
POLITECNICO DI TORINO

Master degree course in Electronic Engineering

Master Degree Thesis

Octantis
A High-Level Explorer for Logic-in-Memory architectures

Supervisors
Prof.ssa Mariagrazia Graziano
Prof. Maurizio Zamboni
Ph.D. Giovanna Turvani

Candidate
Andrea Marchesin

ID: 262776

Academic year 2019 – 2020

ii

To the people I love.

iv

Summary

Today, one of the problems the scientific community is called upon to tackle
is the well-known von Neumann bottleneck. Among the various solutions un-
der study, in the recent years the VLSI Laboratory of Politecnico di Torino
has proposed the concept of Logic-in-Memory (LiM): a memory device which
embeds simple computational elements between the different cells, overall ar-
ranging a distributed processing system. The key idea consists in reducing
access to the memory for the CPU, implementing a precomputation of raw
data within the same memory. The CPU is left only with the task of per-
forming the more complex operations on that pre-processed information.

Different architectures have been proposed during the years and since 2019
the research group decided to go beyond the realization of specific case of
study. In this context, DExIMA was born as a “beta version” of a software
tool able to characterize generic Logic-in-Memory architectures. The infor-
mation which the program can provide refers to space occupation, maximum
performance and static and dynamic power consumption.

The thesis work has been profoundly influenced by the discussed background
and it introduces Octantis, a simple High-Level Synthesis tool, inspired by
other modern ones considered for FPGAs applications. It has been designed
from scratch and it reveals useful for the exploration of LiM architectures.
The purpose of the program is the analysis of an input algorithm, described
in Standard-C language, to provide an effective Logic-in-Memory unit for its
implementation. In order to best accomplish this job, Octantis receives as
input also a configuration file, whose information guides the synthesis pro-
cess toward the definition of more accurate solutions. At the output of the
program the DExIMA configuration files are provided, so that the simulator
engine can perform complete analysis of the defined architecture.

The open-source LLVM compiler infrastructure has been considered to shape

v

the whole program and thus to carry out the process of translation. The as-
sociated libraries are useful to optimize and generate a code for a target
architecture starting from an input source. The project structure, strongly
hierarchical, is constituted by different modules well integrated inside this
framework. Firstly, the input algorithm, enriched with the information ex-
pressed inside the configuration file, is decomposed in a scheme that best
express the logic which ties the various operations to be performed. Then,
optimizations techniques are applied and, step-by-step, the Logic-in-Memory
unit takes form, both in its architecture and its control. At the end, the re-
sults of the compilation process are written inside a file, compliant with the
DExIMA’s syntax and ready to be simulated by the latter.

The strengths of the developed project are many. First of all, the speed with
which the solutions are synthesized and proposed to the user. Then, the
modularity principle to which its structure is inspired, for guaranteeing a
good maintenance of the code. In this regard, a detailed documentation is
provided together with Octantis. Moreover, the capability of generating both
the description of a hardware LiM architecture and its control flow starting
from simple input algorithms.
Through the use of an input configuration file, the concepts of configuration
and customization have been adopted too.

Encouraging results have been obtained during the conducted tests, where
some of the most recent Logic-in-Memory research proposals have been suc-
cessfully synthesized.

Starting with this first release of Octantis, many additional and more ad-
vanced features can be brought to the project. Chief among the various
improvements, a more intimate configuration capability to allow each elec-
tronic engineer the exploration of specific Logic-in-Memory devices for the
application of an input algorithm. Another future work goal could be the
identification of the sections, within a generic input code, suitable for a Logic-
in-Memory implementation, distinguishing them from those that are not. In
this way, part of the instructions would be executed inside the LiM array, the
others by means of an external processing element. Therefore, information
about the behavior of a more complex system, composed of the association of
a LiM unit and a CPU, would be gathered, highlighting the possible benefits.

vi

Contents

Introduction 1

I The Logic-in-Memory concept and today’s need
for parallel computing 3

1 Motivation and background 5
1.1 An introduction to Logic-in-Memory systems 5
1.2 DExIMA: a simulator for LiM systems 7

1.2.1 The models library . 8
1.2.2 The description of the Logic-in-Memory unit 8
1.2.3 The description of the Out-Of-Memory Logic 9
1.2.4 The simulation of the system 10

2 Parallel computing 11
2.1 The available processors for parallel computation 12
2.2 From serial to parallel code 12

2.2.1 The Amdahl’s law for parallel processing 13
2.2.2 The translation process 14

2.3 Code parallelization techniques 16
2.3.1 Loop transformations 16
2.3.2 Other general techniques 18

2.4 Libraries and APIs for parallel computing 19
2.4.1 OpenMP . 21
2.4.2 OpenCL . 22
2.4.3 CUDA . 23

3 Compilers 25
3.1 The structure of a modern compiler 26

vii

3.1.1 The compiler front-end 27
3.1.2 The compiler back-end 28
3.1.3 Final comments on the internal organization of a compiler 29

3.2 The most popular C/C++ compilers 30
3.2.1 The GNU Project . 31
3.2.2 The LLVM Project . 32

4 High-Level Synthesis 33
4.1 The historical stages of the EDA Industry and the troubled

research on HLS . 33
4.1.1 The Age of gods (1964-1978) 34
4.1.2 The Age of heroes (1979-1992) 35
4.1.3 The Age of men (1993-2002) 36
4.1.4 The Contemporary Age (from the early 2000s) 36

4.2 The modern HLS Tools . 38
4.2.1 The typical structure of an High-Level Synthesizer . . . 40

5 Conclusions 45

II Octantis, a Logic-in-Memory explorer 47

6 The Octantis project 49
6.1 Introduction . 49
6.2 More details about The LLVM Project 50

6.2.1 The LLVM IR Language 51
6.2.2 The LLVM Core libraries 53

7 The structure of Octantis 59
7.1 From the input C-code to the LLVM IR 60

7.1.1 Input C-code constraints 60
7.1.2 The definition of compilation constraints 62

7.2 The adopted optimizations . 63
7.2.1 General optimization techniques 64
7.2.2 Loop Analysis and Transformation 64

7.3 The back-end . 66
7.3.1 The allocation . 67
7.3.2 The scheduling . 67
7.3.3 The binding . 69
7.3.4 The code emission . 74

viii

8 Test on Octantis 77
8.1 Synthesis of the XNor Net for an approximated CNN 78
8.2 Synthesis of a Bitmap Indexing algorithm implementation on

CLiMA . 80
8.3 Synthesis of a CLiMA CNN 83

9 Conclusions and future works 87

A XNor Net on LiM 89

B Bitmap Indexing algorithm on CLiMA 91

C CLiMA CNN 93

Nomenclature 96

Bibliography 97

ix

Introduction

The Octantis project proposes a High-Level Synthesis tool for the exploration
of Logic-in-Memory architectural solutions. It is intended to work in pairs
with another tool developed inside the VLSI Laboratory of Politecnico di
Torino, a Logic-in-Memory simulator named DExIMA.

The present dissertation in composed by the union of two parts. The
former which offers an introduction on the project background and on the
reasons behind the development of Octantis. The latter which dives in its
implementation details, unfolding a structural analysis before presenting the
results of the test conducted on it.

In particular, the pages of the first part of the document begin by retrac-
ing the research history of Logic-in-Memory devices, to which also DExIMA
belongs. Logic-in-Memory systems proved to be effective in the execution of
parallel tasks. Their architecture, strongly regular and hierarchical, makes
them particularly suitable to benefit of High-Level Synthesis.

To date, parallel computing represents a particularly interesting solution
for dealing with the crisis of Moore’s law and so the performance stagnation.
Parallel general purpose architectures need parallel input codes to make the
most of their capabilities. Therefore, numerous techniques to define par-
allel algorithms are discussed together with the major available APIs and
libraries to adapt, to parallel processing, high level languages (e.g. C, C++
and Fortran), originally meant for a serial execution. These arguments reveal
useful not only in the definition of the input C-code for Octantis, but also for
the adoption of automatic parallelization strategies inside the same compiler.

During the last decades, High-Level Synthesis tools are viewed with great
interest to speed-up the design process and along the verification phase. At-
tention is then given also to the related researches. In fact, Industry makes

1

currently a wise use of them for certain applications and, in particular, for
the development of the highly optimized IP cores. Moreover, many stud-
ies have indicated the Electronic System-Level Design, to which High-Level
Synthesis represents an integral part, as the near future of electronic design.
As High-Level Synthesizers represent, for all intents and purposes, compilers,
a description of the general structure of these kind of software programs is
given too.

Due to these reasons, the investment in the present research project has
been decided.

For what concerns, instead, the second part of the thesis work, it is focused
on the characterization of Octantis’ structure and its capabilities. Enrich the
discussion a brief digression about the LLVM framework, within which the
project has been defined, together with the presentation of the results of the
operated tests.

2

Part I

The Logic-in-Memory
concept and today’s need
for parallel computing

3

Chapter 1

Motivation and
background

1.1 An introduction to Logic-in-Memory sys-
tems

During the last decades, electronic devices have undergone a significant
increase in performance thanks to technological advances in the industry.
Moore’s law represented the landmark of that progress and the continuous
scaling of the technological node led to numerous benefits. At the same time,
many problems have appeared and designers had to do their best to com-
pensate them and to ensure the benefits would prevail.

Inside a traditional electronic processing system we can identify two main
components: the CPU and the memory, where the former elaborates the
data stored within the latter. Architectures thus described are defined as
Von Newmann. The two elements continuously exchange among themselves
information to implement a specific algorithm. However, this communica-
tion has its costs in terms of both power consumption and delay. Moreover,
while processing units could take advantage of CMOS scaling in order to
improve their performances, the memories couldn’t, since they are based on
completely different technologies. For this reason, nowadays memories are
not able to reach the same performance of the CPU and many strategies have
to be adopted to fill the gap, like implementing a hierarchy of memory and
adopting statistical approaches to manage data.

5

1 – Motivation and background

In particular for data intensive applications, the presented problems be-
come so relevant that a real bottleneck is created inside the systems. To
Industry members, this particularly disadvantageous situation is know as
“Memory Wall”, or in a more intuitive way, “Von Neumann bottleneck”.

Among the numerous proposals for resolving these critical issues, Logic-
in-Memory (LiM) architectures have been introduced. The latter achieve a
complete integration between memory and processing unit, radically over-
coming the wall. The key concept behind Logic-in-Memory architectures
consists in considering a memory made of cells capable to perform local com-
putation of the data stored inside them. In this way, information doesn’t
need to be transferred outside the storage device for the elaboration, signifi-
cantly reducing the associated costs. Logic operations are performed within
the same memory array while arithmetic ones are demanded to more complex
peripheral circuits.

Figure 1.1: Basic scheme of Configurable Logic-in-Memory Architecture
(CnM: Computation near Memory, CiM: Computation in Memory). Cour-
tesy of Giulia Santoro from Article [1]; p. 5, Figure 2.

At VLSI Laboratory of Politecnico di Torino, an important research work
has been carried out during the last years to investigate the possibilities of
these new computational units. Some examples of the derived fruits consid-
ers CLiMA, a Configurable Logic-in-Memory Array developed in the same
research team, for the implementation of a Quantized Convolutional Neural
Networks[1] and an accelerator for the Bitmap Indexing algorithm[2], both
data intensive applications. CLiMA, whose scheme of principle is depicted in
Figure 1.1, is composed of memory cells provided by different logic ports (i.e.
and, or, xor) and a full-adder, all connected by configurable interconnections,

6

1.2 – DExIMA: a simulator for LiM systems

so that a designer can easily implement a wide variety of algorithms.
Promising results have been achieved in terms of performance and power
consumption. Results that become even more important considering beyond-
CMOS technological solutions in the definition of these architectures.

In order to simplify the researches in this field, in 2019 a Logic-in-Memory
systems simulator has been introduced, DExIMA[3] in its first version. In
fact, there was the need to speed up the test phase, filling the gap of the
modern EDA tools which are not currently capable of handling these devices.

1.2 DExIMA: a simulator for LiM systems

The name of the tool is an acronym for Design Explorer for In Memory Ap-
plications and, as it can be seen by its name, it is a support software for
the design of Logic-in-Memory architectures. It has been fully developed in
C++ and it allows to characterize the behavior of those systems in terms
of space occupation, performance and, above all, static and dynamic power
consumption.

The systems that DExIMA can simulate are complex and composed of a
Logic-in-Memory unit connected through a bus to an external CMOS cir-
cuit. The idea consists in considering the traditional logic to perform more
sophisticated calculations on the data and the Logic-in-Memory architecture
to implement simpler ones but capable to exploit its parallel nature.

The description of the whole circuit, via a properly formatted configuration
file, occurs at an abstraction level similar to the RTL1 one. In particular,
the Logic-in-Memory component can be defined as a set of interconnected
cells, each of which characterized by a one-bit storage unit associated to
few logic elements. The flexibility of this design approach is fundamental
for the aims of the same program, i.e. the exploration of the capabilities of
Logic-in-Memory systems.

1The Register Transfer Level is a way to describe the behavior of an electronic circuit
through signals, memory elements and logic operators.

7

1 – Motivation and background

1.2.1 The models library
The software can rely on a wide library of components constituted by both
traditional logic and Logic-in-Memory cells and suitably described in terms
of functionality, geometry, internal delay and capacitive load. The models
adopted to define the logic, consider the modular approach and the infor-
mation derived from TAMTAMS [4], a web-based framework useful to define
the behavior of a CMOS circuit starting from its characteristic parameters
(e.g. device currents, circuit delay and interconnects noise) and developed
within Politecnico di Torino too. Regarding the description of the memory
cells, many proposals are currently under investigation. A first approach,
still implemented at the state of the art, considers the parameters extracted
by a open-source simulator of memories developed by Hewlett-Packard Lab-
oratories, CACTI [5]. However, the derived information has turned out to
be inappropriate for a precise characterization of Logic-in-Memory cells and
today a new path is being sought to improve it. The studied solutions are not
only focused on traditional memory architectures but researchers are trying
to look beyond on more advanced technologies. Researches from the VLSI
Laboratory are investigating spintronic devices and, in particular, NanoMag-
net Logic and perpendicular NanoMagnet Logic. Interesting results from
these studies can be deepened through articles [6] and [7].

In conclusion of the description of DExIMA’s library and concentrating on
the functional aspects of the implemented models, the available RTL-like cells
a designer can consider during the study of a Logic-in-Memory architecture
are depicted in Figure 1.2.

1.2.2 The description of the Logic-in-Memory unit
The Logic-in-Memory cells have to be distributed on a rectangular array of
dimensions R × C, where R and C are respectively the numbers of rows
and columns of the memory device. Additional logic blocks can be inserted
between adjacent cells in order to perform more complex inter-row and inter-
column operations. When all the elements are disposed in the desired posi-
tions, the interconnections between them need to be defined. To do this, the
designer has to simply declare the extremes of the different links (i.e. output
port and input port of the cells involved in the connection) and DExIMA it-
self will take care to arrange the specific path following a Manhattan routing
technique.

8

1.2 – DExIMA: a simulator for LiM systems

Figure 1.2: LiM cells currently available inside DExIMA’s library. Courtesy
of Nicola Piano from his Master’s Degree thesis [3]; p. 50, Table 6.2.

1.2.3 The description of the Out-Of-Memory Logic

The traditional CMOS circuit placed outside the memory can be described
in an even simpler way. In fact, the designer has to instantiate the required
RTL blocks, always described inside DExIMA’s library, and to define the
interconnections, without worrying about the relative position of the useful
elements. At this point, the software organizes the structure of the Out-Of-
Memory architecture, ready for the subsequent analysis phases.

9

1 – Motivation and background

1.2.4 The simulation of the system
As things stand today, the simulation inside DExIMA of the developed Logic-
in-Memory system is divided into two separated phases:

• Simulation of the Out-Of-Memory logic;

• Simulation of the Logic-in-Memory architecture.

In fact, although there is already an accurate model for the description of
the behavior of the bus, which is able to connect the two sub-parts, it has
not been implemented yet in the program code.

Each component belonging to the system is then subject to the same
sequence of analysis:

• Static;

• Dynamic.

In particular for the latter, the designer can provide the full algorithms
that will be executed on the two circuits. This information has to be detailed
inside the configuration files of DExIMA, following a specific syntax2.

The parameters derived from the static analysis are space occupation, static
power consumption and, the most important, maximum delay (i.e. critical
path, useful to define the maximum performance of the circuit). Through
the dynamic analysis another important information can be obtained: the
dynamic power consumption of the device under test, more relevant with re-
spect to the static one as it represents the most important parameter in the
comparison with traditional microprocessor systems.

In conclusion, DExIMA allows a designer to get an idea of the possibility
of Logic-in-Memory systems. The latter, a promising solution to the Memory
wall problem.
The program, month by month, evolves and continuously expands its func-
tionalities, aspiring to become an effective tool for the design of tomorrow’s
electronic devices.

