted into

the circuit as follows:

12The reader shall be aware about the fact that the one shown is the most basic method for
hanging gates. Actually the syntax can also be different.
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qc.measure(qubits, bits)

Without going into detail, it is possible to observe that the commands get backend,

execute, result, get counts etc. can be used to run the circuit on “qasm simulator”

or real hardware. For more information about this framework it is suggested to see

[12].

Example

from qiskit import (

QuantumCircuit,

execute,

Aer)

from qiskit.visualization import plot_histogram

from QAL.quantumArithmetic import *

#Generating an OpenQASM description of the 3-qubits

cuccaro2004adder↪→

cuccaro_qasm =

cuccaro2004add(None,1,['q',[[0,1,2],[3,4,5],[6,7]]])↪→

qc_add = QuantumCircuit.from_qasm_str(cuccaro_qasm)

qc_add.name = "cuccaro2004add_3qubits"

cuccaro_adder = qc_add.to_instruction()

#Now it is possible to use the 3-qubits adder in our Qiskit

circuit↪→

qc = QuantumCircuit(8,4)

#Goal: Compute 101 + 001 --> Expected result: 0110

#operand A

qc.x(0)

qc.x(2)

#operand B
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qc.x(3)

qc.append(cuccaro_adder,[0,1,2,3,4,5,6,7])

qc.measure([3,4,5,7],range(0,4))

# Use 'qasm_simulator'

simulator = Aer.get_backend('qasm_simulator')

# Execute the circuit on the qasm simulator and store the

result↪→

counts = execute(qc, simulator,

shots=1000).result().get_counts(qc)↪→

print("Info: A + B = 101 + 001 = 0110")

# Draw the circuit

print(qc)

# Plot the result

plot_histogram(counts, color='midnightblue', title="Operation: 5

+ 1 = 6")↪→
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Output:

Figure 3.14: Example: how to use the QAL with Qiskit

Cirq

Introduction In 2018 Google announced an open source framework called Cirq,

which is able to decribe quantum circuits and to run them either on simulator or

on real hardware. As with Qiskit, a rundown of the basic commands needed to

understand the example code proposed in the next paragraph will be put in place

below. Cirq gives the user the possibility to create Circuit objects, to which qubits

can be connected. To define an object of type Circuit it is possible to proceed as

follows:

circuit = cirq.Circuit()

As for qubits, Cirq allows to define three different types of qubits: GridQubit,
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LineQubit and NamedQubit. Although all three types can in fact be used to describe

qubits, each of them is more or less useful depending on the context in which it is

used. Since the purpose now is not to provide detailed guidance to Cirq, it will only

be shown how to declare qubits of type Named, which are what will then be used

in the sample circuit. To define a NamedQubit, it is possible to proceed in this

manner:

qub = cirq.NamedQubit(qubit name)

Having defined both an object of type Circuit and objects of type qubits, it is there-

fore possible to insert gates inside the circuit. Although there are many possibilities

to do this, the method also used in the proposed example is shown below.

circuit.append(cirq.gate name(qubit))

It is now possible to show how an OpenQASM description produced by the QAL

library can be used within a Cirq circuit description; to do this the following in-

structions can be used:

#Create an OpenQASM description of the desired component

my arithmetic = arithmeticFunction(...)

#Create a custom circuit from OpenQASM description

arithmetic gate = my arithmetic.circuit from qasm(my arithmetic)

To use the new component it is possible to proceed in this way:

circuit.append(arithmetic gate)

Finally, to insert a measurement operator within a circuit, one of the possibilities

is as follows:

circuit.append(cirq.measure(qubit))

In the code proposed as an example, the Cirq simulator will be used in its basic

configuration. To do this, the following syntax will be use:

simulator = cirq.Simulator()

result = simulator.run(circuit,options...)
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For further details the reader is invited to consult [16].

