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Summary

Electromechanical Actuators (EMAs) offer great advantages over their tradi-
tional counterparts (namely old Hydromechanical and modern Electrohydraulic
Actuators) when used as actuation devices on aircraft. They represent the natural
evolution of actuation systems in the more electric and all electric aircraft design
philosophies, as using EMAs for both primary and secondary flight controls
would eliminate the need for hydraulic and pneumatic power aboard the aircraft,
leading to an overall weight reduction and a more convenient way to distribute
mechanical power across the aircraft, as distributing electrical power directly to
the end users is easier and lighter than distributing pressurized hydraulic fluid.

Still, as of today, the use of EMAs is limited to secondary flight control (such as
airbrakes, spoilers and high-lift devices) on large aircraft, and they are used as
primary flight control actuators only on small UAVs, and, in general, application
where the loss of actuation system is neither mission critical nor would lead to
loss of life or expensive flying systems.
This is partially explained by the fact that EMAs are still a relatively new
technology in the aerospace sector: their combined fault modes are yet to be
fully understood and they generally lack established prognostic methodologies.

Nonetheless, in recent years, many diagnostic and prognostic methods for EMAs
have been proposed. The aim of prognostic methods is the estimation of the
health status and/or the Remaining Useful Life (RUL) of various components
of the EMA so that they can be isolated or replaced accordingly, a cardinal
principle of modern Prognostics & Health Management (PHM) philosophies.
Many methods proposed to estimate the health status of components rely on
the analysis of one or more signals outputted by the system or reconstructed
from output variables (as in the case of the back-electromotive force, or BEMF),
which are considered prognostic indicators; this approach is often described as
hybrid since it leverages both machine learning techniques and knowledge of the
physical system. The analysis is thus performed with specifically trained neural
networks, which use said prognostic indicators to estimate the health status of
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one or more components.

In this framework, the residual torque, defined as the sum of all the friction and
viscous torques in the transmission of the actuator, stands out as a possible
candidate to be a valid indicator, as it carries information about the friction coef-
ficients (variation of which are a telling indicator of wearing, possible jamming
and other kinds of degradation in the transmission) of the system and can be
reconstructed from other data acquired during the functioning of the EMA, such
as the electrical current in the motor, the acceleration of the shaft and the hinge
moment on the actuator.

In this work the viability of the residual torque as a prognostic indicator for
EMAs in a neural-network-based methodology is investigated, both in the context
of a pre/post-flight routine on ground and of real time use during the flight. The
static and dynamic friction coefficients, as well as their ratio and the transmission
efficiency under both aiding and opposing loads are considered targets of interest
for this application.
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Chapter 1

Introduction

As mentioned in the Summary, the aim of this work is to investigate the potential
uses of the residual torque (defined as the sum of all the friction and viscous
torques in the transmission of the actuator) as a prognostic tool in various
context. The meaning of this statement will be explained in detail in the next
Sections and Chapters, but it is necessary to spend some words on the methods
on which this work is based.

The approach used in this work was defined "hybrid", as it combines a model
based approach with a data driven one: the use of a neural network to estimate
the health status of the component is a classic data driven approach, while
the use of a simulated model to obtain the data used to train it is a typical
mode based approach. The meaning of those terms is explained more in detail in
Section 1.2.

The focus of this work are mechanical faults in the transmission of an ac-
tuation system connected to an EMA, and the health status of its component
is represented by deviation from the nominal values of a series of otherwise
constant mechanical parameters appropriately chosen. Deviation of, for instance,
the static friction coefficient of the transmission from its nominal value means
that the component may be more or less worn or damaged depending on how
much the value differs from its nominal one.
Once a component is properly characterized, the values of its mechanical param-
eters and constants can be correlated to the Remaining Useful Life, a concept
explained in more detail in Section 1.2.

For the goals of this work, the neural network must be able to estimate the
status of multiple parameters at the same time, even when more than one or
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Introduction

all of them are different from their nominal value, as this is expected in a real
system.
The neural network must work both in a "test routine" mode, simulating the
use of a single predetermined input command of the elevator during flight or
on-ground, and in a "real scenario" mode, simulating a real flight condition where
non-predetermined commands are used.

1.1 Prognostics and Health Management (PHM)
As aerospace systems become more and more complex, a trend virtually insep-
arable from the growth of the aerospace sector itself, the costs and time (which
translates back into costs for commercial and defense programs) associated with
their maintenance are sharply growing too.
Therefore it is not surprising that the trend in aircraft maintenance is moving
towards tailored programs that aim to reduce downtime and unnecessary inter-
ventions by employing predictive maintenance strategies based on large amounts
of data collected during the operational life of the aircraft.
Prognostics techniques are sparking great interest exactly for this reason. Prog-
nostic, in engineering, can be defined as "an engineering discipline focused on
predicting the time at which a system or a component will no longer perform
its intended function" [1].
Integrating prognostics techniques into the design process is a key enabler for
Condition Based Maintenance (CBM). This kind of maintenance, often defined
as "maintenance when need arises", is historically one of the first kinds of main-
tenance ever employed, but today it uses much more refined techniques, often
based on AI software, and finds its place in the broader predictive maintenance
field. The status of a system is continuously or discretely monitored (condition
monitoring), and CBM is performed when one or multiple indicators reach a
threshold value that implies the system is no longer capable of delivering the
expected performances with an adequate level of safety.
The discipline that studies the interaction between failure mechanism and system
life cycle management is called Prognostics and Health Management (PHM), and
CBM is one of its more prominent aspects.
Another important aspect of this discipline is the calculation of the remaining
useful life (RUL) of a system, defined as the interval between the time an obser-
vation/estimate of the system status is made and the time its fault occurs. RUL
must be estimated using models capable of propagating the system status in time
based on previous observations or estimates. The model themselves require a
precise understanding of the fault modes of the system.

2
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PHM’s design philosophy has great advantages over now classic design phi-
losophy such as safe-life when applied to mission or life critical components.
Where safe-life principles dictates that a component must be designed with
enormous safety margins and must be replaced after a fixed amount of time
regardless of its condition, CBM advocates for monitoring the condition of the
component and replacing it only when it is strictly necessary, that is, on a "when-
need-arises" basis, as previously stated. Another great advantage consists in
the reduction of the number of necessary redundancies, as unexpected failures
could be virtually eliminated using PHM.
However, the main challenges that PHM must overcome in order to become
widespread are evident: PHM implies that all the fault modes of a system are
known, that a condition/health monitoring system is in place and is effective
in providing reliable status indicators to the decision makers, that the models
used to calculate the RUL are correct, that the threshold values for each status
indicator are reliable, and that all the uncertainties associated with the prognostic
process can be managed correctly. In their simplicity, the safe-life and, for similar
reasons, the damage tolerant with fixed maintenance intervals philosophies are
still preferred, even if they are less cost and time efficient that CBM.

However difficult it may be, solving this challenges will be rewarding. PHM
benefits are not relegated only to maintenance and maintainers (as stressed
enough in the previous paragraphs), but also involve categories such as [19]:

• Logistics: Reduced spares count and reduced logistics footprint

• Fleet Management: Reduced downtime, reduced life cycle costs, better
mission planning, fleet health management

• Design process: More robustness, overall more effective requirements
satisfaction

• Regulatory bodies: Better safety, avoiding catastrophic failures, minimize
safety measures impact on other systems

• Customer satisfaction: Meeting higher customer expectations with rela-
tive ease

Figure 1.1 sums up PHM philosophy and gives an overview of the interactions
among its main sub-disciplines. Prognostics will be explored in-depth in Section
1.2 as it is of major importance for this work, while Monitoring, Diagnostic and
Health Management will be briefly treated here:

• Monitoring
To properly assess the condition of a system it is obviously necessary to
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Figure 1.1. Prognostics and Health Management principles

gather and analyze direct or indirect data on the system. Just as obviously,
this is done using an array of sensor tailored to the system at hand, the
variables to be measured and the necessary accuracy. Reliability of the
sensor is of a key requirement: their mean time between failures must be
higher than the one of the systems and components they monitor, to avoid
false positives or negatives. Another task of the monitoring process is to
acquire data necessary to update and correct the estimates of the prognostic
process.

• Diagnostics
The diagnostic process detect, identify and isolate any failures in a given
system. Following the detection of an unexpected behavior (through compar-
ison with reference models, other systems, etc...) the process identifies the
severity of the event and takes actions whose aim is to restore the system
in a state as close as possible to the nominal one (for instance through the
activation of redundancies and bypassing the faulty component).
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• Health Management
Health Managements typically consists of a series of strategies and methods
whose aim is to assess the degradation trends, identify the root causes of
the faults, correct RUL estimates and act to correct unforeseen trends or
maximize the RUL of the components. All these actions are taken based
on the data gathered during the monitoring, prognostics and diagnostics
processes.

Figure 1.2. Prognostics and Health Management Architecture [19]

Figure 1.2 shows the general architecture of an aircraft designed using PHM
principles, as it concern the deployment of a prognostics, diagnostics and moni-
toring system. As it pertains this work, the possibility of using system models
for diagnosis and, in particular, prognostics is underlined.
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1.2 Prognostics
Maybe the most important task of the prognostic process is to estimate the RUL
of a component. This is done collecting data from the relevant components of
subsystems through an array of sensors. These sensor must also sense each other
to identify possible false reading, so it is important that the monitoring system
is capable of detecting anomalies in th readings.
Data is subsequently filtered (with an analog or digital filter) to eliminate the
influence of noise introduced by the operational environment. Eliminating noise
is fundamental for the prognostic process as random fluctuations in the input
data can negatively influence the accuracy of the process.
Finally, RUL is predicted using either adequate algorithms, statistical methods or
ad-hoc trained neural networks. It is important to note that the estimated RUL
must be confronted with a threshold value. Such threshold value usually includes
a safety margin, and once it is reached the component requires maintenance.
Predicting RUL is not an easy task, and predictions over large periods of time
can drift significantly or be invalidated by sudden micro-faults or the presence
of unexpected defects in the component: for this reason RUL predictions must
be updated whenever possible, a process that relies on knowing the real health
status of a component at certain points in time. For instance let’s imagine a
simple algorithm that estimates the RUL by interpolating the known health
status of a component over time and propagating the prediction to estimate
when the component will reach unsafe operations territory: the often the real
health status is known, the better the fit, the better the prediction; more frequent
updated updates on the health status translate in a better ability of the algorithm
to "catch" unexpected behavior from the component caused, among others, by
unknown initial defects.

The classification of prognostics approaches is based on how the analyzed system
is characterized:

• Model-based prognostics
The prediction of the RUL is based on physical models. The system can
be modeled either at the macro or micro level. The difference is that macro
level models employ simplified relations and are most suited to analyze the
whole system when there is no need to monitor and/or model the single
components of the system at a micro level.
The main drawbacks of this approach are the uncertainties introduced by
the simplifications made and the general inherent complexity of a physical
model.

• Data-driven prognostics
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The prediction of the RUL is based on data-driven approaches such pattern
recognition and machine learning techniques (such as deep learning or
regressions and clustering). This approach is most suited to systems whose
behavior is not fully understood or are too difficult to model.
The main drawback of this approach is the large amount of data needed
to train the model.

• Hybrid approaches
As the name implies, they are a combination of Model-based and Data-
drive approaches. Most types of analysis are in practice hybrid. Hybrid
approaches are subsequently divided in pre-estimation and post-estimation
fusion. The former is used when diagnostic identifies faults to be corrected by
maintenance, the latter to reduce uncertainty and thus increasing accuracy,
and is based on the notion that more classifiers work better than a single
classifier.

This work employs an hybrid pre-estimation approach. Residual torque data
gathered using a macro component-level physical model are used to train a
neural network, then used to estimate the RUL of the same system at unknown
damage levels.

1.3 Flight Controls
A brief discussion of the flight controls follows for the sake of completeness. It is
focused on aircraft with conventional architecture (i.e. fixed wing and T-shaped
tail), but the methodology presented in this work could be applied to any flight
control actuated through an EMA. In this work the EMA specifically controls
one half of a split elevator.

1.3.1 Primary flight controls
Primary flight controls are the primary means to control the aircraft, controlling
its rotation along its three main axis. They are used continuously by the pilot.
Their operational principle is to change the shape of an aerodynamic surface
in order to produce a small force far from the center of gravity, which in turns
generates a large torque that is capable of rotating the aircraft. Primary flight
controls must also produce a feedback (either natural of artificially reproduced)
on the levers used for their actuation. Their actuation must be proportional and
instinctive.

With reference to Figure 1.4, for an aircraft with conventional configuration the
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Figure 1.3. Classic layout of flight controls [8]

primary flight controls are:

• Elevator: It is positioned on the horizontal tail plane and controls the
rotation along the Y-axis. The elevator is sometimes split in two separated
but symmetrically actuated surfaces.

• Rudder: It is positioned on the vertical tail plane and controls the rotation
along the Z-axis.

• Ailerons: They are positioned on both ends of the wing, are anti-symmetrically
actuated and control the rotation along the X-axis

Flight controls can either be reversible (small aircraft and old large aircraft) or
non-reversible (modern large aircraft), the former meaning that there is a direct
connection between the control surfaces and the pilot (Figure 1.5), who must
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Figure 1.4. Aircraft Body Axis reference system [8]

Figure 1.5. Example of simple reversible flight control [8]

overcome the aerodynamic forces on the control surface with his/her strength,
and the latter meaning that such connection is indirect and often powered by
a servo-actuator (Figure 1.6). For non-reversible primary flight controls, the
feedback on the control stick must be artificially reproduced.
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Figure 1.6. Example of simple non-reversible flight control [8]

1.3.2 Secondary flight controls
Secondary flight controls are used to modify the geometry and the aerodynamic
characteristics of the aircraft. They are used occasionally (mainly at take-off
and landing) by the pilot and usually have either on/off or stepped positions.
Secondary flight controls should not produce a feedback on the levers used for
their actuation and must remain in the commanded position even when the pilot
hands are not on the controls.