2For a more exhaustive description about the organization of DExIMA’s input files
refer to the related documentation, constantly updated as the program functionalities.

10

Chapter 2

Parallel computing

As mentioned in the previous chapter, one key-feature of a Logic-In-Memory
systems is the intrinsic capability of parallel computation. Retracing the evo-
lution history of modern computer industry[8], since the middle of nineties
both logic and memory products have relied on CMOS technology to improve
their performance. However, soon the same performance had to be limited
to contain the rising power consumption of these devices.

The solution to the problem, in order to guarantee an increase of compu-
tational performance, was identified in the parallel processing of information.
Multi-core processors were born in this respect by the middle of the previ-
ous decade. Also today, the outputs of data elaboration are achieved as the
result of several concurrent computations each of which performed in a differ-
ent processing core1. In this way, the working frequency of the CPU could be
scaled down with a trend inversely proportional to the number of integrated
cores. Hence, the power limits were effectively respected again. To make the
concept clearer, the relationship between the presented quantities can be ob-
served in Eq. 2.1, which characterizes the dynamic power consumption of an
integrated circuit. In particular, Ngate is the number of integrated transistor,
αsw is the activity factor, CL is the average load capacitance of transistors,
f is the working frequency and VDD is the power voltage.

Pdyn = Ngate · αsw · CL · f · V 2
DD with Ngate ∝ Ncore (2.1)

1A core is an independent instructions processor, equipped with its own cache and
controller and integrated inside the same CPU package. Their structure still relies on the
Von Neumann principle

11

2 – Parallel computing

Programming languages and compilers had to be progressively adapted to
make the most of those new architectures and multi-threading programming
started to be talked about. The software tools and the mathematical tech-
niques useful for translating a serial code into a parallel version are covered
in the current chapter. Part of the discussion, refers to the contents present
inside Chapter 7 of the book “Algorithms and Parallel Computing” of F.
Gebali[9].

2.1 The available processors for parallel com-
putation

Generally, for the exploitation of parallel computing without considering the
expensive design of integrated circuits, different devices can be taken into
account, both general purpose and application specific ones.
The choice depends on the characteristics of the algorithm that has to be
implemented and on the performance required for its execution. A designer,
in this respect, can rely on the following hardware platforms:

• Multi-core Central Processing Units (Multi-core CPU)

• General Purpose Graphical Processing Units (GPGPU)

• Field Programmable Gate Arrays (FPGA)

• Digital Signal Processors (DSP)

All the presented devices, except for FPGAs, execute compiled high-level
language codes (e.g. C and C++). The performance depends on the opti-
mizations introduced by the designer inside the input code also considering
the characteristic technical details of the chosen device. Therefore, bearing
in mind the techniques useful to define parallel quality code is of paramount
importance. Few of them will be discussed in the following sections.

2.2 From serial to parallel code
Programming languages, with the advent of Von Neumann architectures,
were adapted to the definition of optimized codes with respect to their work-
ing principle. Those languages were defined imperative2 but, most of all,

2An imperative language is composed of a set of instructions which modify, step by
step, the state of a machine (i.e. the processor, in computer science).

12

2.2 – From serial to parallel code

they were meant for a serial execution.
When multi-core processors began to spread in the computer market, the
same way of thinking about writing code had to evolve again, through an
important change of perspective. In this context, the program structure was
subdivided into threads, small sections of the whole code each of which as-
sociated to an available CPU core for its processing. Hence, part of the
algorithm, which was more suitable for a parallel execution, could benefit
from an important speed-up.

Even today, the written code intended to run on modern processing units
is based on these last principles.

2.2.1 The Amdahl’s law for parallel processing
The Amdahl’s law[10] is a well known formula to computer scientists since
it was presented for the first time by Gene Amdahl during a conference in
1967. The formula provides information on the theoretical speed-up factor
of a specific algorithm that can be expected, in terms of latency, if part of
the processing system, on which it is executed, is improved.

The overall enhancement can be expressed by the following equation, con-
sidering a performance improvement factor of s relative to a fraction p of the
total system:

Slatency(s) = 1
(1− p) + p

s

(2.2)

Multi-core processing architectures introduce improvements over the ex-
ecution of an input code which can be estimated qualitatively by the same
expression[11], assuming as meaning for the variables:

• p: the fraction of the code which can be made parallel;

• (1-p): the remaining part that will be executed serially;

• s: the number of available core.

It is interesting to note how much the serial part of the algorithm affects
the resulting enhancement since it imposes an upper limit. In view of the
above, as well as intuitively, it can be concluded that to make the most
of multi-core processors and, in general, for any parallel processing system,
mostly parallel codes have to be executed.

13

2 – Parallel computing

2.2.2 The translation process
As mentioned, programs are usually described in a serial way, compromis-
ing their performance when they are executed on the modern computational
systems. Programmers need to focus their attention to the optimization of
the written code considering all the technique useful for the transformation
in parallel version, whenever it would be convenient. This “translation” pro-
cess has to be performed by hand because not even the most modern and
advanced compilers can do it independently. In fact, the latter are only able
to proceed with the parallelization of portions of a code definable as embar-
rassing (i.e. perfectly) parallel, so trivial cases.

The program needs to be fully restructured, keeping in mind few mathe-
matical rules and some of the most common parallelizing methods to effec-
tively carry out this conversion procedure. The target architecture on which
the code will be executed has to be considered from the outset, so as to be
aware of its intimate principles of operation and to understand its optimiza-
tion possibilities.
It is in the programmer’s responsibility analyzing the whole algorithm fol-
lowing few basic steps resumed below:

• Identification of the different tasks

• Identification of the dependencies between these tasks

• Identification of the primary inputs set of the algorithm

• Identification of the primary outputs set of the algorithm

An Algorithm Dependence Graph (ADG) can be defined through the col-
lected information, as the one in Figure 2.1, where any node represents a
specific task while the edges, the data used by them.

From the conformation of these graphs, the type of the algorithm can be
identified3, as well as its highest degree of improvement. Many optimiza-
tion techniques can be applied to the different cases, some of which will be
discussed.

3The possibilities are: serial, parallel, serial-parallel, non serial-parallel and regular
iterative.

14

2.2 – From serial to parallel code

Figure 2.1: An example of an ADG representing a program. As no loop is
present, it is defined Directed Acyclic Graph(DAG).

When the algorithm turns out of be optimized, net of specifications, it can
be adapted to the target architecture through the subsequent logic steps:

• Mapping the tasks to the available parallel processors/cores

• Scheduling the execution of the tasks, respecting the constraints of data
dependency and I/O requirements

• Identifying the data communications between the processors and the
I/O

Only at this point the parallel code can be defined. Over the years, many li-
braries and APIs were born to expand the traditional programming languages
to the parallel computing capability of recent CPUs and GPUs. Some of the
most important, state of the art, will be deepened in Section 2.4.

15

2 – Parallel computing

2.3 Code parallelization techniques
There are many useful techniques to parallelize an algorithm from a math-
ematical point of view. The discussed methods are meant to be applied in
simple context, where the data dependencies are not so significant and the
parallelization possibilities are consistent. Among them, the most promising
for the purposes of the present dissertation consider loops transformation, so
they will be investigated in more detail. Other techniques, less relevant, will
be subsequently exposed as an in-depth study.

2.3.1 Loop transformations
Loops represent one of the most effective ways to describe parallel algorithms.
However, different types of loops can be distinguished according to their
structure and the dependencies that affect the contained data. In order to
proceed with an easier discussion, it is appropriate for some definitions to be
provided. In particular, loops can be classified as independent or dependent,
while their internal variables as:

• Input variables

• Output variables

• Intermediate or I/O variables

An independent loop is characterized by the absence of intermediate or
I/O variables. Any of its iterations is uncorrelated to the others, so that
they can be directly mapped on a parallel processing unit, not including the
execution order. This is the luckiest case, from which the best results can
be achieved. An example of loops belonging to this category is represented
by FIR digital filters, discrete-time devices whose mathematical expression
is presented in Eq. 2.3. In particular, N represents the degree of the filter
and n the time instant considered.

y[n] =
N∑

i=0
bi · x[n− i] (2.3)

Considering N parallel computing elements and I iterations of the loop, the
speed-up factor obtained through the parallelization of the algorithm can be

16

2.3 – Code parallelization techniques

expressed as:

Speedup(I,N) = I

dI/Ne
(2.4)

A dependent loop is instead characterized by intermediate or I/O variables.
In this context, the data dependencies are relevant to determine the degree
of optimization of the algorithm. If the intermediate information has no
data dependency, each iteration of the loop can be associated to separate
processing element, executing the whole loop in a parallel way. Thus the
same performance of a parallelization of an independent loop, in terms of
speed-up factor, is obtained.
Otherwise, more sophisticated techniques have to be considered, including
loop spreading and loop unrolling.

Loop spreading

The technique turns out to be useful in case of nested loops with simple
data dependencies. If the latter are confined within the innermost loop, each
iteration of the outer loop can be assigned to different processing elements.
In this way, the various parallel elaboration units execute all the iterations
of the inner loop. The basic concept is illustrated in Figure 2.2.

Figure 2.2: An example of the loop spreading technique.

17

2 – Parallel computing

Loop unrolling

Loop unrolling is an optimization technique implemented by compilers and
hardware designers to improve the execution of a loop. It reduces the over-
head, in terms of computational effort, introduced by the updating of the
loop index. In particular, multiple operations belonging to different loop
iterations are gathered within a unique iteration. The number of the instruc-
tions which can be grouped depends on the data dependencies involved in
the cyclic structure. Therefore, the overall iterations are reduced, each of
which could be executed in parallel processing elements.

Figure 2.3: An example of the loop unrolling technique.

2.3.2 Other general techniques
The methods proposed in this section are universally applicable, nevertheless,
their generality makes them a design philosophy to bear in mind rather than
a specific prescription.

Problem partitioning

The technique suggests to subdivide the computation of large tasks into
smaller parts of similar size. The idea consists in the generation of reduced
dimension sections of the original code, possibly devoid of data dependencies
and so executable in parallel. The method can be applied many times, in a
recursive way, and in this case the technique is called recursive partitioning
or, quoting the Roman Latins, divide-et-conquer approach. Typically, the
subdivision proceeds generating, for each task at every iteration, a couple
of sub-tasks. Therefore, the algorithm is organized following a binary-tree
structure, as depicted in Figure 2.4.

18

2.4 – Libraries and APIs for parallel computing

Figure 2.4: An example of the recursive partitioning approach.

Pipelining

Traditionally, the pipelining is an effective optimization technique for the
development of integrated circuits. In particular, the execution of a slow
algorithm is subdivided in smaller and faster steps, which can be executed
both serially and parallel, one per clock cycle. In this way, the latency with
which the results are obtained from specific inputs increases. However, the
throughput rises too together with the number of computations executed per
unit of clock cycle.
In software context, algorithms can be considered to produce results for suc-
cessive approximations at high rate, so implementing pipelining. An example
of this technique is represented by the CORDIC algorithm[12].

2.4 Libraries and APIs for parallel comput-
ing

The multi-threading programming approach is important for the execution
of optimizations on both multi-core CPUs and GPUs. Today, particular
attention is given to the latter for their intrinsic predisposition to perform
parallel computations. In fact, they are increasingly considered as an ad-
vantageous alternative for the implementation of data intensive algorithms
which have nothing to do with graphical purposes. For this reason, the con-
cept of General-Purpose GPUs (GPGPUs) has been recently spread and it
will become more and more important in the next future[13].

The need of an even more consistent growth of computational power has

19

2 – Parallel computing

led many representatives of electronic Industry to come together to form
consortia and, in this way, to define new standards for the development
of parallel applications on both CPUs and GPUs. Among them, OpenMP
Architecture Review Board and Khronos Group which introduced respectively
OpenMP in 1997 and OpenCL in 2008. Separate mention should be made
to Nvidia, which is part of both the previous organizations, however, as a
leading GPUs manufacturer it decided to develop a new standard for its own
products, CUDA in 2007.

Figure 2.5: “How standards proliferate” by xkcd.com, licensed under CC BY-
NC 2.5.

An undisputed standard does not exist to date. The adoption of one
of them rather than another depends on the target architecture that will
execute the defined parallel code. A possible classification of the contexts in
which these software utilities are considered the most, where they represent
a de-facto standard, follows:

• OpenMP: multi-threading applications for multi-core CPUs;

• OpenCL: highly parallel applications for GPGPUs;

• CUDA: highly parallel applications for Nvidia’s GPUs.

The three proposed solutions for defining parallel codes will be analyzed,
highlighting their strengths and weaknesses.

20

https://www.openmp.org/
https://www.openmp.org/
https://www.khronos.org/
https://xkcd.com/927/

2.4 – Libraries and APIs for parallel computing

2.4.1 OpenMP
OpenMP (Open MultiProcessing) is an Application Program Interface (API)
introduced to make the design of multithread applications easier. It sup-
ports multi-platform shared-memory parallel programming4 in C/C++ and
Fortran. It is a collection of compiler directives, library routines, and envi-
ronment variables for the definition of high efficient and portable codes[14].
The optimizations are fully effective at run-time, i.e. during the execution.
Therefore, OpenMP codes have to be run on a compatible operating system
(e.g. Linux, Windows and macOS).

The OpenMP API is based of the fork-join model, whose principle scheme
is depicted in Figure 2.6.

Figure 2.6: Conceptual scheme of the fork-join model implemented by
OpenMP API.

Traditional programs consist in the union of two types of code: serial and
parallel. The aim of this API is to execute, as best as possible, the parallel
portion, dividing it in multiple threads. The remaining serial part, which
can’t be optimized, is left as it is. It is interesting to note that, inside a
parallel region, also nested parallel threads can be defined, making possible
finer-grain optimization techniques.

In order to make a program compatible with the standard, the starting
point is a complete and working version of the code that has to be optimized.
As already pointed out, the concurrency has to be considered right from the
first line of the code, so that the final application will result tailored to the
target architecture. The divide-et-conquer approach is then applied in order

4A shared-memory system is composed of different processing elements which share the
same memory address space.

21

2 – Parallel computing

to separate the entire work in different threads. The defined sections must
represent structured block, i.e. sequence of statements characterized by an
entry point at the top and an exit point at the bottom. For each thread the
parallelism of the associated code has to be identified, paying attention to
eventual synchronization needs. In fact in presence of shared data, race con-
ditions can occur and the designer has to properly organize the computation
in a way that the correctness of the final results is ensured.
Therefore, the OpenMP constructs have to be inserted inside the original
code, most of which are compiler directives whose prototypes are present in
the include file “omp.h”.

Generally, when a code section turns out to be advantageous if executed in
parallel, the designer shall assess the degree of parallelism sufficient to meet
the performance goals. Here, a fork region is defined and the master thread
is spawn in a team of concurrent threads. At the end of the parallel section a
synchronization barrier has to be considered to guarantee that every thread
has been executed.

2.4.2 OpenCL
OpenCL (Open Computing Language) is a framework for general-purpose
parallel programming of heterogeneous systems (e.g. CPUs, GPUs or FP-
GAs) and, in particular, hardware accelerators[15]. OpenCL consists of the
same three components[16] of the previous standard:

• Language specification

• Platform layer API

• Run-time API

In particular, concerning the language specifications, OpenCL program-
ming languages relies on C99 and C++11 with restrictions and added exten-
sions. In this way, the programmer can focus in the definition of a parallel
code, optimized for a specific architecture.

The target device is modeled in a structured way and it is subdivided
in several compute units. Each compute unit5 is then composed of multiple

5For a multi-core CPU, the definition of compute unit is coincident with the one of a
core.

22

2.4 – Libraries and APIs for parallel computing

processing elements which can work in parallel.
The structuring, through which the hardware is considered, is reflected in
the code. There, two components can be distinguished: the host programs
and the kernels. The former are useful to organize the correct execution of
the latter, properly managing the memory hierarchy. Kernels are sections of
code, comparable with normal C-functions, which contain the instructions
that benefit from a parallel implementation.
An heterogeneous system, in these terms described, considers a CPU (the
host) and one or more accelerators (the devices on which are run the kernels).

The great complexity of designing OpenCL code is rewarded with the
possibility to write optimized cross-platform programs, accelerated through
parallel processing.

2.4.3 CUDA
Nvidia’s CUDA (Compute Unified Device Architecture) is the name that
refers to both a parallel computing platform and a programming model,
developed by the same company. In particular, the provided API is consid-
ered to develop general purpose applications compliant with CUDA-enabled
Nvidia’s GPUs[17].

The algorithm to be optimized can be developed through a wide variety
of programming languages (including also C, C++ and Fortran), making
quickly and easily accessible the hardware resource. Also in this case, the
capabilities of the compatible languages is expanded to make the expression
of the parallel code more comfortable to developers.

