
POLITECNICO DI TORINO

Automotive Engineering MSc

Master’s Thesis

Artificial Intelligence
for Vehicle Engine Classification
and Vibroacoustic Diagnostics

in collaboration with
DeepTech Lab at Michigan State University

and Fiat Chrysler Automobiles

Academic supervisors
Prof. Giovanni Belingardi
Prof. Daniela Misul
Prof. Joshua Siegel

Candidate

Umberto Coda

14 October 2020



Contents

List of Figures v

1 Introduction and Motivation 1

1.1 Existing Methods for Vehicle Diagnostics . . . . . . . . . . . . . . . 2

1.1.1 On-Board Diagnostics (OBD) . . . . . . . . . . . . . . . . . 2

1.1.2 Non-OBD Systems . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Diagnostics Opportunities in the Mobile Revolution . . . . . . . . . 3

1.2.1 Smartphone Sensing Capabilities . . . . . . . . . . . . . . . 3

1.2.2 Smartphone Computation and Connectivity Capabilities . . 5

1.2.3 Off-board Smartphone-based Diagnostics . . . . . . . . . . . 5

1.3 Vibroacoustic Diagnostics . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Physics-based approach . . . . . . . . . . . . . . . . . . . . . 6

1.3.2 Vibroacoustic Challenges . . . . . . . . . . . . . . . . . . . . 7

1.4 Impact of Artificial Intelligence . . . . . . . . . . . . . . . . . . . . 8

1.5 Prior Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5.1 Vehicle Condition . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5.2 Vehicle Operating State . . . . . . . . . . . . . . . . . . . . 12

1.5.3 Occupant Monitoring . . . . . . . . . . . . . . . . . . . . . . 13

1.5.4 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5.5 Non-automobile Vehicles . . . . . . . . . . . . . . . . . . . . 18

1.6 A Need for Context-Specific Models . . . . . . . . . . . . . . . . . . 19

1.6.1 A Representative Implementation . . . . . . . . . . . . . . . 19

1.6.2 Contextual Activation . . . . . . . . . . . . . . . . . . . . . 20

1.6.3 Vehicle (and Instance) Identification . . . . . . . . . . . . . 21

1.6.4 Context Identification . . . . . . . . . . . . . . . . . . . . . 22

1.6.5 Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.7 Our Goal: Engine Classification . . . . . . . . . . . . . . . . . . . . 25

1.7.1 The Choice of Acoustic Signals . . . . . . . . . . . . . . . . 26

1.7.2 Side Goal: an effective Framework . . . . . . . . . . . . . . . 26

ii



2 Machine Learning Workflow: From Sound to Features 29
2.1 Some common ground on Artificial Intelligence . . . . . . . . . . . . 29

2.1.1 What is Artificial Intelligence (AI) . . . . . . . . . . . . . . 29
2.1.2 AI and Machine Learning types . . . . . . . . . . . . . . . . 30
2.1.3 Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Data gathering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.1 Recording Environment . . . . . . . . . . . . . . . . . . . . 34
2.2.2 Data Preparation and Labelling . . . . . . . . . . . . . . . . 35
2.2.3 Train - Test Split and Chunking . . . . . . . . . . . . . . . . 39
2.2.4 Database Exploration . . . . . . . . . . . . . . . . . . . . . . 41

2.3 Feature Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.3.1 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . 53

2.4 Feature Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.4.1 Feature Values Scaling . . . . . . . . . . . . . . . . . . . . . 69
2.4.2 Feature Vector Scaling . . . . . . . . . . . . . . . . . . . . . 70
2.4.3 Resulting Feature Distributions . . . . . . . . . . . . . . . . 70

2.5 Exploratory Data Analysis (EDA) . . . . . . . . . . . . . . . . . . . 74

3 Machine Learning Workflow: Algorithms and Metrics 81
3.1 Cross Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.2 Feature Selection and Dimensionality Reduction . . . . . . . . . . . 84

3.2.1 Principal Components Analysis (PCA) . . . . . . . . . . . . 85
3.2.2 Kernel Principal Components Analysis (KPCA) . . . . . . . 86
3.2.3 Linear Discriminant Analysis (LDA) . . . . . . . . . . . . . 86
3.2.4 Univariate Feature Selection . . . . . . . . . . . . . . . . . . 86
3.2.5 Tree Based Selection . . . . . . . . . . . . . . . . . . . . . . 87

3.3 Main Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.3.1 Support Vector Machine (SVM) . . . . . . . . . . . . . . . . 91
3.3.2 k Nearest Neighbors (kNN) . . . . . . . . . . . . . . . . . . 93
3.3.3 Decision Tree . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.3.4 Passive Aggressive Classifier . . . . . . . . . . . . . . . . . . 97

3.4 Ensemble Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.4.1 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.4.2 AdaBoost (Adaptive Boosting) . . . . . . . . . . . . . . . . 100
3.4.3 Gradient Boosting Machine (GBM) . . . . . . . . . . . . . . 101
3.4.4 Extreme Gradient Boosting (XGBoost) . . . . . . . . . . . . 102
3.4.5 Light Gradient Boosting (LightGBM) . . . . . . . . . . . . . 103
3.4.6 CatBoost . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.4.7 Voting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.4.8 Stacking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.4.9 Confusion Matrix (CM) . . . . . . . . . . . . . . . . . . . . 108
3.4.10 Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

iii



3.4.11 Reconstruct Audio . . . . . . . . . . . . . . . . . . . . . . . 112

4 Framework 113
4.1 From Sound to Features Flowchart . . . . . . . . . . . . . . . . . . 113
4.2 From Features to Results Flowchart . . . . . . . . . . . . . . . . . . 115
4.3 Results Evaluation Flowchart . . . . . . . . . . . . . . . . . . . . . 115

5 Results 117
5.1 Target Label: Turbo . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.2 Target Label: Fuel . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.2.1 Comparison among algorithms . . . . . . . . . . . . . . . . . 127
5.2.2 Informative Features . . . . . . . . . . . . . . . . . . . . . . 128

5.3 Target Label: Cylinder Amount . . . . . . . . . . . . . . . . . . . . 135
5.3.1 Confusion Matrices and Performance Scores . . . . . . . . . 135
5.3.2 European Model . . . . . . . . . . . . . . . . . . . . . . . . 136
5.3.3 US Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.3.4 General Model . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.4 Conclusions and Next Steps . . . . . . . . . . . . . . . . . . . . . . 141

iv



List of Figures

1.1 Size of sensor market worldwide . . . . . . . . . . . . . . . . . . . . 4
1.2 Model selection process . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.3 Nearest neighbor model selection . . . . . . . . . . . . . . . . . . . 24
1.4 A look into Control File . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1 Artificial Intelligence, Machine Learning and Deep Learning . . . . 30
2.2 Classification and Regression problems . . . . . . . . . . . . . . . . 32
2.3 Splitting the data in training and testing sets . . . . . . . . . . . . 32
2.4 Overfitting and Underfitting . . . . . . . . . . . . . . . . . . . . . . 33
2.5 Organization of Excel Dataset . . . . . . . . . . . . . . . . . . . . . 38
2.6 Dataset organization in Python . . . . . . . . . . . . . . . . . . . . 38
2.7 Control File: Loading and chunking parameters section . . . . . . . 41
2.8 Labels to Consider - Control File . . . . . . . . . . . . . . . . . . . 43
2.9 OEM Appearance in the Dataset . . . . . . . . . . . . . . . . . . . 44
2.10 Fuel Type - Classes Distribution . . . . . . . . . . . . . . . . . . . . 44
2.11 Engine Shape - Classes Distribution . . . . . . . . . . . . . . . . . . 45
2.12 Number of Cylinders - Classes Distribution . . . . . . . . . . . . . . 45
2.13 Engine Displacement - Classes Distribution and Statistics . . . . . . 46
2.14 Engine Power - Classes Distribution and Statistics . . . . . . . . . . 47
2.15 Cylinder Amount vs Engine Displacement . . . . . . . . . . . . . . 48
2.16 Engine Displacement vs Engine Power . . . . . . . . . . . . . . . . 49
2.17 Correlation among Labels . . . . . . . . . . . . . . . . . . . . . . . 50
2.18 Pairplot Histograms . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.19 Pairplot Labels for Fuel . . . . . . . . . . . . . . . . . . . . . . . . 52
2.20 Control File: Features . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.21 Hann Window and its effect . . . . . . . . . . . . . . . . . . . . . . 55
2.22 Control File: FFT Features . . . . . . . . . . . . . . . . . . . . . . 55
2.23 FFT Binned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.24 FFT-related Features Mean and Standard Deviation . . . . . . . . . 58
2.25 X and y matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.26 Mother Wavelet DB4 . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.27 DWT Kurtosis and Variance . . . . . . . . . . . . . . . . . . . . . . 60

v



2.28 DWT-related Features Mean and Standard Deviation . . . . . . . . 61

2.29 Control File: Discrete Wavelet Transform . . . . . . . . . . . . . . . 62

2.30 How to Compute MFCC . . . . . . . . . . . . . . . . . . . . . . . . 62

2.31 MFCC Normalized . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.32 MFCC-related Feature Mean and Standard Deviation . . . . . . . . 64