Secondary flight controls may include:

• High-lift devices: Positioned either on the leading edge (slats) or the
trailing edge (flaps) or both of the wing, they augment or reduce the camber
and the planform of the wing, increasing CL for the same angle of attack
(flaps) or the available CLMAX

(slats). They are used at take-off and landing.

• Airbrakes: Positioned on the upper surface of the wing (or on the fuselage
in military aircraft), they increase the CD of the aircraft, slowing it down
rapidly and enabling steeper descents at landing. They are also used to slow
down after touching the ground.

• Spoilers: Mainly used on military aircraft, they locally disrupt the airflow
leading to asymmetric increases of the CD. The resulting torques on the
aircraft help the pilot in performing tighter turns. For non military aircraft
there is no distinction between airbrakes and spoilers.
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1.4 Actuation systems
A discussion on the most common types of actuation systems for aircraft follows,
again, for the sake of completeness. Greater attention will be paid to EMAs than
the other actuation systems, as they are the object of this work.

Servomechanism usually work in a feedback loop, where their output is constantly
measured against the required target, and the difference (error) is used as their
proportional input.

1.4.1 Hydromechanical
The first non-reversible powered actuation systems used on aircraft where hy-
dromechanical actuators. The pilot controls an hydraulic valve that moves the
control surface usually through a spool. It is the hydraulic power (not the pilot
strength) that moves the control surface and opposes the aerodynamic forces.

Figure 1.7. Example of Hydromechanical actuation [18]

1.4.2 Electrohydraulical
In Electrohydraulical Actuators the pilot usually controls a so called flapper-
nozzle servovalve, that, in combination with a spool moved by the flapper, acts
as the first stage of the actuator. In the flapper-nozzle servovalve an electric
torque motor moves the flapper, that in turn, together with the nozzle, regulates
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the pressure of the hydraulic fluid necessary to move the first stage spool. Subse-
quently the spool opens or closes other valves that regulate the flow of hydraulic
fluid to the actuator jack, moving it accordingly to the required command. The
control loop is closed via a LVDT sensor.
Electrohydraulical Actuators are extremely diffused nowadays, both in com-
mercial and military aviation. They require a centralized hydraulic system to
distribute hydraulic fluid to the users and, usually, a fly-by-wire control architec-
ture, as the input for the flapper-nozzle servovalve is an electric signal generated
from the input the pilot gave on the actual controls.

Figure 1.8. Schematics of a Flapper-Nozzle Servovalve [13]

1.4.3 Electrohydrostatic (EHA)
In Electrohydrostatic Actuators (EHA) a BLDC motor drives a relatively small
piston pump (located near the flight control surface, for aircraft) that pressurizes
hydraulic fluid in order to move a jack (just like in Hydromechanical and
Electrohydraulical actuators). An EHA typically includes also a LVDT transducer
to measure the piston position, anti-cavitation valves, pressure relief valves and
a fluid reservoir to account for thermal expansion and off-nominal operations.
Compared to Hydromechanical and Electrohydraulical Actuators, EHAs do
not require a distributed hydraulic system, as the necessary hydraulic power
is generated closely to where it is needed and the hydraulic fluid is stored in
proximity of the actuator itself.
In terms of weight savings, EHAs do not offer great advantages as the weight
reduction from the lack of a centralized hydraulic system is offset by the need
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of multiple piston pumps and BLDC motors. Nonetheless, their reliability is
higher, they require low maintenance, and they are generally thinner than their
traditional counterparts, as they are fully self-contained. These advantages are
evident when considering that EHAs are currently used only on new generation
fighters (F-22 and F-35, namely) and as backup on new Airbus aircraft. Their
use in launch vehicles is currently being studied.

Figure 1.9. Example of an Electrohydrostatic Actuator [12]

1.4.4 Elecromechanical (EMA)
Electromechanical Actuators capabilities are sparking great interest as the aero-
nautic sector gravitates towards more electric and all electric philosophies, as
making use of a single, electrical, power source for all the systems and subsystems
of the aircraft, and in doing so eliminating both the hydraulic and the pneumatic
systems, is certainly more convenient that employing multiple kinds of energy
and fluids onboard.
EMAs typically receive their inputs through Advanced Control Electronics (ACE)
that interpret the command sent by the pilot through the fly-by-wire system. The
ACE then regulates the Power Drive Electronics (PDE), usually a 3-phase AC
electrical power source, which in turn powers an electric motor (a BLDC, as it
pertains this work) whose shaft, through a reduction gear, moves the screw jack
connected to the control surface. The actual position is measured by an RVDT
sensor and is fed back to the ACE to calculate the error with the commanded
position that is fed to the PDE, repeating the loop. The use of a reduction
gear is important because a typical BDLC motor spins at thousands or tens
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Figure 1.10. Schematics of an Electromechanical Actuator [2]

of thousand of RPM and provides very little torque, while the control surfaces
of an aircraft requires high torque and low speed (tens of degrees per second).
The transmission ratio, regardless of the type of transmission, can be defined as:

τ =
̇θm

θ̇u

= 1
η

Tu

Tm

So it represents the ratio of the angular speeds of the motor’s and user’s shaft, or
the ratio of their torques mediated by the efficiency η of the transmission. As the
transmission ratio τ value is typically several hundreds to one, it is important
that the efficiency of the transmission is as high as possible, as to not waste
torque.
After the reduction gear the rotary motion is converted into linear motion using
epicyclic gears such as ball-screws or planetary roller-screws. Because of the
typically low values of the rolling resistance and their good resistance to wear,
among other qualities, these gears are extremely popular for this application.

BLDC motors are incapable of delivering high torque at speeds close to zero, so
a prominent problem of EMAs is to hold a commanded position against external
disturbances, as the energy used to power the BLDC motor in this scenario would
be dissipated due to Joule effect and overheat the system, with consequent faster
wear and degradation of the performances of the system. One solution could be
to use an irreversible transmission, but this would lead to other problems, ad
the control surface would remain stuck in the event of a failure of the EMA. For
this reason, for same applications, the EMA comprehend an additional system
used to disengage the transmission from the control surface in case of failure.
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(a) Ball-screw (b) Planetary roller-screw

Figure 1.11. Mechanism of gears commonly used in EMAs [14]

Nonetheless, new hybrid stepper motors are being considered for use in EMAs,
as they are able to deliver high torque at zero speed.
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Chapter 2

Brushless DC Motors

Figure 2.1. Cross-section of a BLDC Motor [6]

Over the years, Brushless DC Motors (BLDC motors) have taken over many
of the tasks traditionally reserved to Brushed DC Motors in converting electri-
cal power into mechanical power. Even though they require advanced control
electronics to substitute the mechanical commutation with a fully digital one
and are generally costlier than their brushed counterparts, the lack of sliding
contacts makes for safer, longer lasting, cheaper to maintain and overall better
electric motors, as they are not afflicted by the problems associated with the
brushed commutation (sparks, constant wear, friction). Nowadays BLDC motors
are the preferred choice in the aeronautic sector, from small RC planes to large
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commercial aircraft and their electromechanical servoactuators.

Commutation of the electrical current, necessary to obtain a continuous ro-
tation of the shaft, is done electronically in BLDCs through the use of either
Hall sensors (which measure the angular position of the rotor/shaft sensing the
variation of the electromagnetic field induced by the magnets) or designs based on
the measuring of the Counter-ElectroMotive Force (CEMF). The latter options
are effectively sensor-less architectures and are simpler and cheaper than the Hall
sensor architectures; the drawback is that such architectures must be used in
an open control loop, as measuring CEMF close to zero speed is extremely hard,
making them unusable in servoactuator applications. However, the Hall-sensor
based designs enable fluid and precise control of the position and speed of the
shaft.

A description of the main parts of a BLDC Motor and its characteristics

Figure 2.2. Block scheme of a BLDC architecture [9]

and performances follows.

2.1 Operational principle
As every other electrical motor [citation needed], a BLDC motor produce the
rotation of its shaft thanks to a rotating magnetic field. The stator part of the
motor actually generates the rotating magnetic field that interacts with the
magnetic field of the rotor, generating a torque on the motor. Due to this torque,
the rotor rotates to align the magnetic fields.

In order to keep the rotor spinning the rotating magnetic field of the stator must
always anticipate the magnetic field of the rotor (Figure 2.3). The rotation is
achieved commuting the currents of the electric phases (BLDC motors usually
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Figure 2.3. Schematics of a BLDC Motor showing the magnetic fields [9]

employ 3-phases configurations) which power the stator coils. This is done using
an inverter (also called static commutator) commanded by a signal regulated by
the angular position of the rotor, measured by an Hall-sensor.

The lag between the magnetic fields is kept constant. For this reason BLDC
motors are considered a particular kind of Synchronous AC motors, implying
that they are powered by DC current, but is is converted to AC current by an
inverter in order to power the stator phases. A design that uses sinusoidal AC
current to drive the motor is possible and would produce a more regular torque,
but would also be much harder to control than a BLDC motor.

2.2 Stator and rotor
The stator of a BLDC motor is usually a 3-phases configuration (but this is not
the only possible configuration) whose phase winding are arranged in either a
"delta" or a "Y" (or "star") connection. In "delta" connections line voltage and
phase voltage coincide, while in "Y" connections line voltage is equal to

√
3 times

phase voltage; this means that the former configurations has an higher current
flow in the coils than the latter for the same supply voltage, hence "delta" designs
provide higher torque, but they are also less employed than "Y" designs because
their commutation is substantially different and more complex, as a single phase
cannot be left unpowered at any time during the sequence, due to its connections
themselves.
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Figure 2.4. Schematics of a simple BLDC Motor [9]

(a) Y/Star connection (b) Delta connection

Figure 2.5. 3-phases configurations [2]

The main task of the structure of the stator is to hold up the windings of
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phase coils, which can be coupled to the stator in either a slotted of slotless
configuration (Figure 2.6). In Slotted configurations the coils are around the
so called "teeth", forming "slots" in the stator; in this configuration the air gap
between the stator and the rotor is smaller than in slotless configurations, so
it has an higher maximum torque. On the contrary, slottless configurations
have a lower maximum available torque, but the absence of teeth guarantees a
lower inductance, that translates into an higher maximum available speed, as
inductance represent an obstacle to extremely fast commutations [15].

Figure 2.6. Difference between slotted and slotless stator core configurations [15]

As for the rotors, they consist of permanent magnets, made of either rare earths
or Ferrite. In the aerospace sector Neodymium based magnets are the preferred
choice because of their high magnetic flux generation capability, which allows
to build smaller and lighter motors with the same torque, as torque is directly
proportional to magnetic flux and electromagnetic coupling constant.
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The magnets can be installed either on the rotor (isotropic configuration) or
inside the rotor (anisotropic configuration)
The number of poles of the rotor may vary from 2 pair to 8 pair, but poles are
always in even number for obvious reasons. A motor with a large number of pairs
of poles produces a smoother torque, as there are less "gaps" or "ripples" in the
magnetic field as the rotor spins, but also has a lower maximum speed, as the
transistors used to commute the electric current have limits on their maximum
operative frequency of activation and deactivation.

Material Name Ferrite (HF) AlNiCo (AN) SmCo (SC) NdFeB (ND)

Attraction Force Good Medium Strong Very Strong
Max. Operative Temperature 200řC 450řC 200řC 80řC
Resistence to Corrosion Very Good Very Good Good Average
Workability Impossibile Diamont cutting, grinding Impossibile Impossible
Ease of Demagnetization Moderate Easy Very Hard Hard
Price Cheap High Very High Cheap

Table 2.1. Characteristics of common permanent magnets [9]

Lastly, while most motors employ stator-outside-rotor-inside configurations,
outrunner configurations do exist, albeit only used on small motors.

2.3 Control
The precision of the commutation sequence relies on the precise measurement
of the rotor’s angular position. As already mentioned, said angular position is
measured by an array of Hall-sensors. These sensors are based on the homonymous
principle, as they actually measure the variation of the charge across a conductor
in a direction orthogonal to the magnetic field, as said variation is caused by the
Lorentz Force. As the rotor’s magnetic field rotates, the magnitude and direction
of the Lorentz Force on the Hall-sensor surface changes, and can be correlated
to the angular position of the rotor.
In Figure 2.7 3 Hall-sensors (indicated as H1, H2 and H3) are placed 120ř degrees
apart of each other, meaning that the system has a 60ř angular resolution, which
is important since in a 3-phases configuration the stator magnetic field reverses
its polarity every 60ř of rotation.

The trapezoidal BLDC motor (shown in 2.7) gets its name from the shape of
the phase current signal that determines a trapezoidal shape of the Back EMF

21



Brushless DC Motors

Figure 2.7. Commutation cycle of a 3-phases 2-poles trapezoidal BLDC
motor (CCW Rotation) [9]
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signal over time in the coils of the stator.

With reference to Figure 2.7, initially the sensors on the south pole of the
rotor (H1 and H3) return a Logical 1 signal, while H2, on the north pole, returns
a Logical 0 signal. Phase A, B and C are respectively unpowered, powered and
shorted to ground. The north pole of the rotor lags 60ř behind the north pole of
the stator magnetic field, and a torque that spins the rotor is produced.
As soon as the rotor makes a 60ř rotation, H1 sensor returns a Logical 0 signal.
As a result, Phase C is deactivated and Phase A is shorted to ground, so that
the north pole of the rotor is again lagging 60ř behind the north pole of the
stator, ans so on.
Figure 2.8 shows the electrical scheme of the BLDC motor, highlighting the
connection between the phases, the decoder circuit and the switches (transistors).
It is noted that all transistors are connected to line voltage and ground, and
that each phase is controlled by a pair of transistors, so that the rotor can spin
both forward and backward.

Figure 2.8. Electrical scheme of a 3-phases BLDC motors [18]

Table 2.2 instead shows the motor timing diagram, that’s to say, the logic behind
the activation of the Hall-sensors, transistors and phases. It is to be noted that
each full revolution is composed of six 60ř rotations.