The structure of the code has to take into account the general structure of
the architecture which will execute the algorithm and, in particular, a system
composed of both a CPU and a Nvidia’s GPU. It is appropriate to consider,
indeed, that a Graphics Processing Unit is a coprocessor, an hardware unit
that supplements the functions of the primary processor (i.e. the CPU).
Similarly to OpenCL, the whole CUDA code consists of the union of two
different parts, which will be intended for the two processors (called the host
and thedevice), and each of which refers to a separate memory space. The
developer has to identify the sections of the original algorithm which will
benefit of an execution inside the GPU and to organize them into functions,
called kernels. Inside each kernel, many threads can be defined that will be

23

2 – Parallel computing

mapped on the several parallel processing elements, characteristic of a SIMD
architecture6, the one of the GPUs. The developer is responsible for the
proper management of the code transfer from the host memory to the device
memory, so that the latter could be correctly processed by the GPU.

Unlike the other presented APIs, CUDA is the only one to be a proprietary
software and it is bound, as previously mentioned, to the use on Nvidia’s
GPUs only.

6According to Flynn’s taxonomy[18], a Single Instruction Multiple Data (SIMD) archi-
tecture is composed of many processing units which execute, at the same time, the same
instruction but referring to different datasets.

24

Chapter 3

Compilers

Compilers are computer programs with the purpose of translating an input
source code, expressed through a specific programming language, into an ob-
ject code, expressed in another language or in a machine code1.

The first compilers appeared starting from the second half of the last cen-
tury, in parallel with the advent of the first programming languages from
Assembly to the ones with an increasing abstraction (e.g. Fortran). Pre-
cisely, the idea consisted in abstracting the way through which the algo-
rithms were described to increase the flexibility of programmers. In the last
seventy years of history, Computer Science has had a strong development
and programming languages, that have been introduced, required the birth
of increasingly complex compilers. The latter were meant for being more and
more smart, capable of autonomously providing advanced optimizations for
the input programs, in order to generate efficient executable codes. Moreover
they were defined to detect any error in the input code and to properly report
them to the programmer. Therefore, compilers have always been a valid aid
for the development of formally correct programs.

Compilers are structured in a modular way, to compensate their complex-
ity and, above all, to make the definition of improvements and upgrades
easier. In this chapter, the general structure of a modern compiler is pre-
sented together with an overview of today’s most important and widespread
ones. The discussion takes its cue from the book that is known to specialists
in the sector as The dragon book[19].

1A machine code is a low-level programming language consisting in a sequence of in-
structions that can be executed by the CPU of a processing system.

25

3 – Compilers

3.1 The structure of a modern compiler
The compilation process can be subdivided into common logical phases,
which find different expression among specific compilers. Traditionally, its
structure is organized in two main parts, as depicted in Figure 3.1: the front-
end and the back-end.

Figure 3.1: The logic scheme of a modern compiler.

Together with the two presented sub-parts, another important element has
to be considered: the symbol table, which stores information about the source
code useful all along the compilation process.

In the following, a brief description of the internal components of a generic
compiler is given to better understand how the translation is performed.
However, as the intimate structure of a compiler is not among the purposes
of the present dissertation, the argument will not be deepened. For further
details, refer to the above-mentioned book.

26

3.1 – The structure of a modern compiler

3.1.1 The compiler front-end
The compiler front-end is responsible for the analysis process and, in partic-
ular, it parses the input program and it checks the general correctness of the
code, both from a syntactic and semantic perspective. The output of this
block consists in the same input algorithm but expressed into another form,
the so called Intermediate Representation (IR). The latter, whose structure
can vary, is constituted by a sequence of low-level instructions intended for
an ideal and abstract machine.

Lexical analysis

This first phase of the analysis process reads the input characters belonging
to the source code to transform them into lexemes. The latter are continuous
characters grouped together, from which the Lexer produces tokens. Each
token is then characterized by two elements:

• Token name: an abstract symbol useful to identify the specific lexeme

• Token attribute: the relative position inside the symbol table where the
original lexeme characters are stored

Thereby, a classification of the names used inside the program is per-
formed. The information derived from both lexems and symbol table are
then passed to the subsequent analysis phase.

Syntax analysis

The current phase implements the parsing of the input lexems for the gen-
eration of a syntax tree. In particular, it considers the tokens generated by
the lexer to represent the grammatical structure of each instruction. The
tree is organized in nodes distributed along a branch and its leafs: the inter-
nal nodes are constituted by operators (e.g. +, − and x) while the derived
nodes, so the external ones, represent the arguments of the operations. The
different operations are positioned in the branch following the conventions of
arithmetic (e.g. a multiplication is performed before an addition).

Semantic analysis

The syntax trees coming from the previous phase and the information inside
the symbol table are considered by the semantic analyzer to verify that the

27

3 – Compilers

instructions are consistent with the target language specifications. After
many checks, information is collected to enrich the contents of the symbol
table for the subsequent elaborations. Moreover, possible errors are reported
if any inconsistency is found.

Intermediate code generator

At the end of the analysis process, a machine-like intermediate representa-
tion of the input source code is produced. Despite the variable forms, two
properties have to be ensured by this representation:

• It needs to be easy to generate

• It needs to be easy to derive the target code from it
Leaving out the details, the common structure for the IR code is based on

three-way instruction (i.e. for each instruction three operands are considered
at most).

3.1.2 The compiler back-end
The compiler back-end, which works in tow, considers the IR code and it
performs the actual translation into the target language. During this oper-
ation, it also implements algorithmic optimizations some of which general,
others characteristic of the system on which the program will be executed.

Machine-independent code optimizer

The input IR code is here optimized though specific algorithms, typical of
each compiler. The aspects that can be privileged are performance or short
dimension of the output code, as well as the related computational effort
in their execution which affects the total compilation time. Among all this
is one of the most critical phases and the choices adopted there can have
significant relapses to the quality of the resulting code.
After the elaboration, the output code is provided as a reworking of the
inputs, expressed in the same format.

Code generator

The optimized IR code is finally converted into the output language, con-
sidering also the information previously stored inside the symbol table. De-
pending on the effective target of the compilation process, be it an hardware

28

3.1 – The structure of a modern compiler

machine or another software, different strategies can be adopted. The re-
quirements on this translation phase are severe and the equivalence, in terms
of algorithm, between the input IR and the output codes shall be guaranteed.
Moreover, the generated code must be of high quality, so that it can make
the most of the potential of the target entity. The main tasks of the code
generator are:

• Instruction selection

• Register allocation and assignment

• Instruction ordering

The process is an optimum one, however, over the years the related com-
plexity has made the adoption of heuristic techniques necessary.

Machine-dependent code optimizer

Generally, the code generators provide codes already optimized for the target.
However, some compilers use naive approaches for the code generation, hence
a further optimization phase is required. The results of these elaborations
are not necessarily optimal and typically simple transformations are applied
locally in the code. Characteristic modifications introduced are:

• Algebraic simplifications

• Redundant instruction elimination

• Flow-of-control optimizations

• Use of machine idioms

3.1.3 Final comments on the internal organization of
a compiler

The strength of the presented subdivision is based precisely on the transla-
tion of the original input algorithm into the IR form. Compiler designers can
focus only on the part they are interested in, relying on the existing other.
For example, if there is the need to develop a compiler for a new programming
language but intended for an existing target architecture, only the front-end
component has to be rewritten. On the contrary, if a new target system or
architecture has to be supported, only a new back-end module needs to be

29

3 – Compilers

defined. The applications, in which the whole compiler has to be completely
designed from the head, are rare.

It is important to highlight how the optimizations that can be performed
on the IR code are abstract from a specific context and so they can be treated
as mathematical problems, acting on algorithms. Hence, many techniques,
described in details in literature, can be adopted to find an optimal for any
recipient of the output code.

Finally, the compiler theory can be considered to define translation pro-
cesses which could involve both hardware and software targets. Therefore,
also other programs can benefit from compiler services and receive the de-
rived output code. Among them, the modern EDA tools for the design of
electronic devices, whose related compiler is called High-Level Synthesizer.
This last topic will be deepened in the following chapter.

3.2 The most popular C/C++ compilers
In the panorama of modern C/C++ compilers, both commercial and open
source products are available. Even though the latter are the most diffused
and adopted, they often do not represent the best performing[20]. However,
free compilers, by their nature, allow anyone to delve into their implementa-
tion details in order to understand how they work and, eventually, to intro-
duce improvements. Among the possible modifications, a compiler designer
can extend the compatibility of these software to additional source codes or
target devices. The success of the spreading of open-source compilers in the
market is also related to the above-mentioned aspects.

Today, the two main free-license compilers areGCC, from the GNU project,
and Clang, from the LLVM project. GCC has a very ancient development
history and its first stable version dates back to 1987. Over the years, it has
had the opportunity to grow even more and to establish itself as the reference
compiler for the majority of applications.
Clang is a younger compiler, whose first release appeared in 2007. The soft-
ware has received great impulse by many Industries during the last decade,
and it has been diffused to the point of becoming the direct rival of GCC.

Within the same article cited at the beginning of the section a comparison

30

https://www.gnu.org/
https://llvm.org/

3.2 – The most popular C/C++ compilers

between these two compilers is presented. The differences between the two
can be summarized as follows:

• if a developer needs to improve the performance of its own code during
the execution, the choice falls on GCC;

• if a developer needs to build a large project fast, Clang has to be taken
into account.

However, for a compiler designer the choice among the two software pro-
grams is not only determined by benchmarks results and some further con-
siderations have to be made. In particular, the context they come from needs
to be taken into account, so the GNU Project and the LLVM Project.

3.2.1 The GNU Project
The project, whose name is a recursive acronym of “GNU’s not Unix”, was
funded by R. Stallman in 1983 with the aim of creating and distributing free
software destined for any computing devices, from the operating system to
the applications which are run on it. The concept of freedom is particularly
interesting and it is defined by the GNU General Purpose Licence (GNU
GPL). Any user is free to:

• run the program, for any use;

• study how the program works and to modify it;

• redistribute copies of the program;

• redistribute modified copies of the program.

Another important prescription associated to the project is the copyleft,
in which any derived product from the GNU software directly inherits the
same licence (i.e. the GNU GPL).

The community around the project includes, not only software enthusi-
asts, but also great Companies from System to Chip Vendors (e.g. RedHat,
Intel, ARM and IBM). They provide constant support in order to guarantee
software compatibility with their own products.

Many resources are made available also to compiler developers, from con-
sulting services to an extensive documentation, without considering the nu-
merous contributors who pool their expertise both in literature and online.

31

3 – Compilers

3.2.2 The LLVM Project
The project started at University of Illinois at Urbana–Champaign in 2000,
under the responsibility of V. Adve and C. Lattner. Their aim was to provide
a modern compilation strategy capable to support both static and dynamic
compilation of arbitrary programming languages. Today, it represents a com-
piler framework that embodies these original principles and Clang specifically
serves as the related front-end compiler.
The definition of free license, under the University of Illinois/NCSA Open
Source License, is more fleeting with respect to the GNU GPL one. In par-
ticular, it allows to derive also commercial products from the original project
and this is one of the reasons behind the success of LLVM2.

Also around this project a lively and varied community is gathered, from
both the private and the commercial worlds. Moreover many competitive
resources are provided to compiler developers too, despite the important age
difference with the GNU Project.

2From 2019 the license became Apache 2.0, extending even more the capability of
making use of LLVM in commercial applications and so the possibility of adoption in
Industry.

32

Chapter 4

High-Level Synthesis

The concept of High-Level Synthesis, also called behavioral synthesis, refers
to the capability of a system to translate a mathematical model, expressed
through an algorithm, into a particular hardware implementation. Over
the past few decades, the Electronic Design Automation(EDA) Industry has
shown growing interest in this research field and today many efficient tools
are available on the market. Nowadays, the EDA software are an essential
support for engineers in the design and analysis of electronic circuits (e.g.
Integrated Circuits and Printed Circuit Boards), so that the high complex-
ity introduced by the the large integration capabilities of transistors can be
overcome.
However, the reasons to explain why High-Level Synthesis represents a cur-
rent topic lie in the past and, in particular, in the evolution history of EDA
tools over the years.

In the current chapter, mention is made about these motivations to better
understand the importance of High-Level Synthesis. Afterwards, the state-
of-art of the most modern systems which implement it is described, dwelling
on their general structure.

4.1 The historical stages of the EDA Indus-
try and the troubled research on HLS

During the 40th Design Automation Conference held in 2003, Professor A.
L. Sangiovanni-Vincentelli presented an analysis of the history of EDA[21],

33

4 – High-Level Synthesis

since the first tools appeared, subdividing it into three evolution eras1.
It is important to emphasize how the progression of the success of this In-
dustry has gone along the evolution of the Electronic Industry, from the very
first moment.

Alongside this analysis, particular attention will be paid to how the re-
search on High-Level Synthesis has developed[22].

Figure 4.1: The evolution history of both EDA and HLS tools.

4.1.1 The Age of gods (1964-1978)
The first period coincides with the foundation of the EDA Industry itself.
During this time, the groundwork of modern EDA tools was laid and, in
particular, the key themes that were explored are:

• Circuit simulation

• Logic simulation and testing

• MOS timing simulation

• Wire routing

• Regular arrays

Since the beginning, the aim was to reduce the effort, and so the time, of
the design process of electronic circuits. However, the input language was
complicated and tools suggested little foresight in understanding the market’s
evolution. As a result of these problems, with the addition of an important
lack of innovation, the available software became obsolete soon. As proof of

1As he explained in the relative article, the name associated to each period is inspired
by the masterpiece “Scientia Nova” of Philosopher Giambattista Vico, whom retraces
mankind history.

34

4.1 – The historical stages of the EDA Industry and the troubled research on HLS

the above, none of them is alive today.

Academic researches about EDAs had taken into account also the synthesis
aspect, even if it had limited impact.

4.1.2 The Age of heroes (1979-1992)
The subsequent period saw, on the contrary, an explosion of the EDA tools
from logic synthesis to formal verification and from system-level design to
hardware acceleration. The most important achievements were:

• Faster verification and testing procedures, orders of magnitude with re-
spect to the ones conducted through Spice, also thanks to the introduc-
tion of formal verification

• Simpler circuit layout definition, with the implementation ad advanced
techniques of simulated annealing and for placement and routing

• Design through logic synthesis, with the support of logic optimizers

• Introduction of the well-known Hardware Description Languages (HDLs),
VHDL and Verilog, which made possible to represent digital circuits
more effectively

• Rising interest in parallel computing and parallel architectures, both
seen as an indissoluble unit in the design phase2. Particular attention
was given to hardware accelerators.

In this respect, the early researches about High-Level Design and High-
Level Synthesis appeared, as a bridge to the system-level design. The idea
consisted in growing the degree of abstraction during the definition of an
electronic circuit and so increasing the productivity. However, these tools
revealed too complicated and not mature enough to meet the needs of the
market.
Due to this reason, the High-Level Synthesis approach didn’t make break-
through into Electronics Industry and there was not substantial investments
in this field, in those years. Therefore, these studies remained within the
walls of Universities.

2As mentioned in Chapter 2, the design of optimized parallel architectures is strongly
bound to the algorithm which will be executed on it. Under these circumstances, we talk
about co-design.

35

4 – High-Level Synthesis

4.1.3 The Age of men (1993-2002)
The last era overlaps the period of maximum expression of integration capa-
bilities within electronic circuits. At the same time, the Moore’s law became
increasingly difficult to comply with, as previously mentioned, and technical
innovation started to slow down.
Therefore, these aspects were reflected to EDA tools, which did not undergo
major innovative upheavals. However, they increased in complexity to face
the technical challenges introduced by the massive integration of transistors
(e.g. non-ideality, incidence of parasitic parameters and leakages).

Major EDA companies and, in particular, Synopsys, Cadence and Mentor
Graphics launched the fist commercial HLS tools, arousing great interest.
However, they revealed unsuccessful in the effective implementation. The
reasons behind this failure lie not only in the not so promising results derived
by the synthesis process, but, above all, for whom the tools were thought to.
In fact, among the other choices which were discovered to be problematic,
there was the adoption of behavioral HDLs as inputs. Software and algo-
rithm designers didn’t find it affordable to learn an additional language and
how to use the new tools. RTL-designers, on their part, believed that the
needed effort for changing the already well-founded design perspective wasn’t
worth it, considering the poor quality of the results.
Victims of the context and of their own deficiencies, also these new software
programs were ignored.

Despite the dissertation of Professor A. L. Sangiovanni-Vincentelli con-
cludes the analysis considering the first years of the new millennium, it is
reasonable to extend the Age of men to the last two decades.

