
POLITECNICO DI TORINO
Department of Mechanical and Aerospace Engineering

Master of Science in Biomedical Engineering

FrontEnd Development of a Web Application for
Patient Monitoring after Coronary Angioplasty

Supervisor: Candidate
Prof. Monica Visintin Federica Lorusso
Co-rapporteur:
Ing. Sara Prete

Academic Year 2019-2020

Acknowledgements

Prima di procedere con la stesura di questa tesi, e’ doveroso ed essenziale ringraziare
tutte le persone che mi hanno supportato in questo lavoro e in questi lunghi 6 anni di
percorso universitario.
In primis vorrei ringraziare la Professoressa Monica Visintin per avermi dato fiducia e per
essere stata sempre disponibile, nonostante il periodo disastroso attraversato negli ultimi
mesi, gentile e attenta nello svolgimento del mio lavoro di tesi.
Vorrei ringraziare anche l’ing. Sara Prete per avermi guidata nel lavoro di tesi ed avermi
ascoltata in ogni momento. E’ stata un punto di riferimento sostanziale per me in questi
mesi.
Grazie inoltre a tutto il team Abinsula per avermi dato fiducia in questo percorso e per
avermi reso parte di questo meraviglioso progetto nella loro azienda.
Un grazie lungo una vita intera alla mia famiglia, che fin da subito ha creduto in me ed
ha sacrificato sempre tutto pur di rendermi felice nel raggiungere il mio obiettivo.
Grazie mamma per essere il mio punto di riferimento e per aver passato giornate intere
ad ascoltare tutte le mie paturnie, sei la mia ombra nonostante i mille chilometri che ci
distanziano.
Grazie papa’, per essere sempre stato il primo a difendermi in ogni mia decisione, per
avermi aiutato sempre a gestire ogni situazione e per essere sempre pronto a mandarmi i
famosi pacchi da giu’ come sostegno umanitario e morale.
Grazie Francesco, il mio fratellino che e’ sempre stato il mio punto di forza maggiore e a
cui voglio un mondo di bene e a cui auguro tantissima felicita’ e fortuna.
Grazie al Collegio Einaudi che mi ha ospitato per ben 5 anni ed e’ stata la mia casa, non
mi ha fatto mai sentire sola e mi ha permesso di conoscere tantissime persone. Ha reso il
mio percorso universitario piu’ divertente e meno monotono.
Grazie a Giusi,la mia sorella mancata, a Carlotta,un tripudio di dolcezza, amore e pazienza,
ad Alessio, presenza costante e che riesce sempre a farti sorridere e a tutti i miei amici e
amiche che in ogni momento riescono a sorprendermi e a farmi capire di avere una famiglia
bis anche qui a Torino.
Grazie Andrea, anche per te un grazie lungo una vita intera. Grazie perche’ sei sempre li’

0

pronto ad aiutarmi anche e soprattutto in periodi che mai avrei pensato di attraversare.
Grazie per il tuo amore, dolcezza, pazienza, comprensione e ventata di positivita’ che ogni
giorno sei capace a trasmettermi.
Un grazie a tutta la tua famiglia per avermi in qualche modo adottata in questi tre anni,
vi voglio davvero bene e vi portero’ sempre nel mio cuore.
Un piccolo grazie alla determinazione, perseveranza e grinta con cui ho sempre colorato
questi anni non sempre facili.
Concludo con il ringraziare Aurora e mio fratello per avermi regalato la gioia piu’ grande
in questi mesi, dedico il mio lavoro di tesi alla mia nipotina che fin da subito ha dimostrato
d’essere forte.
Ti aspettiamo con ansia e spero che un giorno anche tu possa essere fiera della tua zia.

1

Summary

Cardiovascular diseases (ischemic heart diseases, such as acute myocardial infarction
and angina pectoris, and cerebrovascular diseases, such as ischemic and haemorrhagic
stroke) are among the main causes of invalidity and mortality in Italy, being responsible
for the 35.8% of all deaths (32.5% in males and 38.8% in females). In particular, according
to Istat (The National Institute of Statistics) 2017 data, ischemic heart disease is respon-
sible for 10.4% of all deaths (11.3% in males and 9.6% in females), while cerebrovascular
accidents by 9.2% (7, 6% in males and 10.7% in females).
However, these deaths are largely preventable as it is possible to monitor risk factors
related to behaviors and lifestyles (smoking, alcohol consumption, poor diet, sedentary
lifestyle) often present due to diabetes, obesity, hypercholesterolemia, hypertension.
The Cardiofilo project was created in 2017 with the aim of preventing this type of death by
providing a health model for patients suffering from atrial fibrillation, myocardial infarc-
tion and / or undergoing coronary angioplasty or other catheterization revision-procedures.
In particular, attention is focused on the post-operative course of heart attack patients
and an attempt is made to provide an additional tool for secondary prevention of cardio-
vascular diseases. In general, post-operative health care guarantees few cardiological visits
(approximately one visit after 3-6 months or even annually.)
The Cardiofilo project (the name derives from the idea of wanting to recreate a "filo"
between the cardiologist and the patient) will allow easier, direct and frequent commu-
nication between patient and doctor, through a mobile app (managed directly by the
patient’s smartphone and / o caregiver) and a web app (managed by the cardiologist and
/ or nurses). It can be customary for the patient to check values such as blood pressure,
weight, blood sugar, which he can then easily send to the doctor, so that he can keep track
of any disturbing changes in the parameters. In a previous thesis work, a first version of
the web and mobile application was developed[1].
However, improvements have been introduced in the work of this thesis both in the Front-
End of the web application and improvements made with the aim of making the application
marketable: having an adequate processing of personal data and understanding what are
the bases for proceed with a possible CE marking of the product.

3

There are therefore two servers: a server where all the personal data of the patients will
be stored and another OpenEHR repository for health data (a clinical gateway will be
needed to interface with the repository).
This thesis work was carried out at Abinsula s.r.l., a Sardinian company that operates in
the IT sector and in software design consultancy services.
The main requirements of the application were suggested by the cardiologists of the San
Giovanni Molinette Hospital and San Luigi (Orbassano) who requested the implementation
of the application.

4

List of acronyms

EHR Electronic Health records

FE Front-end

HTML HyperTextMarkup Language

CSS Cascading Style Sheets

SGML Standard Generalized Markup Language

W3C World Wide Web Consortium

XML eXtensible Markup Language

XHTML eXtensible HyperText Markup Language

ECMA European Computer Manufacturers Association

ISO International Organization for Standardization

IEC International Electrotechnical Commission

DOM Document Object Model

MVC Model View Controller

UI User Interface

API Application Programming Interface

GDPR General Data Protection Regulation

IP Internet Protocol

DNA DeoxyriboNucleic Acid

RNA RiboNucleic Acid

5

DPA Data Protection Authorities

DPO Data Protection Officer

EEC European Economic Community

GUCE Official Journal of the European Union

CE European Conformity

SaMD Software as a Medical Device

PR Public relations

DM Medical devices

6

List of Figures

2.1 Cardiofilo system, with a schematic representation of the web app interface 15
2.2 Original Screen of Risk Factor . 20
2.3 Proposed Screen of Risk Factor . 21
2.4 Proposed Screen of Risk Factor . 21
2.5 Original Screen of Anamnesi . 22
2.6 Proposed Screen of Anamnesi . 23
2.7 Original Screen of Therapy . 24
2.8 Proposed Screen of Therapy . 25
2.9 Proposed Screen of Therapy . 25
2.10 Proposed Screen of Therapy . 26

3.1 Example of a simple HTML page . 31
3.2 Example of DOM tree generated by the web browser in the interpretation

of the HTML file . 32
3.3 Example of a simple HTML page with CSS style 33
3.4 Example of a simple HTML page with CSS style and Javascript syntax . . 35
3.5 Example of a simple HTML page with CSS style and Javascript syntax . . 36
3.6 General scheme relating to the operation of React 39
3.7 Script and the terminal integrated into Visual Studio Code 42
3.8 Installation through node.js npm package and creation of a new React

project folder . 43
3.9 Folders present in the created "my-app" project 44
3.10 Contents of src folder . 46
3.11 Contents present in App.js . 47
3.12 Index.js script . 49
3.13 Creating a function component in App.js 50
3.14 Creating a class component in file Intestazione.js 51
3.15 Intestazione component . 52
3.16 Creating a class component in file Button.js 52
3.17 Path of Patient and Form component . 52
3.18 Creating a class component in file Form.js 53
3.19 Overview interface . 54
3.20 Link to overview screen’s script . 55
3.21 Breadcrumbs component script . 56
3.22 Filter component script . 57
3.23 Calendar component script . 58
3.24 Overview script . 59
3.25 History interface . 60
3.26 Link to History screen’s script . 61
3.27 History script . 62
3.28 Dashboard components . 63
3.29 UploadButtons component . 64
3.30 Component from Material UI . 65
3.31 Terminal execution of the application . 66

7

Contents

Acknowledgements 0

Summary 3

List of Figures 7

1 Introduction 10

2 Cardiofilo Web App 13
2.1 Pathologies of interest . 16

2.1.1 Ischemic Heart Disease . 16
2.1.2 Atrial fibrillation . 16
2.1.3 Atrial flutter . 17

2.2 Cardiofilo Web app . 18
2.3 Future Design Improvements . 19

3 Frontend Development of Cardiofilo 27
3.1 Front-End development tools . 30
3.2 Framework for user interface creation . 36

3.2.1 React . 38
3.3 Front-End development of Cardiofilo . 42

3.3.1 Create a new project with function "Create React App" 43
3.3.2 Components present in Cardiofilo Web App 47

4 General Data Protection Regulation and Cardiofilo 67
4.1 Processing of personal data including biomedical data 67
4.2 Contents of the GDPR regulation . 68
4.3 Data . 69
4.4 GDPR application in Europe . 70
4.5 Health data treatment . 71
4.6 How to treat Cardiofilo data . 73

8

5 Classification of Cardiofilo as a medical device 74
5.1 Introduction of medical devices . 74
5.2 Directive CEE 93/42 . 75
5.3 CE Marking . 81
5.4 Classification of Cardiofilo as a SaMD . 83

6 Future improvements 85

7 Conclusions 88

I Appendix 90

Bibliography 120

Chapter 1

Introduction

The introduction of new information and telecommunication technologies has radically
changed people’s daily activities, improving the quality of life and work of people in vari-
ous fields.
One of the sectors that has benefited most with the advent of the merger between infor-
mation technology and biomedicine is healthcare.
In this context, the birth of telemedicine is inserted, with which it was possible to conceive
the doctor’s work in a different way. With the help and technological support, the doctor
has the ability to control and monitor patients even if they are physically distant. In this
way the doctor is able to optimize time and resources, as well as facilitating the weakest
groups of patients who are unable to move with hospital checks.
The doctor will therefore proceed with making the diagnosis or simply a clinical opinion
on a patient through the remote transmission of data produced by diagnostic tools or
manually entered by the patient.
However, it should be noted that the purpose of telemedicine is not to replace the figure of
the doctor, but to support his activity without distorting the doctor-patient interpersonal
relationship that must be created in the therapeutic act, the patient must always consider
the doctor as an active part of the care process.
Furthermore, telemedicine has an important psychological impact in the life of the patient
and his family, since the continuous remote monitoring will allow patients to always feel
supervised by the doctor without having to leave the family environment and the moral
support of their loved ones[2].
The first experiments in the field of telemedicine were conducted with the aim of providing
adequate assistance in the most remote geographical areas or in disadvantaged situations.
Subsequently, with the diffusion of more effective data compression techniques and ever
faster networks, even voluminous data, such as the images of a computed tomography
(CT), were sent via the fixed network.

10

In Italy, one of the first telemedicine applications consisted in the experimental transmis-
sion of electrocardiograms at a distance, started in 1976, using normal telephone lines.
Since then, research institutions, universities, scientific societies, the National Research
Council (CNR) and the Ministry of Health, working on various projects have guided re-
search towards remote assistance techniques that could in some way improve the patient’s
life by optimizing the resources and time available to doctors. The current situation in our
country regarding telemedicine has not fully taken off, in fact there was a first attempt at
regulation with the National Guidelines in Telemedicine sanctioned in the State Regions
Conference on February 20, 2014 [3].
These guidelines were then implemented by the various Regions, however very little has
been done at the application level. Apart from some glaring examples in Lombardy and
Veneto where telemedicine is applied for the management of chronic patients and some
cases scattered in other regions in Italy, there is no single national project, which is co-
herent and interoperable.
Telemedicine could really make a difference especially if it is used in all Regions, because
at the ideal level the consultation can take place from any part of the country for any
patient: the importance and rediscovery of telemedicine has been there with the onset of
the pandemic Covid-19 worldwide.
Thanks to the remote support in the medical field, hospitalizations have been reduced
by 25% [3], fewer accesses to hospitals, efficient monitoring of chronic patients and opti-
mal care of traditional patients, virtual triages that could have avoided the contagions of
doctors and health professionals in this pandemic period, real-time monitoring of patients
affected by Covid-19 and in home isolation and substantially fewer deaths were recorded.
With the help of telemedicine, therefore, it was possible to remotely monitor, when pos-
sible, patients suffering from Covid-19 but at the same time it made it possible not to
neglect the monitoring of chronic patients who normally carry out checks on a weekly or
monthly basis,depending on the pathology.
Cardiofilo’s project is inserted in the context of telemedicine with the aim, from the be-
ginning, of providing the doctor with technological help for the diagnostic-therapeutic
process, while at the same time preventing all the risks associated with patients suffering
from cardiovascular diseases. The project was therefore conceived as a real social and cul-
tural innovation in the health field that facilitates remote communication between doctor
and patient (especially if they are not in the same location) and facilitates the provision
of health services, from diagnosis to therapy.
Telemedicine, in this case, therefore, has the task of offering new solutions and perspec-
tives to the constant demand for health care by the population who would like health care
that is more efficient, more technological, more dynamic and closer to people.

11

Furthermore, it is responsible for:

• providing the tools to facilitate communication and interaction between the doctor
and the patient and between the doctors themselves;

• breaking down geographical and temporal barriers, compensating for the uneven
distribution of health services throughout the territory;

• reach a greater number of people (especially those who live in remote areas or with
poor health facilities);

• speed up bureaucratic-administrative procedures;

• help the patient in research and advice g the doctor;

• simplify the online submission of diagnostic tests;

• allow online viewing of exams without loss of image quality;

• eliminate long waiting lists, guaranteeing the quality of the service and ensuring the
protection of the processing of sensitive personal data.