2.33 Power Spectral Density Trend sorted by class . . . . . . . . . . . . 66

2.34 MFCC Autocorrelated . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.35 Other Features Trend . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.36 Features Distribution by fuel . . . . . . . . . . . . . . . . . . . . . . 71

2.37 Features Distribution by turbo . . . . . . . . . . . . . . . . . . . . . 72

2.38 Features Distribution by number of cylinders . . . . . . . . . . . . . 73

2.39 Features Mean Heat-map . . . . . . . . . . . . . . . . . . . . . . . . 75

2.40 Features Standard Deviation Heat-map . . . . . . . . . . . . . . . . 76

2.41 Features Correlation Matrix . . . . . . . . . . . . . . . . . . . . . . 77

2.42 Pairplot by Fuel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

2.43 Pairplot by Cylinder Amount . . . . . . . . . . . . . . . . . . . . . 79

2.44 Pairplot by Turbo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.1 Cross validation flow . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.2 Cross Validation 3 folds . . . . . . . . . . . . . . . . . . . . . . . . 82

3.3 Train - Validate Curve and Overfitting . . . . . . . . . . . . . . . . 83

3.4 Cross Validation Strategies Compared . . . . . . . . . . . . . . . . . 84

3.5 PCA Variance and 2D projection . . . . . . . . . . . . . . . . . . . 86

3.6 LDA explained Variance and projection . . . . . . . . . . . . . . . . 87

3.7 Features Left with Univariate Feature Selection . . . . . . . . . . . 88

3.8 Features Left with XGBoost Reducer . . . . . . . . . . . . . . . . . 89

3.9 Feature Importance with Random Forest . . . . . . . . . . . . . . . 90

3.10 PCA and LDA after XGBoost . . . . . . . . . . . . . . . . . . . . . 90

3.11 Support Vector Machine . . . . . . . . . . . . . . . . . . . . . . . . 92

3.12 k Nearest Neighbors . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.13 Decision Tree Structure . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.14 Bias vs Variance Tradeoff . . . . . . . . . . . . . . . . . . . . . . . 98

3.15 AdaBoost working principle . . . . . . . . . . . . . . . . . . . . . . 101

3.16 Hystory of XGBoost . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.17 Level-wise tree growth . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.18 Leaf-wise tree growth . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.19 CatBoost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.20 Stacking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.21 Confusion Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.22 Example of ROC Curve . . . . . . . . . . . . . . . . . . . . . . . . 111

3.23 Sample reconstruction procedure . . . . . . . . . . . . . . . . . . . 112

vi



4.1 From Sound to Features Framework Flowchart . . . . . . . . . . . . 114
4.2 Machine Learning Fitting Algorithms Framework Flowchart . . . . 116

5.1 Comparison of the F1 Score for Turbo prediction . . . . . . . . . . 119
5.2 Comparison Confusion Matrices for Turbo prediction . . . . . . . . 120
5.3 ExtraTree for Turbo: ROC and PR Curves . . . . . . . . . . . . . . 121
5.4 Scoring Bars and Classification Report . . . . . . . . . . . . . . . . 122
5.5 Confusion Matrix of ExtraTrees reduced by Random Forest . . . . . 123
5.6 Dot Chart for comparison of features selection for Turbo . . . . . . 124
5.7 Detailed features importance by ExtraTrees in Turbo classification . 125
5.8 Bar Chart for features selection and importance for Turbo . . . . . 126
5.9 Comparison of F1 Scores for Fuel prediction . . . . . . . . . . . . . 128
5.10 Feature Selected by CatBoost . . . . . . . . . . . . . . . . . . . . . 129
5.11 Feature Selected by AdaBoost . . . . . . . . . . . . . . . . . . . . . 130
5.12 Report on Gradient Boosting for Essential . . . . . . . . . . . . . . 131
5.13 Report on Gradient Boosting Reconstructed for Essential . . . . . . 132
5.14 Report on XGBoost for Complete Set . . . . . . . . . . . . . . . . . 133
5.15 Comparison Confusion Matrices with 4 and 6 cylinders . . . . . . . 136
5.16 Report on Random Forest for European Model . . . . . . . . . . . . 138
5.17 Report on ExtraTrees for US Model . . . . . . . . . . . . . . . . . . 139
5.18 Report on Gradient Boosting for General Model . . . . . . . . . . . 140

vii



Abstract

This Thesis aims at solving the initial and fundamental step in the context of
vibroacoustic diagnostics applied to vehicles: engine classification. This goal is
supported by the creation of a flexible and user-friendly framework to be used for
further development. In Chapter 1, the smartphone-based vibroacoustic diagnos-
tics process is outlined, and the need for engine classification in this context is
motivated. In Chapter 2, the process of data collection and feature extraction is
presented together with examples of framework usage and dataset exploration. In
Chapter 3, the Machine Learning procedure is explained alongside with some in-
sights on the functioning of the classification algorithms. In Chapter 4, diagrams
present the high-level operational flow of the framework. In Chapter 5, results
are evaluated for three different labels: aspiration type (turbo), fuel, and cylinders
amount. Those labels are predicted sequentially in order to exploit the correlation
among them and to improve performance. This enables AI to reach ROC-AUC
higher than 93% in most cases. Finally, I will provide some next steps that may
enable the extension of this framework to different diagnostics fields, pursuing a
universal vibroacoustic diagnostics vision.



Chapter 1

Introduction and Motivation

The automotive world is changing, and there is increasing concern about vehicles’
environmental impact, particularly those with internal combustion engines. As a
result, there are increasingly efficiency-improving systems within vehicles. One sig-
nificant contributor to lifetime efficiency is the availability of in-vehicle diagnostic
systems that report faults early and accurately, which motivates owners and op-
erators to seek out preventative or corrective maintenance, enhancing safety and
reducing operating costs.

At the same time, mobility is evolving, transitioning from the need to own a car
towards mobility-as-a-service (MaaS). Today, vehicle sales are slowing despite con-
tinued high mobility demand: the average vehicle age and lifetime miles travelled
are increasing, particularly in developing countries [7, 127], and shared mobility ser-
vices, car rentals, and “robotaxis” are emerging. The resultant increased utilization
requires enhanced fleet data generation and management capabilities. Diagnostics
are also key to fleet management and may infer a vehicle’s condition based on
observed symptoms indicating a technical state [19].

In this introductory chapter, I motivate our work, its context, and long term
goals. This Masters Thesis is the first step in a long-term vision. I first explain
the need for Vehicle Diagnostics and how the “smartphone world” might enable
an acceleration in future innovation. Furthermore, I address one aspect of vehi-
cle diagnostics, namely vibroacoustic diagnostics, and more specifically acoustic
diagnostics, as well as some prior work that has been done in this field by other
researchers. This is to state that it is an already explored environment, but where
the potential to grow is considerable. In fact, I will then present an idea of frame-
work to converge all those optimal projects into a universal concept of diagnostics,
where the context in which we observe the system plays a crucial role. Finally, I
will explain in which part of this vision this Master Thesis is going to be located,
and the secondary goal set for this project.

This chapter is based upon a survey paper article we prepared for submission,
the preprint of which is available at https: // arxiv .org/ abs/ 2007 .03759 [104]
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Introduction and Motivation

1.1 Existing Methods for Vehicle Diagnostics

Diagnostics are important for monitoring vehicle, environment, and occupant sta-
tus (e.g. component wear, road conditions, or driver alertness). Historically, these
diagnostics draw upon in-situ sensors and computation to develop “On Board Di-
agnostics”.

1.1.1 On-Board Diagnostics (OBD)

On-Board Diagnostic (OBD) systems present on vehicles sold since 1996 [102] are an
automated control system utilizing distributed sensing across a vehicle’s embedded
systems as a technical solution for measuring vehicle operational parameters and
detecting, reporting, and responding to faults.

Sensors may capture signals (e.g. vibration, or noise) and algorithms extract
and process features, typically comparing these “signatures” against a library of
previously-labeled reference values indicating operating state and/or failure mode [34].
If a “rule” is triggered, an indicator is set to notify the user of the fault, and addi-
tional software routines may run to minimize the impact of the fault until the repair
can be completed (e.g. by changing fuel tables). OBD data have also been used
to enable indirect diagnostics, for example using the measured rate of change of
coolant temperature to infer oil viscosity and therefore remaining useful life through
constitutive relationships and fundamental process physics [103].

1.1.2 Non-OBD Systems

OBD is effective at detecting many fault classes, particularly those related to emis-
sions [30]. However, some failure modalities may not be detected by OBD, or may
be detected with slow response time or poor classification accuracy, because:

• Incentive misalignment discourages the use of high-quality (costly) sen-
sors, leading manufacturers to source the lowest-cost sensor capable of meet-
ing legislative standards. Relying upon the data generated by these sensors
leads to “GIGO” (Garbage In, Garbage Out) [108]

• Diagnostics may be tailored to under-report non-critical failures to im-
prove customer satisfaction, brand perception, and reliability metrics relative
to what might be experienced with an “overly sensitive” implementation

• OBD systems are single-purpose, meaning they correctly identify the symp-
toms of the faults for which they were designed, but small performance per-
turbations may not be detected. For example, a system designed to enhance
emissions may monitor engine exhaust gas composition continuously, but will
not indicate wear or component failures leading to increased emissions until
a legal threshold requiring occupant notification is surpassed [30].