Lastly, different control modes are available depending on the circumstances and
the desired control variables.

Position cannot be directly controlled, as it is measured by Hall-sensors in

23



Brushless DC Motors

Hall-sensors Transistors Electric Phases
H1 H2 H3 S1 S2 S3 S4 S5 S6 A B C

I 1 0 1 0 1 1 0 0 0 NC High Low
II 0 0 1 0 1 0 0 1 0 Low High NC
III 0 1 1 0 0 0 1 1 0 Low NC High
IV 0 1 0 1 0 0 1 0 0 NC Low High
V 1 1 0 1 0 0 0 0 1 High Low NC
VI 1 0 0 0 0 1 0 0 1 High NC Low

Table 2.2. Time diagram of a 3-phases 2-poles trapezoidal BLDC motor

order to perform the current commutations, so that same measurement cannot
be used to regulate the commutations themselves. Position control is usually
achieved using an inner control loop and another control variable. The output of
the inner control loop is then used to calculate the output position of the motor,
and so the outer control loop is closed measuring the error against the desired
position.
Position of the motor is usually calculated integrating speed signal over time.

Most common control modes are speed and torque modes.

2.3.1 Speed Control

Speed control mode is used as the inner feedback loop of a position control loop
or when a predetermined speed is directly the chosen control variable, like in
hydraulic pumps.

Rotor’s angular speed is modified regulating the line voltage. When DC power
supply is available, this control can be done simply by using a potentiometer;
this method however is inefficient, as the excess power is dissipated via Joule
effect on the resistance of the potentiometer, and may not always available, as
potentiometers may not allow an extremely fine control, which is often needed
in many application.
Another method, enabled by developments in digital circuitry and software
integration in hardware, is the Pulse With Modulation (PWM) technique.
In PWM the voltage of the power supply is constant, and so is the amplitude
of the electric control signal, a high frequency wave. The duty cycle of this input
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signal (carrier) is modulated using a reference (modulating) signal (Figure ??).
At 100% duty cycle the signal is always on (nominal input voltage), while at 0%
the signal is always off. All the intermediate voltages (and so speeds) can be
achieved changing the duty cycle accordingly.

Figure 2.9. Example of derivation of a PWM signal [9]

The output angular speed of the rotor is calculated from the switching speed
of the Hall-sensors and the error measured against the desired angular speed is
calculated and used as input for the control system.

Figure 2.10. Block diagram of a speed control loop [2]
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2.3.2 Torque Control

Torque control mode is generally used in industrial environment or as inner
feedback loop for position control. In this mode the torque output is constant and
the motor speed is changed accordingly to counteract external loads from the user.

An accurate implementation of such control mode is hard since it is depen-
dent upon knowing the precise value of the output torque in every condition,
which requires a deep characterization of the motor based on electromagnetic
analysis, as the output torque is a function of (among other things) the magnetic
flux in the stator coils, a variable hard to model or measure in an operative
setting.
Nonetheless a simplified implementation can be achieved introducing the mo-
tor torque coefficient kT , which represents the (direct) proportionality between
torque and current. It follows that in this case control is achieved modifying
phase currents.
The output torque is computed and compared to its desired value, and the error
is fed to the control system in order to change the PWM duty cycle, just like
in speed control mode.

Figure 2.11. Block diagram of a torque control loop [2]
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2.4 Protection systems
If a BLDC motor is employed in mission or safety critical applications, a number
of sensors and software or hardware limitators must protect it against damages
that could be cause by out of envelope operations.
If the motor is exposed to an high line current while it is stuck (the CEMF is
null), the electrical current could overheat or short the stator coils and disrupt
the power supply or the control electronics, or even demagnetize the permanent
magnets of the rotor if the Curie temperature is reached during overheating. To
protect from dangerously high currents, the supplied current is saturated to a
peak current value if during motor start-up an higher current is computed.
With a similar principle the current is saturated to the value of the maximum
working current if an higher value is computed during normal operations.
As the Hall-sensors are so important for the correct functioning of the motor,
the control system must have a logic capable of detecting when they are faulty.
Since the values returned by the Hall-sensors can only assume a limited number
of predetermined combinations, the implementation of such a logic is relatively
straightforward, as any unexpected combination is sign of a faulty Hall-sensor.
The motor must also be protected against overvoltage and undervoltage.
Overvoltage protection must always be applied as unexpected high voltages can
create arcs that may damage the power supply or the control electronics, which
are particularly sensible to such things.
On the other hand undervoltage protection is necessary only when the motor is
battery powered, and in order to protect the batteries, as they would be greatly
damaged if their voltage drops under a certain level.

2.5 Mechanical characteristics
In a BLDC motor the torque is generated by the interaction between the
magnetic fields of the rotor permanent magnets and the stator coils. The stator
coils themselves are magnetic dipoles surrounded by the magnetic field of the
rotor, so, simplifying, the dipole moment of the j coil can be expressed as:

m⃗j = NAij · n̂

Where N is the number of turns in the coil, A their surface, ij the phase current
in the coil and n̂ the normal versor to the plane of the spires. Introducing B⃗ as
the magnetic field of the rotor, the Torque produced by the coil j can be defines
as:

T⃗j = m⃗j × B⃗
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The total Torque can then be calculated as the vectorial sum of the contribute
of each stator phase.
Because of the cross product, it is evident that the Torque is maximized when
the dipole moment of the coil is orthogonal to the rotor magnetic field, so during
commutation the lag between the magnetic field is kept as close to 90ř as possible.
The Torque can also be increased modifying the geometric of the coils by either
increasing the number of windings or their area (albeit both solutions lead to
an overall increase in the dimensions of the motor), using stronger permanent
magnets in the rotor (increasing the B⃗ term of the equations) or increasing the
supplied current. However, the quadratic proportion between electric resistance
and heat produced via Joule effect poses a limit to the maximum value of the
supplied coil current, as overheat would damage the motor. Furthermore, flux
density in the permanent magnets of the rotor can be saturated, and no more
Torque would be generated in this condition.

On a simplified level, applied current and produced Torque are directly propor-
tional through a constant called motor torque constant kT . On the other hand,
due to Faraday’s Law, a counter electromotive force is generated on the coil
itself by the variation of the magnetic flux generated by the rotor motion. Said
counter electromotive force is approximately directly proportional to the angular
speed through a constant called counter electromotive force coefficient, ke. It
can be proved that the counter electromotive force constant (also called motor
voltage coefficient) and the motor torque constant are the same, kT = ke.

As angular speed increases, torque and current decreasing, leading to the following
relation:

V = Ri + kT ω (2.1)

And, since T = kT i, rearranging the previous expression to isolate i leads to:

T = V kT

R
− k2

T

R
ω (2.2)

So the output power can be calculated as:

Pout = Tω = V kT

R
ω − k2

T

R
ω2 (2.3)

Equations 2.2 and 2.3 (whose trends are plotted in Figure 2.12) are approxima-
tions that doesn’t account for non linear effects.
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Figure 2.12. Linear speed-torque and power-torque characteris-
tics of a BLDC motor [9]

Figure 2.13. Saturations on the ideal speed-torque characteristic
of a BLDC motor [9]

Figure 2.13 introduce saturation effects. The maximum speed and torque are
capped, but commutation frequency also introduces an operational limit.
A more realistic and complete speed-torque characteristics is presented in Figure
2.14, with efficiency superimposed on the graph.
Maximum efficiency is reached at high RPM: that’s the reason why high gear
ratio transmission are often used in conjunction with BLDC motors, especially
in low RPM applications.

29



Brushless DC Motors

The green line separates the continuous operations zone (below the green line)
from the intermittent operations zone (above the green line but below the blue
one). Operating at higher torques than the maximum continuous torque is
possible, but only for short periods of time, as higher torque is achieved using
higher line current, so prolonged operations would overheat the stator coils and
damage the motor.

Figure 2.14. Realistic speed-torque characteristic of a BLDC motor [9]

However, a model based on equations 2.2 and 2.3 and the saturation introduces
in Figure 2.13 is quite accurate when compared with the realistic characteristics,
especially during nominal operations.
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Chapter 3

Electro-Mechanic Actuator
Model

Figure 3.1. Overview of the Simulink System Model

The aim of this chapter is to describe in detail the model of the Electro-Mechanical
Actuator used throughout this work.

For practical reasons, the data necessary to train the neural network has been
harvested running a Simulink model of the EMA thousands of times. Said model
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is both accurate enough to simulate most common fault modes and computa-
tionally light enough so that the dataset could be generated in a reasonable
amount of time.

Should the hardware validation of this method prove successful, the use of
a virtual model would be an important feature of the proposed prognostic
method, as it would save the enormous amount of time needed to acquire an
adequate amount of data for training with a physical test-bench.

The model of the EMA described in this chapter, as already said, must be
computationally light but also accurate at the same time. However, accuracy
is relative to the task at hand, and in this case it was possible to introduce
simplifications on the electric part of the model, as this work is focused on
mechanical faults correlated to mechanical parameters reconstructed (mainly)
from a mechanical variable.
Such parameters and variables are little affected by the micro behavior of the
electric motor, so a macro level electric model is more than acceptable for this
application.

The model itself is derived from Pier Carlo Berri’s Master’s Thesis [2] (where it
is called "Monitor Model"), but the command and mechanical parts of the model
have been heavily modified to suit this work. In that same work, the electric
model is compared to the extremely detailed BLDC motor model of Matteo
Dalla Vedova’s PhD Thesis [21] with good results.

The macro approach was used for the mechanical part too. This approach
was chosen for two reasons: on one hand this makes for a lighter model, on
the other hand it better suits the prognostic philosophy. The only appreciable
advantage of modeling the system on a sub-component level for the purpose of
fault identification is to be able to isolate a fault in a sub-component. In real
word applications of the kind of this work, this would be useless unless there was
a way to mechanically isolate or replace said sub-component without isolating
or replacing the whole component.
For instance, while it is certainly possible to model a ball-screw gear considering
the variations in the friction of each single ball across the entire length of their
canal and identify a fault in a single or multiple balls, it would be impossible to
isolate single balls in case of need, and, during ground maintenance, the whole
gear would be replaced anyway as it is easier and safer.
Modeling each component using his "mean" or "equivalent" properties fits better
the modern principles of onboard safety and on ground maintenance, while being
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the fastest, computationally lighter and more generalizable way to model the
mechanical part of the system.

The model represents a 3-phases 4-poles BLDC poles connected to the ele-
vator of an aircraft through a ball-screw reducer. The aerodynamic load on
the control surface (hinge moment) is calculated at each timestep through the
longitudinal dynamic model of the aircraft, and the whole system is piloted via
the elevator deflection and a proportional controller.
The model itself comprises 4 sub-models: the Controller, Electric and Mechanical
Transmission sub-models and the Aircraft Longitudinal Dynamics Block

The numerical value of the integration timestep of the model must be at least
one order of magnitude lower than the smallest characteristic time of any phe-
nomenon modeled. The integration timestep of this model has been set to 10−6s
as using an higher value the electrical model would incur in numerical limit
cycles, as explained in Section 3.2.

The resulting model can simulate 0.5s of functioning in, on average, 100 −
150ms on modern low-mid range hardware (described in Subsection 5.8.2) us-
ing Simulink’s Accelerator mode. Simulink’s Rapid Accelerator mode, albeit
much faster on a single run, wasn’t used since it would prevent the use of the
Fast Restart option when launching multiple simulations, which radically reduces
the total simulation time when thousands of simulations are required.

Constant and coefficient of the system are shown in Table 3.1.
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Controller Parameters

Proportional Gain of the Controller GP 105 −

Proportional Gain of the PID GAP 5 · 10−2 Nms
rad

Electric Parameters

Number of Stator phases PS 3 −
Number of Rotor pairs of poles PR 2 −
Phase Resistance Rz 2.13 Ω
Phase Inductance Lz 7.20 · 10−4 H

RL Time Constant τRL
Lz

Rz
s

Motor Torque Coefficient kT 0.0752 Nm
A

Motor Voltage Coefficient ke 0.0752 V s
rad

Maximum Torque TM,max 1.689 Nm

Maximum Voltage Vmax 48 V

Maximum Current Imax 22.5 A

Mechanical Parameters

Gear Ratio τ 1
500 −

Moment of Inertia (on motor shaft) JM 2.5 · 10−5 kg · m2

Viscous Friction Coefficient CM 5.172 · 10−5 Nms
rad

Backlash BLK 5 · 10−3 rad

Static Friction Torque Coeff. (nominal) FSJ 0.1 −
Dynamic Friction Torque Coeff. (nominal) FDJ 0.05 −
Static-to-Dynamic Friction ratio (nominal) FSD 2 −
Efficency under Aiding Load (nominal) ηA 0.6 −
Efficency under Opposing Load (nominal) ηO 0.85 −

Table 3.1. Electro-Mechanical Actuator Model Datasheet
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Figure 3.2. Overview of the EMA model

3.1 Controller sub-model
The Electrical sub-model is current-piloted, but the pilot of the aircraft actually
controls the elevator position, so the pilot current (reference current Iref ) is
derived from the error signal calculated as the difference between the desired
position of the elevator (the Com port) and the actual position of the user,
indicated as θu. This error, through the proportional gain GP , is used to compute
a reference angular speed (limited to its maximum allowed value by a saturation
block) that is confronted with the actual angular speed of the motor (Dthetam

line).
The newly obtained error goes through another gain, GAP , which acts as the
proportional part of a PID controller; the signal is now a reference torque. No
integrative or derivative parts of a PID are present, as the purely proportional
logic satisfies the control requirements by itself.
The reference torque signal is divided by the Motor Torque Coefficient kT to
obtain a reference current Iref (saturated to its maximum value Imax as a pro-
tection system would do).
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Figure 3.3. Controller sub-model

The desired elevator position Com comes from a From Workspace block. The
command position is indeed generated outside the model before the simulation
starts by a Matlab script that generates a random continuous pseudo-sinusoidal
input as an array of the actual desired command values associated with another
array T that contains the timestamp associated with each element of the Com
vector.
Since the integration timestep of each simulation is set to 10−6s, the associated
T array is actually a linear space from the start time to the end time of the
simulation with 10−6 steps.
In case Simulink integrator uses a different (adaptive) timestep, Com and T
are used to interpolate the appropriate Com1 array, but this is not the case.