The hope that this period of crisis and global fear may have made people appreciate the
importance of a world as large and unexplored as telemedicine is really great.
Investment in the healthcare world assisted with the technological innovations still existing
today is never a grant.
This thesis project is therefore a hymn to innovation, prevention, computerization of dig-
ital processes in the medical field and health practice through the support of Internet
Technologies tools, specialized personnel and specific doctor-patient communication tech-
niques.

12

Chapter 2

Cardiofilo Web App

Cardiovascular diseases still represent the main cause of death in our country, in par-
ticular more than 230 thousand people die a year from ischemias, heart attacks, heart and
cerebrovascular diseases.
Those who survive a heart attack become chronically ill. The disease changes the quality
of life and the patient appears to be much more sensitive and vulnerable. This vulnera-
bility needs subsequent follow-up checks and visits.
Cardiofilo was born with the aim of making communications between doctor and patient
faster and more frequent (otherwise the patient would have a follow-up visit every 3/6
months).
The doctor, through a web app, will be able to keep track of the evolution of the parame-
ters through a mobile app by the patient or by the caregiver (for example blood pressure,
heart rate, weight or adverse events) and to highlight in time any important and risky
changes. Both the Cardiofilo web app and the Cardiofilo mobile app must:

• Always have updated information on the patient;

• Collect data in a simple and effective way;

• Optimize therapeutic measures.

The web app and the mobile app interface via the Internet (connecting via Wi-Fi/
ADSL, Ethernet or 3G / 4G) with two servers, one dedicated to personal data storage,
the other dedicated to clinical data storage.
A server receives and stores personal data (for example personal data acquired through
the "new patient" procedure in the web app and then sent to the mobile app or simply
kept in the repository). The server turns out to be a very safe and secure data retention
method and this will ensure that the processing of personal data is carried out successfully
according to GDPR.
The other repository is dedicated to storing clinical data related to patients (for example

13

glycemic, blood pressure, weight data) entered either by the patient through the mobile
app or by the doctor through the web app. However, repositories dedicated to managing
health data must meet certain standard specifications and in this regard, OpenEHR is
introduced.
OpenEHR is a technology introduced for e-health, composed of a specific open standard
in health informatics that describes how to manage, store, retrieve and exchange clinical
data through electronic health records (EHR).
The repository dedicated to the management of health data in Cardiofilo therefore com-
plies with the specifications of OpenEHR and also the repository is connected to the web
app through a clinical gateway. The clinical gateway is a necessary component useful in
interfacing with an OpenEHR repository and allows you to save clinical data entered by
Cardiofilo users, transforming them into OpenEHR compliant compositions.

Cardiofilo web app will be managed by doctors, assisted by nurses or health workers
and provides the cardiologist with the opportunity:

• to monitor the parameters in real time;

• have a more in-depth knowledge of the patient’s clinical status;

• modify the therapy so that it is efficient and suitable to the patient’s current situa-
tion;

• well-timed identification of the most critical patients.

Patients will only use the mobile application to enter personal and clinical data. How-
ever mobile application can be used also by the cardiologist to have always on the smart-
phone an overview of the health status of the patients. Both web and mobile application
communicate with the server via Internet connecting by Wi-Fi/ADSL, Ethernet or 3G/4G
(Fig. 2.1)

14

Figure 2.1: Cardiofilo system, with a schematic representation of the web app interface

15

2.1 Pathologies of interest

Cardiofilo project is meant for all patients who have already had a heart attack and
who are therefore subject to cardiovascular diseases.
The main cardiovascular pathologies that Cardiofilo intends to treat are described in the
next subsection,highlighting the importance of monitoring to prevent recurrences.

2.1.1 Ischemic Heart Disease

Ischemic heart disease includes all conditions in which there is insufficient balance of
blood and oxygen to the heart. The most common cause is atherosclerosis, characterized
by the presence of high-cholesterol plaques in the coronary arteries, which can prevent
or decrease blood flow. Ischemic heart disease has various clinical manifestations such
as stable and unstable angina pectoris and myocardial infarction. Ischemic heart disease
includes, for example, heart attack and angina pectoris. The people most prone to this
pathology can be classified according to the risk factors. Biological, genetic, pathologi-
cal and lifestyle factors can be considered. As for biological factors, elderly patients and
males are at greater risk. In women, hormone production is a protective element, which
is why the risk increases with menopause. Regarding genetic factors, it is advisable that
those with a history of familiarity with ischemic heart disease pay particular attention to
prevention, as they may have a genetic predisposition. Pathologies such as hypercholes-
terolemia, hypertension, obesity and diabetes also represent risk factors. Finally, lifestyle:
stress, smoking, a sedentary lifestyle and drug use increase the risk of developing ischemic
heart disease.
Consequently, doctors with the help of Cardiofilo can monitor patients subject to this
type of pathology paying more attention to weight, the percentage of physical activity
performed, systolic and diastolic pressure. In addition, they can check, for example, if the
patient has stopped smoking or if he still has smoking addiction among the risk factors.
[4]

2.1.2 Atrial fibrillation

Atrial fibrillation is one of the cardiovascular pathologies in which a supra ventricular
arrhythmia occurs, triggered by electrical impulses coming from myocardial muscle cells
present at the junction between the four pulmonary veins and the left atrium. In atrial
fibrillation, the electrical activity of the atria is completely disorganized and does not
correspond to effective mechanical activity. The atrial depolarization waves are of small
amplitude and have a very high frequency. In these conditions the atrioventricular node

16

receives many more impulses from the atrium than it is able to conduct. This variability
of atrioventricular conduction causes the ventricles to contract irregularly. In the absence
of pathologies and at rest, the heart rate of an adult is 60-100 beats per minute while the
occurrence of atrial fibrillation, the heart rate is between 100 and 175 beats per minute.
Atrial fibrillation, from a clinical point of view, is divided into:

• Paroxysmal: when the episodes occur and resolve spontaneously in less than a week;

• Persistent: when the arrhythmic episode does not stop spontaneously but only as a
result of external therapeutic interventions;

• Permanent: when cardioversion attempts are not considered appropriate, or the
therapeutic interventions have proved ineffective.

Also in this the doctor to prevent the pathological state, through Cardiofilo, can check
the patient’s state of health by observing the data related to his body weight and his
frequency of physical activity carried out: a healthy style and a balanced diet are the first
rules to prevent atrial fibrillation. The physician’s assessment of systolic and diastolic
pressure is also of vital importance since very often patients with arterial hypertension
cover a high percentage of cases of atrial fibrillation. [5]

2.1.3 Atrial flutter

Atrial flutter is much less common than atrial fibrillation, but the causes and hemo-
dynamic consequences are similar. Typical atrial flutter is an arrhythmia due to a reentry
circuit involving part of the right atrium. The atria depolarize at a rate of 250-350 beats
/ min (typically 300 beats / min). Since the atrioventricular node is usually unable to
conduct at this rate, typically only half of the pulses are conducted, resulting in a regular
ventricular rate of 150 beats / min. During this arrhythmia, the atria activate with a
high frequency, generating an irregular and often rapid heartbeat (tachycardia). In most
subjects, atrial flutter occurs in the presence of acquired heart disease (previous heart
attack, heart failure, valvular disease, etc.), congenital heart disease corrected by cardiac
surgery and in the presence of arterial hypertension Also in this case the doctor, with the
help of Cardiofilo has the ability to monitor the patient with the aim of preventing any
secondary cardiovascular diseases. It can therefore monitor blood pressure, blood sugar,
weight and frequency of physical activity. In addition to these data, the doctor always has
the possibility of associating the observation of these data with the risk factors present in
the patient’s clinical history.[6]

17

2.2 Cardiofilo Web app

Cardiofilo web App was created to support the work of cardiologists, therefore the main
actors who will use this application are the doctors, helped by the health staff (nurses,
health workers).
The cardiologist will therefore be able to carry out the following actions neatly, each having
a corresponding graphic interface:

• LOG-IN: as a first step, the doctor authenticates himself during the log-in phase
with username and password: if this step is correctly done, then he will enter the
app. If for example the password is forgotten, the doctor can recover it;

• HOMEPAGE: the first screen that will appear to the doctor will be the home page
where there will be a list of patients (with their respective tax code, city and medical
priority: white, green, yellow, red code). In addition, on the homepage there will be
the "New patient" button with which the doctor can add a new patient to his list of
patients;

• PATIENT DASHBOARD: if the doctor clicks on a patient’s name, one of those
present in the patient list, he will access the patient dashboard. In this screen there
are various buttons that will allow the doctor to:

– Access to patient’s Overview (a page showing the trends over the days / months
/ years of some parameters such as: pressure, blood glucose level, weight and
hours of sports activities);

– Access to personal data;

– Access to risk factors (a page where the doctor can track the particular risk fac-
tors of that particular patient such as smoking, hypertension, hyperglycaemia
and possibly send an alert message to the patient);

– Access to patient’s status page (a page where some patient parameters are
tracked such as: Body Mass Index, allergies, if there are active implanted de-
vices and when the intervention was performed, previous acute coronary events,
Ejection Fraction, Transcutaneous Oxygen Saturation (%));

– Access to patient’s History page (Anamnesis);

– Access to patient’s Therapy page;

– Access to events recorded by the patient through the smartphone app;

– Send a notification to the patient;

– Access to attachments in the archive of that patient data;

18

– Reset the password of the patient;

– Archive the patient;

– Enter a new visit.

• NEW VISIT: In addition to having a view of the data previously saved in the ap-
plication, the cardiologist will be able to make a new visit to the patient, in which
he will have the opportunity to enter new data. The process of the new visit takes
place in various steps:

1. Entering data on the Risk Factor page;

2. Entering data on the Status page;

3. Entering data on the History page;

4. Data entry on the Therapy page;

2.3 Future Design Improvements

The Abinsula Graphics team, located in Sassari, previously developed the entire graph-
ics of the web and mobile platform (mockup).
Clearly these first results are not the definitive ones, therefore we have tried to improve
the interface design of Cardiofilo Web App.
The design of the app must be:

• functional;

• appealing;

• intuitive and ease of use;

• serves to capture the attention of people, old and new users;

• innovative;

• innovative by exploiting new trends in the world of User Interaction & Design.

For example, the graphic interface design must ensure that every time the App shows a
message (for example a pop-up) asking the user for an input (such as the request to enter
the patient’s systolic and diastolic pressure), all the necessary information is present, so
that the user can make a decision on what he must or wants to do.
Otherwise the user will be disoriented and will not be able to make a quick decision. This
is undoubtedly a friction in terms of Usability (degree of ease and satisfaction with which
the interaction between man and an application takes place).

19

The design phase is therefore essential for the success of the application and a well-
considered use of all the graphic components of the app is therefore important and to
determine their usability are above all the position, size and structure of the application
contents.
Figures 1.2-1.10 show the proposed changes for future improvements of the app.

Figure 2.2: Original Screen of Risk Factor

20

Figure 2.3: Proposed Screen of Risk Factor

Figure 2.4: Proposed Screen of Risk Factor

Figures 2.3 and 2.4 show the proposed screens with improvements both graphically

21

and related to the management of the components on the page. In particular, a temporal
reference has been added to the screens with the aim of giving the cardiologist a temporal
reference to which we refer, thus giving the possibility to view the pages of the visits made
in the previous days / weeks / months.
The time reference is also added in all the other interfaces that follow. Another improve-
ment is related to the part dedicated to the sending of alert messages to the patient, the
table of the various messages proposed in 2.2 has condensed, in a component that with its
shape suggests intuitively to the user, to send alert messages to the patient.

Figure 2.5: Original Screen of Anamnesi

22

Figure 2.6: Proposed Screen of Anamnesi

Graphical improvements have been proposed in Figure 2.6 and options have also been
added: the user can always save or delete what he has written in the various anamnesis, in
addition, the doctor can send the recommended therapy to the patient in pdf format, so
that the patient has a medical prescription to be displayed in the pharmacy if he intends
to buy the recommended drugs . The doctor will also be able to print the final part of the
anamnesis with the aim perhaps to expose the diagnosis quickly to other doctors who at
that moment do not have a tablet / personal computer.

23

Figure 2.7: Original Screen of Therapy

24

Figure 2.8: Proposed Screen of Therapy

Figure 2.9: Proposed Screen of Therapy

25

Figure 2.10: Proposed Screen of Therapy

The changes proposed in the interface relating to the insertion of the therapeutic plan
(Figures 2.8 - 2.9 - 2.10) by the cardiologist, are intended to make the interface more
logical and intuitive.
The goal of the change is not to compress all three phases of the therapeutic plan into a
single page, but to have three pages, one for each therapeutic phase. The pages follow one
after the other, always leaving the doctor the opportunity to get an idea of his current
position within the therapeutic plan.
The proposed improvements are intended to make the app easier to use for cardiologists
and nurses.

26

Chapter 3

Frontend Development of
Cardiofilo

After the creation of the mockups, illustrative and exhibition models of the application,
the next step is the conversion from design mockup to HTML / CSS / JAVASCRIPT code:
thus obtaining with the Front-End development of Cardiofilo web app.
The work of a Front-End developer (or Front-End, in the initials FE) consists in the design
and creation of layouts, style sheets, interactions, animations, and optimizations on the
navigation of the application through the creation of user interfaces. At the same time the
FE work is coordinated with the Back-End work, from which it acquires the input data
of the user interfaces and at the same time processes the data in ways that comply with
predefined specifications, such as to make them usable later by the Back-End.
In the case of a web app, the term Front-End therefore means public part of the application
(the part accessible to the user),while the Back-End refers to the part of the application
not accessible by the users but only app administrators can have access and through which
it is possible to enter new data (new sections, new posts, etc.) and at the same time acquire
new data entered in the interfaces. Through the Front-End work, the doctor who visits
Cardiofilo web app will view the so-called "user interfaces" (UI), designed and built to
be compatible with the needs and possible interactions of any average user with the app
pages. It is therefore essential to analyze the needs and actions of users in order to create
the correct user interfaces.
The front-end development is therefore essential in the entire world of the web, as it is
necessary for the creation of a well-organized structure and to make the use of the UI by
the user all in a fluid, easy and intuitive way.
It is possible to observe the following advantages related to front-end services such as:

• Rapid development and user-driven results
The use of some modern frameworks like React will allow a faster development of

27

the components of the UI;

• Protected
The framework in the front-end development contains a fully protected encryption.
This is an advantage why never have to worry about site working on any existing
browser;

• Features and apps that react quickly
The latest frameworks and technologies used by developers allow for fast response
features and structures that finally power the app to respond, react and work fast;

• Technologies that are easy to learn, use and scale
Most frameworks and technologies feature very intuitive building levels that are very
simple to both follow and learn;

• Powerful features and layout
The frameworks used by the front-end developers will have the advantage of devel-
oping a powerful website thanks to its predefined styles ensuring the robustness of
its functionality;

• Real-time programming
The developer can observe the changes in the browser without any fear of losing the
app state and reloading the browser pages.