2



Introduction and Motivation

OBD’s deficiencies are amplified by an ever-aging vehicle fleet [7, 127], though
older cars stand to gain the most from the incremental reliability, performance and
efficiency improvements enabled by adaptive and increasingly sensitive diagnos-
tics. While newer vehicles may have the ability to update diagnostic capabilities
remotely via over-the-air-updates [109], older vehicles may lack connectivity or the
computational resources necessary to implement these advanced algorithms. Fur-
ther, the sensor payload in the incumbent vehicle fleet is immutable, with no data
sources added post-production. Therefore, the vehicles most in need of enhanced
diagnostics are the least-likely to support them.

For these reasons, there is a need for updatable off-board diagnostics capable of
sensitive measurement, upgradability, and enhanced prognostic (failure predictive)
capabilities. A low-cost approach, even if imperfect, will enhance vehicle owners’
and fleet managers’ ability to detect, mitigate, and respond to faults, thereby im-
proving fleet-wide safety, reliability, performance, and efficiency.

1.2 Diagnostics Opportunities in the Mobile Rev-

olution

As the need for enhanced fleet-wide utility grows, so to does the challenge of moni-
toring increasingly diverse vehicles and their associated, complex subsystems. The
same enhancements driving the growth of in-vehicle sensing and connectivity have
simultaneously empowered a parallel advance: namely, the growing capabilities
of personal mobile devices. 70% of the world’s population is now using smart-
phones [57] possessing rich sensing, high-performance computation, and pervasive
connectivity - capabilities enabling a diagnostic revolution.

1.2.1 Smartphone Sensing Capabilities

While condition monitoring equipment has historically been cost-prohibitive, con-
temporary mobile devices include more sensors than ever, facilitating inexpensive
and performant data capture with minimal complexity (see [62] for an example of
pervasive mobile sensing as applied to human activity recognition). Initially, mo-
bile device sensors served to support core device functions, with software libraries
easing access to their data and widening their use cases into third-party applica-
tions [49] and analytics. Today, mobile device sensor support continues to grow, and
even older devices may add external sensors through serial, Bluetooth [50] or Wi-Fi
connectivity. Modern devices feature accelerometers, cameras, magnetometers, gy-
roscopes, GPS, proximity, light sensors and microphones that are accurate, precise,
high-frequency, efficient and low-cost [57, 49]. These capabilities have enabled the
large-scale use of mobile systems as sensing devices in two-thirds of experimental
research studies where such sensors are required [63].

3
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Figure 1.1. Size of sensor market worldwide in billion U.S. dollars. Years with
“*” are forecasts. Source: statista.com [116]

The use of mobile devices as pervasive sensors has an added benefit of embodying
intelligence. That is, untrained users with access to the appropriate applications
can make technically-sound judgments, identifying even those problems for which
the device user has no prior knowledge of its existence – and no awareness that the
application is scanning for such faults [105, 110]. This reduces the training burden
for mechanics and fleet managers, and makes operating larger and more-diverse
fleets feasible.

By shifting intelligence from cost-, energy- and performance-constrained, in-
vehicle hardware into third-party devices, the enabled algorithmic models may also
be made more computationally-intensive, more easily updated, provided with access
to higher-quality (and evolving) sensors and data, aggregable at a fleet level, and
airgapped from critical vehicle hardware and software.

This concept has been proven across domains. For example, introducing energy
into a physical sample and studying the transient response across diverse sensors
has been used to enable an individual to “tap” an object in order to determine its
class [47].

4
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1.2.2 Smartphone Computation and Connectivity Capabil-
ities

Pervasive connectivity enables diagnostics to utilize diverse data sources, and sup-
ports off-line processing and the creation of diagnostic algorithms capable of adapt-
ing over time. This is a result of having access to increased computational resources,
enhanced storage capabilities, and richer fingerprint databases for classification and
characterization. It also means that “fault definitions” may be updated at a re-
mote endpoint, such that diagnostics may improve performance over time without
requiring in-vehicle firmware upgrades, over-the-air (OTA) or otherwise.

To this end, mobile phone computing power has recently increased, with the
new mobile GPU Adreno 685 [118] reaching the computational power of Intel’s
1998 ASCI Red supercomputer [90]. Networking capabilities have similarly grown,
allowing for inexpensive global connectivity.

While some vehicles offer connectivity [102] which may be used to support
OBD’s evolution, the use of a third-party devices has an additional benefit to
manufacturers: with mobile devices, the users, not the manufacturer, pays for
bandwidth and hardware capability upgrades over time.

Mobile phones can augment or supplant the data generated by OBD, fusing
in-vehicle sensing with smartphone capabilities to enable richer analytics.

Smartphones offer clear benefits over (or in conjunction with) on-board sys-
tems, particularly when constraints such as battery life, computation, and network
limitations are thoughtfully addressed [57], and present a compelling enhancement
over automotive diagnostics’ “business as usual”.

1.2.3 Off-board Smartphone-based Diagnostics

There is an opportunity to use users’ mobile devices as “pervasive, offboard” sens-
ing tools capable of real-time and off-line vehicular diagnostics, prognostics, and
analytics. The capabilities of such tools are growing and they may soon supplant
on-board vehicle diagnostics entirely, moving diagnostics from low-cost OBD hard-
ware, frozen at time of production, to performant, extensible, and easily-upgradable
hardware and adaptive software algorithms capable of improving over time. The
advantage of this approach goes beyond performance improvements to increase
flexibility, enabling diagnostics that address any vehicle – new or old, connected or
isolated – taking advantage of rich data collection, better-characterizable sensors,
and scalable computing.

Many effective “pervasive” sensing technologies revolve around the concept of re-
mote sensing of sound and vibration utilizing onboard microphones and accelerom-
eters, sensors core to mobile devices. This class of sensing is termed “vibroacoustic
sensing,” as it captured vibration and acoustic emissions of an instrumented sys-
tem. Those consideratios led us to consider such sensors to improve diagnostics of
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vehicles in a flexible and revolutionary: it is called Vibroacustic Diagnostics.

1.3 Vibroacoustic Diagnostics

Vibroacoustic diagnostic methods originate from specialists troubleshooting mech-
anisms based on sound and feel, dating back to well before the time of Steinmetz’s
famous (and perhaps apocryphal) chalk “X” [114].

The vibroacoustic diagnostic method is non-intrusive, as sound can traverse
mediums including air and “open” space and vibration can be conducted through
surfaces without rigid mounting. It is therefore an attractive option for monitoring
vehicle components [34]. Experientially-trained mechanics may be highly-accurate
using these methods, though there may be future specialist shortages [12] leading
to demand for automated diagnostics.

There has been work to automate vibroacoustic diagnostics. Sound and vibra-
tion captured by microphones and accelerometers, for example, has been used as a
surrogate for non-observable conditions including wear and performance level [19].
Low-cost microphones have been used to identify pre-learned faults and differentiate
normal from abnormal operation of mechanical equipment using acoustic features,
providing a good degree of generalization [126]. Like sound (which itself is a vi-
bration), vibration has been used as a surrogate for wear, with increasing intensity
over time reasonably predicting time-to-failure [26]. In fact, accelerometers have
also been used to infer machinery performance using only vibration emissions as
input [46]. Vibrational analysis may be coupled with OBD systems to improve
diagnostic accuracy and precision, [72], or used in lieu of onboard measurements.

Vibroacoustics, counterintuitively, may be more precise than OBD because air-
gaps provide a mechanism for isolating certain sounds and vibrations from sensors.
While vibration may therefore be used to capture “conductive” time-series data,
acoustic signals may be preferable in certain applications as the mode of transmis-
sion may serve to pre-condition input data and may transmit information related
to multiple systems simultaneously [34].

Some diagnostic fingerprints are developed based on understanding of the under-
lying physical process, whereas others are latent patterns learned from experimental
data collection [34].

1.3.1 Physics-based approach

Real-world systems have inputs including energy, materials, control signals, and
perturbation. It is possible to directly-measure inputs, outputs, and machine per-
formance, but indirect measurement of residual processes (heat, noise, etc.) may
be less-expensive and equally-useful diagnostically [19].
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Vibration and sound are energy emissions stemming from mechanical interac-
tions. Due to inherent imperfections, even rotating assemblies, such as gear meshes,
may be modeled as a series of repeated impact events producing a characteristic
noise or lateral motion [29].

If one understands these processes, it becomes possible to model them and to
engineer a series of features useful for system characterization. Modelling and pro-
cessing techniques include frequency analysis, cepstrum analysis, filtering, wavelet
analysis, among others. These generate features that are more-robust to small per-
turbations and therefore resistant to overfit when used in machine and deep learning
algorithms. Other features describing waveforms may provide better discriminative
properties. The features selected are informed by the engineer’s knowledge of the
physical process and what she or he believes likely to be informative in differentiat-
ing among particular states. Careful feature selection has the potential to improve
diagnostic performance as well as reducing computation time, memory and storage
requirements, and enhancing model generalizability.

1.3.2 Vibroacoustic Challenges

Though VA is a compelling solution, it requires significant and diverse training
data to achieve high performance and classification or gradation algorithms may
be computationally-intensive and tailored to highly-specific systems. Accepting
minimally-reduced performance to enhance algorithm generalizability and reduce
computational performance, and/or shifting computation to scalable Cloud plat-
forms, has the potential to make VA more powerful as a condition monitoring and
preventative maintenance tool for vehicles and other systems.