4.1.4 The Contemporary Age (from the early 2000s)
At the beginning of the new millennium, great impetus was given to High-
Level Synthesis by more mature versions of the available commercial tools
together with other new ones that appeared in those years, when new com-
panies entered the market (e.g. Mathworks and Xilinx). Algorithm and
systems designers were finally involved, introducing higher-level input lan-
guages like C and C++. More attention was paid to RTL-designers too with
the definition of new standards, SystemC and SystemVerilog, as evolution of
HDLs. The latter inherited part of the typical syntax of VHDL and Verilog

36

https://www.synopsys.com/
https://www.cadence.com/en_US/home.html
https://www.mentor.com/
https://www.mentor.com/
https://www.mathworks.com/
https://www.xilinx.com/

4.1 – The historical stages of the EDA Industry and the troubled research on HLS

but also a greater flexibility from C++. The quality of the results of the syn-
thesis process saw enhancements for both the definition of the dataflow and
the control. The automatic synthesis was then embedded into more complex
systems for Electronic System-Level (ESL) Design and Verification, so that
HLS tools could represent a complementary element, supporting the entire
design process. Therefore, the sales for the industry started to grow signifi-
cantly, as depicted in Table 4.1.

Table 4.1: ESL Market Trend 1990-2012. Gary Smith EDA statistics at
Design Automation Conference (DAC), 2012.

In order to achieve these successes, some decision revealed fundamental.
Firstly, the reduction of the field of action of the tools. The original idea of
HLS researches consisted in the definition of a software capable of exploring
a wide space of solution. However, the approach was too pretentious and
its failure has been written in the history. The new tools was designed for
working on more specific target architectures and, in particular, ASIC, DSP
and FPGA. In this way, the synthesis problem was circumscribed, resulting
easier to solve. Moreover, the tools were optimized to work with specific class
of algorithms, the ones from which reasonable good results were expected.
Secondly, the repeatedly stressed choice of high-level input languages. Pro-
gramming languages like C/C++ are by nature capable of expressing algo-
rithms, also complex ones and, above all, they are target independent. At
an higher abstraction level, mathematical optimizations reveal more flexible,

37

4 – High-Level Synthesis

so powerful, with respect to ones possible at RTL-level.

The evolution of the Electronic and EDA Industries found a converging
point, this time including also mature supports for HLS. FPGAs found their
fortune on the market, with a wide adoption not only for prototyping pur-
poses. Alongside them, hardware accelerators gained importance as a result
of the growing complexity of modern electronic systems, including the In-
tellectual Property (IP) cores, also called blocks. Interesting articles about
FPGAs and their diffusion in the market are [23] and [24].

4.2 The modern HLS Tools
As previously discussed, the modern design of electronic circuits or applica-
tions cannot disregard the problem of the power consumption. Today any
device off-the-shelf has passed though a more or less significant optimization
process, during the design phase, to reduce its consumption. Low power de-
vices are more and more diffused, especially for the mobile applications like
smartphones, wearable or IoT sensors. In all of this pervasive technology, a
reduced amount of energy is stored inside the batteries. However, having a
long off-line life is a prerogative even before being a specification.

This optimization procedure is costly, in terms of design time and valida-
tion, and it results significant considering that it contributes to the overall
increase of an already substantial complexity. The concept of design reuse is
widely adopted in an attempt to contain the phenomenon and in this con-
text IP cores have their place. These electronic blocks implement specific
algorithms or functions in an optimal way. Their functional models are pro-
vided to the RTL designer in order to allow her/him to include them inside
a more complex design. The same models are then parameterized and many
characteristics can be defined by the designer (her/him)self. Implementation
details are known only to the IP core provider, only the functionality is of
the final user’s interest.
As can be guessed, IP blocks are complex in their internal structure, making
any operation aimed at extending or modifying the associated functionalities
difficult (e.g. in case of changing in the technology node, standards or spec-
ifications).
The IP cores are defined in a limited design space and the implemented
algorithm is first described through an high-level formalism. For all these

38

4.2 – The modern HLS Tools

reasons, the Intellectual Property blocks represent a valid candidate for the
exploitation of HLS capabilities.

The mathematical models can be expressed through an high-level language
and many parameters can be modified at compile-time allowing the synthe-
sizer to adopt all the possible optimization directly on the algorithm. Among
the noteworthy, parallelization techniques represent the most effective, espe-
cially loop transformations, pipleining (previously described in section 2.3)
and retiming. Therefore, different hardware implementations can be obtained
from the same source. Industries have their internal HLS tools to easily gen-
erate the needed IP cores.

Another reason for the rising adoption of High-Level Synthesizers lies in
all the software tools working around them. In particular, the ones useful
in the verification process, one of the most important steps of today design.
The circuit resulting from the synthesis stage is proved directly with the
same test vectors of the high-level input algorithm, properly adapted in an
autonomous way3, in order to guarantee equivalence between the high-level
model and the circuit itself.
Other tools are needed to extract from the synthesized circuit all the char-
acteristic “figures of merit”, as switching activity and reachable performance.
Everything happens inside the same development environment and the in-
formation can be obtained in a reasonable time, reduced with respect to
traditional design process. So, the productivity of designers rises and they
can invest the excess time in other optimization procedures.
A wider perspective on these arguments can be found in article [25]. An
interesting research on the state-of-art of available HLS tools is represented
by [26].

The same reasoning can be applied in the design or in the prototyping
on FPGA. An example of the current applications of synthesizers on these
programmable devices concerns the development of wireless communication
network. Over the years, HLS tools have been considered in 3G/4G designing
[27] and today the same is carried out with 5G technology. To deepen the
available HLS solutions for the FPGA world, please consider the articles [28]
[29].

3A standard methodology, widely adopted, for the automatic verification of digital
circuit is the UVM.

39

https://www.accellera.org/downloads/standards/uvm

4 – High-Level Synthesis

4.2.1 The typical structure of an High-Level Synthe-
sizer

In the analysis of the general structure of an HLS tool, academic works have
been considered for two main reasons. Firstly, for an historical motivation
as these software were born in University research centers and there they
had the opportunity to grow in a lively environment. Secondly, commercial
software are protected by patents and most of their implementation details
are not accessible, differently from the open source projects developed in
Academia.

In particular, two interesting projects were examined, which present, de-
spite many differences, the same organizational structure: the LegUP project
[30], developed at University of Toronto from 2011 and Bambu[31] developed
at Politecnico di Milano from 2013.

A closer look at LegUp and Bambu projects

LegUP
The LegUp High-Level Synthesis
tool is under development at the
labs of Professors Jason Anderson
and Stephen Brown at University
of Toronto since 2010. The project
was meant to introduce a resource
to experiment HLS algorithms in the
definition of FPGAs accelerators in-
side a computational system provided
also by a CPU. The program, writ-
ten in C + + and belonging to the
C-to-Verilog category, is based on
the LLVM framework and it is con-
stituted by few optimization algo-
rithms and a back-end. The input
code is directly compiled by Clang in
order to derive from it its Interme-
diate Representation. Then, LegUp

works on it and, also thanks to speci-
fications introduced by the final user
through a configuration file, it gen-
erates the Verilog code intended for
the target FPGA. Along with it, also
the machine instructions useful for
the interfacing between the accelera-
tor and the microprocessor are pro-
vided. After the definition of the
implementation details, LegUp orga-
nizes a testbench for the debugging
process too. It is important to high-
light that the input code can be de-
fined only through a subset of ANSI
C, whose specifics are reported inside
the program documentation.

Specific support for many commercial

40

http://legup.eecg.utoronto.ca/
https://panda.dei.polimi.it/

4.2 – The modern HLS Tools

FPGAs (e.g. Altera Cyclone II, Al-
tera Stratix IV and others) is made
available, where synthesized circuits
have been verified by the same re-
search group.

Two versions of the synthesizer

are available: the free one until
now discussed, intended for a non-
commercial use and whose last release
is the 4.0 of 2015, and a commercial
one, derived from it and currently un-
der development.

Bambu

The Bambu High-Level Synthesizer,
categorized as C-to-HDL (i.e. both
VHDL and Verilog formats are sup-
ported as output files) and written
in C + +, was introduced into 2013
from PhD C. Pilato and Professor
F. Ferrandi from Politecnico di Mi-
lano. The program belongs to a wider
project, named PandA, whose aim is
providing a support to designers for
the exploration of hardware-software
co-design solutions. The target of the
synthesis process is the arrangement
of an FPGA accelerator for memory-
intensive applications. Originally, the
software was designed to work with
the GCC front-end, however, the
compatibility with Clang has been
also introduced later. Bambu parses

as input code the Intermediate Rep-
resentation of the source algorithm
and it applies target-independent op-
timizations. After that, the synthesis
is executed and the description of the
final architecture is provided. Also
the related test-bench is generated,
considering the specifications defined
by the designer. The input code that
can be processed is a restricted ver-
sion of ANSI C, whose details are
present inside the documentation.

The software is distributed under the
GNU GPL v.3 and so it represents a
completely free software. It is pro-
vided inside the whole PandA frame-
work, updated to version 0.9.6 of
2020.

They are both C-to-HDL tools, performing the synthesis process through
common steps and targeting FPGAs. As the input algorithm has to be con-
verted into another form, passing from a C code to a HDL, the synthesizer
actually represents a compiler. As previously expressed in Chapter 3, compil-
ers are very complex computer programs but they have the benefit of being
organized in a hierarchical structure. In this way, the concept of reusability
is widely guaranteed, allowing the developers to write only the code that is

41

4 – High-Level Synthesis

necessary to expand the existing functionalities.

The accepted input code refers to the ANSI/ISO C standard, however
some advanced features of the language are not included. Only constructs
which make sense with the objective of the synthesis are available, as for any
HLS tools. Examples of these discarded functionalities are dynamic memory
usage and recursive functions. As a matter of fact, if the specifications of the
available commercial High-Level Synthesizers are considered, the language of
the input code results depleted of some standard flexibility but enriched in
many preprocessor directives and actual functions to support and to prop-
erly drive the synthesis process. Discussing about specialized versions of
input languages is more appropriate and engineers have to take this fact into
account when they approach these tools.

Figure 4.2: Basic scheme of the typical functional blocks inside a High-Level
Synthesizer.

Considering again the two HLS tools, they are constituted by five main
components, which act in cascade starting with the Intermediate Represen-
tation of the input C-code, properly generated by the compiler front-end:

• Specific optimization algorithms: they are useful for the organization
of the IR code to be compliant with a subsequent steps of translation.
The techniques operate at algorithmic level and some of these have been
previously discussed in Section 2.3.

42

4.2 – The modern HLS Tools

• Allocator : it is responsible to read the configuration files in order to drive
the synthesis process with the constrains imposed by the user. Typical
settings regard the characterization of the target device (i.e. the FPGA)
which will implement the produced circuit and the timing and resource
constraints.

• Scheduler : one of the most critical parts of the synthesizer, it implements
specific and optimal scheduling algorithms over the provided instructions
to organize the Finite State Machine of the final architecture.

• Binder : it maps the different instructions to functional units which will
implement them.

• HDL generator : considering the information derived both from the
scheduling and binding processes, it generates the output file, formatted
according to the target HDL.

43

44

Chapter 5

Conclusions

During the pages of this fist part of the dissertation, all the arguments that
underlie the Octantis project have been discussed. The need of overcoming
the Von Neumann bottleneck led to the birth of the Logic-in-Memory archi-
tectures. The promising results of the associated researches gave energy for
the development of a simulator engine, DExIMA, in order to proceed these
studies in a more comfortable way. A watchful look to the future has been
preserved, providing the software with both a modular structure, for constant
updates and improvements, and a flexible library, open to new experimental
technologies. Octantis makes its appearance in this lively environment, as
an important contribution to the progress of these researches.

Alongside, the guidelines have been laid down for the project. In partic-
ular, the structure of a typical compiler and of High-Level Synthesis tools
have been described in details. Furthermore, the mathematical techniques
to define parallel algorithms and the related supports to bring them into the
software context have been presented.

In the part of the document that follows, the Octantis project is deepened,
starting with the philosophy it is based on. Its structure is detailed and the
main implemented algorithms are discussed. At the end, the results obtained
by Octantis during the synthesis process of some reference architectures are
argued about.

45

46

Part II

Octantis, a
Logic-in-Memory explorer

47

Chapter 6

The Octantis project

Regarding the project

Tracing the history of the project from the beginning, Octantis takes its
name from both an object and a star. The first is the octant, a mea-
surement instrument invented between the XVII and XVIII centuries
which revolutionized the navigation. It was introduced together with the
sextant to replace all previous navigational instruments. The second
is the giant star sigma-Octantis which belongs to the constellation of
Octans and which is officially the current South Star, named Polaris
Australis for its lucky position and whose counterpart is the Polaris
one. The idea was to create a software for the exploration of possible
alternatives in bringing computational systems into being, changing the
current perspective and dictates of modern digital electronics.

6.1 Introduction
Octantis presents itself as a software useful for the exploration of Logic-in-
Memory (LiM) architectures. By its nature it’s a flexible solution to analyze
an input algorithm described in standard C language and to identify which
LiM architecture would implement it better.

Octantis takes for input a C code whose expressiveness is limited. Only
a subset of operations is allowed, the ones which are closer to the Hardware
Description Languages (Verilog or VHDL). The algorithm so described must
be accompanied by a configuration file, in which the LiM designer has to

49

6 – The Octantis project

impose the constraints that Octantis considers to model a LiM architecture
in accordance with them. The subset of C-code that has to be considered
for the description of an input algorithm, has been widely described inside
the program documentation. However, as a general rule, the designer has
to be aware of what she or he is writing, keeping in mind the capabilities
of a LiM architecture. For example, instructions for the management of the
memory are not allowed, simply because they would not make sense. In
case of ambiguity, Octantis discards these instructions and proceeds in the
mapping of the others. At the output of the program, the LiM architecture
is described through the DExIMA configuration files, in order to enable the
simulator engine to perform the related analysis.

Figure 6.1: The “binary system”: Octantis and DExIMA.

Octantis, together with DExIMA, represents an agile tool which allows the
designer to get an idea of what the benefits might be in the implementation
of a specific algorithm through a Logic-in-Memory architecture. They merge
in a unique software of first approach in the design phase, to understand if
the proposed solution could be considered valid. The term of comparison is
the execution of the same algorithm in a traditional microprocessor system.

6.2 More details about The LLVM Project
The Octantis’ project considers the LLVM compiler infrastructure to realize
the whole process of translation from C-code to DExIMA input files. The

50

6.2 – More details about The LLVM Project

LLVM framework, previously mentioned in Section 3.2, provides libraries
useful to optimize and generate a code for a target architecture starting from
an input source. It is distributed under an open-source license, which allows
a free personalization of each of its components. In the panorama of C com-
pilers, the choice fell on LLVM, to the detriment of the tools provided by
the competitor GNU-GCC, considering specially the flexibility of the former
infrastructure, which can count on a more active community of developers
and richer technical documentations.

The LLVM project is in turn composed of different sub-projects, among
which the LLVM Core libraries, Clang and Polly.
A brief description of the listed components is given in the following, as they
are considered important for the definition of the Octantis’ project and, per-
haps, for its future developments. However, to better understand the basic
terminology, some information about the LLVM Intermediate Representation
and its structure is argued before them.

The discussion dwells on the main points that have revealed useful for the
development of the researches. For a more detailed descriptions of the pre-
sented arguments, please refer to the official documentation, whose sections
are gradually cited along the next pages. Finally, an interesting reading to
get in touch with the whole LLVM world, despite being a bit “dated”, is
attached to the bibliography[32].

6.2.1 The LLVM IR Language

The LLVM Intermediate Representation, also called LLVM assembly lan-
guage, represents the core around which the whole LLVM project revolves.
It is the meeting point between the source code and the target one. In fact,
the algorithm, whatever the input language through which it is formalized,
is explicitly expressed by the front-end compiler into this common represen-
tation. All the optimizations are performed on the code so defined and any
back-end acts on it to produce the output code. Therefore, the general struc-
ture of this link is discussed in the next paragraph.

The LLVM IR is considered a low-level language, expressed in a form
similar to the three address code, however, enough flexible to represent any
kind of high-level languages[33]. In terms of Instruction Set, it is classifiable

51

6 – The Octantis project

as RISC 1. There are three equivalent forms, each useful for a particular
application:

• An in-memory compiler IR

• An on-disk bitcode representation

• A human-readable form

In particular, the latest version listed is meant for debug purposes and to
directly visualize the results of the analysis and transformation phases that
are run on the input algorithm. Only this representation is discussed in the
present section. An example of an LLVM code defined in this way is depicted
in Figure 6.2.