However, there are limitations in the front-end development to which the developer is
subjected such as:

• Not on par with compute heavy back-end systems
Apps often involve heavy calculations with tons of data transits happening every
minute and therefore few front-end / back-end technologies fail to match. The
solution to this problem can be to dismantle complex situations into small organized
self-dependent modules, which contain within them more suitable technologies that
interact quickly with the back-end in case of heavy calculations;

• Custom development
Every app has at least some elements that need customization if not most of them.
Consequently, for the creation of customized features, it is necessary to rely on
certain frameworks and therefore choose the most appropriate framework for the
front-end development;

• New releases
Whenever there is any new update in the app,it must always evaluate if it is possible

28

to get the latest update, if not,it will lack compliance with modern standards. Ex-
perienced developers can therefore overcome this limitation by staying in constant
contact with changes and updates.

29

3.1 Front-End development tools

To create web pages, a Front-End developer essentially uses three programming lan-
guages:

• HTML: to create the structure and content.
In computer science, HyperText Markup Language (HTML) is a markup language.
It was born for the formatting and pagination of hypertext documents available on
the web and is a public domain language, whose syntax is established by the World
Wide Web Consortium (W3C). It derives from SGML, a metalanguage aimed at
defining languages that can be used for drafting documents intended for transmis-
sion in electronic format.
An HTML element in a document is distinguished from the rest of the text by "tags",
which consists of the element name surrounded by "<" and ">". The name of an
element within a tag is case insensitive.
HTML uses "markup" to annotate text, images, and other content for display in a
web browser. HTML markup includes special "elements" such as <head>,
<title>, <body>, <header>, <section>, <p>, <div>, and many more.[7]
Example for creating a simple web page in HTML:
Code written with a text editor (the file has an HTML extension ’.html’):
<!doctype html>
<html lang="it">
<head><title>Cardiofilo Web App</title></head>
<body>
<h1>Cardiofilo Web App</h1>

<p>This is the first HTML page!</p>
</body>
</html>

30

Clicking from the file manager on a file with an HTML extension will automatically
open the system default browser,which shows a screen similar to that in Figure 3.1:

Figure 3.1: Example of a simple HTML page

From this HTML file it is possible to extrapolate a classic example of a DOM (Doc-
ument Object Model) tree, generated by the interpretation of the file by the web
browser(see Figure 3.2).
The DOM, as the word itself says (Document Object Model) is a model, or a way
of representing a document or an interface, or rather an API (Application Program-
ming Interface) designed by the W3C (World Wide Web Consortium) consortium,
which allows you to access the elements of a page.
It should be noted that in this example also the so-called blank characters (spaces,
tabs, etc.) are considered elements of the tree, although these are not displayed by
the browser.

31

Figure 3.2: Example of DOM tree generated by the web browser in the interpretation of
the HTML file

32

• CSS: to equip the page with colors, style, fonts and background images.
CSS (abbreviation of Cascading Style Sheets), in computer science, is a language
used to define the formatting of HTML and XML documents. The introduction of
CSS has become necessary to separate the contents of HTML pages from their layout
or style. [8]
Example for creating a simple web page in HTML with CSS style:
Code written with a text editor (the file has an HTML extension ’.html’):
<!doctype html>
<html lang="it">
<head><title>Cardiofilo Web App</title>
<style type="text/css">
body
color: #48ccbf;
background-color: #ffffff ;
text-align: center;
font-family: Arial, Helvetica, sans-serif
</style>
</head>
<body>
<h1>Cardiofilo Web App</h1>

<p>This is the first HTML page!</p>
</body>
</html>
Clicking on a file with an HTML extension will automatically open the system de-
fault browser shows a screen similar to that in Figure 3.3:

Figure 3.3: Example of a simple HTML page with CSS style

33

• JAVASCRIPT: to give the page greater dynamism and interaction possibilities.
JavaScript was first standardized in 1997 by ECMA under the name ECMAScript.
The latest standard, as of June 2017, is ECMA-262 Edition.
In computing, JavaScript is an object and event-oriented programming language,
commonly used in client-side Web programming for the creation, in websites and
web applications, of interactive dynamic effects through invoked script functions by
events triggered in turn in various ways by the user on the web page in use (mouse,
keyboard, page load). These script functions, therefore used in the presentation
logic, can be suitably inserted in HTML files or in special separate files with the
”.js” extension.
The files however may have both ’.js’ and ’.jsx’ extension, the difference between
the two is the transpiler / bundler, which may not be configured to work with JSX
files, but with JS! So very often you are forced to use JS files instead of JSX. In
particular, it is already possible to anticipate that for the React framework it makes
no difference to choose between JSX or JS. They are completely interchangeable.
In some cases, users / developers might also choose JSX over JS, due to code high-
lighting, but most newer editors also correctly display reaction syntax in JS files.
JavaScript is a simple programming language, particularly suitable for use by the
browsers.
Complications arise when using an interface for the site, namely the DOM (Docu-
ment Object Model) which relies on the frameworks and JavaScript libraries, aimed
at facilitating the task of the developers. JavaScript libraries are reusable codes.
Specific properties and functions are designed for the website. The most famous
JavaScript libraries are jQuery, React, Zepto etc. [9]

34

Example for creating a simple web page in HTML with CSS style and
Javascript sintax:
In this example, the page contains a text type input field (which is generally used
by the user to write data).
To know the length of the text contained in the input form, the object model and
the properties used by JavaScript are used.
Code written with a text editor (the file has an HTML extension ’.html’):
<!doctype html>
<html lang="it">
<head><title>Cardiofilo Web App</title>
<style type="text/css">
body
color: #48ccbf;
background-color: #ffffff ;
text-align: center;
font-family: Arial, Helvetica, sans-serif
</style>
</head>
<h1>Cardiofilo Web App</h1>

<p>This is the first HTML page!</p>
<body onLoad="alert(document.Form.test.value.length)">
<form name="Form">
<input type="text" name="test" value="Cardiofilo">
</form>
</body>
</html>

Clicking on a file with an HTML extension will automatically open the system de-
fault browser and show a screen similar to in that figures 3.4-3.5:

Figure 3.4: Example of a simple HTML page with CSS style and Javascript syntax

35

Figure 3.5: Example of a simple HTML page with CSS style and Javascript syntax

3.2 Framework for user interface creation

React is the first JavaScript library born with a specific objective: to become the
definitive solution for frontend and mobile app developers based on HTML5. It is used
to build dynamic and increasingly complex user interfaces while remaining simple and
intuitive to use.
The creation of Web applications, regardless of the framework chosen for development,
necessarily involves the three fundamental languages of the platform: HTML for the struc-
ture, CSS for the stylization and JavaScript for the application logic.
For most existing Javascript libraries including React, the HTML language specifically is
used almost exclusively to create reusable "web components". The power of React com-
pared to other libraries is to allow the use of a declarative approach similar to HTML, to
define the components that represent significant and logical parts of the user interface.
React was created to manage the presentation and interception of user input events, with-
out forcing the adoption of specific functions and avoiding interfacing with other libraries
as regards any communication with a backend server, or specific data binding architec-
tures.
There are however many other libraries dedicated to the development of web applications.
The comparison between React and other popular libraries such as JQuery and AngularJS
will allow us to understand the decision to develop the user interfaces of the Cardiofilo
web app using React.

• JQuery: it is a very convenient tool in the development of applications by directly
manipulating the page structure. Thanks to functions, it is possible to access the
DOM (in computer science the Document Object Model) and to modify elements,
to create new ones, move existing ones. JQuery works mainly using the syntax of
CSS selection expressions: this assumes that in most cases it is necessary to assign
an ID, or a specific class, to the elements of the page, in order to reference them
later within the script that contains the client-side logic of the application. This
procedure is very simple to use, since it is sufficient to know the CSS expressions

36

and the basic functions of JQuery, in addition to the basic syntax of JavaScript, to
write the logic.
Compared to JQuery, React does not require the mandatory assignment of unique
IDs or classes, nor does it require the developer to intervene directly on the DOM,
but it is the library itself that takes on this task based on the structure of the
component declared in the first place and, secondly, based on the internal state of
the Web component and the variation in the values of the properties assigned to
it. In short, React excludes direct intervention on the DOM, leaving us the task
of defining the components that make up the interface of the application and the
data to be used for generating the markup. The library will intervene on the DOM
accordingly, using the method that guarantees the best possible performance.[10]

• AngularJS: is the framework created by Google for the development of Web ap-
plications. AngularJS takes full advantage of the Model View Controller (MVC)
paradigm: unlike JQuery, the user interface is totally separate from the model (the
object that contains the data to represent) and also from the business logic (the ap-
plication logic, implemented through services) while the Controller acts as a "glue"
between all these elements by managing user input and modifying the data model,
through business logic, which involves dynamic updating of the HTML view.
The problems related to the architecture of the application that are encountered
with JQuery thus disappear with AngularJS, which allows you to divide all the com-
ponents of the application (views, controllers, services, etc.) into separate modules.
However, even complex functions can be easily obtained on small projects, but as
complexity increases, the entire development team working on the project must be
equipped with the knowledge necessary to implement what is needed, following pre-
cise dictates that allow the integration of the elements of the application with the
infrastructure provided by AngularJS, under penalty of renouncing the advantages
that the framework is able to guarantee. The goal that React has is completely
identical to that of AngularJS: to untie the developer from the need to manage the
DOM directly.
However, React focuses on the visual part of the application by dividing it into blocks
(components) that contain its own state and its management logic, while communi-
cation with the server or the structuring of the modules are delegated to external
libraries.
React is more focused and accessible to learning, with the possibility of resorting
to known libraries (e.g. also the same JQuery) for the parts that are not strictly
related to the user interface.[11]

37

The comparison ends by favoring the use of the React library since it manages to create
insulated components and components to create complex UIs (User Interfaces). Further-
more, considering that the interactions and the logic between the components are imple-
mented in JavaScript, it is easy to pass and access complex data structures in various
points of the web application without having to save information on the DOM.
React, therefore, creates interactive UI, designs interfaces for each state of the application
and at each change of state React efficiently updates only the parts of the UI that depend
on such data.
The declarative nature of the UI makes the application code more predictable and easier
to debug.

3.2.1 React

React (also known as React.js or ReactJS) is a JavaScript library for creating user
interfaces. It can be used as a basis in the development of single page or mobile applica-
tions.
In an MVC context (Model-View-Controller, an architectural pattern capable of separat-
ing the presentation logic of the data from the business logic) React therefore acts as a
support for the creation of views, possibly generated from a data model. The data model
consists of React components that are used to create the DOM elements, which constitute
the interface, based on the data contained in JavaScript objects.
The components are self-sufficient, independent micro-entities that describe a part of the
user interface. An application’s user interface can be divided into smaller components,
where each component has its own code, structure and API (Application Programming
Interface). The component architecture allows you to consider each piece in isolation.
Each component can update everything within its reach without being concerned about
how it affects the other components. The components are also reusable and need data to
work on. There are two different ways to combine components and data (see 3.6): either
props or state. Props and state determine what it is the behaviour of the component
renders.[12]

38

Figure 3.6: General scheme relating to the operation of React

Props:
Props (short of properties): constitute immutable and top-down values for which no al-
teration is foreseen, useful for example to configure the component or to indicate default
values for the status. This means that a parent component can pass any type of data it
wants to its children as props, but the child component cannot modify its props.
A virtually infinite number of properties can be passed to a React component; in the
component code it will be possible to read their values at any time by accessing the props
object, and it will not be possible to modify them.
State:
It is a set of data that, if modified, results in an update of the component itself. Its scope
is limited to the current component. A component can initialize its state and update it
whenever necessary. The state of the parent component usually ends up being the props
of the child component. When the state is passed outside the current scope, we refer to it
as props.
The choice of passing information to the components in the form of properties or placing
them in the state depends first of all on the variability expected for the information and,
more generally, on the conceptual design on which one relies on to create one’s own Web
application.
A React component can be of two types: a class component or a functional component.
Functional components:
Functional components are just JavaScript functions. They take an optional input which
is a props.
Class components:
Class components offer multiple functions. The main reason for choosing class components
over functional components is that they can have states.
There are two ways in which you can create a class component. The traditional way is to
use React.createClass ().

39

React event management:
Event management allows to make the React component interactive, responding to user
actions and updating the graphic interface accordingly, acting on the state of the compo-
nent itself.
The state is represented by an object accessible in the component code through the state
property which can be initialized as desired; unlike what happens with the properties,
provided by the props object, the status can be changed by calling the setState () method.
Following a change in status, generally through the management of an event that occurs
with a user action, React invokes the render () function and verifies the need to make
changes to the part of the DOM that constitutes the representation of the component
within the web page.
The getInitialState () function is responsible for returning a JavaScript object that con-
tains the initial state of the component; in the object it is possible to include all the
properties we want according to the requirements of the desired components.
Virtual DOM:
Using React it is not necessary to use the DOM functions to modify the elements of the
page: it is sufficient to change the information contained within the object representing the
data model, represented by the state (state) in React. React uses a different system, from
the other Javascript libraries, to track the changes, using the so-called Virtual DOM, that
is to say a virtual representation of the structure of the page stored in memory and very
similar to the original DOM, of which it can be seen as an abstraction. When an event
occurs and it is necessary to "react" to it by changing the elements of the page, React first
applies these actions to the Virtual DOM. By analyzing the differences between the status
of the Virtual DOM prior to the occurrence of the event and the new one obtained by
applying the changes, React determines the actual changes to be made to the real DOM.
The calculation of the differences between the two states of the virtual DOM is extremely
fast, and thanks to it the interventions on the real DOM, tendentially slower, are limited
to the bare minimum, thus guaranteeing excellent performance.
In the Virtual DOM there are both complex components like the classic elements of the
HTML standard, such as a simple <div>. The management of the Virtual DOM and
its transformations is completely the responsibility of React: the developer remains com-
pletely transparent and no use is required API (Application Programming Interface) for
its manipulation, as happens in the direct use of the real DOM, which should not be
used. The abstraction represented by the Virtual DOM also allows to take advantage of
a language independent of the browser, in which it is possible to express the characteris-
tics of the component related to its appearance and behavior regardless of the browser in
which the application will be hosted, leaving React the task of translating the developer’s

40

intentions into calls to JavaScript functions - both global and DOM functions - according
to their actual availability (feature detection) within the browser of the user.
Finally, there are also server-side implementations of React’s Virtual DOM which, by us-
ing the same functions and thus writing code completely analogous to the client version,
allow to return HTML pages generated directly by the server. To conclude, Virtual DOM
is therefore of fundamental importance in the functioning of React.
Use of Node.JS with React:
Node.js is a runtime for the execution of JavaScript code based on the V8 engine, the
same on which the Google Chrome JavaScript interpreter is based, famous in particular
for its performance. It is an open source product available for all popular operating sys-
tems and can be downloaded for free. In this case, Node.js is used locally, to enhance the
development environment with the aim of producing and optimizing HTML pages, style
sheets and JavaScript scripts which can then be hosted on any type of server (or hosting).
The installation of Node.js aims to create a development environment consisting of dif-
ferent tools and services written in JavaScript and designed to work thanks to the Node
runtime.
Node.js, therefore, becomes a fundamental component to support the development phase
of the web application. Thanks to the support of Node and its package manager npm,
it is possible to install additional packages and import the Babel transpiler to read files
with JS syntax and create standard JavaScript files, interpretable by any browser, taking
advantage of the features of the most modern versions of the language such as ES6.