At the same time, smartphone processing power is increasing, and it may be
possible to use a mobile device as a platform for real-time acoustic capture and
processing, as demonstrated by Mielke [77], and to do the same for vibration capture
and analysis [26].

Algorithms trained on few measurements may be inherently unstable, so multi-
device crowdsourcing improves acoustic measurement classification confidence [131].
Diverse, distributed devices lead to better training data and enhanced confidence
in diagnostic results, though it is challenging to balance accuracy with system
complexity [37] and to ensure samples represent usable input signals rather than
background noise [34].

These challenges can be managed with careful implementation, helping pervasively-
sensed VA attain strong performance when utilizing system-specific models for di-
agnostics and proactive maintenance within automotive and other contexts.
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1.4 Impact of Artificial Intelligence

Vibration can be described by a mono-dimensional signal expressing the amplitude
as a function of time. Sound is a specific component of vibrational signals, charac-
terized by frequencies inside human ear’s rage (20Hz-20kHz). Sound is a generated
by vibration and/or impact of objects that transmits their motion to a medium
(e.g. air), generating a pressure wave. This wave is spread through the medium
and can be captured by some sensors and encoded into a digital signal. In digital
terms, this signal is composed by a sequence of values defining the amplitude of the
signal in that time instant. In this regard, sampling rate plays a crucial role in con-
verting the analogical signal to digital one, as explained by the Nyquist–Shannon
sampling theorem. The analysis of a digital signal is generally done with two main
general techniques, or a combination of the two:

1. Signal Processing: It is a technique which deals with the analysis of digi-
tized and discrete sampled signals. It requires a lot of supervision, and each
rule has to be specifically defined by the designer. It may become very com-
plex when the relationships are non-linear, when the amount of data is high
or when it is unclear which factors are important to determine the output.

2. Machine Learning on the other hand, is a technique allowing the algorithm
to improve automatically through experience and to build the mathematical
model from the sample data (see Section 2.1). The supervision requires is less,
it can handle non-liner relationships, but it is more difficult to understand
why the algorithm made some choices.

Since this problem is rather hard for a human to solve, if he had to look at the
digital signal alone, the majority of researches done in vibroacoustic diagnostics
make use of some kind of machine learning algorithm. Signal processing is still very
important as a preprocessing tool to help machine learning algorithms to perform
better. The reasons why artificial intelligence has become more mainstream in the
last years is due to three main aspects:

• Following some modified version of the Moore’s Law, the amount of computing
power has risen very fast in the last years, so that nowadays everyone is able
to run those algorithms on its personal computer, or even on its mobile phone.

• AI algorithms require a relatively big amount of data, that was not possible
to imagine just some years ago. Data are nowadays more available and easier
to collect. This is mainly ensured by the amount of mobile devices around
equipped with a lot of sensors, as explained in Section 1.2. All data of our
work have been collected by smartphones’ microphones, for example, and the
equipment required for such procedure would have been too expensive and
complicated.
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• Availability of Open Source software and libraries, allowing everyone to get
access to those powerful tools.

1.5 Prior Art

Algorithms of Artificial Intelligence have proven their way into signal analysis
thanks to their flexibility and powerful results. Researchers across the world devel-
oped systems to monitor the three main players when it comes to drive a car:

• Vehicle identification and component-level diagnostics (Section 1.5.1)

• Vehicle Operating State, e.g. whether it is moving, the position of the throttle,
steering, etc. (Section 1.5.2)

• Occupant and driver behavior monitoring and telemetry (Section 1.5.3)

• Environmental measurement and context identification (Section 1.5.4)

1.5.1 Vehicle Condition

Vehicles are increasingly complicated, though their mechanical embodiment typi-
cally comprises systems that translate and rotate, vibrating through use. There is
a corpus of prior art focused on analysis of such systems.

One example comes from Shen, et al., who developed an automated means of
extracting robust features from rotating machinery, using an auto-encoder to find
hidden and robust features indicative of operating condition and without prior
knowledge or human intervention [101]. Mechanical systems wear down, leading to
different operating states that a diagnostic tool must be able to detect in order to
time preventative maintenance properly. To address this need, a ”sound detective”
was created to classify the different operating states of various machines [75].

Another approach to vibrational analysis utilizes constrained computation and
embedded hardware. A Raspberry Pi was used to diagnose six common automotive
faults using deep learning as a stable classification method [67].

Engine and Transmission

Automotive engines, as with other reciprocating machinery, are difficult to diagnose
because of the coupling among subsystems. Engines generate sound stemming from
intake, exhaust, and fans, to combustion events, valve-train noise, piston slap, gear
impacts, and fuel pumping. Each manifests uniquely and transmits across varied
transmission-pathways, as examined in this comprehensive survey related to the
use of vibroacoustic diagnostics for ICE’s [34]
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For this reason, audio may be more suitable than vibration for identifying faults
as the air-transmission path eliminates some system-coupling, making it easier to
disaggregate signals [34].

In many studies, complete and accurate physical fault models are not available,
so signal processing and machine learning techniques help improve classification
performance. There are techniques for signal decomposition to better-highlight
and associate features with significant engine events, and it is possible to guide
classification tools through curated feature engineering including time-frequency
analysis, or wavelet analysis [34].

Sensing engines can be done on resource-constrained devices and still enable
continuous monitoring, with hardware-agnostic algorithm implementations [69].
Another example used an Android mobile device to record vehicle audio, create
frequency and spectral features, and detect engine faults by comparing recorded
clips with reference audio files, where the authors could detect engine start, drive
belt issues, and excess valve clearance [80].

Engine misfiring is a typical within older vehicles due to component wear. Mis-
fires have been detected in a contact-less acoustic method with 94% accuracy,
relative to 82% accuracy attained from vibration signals. Without opening the
hood and recording at the exhaust, the authors reached 85% classification accuracy
from audio (which again outperformed vibration) [113]. While some algorithms
have been developed without physical process knowledge, others make use of sys-
tem models to improve diagnostic performance. Use of aspects of the physical
model help reduce algorithm complexity, requiring a feature engineering work be-
fore analysing the input data.

Siegel used feature extraction to reach 99% fault classification accuracy in an-
other study of misfires, well exceeding the prior art. This work demonstrates that
feature selection and reduction techniques based on Fisher and Relief Score are
effective at improving both algorithm efficiency and accuracy. Data were collected
from a smartphone microphone [111]. Similar acoustic data and engineered features
have been successfully used to monitor the condition of engine air filters, helping
to precisely time change events [106].

Some feature engineering techniques, such as wavelet packet decomposition used
in Siegel’s misfire and air filter work, have found application in other engine diag-
nostic contexts such as identifying excessive engine valve clearance [43] and com-
bustion events [91]. Other common faults relating to failed engine head gaskets,
valve clearance issues, main gearbox, joints, faulty injectors and ignition compo-
nents can also be detected thanks to vibrational analysis [60]. Transmissions, too,
may be monitored, and a damaged tooth in a gear can be diagnosed capturing
sound and vibration at a distance [29]. Even high-speed rotating assemblies, such
as turbochargers, can be monitored – turbocharging is increasingly common to meet
stringent economy and emissions standards, and engine compression surge has been
identified and characterized by sound and vibration [73].
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Non-automotive engines and fuel type can also be identified using Vibroacoustic
approaches. Smartphone sensors were used to classify normal and atypical tappet
adjustments of tractor engines with 98.3% accuracy [96], and fuel type can be
determined based on vibrational mode – with 95% accuracy [8].

Other studies have used physics to guide feature creation for indirect diagnostics,
e.g. measuring one parameter to infer another. In [103] for example, the authors
originally used engine temperature over time as a surrogate measure for oil viscosity
and found promising results relating dT

dt
to viscosity. As it turns out, vibration may

be used as further abstraction. By measuring engine vibration one may determine
the engine speed (RPM) and it is possible to determine whether the car is in
gear [107] to identify when the car is at rest. As an extension of our previous work,
we now note that using knowledge of the car’s warm-up procedure (which typically
involves a so-called “fast idle” until the engine warms up to temperature, to reduce
emissions), is therefore possible to time how long it takes to go from fast idle (where
the engine runs quickly to warm up and therefore reduce emissions) to slow idle and
infer temperature from vibration, thereby creating a means of inferring oil viscosity
from vibration alone and without the use of onboard temperature data.

For the scope of minimize the knowledge gap between vehicle operators and
expert mechanics, a mobile application called OtoMechanic has been designed. It
uses sound to improve diagnostic precision relative to that of untrained users. In-
telligence is embedded in a mobile application wherein a user uploads a recording of
a car and answers related questions to produce a diagnostic result. The application
works by reporting the label of the most-similar sample in a database as determined
by a convolutional neural network (VGGish model). Peak diagnostic accuracy is
58.7% when identifying the correct class from twelve possibilities [79].

Algorithms have the most value when they are transferrable, as they can be
trained on one system and applied to another with high performance. In one study,
transferrability across similar engine geometries of different cars was considered in
the context of detecting piston and cylinder wear, and measuring valve-train and
roller bearing state [12].