1 ; The performed operation is: C = A + B
2 define dso_local void @addition() #0 {
3 %1 = alloca i32, align 4 ; Stack allocation for operand A
4 %2 = alloca i32, align 4; Stack allocation for operand B
5 %3 = alloca i32, align 4 ; Stack allocation for operand C
6 %4 = load i32, i32* %1, align 4; Load op. A inside an internal register
7 %5 = load i32, i32* %2, align 4; Load op. B inside an internal register
8 %6 = add nsw i32 %4, %5 ; Execution of the addition
9 store i32 %6, i32* %3, align 4 ; Store the result inside the allocated

10 ; stack space for operand C
11 ret void
12 }

Figure 6.2: An example of LLVM code representing an addition operation.

The code is based on the Static Single Assignment (SSA) representation, i.e.
each variable of the program is assigned only a single time and every use of
it must be previously declared. When a variable is defined, a new temporary
and unique name is associated to it, limiting its scope until a re-definition of
the same variable. This approach makes the implementation of optimizations
on the code easier.

1The Reduced Instruction Set Computing (RISC) represents a highly-efficient set of
instructions, each of which accomplishes a reduced amount of work.

52

6.2 – More details about The LLVM Project

The LLVM code, at the macro level, is structured in a hierarchical way
and, more properly, as Chinese boxes. In particular, the program is composed
of elements which in turn contain other ones. From the outermost, the code
is formed by:

• Modules

• Functions

• Basic Blocks

Modules contain also global variables and symbol table entries, while functions
are rich in various information. However, the program flow is organized in
a set of basic blocks. The latter represents the Control Flow Graph (CFG)2

of the function itself. In particular, a basic block consists of a collection
of LLVM instructions that have to be executed in sequence and character-
ized by a single input point and a single exit point. Moreover, each basic
block is identified and introduced through a label and it ends with a termi-
nation instruction (e.g. a return or a branch statement). Inside functions,
the first basic block is considered “special”, because it is the only one that is
immediately executed at the entrance of the function and that is devoid of
predecessor basic blocks.

6.2.2 The LLVM Core libraries
The libraries belonging to this category represent one of the most important
support for a compiler developer. They provide a complete set of tools, which
act on the LLVM Intermediate representation, useful for the implementation
of both optimizations and code generation functions.

The LLVM Optimization Passes

The optimizations are organized in a chain of elements, called Passes, which
receives at its input the IR code to return its optimized version[34]. The
order though which they operate depends on the choices of the developer
and on her/his purposes.

2A CFG is a representation, through a graph notation, of all the possible paths that
can be traversed inside an algorithm.

53

6 – The Octantis project

The passes can be classified as follows:

• Analysis Passes: they collect advanced information from the input IR
code, suitable for the subsequent optimization procedures, without in-
troducing any modification. Examples of these passes are Natural Loop
information, Memory Dependence Analysis and Scalar Evolution Anal-
ysis.

• Transform Passes: they mutate to various degree the program flow and,
unlike the analysis ones, they don’t produce any result in terms of in-
formation. The new processed IR code must be valid and equivalent to
the original version that the pass has received at its input. Typically,
after the elaboration, the previously performed analyses are invalidated
and they are no longer made available. Examples of transform passes are
Dead Code Elimination (also its “aggressive version”), Promote Memory
to Register , Simplify the CFG and the whole set for Loop Transforma-
tions3.

• Utility Passes: they provide general utility functions that can’t be cat-
egorized neither into an analysis nor in a transformation context. An
example of these passes is View CFG of function.

The LLVM tools for code generation

In support of back-end compiler designers, many libraries are provided with
the target code generation. The latter are gathered to form, as defined inside
the official documentation[35]:

“A suite of reusable components for translating the LLVM internal
representation to the machine code for a specified target”.

The available classes encourage the development of efficient and quality
code for standard register-based microprocessors. The compilation stages
of the input IR code refer to the basic principles previously introduced in
Section 3.1.2 while discussing about the typical back-end compiler structure.

3Among the most interesting: Loop Invariant Code Motion, Delete dead loops, Loop
Strength Reduction, Rotate Loops, Canonicalize natural loops and Unroll loops.

54

https://llvm.org/doxygen/LoopInfo_8h_source.html
https://llvm.org/doxygen/LoopInfo_8h_source.html
https://llvm.org/doxygen/MemoryDependenceAnalysis_8h_source.html
https://llvm.org/doxygen/ScalarEvolution_8cpp_source.html
https://llvm.org/doxygen/ScalarEvolution_8cpp_source.html
https://llvm.org/doxygen/DCE_8h_source.html
https://llvm.org/doxygen/Mem2Reg_8h_source.html
https://llvm.org/doxygen/Mem2Reg_8h_source.html
https://llvm.org/doxygen/SimplifyCFG_8h_source.html
https://llvm.org/doxygen/CFGPrinter_8h_source.html
https://llvm.org/doxygen/LICM_8h_source.html
https://llvm.org/doxygen/LoopDeletion_8h_source.html
https://llvm.org/doxygen/LoopStrengthReduce_8h_source.html
https://llvm.org/doxygen/LoopStrengthReduce_8h_source.html
https://llvm.org/doxygen/LoopRotation_8h_source.html
https://llvm.org/doxygen/LoopSimplify_8h_source.html
https://llvm.org/doxygen/LoopUnrollPass_8h_source.html

6.2 – More details about The LLVM Project

In particular, the LLVM framework provides for:

• Instruction selection: the input IR code is translated into the target
language, however, the registers remain expressed into the SSA-form.
The information here collected are then mapped onto a Directed Acyclic
Graph (DAG).

• Scheduling and Formation: from the DAG generated during the previous
phase of compiling, a list of ordered instructions is issued, following the
strategies defined by the implemented scheduling algorithm.

• SSA-based Machine Code Optimizations: the scheduled instructions are
optimized through specific algorithms.

• Register Allocation: during this phase all the SSA locations are substi-
tuted with the real registers belonging to the target microprocessor.

• Prolog/Epilog Code Insertion: for each function inside the algorithm
the code for the related prologue and the epilogue is defined, since at
this point of the compilation process the dimensions of the stack memory
region are known. Other optimizations on the obtained code are applied.

• Late Machine Code Optimizations: target oriented optimizations are
performed, like the peephole4 one.

• Code Emission: the closing stage emits the final code intended for the
proposed target machine.

Each component of the presented sequence can be modified at will by the
compiler designer and as needed. The open-source nature of the available
tools makes easy the definition of a code generator for new destination lan-
guages. The concept of reusability is an integral part of the LLVM project
philosophy and typically few elements have to be specified in order to intro-
duce a new back-end inside the LLVM system. An interesting guide for the
design of a back-end of a generic CPU is reported inside the bibliography[36].
An additional useful reading about these arguments is the official tutorial,
provided by the LLVM developer group[37].

The entire speech is valid under the assumption that the objective of the
compilation fits into the LLVM machine description model. Unfortunately,

4The technique considers a sliding window of target instructions (i.e. the peephole) and
it replaces, if possible, some of the latter with a shorter or a faster sequence.

55

6 – The Octantis project

generic hardware architectures obtained through High-Level Synthesis do not
belong to this category and additional work is required for the implementa-
tion of such a back-end. However, the LLVM infrastructure represents a more
than valid support during the design process of these particular compilers and
many classes reveal profits to reduce the overall workload.

Clang

Clang is the reference front-end compiler, belonging to the LLVM project,
for the generation of machine codes starting from C, C++ and Object-C in-
put languages[38]. As previously discussed in Section 3, it represents one
of the most popular and open-source compilation tools available. Clang
supports also various parallel programming frameworks, among which the
already mentioned OpenMP, OpenCL and CUDA.

It is defined as a library-based architecture, as the whole LLVM framework,
allowing for an easy introduction of additional modules. The related classes
can also be considered in the implementation of other front-end compilers.
The resulting flexibility evidently becomes one of the most important values
of the project.

As Clang represents a front-end, only an intermediate representation is ob-
tained through the compilation process. Therefore, it relies on the available
resources provided by the LLVM infrastructure to complete the translation
into the target language or machine code.

A further interesting feature of its libraries consists in the compatibility
with GCC. The same Clang developers underline how the latter is currently
the “defacto standard open-source compiler” and including the support on
its extensions makes Clang more “appealing” to the developers audience.

Polly

Polly is an LLVM framework for high-level loops and data-locality optimiza-
tion, based on integer polyhedra5. Polly is capable to optimize loops through

5The more general concept of Polyhedral compilation is associated to the elaboration of
programs, containing in this case loops and arrays, represented into a parametric polyhe-
dra. The introduced optimizations on these structures are then transposed to the original
algorithm.

56

6.2 – More details about The LLVM Project

transformations in order to improve the data-locality inside the code. The
information about the target of the compilation process is considered to make
even more effective the introduced improvements. In particular, it supports
the OpenMP APIs to exploit the instruction level parallelism and the SIMD
opportunities.

For a more detailed description of the Polly framework, please refer to the
article [39] and to the official documentation[40].

57

58

Chapter 7

The structure of Octantis

Ocatantis is, for all intents and purposes, a compiler for Logic-in-Memory
architectures. Is is written in C++ and to achieve its aims, the LLVM
Pass Framework has been taken into consideration. Since the high-level
description of the architecture is defined in C-code, also Clang has been
included in the process of compilation. Specifically of this thesis work, some
LLVM Passes have been written together with the back-end in order to obtain
from an input code the configuration files for DExIMA. The general structure
of the Octantis Project it depicted inside Figure 7.1.

Figure 7.1: The conceptual framework of the Octantis Project.

Through different steps, the input code, expressed into the LLVM Interme-
diate Representation, is optimized and the operations that will be effectively

59

7 – The structure of Octantis

implemented inside a LiM architecture are selected. As previously discussed,
all the instructions not recognized as useful for the definition of an appropri-
ate solution are here discarded. Hence, the enhanced code is translated by
the back-end pass into a file destined for the LiM simulator engine.

During the following sections, the implementation details will be discussed
for each component belonging to the project. However, in order not to un-
dermine the effectiveness of the present dissertation, the deepening of the
not strictly necessary technicalities has been avoided. Together with the
program, also a Doxygen documentation is provided where all the Octantis’
code is reported with comments. Please, refer to it for additional insights.

7.1 From the input C-code to the LLVM IR
As mentioned above, Clang has been considered as the front-end compiler
for the project. The input description of the LiM architecture is directly
translated into the LLVM Intermediate Representation without bringing any
optimization. The latter choice became necessary for a precise control on
each modification introduced inside the original algorithm.

The current version of Octantis is capable of compiling simple architec-
tures, constituted by regular arrays of LiM cells. Out-Of-Memory compo-
nents are not considered, as they are not properly part of the LiM Unit.
These conditions result in constraints in how a designer can approach to
the program. The same input C-code is limited in its expressiveness and its
syntax is oriented for a more “pragmatic” use, as with all High-Level Synthe-
sis tools. The basic concepts of Logic-in-Memory computation, as intended
by the VLSI research group at Politecnico di Torino1, shall be clear to the
designer.

7.1.1 Input C-code constraints
Octantis, as repeatedly pointed out, is an useful tool for the exploration of
LiM architectures. The decision about the adoption of the C Standard for
the description of the behavior of these hardware accelerators referred to ab-
stract their definition at an higher level with respect to DExIMA’s syntax

1Please refer to the description included in the first chapter of the present dissertation,
Section 1.1.

60

7.1 – From the input C-code to the LLVM IR

(i.e. at Register Transfer Level). The choice allows to speed up the design
phase, however, the fact that the developed algorithms regard an hardware
component should never be overlooked. In fact, the users of Octantis would
not be deceived by the great flexibility introduced by the use of a high-level
language and they should be focused on the project aims: Octantis does not
represent a programming tool, rather, a hardware synthesizer.

In order to become familiar with the program and to be aware of the
general constraints, the following prescriptions are proposed:

1. All the data must be defined as integers As the LiM architecture
is capable of executing arithmetic operations on integers, declaring and using
floating-point data would not make sense.

2. The content of the declared variables can also be undefined
The aim of the compiler is to produce an architecture and, in particular, it
allocates LiM cells. Therefore, their content, in terms of information, is not
relevant.

3. Dynamic allocation of memory and the consequent management
are not allowed The algorithm has to be described bearing in mind the
effective implementation. The needed hardware resources must be declared
and they will be definitely integrated into the final architecture.

4. Recursive function calls are not allowed either If the flexibility of
the C language to organize the execution of the code in this way was imple-
mented, hardware complexities, that are not easily (in many cases possibly)
optimized, would be introduced.

5. Among the possible arithmetic operations, multiplication and
division should be avoided The hardware implementation for the exe-
cution of these operations is notoriously complex and resource consuming.
Introducing their circuits inside a memory is currently inconvenient so, it is
suggested to consider approximated calculations through shift operations.

6. All the bit-wise logic operations are implemented Even if some
logic operations are not included in the syntax of Standard C, in particu-
lar the negative ones (i.e. nand, nor, xnor), they can be expressed anyway

61

7 – The structure of Octantis

through the composition of more bit-wise operators. Octantis will recognize
the patterns.

As an additional tip, common sense should be adopted during the use of
Octantis, considering its purposes in the exploration of LiM solutions. In
particular, it represents a compiler for the implementation of relatively simple
algorithms. With time, the Octantis project will grow up, together with the
even more advanced capabilities of Logic-in-Memory architectures.

7.1.2 The definition of compilation constraints
In order to drive the synthesis process, Octantis receives in input also a
configuration file. It is defined with “.cfg” extension, an INI file format
with a text-base content, typically used to store the programs information
necessary for their proper execution. An example of the syntax is reported
in Figure 7.2.

1 ;**
2 ; The Octantis Project - Configuration file
3 ;**
4 ;automatically generated at <time> <date> by <user>
5

6 [MemoryType]
7 ;Constraints on the memory array
8 WordLength = 32
9 MaxDimension = 128KB

10

11 [SynthesisProcess]
12 ;Constraints for the synthesys process
13 AdoptedOptimizations= [list of optimizations]
14 SchedulingAlgorithm = ASAP
15 OptimizedParameter = performance
16

17 [AdvancedLiMSettings]
18 ;Explorable LiM solutions
19 ReferenceLiMArchitecture = default

Figure 7.2: Configuration file format.

62

7.2 – The adopted optimizations

State-of-the-art, only two parameters can be defined: the word length,
which determines the dimension of the memory LiM rows, and the adopted
optimizations. However, other ones have been set up for future expansions,
among which:

• Scheduling algorithm

• Memory maximum dimensions

• Memory technology and typology

• Parameters to be optimized

The concept of configuration is essential for the aims of the program. Many
implementations of Logic-in-Memory architectures have been proposed over
the recent years and it would be advisable to gather them into categories of
application. The latter should be associated to the class of algorithms they
are best able to fulfil, allowing the designer to correctly guide the synthesis
process.
Thanks to this information, Octantis will be able to provide highly optimized
solutions for an input source code and, consequently, establishing itself as a
reference tool for the design of innovative electronic systems.

7.2 The adopted optimizations
After the compilation of the C source code and the generation of the related
Intermediate Representation by Clang, some optimizations are applied to the
input algorithm in order to simplify it and, above all, to make the possibilities
of parallelization explicit. In particular, before the execution of the synthesis
process, different passes are run with this purpose, some of which have been
cited along the previous chapter. They implement abstract enhancements,
partly including the strategies detailed in Section 2.3. However, as has been
discussed, the most effective techniques to promote an algorithm to parallel
from a mathematical perspective, regard loops. Their importance has been
highlighted when discussing both the software procedures to define parallel
codes and the ones to increase the efficiency of high-level synthesis tools. For
these reasons, during the definition of Octantis’ modules, particular attention
has been paid to loops optimization. Over the following sections, all the
adopted methods to improve the quality of the input algorithm are deepened.

63

7 – The structure of Octantis

7.2.1 General optimization techniques
Many passes belonging to the LLVM framework can be considered for the
optimization of an input algorithm. The ones that are made available to the
designer of Logic-in-Memory architectures inside Octantis, are:

• mem2reg Pass

• simplifycfg Pass

Outside Octantis, also other passes can be considered to modify the IR
code of the input algorithm. However, the compatibility with the LiM com-
piler is not ensured, differently from the presented cases.

mem2reg Pass

The pass promotes memory references with register ones. In particular, it
tries to limit the operations that can be performed to the data stored inside
the stack region to only load and store ones. Hence, the Static Single Assign-
ment form of the code is straightened, making the subsequent compilation
process easier.

simplifycfg Pass

The pass performs dead code elimination and the merging of basic blocks
whenever possible, in order to simplify the algorithm and to produce a more
efficient code.