41

3.3 Front-End development of Cardiofilo

React has therefore been used in the Cardiofilo project as a JavaScript library for the
front-end development of dynamic user interfaces.
Scripts were edited using Visual Studio Code source code editor, developed by Microsoft
for Windows, Linux and macOS.
In this code editor you can open an integrated terminal (see Fig.3.7).
The terminal is a command line tool that is generally available on most operating systems
and is used to execute commands entered by the user. With the use of these commands it
is possible to automate tasks through scripts and batch files, perform advanced adminis-
trative functions and solve certain types of problems or bring a package manager able to
download and install in complete autonomy a series of packages that help us in work and
front-end development. For example after installing Node.js from the terminal, you can
fully use all the tools offered.
The development of the front-end starts from the initialization and construction of a new
React project and to do so the "create-react-app" function provided by the npm package
provided by node.js is used.

Figure 3.7: Script and the terminal integrated into Visual Studio Code

42

3.3.1 Create a new project with function "Create React App"

"Create React App" is the best way to start building a new single-page application in
React and includes all the JavaScript packages needed to run a React project, including
code transpilation, basic linting, testing and building systems.
It also includes a hot reloading server that will update the page as you make code changes.
Finally, it will create a structure for the directories and components so that you can start
coding in minutes.
However, it will be necessary to have Node js installed in the development environment
used, in order to create a new app using the npm package manager which will install the
JavaScript packages in the project.
Visual Studio Code npm terminal executable package allows you to install and manage
packages for use in Node.js applications, in this case the command (npx create-react-app
my-app) will install create- react-app in the specified directory (see Fig.3.8).

Figure 3.8: Installation through node.js npm package and creation of a new React project
folder

So the command npx create-react-appt creates a new project in a directory and it’s the
best way to start building a new single-page application in React. The following modules
are present within the new project created (see Fig.3.9):

• node_modules contains all external JavaScript libraries used by the application. You
will rarely need to open this form.

• The public directory contains some basic HTML, JSON and image files. These are
the roots of the project.

• The src directory contains the project’s React JavaScript code.

• The .gitignore file contains some default directories and files that git (source control)
will ignore, such as the node_modules directory. Ignored items tend to be larger

43

directories or log files that would not be needed in source control.

• README.md is a markdown file that contains a lot of useful information about
Create React App, such as a summary of commands and links to advanced configu-
ration.

• The last two files are used by the package manager. When the initial npm command
was run, the base project was created, but the additional dependencies were also
installed with the associated creation of a package-lock.json file. This file is used by
npm to ensure that packages match exact versions.

• The last file is package.json. This contains project metadata, such as title, version
number and dependencies.

Figure 3.9: Folders present in the created "my-app" project

The structure of the project is in principle except for the content of src which contains
the main files of the application that will be created.
The src folder contains within it (see Figure 3.10):

• The components folder: contains the components relating to the application views.
For example, the "Intestazione.js" component represents the header present in each
Cardiofilo Web App interface. The creation of a component has the purpose of
creating an element present in the view which, if it is common with other UI, can be
reused in the various interfaces , thus avoiding rewriting the same lines of code in

44

the various interfaces in the app. Each component has its own state and props. Of
course, application UIs are dynamic and change over time. The state allows React
components to change their output over time as a result of user actions, responses
from the network (API) and anything else that can cause a different output to be
rendered from time to time.

• The various files with the extension ’.png’ or ’.svg’ representing the icons on Cardiofilo
Web App, these have been imported from the mockups previously built by the
company Abinsula S.r.l.

• The style.css file: The CSS file contains the layouts and styles associated with the
elements of each individual interface to which the IDs are assigned, so that they can
be referred to later in the script.

• The App.js file: contains the declaration of the class that represents the main com-
ponent of the application: in this file there is the construction of the home page of
the various UI, there is the page with the dashboard related to a specific patient.
This screen is the result of the doctor’s log-in to Cardiofilo Web App with the sub-
sequent selection of a specific patient in the app. The file is linked to its relative css
file with the description of the style of the file.

• App.test: Contains a test that makes sure that a component was not launched during
rendering. Tests like this provide a lot of value with minimal effort, so they’re great
as a starting point.

• Index.js: contains the ReactDOM.render() function which has the purpose of ren-
dering a React element in the ’root’ DOM node. React elements are simple objects
and therefore faster to create. The React DOM takes care to update the browser
DOM to be consistent with React elements. It is called the "root" DOM node as
everything inside will be managed by the React DOM. Applications built only with
React usually have only one root DOM node. If, on the other hand, you integrate
React into existing apps, you could have multiple isolated DOM ’root’ elements. The
file has its associated css style file.

• ServiceWorker: This code is optional and is used to register a service worker. The
Service Worker is a method that allows Web Applications to take advantage of per-
sistent background processes. The Service Worker through an event-driven system
responds to events sent to him from the web page (DOM) or from other resources.

45

Figure 3.10: Contents of src folder

46

3.3.2 Components present in Cardiofilo Web App

As already mentioned, the ’App.js’ file contains the main component of the built appli-
cation, namely the dashboard connected to the individual patient selected by the doctor
in the Cardiofilo Web app.
The project previously started by Abinsula, considered a log-in screen to which the doc-
tor had to connect with his email and password and then the doctor found a list of the
patients he is responsible for monitoring. By clicking on the individual patient, the doctor
has access to the dashboard which will provide all the features designed to better monitor
a patient suffering from ongoing or previously treated cardiovascular diseases.
The Front-End development, made entirely with React, starts from the individual pa-
tient’s dashboard which will therefore identify the home screen in ’App.js’. (see Figure
3.11)

Figure 3.11: Contents present in App.js

47

The first part of’App.js’ script file is dedicated to imports (see in Fig.3.13 lines of the
script from 1 to 18). Using this keyword, it is possible to import external elements within
the current script, such as external resources, CSS style sheets or images and the insertion
of instructions that allow us to import the fundamental types of React such as:

import React, Component from ’react’
The central part of the ’App.js’ script file contains the definition of the main screen.
Therefore a general functional component will be created (with the function method)
that is called App and it will contain various components inside it (for example Intes-
tazione,Form,Table,RecordedEvents,etc...).
Each component in App can be seen in green in the Figure 3.13 and each of them can
be found in a <div> tag which has the task of defining the section of a specific element
within the functional component.
The series of components that make up the are conceptually Javascript functions and al-
low to divide the UI of the project into smaller and smaller pieces. They take arbitrary
data as input (under the name of "props") and return React elements that describe what
should appear on the screen. The main reason a user interface is created through small
pieces is the concept of re-usability and independence. In fact, the aim is precisely to
create reusable components from larger components and so on.
Finally the functional component App will be exported outside the module so that it can
be recalled in the ’index.js’ file which implements the render() method, which renders a
React element in the DOM (with the function ReactDOM.render())within the container
provided as input and returns a reference to the component (see Fig.3.12).

48

Figure 3.12: Index.js script

If the React element was previously rendered in the container, an update of the ele-
ment will be performed and only the necessary DOM will be modified to reflect the last
React element.
The main screen has been built in such a way as to be user-friendly or easy to understand
by the end user who will use the app and at the same time the creation of the page was
done by assigning a specific priority to each content present, determining how much space
to allocate to a particular element and where to place that element on the screen.

49

Figure 3.13: Creating a function component in App.js50

This function is a valid React component in that it accepts a parameter object contain-
ing data in the form of a single "props" (named after "properties") which is a parameter
object with data in it and returns a React element. These types of components are referred
to as ”function components” because they are literally JavaScript functions.
But it is also possible to use a class method to define a component (can see an example
of a component created with the class method in figure 3.14).

Figure 3.14: Creating a class component in file Intestazione.js

The construction of two components just seen are equivalent from React’s point of
view.
The App component was built with the function method and turns out to be a functional
component while the Intestazione component was built with the class method and turns
out to be a class component.
The dashboard is therefore composed of a series of components, each of which has been
designed to be reused according to the property declared at the time of use of the partic-
ular component.

51

The following components are included in the construction of the App functional compo-
nent with the respective functions and reasons for which they were created:

• The class component Intestazione present in each screen of Cardiofilo web app (see
Fig.3.15), in which there is the logo that identifies the application and another class
component calls Button that allows the doctor to start a new visit to the given
patient. As soon as the doctor clicks on the "New Visit" button, an alert message
will be displayed that will notify the doctor that a new visit is about to be entered
(see the script in figure 3.14 of Intestazione.js and in Figure 3.16 of Button.js)

Figure 3.15: Intestazione component

Figure 3.16: Creating a class component in file Button.js

• After entering the path describing what folder we are in and in correspondence with
which patient, the Form component (see Fig.is inserted in which the doctor has the
possibility to insert any notes to remember (see the script in Fig.3.18)

Figure 3.17: Path of Patient and Form component

52

Figure 3.18: Creating a class component in file Form.js

• Subsequently, with the Table component (imported from React-bootstrap,Bootstrap
is a collection of free tools for creating Web sites and applications) a table was
created in which there are the various buttons, each of which related to the particular
functionality in Cardiofilo web app,like (see Fig.3.28):

– OVERVIEW (with summary graphs that describe the trends of certain values
measured on the patient over time).
See script in Fig.3.24.
By clicking on the OVERVIEW button (see script of the link between the Home
screen and the Overview screen in Fig.3.20, a new interface opens (see Fig 3.19)

53

Figure 3.19: Overview interface

54

Figure 3.20: Link to overview screen’s script

55

In this interface several components are observed including:

∗ the common header in each interface;
∗ the path of the screen from which it is possible to navigate to the previ-
ous page by clicking on the patient’s name through a component called
"Breadcrumb" (part of the library taken from material UI see Fig.3.21);

Figure 3.21: Breadcrumbs component script

∗ a form in which the doctor can enter notes and then save them;
∗ a filter component from which it is possible to select a specific time frame
from which to search for the graphs of the parameters to be observed (part
of the library taken from material UI see Fig.3.22);

56

Figure 3.22: Filter component script

∗ a calendar from which you can select a date from which to retrieve the
relative medical history (part of the library taken from material UI);

57

Figure 3.23: Calendar component script

∗ two graphs that respectively represent the weekly trend of the systolic and
diastolic pressure and the patient’s blood glucose values.
The graphs were built with the use of HighCharts (Javascript Charting Li-
brary),a library for the representation of graphs written in pure JavaScript
language, which provides an easy way to add interactive graphs to your
websites or web applications. Currently it supports line, spline, area, areas-
pline, column, bar, pie, scatter, angular gauges, arearange, areasplinerange,
columnrange and polar chart types.

58

Figure 3.24: Overview script

– PERSONAL DATA (with the description of the patient’s personal and personal
data);

– RISK FACTORS (with the description of the various risk factors connected to
the patient, plus the possibility for the doctor to send a message to the patient
if there were any significant changes in the clinical data observed);

– STATUS (describes the information relating to the cardiovascular interventions
to which the patient has undergone);

59

– HISTORY (with the general and cardiovascular anamnesis prescribed by the
doctor, it is also possible in this interface to prescribe a recommended therapy
that can be sent to the patient or printed).
See script in Fig.3.27.
By clicking on the HISTORY button (see script of the link between the Home
screen and the History screen in Fig.3.26), a new interface opens (see Fig 3.25):

Figure 3.25: History interface

60

Figure 3.26: Link to History screen’s script

In this interface several components are observed including:

∗ the common header in each interface;
∗ the path of the screen from which it is possible to navigate to the previ-
ous page by clicking on the patient’s name through a component called
"Breadcrumb" (part of the library taken from material UI see Fig.3.21);

∗ a form in which the doctor can enter notes and then save them;
∗ a calendar from which you can select a date from which to retrieve the
relative medical history (part of the library taken from material UI see
Fig.3.23);

∗ then various forms in which the doctor will have the opportunity to enter
the general, cardiovascular, recent anamnesis, systolic and diastolic pres-
sure, then subsequent conclusions from the doctor and the related recom-
mended therapy. The therapy can be printed or sent to the patient;

∗ finally a button back from which the doctor can return to the main page
or the patient’s initial dashboard.

61

Figure 3.27: History script

62

– THERAPY (with the therapeutic indication prescribed by the doctor);

– RECORDED EVENTS (which describes the events recorded by the patient via
the mobile version of the Cardiofilo app).

Figure 3.28: Dashboard components

• Finally, the UploadButtons component (see Fig.3.29) is inserted in the UI, which
will provide the user with the functionality to insert attachments relating to patient
data, selecting them from the folders of the PC used by the doctor (see figure 3.29,
part of the figure 3.11).
This feature has been designed to attach, for example, paper documents filled in by
the doctor to the web app in order to track them over time. The doctor will then
have the possibility to attach, for example, the visit reports, the test report recorded
by the records that the patient makes with the mobile app (recording his current
weight, blood pressure, heart rate, blood sugar, number of smoked cigarettes) or
medical certificates. That component comes from a component library: Material-
UI.
This library offers the typical building blocks of a library using Google’s Material
Design language as a guideline [13].
Another feature is mobile first, which means it’s easy to produce a user interface
that adapts very easily to large screens, smartphones, and tablets (see script in Fig.
3.30).

63

Figure 3.29: UploadButtons component

64

Figure 3.30: Component from Material UI

65

The execution of the entire script takes place from the terminal integrated in Visual
Studio Code with the npm start command (see fig.3.31),part of the package downloaded
from Node.js, by positioning in the current folder where the entire project is present,in
the folder ’my-app’ created.
The npm start command will run the application in development mode and you can pre-
view the application on any browser page that will open by navigating to http: localhost:
3000.
The page will automatically reload whenever it detects a code change in the source files.
Warnings and errors can also be viewed in the console.