Example

import cirq

from cirq.contrib.qasm_import import circuit_from_qasm

from QAL.quantumArithmetic import *

#Generating an OpenQASM description of the 2-qubits

takahashi2009add↪→

takahashi_qasm =

takahashi2009add(None,1,['q',[[0,1],[2,3],[4]]])↪→

takahashi_adder = circuit_from_qasm(takahashi_qasm)

#Now it is possible to use the 2-qubits adder in our Cirq

circuit↪→

circuit = cirq.Circuit()

#The name of the circuit qubits must be compliant with the

name↪→

#of the generated arithmetic component

qub = []

for i in range(0,6):#6 is the number of qubits

qub.append(cirq.NamedQubit(f'q_{i}'))

#Goal: Compute 11 + 01 --> Expected result: 100

#Operand A (11)

circuit.append([cirq.X(qub[0])])

circuit.append([cirq.X(qub[1])])

#Operand B (01)

circuit.append([cirq.X(qub[2])])
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circuit.append(takahashi_adder)

for i in range(2,4):

circuit.append(cirq.measure(qub[i]))

circuit.append(cirq.measure(qub[4]))

# Execute the circuit on the simulator and store the result

simulator = cirq.Simulator()

result = simulator.run(circuit, repetitions=10)

print("Info: A + B = 11 + 01 = 100")

# Draw the circuit

print(circuit)

# Plot the result

print(cirq.plot_state_histogram(result))

Output:

Figure 3.15: Example: how to use the QAL with Cirq
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T-ket

Introduction T-ket is a software platform developed by Cambridge Quantum

Computing (CQC). As the other languages, it basically allows to describe quantum

circuit and to execute them on simulator or on real quantum computers. In the

following the basic commands will be shown.

The principle of operation of this language is very similar to that of the other two

mentioned above. In particular, it is possible to define a quantum circuit as follows:

qc = Circuit(qubits, bits)

Once a quantum circuit has been instantiated, it is possible to hang the various

gates to it like this:

qc.gate name(qubit)

To use OpenQASM description, the following instructions can be used:

#Create an OpenQASM description of the desired component

my arithmetic = arithmeticFunction(...)

#Create a custom circuit from OpenQASM description

arithmetic gate = circuit from qasm str(my arithmetic)

It is possible to append the generated circuit in this way:

qc.add circuit(arithmetic gate, qubits)

Finally, the measurement operators can be inserted as follows:

qc.Measure(qubit, bit)

Again, for the purposes of this very brief introduction, it is not particularly inter-

esting to pay attention on the syntax used to run the circuit on a simulator. See

[14] for more details.
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Example

from pytket import Circuit

from pytket.qasm import circuit_from_qasm_str

from pytket.backends.ibm import AerBackend

import numpy

from matplotlib import pyplot

from QAL.quantumArithmetic import *

#Generating an OpenQASM description of the 3-qubits

cuccaro2004add↪→

cuccaro_qasm =

cuccaro2004add(None,1,['q',[[0,1,2],[3,4,5],[6,7]]])↪→

qc_add = circuit_from_qasm_str(cuccaro_qasm)

#Now it is possible to use the 3-qubits adder in our Cirq

circuit↪→

qc = Circuit(8,4)

#Goal: Compute 110 + 010 --> Expected result: 1000

#Operand A (110)

qc.X(1)

qc.X(2)

#Operand B (010)

qc.X(4)

qc.add_circuit(qc_add, [0,1,2,3,4,5,6,7])

qc.Measure(3,0)

qc.Measure(4,1)

qc.Measure(5,2)

qc.Measure(7,3)
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# Execute the circuit on the simulator and store the result

b = AerBackend()

b.compile_circuit(qc)

handle = b.process_circuit(qc, 100)

counts = b.get_counts(handle)

#Plot the result

res = {}

for key in counts.keys():

new_key = ''.join(map(str,key[::-1]))

res[new_key] = counts[key]

pyplot.title("Operation: 6 + 2 = 8")

_ = pyplot.bar(res.keys(),res.values(), width = .5, color = 'b')

Output:

Figure 3.16: Example: how to use the QAL with T-Ket

3.2.5 Flexibility in Connecting Qubits

The purpose of this section is to highlight how it is possible to insert the arithmetic

circuits generated within larger circuits and how the function interface allows to
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connect the various qubits with extreme flexibility. To do this, an example where

the aim is to perform the following calculation is proposed:

OUT = (A+B) · (C −D)

This example is only intended to highlight the potential of the library.