Powertrain diagnostics are important, but it is equally important to instrument
other vehicle subsystems. We look next to how offboard diagnostics have been
applied to vehicle suspensions as a means of improving performance, safety, and
comfort.

Wheel, Tire and Suspension

As with powertrain diagnostics, suspensions may be monitored using vibroacoustic
analysis, optical and other methods, or a combination of both.

In terms of vibroacoustic analysis, wireless microphones have been used to mon-
itor wheel bearings and identify defects based on frequency-domain features [88],
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and vibration analysis has been implemented o detect remaining useful life of me-
chanical components such as bearings [124]. Similar data sources and algorithms
have been exploited to identify the emergence of cracks in suspension beams [13].

Other vibroacustic approaches have been implemented, using accelerometers
and GPS to measure tire pressure, tread depth, and wheel imbalance [112, 107],
primarily using frequency-based features. Such solutions could be extended to
instrumenting brakes, using frequency features and low-pass acceleration to measure
specific pulsations occurring only under braking, or gyroscopes, to measure events
taking place only when turning (or driving in a straight line).

As noted earlier, researchers have demonstrated a means of diagnosing six ve-
hicle component faults using vibration and Deep Learning Diagnostics algorithms
running within constrained compute environments. Some of these diagnostics tar-
get wheels and suspensions, specifically at wheel imbalance, misalignment, brake
judder, damping loss, wheel bearing failure, and constant-velocity joint failure.
Each fault was selected as manifesting with characteristic vibrations and occurring
at different frequencies. This research required vehicle to be driven at particular
speeds in order to maximize signal.

Bodies / Noise, Vibration, and Harshness

Recent studies have utilized MEMS accelerometers (micro electro mechanical sys-
tems devices) to investigate vehicle vibration indicative of vehicle body state and
condition. Specifically, MEMS accelerometers allow the diagnosis of articulation
events in articulated vehicles, e.g. buses. In one study, sensors were placed within
the vehicle, with one located within each of the two vehicle segments in order to
detect articulation events and monitor changes in bearing play resulting from wear
and indicating a need for maintenance [123].

Vehicle occupants value fit and finish and a pleasant user experience while riding
in a vehicle. To this end, there is an unmet need for realtime noise, vibration,
and harshness (NVH) diagnostics. VA and other offboard techniques may find
application in identifying and remediating the source of squeaks, rattles, and other
in-cabin sounds in vehicles after delivery from the factory.

1.5.2 Vehicle Operating State

Beyond monitoring vehicle condition and maintenance needs, offboard diagnostics
have the potential to identify vehicle operating state in realtime, e.g. to iden-
tify whether a vehicle is moving or not, the position of the throttle, steering, or
braking controls, or in which gear the selector is currently placed. To this end,
mobile devices can be used to enable sensitive classification algorithms making use
of accelerometers and cameras.

At their simplest, mobile devices may be used to detect whether someone is
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in a car and driving [99]. Some context-aware applications use sensor data to
detect whether a vehicle is moving, and if so, to undertake appropriate actions
and adaptations to enhance occupant safety, e.g. by disabling texting while in
motion [5]. The aforementioned study made use of accelerometers to supervise
and eliminate false positive events from the training dataset, ultimately yielding a
performance with 98% specificity and 97% sensitivity [5].

Others have used similar data to detect the operating state of a vehicle in order
to identify lane changes or transit start- and end-points, using smartphones [119].

Vehicle operating state is an ongoing area of research, with new developments
exploring:

1. Accelerometer-based accident detection and response [37], including one re-
search project wherein smartphones were used to detect and respond to inci-
dents taking place on all-terrain vehicles and capable of differentiating “nor-
mal” driving from simulated accidents with over 99% confidence [74]. Some
approaches use these data to automate rerouting [37]

2. Using K-means clustering with acceleration data to identify driving modes,
such as idling, acceleration, cruising, and turning as well as estimating fuel
consumption [68] (there are multiple methods for using mobile sensors as
surrogate data to indirectly estimate fuel consumption) [58].

This area of research is fast-evolving, particularly as context-sensitive applica-
tions gain prominence. Another fast-emerging application of pervasive sensing and
offboard diagnostics is to occupant state and behavior monitoring.

1.5.3 Occupant Monitoring

Many automotive incidents resulting in injury or harm to property result from
human activity. It is therefore essential to monitor not only the state and condition
of a vehicle, but also to supervise the driver’s state of health and attention in order
to reduce unnecessary exposure to hazards and to promote safe and alert driving [2].

Occupant monitor (including drivers and passengers) may be grouped broadly
into three categories:

1. Occupant State, namely health and the capacity to pay attention to and
engage with the act of driving

2. Occupant Behavior, namely the manner of driving, including risks taken and
other parameters informing telemetry, e.g. for informing actuarial models for
insurers or for usage-based applications [108]

3. Occupant Activities, namely the actions taken by occupants within the vehicle
(e.g. texting), with particular application to preventing or mitigating the
effects of hazardous actions
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Occupant State

Vehicle occupant state may be monitored for a variety of reasons, e.g. related
to drowsiness, drunkenness, or drugged behavior. Mobile phones have been used
to detect and report drunk driving behavior, with accelerometers and orientation
sensors informing driving style assessments indicative of drunkenness [37, 31]

The main issue with occupant state is related to drunk driving state. With
mobile phones placed in the vehicle there is the opportunity to detect that particular
condition observing both the driving style [37] (using accelerometers and orientation
sensors) [31] and the driver alertness monitoring the eye state with mobile device
camera [32]. As with vehicle diagnostics, multiple sensor types may be used to
monitor driver state [57].

Counter-intuitively, as highly automated driving grows in adoption, there will
be growing demand for occupant metrics - at first, to ensure that drivers are “safe to
drive,” and later, to make judgments as to how much to trust a driver’s observations
and control inputs relative to algorithms, e.g. to trust a lane keeping algorithm
more than a drunk driver, but less than a sober driver.

Occupant Behaviors and Telemetry

Smartphones have been widely deployed in order to develop telematics applications
for vehicles and their occupants as a form of “off board supervision” [132, 133].
These data have been used by insurance companies to monitor driver behaviors
and to develop bespoke policies reflecting real-world use cases, risk profiles, and
driver attitudes.

Pervasively-sensed data are used in three main insurance contexts, helping to:

1. Monitor a driver and/or vehicle’s distance traveled, supporting usage-based
insurance premiums [130].

2. Supervise eco-driving [37], using metrics such as vehicle use or driver behavior
(including harshness of acceleration and cornering, with demonstrated per-
formance achieving more than 70% accurate prediction [82]) to guide more-
conservative behavior. Related to this, vehicle speed can be monitored with
smartphone accelerometers alone, with an accuracy within 10MPH of the
ground truth [129].

3. Observe driver strategy and maneuvering characteristics, to assess actuarial
risk [37] and feed models with real-world data [130] to inform premium pric-
ing. This information may be used as input into learned statistical models
representing drivers, vehicles, and mobile devices to detect risky driving ma-
neuvers [17]. Notably, driving style and aggression level can be detected with
inexpensive multi-purpose mobile phones [85, 53] and vehicles or drivers may
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be tracked to identify the potential for high risk operation [51], in cases with
no additional sensors installed in the vehicle [39].

Other behavior monitoring and telemetry use cases relate to safety, providing
intelligent driver assistance by estimating road trajectory [85], using smartphones to
measure turning or steering behavior (with 97.37% accuracy [81]), classifying road
curvature and differentiating turn direction and type [141], or offering even-finer
measure of steering angle to detect careless driving or to enhance fine-grained lane
control [21]. In [142], the authors were able to identify straight driving, stationary,
turning, braking, and acceleration behaviors independently on the orientation of
the device. These approaches may use several learning approaches, though many
use end-to-end deep learning framework to extract features of driving behavior from
smartphone sensor data.

Occupant Activity

Human activity recognition has been widely studied outside vehicular contexts,
and the performance of such studies suggest a likely transferrability to vehicular
environments, with pervasive (ambient) or human monitoring gaining prominence.
We consider in-vehicle and non-vehicular activity recognition in this survey, as the
techniques demonstrated may inspire readers to reapply prior implementations or
to adapt their methods to automotive contexts.

In this study, we consider three categories of “off-board” sensing for human
activity recognition.

1. In vehicle activity recognition: Similarly to the use of pervasive sensing
for drunk driver detection, mobile sensing has been applied to the recogni-
tion of non-driving behaviors within vehicles, for example distracted driv-
ing and texting-while-driving. Detecting texting-while-driving is based upon
the observation of turning behavior, as measured by a single mobile de-
vice [11]. Mobile sensing solutions making use of optical sensors have also been
demonstrated to detect driving context and identify potentially-dangerous
states [65]. A survey of smartphone-based sensing in vehicles has been de-
veloped, describing activity recognition within vehicles including driver mon-
itoring and the identification of potentially-hazardous situations [37].

2. Workshop activity recognition: Human-worn microphones and accelerom-
eters have been used to monitor maintenance and assembly tasks within a
workshop, reaching 84.4% accuracy for eight-state task classification with no
false positives [70]. In another study, similar sensors were used to differentiate
class categories included sawing, hammering, filing, drilling, grinding, sand-
ing, opening a drawer, tightening a vice, and turning a screw driver using
acceleration and audio data. For user-independent training, the study at-
tained recall and precision of 66% and 63% respectively [134]. The methods
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demonstrated in identifying different work- and tool-use contexts may provide
the basis for identify human engagement with various vehicle subcomponents,
e.g. interaction with steering wheels, pedals, or buttons, helping create richer
“diagnostics” for vehicle occupants and their use cases.