Figure 3.31: Terminal execution of the application

66

Chapter 4

General Data Protection
Regulation and Cardiofilo

4.1 Processing of personal data including biomedical data

General Data Protection Regulation or GDPR is a regulation of the European Union
relating to the protection of personal data and privacy.
It was published, for the first time, in the European Official Journal on May 4, 2016 and
entered into force on May 24, 2016.[14]
However, its implementation took place after two years, starting from May 25 2018.
After its entry into force, the GDPR has replaced the contents of the data protection di-
rective (Directive 95/46 / EC) and, in Italy, has repealed the articles of the code dedicated
to the protection of personal data (Legislative Decree no. 196/2003) incompatible with it.
Being a regulation, it is implemented in the same way in all the States of the Euro-
pean Union without margins of freedom in the adaptation and the European Commission
proposes as an objective to strengthen the protection of personal data of citizens of the
European Union, of residents in the European Union: both inside and outside the borders
of the European Union (EU).
All this because after the Lisbon Treaty (signed on 13 December 2007) the protection of
personal data has become a fundamental right of people, and therefore it must be ensured
in the same way throughout the EU. The regulation is functional to digital development,
following the regulations in the European Union, and to the protection of the freedom
of circulation of the personal data of the individual. In particular, with the introduction
of the new regulation, greater attention was placed on the use of personal data including
health data.
In Cardiofilo, health data such as blood pressure data, cardiovascular data and data re-
lated to current therapies will be managed. So it is necessary to understand how to treat
this type of data in the application.

4.2 Contents of the GDPR regulation

The GDPR regulation is more explicit than directive 95/46, proclaiming the protec-
tion of the right to the protection of personal data understood as the fundamental right
of individuals.
The main principle of the GDPR regulation is information self-determination: the individ-
ual’s right to decide, outside external pressure, whether and within what limits to disclose
facts related to his personal life.
It is a necessary condition for the free development of the citizen’s personality and also
an essential element in a democratic society.
In particular, the regulation on the processing of personal data highlights the need to
implement protection and guarantee measures for the data processed, following the:

• privacy by design principle, which emphasizes that products and services must be
designed from the outset in order to protect users’ privacy, that is, processing must
be foreseen and configured from the outset, providing guarantees to protect the rights
of concerned;

• privacy by default with which the privacy measures must be implemented by default;

• principle of the personal nature of the IP address.

Compared to directive 95/46, in the GDPR there is also an approach based on risk
assessment (risk based), where the extent of responsibility of the owner or manager of the
treatment is determined, taking into account the nature, scope, context and purpose of
the processing, as well as the probability and seriousness of the risks to the rights and
freedoms of users.
A risk-based approach has the obvious advantage of demanding obligations that can go
beyond mere compliance with the law, it is certainly more flexible and adaptable to chang-
ing needs and technological tools.
A risk based approach, however, has the disadvantage of delegating risk assessment to the
company, making disputes more difficult in the event of violations.
The regulation applies to the processing of personal data, and to the non-automated pro-
cessing of data stored in a defined "archive".
The Regulation therefore applies to any fully or partially automated processing of per-
sonal data and to the non-automated processing of personal data contained in an archive
or intended to appear in it. In this perspective, the GDPR regulates only the processing
of personal data concerning a natural person, with the exception of legal persons (except
for a few exceptions).
So only natural persons can be interested in the treatment, not also legal persons. The

68

GDPR, however, does not apply to deceased persons, but here the Decree of adaptation
of the Privacy Code intervenes which extends the GDPR’s protections to the processing
of data of the deceased (art.2).
GDPR, therefore emphasizes the principle of transparency, with a view to respecting the
purpose. Consequently, it is necessary to carefully evaluate the purposes of the treatment,
in order to establish exactly which data can be processed and which cannot. Furthermore,
the data controllers will have to identify the legal basis of the processing (for example the
consent of the interested party) and document it.

4.3 Data

The data processing explained by GDPR includes various types of data. In addition
to personal data, we also find genetic, biometric and health-related data, which is all in-
formation that allows the univocal identification of a natural person.

• Personal data (art.4 paragraph 1)[15]:
information related to an identified or identifiable natural person. The person can
be identified directly or indirectly, with particular reference to an identifier such as
the name, an identification number, location data, an online identifier or to one or
more characteristic elements of his physical, physiological, genetic, psychic identity,
economic, cultural or social;

• Sensitive data (art.9 paragraph 1)[15] :
considering personal data such as racial or ethnic origin, political opinions, religious
or philosophical beliefs, or union membership, data relating to the sexual life or
sexual orientation of the person, as well as:

– Genetic data: inherited or acquired, obtained through DNA and RNA analysis
from a biological sample of the physical person in question;

– Biometric data: such as the facial image, thanks to which it is possible to
identify one and only one natural person;

– Health data: both physical and mental, past, present or future, but also infor-
mation on health care services, where present, regardless of the source, such as,
for example, a doctor.

– Personal data relating to criminal convictions or crimes (art.10): the processing
of personal data relating to crimes or convictions must take place under the
control of the public authority or if it is authorized by Union law.

69

4.4 GDPR application in Europe

After three months the entry of the new regulation on the protection of personal data,
CNIL (Commission nationale de l’Informatique et des libertes), the French authority, equal
to the Italian Guarantor for Privacy, said that companies did not seem to be aligned in
the application of the directive.
Following an analysis based on the provisions of GDPR and its own resolutions, CNIL
underlined that there is a general lack of awareness of the companies on the risks of non-
compliance and any penalties that could result.
The supervisory body said that many believe that they will not be subject to an inspection,
others that it will be sufficient to show proactivity and collaboration, still others have the
belief that a policy is sufficient to protect themselves from the risks of violations.
The situation in Europe after the entry of the GDPR (May 25, 2018) is this:

• in Luxembourg Parliament the directive was introduced on 26 July;

• in Spain national legislation was approved on 27 July 2018;

• in France, the legislation was adopted just 2 weeks before the entry of the GDPR;

• in Italy, the Guarantor expressed a favourable opinion on the outline of the legisla-
tive decree; approved by the House and Senate commissions on June 20, arrived at
the Council of Ministers on August 8 2018. The Guarantor for the Protection of Per-
sonal Data, National Supervisory Authority, published a resolution on the inspection
activity planned between July and December 2018, which was addressed:

– to check on data processing carried out by companies / entities that manage
databases of significant size;

– to ascertain personal data processing carried out at credit institutions in relation
to the legitimacy of the consultation and subsequent use of data, the tracing of
accesses and related protection measures;

– to check on personal data processing carried out by companies for telemarketing
activities;

– to check on subjects, public or private, belonging to homogeneous categories
on the assumptions of lawfulness of the treatment and on the conditions for
consent if the treatment is based on this assumption, on compliance with the
disclosure obligation and on the duration of the conservation some data.

The European Personal Data Protection Authorities (DPA) have therefore faced a huge
volume of work (there is talk of managing 50,000 data breaches notified since May 25,

70

2018 across Europe). In fact, these are time-consuming activities and the results (even of
a high profile) could be verified only in the future.

4.5 Health data treatment

One of the sectors on which the EU Regulation 679/2016 (GDPR) has had a greater
impact is the health: a new approach on the management of the processing of personal
data in the health sector. [12]First of all, the Regulation introduces for the first time a
definition of "health data", according to which these data consist of personal data relating
to the physical or mentalhealth of a natural person. Greater attention was subsequently
paid to the meaning of consent that it is considered as a manifestation of free and informed
will of the interested party.It should be noted that consent cannot be considered freely
expressed, and therefore valid,if the interested people cannot make a truly free choice or
if he cannot refuse to give his consent without suffering prejudice. With reference to the
consent to the processing of personal data for the execution of a health treatment, it is
clear that such consent is not necessary as a health professional could never cure a patient
without also processing his personal data.Doctors will therefore be able to process patient
data, for treatment purposes, without having to request their consent, but will still have
to provide them with complete information on the use of the data. All public bodies, as
well as private operators who carry out large scale processing of health data, such as nurs-
ing homes, are required to appoint the DPO (Data Protection Officer).Instead, consent is
required, or a different legal basis, when such health treatments are not strictly necessary
for the purposes of treatment, even when they are carried out by health professionals.
Finally, GDPR clarifies that it is mandatory for all healthcare professionals to keep a
register listing the treatment activities carried out on patient data. This document rep-
resents, in any case, an essential element for the management of the treatments and for
the effective identification of those at greatest risk, also to demonstrate compliance with
the principle of accountability envisaged by the GDPR. It was therefore clarified that the
data can be processed only for the purpose of protecting the health and physical safety
of the interested person or of third person or of the community, pursuant to Article 9,
paragraphs 2, letters h) and i).
It follows that in the context of scientific research in the medical, biomedical and epidemi-
ological fields, particular attention must be paid to the reuse of personal data, previously
collected for diagnostic purposes.
The reference to art. 89 clarifies that a fundamental prerequisite for proceeding with fur-
ther processing is the adoption of adequate guarantees for the data subject’s fundamental
rights and freedoms, or technical and organizational measures suitable for pursuing the
principle of data minimization, which may include pseudonymisation. Therefore, the reuse

71

of data previously collected for prevention, diagnosis and treatment purposes can be con-
sidered legitimate, and the condition of lawfulness, as an alternative to consent, is to be
identified in art. 9, par. 2, lett. j) of the GDPR. So the methods of data processing for re-
search purposes are these: the investigation must be conducted, if possible, on anonymous
data. If the search results cannot be pursued without the identification of the interested
person, data encryption or pseudonymisation solutions must be adopted, or other mea-
sures that do not make the data directly attributable to the interested party.
The subjects involved in the research activity who act as data controllers can communicate
with each other the personal data, necessary for the conduct of the study if they cover the
ground as promoter, coordinating or participating role. The personal data and biological
samples used for research must be kept by means of encryption techniques or the use of
identification codes, for a period not exceeding that necessary to achieve the purposes for
which they were collected or subsequently processed.
Furthermore, in order to increase the level of security of the treatment, other particular
measures are indicated such as: the protection of the study data from the risks of abu-
sive access or theft (through file system or database encryption), the use of protected
transmission channels, the labelling of samples for storage and transmission of the same.

72

4.6 How to treat Cardiofilo data

The most appropriate and safe way for the management and storage of patients’ per-
sonal data is to rely on a digitalization of health data with a medical software, as a
Cardiofilo, suitable for the GDPR.
Cardiofilo is a medical application that will also allow to manage patients’ personal and
sensitive data in accordance with the GDPR in compliance with the law for the manage-
ment of health data.
Patient privacy will be protected thanks to various internal and external provisions of the
company that will market Cardiofilo. Possible proposals for the application to be adequate
for the processing of personal and health data for example are:

• Define the data collector that will allow to collect different sets of data in a com-
pletely secure way. Data collection can be performed constantly or on a user-defined
schedule by means of a dedicated server. The use of a dedicated server compared to
the use of a cloud guarantees power, top-level performance and maximum security
in data management precisely because its operation is confidential and is not shared
with anyone else.
However, in order to have a dedicated server, the company will have to face the costs
and long maintenance times of its.

• Management of data consent: patients could choose between using the application
with their own data by signing a consent to the processing of the data. Or patients
could use the application by pseudonymising his personal data, so the patient will
be provided with a unique code useful for his identification.

• Encrypted technology: all communications and notifications, of personal and health
data, and documents sent with Cardiofilo app to patients are controlled through an
https and password encryption system ensuring greater security of privacy;

• The same access to the information present in the medical software could be profiled
thanks to a two-factor personal and nominative authentication. Furthermore, all
the actions performed by users could be traceable by geo-localizing access to the
software via IP.

73

Chapter 5

Classification of Cardiofilo as a
medical device

5.1 Introduction of medical devices

A medical device is an instrument used in medicine and can have diagnostic and / or
therapeutic purposes.
They are often subject to a specific regulatory discipline, which may vary from country to
country. This category includes active medical devices, in vitro devices but also software
and medical applications.
The medical device sector is of great importance in European healthcare, contributing to
the improvement of the level of health protection through the development of innovative
solutions for diagnosis, prevention, treatment and rehabilitation. [16]
The EEC Directive 93/42 on medical devices (abbreviated as DDM 93/42), published on
the GUCE (Official Journal of the European Union) in June 1993 [17], is a document that
reports the general criteria to be used in the design and construction of some categories
of medical devices, in force in the states of European Union.
In order to become legal, a medical device must comply with the reference regulations,
it must therefore be linked to the scientific literature and clinical studies consistent with
the relevant health provisions, it must be able to exhibit certifications in accordance with
the law and ensure the possibility of transparent verification of the certifications issued by
notified bodies. In general, a medical device in use in a member country of the European
Union must always exhibit the CE marking, with a clear indication of the number of the
notified body that issued it.
This allows the notified body to verify the actual characteristics for which the device has
received authorization in the health sector, and whether the marking is authentic and
consistent with the manufacturer’s advertised declaration of use.
Cardiofilo project consists of a web interface for cardiologists and a mobile interface for

74

patients and provides an additional tool for secondary prevention of cardiovascular dis-
eases, therefore it provides support for therapeutic and diagnostic purposes. It is clear
that the application can be classified as a medical device.
In particular, it can be classified as a "software as medical device" (SaMD).

5.2 Directive CEE 93/42

The EEC Directive 93/42 relating to medical devices (abbreviated as DDM 93/42),
reports the general criteria to be used in the proposal and structure of categories of med-
ical devices.
In the first article of the implementation of Directive 93/42 concerning medical devices
(decree lgs. 24 febbraio 1997, n. 46 emended with D. lgs. 25.01.2010, n.37 - Transposition
of Directive 2007/47/CE), it says that: "This decree is applied to medical devices and
related accessories. For the purposes of this decree accessories are considered full-fledged
medical devices. In the present decree and its annexes, medical devices and their acces-
sories are indicated with term devices" [18]. It imposes the obligation of CE marking for
the sale of these medical devices (DM); to obtain the CE mark, the essential requirements
of the DDM 93/42 must be respected.
The requirements mentioned in the document must be interpreted and applied in order to
take into account the technology and practices existing in the design phase.
DDM 93/42 is a supranational validity document and was implemented in Italy in Febru-
ary 1997 with Legislative Decree 24 February 1997, n. 46 ("Implementation of Directive
93/42 / EEC, concerning medical devices ").
The directive proposes provisions for the certification of medical devices that are common
to all States of the European Community. In previous years, the legislative and admin-
istrative provisions concerning the safety and functioning characteristics of the DMs, the
certification and control procedures had generally different content and scope in each State,
therefore they represented an impediment to intra-Community trade.
The directive is not a list of requirements, that is, it does not list all the rules for each
type of device, since:

• the prescriptive rules require periodic review; due to the rapid technological progress
in this sector, the standards would have to be revised very frequently (every 2 or 3
years), which would entail high costs;

• Furthermore, thanks to progress, we can have a very wide instrumentation and in
certain cases it is possible to obtain a safe device by traveling on different roads with
the same validity: it would be almost impossible to consider them all.