Example

from qiskit import (

QuantumCircuit,

execute,

Aer)

from qiskit.visualization import plot_histogram

from QAL.quantumArithmetic import *

#Generating an OpenQASM description of the 2-qubits

takahashi2009adder↪→

takahashi_qasm =

takahashi2009add(None,1,['q',[[0,1],[2,3],[4]]])↪→

qc_add = QuantumCircuit.from_qasm_str(takahashi_qasm)

qc_add.name = "takahashi2009add_2qubits"

takahashi_adder = qc_add.to_instruction()

#Generating an OpenQASM description of the 2-qubits

takahashi2013subtractor↪→

thapliyal_qasm =

thapliyal2013sub(None,1,['q',[[0,1],[2,3],[4]]])↪→

qc_sub = QuantumCircuit.from_qasm_str(thapliyal_qasm)

qc_sub.name = "thapliyal2013sub_2qubits"

thapliyal_subtractor = qc_sub.to_instruction()
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#Generating an OpenQASM description of the 3-qubits

coreas2017multiplier↪→

coreas_qasm = coreas2017mul(None,1,['q',[[0,1,2],[3,4,5],

[6,7,8,9,10,11,12]]])↪→

qc_mul = QuantumCircuit.from_qasm_str(coreas_qasm)

qc_mul.name = "coreas2017mul_3qubits"

coreas_multiplier = qc_mul.to_instruction()

#Now it is possible to use the 3-qubits adder in our Qiskit

circuit↪→

qc = QuantumCircuit(17,6)

#operand A=3

qc.x(0)

qc.x(1)

#operand B=1

qc.x(2)

#operand C=3

qc.x(5)

qc.x(6)

#operand D=1

qc.x(7)

#Perform A+B

qc.append(takahashi_adder,[0,1,2,3,4])#result stored in 3,4,5

#Perform C-D

qc.append(thapliyal_subtractor,[5,6,7,8,9])#result stored in

7,8,9↪→

#Perform (A+B)(C-D)
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qc.append(coreas_multiplier,[2,3,4,7,8,9,10,11,12,13,14,15,16])

qc.measure(range(10,16),range(0,6))

# Use 'qasm_simulator'

simulator = Aer.get_backend('qasm_simulator')

# Execute the circuit on the qasm simulator and store the

result↪→

counts = execute(qc, simulator,

shots=1000).result().get_counts(qc)↪→

# Draw the circuit

print(qc)

# Plot the result

plot_histogram(counts, color='midnightblue', title="Operation:

(3+1)x(3-1)=8")↪→
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Output:

Figure 3.17: Example: how to use arithmetic blocks ad sub-blocks
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Chapter 4

Quantum processors: benchmark

using arithmetic circuits

“Glory is like a circle in the water,

Which never ceaseth to enlarge itself,

Till by broad spreading, it disperses to naught.”

William Shakespeare

Although the world of quantum computers is making great strides every day, their

current performances do not allow to execute too complex circuits. These devices,

in fact, still have a limited parallelism and a too high noise sensitivity.