3. General activity recognition: Beyond identifying direct human-equipment
interactions, mobile sensing has been applied to the creation of context-
predictive and activity-aware systems [25]. Wearable sensors and mobile
devices with similar capabilities have been used to detect user activities in-
cluding eating, drinking, and speaking, with a four-state model attaining
in-the-wild accuracy of 71.5% [139]. In another study, user tasks were iden-
tified over a 10-second window with 90% activity recognition rate [62]. In
vehicles and mobile devices, computation is often constrained. Researchers
have demonstrated activity classification using microphone, accelerometer,
and pressure sensor from mobile devices in a low-resource framework. This
algorithm was able to recognize 15-state human activity with 92.4% perfor-
mance in subject-independent online testing [59].

Related to tailoring user experience, acoustic human activity recognition is
an evolving field aimed at improving automotive Human Machine Interfaces
(HMI) suitable across contexts. In one study, 22 activities were investigated
and a classifier was developed reaching an 85% recognition rate [117]. Acous-
tic activity recognition may also be applied directly to general activity detec-
tion.

In consumer electronics, activity or context recognition may be used to detect
appliance use or to launch applications based on context, or used as sound
labeling system thanks to ubiquitous microphones. Sound labeling and activ-
ity/context recognition helps augment classification approached by defining
a context (environment) in order to limit the set of classes to be recognized
before classifying an activity based on available mined datasets. In one sam-
ple application, 93.9% accuracy was reached on prerecorded clips with 89.6%
performance for in-the-wild testing. The demonstrated system was able to
attain similar-to-human levels of performance, when compared against hu-
man performance using crowd-sourcing service Amazon Mechanical Turk [64]
In [36] human feedback is used to provide anchor training labels for ground
truth, supporting continuous and adaptive learning of sounds.

Detecting activities within a vehicle - using acoustic sensing or other approaches -
may help to tailor the vehicle user experience based on real-time use cases. Studying
existing techniques for general activity recognition and applying this to an automo-
tive context has the potential to improve the occupant experience as well as vehicle
performance and reliability.
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Of course, monitoring vehicles and their occupants alone does not yield a com-
prehensive picture of a vehicle’s use case or context: the last remaining element to
be monitored is the environment.

1.5.4 Environment

Environment monitoring is a form of off-board diagnostic that may help to disaggre-
gate “external” challenges from problems stemming from the vehicle or its use, e.g.
in separating vibration stemming from cracks in the road from vibration caused
by warped brake rotors. Environment monitoring is also a crucial step towards
autonomous driving, helping algorithms understand their constraints and operate
safely within design parameters.

Already, smartphones can be used as pervasive sensors capable of comple-
menting contemporary ADAS implementations. In one study, vehicle parame-
ters recorded from a mobile device accelerometer have been used to measure road
anomalies and lane changes [48]. Vibroacoustic and other pervasively-sensed mea-
surements have also been used for environment analysis. These may be used to
calibrate ADAS systems by monitoring road condition, to classify lane markers or
curves, to measure driver comfort levels, and as traffic-monitoring solutions. Some
example pervasively-sensed environment monitoring approaches are described as
follows:

• Pavement road quality can be assessed by humans, though mobile-only so-
lutions [115] may be lower-cost, faster, or offer broader coverage. Accelerome-
ters may be used for detecting defects in the road such as potholes [37, 100, 40,
28] or even road surface type (e.g. gravel detection, to adapt antilock braking
sensitivity) [6]. Road-surface materials and defects may also be detected from
smartphone-captured images using learned texture-based descriptors [27]. It
is also relevant to consider the weather when monitoring the road surface
condition for safety, and microphone-based systems have demonstrated per-
formance in detecting wet roadways [1]. Captured at scale, smartphone data
may be used to generate maps estimating road profiles, weather conditions,
unevenness, and mapping condition more precisely and less expensively than
traditional techniques [143, 98], with enhanced information perhaps improv-
ing safety [122]. These data may be used to report road and traffic conditions
to connected vehicles [95].

• Curve data and road classification may integrate with GPS data to increase
the precision of navigation system. Mobile phone IMU’s have been used to
differentiate left from right and U-turns [141], and it is reasonable to believe
that combining camera images with IMU data (and LiDAR point clouds, if
available), may help to generate higher-fidelity navigable maps for automated
vehicles.
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• The comfort level of bus passengers has been investigated with mobile phone
sensors, attaining 90% classification accuracy for defined levels of occupant
comfort [23].

• Mobile sensing has been used to detect parking structure occupancy [22].

• Acoustic analysis of traffic scenes with smartphone audio data has been used
to classify the “busyness” of a street, with 100% efficacy for a two-state model
and 77.6% accuracy for a three-state model. Such a solution may eliminate
the need for dedicated infrastructure to monitor traffic, instead relying on
user device measurements [131]. In [93], the authors implemented a 10-class
model, classifying environments based on audio signatures indicating energy
modulation patterns across time and frequency and attaining a mean accuracy
of 79% after data augmentation. Audio may also be used to estimate vehicular
speed changes [61]

• Offboard sensors lead many lives - as phones, game playing devices, and
diagnostic tools - so it is important for devices to be able to identify their own
mobility use context. One approach uses mobile device sensors and hidden
markov models to detect transit mode, choosing among bicycling, driving,
walking, e-bikes, and taking the bus, attaining 93% accuracy [138], which
may be used to create transit maps and/or to study individuals’ behaviors [3]

Though the described approaches relate primarily to cars, trucks, and busses,
many solutions apply to other vehicles as well. Off-board diagnostics for additional
vehicle classes are described below.

1.5.5 Non-automobile Vehicles

Off-board and vibroacoustic diagnostics capabilities may be used for non-automotive,
truck, or bus-type vehicles, including planes, trains, ships, and more:

• As with cars, train suspensions and bodies have been instrumented using
vibroacoustic sensing. Train suspensions have been instrumented and mon-
itored using vibrational analysis [24]. Brake surface condition has also been
monitored with vibroacoustic diagnostics [97]. Train bodies (NVH) have also
been monitored, notably the doors on high-speed trains. Their condition may
be inferred with the use of acoustic data [120].

• Aerial vehicle propellers are subjected to high rotational speeds. If imbal-
anced or otherwise damaged, measurement of the resulting vibrations may
lead to rapid fault detection and response [52].
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• In maritime environments vibroacoustic diagnostics has been implemented
with the use of virtualized environments and virtual reality to allow remote
human experts with access to spatial audio and body-worn transducers to
diagnose failures remotely [10].

The applications for off-board, pervasive sensing and vibroacoustic diagnostics
for system, environment, and context monitoring will continue to grow across ve-
hicle classes.

1.6 A Need for Context-Specific Models

Often, classification relies upon generalizable models to ensure the broadest appli-
cability of an algorithm, perhaps at the expensive of performance. Occasionally,
classifiers - such as activity recognition algorithms - may make use of “personalized”
models. Personal Models are trained with a few minutes of individual (instance-
specific) data, resulting in improved performance [135]. This approach may be ex-
tended from activity recognition to off-board vehicle diagnostics, with the creation
of instance- or class-specific diagnostics algorithms. Selecting such algorithms will
therefore first require the identification of the monitored instance or class, which is
an ongoing research challenge.

We propose the creation of a “context-based model selection system,” aimed
at identifying the instrumented system precisely such that tailored models may be
used for diagnostics and condition monitoring.

Differentiating among vehicle makes, models, and use contexts will allow tai-
lored classification algorithms to be used, with enhanced predictive accuracy, noise
immunity, and other factors - thereby improving diagnostic accuracy and precision,
and enabling the broader use of pervasive sensing solutions in lieu of dedicated
onboard systems.

There are grounds to believe that implementing such a system is feasible. Au-
tomotive enthusiasts can detect engine types and often specific vehicle makes and
models from exhaust notes alone - and researchers have demonstrated success using
computer algorithms to do the same, recording audio with digital voice recorders,
extracting features, and testing different classifiers - finding that it is possible to
use audio to differentiate vehicles [9].

The more the application knows or infers about the instrumented system, the
more accurate the diagnostic model implemented may become.

1.6.1 A Representative Implementation

Though there are a multitude of ways in which to implement such a system, the au-
thors have given consideration to several architectures and identified one promising
path forward. The following subsections describe a representative implementation
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upon which a contextual identification system and model selection tool may be
built in order to improve diagnostic accuracy and precision for vibroacoustic and
other approaches.

The concept begins with the notion of Contextual Activation, i.e. the ability for
a mobile device to launch a diagnosticsapplication in background when needed, just
as it might instead load a fitness app when detecting motion indicative of running.

With the application launched, sensor samples may be recorded, e.g. from the
microphone and accelerometer. These data may then be used to identify the vehicle
and engine category, perhaps classifying these based entirely on the noise produced,
or in concept with additional data sources, such as a connected vehicle’s Bluetooth
address, its user/company’s vehicle management database and so on.