75

This decree does not apply:

• devices intended for in vitro diagnosis;

• active implantable devices governed by the legislative decree of 14 December 1992,
n. 507, and subsequent modifications;

• to medicinal products subject to Legislative Decree 24 April 2006, no. 219, which
implements the Community code on medicinal products for human use. In establish-
ing whether a particular product falls within the scope of this decree or this decree
particular consideration should be given to the main mechanism of action of the
product same;

• to cosmetic products governed by decree no. 713, and later modifications;

• human blood, human blood products, human plasma or blood cells of human origin,
or to devices that, at the time of entry into trade, contain similar products derived
from blood, plasma or cells blood, with the exception of the devices referred to in
paragraph 2-bis;

• to organs, tissues or cells of human origin, or to products including or derived from
tissues or cells of human origin, with the exception of the devices referred to in
paragraph 2-bis;

• to organs, tissues or cells of animal origin, unless the device is manufactured using
non - viable animal tissue or non - viable products derived from animal tissue.

Definition of medical devices

According to what established by the legislative decree n. 46 of 24 February 1997, or in
implementation of Directive 93/42 / EEC, relating to DMs, a medical device is defined as
a any instrument used alone or in combination intended for use in humans for the purpose
of diagnosis, prevention or therapy. [18]
Medical devices, are a generic element of medicine. They are medical devices such as
simple tongue depressors, laser surgical devices, complex programmable pacemakers with
microchip technology, laboratory equipment for general use, and other electronic devices.
These also include devices that may include monoclonal antibody technology.
Another category of medical devices that should be mentioned is that of active medical
devices. They are defined in this way because, for their correct functioning, they must
be connected to a source of electricity or to any other source of energy other than that

76

produced directly by the human body or by gravity. Some examples of this type are com-
puterized axial tomography (CT), the defibrillator, the infusion pump, but also the laser.
Subcategory of active medical devices is that of active implantable medical devices, i.e.
any active medical device intended to be implanted entirely or partially by surgery or
medical intervention in the human body or by medical intervention in a natural orifice
and intended to remain there after the intervention.

Classification

A categorization of medical devices into classes is designed to group them according to
their complexity and potential risk to the patient. They are essentially divided into four
classes: I, IIa, IIb, III. This classification always depends on the intended use indicated by
the manufacturer and is attributed by consulting Annex IX of Legislative Decree 46/1997.
The classification is carried out according to three parameters judged as fundamental:

• invasiveness;

• the duration of the contact time required with the human body: if the expected
continuous duration is less than 60 minutes we speak of short-term use, if the ex-
pected continuous duration does not exceed 30 days we speak of long-term use, if
the duration is continuous then the contact time is greater than 30 days;

• dependence or not on energy sources.

However, when we talk about medical devices we can group them into two macro cate-
gories: invasive and non-invasive.

• Invasive medical devices are those intended to penetrate, even partially, into the
body;
In turn, invasive devices are divided into:

– devices that penetrate the body through orifices;

– surgical devices, which penetrate through the body surface in the context of or
outside surgical operations.

• Non-invasive devices therefore do not penetrate any part of the body: either through
orifices, or through the skin.

Some categories of medical devices are subject to special classification rules, which is why
they must be subject to rigorous controls: to guarantee the patient the correct efficacy

77

with respect to their field of application.
In the large category of medical devices, it can be found various products designed for
diagnostic and / or therapeutic purposes, including also âsoftware as medical device" and
medical apps.
The European Union has drawn up specific rules to differentiate medical devices from
computer programs in the field of software and apps dedicated to health.

Software as a medical device

Before an incessant technological development regarding new healthcare software suit-
able for example to monitor and process physiological parameters, physical activity, calo-
ries burned, heart rate, etc., the boundary line between softwares that qualify as medical
devices or that do not have this attribution appear increasingly blurred and difficult to
identify.
Qualifying any softwares,as a medical device, means that it will be subject to strict sector
regulations aimed at ensuring compliance with the safety, efficacy and quality require-
ments, differentiated according to the risk classes into which the medical devices are di-
vided. However, even in cases where a software cannot be qualified as a device, it must
be able to meet safety and reliability requirements, with the aim of increasing consumer
confidence in the Health-app, with positive results for collective well-being.
Software has become an important part of all products, integrated into digital platforms
that serve both medical and non-medical aim. "Software as medical device" is one of three
different kinds of software related to medical devices.
Two types of software are:

• software that is integral to a medical device (Software in a medical device)

• software used in the manufacture or maintenance of a medical device

Software as a Medical Device is defined as a software intended to be used for one or
more medical purposes. Use of Software as a Medical Device is continuing to be used more
and more. It can be used in a large range of technology platforms.
Directive 93/42 / EEC regulates the software intended by the manufacturer to be a medical
device in a marginal way. The explicit prescription constituting an essential Requirement
is given by point 12.1bis of Annex I.
It subordinates the validation of the software in the reference sector, taking into account
the principles of the development life cycle, risk management, validation and verification.
With this legislation, however, manufacturers have found it difficult to understand if their
software was actually classified as a medical device.
In fact, the topic has been the subject of a specific guide, MEDDEV 2.1 / 6, from which

78

a practical algorithm to solve the problem has come down.
In July 2016, the MEDDEV 2.1 / 6 guidelines were updated with the introduction of some
definitions, including that of "software" and "Sofware as medical device" (such as "software
intended to be used for one or more medical purposes that perform these purposes without
being part of a hardware medical device").
The fulfilment of the Essential Requirements imposed by the Directive was almost entirely
based on the prescriptions concerning active medical devices, largely improper if applied
to a software. No classification rule names software, so their classification was based on
that of active medical devices (Rules 9 to 12, Annex IX).
Subsequently there is the problem of having many software classified in class I according to
Rule 12, because they do not fall within the previous Rules with higher classification, but
are not suitable or too stringent for the intended destination of a software. Vice versa, the
fulfilment of the Essential Requirements, which can be considered as a problem following
the legal framework, was resolved by virtue of point 12.1bis on the basis of the application
of a quality management system (based on ISO 13485), constituting in itself one of the
basic harmonized standards in the medical field. In addition, recourse was made to the
specific harmonized standard for software based on IEC 62304. Both standards helped
balance the general aspects with respect to the specific ones, also managing to complement
each other on aspects not directly covered (above all, the exclusion of the final validation
and release of the software, even when constituting a medical device in its own right, from
the scope of application of standard 62304).
The fate of the software that is an integral part of active medical devices has been easier,
thanks to the harmonized standard that concerns them, which incorporates IEC 60601-1,
as well as point 12.1 of Annex I. In this case, by virtue of the point 2.3 of Annex IX, the
software can be classified directly on the basis of the active medical device on which it
operates and the detailed prescriptions of 60601-1 did the res
The guidelines also recognize the existence of a "grey area", as the distinction between
software that is or is not a medical device is not always clear. However, it is up to the
manufacturer to decide whether his product falls within the definition of a medical device
(Legislative Decree 46/97 art. 1 paragraph 2). In case of doubt, the competent authorities
will decide on the placement of the limit products. To this end, a working group has been
set up at the European Commission Group of experts on borderline and classification
medical devices.

79

The new European regulation on medical devices: Regulation (UE) 2017/745

The new regulation on medical devices (EU) 2017/745, published on May 5, 2019
(which will be applicable from May 2020), introduces significant changes compared to the
previous legislation.
In summary, the changes are:

• establishment of a European database for medical devices (Eudamed);

• definition and detailed obligations of all economic operators;

• new figure of the Head of compliance with the law (PR);

• supervision of notified bodies;

• clinical evaluation, post-marketing surveillance and post-market clinical follow-up
plan;

• transparency and traceability of medical devices (UDI system);

• deepening on the devices that contain / consist of nanomaterials;

• classification rules for borderline products.

The new regulation emphasizes the criterion of destination impressed on the software by
the manufacturer, establishes that "a software in itself constitutes a medical device when
it is specifically intended by the manufacturer to be used for one or more of the medical
purposes established in the definition of medical device "and that" a generic software, even
if used in a healthcare context, or a software for lifestyle-related applications and well-
being is not a medical device "(cons. 18a). Then, to ensure a consistent classification in
all Member States, with particular regard to borderline cases, the regulation provides that
the Commission can decide on a case by case basis, on its own initiative or at the request
of a Member State, whether a product or group of products falls within the definition of
a medical device or not.
The regulation also clarifies that software classified as medical devices are in class I (ex-
cept those intended to monitor physiological processes that are in class IIa or IIb when
monitored are vital parameters whose variation can create an immediate danger for the
patient). This means that the assessment of the suitability for marketing of a software-
device should, in principle, take place under the sole responsibility of the manufacturers
(except for those falling within Classes IIa and IIb which require the intervention of a
notified body).

80

In conclusion, the regulatory process testifies to the particular attention paid by the Euro-
pean institutions for this theme, establishing essential criteria to sanction the distinction
between pure and simple software and device.

5.3 CE Marking

The stages of the CE marking procedure for medical devices, according to Legislative
Decree 46/97 [19], are:

1. device classification:
Classification is the first fundamental step that the manufacturer must take in order
to determine the class of the device, according to the rules contained in Annex IX
of Legislative Decree 46/97, and to use the consequent marking procedures.

2. verification of compliance with the essential requirements:
In order to be CE marked, any medical device must correspond to the so-called "es-
sential requirements" presented in Annex I of Legislative Decree 46/97. These are
safety and efficacy requirements that both the devices and their production system
must have. As Annex I states, in fact, "the devices must be designed and manu-
factured in such a way that their use does not compromise the clinical status and
safety of patients, nor the safety and health of users and possibly third parties, when
used under the conditions and for the purposes envisaged, it being understood that
any risks must be of an acceptable level, taking into account the benefit provided
to the patient, and compatible with a high level of protection of health and safety
". This means that - to create a medical device compliant with Legislative Decree
46/97 - the manufacturer must prove that not only his product, but also the produc-
tion process in its various aspects (design, manufacture, controls, etc.) respect the
essential requirements. The list of essential requirements is divided into two parts:
the first dedicated to general requirements, completely aimed at the intrinsic safety
of the devices, the second - further divided into 7 groups - covers all the design and
construction aspects of the device. The higher the riskiness of the device, the greater
the safety guarantees that the manufacturer must provide for the production of the
device.

3. CE marking of products:
For the

• class I, the manufacturer may CE mark the product and place it on the market
after drawing up a declaration of CE conformity with the essential require-
ments, based on Annex VII of Legislative Decree 46/97. With this document,

81

the manufacturer guarantees and declares that its products meet the provisions
of the directive. However, the company must have all the technical documen-
tation to demonstrate the safety of the device produced. The CE declaration
of conformity is the simplest CE marking procedure. It is a simple declaration
of assumption of responsibility, without the intervention of a Notified Body.

• For class IIa, the manufacturer will ask the Notified Body for approval of its
production facilities and / or its product. The manufacturer can choose between
two different applicable procedures:

– Annex II (complete quality assurance system) with exclusion of point 4;
– Annex VII (EC declaration of conformity) + Annex IV (EC verification)

or V (production quality assurance) or VI (product quality assurance).

4. For class IIb, the manufacturer will ask the Notified Body for approval of its produc-
tion facilities and / or its product, but with further guarantees and controls. The
manufacturer can choose between two different applicable procedures:

• Annex II (complete quality assurance system) with exclusion of point 4;

• Annex III (CE certification) + Annex IV (CE verification) or V (production
quality guarantee) or VI (product quality guarantee).

5. For class III, the manufacturer will ask the Notified Body for approval of its produc-
tion facilities and / or product, but with even stricter guarantees and controls that
involve, in particular, the aspect of design. The manufacturer can choose between
two different applicable procedures:

• Annex II (complete quality assurance system) including point 4 (examination
of the product design);

• Annex III (CE certification) + Annex IV (CE verification) or V (production
quality assurance)

All documentation must be kept available to the health authority for a period of at least
five years from the last manufacturing date.
It can therefore be deduced that the CE marking is a mandatory process for all medical
devices covered by the EEC directive 93/42. The procedure must be performed by the
manufacturer of a product regulated in the European Union, who declares by means
of the declaration of conformity, that the product complies with the safety and health
requirements set out in the directive.

82

5.4 Classification of Cardiofilo as a SaMD

In the last few years, the so-called eHealth was born, or mobile health understood
as medicine and public health practice supported by mobile devices, such as cell phones,
devices for monitoring patients, hand-held computers and other wireless devices.
Among the applications dedicated to health, Cardiofilo project was born which includes
various technological solutions that allow to measure vital parameters such as body weight,
blood sugar level, blood pressure, body temperature and sports activities carried out on
a daily basis.
After the design and construction phase, it is legitimate to think about the marketing of
the application and therefore it is necessary to understand if Cardiofilo can be understood
as a medical device, how to classify it and how to obtain the CE marking accordingly.
The Medical Devices Directive 93/42 / EC has been implemented in Italy with Legislative
Decree 37/2010 recognizing the importance of software in the medical device sector, as
well as the existence of the software as a medical device also independently, that is, the
so-called standalone software.
In addition, the Court of Justice, taking up MEDDEV 2.1 / 2, has declared that the
medical purpose for therapeutic purposes is essential for the qualification of the product.
According to guidelines ”MEDDEV 2.1 / 6 on the qualification and classification of stand-
alone software used in healthcare within the regulatory framework of medical devices ”,
Cardiofilo can be considered as a ”Software as medical devices”, because it is a software
destined to a medical and therapeutic use. It is not a software that has the single goal of
storing data or being a project of clinical research only. It can therefore be said that the
application is considered a medical device.
Analysing the functions that the application provides, it can be established that Cardiofilo
can be classified as a class IIa medical device since it is intended to allow control of vital
physiological processes, where the nature of the variations is such as to be able to create
an immediate danger for the patient.
For class IIa, the company that wants to market Cardiofilo will have to ask the notified
body for approval of its product.
The company can choose between two different applicable procedures for device confor-
mity assessment. (see section 4.3 CE marking).
In accordance with the new Regulation (EU) 2017/745 for the conformity assessment,
the company must guarantee and document a quality management system, including the
PostMarket Clinical Follow-up (PMCF).
In addition, the company must have a figure responsible for compliance with the regula-
tion (PR) that must have the necessary skills in the field of medical devices. This figure
can be internal or external, in relation to the size of the company.