More information on the philosophy used to generate the random command are
present in Section 5.6.

3.2 Electrical sub-model
The BLDC motor is modeled as an equivalent single phase current-piloted DC
motor. The error between the reference current Iref from the controller and
the actual current in the stator coil is passed through a signum block and the
resulting signal is multiplied by the line voltage of the DC power supply to
obtain the supplied voltage Va.
The interaction of the error with the signum block closely resembles a PWM
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control logic, where the frequency of the carrier wave is proportional to the
integration timestep of the model.
The voltage that powers the stator coil is the difference between the reference
voltage previously computed and the Counter Electromotive Force e of the motor,
computer multiplying the actual speed of the motor (computer in the Mechanical
transmission sub-model) by the Motor Voltage Coefficient ke.
The stator coil is modeled ad a RL circuit with a first order transfer function
that represents the following phasor relationship:

Ia(s)
Va(s) − e(s) = Ka

1 + τRLs
(3.1)

Where Ka = 1
Ra

is the motor gain, τRL = Lz

Rz
is the time constant of the modeled

RL circuit and Ia is the aforementioned difference between Iref and the actual
stator current, which is obtained as the output of this block,
The actual stator current is then multiplied by the Motor Torque Coefficient
kT to obtain the torque generated the motor (indicated as TM), that is then
limited to its maximum value TM,max by a saturation block that represents the
saturation of the magnetic flux.

Figure 3.4. Electrical sub-model
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3.3 Mechanical transmission sub-model
The Mechanical transmission sub-model is a second order model with a single
degree of freedom.
Viscous and inertial effects are considered, and non linear effects like backlash
are considered too.
Coulomb friction torque is evaluated through a load dependent Borello model
with efficiency, described in Subsection 3.3.1.
The angular acceleration of the motor’s shaft θ̈m, indicated as DDTheta_m, is
computed from its torque and the signal is then integrated two times to obtain
the motor’s shaft angular speed θ̇m, indicated as DTheta_m, and its angular
position θm, indicated as Theta_m.
Speeds and positions are saturated as needed according to the maximum possible
speed and the mechanical stop-ends.
Finally, the angular position of the user’s shaft θu is evaluated applying the gear
ratio to the angular position of the motor’s shaft.

Figure 3.5. Mechanical transmission sub-model

3.3.1 Friction model
The friction model must be able to model both load dependent and load invariant
friction torques, as friction coefficients are a telling sign of mechanical problems
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in the actuator, which are the main focus of this work.
The description of the friction model will be done in the case of a friction force,
but it is exactly the same minus the terminology in case of a friction torque.

Figure 3.6. Reference scheme - Friction Force [4]

The friction model employed in the Mechanical transmission sub-model is based
on Borello’s Friction Model [5], which is itself an evolution of Coulomb’s dry
friction model.
According to Coulomb’s hypothesis, the load invariant friction force FF is equal
to its static (sticking) value FSJ if the driving force FM isn’t greater than FSJ
itself, and is equal to its dynamic (slipping) value FDJ if the contrary is true. In
the former case, the model must not set the body in motion is FM < FSJ , as
it would be a violation of Newton’s Third Law of Motion; in the latter case the
body is set in motion, so the model must take into account whether the speed
ẋ is null or not.
This translates into the following system of equations:

FF =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
FM, ẋ = 0 ∧ |FM |≤ FSJ

FDJ · sgn(FM), ẋ = 0 ∧ |FM |> FSJ

FDJ · sgn(ẋ), ẋ ̸= 0
(3.2)

This situation is visualized in Figure 3.7.

Following the derivation of the load dependent model in Reference [4], the load
dependent friction forces are the accounted for considering the total friction force
FF as the sum of the aforementioned load invariant part (FSJ or FDJ) and
a load dependent part.
The load dependent friction force is proportional to the load FR through the
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Figure 3.7. Borello Friction Model [4]

means of the efficiency of the transmission, but it must account for the verse of
the load compared to the driving force.
When the load acts in the same direction of the motion, the load is aiding the
movement, while, on the contrary, the load is opposing the movement when it
acts in the opposite direction of the motion.
The Opposing Efficiency ηO and the Aiding Efficiency ηA of the transmission
are respectively defined as the ratio between resisting and driving power and
its inverse.
The total friction force in dynamic conditions is then calculated as:

FF =
⎧⎨⎩FDJ + (1 − ηA) · |FR|, under Aiding load

FDJ + ( 1
ηO

− 1) · |FR|, under Opposing load
(3.3)

The total friction force in static conditions is calculated, introducing the Static-
to-Dynamic Friction Ratio FSD, multiplying the dynamic value by FSD.

Figure 3.8 shows the final implementation of the friction model in Simulink. The
nomenclature is that of a torque load, angular positions and speeds and friction
torque.

The model is able to handle the following eventualities:

• Mechanical element initially sticking that keeps sticking

• Mechanical element initially sticking that is set in motion
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Figure 3.8. Load dependent Borello Friction model with Efficiency on Simulink

• Mechanical element initially slipping that keeps slipping in the same direction

• Mechanical element initially slipping that stops

• Mechanical element initially slipping that reverses its direction

This model was developed with ease of simulation in mind. As a result, it is much
faster than other models such as Quinn’s of Karnopp’s and it doesn’t include
non-physical parameters.

It is to be noted that the value of ηO must be comprised between 0 and 1.
Negative values would mean that the friction aids the motion.
The value of ηA could be negative, but must always be less than 1, and is actually
a measure of the irreversibility of the mechanical system. A value of ηA between
0 and 1 means that the transmission is reversible. For ηA = 0, the friction force
is equal and opposed to the load and their combined effect is null. Finally, for
ηA < 0 the system is irreversible and the resulting friction opposes the action
of the motor [4].
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Furthermore, since it would be relevant in Section 5.4, a relation between ηA

and ηO can be established through the Gear Ratio τ [3]:

ηA = 2τ 2ηO − τ 2 + τ

τ 2ηO + τ − ηO + 1 (3.4)

As one would expect, for high values of the transmission ratio, ηA approaches

Figure 3.9. Plot of Equation 3.4 [3]

zero.

3.4 Aircraft longitudinal dynamics
The load on the control surface and its actual angular position are evaluated
with a State Space model of the linearized longitudinal dynamics of an aircraft.⎧⎨⎩ẋ = Ax + Bu

y = Cx + Du
(3.5)

The state vector x contains the variation of the Airspeed, Angle of Attack,
Horizontal Euler Angle and Pitch Rate from the initial conditions, while the
output vector u also contains the variation of the elevator deflection ∆δe and its
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hinge moment ∆MHe.

x = (∆V, ∆α, ∆θ, ∆q) (3.6)

The block uses the actual elevator deflection δe, and the block [F16.x0(5)] in
necessary to update the initial position of the elevator at each step.
The matrices A (State Matrix), B (Input Matrix), C (Output Matrix), D

Figure 3.10. Aircraft longitudinal dynamics block

(Feedforward Matrix) are populated with the aerodynamic, stability and control
derivatives of the aircraft and the control surface.
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Chapter 4

EMA Fault Modes

As already mentioned in the Introduction 1, EMAs in aerospace are currently
relegated to non-safety critical applications. One of the reasons for this is that
EMAs are still a relatively new technology in this field and there is still a lack of
literature about their use and the understanding of the effects of their combined
fault modes are not fully understood as of yet.

Nonetheless, the interest for this technology is extremely high because of its
potential, and EMAs are gaining more and more traction as a result. On mod-
ern aircraft EMAs are commonly employed to actuate trim-tabs, spoilers and
airbrakes.
On A350 and A380 they are also used to control slats and flaps, and all new
generation Airbus aircraft employ EMAs as backup for the Electrohydraulical
actuators of the primary flight controls.
Boeing, on the other end, also uses EMAs to actuate the landing gear’s brakes
on their B787, in addition to spoiler and slat control.
In the military field EMAs are used to a greater extent to cut weight and con-
sequences of damage to the hydraulic system, and their use as primary flight
controls actuators is being considered for Gth generation fighter aircraft together
with the more compact Electrohydrostatic actuators.

It follows that today the employment of EMAs must be coupled with a strong
testing campaign, to fully characterize the system and their possible fault modes
and their interactions, but also with a reliable monitoring system and a com-
prehensive maintenance plan tailored to the system.

EMA fault modes can be generally attributed to four main categories that
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will be described in the next sections: Motor Faults 4.1, Mechanical and Struc-
tural Faults 4.2, Electrical and Electronic Faults 4.3, Sensor Faults 4.4.

This work focuses on mechanical faults, of which changes in the characteristics
and performance of the reducer and the transmission are a telling indicator.

4.1 Motor Faults
Motor faults are among the most common fault modes for EMAs. Due to the fact
the BLDC shafts spin at thousands of RPMs, the motor is subject to vibrations
and inertial loads that can damage the bearings and the permanent magnets of
the rotor.
Furthermore, excessive heat is another concern due to the compact size of typical
BLDCs and their lack of cooling systems. High temperature can damage wire
insulation, change electrical resistance in the coils and even demagnetize the
permanent magnets of the rotor if the Curie temperature is surpassed.

Component Fault Failure Probability Criticality

Connectors degraded operations disconnection 5 6
intermittent contact disconnection 3 7

Stator stator coil fails open same 4 4
insulation deterioration short circuit 5 5

Resolver
coil fails open same 4 10

intermittent coil failures permanent coil failure 5 7
insulation deterioration short circuit 5 7

Rotor/Magnets bond deterioration magnet separation 2 10
rotor eccentricity bearing failure 3 6

Table 4.1. Motor Faults modes [2], [16]

4.2 Mechanical and Structural Faults
Mechanical and structural fault modes are numerous and they mostly affect the
reducer and the transmission. Proper monitoring is necessary as the ambient in
which EMAs operate is extremely demanding and mechanical failures can have
dangerous consequences on nearby or mechanically connected systems.
These faults are usually caused by excessive loads, out-of-envelope operation,
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manufacturing defects, improper maintenance, general wearing and lack of
lubrication.

Component Fault Failure Probability Criticality

Screw spalling vibrations, metal flakes 5 3
wear/backlash backlash 7 3

Nut

spalling vibrations, metal flakes 5 3
backlash seizure, disintegration 7 3

degraded operations seizure, disintegration 3 5
binding/sticking seizure, disintegration 3 3
bent/dent/warp seizure, disintegration 1 5

Ball returns jam seizure, disintegration 5 8

Bearings

spalling vibrations, metal flakes 5 3
binding/sticking seizure, disintegration 2 4

corrosion vibrations, metal flakes 2 5
backlash vibrations, disintegration 7 3

Piston cracks structural failure 1 10

Dynamic seals wear structural failure 4 6
structural failure same 3 8

Static seals structural failure same 2 8

Balls spalling vibrations, metal flakes 5 3
wear backlash 7 5

Mountings cracks complete failure 1 7

Lubricant
contamination seizure, disintegration 8 5

chemical breakdown seizure, disintegration 4 5
run-dry seizure, disintegration 3 10

Table 4.2. Mechanical and Structural Faults modes [2], [16]

4.3 Electrical and Electronic Faults

The main causes of electrical and electronic faults are overheating, insulation or
dielectric degradation, overcurrents and over and under voltages, out-of-envelope
operations and general wearing.
They affect mainly the power and control systems of the actuator.

46



EMA Fault Modes

Component Fault Failure Probability Criticality

Controller capacitors dielectric breakdown short/open circuit 4 8
Controller transistors dielectric breakdown short/open circuit 4 8

Wiring
short circuit same 5 10
open circuit same 5 10

insulation deterioration short/open circuit 5 8
Solder joints intermittent contact disconnection 5 8

Power supply

short circuit same 5 10
open circuit same 5 10

intermittent performance short/open circuit 5 8
thermal runaway dielectric breakdown 6 10

Table 4.3. Electrical and Electronic Faults modes [2], [16]

4.4 Sensor Faults

Sensor faults consists in erroneous readings from the sensors that measure the
angular position of the rotor (Hall-sensors) or the sensors that measure, for
instance, the temperature of the motor for the protection system.
Since the proper functioning of the system rely on the sensors, more sensors
than needed must be used and employed as same- type hot redundancy.
Sensor faults are sub-categorized into bias, scaling and drift faults.

4.5 Friction Faults

Friction fault modes can be described as a sub-set of the mechanical and struc-
tural fault modes described in Section 4.2 caused by the effect of an increment
(or decrement) of the friction between two or more components.
Friction causes mechanical wearing, which in turn is responsible for the deterio-
ration of mechanical parts and their surfaces and, eventually, the production of
metal or plastic flakes.
As friction in the system increases the motor requires more current to sustain the
same level of output torque, reducing the overall power efficiency of the system
or even damaging electrical and electronic components due to over-current or
excessive heat.
Excessive friction can eventually jam the actuator, with possibly catastrophic
consequences.
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4.5.1 Modeling Friction in the transmission
As already stated, this work is interested with mechanical faults in the trans-
mission of the EMA. For this reason friction in the transmission is modeled as
already described in Subsection 3.3.1, and the Simulink model of the transmission
is shown in Figure 3.5, with the friction model block shown in Figure 3.8.

This modeling relies on using values for the transmission efficiencies (ηA and
ηO) and its friction characteristics (FSJ , FDJ and FSD) already explained in
Subsection 3.3.1. The drift of one or more of these parameters from its nominal
values is, among other things, the early effect of wear and degradation of the
mechanical components. For instance, a superficial damage to a moving part can
increase the friction value, while the wear of a pre-loaded sealing can decrease
it [3].