7.2.2 Loop Analysis and Transformation
An important contribution to the increasing of performance in the imple-
mentation of an input algorithm regards loop optimizations. It represents
the main structure through which to define parallel codes and many passes
are provided by the LLVM framework to enhance them. The most relevant
ones have been considered in the Octantis project and in particular:

• licm Pass

• loop-deletion Pass

• loop-reduce Pass

• loop-simplify Pass

Beside these, a new pass has been introduced to perform the loop un-
rolling operation, despite the availability of the loop-unroll pass. In fact, the

64

7.2 – The adopted optimizations

latter implements the transformation only when it holds the modification to
be “convenient”. If it was implemented, Octantis would have lost control
over possible optimization opportunities for simple loops. For this reason, a
custom pass has been developed.

licm Pass

The name of the pass is the acronym of Loop Invariant Code Motion and
it tries to remove as many instructions as possible from the body of the
loop. Among them, also the ones that require access to the stack memory
region, promoting in this way the execution of the operations on the in-
ternal registers. Therefore, the resulting loops may be more compact and
efficient, allowing the synthesizer to reduce the allocated resources for their
implementation.

loop-deletion Pass

This pass executes the pruning of the input IR code in order to delete all the
loops that do not take part to the computation of the final results. It results
useful to generate a more efficient code for the following synthesis process.

loop-reduce Pass

The pass reduces the number of array references inside the loops and, in
particular, the ones regarding the management of the variable used as index.
Also this pass allows to make the code inside loops more compact, reducing
the effort of the LiM compiler.

loop-simplify Pass

The pass, as its name suggests, is responsible to transform loops in simpler
forms whenever possible. The derived benefits regard both the execution of
the previous loop optimization passes and the synthesis process.

Loop unrolling

The technique represents the most righteous optimization element for the ex-
ecution of loops. All clear of eventual data dependencies, whose introduction
in the input code the designer has to avoid as much as possible, the pass tries
to accomplish the different iterations belonging to the loop in parallel. The

65

7 – The structure of Octantis

number of resources required to implement the algorithm increases in favour
of a reduction of the execution time.
Through this strategy, the parallel capabilities of Logic-in-Memory architec-
tures can be best highlighted.

7.3 The back-end
Most of the work around the Octantis project has been focused on the defi-
nition of the back-end, the component which effectively translates the input
algorithm from LLVM Intermediate Representation to an architecture de-
scribed through the syntax of DExIMA files. The complexity of the labour
and the will to refer to the modularity principle highly invoked by LLVM
developers, led to a hierarchical organization of the code.

The general structure of Octantis’ back-end is based on the traditional
scheme of that of the compiler, the same one typically characterizing the
High-Level Synthesis tools formerly examined in Section 4.2.1.

Many classes have been defined, each with a specific purpose. However,
they all depend on a unique pass, named “OctantisPass”, which coordinates
them to properly lead the code during the whole conversion phases. Oc-
tantisPass acquires the input LLVM IR code, that has been previously op-
timized, and it proceeds to parse the present functions. For each of them,
it reads the contained basic blocks, feeding the scheduler with the related
instructions. During this process, both the allocation and the scheduling op-
erations are performed. Then, a new data structure is organized to gather
the derived results.

After completing these analyses of the entire input algorithm, the same
pass commissions the binder to further elaborate the extracted information
for the generation of:

• an internal representation of the described LiM architecture;

• a finite state machine useful in the organization of its control flow.

At the end, the code emission procedure is executed in order to define
an appropriate formatted DExIMA configuration file. Inside the latter, both
the description of the Logic-in-Memory solution and the needed instructions

66

7.3 – The back-end

for the dynamic simulation of the algorithms that it implements are included.

Each operation accomplished by OctantisPass and by the associated classes
is discussed in the following sections, where the main focus remains on the
considered algorithms.

7.3.1 The allocation
As previously mentioned, the allocation and the scheduling operations are
executed in parallel. The reason behind this choice relies on the fact that
the two algorithms need to exchange information in order to perform each
its own task.

The current version of Octantis does not provide the possibility of imposing
particular constraints on the synthesis process. Therefore, less resources have
been employed during the definition of the allocation algorithm, consequently
favouring the scheduling one. In particular, the allocator collects, from the
input configuration file, the information about the word length for the LiM
row. The latter then reveals useful during the code generation phase.

7.3.2 The scheduling
The input instructions provided by OctantisPass are firstly identified and
categorized, according to the following classes:

• allocation

• load

• store

• logic/binary operation

• branch

• control flow statement

• pointer

• return

In the event that an unknown instruction, or a not yet supported one, is
acquired, an error message is given back by Octantis in order to adequately
inform the designer and the synthesis process is terminated.

Depending on their type, the instructions are then treated consequently
and they are assigned a time slot in which they will be executed inside the
final LiM architecture. In addition to their identification, during this syn-
thesis step also the recognition of peculiar logic patterns is performed. In

67

7 – The structure of Octantis

particular, if eventual negative logic bit-wise operations are declared through
a couple of operators (i.e. not-and, not-or, not-xor), they are substituted
with their equivalent operators not directly supported by the standard C
language (i.e. nand, nor, xnor).

Octantis implements an As Soon As Possible (ASAP) scheduling algo-
rithm2, whose details are discussed in the following section. At the end of
the scheduling process, the instructions, enriched in these additional infor-
mation, are stored inside a proper data structure, called Instruction Table.

The scheduling algorithm

In order to perform an accurate scheduling of the input instructions, their
classification is essential. In particular, considering the structure and the
properties of the LLVM IR code, it is remarkable that:

• any variable belonging to the program has to be allocated once inside
the stack region of the memory;

• any time a variable is considered for a subsequent elaboration, a load
operation is performed first, to store it inside an internal register, whose
name follows the SSA convention;

• when a result has to be saved inside the stack, a store operation is
executed.

As a Logic-in-Memory architecture is essentially a memory, there is no
need for the implementation of a stack region. Consequently, none of these
operations do make sense. However, they are useful to the scheduler to keep
track of the evolution of information inside the algorithm and so to organize
efficiently their computation.

In particular, store instructions are considered to know when an elaborated
data is made available after its processing. They are of utmost importance
to define the data dependencies present within the input algorithm and to
identify the proper time intervals in which executing the following instruc-
tions. Instead, load operations are treated as they are: definitions of new
variables inside the architecture, in this case the LiM array. The scheduler

2The ASAP scheduling algorithm, as the name suggests, states that any operation
inside an algorithm will be executed as soon as possible.

68

7.3 – The back-end

assigns to them the briefest allocation time and it stores them directly inside
the Instruction Table.

Considering all the other types of instructions, the ASAP scheduling algo-
rithm becomes relevant. The various data dependencies, characterizing the
information, are taken into account and the Instruction Table is filled ac-
cordingly. An example of the entire scheduling process, where the content of
the generated data structure has been made clear, is depicted in Figure 7.3.

Figure 7.3: An example of the results derived from the application of the
scheduling algorithm onto an input LLVM code; the performed operations
by the code are: A = (B and C), D = (A xnor B).

7.3.3 The binding
After establishing the execution order of the different operations belonging
to the IR code, the effective Logic-in-Memory architecture has to be ar-
ranged during the binding phase. In particular, the control and data flows
are separately analyzed and two different data structures are derived: from
the former, a finite state machine, while from the latter, a LiM Unit. The
whole process is performed by “LimCompiler”, invoked, at the appropriate
time, by OctantisPass.

However, before the deepening of the presented operations, the reference
structure of a Logic-in-Memory Unit needs to be discussed.

69

7 – The structure of Octantis

The general Logic-in-Memory implementation structure

Octantis is given the possibility to compile architectures whose structure
shall comply with the most recent researches about Logic-in-Memory carried
out within the VLSI Laboratory at Politecnico di Torino. In particular, the
basic scheme of the implementable devices is depicted in Figure 7.4.

Figure 7.4: An example of the general structure of the LiM Unit that Octantis
is able to synthesize. The output signals, like the control ones, are not
represented to limit the complexity of the scheme.

As can be observed, the LiM array is regular and composed of rows with
constant length. The cells belonging to a single row are uniform and char-
acterized by the same internal logic, if any. In fact, not all the memory cells
integrated inside a LiM Unit are enhanced with additional logic ports and it
all depends on the specific input algorithm.

The internal organization of the LiM cells is the same that has been pre-
sented in Section 1.2.1 and, in particular, in Figure 1.2. Moreover, also
configurable cells can be defined, referring to the stricture to the CLIM-
Architectures briefly described in Section 1.1.

70

7.3 – The back-end

Therefore, form Octantis’ point of view, the considered interfaces of a LiM
row are: two input connections (one at the input of the memory cell and one
at the input of the internal logic) and one output connection.

From an algorithmic perspective, each operation that has to be imple-
mented requires two memory rows, for the input operands, and an additional
one, for storing the result of the computation. Moreover, the cells represent-
ing one of the source row must include the needed logic ports to accomplish
the same operation.

Regarding the interconnections between the different rows, maximum flex-
ibility is guaranteed to the output connections. In this way, the information
generated inside a LiM row can be considered for a subsequent elaboration
though the integrated logic belonging to any other row3. Another argument
applies to the incoming connections, as they are limited to a maximum of
two inputs, without considering the access port to the memory cell. This de-
cision is intended to keep the complexity of the array low and so, to maintain
the performance of the Logic-in-Memory device adequate. In fact, the more
logic ports are considered per unit of LiM cell, the more the critical path is
and, consequently, performance reduces. Moreover, limiting the number of
the input connections has, at least, two additional positive implications:

• The management of the interconnections themselves remains easy for
many aspects, among which the data integrity, the related power con-
sumption and the routing process.

• The control system of the LiM architecture is easier too, not having to
handle abundant variable connections.

A final clarification should be made on how the LiM array is conceived.
In particular, how the operations are implemented inside it. The structure is
intended as a register-based one and each memory row belonging to these ar-
chitectures represents a temporary register of a more complex computational
device. Therefore, an external control unit is responsible for the correct
timing of the registers and of the elements useful for proper routing of infor-
mation (i.e. multiplexers). The algorithmic steps are then punctuated by a

3This is valid only for limited fan-outs and when the data locality principle is preserved.
Otherwise, data should be replicated multiple times inside the memory array as far as the
previous conditions are satisfied again.

71

7 – The structure of Octantis

timing signal, whose length is defined taking into account the critical path of
the LiM Unit.

LiM architectures serve as a compromise between a memory device and an
hardware accelerator. They flank a traditional processing unit (e.g. a CPU)
in order to reduce the computational effort during the execution of data-
intensive algorithms. Part of the overall elaborations are performed inside
the same memory ad the derived intermediate results are made available to
a processor.

The organization of the Control Flow

The information derived from the scheduling of the input operations are con-
sidered for the definition of a Finite State Machine (FSM), necessary during
the simulation phase of the synthesized architecture. The execution of the
algorithm is organized in a series of discrete time intervals punctuated by a
timing signal, as described above.

In particular, the active memory rows are declared for each time unit
constituting the timeline. In this way the operating cells, during the various
algorithmic steps, are possible to be known. The derived results are useful for
estimating the dynamic power consumption of the designed LiM architecture,
by means of DExIMA.

The organization of the needed hardware components

From the information present inside the Instruction Table, arranged by the
scheduler, a virtual representation of the LiM array is organized. The differ-
ent instructions are not directly mapped into LiM rows and some optimiza-
tions are applied to generate a memory with a more compact structure.
In particular, considering the generic organization of the LiM Unit previously
described, the objective of this procedure consists in reducing, as much as
possible, the number of memory rows devoid of internal logic. This results
in a more effective use of the data in them contained.

The array is formed, row by row, during the analysis of the set of instruc-
tions. Since the latter is organized considering the execution order of the
various operations, the mapping can proceed without particular difficulty.
Again, the kind of instruction is discerned and an appropriate behavior is

72

7.3 – The back-end

expected for each of them. For sake of simplicity, they are gathered in two
macro-classes: instructions for the allocation of memory rows, straightway
associated to traditional storage cells devoid of any logic, and for the imple-
mentation of logical and arithmetic operations, which provides the execution
of more complex tasks instead, detailed below.

First of all, the source operands of the instructions are considered in order
to determine their type. In fact, for each elaboration of the data stored inside
the LiM array, one of the two source rows must include the necessary logic
to perform it. Different cases can be encountered and they will be described
below together with the decisions that are taken on the definition of the
array:

A. One of the two source operands is enclosed inside a traditional memory
row

⇒ The binder inserts in the associated memory cells the needed logic
ports for the implementation of the operation and it connects their
free input to the other source operand.

B. One of the two source operands is constituted by the same LiM cells
required by the operation that has to be implemented

⇒ Firstly, the binder checks the number of the input connections of
the logic and, if the latter considers only one operand from another
row4, it introduces to them the additional connection with the cells
belonging to the second operand row.

C. All the other cases

⇒ If both the source LiM rows are occupied by different logic ports
with respect to the ones required by the considered instruction, the
information stored inside one of the two operands is duplicated inside
a new row where properly LiM cells are inserted. Therefore, the
binder set the other operand as input for the logic.

Once the arrangement of the two rows of the source operands with the re-
lated connections has been carried out, the binder allocates an additional row

4Remember the imposed constraint on the number of input connections for the internal
logic in order to reduce the complexity of the LiM array.

73

7 – The structure of Octantis

for storing the result of the computation. This new element of the array is
composed of traditional memory cells, as they need only to acquire an input
data. A proper connection is then defined to link them with the output ports
of the source operand that embeds the logic useful for the execution of the
current instruction.

In each of the presented cases the Finite State Machine is properly updated
with the information useful to identify the active elements during the time
interval assigned for the completion of the specific operation considered.

7.3.4 The code emission
The last part of the compilation process consists, as repeatedly pointed out,
in the code emission. The information gathered during the previous elabo-
ration steps is here summarized to generate the DExIMA configuration file.
The latter describes both the synthesized LiM architecture and the instruc-
tions useful for its dynamic simulation.

The specific class with this aim is called “PrintDexFile”, however, its name
should not mislead. In fact, the functions belonging to it do not only take
the input information and print them out, but they also further elaborate
them to produce a consistent result.

State-of-the-art, DExIMA configuration file is composed of many sections,
some of which destined for the description and the simulation of Out-Of-
Memory logic, others for the same purposes but considering Logic-in-Memory
architectures. As Octantis produces at its output a LiM device which can be
simulated, only the procedure for defining the structure of the latter com-
ponent through DExIMA’s syntax is discussed in the following. For a more
detailed description about how to describe a configuration file for DExIMA
simulator, please refer to the related documentation.

At the outset, an accurate description of the LiM array is performed.
In particular, the memory structure is defined as a traditional RTL circuit.
The first information that has to be declared is the overall dimension of the
memory array. Subsequently, a characterization of the content of the different
cells is performed. To do this, the kind of LiM cells has to be identified and
the associated code sequence printed on the file. In parallel with the definition
of the various elements composing the array, also the interconnections have

74

7.3 – The back-end

to be detailed, both intra and inter cells. It is interesting to note that they
can vary depending on the specific logic integrated inside the rows. A prime
example of this different organization of the interconnections is represented
by the comparison between rows implementing bit-wise operations and rows
intended to perform additions5. In fact, while the former is composed of cells
which lead the information in a “vertical” way, the latter needs to propagate
the carry bit horizontally and additional interconnections have to be defined
to make this propagation possible, as depicted in Figure 7.5.

(a)

(b)

Figure 7.5: Particular of the characteristic interconnections of two LiM rows
performing a bit-wise operation (a) and an addition (b).

During the definition of the interconnections, also the needed multiplexers
have to be properly described. They are inserted whenever the logic inside
a memory cell owns two different inputs or they are configurable.

It is important to highlight that the current version of DExIMA does not
allow a simulation considering the variation of control signals. The performed
simulation is, in fact, virtual and it requests the user to declare, for each time
interval, which cells are active in order to compute an estimate of the dy-
namic power consumption of the designed LiM architecture. As the details
on the performed simulation are under study, at the time of writing, it has

5The architecture embedded in the Logic-in-Memory array for the execution of the
addition is the Ripple Carry Adder one.

75

7 – The structure of Octantis

been decided not to print this section of the configuration file. In its place,
for an easy debugging of the solutions generated by Octantis, a list of the
active rows per unit of time are printed out. The required information is
collected considering the Finite State Machine previously organized by the
binder.

Examples of the code produced by Octantis are reported in the Appendix,
while their description is discusses in the following chapter. There, some test
cases, inclusive of the obtained results, are discussed.

76

Chapter 8

Test on Octantis

The effective functionality of Octantis has been proved through the anal-
ysis of the results deriving from the synthesis process of many input algo-
rithms. Among them, the most significant ones have considered some of the
latest research works on Logic-in-Memory architectures, carried on by the
researches of the VLSI Laboratory. In particular, two of them have been
discussed during the opening chapter of the present dissertation in Section
1.1, when the LiM concept has been introduced for the first time. They
are the CLiMA units implemented for the definition of a Convolutional Neu-
ral Network (CNN)[1] and for the implementation of the Bitmap Indexing
Algorithm[2]. In addition to these works, another one has been taken into
account which considers again a CNN architecture but it is based on a binary
approximation of the convolution operation[41].