83

84

Chapter 6

Future improvements

The interfaces thus developed of the Cardiofilo Web application contain scalable and
reusable components and a single CSS style file, in this developed project React takes only
the concept of ’View’. It is a library that renders the Views.
Subsequently it is possible to implement a UI in React following both the MVC (Model-
view-controller) pattern and that with Redux, the problem that will have to be overcome
is the management of the state in the applications.
From a purely technical point of view, the state of a system (for example of an application)
is the set of internal conditions in a specific instant that determine the result of interactions
with the outside.
In other words, the status of an application is the set of information that determines the
output at a given input in a specific instant.
In application development there is always something to do with state management and
this management is one of the most critical points responsible for much of the complexity
of the software.
In the case of the Cardiofilo project, problems related to the management of the state at
the local level could arise, as the number of developers increases, as it may happen that
not everyone in the team will correctly apply the state control at the local level, therefore,
have a well-defined architecture with the help of Redux, it helps to maintain good code
quality. So local state management is very good only in case:

• the application is not large;

• the team is not large;

• people are developing component libraries

The management of the state besides being difficult due to the increase of developers who
manage the app, If changes can occur asynchronously, the scenario can be quite complex
and it is easy to lose control over the evolution of the state, with the result that, in

85

the presence of malfunctions, it is really difficult to recreate such a situation to allow an
analysis of the problem and its resolution.
So one possible solution to the problem is the use of Redux, [20] an open source JavaScript
library to manage the state of the application. It is commonly used with libraries such as
React or Angular to build user interfaces. Dan Abramov, the creator of Redux, identifies
the cause of the complexity in managing the state of an application in two elements:
modifiability and asynchronicity.
The solution proposed by Redux aims precisely to remove these two aspects, based on
three fundamental principles:

1. there is a single source of truth=the status of the entire application is stored in a
single object;

2. the status is read-only=it is not possible to directly modify the information stored
in the state of the application; the only way to do this is through explicit actions;

3. changes to the state must be made with pure functions=the current state is replaced
by a new state generated by functions exclusively based on an action and the previous
state

Respect of these principles allows to obtain benefits such as:

• the predictability of state transitions: the changes in the state of an application are
analysable and reproducible, and it is therefore easier to understand how a specific
situation was arrived at;

• the organization of the code: Redux forces you to organize the code following a
specific pattern, which indirectly defines a coding standard within a development
team;

• the rendering server: you can define an initial state at will and start the applica-
tion from that state, in this way + you can facilitate the rendering of JavaScript
applications from the server;

• status tracking: state transitions can be tracked for debugging purposes;

• the testability of the code: since state changes are made through pure functions, it
is easier to write unit tests for application.

However, it should be said that Redux is not the solution to all ills. The benefits
it introduces in the management of the state of an application have a price in terms of
complexity, or rather, of the direction in which the code is written.

86

Therefore for the future development of the Cardiofilo application the use of the Redux
library is proposed, since it would allow managing the complexity of the various user and
developer actions with the addition at the same time of a high degree of programming
complexity which can however guarantee a truly an usable and interoperable application .

87

Chapter 7

Conclusions

The Cardiofilo project in its entirety (Cardiofilo web app and Cardiofilo mobile app)
aims to provide an auxiliary monitoring to the doctor, who will always be able to keep his
patients suffering from cardiovascular diseases under control.
The next purpose of the front-end development is to provide an excellent user experience,
therefore try to understand everything that revolves around the interaction of a user with
the app and at the same time provide the end user who will use the app aspects such as
the utility, ease of use and efficiency of the system.
Designing an application following all aspects related to usability is not the only step that
a company must take when it decides to develop an application compliant with the world
of telemedicine in the healthcare field.
In fact, in order to access foreign markets, the CE mark represents a respect and a guar-
antee of quality and conformity.
Applying the CE mark on its products therefore means that a company wants to be atten-
tive and in compliance with all legal obligations for safety and compliance, both legislative
and environmental.
Designing an application following all aspects related to usability is not the only step that
a company must take when it decides to develop an application compliant with the world
of telemedicine in the healthcare field.
In fact, in order to access foreign markets, the CE mark represents a respect and a guar-
antee of quality and conformity. Applying the CE mark to its products therefore means
that a company wants to be careful and in compliance with all legal obligations for safety
and compliance, both legislative and environmental.
In order to have access to the world of telemedicine, therefore, an efficient, useful, simple
application must be presented, which can assist the work of health personnel with the use
of information and telecommunication technologies for the benefit of human health.
With the Cardiofilo application, therefore, we want to respond to a very concrete and

88

rapidly growing technological sector for the benefit of human health, designed and then
developed to generate numerous important benefits in terms of personalized aids to signif-
icantly improve the quality of life of people (improving health, fitness, mental well-being,
safety).

89

Part I

Appendix

90

App.js
import React from ’react’;
import ’./App.css’;
import ’./stile.css’
import Intestazione from ’./components/Intestazione’;
import Form from ’./components/Form’;
import Component_Button from ’./components/Component_Button’
import Table from ’react-bootstrap/Table’
import overview from ’./overview.svg’;
import personaldata from ’./personaldata.svg’;
import RiskFactors from ’./RiskFactors.svg’;
import Status from ’./Status.svg’;
import History from ’./History.svg’;
import Therapy from ’./Therapy.svg’;
import Events from ’./RecordedEvents.svg’;
import RecordedEvents from ’./components/Recorded_Events’;
import UploadButtons from ’./components/Update_allegati’;
import Collegamento from ’./components/Collegamento’;
import Collegamento_Overview from ’./components/Collegamento_Overview’;

function App()
return (
<div>
<Intestazione/>
<div id=’contenitore2’>
<div style=color:’48ccbf’>Patient/ Sara Malini</div>
<Form/>
<Table striped bordered hover style=marginLeft:’285px’>
<tbody>
<tr>
<td><Collegamento_Overview title=’Overview’ image=overview/></td>
<td><Component_Button title=’Personal Data’ image=personaldata/></td>
<td><Component_Button title=’Risk Factors’image=RiskFactors/></td>
</tr>
<tr>
<td><Component_Button title=’Status’image=Status/></td>
<td><Collegamento title=’History’image=History/></td>

91

<td><Component_Button title=’Therapy’image=Therapy/></td>
</tr>
</tbody>
</Table>
<RecordedEvents title=’Recorded Events’image=Events/>
<div id="Update">
<div id="Allegati">Allegati:</div>
<UploadButtons style=marginLeft:’316px’/>
</div>

</div>

</div>
)

export default App;

92

stile.css
#Form
width: 591.6px;
height: 46.2px;
padding: 12px 20px;
margin: 8px 0;
box-sizing: border-box;
border: 2px solid 38e6ca;
border-radius: 4px;
margin-top: 24px;
margin-left: 292px;

#intestazione
width: 1366px;
height: 70px;
object-fit: contain;
box-shadow: 0 3px 6px 0 rgba(0, 0, 0, 0.16);
background-color: #ffffff;
position: relative;

#logo
position: relative;
width: 60px;
height: 52.4px;
object-fit: contain;
float: left;

#text
position: absolute;
width: 168px;
height: 30px;
object-fit: contain;
font-family: ’Montserrat’, sans-serif;
font-size: 25px;
font-weight: bold;
line-height: 1.2;
letter-spacing: normal;

93

text-align: left;
color: #48ccbf;
margin-left: 93px;
margin-top: 18px;

#NewVisit
position: absolute;
width: 162px;
height: 45px;
object-fit: contain;
-moz-border-radius: 8px;
border-color:#48ccbf;
-webkit-border-radius: 8px;
border-radius: 8px;
color:#fff;
background:#48ccbf;
font-family: ’Montserrat’, sans-serif;
font-size: 19px;
font-weight: bold;
font-stretch: normal;
font-style: normal;
line-height: 1.21;
letter-spacing: normal;
text-align:center;
color: #ffffff;
margin-left: 909px;
margin-top: 10px;

#Back
position: absolute;
width: 162px;
height: 45px;
object-fit: contain;
-moz-border-radius: 8px;
border-color:48ccbf;
-webkit-border-radius: 8px;

94

border-radius: 8px;
color: #fff;
background:#48ccbf;
font-family: ’Montserrat’, sans-serif;
font-size: 19px;
font-weight: bold;
font-stretch: normal;
font-style: normal;
line-height: 1.21;
letter-spacing: normal;
text-align:center;
color: ffffff;
margin-left: 15px;
margin-top: -20px;

#contenitore2
width: 1366px;
height: 900px;
object-fit: contain;
box-shadow: 0 3px 6px 0 rgba(0, 0, 0, 0.16);
background-color: #e3fdfa;
position: relative;

#submit
position: absolute;
width: 45px;
height: 45px;
object-fit: contain;
-moz-border-radius: 8px;
border-color:#48ccbf;
-webkit-border-radius: 8px;
border-radius: 8px;
color: #fff;
background:#48ccbf;
font-family: ’Montserrat’, sans-serif;
font-size: 9px;

95

font-weight: bold;
font-stretch: normal;
font-style: normal;
line-height: 1.21;
letter-spacing: normal;
text-align:center;
color: #ffffff;
margin-top: 23px;
margin-left: 13px

#Overview
width: 162.6px;
height: 149px;
object-fit: contain;
position: relative;
font-family: FaktPro;
font-size: 18px;
font-weight: normal;
font-stretch: normal;
font-style: normal;
line-height: 1.22;
letter-spacing: normal;
text-align: center;
background-color: white;
color: #728388;
-moz-border-radius: 8px;
-webkit-border-radius: 8px;
border-radius: 8px;
border-color: whitesmoke;
margin-top: 20px;
margin-left: 30px;

#RecordedEvents
width: 563.6px;
height: 86.2px;
object-fit: contain;

96

position: relative;
font-family: FaktPro;
font-size: 18px;
font-weight: normal;
font-stretch: normal;
font-style: normal;
line-height: 1.22;
letter-spacing: normal;
text-align: center;
background-color: white;
color: #728388;
z-index: 1;
-moz-border-radius: 8px;
-webkit-border-radius: 8px;
border-radius: 8px;
border-color: whitesmoke;
margin-left: 312px;
margin-top: 20px;

#Update
margin-left: 232px;
margin-top: 30px;

#Allegati
position: absolute;
width: 168px;
height: 30px;
object-fit: contain;
font-family: ’Montserrat’, sans-serif;
font-size: 20px;
font-weight: bold;
line-height: 1.2;
letter-spacing: normal;
text-align: left;
color: #48ccbf;
margin-left: 197px;
margin-top: 5px;

97

#Anamnesi
width: 1245px;
height: 50px;
border: solid 1px #cbf0ef;
padding: 12px 20px;
margin: 8px 0;
box-sizing: border-box;
border-radius: 4px;
margin-top: 22px;
margin-left: 3px;

#print

width: 45px;
height: 45px;
object-fit: contain;
-moz-border-radius: 8px;
border-color:#48ccbf;
-webkit-border-radius: 8px;
border-radius: 8px;
color: #fff;
background:#48ccbf;
margin-left: 1262px;
margin-top: -5px

#layout
margin-top: -116px;
margin-left: 322px;
color: #48ccbf;

#breadcrumbs
color: #48ccbf;

#filter
width: 1366px;

98

height: 140px;
object-fit: contain;
box-shadow: 0 3px 6px 0 rgba(0, 0, 0, 0.16);
background-color: white;

App.test.js
import React from ’react’;
import ReactDOM from ’react-dom’;
import App from ’./App’;

it(’renders without crashing’, () =>
const div = document.createElement(’div’);
ReactDOM.render(<App />, div);
ReactDOM.unmountComponentAtNode(div);
);

index.js
import React from ’react’;
import ReactDOM from ’react-dom’;
import ’./index.css’;
import App from ’./App’;
import * as serviceWorker from ’./serviceWorker’;

ReactDOM.render(<App />, document.getElementById(’root’));

// If you want your app to work offline and load faster, you can change
// unregister() to register() below. Note this comes with some pitfalls.
// Learn more about service workers: https://bit.ly/CRA-PWA
serviceWorker.unregister();
index.css
#body
margin: 0;
font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", "Roboto", "Oxygen",
"Ubuntu", "Cantarell", "Fira Sans", "Droid Sans", "Helvetica Neue",
sans-serif;
-webkit-font-smoothing: antialiased;
-moz-osx-font-smoothing: grayscale;

99

#code
font-family: source-code-pro, Menlo, Monaco, Consolas, "Courier New",
monospace;

Anamnesi.js
import React from ’react’;
import "../stile.css"

class Anamnesi extends React.Component
constructor(props)
super(props);
this.state = value: ”;

this.handleChange = this.handleChange.bind(this);
this.handleSubmit = this.handleSubmit.bind(this);

handleChange(event)
this.setState(value: event.target.value);

handleSubmit(event)
alert(’E’ stata salvata la seguente nota: ’ + this.state.value);
event.preventDefault();

render()
return (
<form onSubmit=this.handleSubmit>
<label style=color:’48ccbf’>
this.props.label
<div>
<input id="Anamnesi" type="text" value=this.state.value
onChange=this.handleChange />

100

<input id=’submit’ type="submit" value=this.props.button />
</div>

</label>
</form>
);

export default Anamnesi;

Breadcrumbs.js import React from ’react’;
import Typography from ’@material-ui/core/Typography’;
import Breadcrumbs from ’@material-ui/core/Breadcrumbs’;
import Link from ’@material-ui/core/Link’;
import App from ’../App’
import ReactDOM from ’react-dom’;
import "../stile.css"

class Breadcrumb extends React.Component
constructor(props)
super(props);
this.handleClick = this.handleClick.bind(this);

handleClick()
ReactDOM.render(<App />, document.getElementById(’root’))

render()
return(
<Breadcrumbs id=’breadcrumbs’ aria-label="breadcrumb">this.props.title
<Link color="inherit">
Patient
</Link>
<Link color="inherit" onClick=this.handleClick>
Sara Malini
</Link>

101

<Typography>this.props.title</Typography>
</Breadcrumbs>
);

export default Breadcrumb;
Button.js
import React from ’react’;
import "../stile.css"

//Sto usando una class component//
class Button extends React.Component
constructor(props)
super(props);
this.message_to_users = this.message_to_users.bind(this);

message_to_users()
alert(’Doctor inserts new visit’);

render()
return(
<div>
<button id=’NewVisit’
onClick=this.message_to_users>this.props.title</button>
</div>
);

export default Button;
Calendario.js
import ’date-fns’;
import React from ’react’;
import Grid from ’@material-ui/core/Grid’;
import DateFnsUtils from ’@date-io/date-fns’;
import
MuiPickersUtilsProvider,