Once the vehicle and variant is identified, this information may be used to
identify operating mode, and from this, a “personalized” algorithm may be selected
for diagnostic or other activities.

In aggregate, the system might be imagined along the lines of a decision tree
– by selecting the appropriate leaf corresponding to the vehicle make, variant,
and operating status, it becomes possible to select a similarly-specific prognostic or
diagnostic algorithm tailored to the particular nuance of that system. Implemented
carefully, the entire system may run seamlessly, such that the sample is captured,
the context is identified, and the user is informed of issues worth her or his time,
attention, and money to address.

1.6.2 Contextual Activation

This seamlessness is key to the success of the proposed pervasive sensign concept
– to maximize the utility of a diagnostic application, it must require minimal user
interaction. The use of contextual activation enables the application to operate data
capture only when the mobile device is in or near a vehicle, and the vehicle is in the
appropriate operating mode for the respective test (e.g. on, engine idling, in gear,
or cruising at highway speeds on a straight road). This allows the software (built as
a dedicated application inside the mobile device) to operate as a background task
or to be launched automatically when the mobile device detects it is being used
within an operating vehicle.

Other potential implementations of this automatic, context-based software ex-
ecution include automatic application launching when the phone is connected via
Bluetooth to the car, or when a mapping or navigation application is opened. In
this specific situation, the GPS and accelerometer may be utilized to understand
the specific kind of road the vehicle is running on, as well as its speed, e.g. to disal-
low certain algorithms such as those used to detect wheel imbalance from running
on cracked or gravel roads.

One possible embodiment of the system may comprise a “context layer” for
generating characteristic features and/or uniquely-identifiable “fingerprints” for a
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particular system, which then passes system-level metadata (system type, other
details, and confidence in each assessment), along with raw data and/or fingerprints
to a classification and/or gradation system. This “context layer” may be used both
in system training and testing, such that recorded samples may exist alongside
related metadata and therefore allow for classification and gradation algorithms to
improve over time, as increasing data volume generates richer training information
even for hyper-specific and rare system configurations.

The application may therefore capture raw signals and preprocess engineered
features to be sent to a server (these fingerprints are space-efficient, easier to
anonymize, more difficult to reverse, and repeatable), uploading these data at reg-
ular intervals.

1.6.3 Vehicle (and Instance) Identification

The next step after identifying that the mobile device is in or near a vehicle will
be vehicle identification, or identification of a grouping of similar vehicle variants.
Depending on the system to be diagnosed, similarities may take place as a result
of engine configuration, suspension geometry, and so on.

A vehicle “group” may be identified by engine type - that is, configuration,
displacement, and other geometric and design factors. For example, we may classify
an engine to be gasoline powered, with an inline configuration, having 4 cylinders
with 2.0 liters of displacement, turbocharged aspiration, and manufactured by Ford.

If in our database we do not have any available diagnostic algorithm (e.g. a
misfiring test [111]) for this engine type, we then look at increasingly less-specific
parent class models, such as generic car-maker-independent gasoline I4 2.0 turbo
engine. If this is also not available, we go higher- and higher-level until it is nec-
essary to use the least-specific model, in this case, a model trained for all gasoline
engines - at the cost of potentially-decreased model performance. Alternatively, we
may consider to use a similar engine, with slight difference in displacement or pow-
ered by LPG fuel. A representative model selection process, indicating a means of
identifying a vehicle variant and then selecting the most-specific diagnostic model
available in order to improve predictive accuracy is shown in Figure 1.6.3.

Extending this process, it may become possible to identify a particular vehicle
instance, particularly based on features learned over time (e.g. indicating wear).

Other subsystems, such as bodies and suspensions, are harder to identify -
but may still be feasible. For example, identifying operating context and road
condition may be used to identify when a car hits a pothole, with the post-impact
oscillations indicating the spring rate, mass, and damping characteristics indicative
of a particular vehicle make or model. As with engines, subtleties may be used to
identify vehicle instances, e.g. damping due to tire inflation.

If the vehicle is known to the mobile device user and “short list” of vehicles
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Figure 1.2. Model selection process based on context identification. Once the
engine is identified in a tree, and operating state is determined, a more or less
“personalized” trained model is selected

frequented by the user, this portion of the classification may be replaced by ground-
truth information, or selection may be made among a smaller/constrained subset of
plausible options. Moreover, if we activate the application based on the Bluetooth
connection indicating proximity to a particular vehicle, we may identify it with
near-certainty. In order to reduce the degree of user interaction required, we may
use this and other automation tools to identify vehicles and operating context in
order to run engine and other diagnostics as a sort of background process.

1.6.4 Context Identification

Once the vehicle is selected, its context must be identified. Context classification
uses vibroacoustic cues (and vehicle data, if available) to identify the operating
state of the engine, gearbox, and body. For example, is the engine on or off? If
it is on, what is the engine RPM? Is the gearbox in park, neutral, or drive – or
if a manual transmission, in what gear is the transmission, and what is the clutch
state?

Some algorithms will be able to operate with minimal information related to
vehicle context (e.g. diagnosing poor suspension damping may require the vehicle
simply to be moving as determined by GPS, whereas measuring tire pressure may
require knowing the car is in gear [107] and headed straight [112] to minimize the
impact of noise and other artifacts on classification performance.
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With context selection, we follow a similar process to that used for vehicle type
and instance identification, selecting the model with metadata best reflecting the
instrumented system to ensure the best fit and performance.

In an example implementation, we might create a decision tree to identify the
current vehicle state - with consideration given to engine operating status, gear
engagement, motion state, and other parameters - and rather than using this tree
to select a model for diagnostics, we may prune this tree to suit a particular di-
agnostic application’s needs (e.g. engine power might not matter for an interior
NVH detection algorithm, or a tire pressure measurement algorithm may require
the vehicle to be moving to function [112]. The pruned tree may then be used to
select the ideal algorithm with the most-specific match between the training data
and the current operating context.

With complicated vehicle operating contexts, and with systems measured under
uncertainty, binary states may not be sufficient to describe the system status. For
this reason, we instead propose the use of a three-state system comprising values
of −1, 0, and 1.

If a context parameter is 1, it is true or the condition is met. If it is 0, it is
false, or the condition is not met. If an identified context parameter is a negative
value (−1) that means it is unnecessary for the diagnostic application, not available,
uncertain, or not applicable (e.g. lateral acceleration is not applicable if a vehicle
is stationary).

These negative values are removed from the input feature vector, and the cor-
responding element class is also removed from the reference database. In this way,
a nearest neighbor matching algorithm will ignore uncertain or unnecessary data
in considering the model to be used for diagnostics or prognostics. This matching
algorithm needs a distance metric, which are algorithm-specific weighting coeffi-
cients used to define the importance of each context parameter (e.g. state of the
engine may be more important than the amount of longitudinal acceleration when
diagnosing motor mount condition, assuming both parameters are known).

The model selection process relies on correct identification of both the vehicle
variant and the context. Here, we see one proposed method for identifying the
vehicle context and using those relevant features to select an appropriate ”nearest
neighbor” when identifying the optimal diagnostic or prognostic model to choose.
Context parameters are identified through distinct, binary classifiers capable of re-
porting confidence metrics. The context vector comprises entries with three possi-
ble states (yes/no/uncertain or irrelevant), and those uncertain or irrelevant entries
and their corresponding matches in the reference database are removed such that
only confident, relevant parameters are used to select the nearest trained model. A
visual overview of the context identification and nearest-neighbor model selection
process appears in Figure 1.6.4. Just as Bluetooth connectivity may be used
to limit the plausible set of vehicle types, so too may data from sources such as
on-board diagnostic systems be used to limit the set of feasible operating contexts,
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Figure 1.3. Nearest neighbor model selection: after the context is identified and
modeled as a vector, this vector is filtered and compared to available context
models in the database. The nearest model is used

thereby removing uncertainty from the model selection process.

Combining vehicle identification with context classification, comprehensive vehi-
cle “metadata” may be identified – for example, “light duty, 2.0 liter, turbocharged,
Ford, Mustang, Joe’s Mustang.” With the fullest possible context identified, a list
of feasible diagnostic algorithms may then be shortlisted.

1.6.5 Diagnostics

Certain diagnostics will be feasible for each set of vehicle classes and operating
contexts. If a vehicle is moving, only algorithms working for moving vehicles will
be available. If a vehicle is at idle, only algorithms operating at engine idle will be
available. If a vehicle is on a gravel road, only algorithms suitable for rough terrain
will be offered.

When the mobile device identifies an appropriate context and short-lists feasible
diagnostic algorithms, the most-specific diagnostic model of that type available with
sufficient n of training vehicles will be chosen and run on the raw data or engineered
features provided by the mobile device (and vehicle sensors, if available). These
algorithms will initially start out coarse - is the engine normal or abnormal? Are
the brakes normal or abnormal?
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Over time, as algorithms become more sensitive, and as training data are gen-
erated (with labeled or semi-supervised approaches), more classes may be added.
The intent for this system is to transition from binary classification (good/bad),
to gradation (80% remaining life, 10% worn), to diagnostics so sensitive that they
in fact are prognostics – that is, algorithms sensitive enough that faults may be
detected and addressed proactively.