4.6 Noise
In engineering noise could be described as "a general term for unwanted (and, in
general, unknown) modifications that a signal may suffer during capture, storage,
transmission, processing or conversion" [20].
It is impossible to eliminate noise as a physical phenomenon, but its effects can
(and in many applications must) be limited. It can originate from mechanical
vibrations, environment background, thermal stress, RF pollution and many
other sources, in a process that is almost always related to the fact that every
component doesn’t behave as its ideal self.

Noise management in electrical system is extremely important, as it could
drive to a misleading representation of the system status, which in turn hinders
the capabilities of the control system and, in general, the performances of the
system. For this reason, electrical systems must incorporate filter elements.

After reading Chapter 3 one may argue that, by design, the Simulink model
produces filtered data (although not noisy would be a better description), while
raw data collected from a real EMA would necessarily have some amount of
noise.
In reality, de-noising and filtering would be necessary pre-processing steps for the
training data anyway, in order to avoid over-fitting of the neural network to the
noise introduced by the measurement itself. The same is true for the data used
to test the neural network and the data that would be used in a real scenario
once the neural network is deployed to increase the accuracy of the predictions.
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Chapter 5

Methodology

The aim of this chapter is to provide all the necessary information on the
methodology used to provide the training data and train the neural networks.
The dataset used to train the neural network of each study case reported in
Chapter 6 is tailored to its application, but they all share large similarities
since all the study cases share the same basic methodology and all datasets are
generated running the same model. Specific differences are highlighted in this
Chapter or in Chapter 6’s Sections when relevant.

5.1 Applications of interest
The main study cases of interest for this work are of two kinds:

• Use of a pre-determined elevator command sequence

• Use of a generic random elevator command sequence

It should be noted that the distinction between the two main cases is based
upon the nature of the elevator command sequence(s), or, for short, the elevator
commands. It is not a coincidence: in both cases each simulation uses a different
set of random values for the monitored parameters that the neural network
will then try to estimate, but in the first case each simulation uses the same
elevator command, while in the second case each simulation uses a different
elevator command. This has implications with regards to the generalization
of the neural network, and each case mimics a different real life scenario with
different applications.
This is because in real aircraft (as in the model) the external load on the elevator
(or, in general, the control surface actuated 0by the EMA) is determined also by
the commanded position of the elevator, so the elevator command is effectively
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an additional variable to the problem and is also related to the residual torque
and other variables that influence the actual position of the elevator over time.
This variable can be considered, as in the case of simulations with different
random commands, or one could find a situation where the command doesn’t
influence the results (i.e. the neural network works properly only when the input
data is generated with the same command sequence it is trained upon), as in
the pre-determined elevator command sequence case, but, as already said, the
two cases have different applications.

5.1.1 Same predetermined command case applications
Specifically the pre-determined elevator command sequence case could be applied
to develop a routine that is to be executed either on ground before of after
every flight or during a test flight, in both case executing always the same
pre-determined command sequence, upon which the network is trained.
This could be used to evaluate the health status of the monitored components
when such need arises, in other words, to assess whether or not maintenance is
necessary on a part without the need to disassemble the system and inspect the
monitored components. Furthermore, RUL prediction algorithms benefit from
knowing the actual health status of the component often, as it could be used
to adjust the predictions and asses whether or not a component is wearing as
expected or if it is degrading faster than expected.

5.1.2 Multiple random commands case applications
On the other hand, having a neural network that is able to estimate the value of
the monitored parameters from data generated with any command is useful for
real time application during regular flight. It could be useful to assess whether
or not the component degraded or is degrading faster after unexpected events
such as dust ingestion, and it could also be able to detect incipient faults and
implement a logic that is able to isolate a system during flight before the fault
occur; this would lead to an increase in safety and the possibility to hot-swap
components or systems that would be hard or even impossible to hot-swap after
the fault has occurred.

5.2 Use of a Neural Network
The use of artificial neural networks (ANNs) for regression in complex problems
is more and more common, as they offer the flexibility that "classical" regression
algorithms lack. ANNs are capable of finding correlation between their inputs
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and outputs even when the best regression equation for the data is not known
or when it is not yet known if the data are correlated at all [11].

In line with other studies, such as the already referenced Innovative Actua-
tor Fault Identification Based on Back Electromotive Force Reconstruction [17],
shallow artificial neural networks in feed-forward configuration were employed
for this work; shallow meaning that the ANN only has a single hidden layer, and
feed-forward configuration means that the connections between the neuron don’t
form cycles, and information moves in a single direction from input nodes to
output nodes and the output is determined only by the current input, unlike, for
instance, recurrent neural networks.
The resulting architecture is fairly common in regression problems and the ac-
curacy can be improved increasing the number of input nodes or hidden nodes
or even adding more hidden layers.
Figure 5.1 shows a simple shallow feed-forward ANN, with inputs, neurons in

Figure 5.1. Simple shallow feed-forward neural network [7]

the hidden layers and outputs. The network is fully connected, as each node of
each layer is connected to all the nodes of the following layer.
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Typically the training cycle will continue until the optimal regression coeffi-
cients (the goal performance is often specified via a desired Mean Squared Error)
are found, a limit number of cycles is reached or the networks fails too many
validation checks: validation checks are performed after every training cycle
with data that is not used for training to check whether or not the performance
(usually in terms of Mean Squared Error) of the network on random data is still
good. If too many validation checks are failed consecutively (i.e. there is a drop
in the MSE of predictions on non-training data), it probably means that the
network is over-fitting on the training data and further training cycles won’t be
beneficial.

A typical ANN requires a large number of sets of known inputs and a set
of known targets for its training.
Since the objective of this work is to evaluate the health status of a series of
components estimating the value of a series of parameters, such parameters
(monitored or variable parameters from now on) are at the same time the targets
of the neural network and the variable parameters of the simulations used to
generate the dataset.
Each simulation runs with the same settings except for a series of parameters
that are different for each simulation and are saved beforehand since they will
be used as targets for the neural networks. After each simulation a number of
outputs of the system is saved to be used as input for the neural network.
In short, the value of the monitored is estimated by the neural network through
the reconstruction of a number of signals of the system. Targets of the ANN
are describer in depth in Section 5.4, while inputs in Section 5.5.

It was decided to program and train the ANN using MATLAB and its Deep
Learning Toolbox, as the software offers a variety of options at a reasonable
performance level, and simplifies the passage of data from the Simulink simula-
tions to the ANN.
The generic final architecture for this application is presented in figure 5.2. Since

Figure 5.2. Neural Network architecture for one of the study cases
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the inputs are technically a time sequence while the outputs are time invariant,
it was decided to use a number of inputs nodes equal to the number of timestep
of the sequence. However, to reduce complexity and training times, the number
of selected timesteps was reduced through interpolation. For instance, due to the
integration timestep of the model, 0.5s of simulation equate to 50000 timesteps
of a variable, one every 10−6s. Reducing the number of timestep to 2000 means
that the signal is interpolated so that now each timestep is 2.5 · 10−4s.
When more than one input variable was used (for instance residual torque and
external load) as input, the number of input nodes is actually the number of
timesteps taken for each variable multiplied by the number of variable.
The size of the hidden layer varies according to the study case, as it is one of
the first things to modify when seeking better performances from the network.

Details on these differences are presented in Chapter 6 when necessary, to-
gether with the respective results.

In each case, the transfer function of the hidden layer was set to Hyperbolic
tangent sigmoid (tansig) and the activation function of the output layer was set
to Linear Symmetrically Saturated (satlins) instead of the default Pure linear
(purelin) since the maximum and minimum value that each monitored parameter
can assume (the boundaries of the variation range) are known, and, should
out-of-bounds values be predicted, they would be reduced to the boundary values
which, in a real application, would mean that the component is already unsafe
to use.
Those are relatively standard transfer function for a regression network.

Values of the monitored parameters are normalized between 0 and 1 using
their boundary values as minimum and maximum rescaling values.
This helps when visualizing the results because the nominal values of any pa-
rameter would always be 0.5, its range 0 to 1 and absolute difference between
predicted and actual values is itself the percentage error on the prediction.

All the ANNs were trained using the Scaled Conjugated Gradient training
function (trainscg), as the more classical Levenberg-Marquardt Backpropagation
(trainlm) required too much system RAM.

All the ANNs use a value of 12 for tolerance of consecutive failed validation
checks, their performance is calculated as Mean Squared Error (MSE) with a
goal value of 10−6 and a maximum number of iterations of 1000.
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5.3 Use of a Simulink model
In order to train the neural network to identify variations of the value of monitored
parameters a large amount of data about the system in working conditions is
needed. This data was collected from a mathematical (Simulink) model of the
system because this approach holds numerous advantages:

• The model can be run faster than real time, drastically reducing the time
needed

• The model can simulate a fine granularity of the values of the control
parameters

• The model approach is more generalizable

• The model can be tailored to almost every real piece of hardware

• The simulations doesn’t require a physical test-bench

Since the model was developed in the Simulink environment, using a Matlab to
modify the parameters, launch the simulation and post-process the data was the
obvious choice.
Each simulation was run for 0.5s, during which all the parameters but the moni-
tored parameters are constant for each simulation. The monitored parameters are
constant too for each simulation, but they are randomly generated beforehand
around the nominal value of each parameter and a set of randomly generated
monitored parameters is assigned to each simulation before the run.

The system has to run for some time since the signal used to estimate the
parameters are not time invariant, so the way they evolve over time is an impor-
tant feature that can be picked up by the neural network during training.

Each dataset is composed of data from thousands of simulations. The sim-
ulations where executed in batches using CPU parallel computing with MAT-
LAB’s parsim function (part of MATLAB Parallel Computing Toolbox). The
model output signals of interest (neural network inputs) were extracted from
the Simulink Output Objects after the process and then sampled as described
in Section 5.7. The values of the variable parameters (neural network targets)
where stored after their generation, as previously described.
The specific number of simulations used in each case is presented in Chapter 6
together with the results.
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5.4 Choice of monitored parameters (Neural
network targets)

As this work is concerned with faults of the transmission subsystem (the effects
and modeling of which are described respectively in Section 4.5 and Subsection
3.3.1), of the five parameters chosen for monitoring, 3 are related to friction
in the transmission and 2 to its performance (the latter can also be seen as
measures of other kinds of losses in the transmission). Such parameters are:

• FSJ: Static Friction Torque Coefficient

• FDJ: Dynamic Friction Torque Coefficient

• FSD: Static-to-Dynamic Friction Ratio

• ηA: Transmission Efficiency under Aiding Load

• ηO: Transmission Efficiency under Opposing Load

Being defined as the ratio of FSJ to FDJ , FSD was treated as a dependent
variable.
To reduce the amount of targets to be estimated by the neural network, Equation
3.4 was used to introduce a relationship between ηA and ηO. It was decided to
treat ηA as a dependent variable.
So FSJ , FDJ and ηO were used as actual targets for the neural network. Their
values used to perform the simulations were generated as already described,
and the values of FSD and ηA were calculated (both before the simulations and
after the use of the neural network) using the already established equations.
It is to be noted that FSD and ηA weren’t used as targets for the neural network
since their value is calculated from the predicted value of the actual targets,
assuming that the relationships established among these parameters are exact.
Using all 5 parameters as targets would violate this assumption, introduced
to have realistic values and relative magnitudes for all the parameters, as in
this case the relationship between the related would be different from the one
assumed as exact.

As already mentioned, the value of the parameters were generated randomly in a
range centered in their nominal values (which can be found in Table 3.1). The
intervals considered a ±20% variation around the nominal values, as bigger varia-
tions would be caught by any simple diagnostic system, as their effects would be
extremely visible on a performance level and the faulty system would be isolated
anyway. Small drifts from the nominal values are not only of great interest for
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prognostic purposes, but also make for a more sensitive neural network.
However, in a real application the variation range on which the ANN is trained
would certainly be greater than the safe operations range, as the maximum
allowed safe value of a parameter is different from the value for which the com-
ponent is considered faulty and must be isolated and immediately replaced. As
previously stated the use of a Linear symmetrically saturated (satlins) transfer
function on the output layers ensure that out of range predicted values are
reduced to a value that is already considered out of safe operations.

Negative values of ηA were excluded in all but one case, as they signal that the
transmission has became irreversible, which is not the case for aircraft’s control
surfaces, and the faulty actuator would easily be identified and isolated by a
diagnostic system.
Negative values of the friction coefficients would be excluded too for obvious
reasons.

The value of the gear ratio of the reducer was not used as a parameter/target
as variations of this value would be caused by structural failures of the reducer
itself, which, again, would cause an evident alteration of the performances, which
would be detected by a diagnostic system. It is extremely rare that a fault is
capable of changing the gear ratio without causing noticeable disruption in the
system.

5.5 Choice of model outputs (Neural network
inputs)

The inputs used by the neural network to estimate the targets must contain
information about the targets themselves. The neural network tries to find a
correlation between the inputs and the targets trough a regression, so, if no
such correlation exists or is weak, the predictions of the neural network will be
inaccurate or even totally random.
Therefore is important to select as neural network inputs variables that are known
to be correlated to the targets. Neural networks and other machine learning
techniques are commonly used to discover previously unknown correlations too,
but it is generally more optimal to discard input variables that are known to have
little to no correlation with the targets, in order to avoid spurious correlations,
over-fitting and useless complexity.

In this work, the main input variable (and so the main output signal of the
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Simulink model) is the residual torque, defined as the sum of all friction torques
in the transmission of the EMA.

The residual torque contains in itself information about the friction. Should
friction unexpectedly increase or decrease, the residual torque would change
accordingly.
It is important to recall Equation 3.3 introduced in Chapter 3 to express the dry
friction torque. For the sake of convenience, the system is reported here, together
with its formulation for static friction.

TF =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

FSJ + (1 − ηA) · |FR|, Static conditions, under Aiding load
FSJ + ( 1

ηO
− 1) · |FR|, Static conditions, under Opposing load

FDJ + (1 − ηA) · |FR|, Dynamic conditions, under Aiding load
FDJ + ( 1

ηO
− 1) · |FR|, Dynamic conditions, under Opposing load

(5.1)

It is evident how ηA, ηO, FSJ , FDJ and indirectly FSD are related to the
residual torque through the dry friction torque.
Viscous friction torque was neglected as its magnitude is usually negligible in
aerospace EMAs. Indeed this was proven true analyzing the model, the viscous
friction torque was orders of magnitude lower than the dry friction torque.