The aim of this chapter is to show the results obtained by running some of the

circuits implemented in the QAL library on some free-accessible quantum comput-

ers. The first section aims to illustrate general information to the reader about

how the various tests were carried out (which circuits were analysed, which target

architectures, etc.). The second section, on the other hand, is intended to show the

results obtained from the various tests. Within this section, in addition to show-

ing why circuits implemented in this library cannot be reliably executed on current

quantum computers, some “anomalous” behaviors related to the results obtained

will be also commented.
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4.1 Setup Definition

Once the library development was complete, some of the implemented circuits have

been tested on free-accessible quantum computers in order to verify if the imple-

mented circuits can be reliably executed on real hardware. The aim of this section

is to explain the methodology used to carry out the various tests.

4.1.1 Analyzed Circuits

Remembering what is said in Section 1.7, today’s quantum computers find a critical

parameter in the depth of the circuit. Particularly, the closer the execution time of a

circuit is to the qubits’ decoherence times1, the more the reliability of the final result

will be negatively affected. For this reason, among the circuits implemented, it was

decided to analyze those characterized by the shortest circuit depth: the two adders

implemented by the functions takahashi2009add and thapliyal2013add2. It is noted

that this choice was due to the fact that, at least theoretically, the execution of the

other circuits would have led to results more influenced by the problems plaguing the

current available quantum computers, due to their longer depth and a significantly

higher number of involved qubits. It is also noted that - in order to obtain reliable

results - each of the possible incoming combinations3 has been tested ten times.

4.1.2 Quantum Computers

Since the total number of qubits required to simulate the two adders mentioned in

the previous paragraph is five (see Section 2.3.4), it was decided to use four different

free-accessible quantum computers offered by IBM: Ourense, Valencia, Vigo and

Yorktown, all of which have five qubits. A characteristic problem of these devices is

that qubits are not “all connectable to each other”. In other words, it is not possible

to arbitrarily choose the qubits on which to run a two-qubit gate. Each quantum

computer has a coupling map, that is a graph representing on which pairs of qubits

1In most cases the decoherence time is more critical than the relaxation time.
2In the version without carry in.
3Since the parallelism of the two operands is equal to two, the total number of possible inbound

combinations is equal to 22 · 22 = 16.
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a two-qubit gate can be applied. The coupling maps of the quantum computers

examined are shown in Figure 4.1.

Figure 4.1: Yorktown, Ourense, Valencia, Vigo: coupling map

The reader may have already guessed that, often, there is the need to modify a

circuit in order to make it compatible with the target architecture. In fact, during

the “layout” operation, that is, during the mapping of “virtual”4 in “real”5 qubits, a

series of SWAP gates are added to compensate for the limited connectivity between

real qubits. It can be observed that, although these additional gates allow to execute

circuits otherwise not executable, they increases the depth of the circuit, reducing

performances. Further comments can be made about the devices in question. All the

devices examined belong to the IBM quantum computer family called “Canary”. In

particular, Yorktown is part of the “Revision 2” category, while Ourense, Valencia

and Vigo are part of the “Revision 3” category ([15]). A further observation is about

the Quantum Volume, which is a figure of merit used by IBM to characterize the

overall performance of its quantum computers. Since the performance of quantum

computers depends not only on the number of qubits, but also on many other factors,

4“Virtual” qubits are the qubits defined in the circuit description. A virtual qubit, therefore,
is not associated with any physical properties (relaxation, decoherence etc). It is only taken into
account from a functional point of view.

5“Real” qubits are the qubits physically present in the quantum computer. Each real qubit,
therefore, is characterized by its own physical properties (e.g. relaxation time, decoherence time
etc.) that are experimentally measurable.
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IBM has decided to use a single number to characterize its devices: the Quantum

Volume. The bigger the Quantum Volume, the better the performances of the device.

Among the quantum computers examined, there are two, Ourense and Yorktown,

with a Quantum Volume of 8, while two others, Valencia and Vigo, have a Quantum

Volume of 16.