102

KeyboardDatePicker,
from ’@material-ui/pickers’;

export default function MaterialUIPickers()
// The first commit of Material-UI
const [selectedDate, setSelectedDate] = React.useState(new
Date(’2020-07-10T21:11:54’));
const handleDateChange = (date) =>
setSelectedDate(date);
;
return (
<MuiPickersUtilsProvider utils=DateFnsUtils>
<Grid container justify="space-around">
<KeyboardDatePicker
disableToolbar
variant="inline"
format="MM/dd/yyyy"
margin="normal"
id="date-picker-inline"
value=selectedDate
onChange=handleDateChange
KeyboardButtonProps=
’aria-label’: ’change date’,

/>

</Grid>
</MuiPickersUtilsProvider>
);

Collegamento_Home.js
import React from ’react’;
import "../stile.css"
import ReactDOM from ’react-dom’;
import App from ’../App’

//Sto usando una class component//

103

class Collegamento extends React.Component
constructor(props)
super(props);
this.open_new_window = this.open_new_window.bind(this);
open_new_window()
ReactDOM.render(<App />, document.getElementById(’root’))

render()
return(
<div>
<button id=’Back’
onClick=this.open_new_window>this.props.title</button>
</div>
);

export default Collegamento;

Collegamento_Overview.js
import React from ’react’;
import "../stile.css"
import Overview from ’./Overview’
import ReactDOM from ’react-dom’;

//Sto usando una class component//
class Collegamento_Overview extends React.Component
constructor(props)
super(props);
this.open_new_window = this.open_new_window.bind(this);

open_new_window()
ReactDOM.render(<Overview />, document.getElementById(’root’))

render()
return(

104

<div>
<button id=’Overview’> <img src=this.props.image
onClick=this.opennewwindow/ > this.props.title < /button >

< /div >

);

export default Collegamento_Overview;

Collegamento.js
import React from ’react’;
import "../stile.css"
import History from ’./History.js’
import ReactDOM from ’react-dom’;

//Sto usando una class component//
class Collegamento extends React.Component
constructor(props)
this.open_new_window = this.open_new_window.bind(this);

open_new_window()
ReactDOM.render(<History />, document.getElementById(’root’))

render()
return(
<div>
<button id=’Overview’> <img src=this.props.image
onClick=this.open_new_window/>this.props.title</button>
</div>
);

export default Collegamento;
Component_Button.js
import React from ’react’;
import "../stile.css"

105

//Sto usando una class component//
class Component_Button extends React.Component
constructor(props)
super(props);

render()
return(
<div>
<button id=’Overview’> <img src=this.props.image
/>this.props.title</button>
</div>
);

export default Component_Button;
Conclusion.js

import React from ’react’;
import "../stile.css"

class Conclusion extends React.Component
constructor(props)
super(props);
this.state = value: ”;

this.handleChange = this.handleChange.bind(this);
this.handleSubmit = this.handleSubmit.bind(this);

handleChange(event)
this.setState(value: event.target.value);

handleSubmit(event)
alert(’E’ stata salvata la seguente nota: ’ + this.state.value);
event.preventDefault();

106

render()
return (
<form onSubmit=this.handleSubmit>
<label style=color:’#48ccbf’>
this.props.label
<div>
<input id="Conclusion" type="text" value=this.state.value
onChange=this.handleChange />
<input id=’submit’ type="submit" value=this.props.button />
</div>

</label>
</form>
);

export default Conclusion;
filter.js
import React from ’react’;
import FormGroup from ’@material-ui/core/FormGroup’;
import FormControlLabel from ’@material-ui/core/FormControlLabel’;
import Checkbox from ’@material-ui/core/Checkbox’;

export default function CheckboxLabels()
const [state, setState] = React.useState(
checkedA: false,
checkedB: false,
checkedF: false,
checkedG: false,
);

const handleChange = (event) =>
setState(...state, [event.target.name]: event.target.checked);
;

107

return (
<FormGroup row>
<FormControlLabel
control=<Checkbox checked=state.checkedA onChange=handleChange
name="checkedA" color=’#48ccbf’/>
label="Week"
/>
<FormControlLabel
control=
<Checkbox
checked=state.checkedB
onChange=handleChange
name="checkedB"
color=’#48ccbf’
/>

label="Month"
/>
<FormControlLabel control=<Checkbox name="checkedC" color=’#48ccbf’/>
label="3 Months" />

<FormControlLabel
control=<Checkbox checked=state.checkedG onChange=handleChange
name="checkedG" color=’#48ccbf’ />
label="Year"
/>

</FormGroup>
);

Form.js
import React from ’react’;
import "../stile.css"

class FormNome extends React.Component
constructor(props)

108

super(props);
this.state = value: ”;

this.handleChange = this.handleChange.bind(this);
this.handleSubmit = this.handleSubmit.bind(this);

handleChange(event)
this.setState(value: event.target.value);

handleSubmit(event)
alert(’Eśtata salvata la seguente nota: ’ + this.state.value);
event.preventDefault();

render()
return (
<form onSubmit=this.handleSubmit>
<input id="Form" type="text" value=this.state.value
onChange=this.handleChange />
<input id=’submit’ type="submit" value="Save" />
</form>
);

export default FormNome;
Grafico.js
import React from ’react’;
import Highcharts from ’highcharts/highstock’;
import HighchartsReact from ’highcharts-react-official’;
const options2=
title:
text: ’Glycemia’
,

yAxis:

109

title:
text: ’Value of Glycemia’

,

xAxis:
categories: [’Monday’, ’Tuesday’, ’Wednesday’, ’Thursday’, ’Friday’,
’Saturday’, ’Sunday’]
,

legend:
layout: ’vertical’,
align: ’right’,
verticalAlign: ’middle’
,

series: [
name: ’Glycemia [mg/dl]’,
data: [90,100,89,95,87,100,101]
],

responsive:
rules: [
condition:
maxWidth: 500
,
chartOptions:
legend:
layout: ’horizontal’,
align: ’center’,
verticalAlign: ’bottom’

]

const options =

110

title:
text: ’Pressure’
,

yAxis:
title:
text: ’Value of Pressure’

,

xAxis:
categories: [’Monday’, ’Tuesday’, ’Wednesday’, ’Thursday’, ’Friday’, ’Saturday’, ’Sunday’]
,

legend: layout: ’vertical’, align: ’right’, verticalAlign: ’middle’ ,

series: [name: ’Systolic pressure [mmHg]’, data: [100,130,110,120,115,119,132] ,
name: ’Diastolic pressure [mmHg]’, data: [80,90,57,58,62,73,85]],

responsive: rules: [condition: maxWidth: 500 , chartOptions: legend: layout:
’horizontal’, align: ’center’, verticalAlign: ’bottom’]

class Charts extends React.Component
constructor(props)
super(props);

render()
return(
<div>
<HighchartsReact
highcharts=Highcharts

options=options
/>
<HighchartsReact
highcharts=Highcharts

111

options=options2
/>
</div>
);

export default Charts;
History.js
import React from ’react’;
import Intestazione from ’./Intestazione’;
import Form from ’./Form’;
import Anamnesi from ’./Anamnesi’;
import PrintIcon from ’@material-ui/icons/Print’;
import Calendario from ’./Calendario.js’
import Pression from ’./Pression’
import Collegamento from ’./Collegamento_Home’
import ’../stile.css’
import Breadcrumbs from ’./Breadcrumbs’

class History extends React.Component
constructor(props)
super(props);
this.state =
stato: ’Benvenuto!’

;
render()
return(
<div>
<Intestazione button=’SAVE’/>
<div id=’contenitore2’>
<Breadcrumbs title=’History’/>
<Form/>
<Calendario/>
<Anamnesi label=’General History:’button=’SAVE’/>
<Anamnesi label=’Cardiovascular History:’button=’SAVE’/>
<Anamnesi label=’Recent History:’ button=’SAVE’/>

112

<div style=color:’48ccbf’>Sistolic pressure mmHg:
<Pression/>
</div>
<div id=’layout’>
Diastolic pressure mmHg:
<Pression id=’layout’/>
</div>

<div>
<Anamnesi label=’Conclusion’ button=’SAVE’/>
<button id="print"><PrintIcon/></button>

</div>
<div>
<Anamnesi label=’Therapy’ button=’SEND’ />
<button id="print"><PrintIcon/></button>
</div>
<Collegamento title="Back"/>

</div>

</div>

);

export default History;
Intestazione.js
import React from ’react’;
import "../stile.css"
import logo from ’./logo.svg’;
import Button from ’./Button’

class Intestazione extends React.Component
constructor(props)
super(props);
this.state =

113

stato: ’Benvenuto!’
;

render()
return(
<div id="intestazione">
<div id="logo">

</div>
<div id=’text’>Web Platform</div>
<Button id="NewVisit" title=’+ New Visit’/>
</div>

);

export default Intestazione;

Overview.js
import React from ’react’;
import Intestazione from ’./Intestazione’;
import Breadcrumbs from ’./Breadcrumbs’
import Form from ’./Form’;
import Filter from ’./filter.js’
import Calendario from ’./Calendario.js’
import ’../stile.css’
import Grafico from ’./Grafico’

function Overview()
return (
<div>
<Intestazione button=’SAVE’/>
<div id=’contenitore2’>
<Breadcrumbs title=’Overview’/>
<Form/>
<div id=’filter’>
<div style=color:’#48ccbf’>Filter search </div>
Display data patient by:

114

<Filter/>
<Calendario/>
</div>
<div>
<Grafico/>
</div>

</div>
</div>

export default Overview;

Pression.js
import React from ’react’;
import clsx from ’clsx’;
import makeStyles from ’@material-ui/core/styles’;
import OutlinedInput from ’@material-ui/core/OutlinedInput’;
import InputAdornment from ’@material-ui/core/InputAdornment’;
import FormHelperText from ’@material-ui/core/FormHelperText’;
import FormControl from ’@material-ui/core/FormControl’;

const useStyles = makeStyles((theme) => (
root:
display: ’flex’,
flexWrap: ’wrap’,
, margin:
margin: theme.spacing(1),
,
withoutLabel:
marginTop: theme.spacing(3),
, textField:
width: ’25ch’, ,
));

export default function InputAdornments()
const classes = useStyles();
const [values, setValues] = React.useState(

115

amount: ”,
password: ”,
weight: ”,
weightRange: ”,
showPassword: false,
);

const handleChange = (prop) => (event) =>
setValues(...values, [prop]: event.target.value);
;

return (
<div className=classes.root>

<FormControl className=clsx(classes.margin, classes.textField)
variant="outlined">
<OutlinedInput
id="outlined-adornment-weight"
value=values.weight
onChange=handleChange(’weight’)
endAdornment=<InputAdornment position="end">mmHg</InputAdornment>
aria-describedby="outlined-weight-helper-text"
inputProps=
’aria-label’: ’weight’,
labelWidth=0
/> <FormHelperText
id="outlined-weight-helper-text">Pression</FormHelperText>
</FormControl>

</div>
);
Recorded_Events.js
import React from ’react’;
import "../stile.css"

//Sto usando una class component//
class RecordedEvents extends React.Component
constructor(props)
super(props);

116

render()
return(
<div>
<button id=’RecordedEvents’><img src=this.props.image
/>this.props.title</button>
</div>
);

export default RecordedEvents;
Update_allegati.js
import React from ’react’;
import makeStyles from ’@material-ui/core/styles’;
import Button from ’@material-ui/core/Button’;

const useStyles = makeStyles((theme) => (
root:
’ > *’:
marginLeft:’305px’
,
,
input:
display: ’none’,
,));

export default function UploadButtons()
const classes = useStyles();
return (
<div className=classes.root>
<input
accept="image/*"
className=classes.input
id="contained-button-file"
multiple
type="file"
/>
<label htmlFor="contained-button-file">

117

<Button variant="contained" color="48ccbf" component="span">
Upload
</Button>
</label>

</div>
);

118

Bibliography

[1] S. Prete, “Design of a web application for patient monitoring after coronary angio-
plasty,” 2019.

[2] V. S. Silvia Selvaggi, TELEMEDICINA - approccio multidisciplinare alla gestione dei
dati sanitari. Springer Verlag Italia.

[3] Ricerca. [Online]. Available: https://www.pphc.it/telemedicina-in-italia-non-e-mai-
partita-davvero-e-oggi-il-covid-19-svela-la-debolezza-del-nostro-paese/

[4] Ischemic. [Online]. Available: https://www.humanitas.it/malattie/cardiopatia-
ischemica

[5] Atrial. [Online]. Available: https://www.my-personaltrainer.it/salute/fibrillazione-
atriale.html

[6] Flutter. [Online]. Available: https://www.my-personaltrainer.it/salute/flutter-
atriale.html

[7] HTML. [Online]. Available: https://www.html.it/guide/react-la-guida/

[8] CSS. [Online]. Available: https://www.html.it/guide/guida-css-di-base

[9] JAVASCRIPT. [Online]. Available: https://www.html.it/guide/guida-javascript-di-
base

[10] JQuery. [Online]. Available: https://www.html.it/guide/guida-jquery/

[11] AngularJS. [Online]. Available: https://www.html.it/guide/guida-angularjs/

[12] React. [Online]. Available: https://it.reactjs.org/

[13] material-ui. [Online]. Available: https://material-ui.com/

[14] regulation. [Online]. Available: https://it.wikipedia.org/wiki/Regolamentogeneralesullaprotezionedeidati

120

[15] article. [Online]. Available: https://eur-lex.europa.eu/legal-
content/EN/TXT/PDF/?uri=CELEX:32016R0679

[16] dispositivi. [Online]. Available: http://www.salute.gov.it/portale/temi/p2_4.jsp?area=dispositivi-
medici,

[17] ddm. [Online]. Available: https://it.wikipedia.org/wiki/DirettivaCEE93/42_sui_dispositivi_medici,

[18] art2. [Online]. Available: http://www.salute.gov.it/imgs/C_17_pagineAree_1636_listaFile_itemName_1_file.pdf,

[19] ce. [Online]. Available: http://www.marcatura-ce.com/2364-2/,

[20] redux. [Online]. Available: https://www.html.it/guide/redux-la-guida/,

[21] Disease. [Online]. Available: http://www.salute.gov.it/portale/donna

[22] data. [Online]. Available: https://www.cybersecurity360.it/legal/gdpr-e-ricerca-
scientifica-come-e-quando-trattare-i-dati-sanitari,

121