It is now clear that the residual torque may be a good prognostic indicator
as it holds information about the friction coefficients and efficiencies of the trans-
mission, which themselves are indicators of mechanical wearing and degradation,
but it would be useless if the only way to know the instantaneous value of the
residual torque was solving Equation 5.1, therefore already knowing the value
of the parameters of interest.

However, the following relationship applies to EMAs (and, in general, mechanical
transmissions connected to a mechanical user through a reducer):

TM = JM θ̈m + FVm θ̇m + He + TR (5.2)

Where TM is the motor torque, the m subscript means that the values are reduced
to the motor’s shaft (fast shaft), Jm is the moment of inertia of the user (reduced
to the fast shaft through the gear ratio squared), θ̈m the acceleration of the fast
shaft, θ̇m its speed, FVm the viscous friction coefficient, He is the external load
(hinge moment on the elevator) and TR is the residual torque. The first term
on the right side of the equation is the inertial torque of the elevator.
As already discussed, the viscous friction torque can be neglected.
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The motor torque can also be expressed as TM = kCEMF I, where kCEMF is the
Motor Torque Coefficient (kT , usually equal to the Motor Voltage coefficient
ke, also called counter electromotive force constant) and I the stator current.
Rearranging Equation 5.2, one can obtain:

TR = kCEMF I − JM θ̈m − He (5.3)

That’s to say, the residual torque is equal to the motor torque minus the inertial
torque and the external load.
The constants (kCEMF and Jm) are known values once the system is character-
ized. The current I is already measured by the system itself for other purposes
(such as piloting the BLDC motor), and the shaft’s acceleration θ̈m is known
once the shaft’s speed θ̇m is known, and it is measured by the hall sensors of the
BLDC motor. The external moment (hinge load on the elevator) can either be
directly measured with pressure sensors on the elevator of be measured by the
flight computer or be calculated once the state matrix of the aircraft and its
controls is known (i.e. once the aircraft is characterized).
In short, the signal of the residual torque can easily be reconstructed using other
already measured signals and some known constants unrelated to the mechanical
faults. That’s why on paper the residual torque is such a great candidate to be a
good prognostic indicator.
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Figure 5.3. Trend of TR over time during a random simulation

Equations 5.2 and 5.3 also show that the friction coefficients and the transmission
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efficiencies are indirectly dependent on other parameters, that could improve
the accuracy of the network should the sole residual torque prove insufficient. In
particular, it was decided to also investigate a combination of residual torque
TR, fast shaft’s speed θ̇m and external load He, as whether or not the speed is
null determines if the system is in static or dynamic friction conditions, and
a combination of the signs of speed and external load determines whether the
system is working under aiding or opposing load.
Also, the use of the external load in combination with the residual torque could
lead to a better generalization of the problem, as the external load technically
holds information about the commanded position of the elevator, which, as
previously discussed in Section 5.1, is a variable of the problem, so it could help
in the study case that uses multiple generic commands.

Figure 5.4 shows the trend of TR, He and θ̇m as a 3D graph. Graphs of this kind
will be called Input Maps for the purposes of this work.

Figure 5.4. Example of Input Map
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5.6 Random Command
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Figure 5.5. Example of Randomly Generated Command

Since the beginning of the study it was decided not to use "academic commands"
(ramps, sinusoids, etc...) as command inputs for the model, as they do not
necessarily represent real scenarios, and their use could hide problems that would
only be caught using realistic commands.
This is particularly true for the real-time in-flight application discussed in Section
5.1, as the network must be able to work accurately using signals generated from
any kind of command.
The datasets for this application are generated using a different random command
for each simulation.

For the other application (pre-determined command) the specific command
is not that important, as long as it can be reproduced on a real aircraft, since
it is pre-determined.
The datasets for this application are generated using the same command for all
the simulations.
However, it is interesting to know whether or not any kind of command can work,
so the same method used to generate the random commands for the real-time
application was used to generate the commands, and networks were trained using
dataset generated each with a different commands to see if there were visible
differences.

The commands in question are elevator commands, expressed as desired angular
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position of the elevator in degrees over time in seconds.
They are generated choosing 5 random values for the elevator position, in a range
of ±25° for the sake of realism. Then, 6 linearly spaced timesteps between the
start and the end of each simulation are selected: the neuter value of the elevator
position is assigned to the first timestep (0s), and the remaining 5 timesteps
are assigned to the randomly generated values for the elevator position. Finally,
the resulting 6 points are interpolated with a 5th order polynomial function over
the actual time array of the simulation.
An example is show in Figure 5.5.

5.7 Sampling and Data uniformity
ANN’s input variables don’t necessarily have to be physical or unadulterated
quantities as long as they keep the information they carry about the targets;
because of how neural networks work, it is useful or even necessary to perform
pre-processing on the inputs to either reduce the complexity of the network
and its training or increase its performances. Nonetheless, the pre-processing
operations must be consistent and must be applied to both the training data
and the data the network will receive after its deployment.
The appropriate pre-processing operations vary on a case-by-case basis as some
operation may work fine for some applications and destroy crucial information
in others. For instance, in regression problems it is usually fine to re-scale the
input values over an arbitrary interval as long as the operation doesn’t alter
the proportions among the values of the variables, but neglecting the sign of the
values may destroy information about the underlying phenomena and result in a
less accurate network.

Sampling, both in time or space depending on the application, is another impor-
tant aspect of input pre-processing. The time and spacial scale of the data must
be coherent with those of the phenomena to be analyzed: an acquisition timestep
too big or a sensor grid too loose may hide important quirks, trends and features
in the data, while the contrary may result in over-fitting, bad generalization and
waste of time.

Data must also be uniform. Typical neural networks operate on arrays of a
predetermined size and, unless the network is built to handle such exceptions,
the input data arrays must have that same size. Smaller or larger arrays have to
be appropriately resized using interpolation, sampling or other techniques.
One particularly useful sampling technique that accomplishes so when the mea-
sures are time dependent is to acquire data at predetermined equally spaced
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points in time: since the sampling method of the data is now equal for each and
every array, the time at which each measure is taken is not a variable of the
problem anymore. This can be accomplished either directly through periodic
measuring or in pre-processing through interpolation.
A similar approach to reduce the number of input variables consists in doing
the same with two non-time variables, for instances interpolating the angular
speed of a shaft over a predetermined set of angular positions. However, what
has already been said about grid discretization still holds true.

It is also important that the training data is well representative of the data
that will be fed to the network once it is deployed: noise must be removed from
the data, missing datapoints must be addressed and bad data must be eliminated.

As described in Section 3.1, the timestep of the model is set to 10−6s to satisfy
the requirements of the controller sub-model, but this timescale is much smaller
of the timescale of the mechanical phenomena analyzed, so, for the purpose of
this work, based on similar works [16], [17], only one every ten timesteps was
initially used in the input arrays.
The first results showed that this operation, initially done to reduce the shear
memory size of the data, wasn’t harmful for the ANNs. The timesteps were then
further reduced as previously mentioned in Section 5.2. Since this varies from
case to case, more specific information is reported in Chapter 6 together with
the results.

As it pertains data uniformity, an algorithm was implemented to exclude bad
data (numerical limit cycles, numerical divergence, non physical scenarios, etc...)
from the training dataset. It is then easy to implement another algorithm that
converts data from unknown format to the specific sampling of the deployed
neural network through linear interpolation of the values of each input variable.

5.8 Technical aspects

Some technical aspect that may be necessary to replicate this study, together
with some extra considerations, are reported in this section.
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5.8.1 Drawbacks of the MATLAB and Simulink environ-
ment

While extremely advantageous in terms of ease of use, the MATLAB/Simulink
interface is not perfect. One of the hiccups of such interface is that each simu-
lation, when running multiple simulations from MATLAB, must be initialized
individually as its own individual object in the workspace, adding to the total
process time.
But the by far major problem encountered has to do with objects and files
dimensions and necessary RAM. It was immediately noticed that a batch of
about 1200 simulation objects occupies about 1GB of space on the system, while
the space occupied by the output files is enough that it was impossible to run
more than 2000 simulations per batch without encountering out-of-memory errors
as 8GB of RAM were not enough to store more simulations’ output data.
A workaround was put into place, dividing the total number of simulations in a
number of batches so that each batch didn’t contain more than 2000 simulation.
Each batch was then individually saved after its completion, and the now junk
data was purged from MATLAB’s workspace and consequently the RAM.

In training the neural network, the number of neurons, combined with the
large number of samples, meant that it was not possible to use GPU training, as
MATLAB’s functions for shallow neural networks don’t have options to reduce
the minibatch size, while their deep neural network counterparts do have such
option.

5.8.2 Hardware used
Most of this work was done using a PC equipped with an AMD Ryzen 3 1200 (4
Cores / 4 Threads, 3.1 GHz) CPU, 8 GB 2166 MHz RAM and a ZOTAC Nvidia
GeForce 1060 3 GB GPU using an SSD for storage. Today this hardware would
be considered low-mid range.
The low dedicated memory of the GPU and the large dimensions of the problem
meant that it was impossible to use GPU Accelerations in most cases.
Even though the dataset generation code was optimized to work with 8 GB
RAM, the RAM was later upgraded to 16 GB 2666 MHz mostly because of the
necessities of the training of the neural network. This upgrade obviously had an
impact on the dataset generation code too, shaving some more minutes from the
total simulation time.
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Chapter 6

Results

Results of the training of neural network on the study cases described in the
previous chapter are reported in this Chapter.

The following table summarizes the common characteristics for all cases.

Parameter Value

Timesteps per simulation 5000
Performance type MSE
Performance goal 10−6

Max training iterations 1000
Validation fail tolerance 12
Training data percentage 75%
Validation data percentage 15%
Test data percentage 10%
Training function trainscg
Hidden layer transfer fcn. tansig
Output layer transfer fcn. satlins

Table 6.1. Common parameters for all the neural networks

Training, Validation and Test data are taken from the same dataset, so "1000
simulations with 75% Training data, 15% Validation data and 10% Test data"
actually means that 750 simulations are used for training, 150 are used for
validation checks and 100 are used for testing. From each dataset, 100 random
simulations are reserved to be used for further testing and graphical represen-
tations; these are for all intents and purposes more testing samples, but are used
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to validate that the networks has good accuracy even on data it has never seen
in any way.
Training, Validation and Test data are assigned randomly.

Each target parameter is normalized between 0 and 1, assuming 0 and 1 are
mapped respectively to the maximum and minimum of the range from which
they are taken. The inverse transformation of the predicted value is possible and
doesn’t affect the results, so this operation is done for the sake of convenience
and better data visualization.
The initial number of timestep per simulation is 5000 as per Table 6.1 as only a
point every 100 timestep is taken from the raw simulation output, as extremely
good fidelity to the raw data is observed even for such a drastic cut, and using
arrays of 500000 elements is impractical.

6.1 Case 1: Same predetermined command
Initially, a dataset of 2000 simulation, each with the same randomly generated
command, was generated. For trials involving a different number of simulations
(samples) a subset of this dataset was created.
Case 1B was used for the first tests in order to have a good sense of the effects
of changing each parameter.

It was immediately clear that the networks, while capable of predicting FDJ
and ηO with good accuracy even with non optimal settings, were also unable to
predict the values of FSJ .
This behavior is shown in Figure 6.1, where it is clear that the network, even
during training, is unable to fit this particular training parameter. Figure 6.1,
on the same note, shows the three variables separately, and it is immediately
evident that the parameter the network has trouble with is FSJ .

Yet, this is not surprising when looking at Figure 6.5 that shows shaft’s angular
speed over time of a random simulation. The system works in static friction
conditions only when the angular speed is 0 rmp, which happens very few times
during each simulation. For the majority of the simulation the system operates
in dynamic friction conditions, so it is understandable that a networks is unable
of fitting the static friction coefficient FSJ but is able to pick up the correlation
of the input with the dynamic coefficient FDJ .

The behavior didn’t change modifying number of neurons, number of samples or
even number of timesteps per simulation.
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Figure 6.1. First test with FSJ , FDJ and ηO as targets
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Figure 6.2. Individual
fit of FSJ
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Figure 6.3. Individual
fit of FDJ
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Figure 6.4. Individual
fit of ηO

However, precisely because the system works most of the time in dynamic friction
conditions, FDJ is more interesting for prognostic purposes. From now on, only
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Figure 6.5. Random simulation: shaft’s angular speed θ̇m over time

FDJ and ηO will be used as targets. The predicted value of ηA can still be
obtained from the value of ηO using Equation 3.4, but now it isn’t possible to
obtain the values of FSJ and FSD; while considerations on the former have
already been done, the latter is an indirect parameter anyway.
When showing results, the values of ηA won’t be reported as in this work Equa-
tion 3.4 is considered exact, and so the relative error on ηO and ηA would be the
same.

Nonetheless, in real life, FSJ and FDJ would vary independently (and thus
FSD), so all the datasets will continue to be generated using FSJ as an "inde-
pendent variable", proving that FDJ can be accurately predicted even when its
static counterpart and/or their ratio are not assumed constant for every sample.

6.1.1 1A: On-ground routine (No aerodynamic loads)
A network architecture with 100 neurons and 1000 samples of 2000 timesteps
each was used for the training of all the networks in this case.

For this case, the aircrafts dynamics block was removed from the Simulink
model and substituted with a constant block to simulate the constant load
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exerted by the elevator trying to return to its neutral position.
This simulates an aircraft that, while on-ground, performs a specific command
sequence before of after a flight or during maintenance operations to check the
status of some of its components.
The state-space block had to be substituted since it is not capable of representing
an aircraft in static conditions.

Effectively, this case should be identical to Case 1B but without aerodynamic
loads and effects related to aircraft dynamics.