Figure 4.2: Quantum Volume

A final observation that can be made about the examined quantum computers

concerns the relaxation and decoherence times of the various qubits and the error

distributions of the various gates. Before proceeding showing the values of these

parameters, it is good to make an important note: due to the high number of simu-

lations, the two circuits examined were tested on different days, resulting in different

parameters of the devices6. Therefore, if the reader should notice in the following -

for the same device - different parameters (e.g. decoherence times, relaxation times

etc.), know that this is the reason.

Relaxation and decoherence times are described in Tables 4.1 and 4.2.

6IBM updates quantum computers parameters daily.
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Table 4.1: Relaxation and decoherence times: Takahashi adder

Qubit
Vigo Valencia Ourense Yorktown

T1 [us] T2 [us] T1 [us] T2 [us] T1 [us] T2 [us] T1 [us] T2 [us]

Q0 121.27 18.27 84.28 60.25 86.74 34.26 70.86 18.7

Q1 96.57 105.87 120.8 69.37 106.68 31.36 46.74 21.79

Q2 119.96 130.05 75.71 44.22 82.92 84.67 41.68 41.27

Q3 120.89 101.25 101.65 44.23 124.41 103.06 68.22 39.86

Q4 83.22 51.05 88.75 141.26 121.32 27.15 63.01 45.8

Table 4.2: Relaxation and decoherence times: Thapliyal adder

Qubit
Vigo Valencia Ourense Yorktown

T1 [us] T2 [us] T1 [us] T2 [us] T1 [us] T2 [us] T1 [us] T2 [us]

Q0 143.56 21.75 115.58 65.62 99.54 76.41 71.02 26.62

Q1 87.19 95.03 85.34 56.03 75.9 32.41 50.9 23.28

Q2 109.41 143.47 64.86 55.08 97.57 113.37 41.51 63.24

Q3 76.6 83.96 72.31 51.78 105.08 103.72 38.12 25.68

Q4 107.43 23.72 35.95 48.11 72.36 27.54 40.64 42.7

As for the distribution of errors related to the different gates, the typical error

values for the various devices are shown in Figures 4.3 and 4.47. Although only

errors relating to the U2 and CNOT gates appear in the figures just mentioned, a

null error can be assumed for U1 - as it is implemented via software - and twice the

error of U2 can be supposed for U3, as its duration is twice that of U2.

7Although these values are also updated daily, for clarity it was preferred to show average
values.
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Figure 4.3: Gate U2: typical errors

Figure 4.4: Gate CNOT: typical errors

4.2 Experimental Results

Correct Output Probability The first figure of merit that has been evaluated

is the probability to measure a correct outcome. This probability - that is shown

for each of the sixteen combinations in charts of Figures 4.5 and 4.6 - is always less

than 0.45. This shows how today’s technology does not allow to reliably perform

the arithmetic circuits implemented in this library.
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Figure 4.5: Correct outcome probabilities [Takahashi adder, 2-qubits]

Figure 4.6: Correct outcome probabilities [Thapliyal adder, 2-qubits]
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The first aspect that catches attention when looking at charts in Figures 4.5

and 4.6 is the “anomalous” behavior of the quantum computer Yorktown. In fact,

even though it is characterized by higher connectivity than the other devices - thus

involving fewer gates8 (see Figures 4.7 and 4.8) - it shows in many cases a very low

probability of measuring the correct result.

Figure 4.7: No. quantum gates: Takahashi adder

8The more qubits of the device are connected to each other, the smaller the number of gates
that must be added in the layout phase to make the circuit compatible with the target architecture.
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Figure 4.8: No. quantum gates: Thapliyal adder

A possible answer could lie in three facts:

1. Although the number of gates used is about half that of other quantum com-

puters, Yorktown’s gates have - on average - significantly higher error rates

(see Figures 4.3 and 4.4);

2. Decoherence and relaxation times (see Figures 4.9 and 4.10) are - on average

- worse than those of other devices;

3. Remembering how the various superconducting qubits are coupled with each

other (see Section 1.7), it is possible that - due to the high connectivity that

characterizes the Yorktown device - the crosstalk phenomenon is much more

important than in other devices, introducing further errors.
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Figure 4.9: Longest path, decoherence time and relaxation time: Takahashi adder

Figure 4.10: Longest path, decoherence time and relaxation time: Thapliyal adder
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Another observation that can be made about charts in Figures 4.5 and 4.6 is

that although quantum computers with a higher Quantum Volume do not always

have the greatest chance of getting a correct result, their behavior is more stable

and the average probability of getting a correct result is greater, as shown in Figure

4.11.