The synthesis process of the cited works is described in the following along
with the derived results. Since an important reconstructive work on the
simulator engine DExIMA is underway, many of its functionalities are not
available. Hence, the results discussed along the following pages have been
tested completely by-hand. The verification procedure has not turned out to
be particularly complicated, due to the sufficiently abstract constitution of
the derived Logic-in-Memory architecture (i.e. Register Transfer Level).

77

8 – Test on Octantis

8.1 Synthesis of the XNor Net for an approx-
imated CNN

The considered work focused on the implementation of a Binarized Convo-
lutional Neural Network, an artificial neural network, for the execution of
algorithms suitable for pattern recognition and classification. The process
consists in the discretization of an input information (e.g. an image as a
composition of pixels) and a subsequent convolution, in order to extract the
needed features. These results are then properly classified to provide the ex-
ternal user with the investigated parameters (e.g. the outcome of the analysis
of the input image).

Figure 8.1: The LiM array implementing the XNor Net. Courtesy of Andrea
Coluccio from Article [41]; p. 10, Figure 7.

The Logic-in-Memory array has been specifically adopted to improve the
efficiency of the convolution. Traditionally, this operation is performed through
a series of multiplications and accumulations. However, as the actual Logic-
in-Memory architectures are effective in the execution of simple logic func-
tions, the multiplications have been substituted by logic operations. The

78

8.1 – Synthesis of the XNor Net for an approximated CNN

introduced approximation on the output results gives the implemented so-
lution the epithet of binarized. In particular, both the input data and the
relative weights have been discretized and two hardware units have become
necessary: a XNOR Net, for the execution of the binary multiplication of
the data, followed by a Pop-counter1, for their accumulation. The specific
architecture proposed by the cited work is depicted in Figure 8.1.

Since the Pop-counter is actually an Out-Of-Memory circuit, it has not
been described in the input C algorithm for the synthesis of the Logic-in-
Memory architecture. Thus, the latter has come down to a simple array of
XNor LiM cells. The Octantis’ configuration file has been set up to produce
a final memory with a word length of five bits, the same dimension declared
inside the article and the input algorithm, illustrated in Figure 8.2, has been
defined.

1 //Code for the implementation of a XNor Net
2 void XNor_Net(){
3

4 //Allocation of the weight
5 unsigned weight;
6 //Allocation of the matrix for the input data
7 unsigned dataMatrix[5];
8 //Allocation of the rows for the output results
9 unsigned outData[5];

10

11 //Execution of the Xor operations on the data
12 for(int i=0;i<4;++i)
13 outData[i]=~(weight^dataMatrix[i]);
14

15 }

Figure 8.2: Tested input code for the LiM implementation of the XNOR Net.

The deriving architecture has revealed fully comparable and equivalent to
the solution proposed inside the article, so as the timing information. The

1A Pop-counter is a hardware unit useful to determine the difference between the
number of ones and the number of zeros constituting an input data.

79

8 – Test on Octantis

synthesis process required few milliseconds to complete, showing also the ef-
fectiveness of Octantis as an agile exploration tool.

The obtained results have been gathered and proposed in a readable-
friendly format inside Appendix A, for completeness.

8.2 Synthesis of a Bitmap Indexing algorithm
implementation on CLiMA

The Bitmap Indexing algorithm represents a valid approach in the classifica-
tion of information coming from different sources in parallel. The proposed
solution for its implementation is a configurable Logic-in-Memory architec-
ture inspired by the concept of CLiM-Arrays. The algorithm can operate
two kinds of operations on the data stored inside the LiM array:

• Out = A and B

• Out = A and (B or C)

where A, B and C serve as a typology of information. Also their negated
values are made available inside each LiM cell.

Figure 8.3: The CLiM-Array implementing the Bitmap Indexing algorithm.
Courtesy of Milena Andrighetti from her M.Sc. Thesis [42]; p. 78, Figure
3.12.

The overall circuit is complex, especially as regards the control and the
techniques useful to the routing of information, all external to the actual

80

8.2 – Synthesis of a Bitmap Indexing algorithm implementation on CLiMA

Logic-in-Memory array. Therefore, the current synthesis test has considered
only the sub-portion of the project which is more suitable to the process.
In particular, the architecture depicted in Figure 8.3 has been taken into
account.

The present test case is of particular interest because it emphasizes the
breadth of Octantis’ scope, in particular for the range of abstraction it is able
to manage. While in the previous example a completely high-level description
has been considered for the definition of the logic-in-Memory array, here the
elevation is reduced and a behavioral description has to be adopted2. This
kind of design reveals essential to describe a configurable logic as it needs a
granularity of detail that otherwise could not be achieved. In fact, each LiM
cell is composed of the components depicted in Figure 8.4.

Figure 8.4: Details of the logic integrated inside the CLiM cells. Courtesy of
Milena Andrighetti from her M.Sc. Thesis [42]; p. 74, Figure 3.8.

In particular, as the architecture implemented is regular, only one “col-
umn” of the the entire array has been synthesized, also devoid of the input
multiplexer since it belongs to the Out-Of-Memory logic. Therefore, the
word length of the memory has been imposed to 16-bits inside Octantis’
configuration file, as the reference architecture, and the code describing the
architecture has been defined. The latter is reported in Figure 8.5.

2It should be recalled that the behavioral synthesis is an ancestor of modern high-level
synthesizers and that it is partially integrated inside the available EDA tools.

81

8 – Test on Octantis

1 //Code for the implementation of the Bitmap Indexing algorithm
2 // NOTE: the return statement is the common output line while
3 // the passed parameter represents the common input line
4 int BitmapIndex (int commonInLine){
5

6 //Allocation of the memory "ghost" row
7 int ghostRow;
8 //Definition of the configuration signal for CLiM cells
9 int configuration;

10 //Allocation of the set of data
11 int sourceRow[8];
12

13 for(int i=0; i<8; i++){
14

15 //Definition of the configurable logic inside each CLiM cell
16 switch(configuration){
17 case 0:
18 ghostRow='Z';
19 return sourceRow[i];
20 case 1:
21 ghostRow=sourceRow[i] & commonInLine;
22 return sourceRow[i];
23 case 2:
24 ghostRow=sourceRow[i] | commonInLine;
25 return sourceRow[i];
26 case 3:
27 ghostRow=sourceRow[i] ^ commonInLine;
28 return sourceRow[i];
29 default:
30 break;
31 }
32 }
33 //Definition of the output connection
34 return ghostRow;
35 }

Figure 8.5: Tested input code for the implementation of the Bitmap Indexing
algorithm through a CLIM-Architecture.

82

8.3 – Synthesis of a CLiMA CNN

Also in this case, the results of the synthesis process have revealed in com-
pliance with the original architecture proposed by the author of the article.
However, it should be clarified that the information obtained for the simula-
tion of the architecture is meaningless. A drawback of behavioral synthesis
consists in the loss of details about the algorithm an architecture has to im-
plement. As for a traditional RTL design, a test-bench has to be arranged
in order to verify the correct behavior of the developed solution, also in this
context the implemented algorithm should be declared to Octantis. Only
in this way, the synthesizer can produce also the needed information for a
proper simulation of the generated device. State-of-the-art, this feature has
not been implemented yet but it will be in the next future.

A copy of the results obtained through Octantis, in the implementation of
the discussed algorithm, is attached in Appendix B.

8.3 Synthesis of a CLiMA CNN

Figure 8.6: The process of convolution in the CLiM-Array. Courtesy of
Giulia Santoro from Article [1]; p. 12, Figure 13.

The cited work consisted in the implementation of another Quantized Con-
volutional Neural Network. However, in this case the discretization of the
information does not affect anymore the data and the weights but only the

83

8 – Test on Octantis

results. In fact, the convolution has been obtained through the approxi-
mation of the multiplications in shift operations and a subsequent phase of
accumulation.

A CLiM-Array has been considered for the implementation of the designed
neural network and the derived architecture, proposed by the article, is de-
tailed in Figure 8.6. Inside the same figure, also a description of the applied
algorithm is given by the author.

The synthesized circuit refers precisely to the array barely mentioned, with
an additional adjustments. Firstly, the array is disposed following a vector
configuration. In fact, DExIMA is able to test Logic-in-Memory architec-
tures composed of uniform and continuous rows. Future implementations of
the simulator will support also these more complex structures, surely.

The configuration file for Octantis has been set up so as to impose a word
length of 8-bits and the input code, depicted in Figure 8.7, has been defined.

The produced architecture has resulted fully equivalent from an algorith-
mic point of view. However, it has an hardware overhead which, although
limited, makes the obtained solution different from the reference one. These
variations are quantified inside Table 8.1.

Integrated Logic Original implementation Octantis’ solution
Shift 9 9
RCA 6 8

Table 8.1: Overhead of the architecture produced by Octantis over the ref-
erence one.

As can be observed, the responsibility for the increment of the needed
hardware for the implementation of the code is to be attributed to the op-
eration of accumulation. In fact, Octantis relies on a specific algorithm to
schedule this kind of repetitive tasks which operates following a binary tree
like flow in order to reduce, step by step, the input operands. At every step of
the computation, additional adders are allocated to generate partial results
and the re-usability of these components is not considered. The accumulation
so defined is faster than a serial execution, but resource consuming.

84

8.3 – Synthesis of a CLiMA CNN

1 //Code for the implementation of the CNN algorithm
2 void CNN(){
3

4 //Allocation of the LiM rows for the pixels
5 int pixels[9];
6 //Allocation of the map for the input weights
7 int weights[9];
8 //Allocation of the vector for the partial results
9 int partial[9];

10 //Allocation of the row for the result of accumulation
11 int result=0;
12

13 //Definition of the shift operations and computation
14 //of the partial results
15 for(int i=0; i<9; ++i)
16 partial[i]=pixels[i] >> weights[i];
17

18 //Accumulation of the generated partial results
19 for(int j=0; j<9; ++j)
20 result+=partial[i];
21 }

Figure 8.7: Tested input code for the implementation of a Convolutional
Neural Network through a CLIM-Architecture.

The decision to consider such an algorithm lies on the principle of reducing
the overall complexity. Firstly, it is important to note that the operation of
accumulation could be executed in parallel with other ones and managing
limited resources with the allocation of different operations represents an op-
timum problem, not so easy to resolve. Secondly, both the interconnections
and the control become even more complicated.

Nevertheless, the need for more advanced optimizations during the synthe-
sis process becomes clear and more sophisticated algorithms could be adopted
in the future in that direction.

In conclusion, the detailed results provided by Octantis have been gath-
ered inside Appendix C. Also in this case, the information about the timing

85

8 – Test on Octantis

of the architecture is meaningless since the shift operations are applied by the
control as a sequence of one-right-shift per unit of time. The number of shift
operations varies depending on the input data and, without any additional
details on the simulation procedure, Octantis is not able to provide accu-
rate test-benches. As previously discussed, the compatibility of Octantis to
perform simulations with customized input test vectors will be implemented
within future updates.

86

Chapter 9

Conclusions and future
works

Octantis presents itself as an agile tool in support of the exploration and
the design of Logic-in-Memory architectures. As repeatedly pointed out, the
aim of this first version of the program is to provide a designer with quick
information on how an algorithm can benefit from the implementation on
such an architecture.

For all intents and purposes, Octantis represents an High-Level Synthe-
sizer and it receives in input an abstract algorithm, described through one of
the most diffused programming languages, to define a proper architectural
solution. This high-level approach during the design phase allows a designer
to focus on the quality and the efficiency of an algorithm, without being
distracted by the many implementation details and technicalities that only
a Logic-in-Memory designer should really know. Thereby enabling an easy
access to an electronic designer to LiM world is ensured.

Therefore, the main advantages of Octantis can be summarized as follows.
It’s fast during the synthesis process, embodying the purpose of the explo-
ration of alternative implementation solutions. The whole project has been
designed so as to guarantee the modularity and the maintenance of the code.
For what concerns the maintenance, a detailed documentation is provided
together with Octantis in order to prepare the designer to work on it in a
short time. The modularity is then guaranteed to allow the same developers
to extend the capability of the tool during time. Moreover, it is integrated

87

9 – Conclusions and future works

inside a lively development framework, the LLVM one, which is firstly open-
source and that it is rich in tools and algorithms for the adoption of new and
advanced functionalities. Last but not least, Octantis is capable of manag-
ing both the definition of an hardware architecture and the relative control
flow, starting from simple and self-consistent1 input algorithms. Hence, also
a test-bench for the proposed solution is generated.

State-of-the-art, many other features can be introduced, in the view of
an increasing complexity and completeness of the program. First of all, the
definition of more advanced optimization techniques and that are able to
overstep the actual ASAP scheduling algorithm. Then, the introduction of
support for more accurate test-benches that could accept test vectors in in-
put to properly simulate the produced Logic-in-Memory unit. Finally, wider
customization properties inside the configuration file can be developed so
that they may lead the synthesis process for the generation of more specific
and optimized architectures. Time of writing, many general purpose Logic-
in-Memory devices are under evolution and which are reaching the needed
maturity to establish themselves as a reference for specific algorithmic appli-
cations. The latter may be supported by Octantis, in its future versions.

An additional future work goal could be the analysis of a generic C source
code to define, directly when Octantis starts, which parts of the whole algo-
rithm could benefit of a Logic-in-Memory implementation and which would
not. In this way, only a portion of the source code would be mapped on a
Logic-in-Memory architecture while the remaining part could be rearranged
to be provided to a generic processor back-end. This new version of Octantis
would be able to collect information on how a more complex system, com-
posed of a LiM unit associated to a modern processor, would behave.

These are few of the possible future works which could be realized around
Octantis.

In conclusion, the hope is to have realized an instrument capable of giving
light to the many Logic-In-Memory researches that have been carried out
so far by the researchers of the VLSI Laboratory. Octantis aims to be a
valid guide during the exploratory phase of LiM architectures, a promising
solution for how electronics could evolve in the coming years.

1Self-consistent code is defined as an algorithm which proceeds by design in its execu-
tion, without the need of any external information, like test-vectors.

88

Appendix A

XNor Net on LiM

In the following the results of the synthesis process on the XNor Net have
been gathered. The information associated to the scheduling time assumes
that the content of the Logic-in-Memory unit has been initialized before the
execution of any operation.

Row Number Address Word
Length

Integrated
Logic

Input
Connections

1 000 5 — —
2 001 5 XNor 0000
3 010 5 XNor 0000
4 011 5 XNor 0000
5 100 5 XNor 0000
6 101 5 XNor 0000

Table A.1: Information about the LiM structure.

89

A – XNor Net on LiM

Row Number Address Scheduling
Time

1 000 0
2 001 0
3 010 0
4 011 0
5 100 0
6 101 0

Table A.2: Information about the scheduling of the operations.

90

Appendix B

Bitmap Indexing
algorithm on CLiMA

In the following the results of the synthesis process of architecture implement-
ing the Bitmap Indexing have been gathered. Since the input test vectors
can’t be provided to Octantis in order to let it organize a proper simulation,
the information associated to the scheduling time is meaningless and it is not
reported.

Row Number Address Word
Length

Integrated
Logic

1 0000 16 —
2 0001 16 And/Or/Xor
3 0010 16 And/Or/Xor
4 0011 16 And/Or/Xor
5 0100 16 And/Or/Xor
6 0101 16 And/Or/Xor
7 0110 16 And/Or/Xor
8 0111 16 And/Or/Xor
9 1000 16 And/Or/Xor

Table B.1: Information about the LiM structure (Part 1).

91

B – Bitmap Indexing algorithm on CLiMA

Row Number Address Input
Connections Additional Notes

1 0000 All the other lines —
2 0001 Input Line Configurable logic
3 0010 Input Line Configurable logic
4 0011 Input Line Configurable logic
5 0100 Input Line Configurable logic
6 0101 Input Line Configurable logic
7 0110 Input Line Configurable logic
8 0111 Input Line Configurable logic
9 1000 Input Line Configurable logic

Table B.2: Information about the LiM structure (Part 2).

92

Appendix C

CLiMA CNN

In the following the results of the synthesis process of architecture imple-
menting the Quantized CNN have been gathered. Since the input test vectors
can’t be provided to Octantis in order to let it organize a proper simulation,
the information associated to the scheduling time is meaningless and it is not
reported.