However, even though the trend of the residual torque over time is similar
to previous tests, including the aircrafts dynamics block, the constant external
load seems to lose information regarding efficiency of the transmission that
should be contained, at least in principle, in the residual torque.
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Figure 6.6. Overview of the initial results for Case 1A
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Recalling Equation 5.1, this behavior is not surprising, since external load multi-
plies the efficiency both under aiding and opposing conditions.

Even adding the constant load or the angular speed of the fast shaft to the input
vector, the performance did not change noticeably.
There was no improvement on prediction accuracy by using ηO in spite of ηA as
target, meaning that this behavior is not depending on whether the actuator is
operating under aiding or opposing load conditions.

However, the network is capable to accurately predict FDJ .
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Figure 6.7. Fit for FDJ once it remained the only output, constant load

Training Performance 2.5469 · 10−4

Validation Performance 3.0153 · 10−4

Test Performance 2.3936 · 10−4

Table 6.2. Performances for Case 1A, constant load

The performance however is much worse than in Case 1B or 1C.

The training was then repeated using a dataset generated from the usual Simulink
model but imposing a null initial state vector for dynamics of the aircraft. While
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FDJ
Target Prediction Rel. err.
0.5787 0.5586 3.46%
0.9053 0.8909 1.59%
0.7719 0.7700 0.24%
0.7048 0.7175 1.81%
0.4228 0.3938 6.86%
0.9588 0.9535 0.55%
0.7563 0.7371 2.54%
0.3663 0.3773 3.00%
0.5511 0.5548 0.68%
0.2215 0.2153 2.81%

Table 6.3. Validation for Case 1A, constant load

the results in terms of dynamics of the aircraft are neither accurate nor realistic,
it was decided to use the dataset for a test.
The performance of the network was now similar to that of Case 1B.

The problem seems to be the fact that the external load is constant. Sub-
stituting again the aircrafts dynamics block, this time with a ramp command
block, the results fell in between the two previously tested cases, even using only
the residual torque. The regression, however, was still better for FDJ than ηO.
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Figure 6.8. Individual fit of FDJ , Case 1A
with ramping load
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Figure 6.9. Individual fit of ηO, Case 1A
with ramping load
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6.1.2 1B: In-flight routine
In the dataset for this case all the simulation were performed using the same
initial cruise conditions for the aircraft. This simulates an aircraft that during
flight (like during a test flight or a specific routine procedure) performs a specific
command to check the status of some of its components.

Timesteps Simulations Neurons Epochs Time Stop Train. MSE Test MSE Err. FDJ 2 Err. ηO
2

1000 1000 50 224 5 s V al. 2.66 · 10−5 3.80 · 10−5 8.46% 1.61%
2500 1000 50 132 8 s V al. 5.96 · 10−5 6.08 · 10−5 5.39% 3.54%
1000 500 100 199 6 s V al. 2.34 · 10−5 3.93 · 10−5 1.71% 3.47%
2000 500 100 104 9 s V al. 5.34 · 10−5 6.88 · 10−5 2.88% 3.17%
3000 500 100 140 20 s V al. 5.05 · 10−5 6.26 · 10−5 2.47% 3.17%
1000 1000 100 229 8 s V al. 2.20 · 10−5 3.18 · 10−5 3.36% 1.34%
2000 1000 100 217 21 s V al. 2.10 · 10−5 2.87 · 10−5 3.07% 1.40%
3000 1000 100 306 44 s V al. 1.55 · 10−5 2.60 · 10−5 3.34% 2.03%
2000 1000 200 354 69 s V al. 9.73 · 10−6 1.69 · 10−5 2.26% 1.99%
2500 1900 250 368 155 s V al. 9.07 · 10−6 1.25 · 10−5 3.88%3 1.83%3

5000 1900 500 612 1038 s V al. 4.62 · 10−6 8.93 · 10−6 6.55%3 2.04%3

Table 6.4. Settings tried for Case 1B and relative performances

Table 6.4 shows really well the non linearity of the problem, as no immediate
conclusion about which parameter (number of timesteps, samples and neurons)
has the greatest influence on the performances.
At a closer inspection, however, an higher number of samples seems to be corre-
lated with a smaller Test MSE (as expected, as it directly influences overfitting
and underfitting), while a small number of neurons is related to higher errors.
As a rule of thumb, ANNs should have a number of neurons equal to one tenth
of the size of the input, and the results show that there is some truth to this.
In any case, there is clearly a point of diminishing returns after the setup with
2000 timesteps, 1000 simulations and 200 neurons, so that network was analyzed
more in depth, and the results are shown below.
Figure 6.1.2 shows the regression of the normalized values of FDJ and ηO. It
is evident that the network is extremely accurate (most point are close to the

2Average relative error, calculated averaging the relative error of 100 predictions made
with data reserved for testing. It is reported to give the reader an idea of the magnitude of the
error on the prediction in practical terms, but the MSE is a better indicator of the accuracy of
the regression, especially the Test MSE.

3These high average relative errors don’t tell the whole story. The network is actually
extremely precise on most predictions, being consistently under 1% of relative error, but the
average error is raised by the (normalized) values close to 0, where the network is far less
accurate, even reaching 300% relative error. However, the absolute error is negligible even for
practical applications. That’s why the Test MSE paints a better picture.
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Figure 6.10. Neural network architecture chosen for Case 1B
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Figure 6.11. MSE during training for Case 1B

Training Performance 9.7336 · 10−6

Validation Performance 1.9654 · 10−5

Test Performance 1.6883 · 10−5

Table 6.5. Performances for Case 1B

Output = Target line) even if its precision is slightly less so (the points don’t
actually sit on the Output = Target line).
Finally, Table 6.6 shows the numerical values of 10 normalized targets and their
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Figure 6.12. Individual fit of FDJ ,
Case 1B
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Figure 6.13. Individual fit of ηO, Case 1B

predicted value. Such targets are taken from data reserved for testing.
Interestingly, the predictions for ηO are better than those for FDJ , and the
higher errors happen for values close to 0.

FDJ ηO

Target Prediction Rel. err. Target Prediction Rel. err.
0.4497 0.4513 0.35% 0.8085 0.8124 0.48%
0.0745 0.0768 3.08% 0.9165 0.9179 0.16%
0.1107 0.1049 5.31% 0.0583 0.0607 3.98%
0.8332 0.8390 0.69% 0.3069 0.3085 0.53%
0.3340 0.3362 0.66% 0.8695 0.8753 0.67%
0.8312 0.8407 1.14% 0.4272 0.4280 0.18%
0.0854 0.0831 2.61% 0.3451 0.3487 1.03%
0.2530 0.2567 1.45% 0.5351 0.5306 0.84%
0.9379 0.9302 0.83% 0.0861 0.0936 8.73%
0.2241 0.2438 0.14% 0.7816 0.7770 0.59%

Table 6.6. Validation for Case 1B

6.1.3 1C: Transmission reversibility
The dataset for this application was generated like the one of Case 1B, but
choosing a nominal value of ηO such that Equation 3.4 would yield both positive
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and negative values for ηA. As a reminder, negative values of ηA means that the
transmission is irreversible.
Typically a reversible transmission becoming irreversible would indicate a large
fault that would be caught by a diagnostic system, but rare cases where an
irreversible transmission would become reversible without being considered faulty
do exist. Nonetheless, the real interest for this case is to test the accuracy of
the network in a situation where it has to deal with the fact that the sign of
ηA determines two different types of dynamics in the model/real EMA, so this
case is reported for academic purposes.

The nominal value of ηO chosen for this application is ηO = 0.55, meaning
that is variation range is 0.44 < ηO < 0.66, and the range for ηA can be obtained
through Equation 3.4 as −0.2668 < ηA < 0.4864.

The network was trained using 1000 samples of 2000 timesteps each and 100
neurons, a combination that performed well for Case 1B.
The training stopped after the 12th consecutive validation check failed at Epoch
318, after 30 seconds.
The performances are reported in Table 6.7 and are better than the equivalent
network for Case 1B. This may be due to the fact that the transmission is only
slightly irreversible at worse for the lowest values of the chosen variation range
for ηA, so the system’s response is still fairly comparable between the reversible
and irreversible cases.

Training Performance 2.7147 · 10−6

Validation Performance 3.1985 · 10−6

Test Performance 3.4420 · 10−6

Table 6.7. Performances for Case 1C
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FDJ textbfηO

Target Prediction Rel. err. Target Prediction Rel. err.
0.8860 0.8878 0.21% 0.0629 0.0638 1.47%
0.4785 0.4774 0.22% 0.5940 0.5929 0.18%
0.0304 0.0328 7.86% 0.1907 0.1867 2.09%
0.9605 0.9579 0.27% 0.2957 0.2990 1.13%
0.5541 0.5547 0.12% 0.2353 0.2343 0.46%
0.2842 0.2867 0.89% 0.6308 0.6304 0.07%
0.3996 0.4019 0.56% 0.0377 0.0386 2.31%
0.3201 0.3178 0.71% 0.4491 0.4487 0.07%
0.7861 0.7846 0.19% 0.2137 0.2166 1.38%
0.0046 0.0056 20.73% 0.3878 0.3899 0.55%

Table 6.8. Validation for Case 1C
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6.1.4 General comments

Case 1B was used again to test whether or not specific predetermined commands
influence the results in terms of accuracy.
Multiple network were trained using the same number of timesteps, simulations
and hidden nodes, but using different dataset, each generated with a different
random command.
The answer to the question is that, using an high enough number of timesteps,
there are no significant difference between networks trained on different com-
mands. However, a large number of timesteps is already necessary to ensure high
accuracy anyway.

Nonetheless, it was noted that difference existed for extremely low numbers of
timesteps, as using only a handful of points makes the performances dependent
upon which points are taken. If all the trends of the residual torque over time
for a given dataset would be plotted on the same graph, some zone would high-
light more differences than others. Taking only a handful of timesteps, specially
selected from such zones of the graph, may result in good prediction accuracy.
However, those zones may not be the same is the same plot is reproduced for a
dataset trained on a different command.

Figure 6.14 shows very well that the response of the system to the same command
but with different friction and efficiency coefficients of the transmission each
time doesn’t change very much and always follows more or less the same trend,
with larger variations coinciding with points in time were the desired position of
the elevator changes rapidly.
Such condition (relatively small variations between simulations) is beneficial for
the neural network, as all the possible combinations of parameters are represented
with a relatively small number of samples, and the fact that the network is able,
in a sense, to discriminate among such tight curves is exactly what it’s expected
from useful prognostic methods and algorithms, as they usually deal with small
variations of parameters that would otherwise make one curve indistinguishable
from another.

The fine granularity of the data is not a coincidence either. For example, let’s
analyze 1000 samples of the values uniformly distributed over a [0.4 − 0.6] range:
when such values are arranged in an increasing or decreasing orders, contiguous
values only differs by the fourth decimal place, and, if the fourth decimal place is
neglected, each value appears five times. It is then unsurprising that the network
of Case 1B, for instance, is capable of achieving precision to the third decimal
place.
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Figure 6.14. Detail of the superposition of 10 residual torque curves from
the dataset for Case 1B

In a real life application a simpler command, such as a sinusoid, may be used.
Based on the previous observations, it is not far fetched that a few strategically
selected timesteps for each simulation (as long as they are the same for each
simulation, obviously) may suffice to obtain the goal performance.
Theoretically, it would also be possible to use an algorithm to identify such zones
and automatically sample the inputs accordingly, but, as the name implies, the
use of a predetermined command means that the best sampling can also be
predetermined.

Moreover, specifically engineered commands may be used to predict the value of
other variables, such as FSJ , that was excluded as it was too much underrep-
resented in the data: an high frequency sinusoid command that passes enough
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times across the no angular speed condition, making the system work in static
friction conditions in a large number of instances, may be able to generate a
dataset that could be useful for the prediction of FSJ . However, in this work
this option wasn’t explored, as the dynamic response of the system (as in reality)
is too slow to follow rapid (when compared to the timescale of the problem)
periodic variations of the command. One would need to perform the simulations
over a larger total time for each simulation, but then the simulations would then
take a enormous amount of time (compared to the time allotted to this work)
to be performed, and the risk is that the static friction conditions would be
underrepresented against the dynamic conditions anyway.

Nonetheless, the already mentioned fact that no significant performance varia-
tions appear when training networks on different commands is good news for the
modularity of this method, as other networks trained to identify other parameters
may instead require a specific command to highlight necessary features in the
data. So, when deployed on a real aircraft, different (or maybe even the same)
inputs may be extrapolated from the same run (maybe using the same tailored
command) to predict multiple kinds of parameters without interfering with the
parameters used in this work (nominally FDJ , ηO and ηA).

As a last observation, Case 1A is a good candidate for real hardware vali-
dation, since it was optimized to use the minimum possible amount of data for
training and so that it wouldn’t require too many hours of work on a specifically
equipped test-bench to generate a dataset made of data acquired from real
hardware.

78



Results

6.2 Case 2: Multiple random commands
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Figure 6.15. Plot of 10 of random commands used to generate the dataset for Case 2

Initially a dataset of 10000 simulations, each with its own randomly generated
command and its randomly generated set of monitored parameters, was gener-
ated. Like Case 1, for trials involving a different number of simulations (samples)
a subset of this dataset was created.
This dataset simulates an aircraft that, during regular flight, has a system that
is able to update the health status of some of its components roughly once every
second.
Again, borrowing from the experience accumulated during the study of Case 1,
only FDJ and ηO were used as targets.

The use residual torque alone was immediately proven to be insufficient, as
the first networks were unable to formulate good predictions even with a large
number of simulations, timesteps and neurons. After even a network trained on
10000 simulations with 5000 timesteps of residual torque each and 350 neurons
was unable to provide acceptable results, it was decided to also include fast
shaft’s speed θ̇m and external load He as inputs.