Figure 4.11: Correct outcomes average probabilities

At the beginning of this chapter it was noted that performances are heavily

influenced by the qubits’ decoherence times. In particular, it was observed that the

greater the critical path delay with respect to the decoherence time, the worse the

performances. This statement would seem to be at odds with charts in Figures 4.9

and 4.10 and the chances of getting a correct output shown in Figures 4.5 and 4.6.

In fact, it is possible to see from these charts that - although the decoherence time

is significantly larger than the average calculated delay for the critical path - the

chances of getting a correct output never exceed 0.45. In order to justify this, two

observations can be made:

• First, the decoherence time shown in Figures 4.9 and 4.10 is obtained by

averaging between the decoherence times of all qubits. By analyzing the spec-

ifications of the various target devices, it can be seen that, in reality, qubits

belonging to the same device have significantly different decoherence times (see
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Tables 4.1 and 4.2 where the relaxation and decoherence times of the various

qubits - rounded to two decimal places - are shown). This means that some

qubits, those characterized by shorter decoherence times, can affect more the

goodness of the final result9. Taking this into account would have required

to check the length of the path associated with each qubit. This approach,

however, would have been too complicated since the mapping between virtual

and real qubits can change from execution to execution.

• Second, quantum computers under consideration do not actually allow multi-

ple gates to run in parallel. To explain this concept, refer to Figure 4.12.

Figure 4.12: Two CNOT gates aligned

Although it would appear that the two CNOT gates can run in parallel, since

they act on different qubits, it is possible that they cannot be run in paral-

lel due to technological limitations (e.g. crosstalk phenomena could be very

significant). This means that, in fact, the critical path calculated earlier is a

very optimistic estimate of what happens on real hardware, where gates that

theoretically could run in parallel, are actually run in series. Not knowing

exactly how this fact is handled in the various devices, it was not possible to

make a precise estimate of how it actually affects the performances.

4.2.1 Layout effort

One last parameter that is worth showing, although it has already been mentioned

in the previous paragraphs, is the layout effort, which gives an idea of how many

9Clearly it all depends on how the mapping between virtual qubits and real qubits is made.
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gates need to be added to a particular circuit to make it executable on a certain

target architecture.

layout effort =
No.gates after layout−No.gates before layout

No.gates before layout
· 100

Figures 4.13 and 4.14 show the number of gates before10 and after the layout oper-

ation for each target architecture, and the corresponding layout effort.

Figure 4.13: Additional gates due to layout operation: Takahashi adder

10It is noted that, before calculating the number of gates prior to the layout operation, a transla-
tion of the gates in the OpenQASM description of the circuit (X, CX, CCX, T, etc.) was made in
the basis set of the targets (ID, U1, U2, U3 and CX); this translation has been carried out without
introducing any optimization.

150



4 – Quantum processors: benchmark using arithmetic circuits

Figure 4.14: Additional gates due to layout operation: Thapliyal adder

From Figures 4.13 and 4.14 it is possible to see that the lower the connectivity

of the target device, the greater the number of gates that must be added to the

circuit in order to make it compatible with the target architecture. In particular, in

the case of the Yorktown quantum computer, thanks to the high connectivity of the

various qubits, it is possible to optimize the circuit in such a way that the number

of gates after the layout is less than the number of gates before the layout.
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Conclusion

Automating the generation of arithmetic circuits for Quantum Computing is the

idea behind this thesis. In this regard, after a careful bibliographic research about

the state of the art in the field of arithmetic circuits for Quantum Computing, the

Python programming language was used to create a library capable of generating

circuit descriptions of arbitrary parallelism.