93

C – CLiMA CNN

R
ow

N
um

be
r

A
dd

re
ss

W
or
d

Le
ng

th
In
te
gr
at
ed

Lo
gi
c

In
pu

t
C
on

ne
ct
io
ns

A
dd

iti
on

al
N
ot
es

1
00

00
0

8
—

—
In
te
rn
al

sh
ift

op
er
at
io
n

2
00

00
1

8
Fu

ll/
H
al
f-A

dd
er

00
00

0
In
te
rn
al

sh
ift

op
er
at
io
n

3
00

01
0

8
—

00
00

1
—

4
00

01
1

8
—

—
In
te
rn
al

sh
ift

op
er
at
io
n

5
00

10
0

8
Fu

ll/
H
al
f-A

dd
er

00
01

1
In
te
rn
al

sh
ift

op
er
at
io
n

6
00

10
1

8
Fu

ll/
H
al
f-A

dd
er

00
10

0,
00

01
0

—
7

00
11

0
8

—
—

—
8

00
11

1
8

—
—

In
te
rn
al

sh
ift

op
er
at
io
n

9
01

00
0

8
Fu

ll/
H
al
f-A

dd
er

00
11

1
In
te
rn
al

sh
ift

op
er
at
io
n

10
01

00
1

8
—

01
00

0
—

11
01

01
0

8
—

—
In
te
rn
al

sh
ift

op
er
at
io
n

12
01

01
1

8
Fu

ll/
H
al
f-A

dd
er

01
01

0
In
te
rn
al

sh
ift

op
er
at
io
n

13
01

10
0

8
Fu

ll/
H
al
f-A

dd
er

01
01

1,
01

00
1

—
14

01
10

1
8

Fu
ll/

H
al
f-A

dd
er

01
10

0,
00

11
0

—
15

01
11

0
8

—
01

10
1

—
16

01
11

1
8

Fu
ll/

H
al
f-A

dd
er

01
11

0
In
te
rn
al

sh
ift

op
er
at
io
n

17
10

00
0

8
—

01
11

1
—

Table C.1: Information about the LiM structure

94

Nomenclature

ADG Algorithm Dependence Graph

API Application Programming Interface

ASAP As Soon As Possible

ASIC Application Specific Integrated Circuit

CFG Control Flow Graph

CLiMA Configurable Logic-in-Memory Array

CMOS Complementary Metal-Oxide Semiconductor

CNN Convolutional Neural Network

CPU Central Processing Unit

DAG Directed Acyclic Graph

DSP Digital Signal Processor

EDA Electronic Design Automation

ESL Electronic System-Level

FPGA Field Programmable Gate Array

FSM Finite State Machine

GPGPU General Purpose Graphical Processing Unit

GPU Graphical Processing Unit

HDL Hardware Description Language

95

NOMENCLATURE

HLS High-Level Synthesis

IoT Internet of Things

IP Intellectual Property

IR Intermediate Representation

LiM Logic-in-Memory

NN Neural Network

RISC Reduced Instruction Set Computing

RTL Register Transfer Level

SIMD Single Instruction Multiple Data

SSA Static Single Assignment

96

Bibliography

[1] Giulia Santoro, Giovanna Turvani, and Mariagrazia Graziano. “New
Logic-In-Memory Paradigms: An Architectural and Technological Per-
spective”. In: Micromachines 10.6 (May 2019), p. 368. issn: 2072-666X.
doi: 10.3390/mi10060368.

[2] Milena Andrighetti et al. “Data Processing and Information Classifica-
tion—An In-Memory Approach”. In: Sensors 20.6 (Mar. 2020), p. 1681.
issn: 1424-8220. doi: 10.3390/s20061681.

[3] N. Piano. “DExIMA: a Design Explorer for In-Memory Architectures”.
MA thesis. Politecnico di Torino, 2019. url: https://webthesis.
biblio.polito.it/12547/.

[4] F. Riente et al. “Understanding CMOS Technology Through TAM-
TAMS Web”. In: IEEE Transactions on Emerging Topics in Computing
4.3 (2016), pp. 392–403. issn: 2168-6750. doi: 10.1109/TETC.2015.
2488899.

[5] Shyamkumar Thoziyoor et al. CACTI 5.1. Technical Report. Palo Alto:
HP Laboratories, 2008. url: https://www.hpl.hp.com/techreports/
2008/HPL-2008-20.html.

[6] M. Niemier and al. “Nanomagnet logic: progress toward system-level
integration”. In: J. Phys.: Condens. Matter 23 (Nov. 2011), p. 34. doi:
10.1088/0953-8984.

[7] G. Turvani et al. “A pNML Compact Model Enabling the Exploration
of Three-Dimensional Architectures”. In: IEEE Transactions on Nan-
otechnology 16.3 (May 2017), pp. 431–438. issn: 1941-0085. doi: 10.
1109/TNANO.2017.2657822.

[8] 2018 Edition of International Roadmap for Devices and Systems (IRDS).
2018. url: https://irds.ieee.org/editions/2018.

97

https://doi.org/10.3390/mi10060368
https://doi.org/10.3390/s20061681
https://webthesis.biblio.polito.it/12547/
https://webthesis.biblio.polito.it/12547/
https://doi.org/10.1109/TETC.2015.2488899
https://doi.org/10.1109/TETC.2015.2488899
https://www.hpl.hp.com/techreports/2008/HPL-2008-20.html
https://www.hpl.hp.com/techreports/2008/HPL-2008-20.html
https://doi.org/10.1088/0953-8984
https://doi.org/10.1109/TNANO.2017.2657822
https://doi.org/10.1109/TNANO.2017.2657822
https://irds.ieee.org/editions/2018

BIBLIOGRAPHY

[9] Fayez Gebali. Algorithms and Parallel Computing. John Wiley & Sons
Inc, 2011. isbn: 9780470902103.

[10] John Hennessy and David Patterson. Computer Architecture: A Quan-
titative Approach. 6th. Morgan Kaufmann, Nov. 2017, p. 936. isbn:
9780128119051.

[11] M. D. Hill and M. R. Marty. “Amdahl’s Law in the Multicore Era”. In:
Computer 41.7 (July 2008), pp. 33–38. issn: 1558-0814. doi: 10.1109/
MC.2008.209.

[12] J. E. Volder. “The CORDIC Trigonometric Computing Technique”.
In: IRE Transactions on Electronic Computers EC-8.3 (Sept. 1959),
pp. 330–334. issn: 0367-9950. doi: 10.1109/TEC.1959.5222693.

[13] S. W. Keckler et al. “GPUs and the Future of Parallel Computing”.
In: IEEE Micro 31.5 (Sept. 2011), pp. 7–17. issn: 1937-4143. doi: 10.
1109/MM.2011.89.

[14] OpenMP ARB, ed. OpenMP Application Programming Interface. v. 5.0.
2018. url: https://www.openmp.org/wp-content/uploads/OpenMP-
API-Specification-5.0.pdf.

[15] Khronos Group, ed. OpenCL 3.0 Reference Guide. v. 3.0. 2020. url:
https://www.khronos.org/files/opencl30-reference-guide.pdf.

[16] Advanced Micro Devices, ed. Introduction to OpenCL Programming.
2010. url: http://developer.amd.com/wordpress/media/2013/01/
Introduction_to_OpenCL_Programming-Training_Guide-201005.
pdf.

[17] Nvidia, ed. CUDA C++ Programming Guide. 2020. url: https://
docs.nvidia.com/pdf/CUDA_C_Programming_Guide.pdf.

[18] M. J. Flynn. “Some Computer Organizations and Their Effectiveness”.
In: IEEE Transactions on Computers C-21.9 (Sept. 1972), pp. 948–960.
issn: 1557-9956. doi: 10.1109/TC.1972.5009071.

[19] Alfred V. Aho et al. Compilers: Principles, Techniques, and Tools (2nd
Edition). Addison-Wesley Longman Publishing Co., Inc., 2006. isbn:
0321486811.

[20] Kasliwal Vishal and Vladimirov Andrey. A Performance-Based Com-
parison of C/C++ Compilers. Tech. rep. Colfax International, Nov.
2017. url: https://colfaxresearch.com/compiler-comparison/.

98

https://doi.org/10.1109/MC.2008.209
https://doi.org/10.1109/MC.2008.209
https://doi.org/10.1109/TEC.1959.5222693
https://doi.org/10.1109/MM.2011.89
https://doi.org/10.1109/MM.2011.89
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.khronos.org/files/opencl30-reference-guide.pdf
http://developer.amd.com/wordpress/media/2013/01/Introduction_to_OpenCL_Programming-Training_Guide-201005.pdf
http://developer.amd.com/wordpress/media/2013/01/Introduction_to_OpenCL_Programming-Training_Guide-201005.pdf
http://developer.amd.com/wordpress/media/2013/01/Introduction_to_OpenCL_Programming-Training_Guide-201005.pdf
https://docs.nvidia.com/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/pdf/CUDA_C_Programming_Guide.pdf
https://doi.org/10.1109/TC.1972.5009071
https://colfaxresearch.com/compiler-comparison/

BIBLIOGRAPHY

[21] A. Sangiovanni-Vincentelli. “The Tides of EDA”. In: IEEE Design Test
of Computers 20.06 (Nov. 2003), pp. 59–75. issn: 1558-1918. doi: 10.
1109/MDT.2003.1246165.

[22] G. Martin and G. Smith. “High-Level Synthesis: Past, Present, and
Future”. In: IEEE Design Test of Computers 26.4 (July 2009), pp. 18–
25. issn: 1558-1918. doi: 10.1109/MDT.2009.83.

[23] J. J. Rodríguez-Andina, M. D. Valdés-Peña, and M. J. Moure. “Ad-
vanced Features and Industrial Applications of FPGAs—A Review”. In:
IEEE Transactions on Industrial Informatics 11.4 (Aug. 2015), pp. 853–
864. issn: 1941-0050. doi: 10.1109/TII.2015.2431223.

[24] S. M. Trimberger. “Three Ages of FPGAs: A Retrospective on the First
Thirty Years of FPGA Technology”. In: Proceedings of the IEEE 103.3
(Mar. 2015), pp. 318–331. issn: 1558-2256. doi: 10.1109/JPROC.2015.
2392104.

[25] A. Takach. “High-Level Synthesis: Status, Trends, and Future Direc-
tions”. In: IEEE Design Test 33.3 (June 2016), pp. 116–124. issn: 2168-
2364. doi: 10.1109/MDAT.2016.2544850.

[26] S. Lahti et al. “Are We There Yet? A Study on the State of High-
Level Synthesis”. In: IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 38.5 (May 2019), pp. 898–911. issn:
1937-4151. doi: 10.1109/TCAD.2018.2834439.

[27] Yuanbin Guo et al. “Rapid Industrial Prototyping and SoC Design of
3G/4G Wireless Systems Using an HLS Methodology”. In: EURASIP
Journal on Embedded Systems 2006 (Jan. 2006). doi: 10.1155/ES/
2006/14952.

[28] J. Cong et al. “High-Level Synthesis for FPGAs: From Prototyping
to Deployment”. In: IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 30.4 (Apr. 2011), pp. 473–491. issn:
1937-4151. doi: 10.1109/TCAD.2011.2110592.

[29] R. Nane et al. “A Survey and Evaluation of FPGA High-Level Synthesis
Tools”. In: IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 35.10 (Oct. 2016), pp. 1591–1604. issn: 1937-4151.
doi: 10.1109/TCAD.2015.2513673.

99

https://doi.org/10.1109/MDT.2003.1246165
https://doi.org/10.1109/MDT.2003.1246165
https://doi.org/10.1109/MDT.2009.83
https://doi.org/10.1109/TII.2015.2431223
https://doi.org/10.1109/JPROC.2015.2392104
https://doi.org/10.1109/JPROC.2015.2392104
https://doi.org/10.1109/MDAT.2016.2544850
https://doi.org/10.1109/TCAD.2018.2834439
https://doi.org/10.1155/ES/2006/14952
https://doi.org/10.1155/ES/2006/14952
https://doi.org/10.1109/TCAD.2011.2110592
https://doi.org/10.1109/TCAD.2015.2513673

BIBLIOGRAPHY

[30] Andrew Canis et al. “LegUp: High-Level Synthesis for FPGA-Based
Processor/Accelerator Systems”. In: Proceedings of the 19th ACM/SIG-
DA International Symposium on Field Programmable Gate Arrays. Mon-
terey, CA, USA: Association for Computing Machinery, 2011, pp. 33–
36. isbn: 9781450305549. doi: 10.1145/1950413.1950423.

[31] C. Pilato and F. Ferrandi. “Bambu: A modular framework for the high
level synthesis of memory-intensive applications”. In: 2013 23rd In-
ternational Conference on Field programmable Logic and Applications.
Sept. 2013, pp. 1–4. doi: 10.1109/FPL.2013.6645550.

[32] Bruno Cardoso Lopes and Rafael Auler. Getting Started with LLVM
Core Libraries. Packt Publishing, 2014. isbn: 1782166920.

[33] LLVM Developer Group, ed. LLVM Language Reference Manual. url:
https://llvm.org/docs/LangRef.html.

[34] LLVM Developer Group, ed. LLVM’s Analysis and Transform Passes.
url: https://llvm.org/docs/Passes.html.

[35] LLVM Developer Group, ed. The LLVM Target-Independent Code Gen-
erator. url: https://llvm.org/docs/CodeGenerator.html.

[36] Chen Chung-Shu. Tutorial: Creating an LLVM Backend for the Cpu0
Architecture. Release 3.9.1. May 2020. url: https://jonathan2251.
github.io/lbd/.

[37] LLVM Developer Group, ed. Writing an LLVM Backend. url: https:
//llvm.org/docs/WritingAnLLVMBackend.html.

[38] LLVM Developer Group, ed. Clang: a C language family frontend for
LLVM. url: https://clang.llvm.org/index.html.

[39] Louis-Noël Pouchet et al. “Polly-polyhedral optimization in LLVM”. In:
vol. 2011. Jan. 2011.

[40] The Polly Team, ed. Polly Documentation. url: http://polly.llvm.
org/docs/.

[41] Andrea Coluccio, Marco Vacca, and Giovanna Turvani. “Logic-in-Memo-
ry Computation: Is It Worth It? A Binary Neural Network Case Study”.
In: Journal of Low Power Electronics and Applications 10.1 (Feb. 2020),
p. 7. issn: 2079-9268. doi: 10.3390/jlpea10010007.

[42] M. Andrighetti. “Parallel architectures for Processing-in-Memory”. MA
thesis. Politecnico di Torino, 2018. url: https://webthesis.biblio.
polito.it/9501/.

100

https://doi.org/10.1145/1950413.1950423
https://doi.org/10.1109/FPL.2013.6645550
https://llvm.org/docs/LangRef.html
https://llvm.org/docs/Passes.html
https://llvm.org/docs/CodeGenerator.html
https://jonathan2251.github.io/lbd/
https://jonathan2251.github.io/lbd/
https://llvm.org/docs/WritingAnLLVMBackend.html
https://llvm.org/docs/WritingAnLLVMBackend.html
https://clang.llvm.org/index.html
http://polly.llvm.org/docs/
http://polly.llvm.org/docs/
https://doi.org/10.3390/jlpea10010007
https://webthesis.biblio.polito.it/9501/
https://webthesis.biblio.polito.it/9501/

	Introduction
	I The Logic-in-Memory concept and today's need for parallel computing
	Motivation and background
	An introduction to Logic-in-Memory systems
	DExIMA: a simulator for LiM systems
	The models library
	The description of the Logic-in-Memory unit
	The description of the Out-Of-Memory Logic
	The simulation of the system

	Parallel computing
	The available processors for parallel computation
	From serial to parallel code
	The Amdahl's law for parallel processing
	The translation process

	Code parallelization techniques
	Loop transformations
	Other general techniques

	Libraries and APIs for parallel computing
	OpenMP
	OpenCL
	CUDA

	Compilers
	The structure of a modern compiler
	The compiler front-end
	The compiler back-end
	Final comments on the internal organization of a compiler

	The most popular C/C++ compilers
	The GNU Project
	The LLVM Project

	High-Level Synthesis
	The historical stages of the EDA Industry and the troubled research on HLS
	The Age of gods (1964-1978)
	The Age of heroes (1979-1992)
	The Age of men (1993-2002)
	The Contemporary Age (from the early 2000s)

	The modern HLS Tools
	The typical structure of an High-Level Synthesizer

	Conclusions

	II Octantis, a Logic-in-Memory explorer
	The Octantis project
	Introduction
	More details about The LLVM Project
	The LLVM IR Language
	The LLVM Core libraries

	The structure of Octantis
	From the input C-code to the LLVM IR
	Input C-code constraints
	The definition of compilation constraints

	The adopted optimizations
	General optimization techniques
	Loop Analysis and Transformation

	The back-end
	The allocation
	The scheduling
	The binding
	The code emission

	Test on Octantis
	Synthesis of the XNor Net for an approximated CNN
	Synthesis of a Bitmap Indexing algorithm implementation on CLiMA
	Synthesis of a CLiMA CNN

	Conclusions and future works
	XNor Net on LiM
	Bitmap Indexing algorithm on CLiMA
	CLiMA CNN
	Nomenclature
	Bibliography