79



Results

This behavior, however, is not a total surprise. Figure 6.16 is analogous to
Figure 6.14 but for Case 2, where each simulation uses a different command.
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Figure 6.16. Superposition of residual torque for 10 random simulations
from the dataset for Case 2

It is evident that the curves are much more different from command to command
with different sets of parameters than they were when the command was the
same for each simulation. The command (or, more precisely, the response of the
system to a command) is in fact a variable of the problem that was set constant
due the nature of the real-world applications of such networks. Applications for
this case instead dictate that the network must be capable of making accurate
predictions regardless of the command.

That’s where adding the external load and the angular speed of the fast shaft to
the inputs of the network as described in the end of Section 5.5 comes into place
(Figure 5.4 is cited as reference of a "Input Map").
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The external torque should contain information about the response of the system
to the command and, provided the data is representative enough of all possible
command-parameters combinations in the first place to make it possible for
the network to find a correlation between inputs and outputs, should improve
networks’ prediction performances.

It is to be noted that the value of the residual torque at a given time can
be the result of several combinations of commands and parameters, and that
to use the command directly as an input would do more harm than good to
the performances, as the response of the system (and so values of variables
such as the residual torque) is also a function of the ability of the system to
follow precisely the command: piloted systems usually lag behind the desired
position/command and may not be fully capable of keeping up with fast variation
of the commanded position, so using at the same time, for instance, residual
torque and command would be like comparing different categories of things.

The training of all the network architectures hereby reported stopped either for
validation tolerance of maximum number of iteration when the MSE was still
too high for the network to be used in meaningful application.

• More neurons:
Architectures with up to 500 neurons in the hidden layer were tested, with
no avail.

• More simulations (samples)
Up to 10000 simulations at a time were used as a test, with bad result. Few
simulations (around 100 or less) produced clear overfitting, better described
in 6.2.1.

• More timesteps
The native number of timesteps of each simulation is 50000 timesteps, but
it is reduced to 5000 in preprocessing for all the datasets to optimize the use
of memory with no network performance lost. Using up to 5000 timesteps
per simulation didn’t make for an accurate network, but networks using less
than 2000-3000 timesteps produced significantly worse results. It is clear
that, unlike Case 1, the network are sensible to the number of timesteps
per simulation, but it is not enough.

• Different combinations of inputs
Other than using residual torque only or the full Input Map, combinations of
residual torque and external load and residual torque and shaft’s speed were
tried, the former being more promising on paper, to exclude the possibility
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that one of the two extra inputs of the Input Map was badly correlated to
the monitored parameters and so it would harm performance. That was not
the case.

• Extra hidden layer
An architecture with two hidden layers and 200-100 hidden neurons was
also tried, both with residual torque only and full input map. In all cases
performances weren’t noticeably different from the single hidden layer case,
and all runs stopped after a few tens of iterations due to validation tolerance.

Figure 6.17. Neural Network architecture with 2 hidden layers

• Time series formulation
When using more than one input variable, the arrays of each variable were
simply concatenated, so that, while 1000 timesteps of a single variable
translate to 1000 input nodes, 1000 timesteps of 3 variables translate to
3000 input nodes. As long as data is properly normalized and the network
is trying to predict a single value for each output variable, the network
shouldn’t care about the order or the real nature of the inputs. In MATLAB
this formulation is a matrix with dimensions ∑︁

Ri − by − Q, where Ri is
the size of each input and Q is the number of samples.
Time series formulations are used when a network must be able to predict
one sequence or more from input series. Usually time series as such networks
are used to predict trends over time. In MATLAB this formulation is a
cell array where each element X{i, ts} is a ∑︁

Ri − by − Q, where ts is the
number of timesteps and Ri is now the number of inputs [10].
Since the monitored parameters are constant during each simulation, the
output sequence for this formulation will be a repetition of the same constant
values for each timestep.
This formulation was used as it is often recommended to give it a try should
the matrix formulation not work, but it was just much slower in training
due to the nature of operations with cells in MATLAB , with no perceivable
increase in performance.
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• Exclusion of FDJ
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Figure 6.18. Individual fit of FDJ
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Figure 6.19. Individual fit of ηO

Figures 6.18 and 6.19 show the results of one of the cases tried (specifically a
double hidden layer network). They show that the network is slightly better
at prediction ηO than FDJ . This led to tentatively exclude FDJ too like
FSJ to at least be able to predict ηO (and ηA).

The best result of this endeavor is presented in Figure 6.20. The architecture
is composed of a single hidden layer of 100 neurons and a combination of
residual torque and external load as input, with 2000 timesteps each. 5000
simulations were used for testing.
Training MSE: 0.0119, Test MSE: 0.0230.
The relative error on each prediction is still too high.

6.2.1 Comments on overfitting
When using a relatively small number of simulations (around 100, for the networks
whose Figures are reported in this Subsection), clear overfitting was observed:
overfitting happens when the training performance of the network (so the fit
on data it constantly uses to update the value of its weights and biases) is much
higher than its performance on data it has never seen. This is obviously the case
of Figure 6.21.
This generally signifies that the network has bad generalization properties and
the training samples must be increased or more diversity must be introduced
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Figure 6.20. Best results for Case 2 with ηO only

in them. However, as already reported, adding samples just resulted in slower
networks with bad performances even in training.

6.2.2 Comments on feasibility
At this point many options were explored to make this case work, and, while it
was not possible to exclude that the training would have worked properly with a
much larger number of sizes, consideration about the feasibility of Case 2 in a
real-world application must be given.
The ability to know with reasonable precision the health status of the components
of a system on an aircraft during a regular flight in near real-time is certainly
desirable both as a means to catch incipient failures and as a multipurpose
real-time monitoring system.

It is possible that increasing the number of samples in terms of combinations of
commands and monitored parameters may yield satisfying results in the end, but
the reality is that, as shown, not even with the additional inputs the network is
able to pick up a correlation with the monitored parameters, so more samples
may not be neither the simplest answer to the problem nor an answer at all.
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Figure 6.21. Overfitting training for Case 2 with 100 samples

The possible elevator commands that could be used on a real aircraft over
a finite amount of time are effectively infinite, so this use case mush be com-
pletely rethought.

One possibility may be to exploit the fact that a command over a large time can
be split in numerous simpler commands over shorter periods of time, reducing
the proposed Case 2 to a more complex version of Case 1B, with datasets trained
over a limited number of well representative simple commands: for instance,
ramps with different inclinations and end values.
However it is impossible to say how the attribute well represented may translate
into practice, and one may easily fall again into the fallacy of trying to train the
network on any possible combination of commands and parameters.

Another approach, based on the previous consideration, may be to implement
a system that only activates when a specific usable sequence of command is used.
This would effectively be Case 1B with a different application in mind, as more
than one network may be trained on different commands so that the system
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could be activated more frequently.

Finally, the system may be implemented with a different philosophy altogether,
one that trains the networks directly on board of the aircraft. This is explained
in more detail in Subsection 6.3.

6.3 Proposal for near-real-time monitoring
While Cases 1B and 1C, and partially 1A, demonstrate that non-real-time moni-
toring applications described in Subsection 5.1.1 work in concept, the situation is
different for applications described in Subsection 5.1.2, which rely on knowing
the health status of the components in real-time. This means that the network
must be able to estimate the monitored parameters under any condition, like
in Case 2, but, as extensively commented in Section 6.2, this is no easy task.
Some alternatives were proposed in Subsection 6.2.2, but they all rely on the
notion that the deployed neural network must be pre-trained once and for all
beforehand.

However, particular emphasis has been put on Case 1B (network trained on a
single predetermined command to be executed during flight) in this study, as it
is also a case of interest for applications where the network is trained or adapted
each time it is used.
Without delving into adaptive neural networks, the following proposal is for a
system that is able to log the elevator command sent by the pilot during flight,
the flight conditions and the response of the system and use system’s response as
input for a neural network and command and flight conditions to perform on the
spot enough simulations of the systems to be used to train a neural network that
will then estimate the health status of the monitored parameters.
In short, the proposal is to apply Case 1B performing simulations and ANN
training directly onboard the aircraft during flight to obtain the status of the
parameters at specific intervals of time, intervals determined by the time needed
to perform measurement, simulation, training and prediction.

Measurement is obviously done by sensors onboard the aircraft and includes
sampling. Prediction for ANNs of the scale of those analyzed in this work is al-
most immediate. As for training, Table 6.4 also shows training times for different
network architecture and relative performances. It is to be noted that, sacrificing
some accuracy, training can be completed in as little as 5 to 10 seconds.
As for the simulation part, it takes the most time among the four, but a specu-
lative study on the time necessary to perform a certain amount of simulations
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on the hardware used for this study (Described in Subsection 5.8.2), composed
primarily by a Ryzen 3 1200 3.1 GHz 4C/4T CPU. The results are shown in figure
6.22. Simulation time also includes the time needed to initialize the simulations.
Estimated simulation times for CPU with different number of cores (equal to
the number of threads in this instance) but same base clock speed are drawn
with dashed lines. Theoretically, the simulation time should halve doubling the
number of threads.
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Figure 6.22. Simulation time vs Number of simulations

Referring again to Table 6.4, simulating data and training the network for the
architecture with 1000 timesteps, 500 samples and 100 neurons would have taken
about 90 seconds on the hardware used for this work or roughly 45 seconds on
an 8 thread CPU and even less on many-cores CPUs.

The steady decline of the prices of workstation and professional grade many-cores
CPUs over the years means that such system could be deployed for less than
3000$, a relatively low price for aeronautic systems.

At least in terms of update frequency and cost, shift the burden of simulating and
training for the network on a system onboard the aircraft working in near-real-
time, with update frequency as low as 20 seconds for a reasonable price, seems
certainly feasible. And the time needed could be even lower using programming
languages more efficient than MATLAB and making clever usage of memory
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addressing during the initialization of the simulations.
This couldn’t be possible without an hybrid method such as the one illustrated
in this work.

6.4 Note on real-world performances
The tables and the results reported in this chapter show relative errors commonly
between 1 and 3%, often even under 1%. In reality, should one feed data from
real hardware to one of the successfully trained networks, the relative error will
probably be between 5 and 10%.
For reasons explained in Section 4.6, the output of the Simulink model differs
from the measurements from a real system in noise, in the sense that the out-
put of the Simulink model is purposely free from any kind of noise that could
otherwise be present in data obtained from real hardware for a number of reasons.

Because of this, the cases explored in this work may be labeled synthetic, and
it is likely that the network won’t perform as well on data from real hardware.
That’s because, even though preprocessing is always necessary in this kind of
applications to eliminate as much noise and losses of fidelity as possible from
the data, preprocessing isn’t perfect. Preprocessing must be tailored to the
measurement and sampling methods and the hardware at hand, so this variable
wasn’t taken into account as it is not the focus of this work and the proposed
method was still not mature enough. It is, however, something that has to be
taken into account should this method be put to test on real hardware.

Nonetheless, having a large performance headroom on synthetic tests trans-
lated in large headroom for the real application too.
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In conclusion, the residual torque proved to be an extremely reliable prognostic
indicator, but only for certain applications and use cases.
Nonetheless, such use cases could be extended with specific modification to also
cover many of the applications where the residual torque was insufficient or
unreliable, as proposed in Subsection ??.

Now that the concept has been proven to work, it can be expanded upon
in many ways:

• Compatible data obtained from real hardware could be fed to the trained
network to measure the performance of the network once denoising strategies
and input data preprocessing in general are considered.

• As the strong point of the Simulink model is its ability to be tailored to
specific hardware, tests on real hardware in testbench conditions may be
compared to the data produced by the Simulink model, to modify its pa-
rameters until the model reproduces satisfactory the reality.

• Regarding the deployment of the system, it may be useful to stakeholders
to establish what could be a useful update frequency for the monitored
parameters in near-real-time applications and which level of performance
is required. Slow growing, predictable faults obviously may be caught even
by applications such as that of the proposed Case 1A, but fast developing
faults may require more frequent monitoring.

• However the potential faults indicated by the parameters monitored in this
work have all to do with wearing, which is a slow process, unless other
factors intervene. So, a better understanding of how such parameters are
linked to fault modes is necessary.
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• Throughout this work it has often been repeated that this method is use-
ful to provide the actual health status of the components to improve the
precision of algorithms used to calculate the Remaining Useful Life of a
components, and it may be worthy to develop such an algorithm.

Other things instead could be improved from this work:

• The model of the longitudinal dynamics of the aircraft is the weak point
of the Simulink model and, while it outputs realistic data, it is based on
simplifications that make it much less accurate than it could be, and a
better model must be implemented in order to tackle real life scenarios.

• It may be useful to develop a standard specifically designed predetermined
command for all the applications that requires it in order to optimize the
training using a smaller amount of more meaningful timesteps. On the other
hand, it may also be useful to continue on the path traced and develop an
algorithm capable of finding such meaningful points, which would be benefi-
cial for the proposed system architecture for near-real-time applications.

• Bad generalization of the problem is behind the failure of Case 2. Other
machine learning techniques and techniques to find the most relevant inputs
should be explored.

All in all, the results are satisfactory to the point that validation on real hardware
may begin, even is there is still a lot to do before such systems (not only the
ones proposed in this work but also the similar ones found in literature) may
be implemented on safety critical hardware in real aircraft.

The hybrid methodology used is the key enabler behind most of the proposals
and suggestions made in this work, but, while in literature the interest about
these methods is growing, they are still not mature enough for many applications.
This was kept in mind during the work and so consideration must be given also
to the fact that data for training could also be acquired either through testbench
trials and testflights or from the archive of airline companies, which already log
lots of data about their aircraft for maintenance and cost saving purposes.
If lots of data are required, the latter option is more appealing since it is easier
to obtain a sizeable dataset monitoring a fleet of aircraft of different ages over
the span of a cycle of maintenance than to design and build a testbench that is
capable of artificially varying friction coefficients and transmission efficiencies.
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Finally, it must be said that this method is highly modular: a system that
uses network trained to use the reconstructed signal of the residual torque to
estimate a series of parameters can easily coexist (and maybe even integrated to-
gether) with a similar system used to estimate different parameters with different
inputs.
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