The library, developed according to the PEP8 standard and widely documented

using the Sphinx tool, is able to generate OpenQASM descriptions of arithmetic

circuits that, for instance, can be used as sub-blocks in the implementation of oracle-

based algorithms, such as the Grover’s algorithm. The developed library is also able

to interface with other programming languages for Quantum Computing, such as

Qiskit, Cirq and T-ket. It is noted that the library also offers numerous support

functions that allow both to manipulate and analyze the generated circuit descrip-

tions and to analyze the results of the executions performed on simulator or real

hardware.

Once the development was finished, some of the implemented circuits have been

tested on free-accessible quantum computers. The result of the analysis shows that

the implemented circuits cannot be reliably executed on real hardware currently

available. However, it should be noted that the results obtained show a significant

improvement as the Quantum Volume increases. It is therefore possible to hypoth-

esize that, by testing the library circuits on higher performing quantum computers

- e.g. the Honeywell trapped-ion quantum computer (QV=64) - the performance of

the circuits improves significantly.

Arithmetic circuits implemented in the library are all based on integer/fixed-

point numbers. A possible extension of the library could therefore concern the

implementation of circuits for floating point arithmetic, which could be used, for

example, to accelerate simulations of quantum physical systems.
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A further observation is inherent to the coding of the information. Since the

developed library is able to generate circuits that encode information on binary

strings, a possible extension, besides the introduction of new circuits based on the

encoding of information on binary strings, could consist in inserting other types of

quantum circuits able to encode the information in ways different from the binary

one. In fact, in Quantum Computing there are other types of information encoding,

such as amplitude encoding and phase encoding, that do not use binary strings to

encode information.

It is interesting to bring to the reader’s attention the fact that the methodology

used to implement the various arithmetic circuits can be applied to any type of

quantum circuit, not necessarily arithmetic. From this perspective, the proposed

library can be seen as a first step towards a software library for Quantum Computing

able to use the same interface to implement a wide range of functions.

“ Qui nasce, qui muore il Mio canto:

e parrà forse vano

accordo solitario;

ma tu che ascolti, recalo

al tuo bene e al tuo male;

e non ti sarà oscuro.”

Clemente Rebora
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Appendix A

Basic quantum gates translated in

native IBM set

A.1 Single-Qubit Gates

Figure A.1: Pauli X gate
using IBM superconduct-
ing basis gates

Figure A.2: Pauli Y gate
using IBM superconduct-
ing basis gates

Figure A.3: Pauli Z gate
using IBM superconduct-
ing basis gates

Figure A.4: T gate using
IBM superconducting ba-
sis gates

Figure A.5: S gate using
IBM superconducting ba-
sis gates

Figure A.6: H gate using
IBM superconducting ba-
sis gates

A.2 Multiple-Qubits Gates

Figure A.7: SWAP gate using IBM
superconducting basis gates

Figure A.8: CNOT gate using IBM
superconducting basis gates
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Figure A.9: Toffoli (CCNOT) gate using IBM superconducting basis gates

Figure A.10: Fredkin(CSWAP) gate using IBM superconducting basis gates
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Appendix B

QAL library documentation: an

overview

The library documentation is structured in three sections: an introductory first part,

where general information about the library is given; a second part containing the

documentation of the code, where all the various functions are described in detail;

and a final part, which shows how to use the library.

Three snapshots of the documentation are proposed below just to give the reader

an idea of how the interface looks like.

Figure B.1: QAL documentation: index (snapshot)
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Figure B.2: QAL documentation: introduction (snapshot)

Figure B.3: QAL documentation: sample function (snapshot)
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