The result will be improved efficiency, reliability, performance, and safety, and
eased management of large-scale, high-utilization fleets, such as those that will be
run by shared mobility services. The algorithms used may over time be adapted
to minimize a cost function, e.g. balancing user experience with maintenance cost
with the likelihood of having a car break down on the road. This will supplant
data-blind proactive scheduled maintenance with data-driven insights sensitive to
use environment, risk tolerance and mission-criticality.

1.7 Our Goal: Engine Classification

In view of the vibroacoustic diagnostic vision outlined in this chapter, my thesis
work tackles the specific goal of identifying vehicle context as a first, enabling step
towards this larger vision. The first and perhaps most informative information
about the context is the engine characteristics, because it is one of the most relevant
source of noise of a vehicle, as well as one of the main components influencing
the behavior and failures of vehicles. My goal is to classify the engine type and
configuration based on the sound it emits. I seek to predict some characteristics of
internal combustion engines such as:

1. Turbocharging

2. Fuel type

3. Number of cylinders

4. Shape (Inline or Vee)

5. Size (displacement)

6. Power

This is a sequential problem, because one engine characteristic may (and does)
impact the others, as I will explain in Section 2.2.4. For that reason, instead of
trying to solve a parallel multi-label problem, the attention is focused on one label
at time, in a standard engineering of Divide et Impera approach.

There are several ways to approach this problem, and different aspects of the
engine to be captured. I decided use Artificial Intelligence because of its potential
to better generalize (section 1.4) versus traditional machine learning.
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1.7.1 The Choice of Acoustic Signals

The reasons why I made the decision of recording sound instead of vibration (or
temperature profile) are outlined in this Section. Vibrational analysis is widely used
in diagnostics of industrial machinery and equipment, because it is less affected by
external conditions, such as background noise, wind or damages, and the sensor is
generally embedded in the machine. In this way it provides more robust results,
with less need to clean the data. On the other hand, there are several reasons why
acoustic analysis may be more powerful in this application:

1. Audio may be more suitable than vibration for as the air-transmission path
eliminates some system-coupling, making it easier to disaggregate signals [34].

2. Ease of collecting data: it is more user-friendly to record an audio signal
with a standard smartphone application than capturing the vibration of the
smartphone itself or even worse of a sensor embedded into the engine. For
this project’s purposes the data collection must be rather crowd-sourced to
ensure enough variability, so the ability to easily deploy software to users is
important.

3. If a human can classify some engine characteristics from its sound, then AI
should achieve similar or better performance. It is not an easy task for hu-
mans, but trained people can easily distinguish a Diesel from a Gasoline
engine, or a V8 from a I4, so it is reasonable to assume AI should be able to
do the same with access to the same information.

1.7.2 Side Goal: an effective Framework

In our plan, we want not only to identify engine characteristics, but aim also to
do so in a manner that is not computationally-intensive such that it might run
efficiently on a mobile device. Furthermore, a secondary but still important goal
lies in the way the software is built. We aim for it to be:

• Scalable, in order to allow future extensions of its capabilities to similar
use-cases (e.g. assessing wear, detecting damages) in different contexts (e.g.
appliances) without difficult modifications. The output of this Master’s The-
sis is a framework, not just a piece of a software. In fact, in our vision for
the future, everyone may use this software to diagnose each kind of noise, by
providing his own functions, performance metrics, and new futuristic custom
designed classifiers.

• Modular, so that it may be used by other researchers from both Michigan
State University and Politecnico di Torino to pursue their own goals. This is
achieved by organizing it with modular functions and rich code documenta-
tion.
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• User-Friendly, for the same reason as before, and to allow non-technical
people to access the results. Our framework is designed to be controlled
easily by modifying cells within an Excel file. This file is divided in different
sheets to control different parts of the process:

– The core is represented by sheet Load, where all general control pa-
rameters are set by the user. A simple documentation is provided for a
better understanding of the meaning of each parameter. This sheet is
divided in multiple parts for the different steps (see Figure 1.4).

– Sheet Labels to Consider is also used for loading purposes, and filters
the data based on labels and classes we need to use (see Section 2.2.4)

– Sheet Features manages the Feature Extraction process (see Section 2.3)

– Sheet Dimensionality Reduction manages the Feature Selection pro-
cess (see Section 3.2)

– Sheets Classification and Regression Search manage the Machine
Learning parameters (see Section 3.3)

Furthermore, the folder structure is managed by the software itself, creating
a new folder for each simulation and for each feature set extracted from the
audio samples, automatically saving results inside that folder.

Figure 1.4. A look into Parameters.xlsx: Control file for setting desired parame-
ters. It is divided by categories indicated on the first column

Those characteristics lie under the concept of Framework, i.e. a structured and
versatile system that may be used in different situations and expanded to more
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complex circumstances. This goal has been one of the most challenging part of this
Thesis, both in terms of knowledge and of workload, because every different aspect
and possible exception are crucial and must be taken into account. I decided to
build this software in the most common object-oriented programming language at
the time of writing: Python 3.6. It is open source and widely used in very different
big tech companies (e.g. Google) [87]. After more than 3000 lines of code and 6
months of hard work, I am proud of introduce my new framework adaptable to
similar situations for audio classification.
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Chapter 2

Machine Learning Workflow:
From Sound to Features

In this chapter, we explain the procedure adopted for this project, starting from the
goal that drove our work. We then outline the process, starting from the collection
of the data until the generation and visualization of informative characteristics of
that sound. We further explain some general concepts of the machine learning
procedure, and how we applied them in out specific case, justifying the choices
made and their impact on the final result.

2.1 Some common ground on Artificial Intelli-

gence

Before describing the workflow that brought us to our successful results, I want to
explore the theory behind the process, so that even a reader not familiar to artificial
intelligence and machine learning could have a taste of it. This is not intended to
be a complete dissertation on machine learning, but just a simple yet stimulating
overview on this complex world. After this introduction, other concepts are clarified
by the time they arise in this document in order to simplify the reading and making
it easier to follow and understand.

2.1.1 What is Artificial Intelligence (AI)

First of all, what is artificial intelligence? Textbooks define AI as the field of
study of intelligence agents, hence a system that perceives its environment and
takes actions that maximize its chance of successfully achieving measurable goals.
These systems try to mimic cognitive functions associated to human mind, such as
learning and problem solving.
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A subset of AI is called Machine Learning, which is the study of algorithms
that automatically improve through experience [71]. Machine Learning algorithms
build a mathematical model based on sample data in order to make predictions or
decisions without being explicitly programmed to do so [14]. An emergent form of
Machine Learning has become increasingly popular: Deep Learning. Deep Learning
is the application of Machine Learning algorithms inspired by the human brain, Ar-
tificial Neural Networks. Artificial Neural Networks are composed of multiple layers
(hence the name “Deep”) connected by nonlinear functions, which are recursively
extracting higher level features from the raw input [35]

Figure 2.1. Artificial Intelligence, Machine Learning and Deep Learning

I focus primarily on Machine Learning so that we can include process knowledge
as a method for enhancing predictive or classification performance. The idea is
to help the algorithm to solve problems by providing as input already processed
information in the form of engineered “features”. Deep Learning, by comparison,
tries to learn these features independently, and therefore requires a larger volume
of data to attain acceptable performance.

2.1.2 AI and Machine Learning types

Artificial learning approaches are typically divided in 3 classes:

• Unsupervised Learning deals with problems with previously undetected
patterns (e.g. PCA) or tries to cluster the data based on some similarities.

• Supervised learning is a process that maps an input to an output based on
some example input-output pair previously linked [92]. In these situations,
AI knows the right output of some data and tries to learn the connections
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between the two, so that it is able to replicate it in the future with new unseen
data.

• Reinforcement Learning is a process in which an agent explores its en-
vironment and take actions based on the maximization of its reward. Each
action is taken based on the balance between exploration (gain more knowl-
edge about the environment for more robust future actions) and exploitation
(take the best action and collect the best reward based on the current knowl-
edge).

We will deal with supervised learning, since the characteristics of the recorded
engines are known in the training phase.
There are primarily two kinds of supervised learning problems: Classification and
Regression (Figure 2.2):

• Classification is intended to predict an output based on a discrete number
of possible results, namely the classes. A good example of that problem is the
prediction of the number of cylinders of the engine, which is in our sample a
discrete set of integers between 2 and 8. In our case a problem may arise if
we do not have enough training data that are able to capture the variability
of the engine models in the market. If we try to predict an engine with 12
cylinders, the algorithm is not able to do it at all, since it can consider only
the classes it was trained with.

• Regression on the other hand, deals with continuous problems that may
have a lot of possible outputs (e.g. engine power), and fit a function that is
as close as possible to the data, in order to be able to replicate a measurement
lying between previously seen data. For example, if we train our model with
engine size of 2.0 liters and 3.0 liters, it could be able to predict an engine
with size 2.6 liters, supposed that the problem is continuous and sufficiently
smooth between 2.0 and 3.0.

There is not always a hard boundary between the situations in which it is better
to use one of the two methods. For instance, when trying to predict the engine
displacement in liters, we can treat this problem as a regression (output is a con-
tinuous variable between 0.9 and 5.7), or as a classification, by rounding down the
output value to the unit, resulting in discrete and limited classes (1.0, 2.0, 3.0, 4.0,
5.0). If classes are few both in training and testing dataset, classification might be
the best strategy.

2.1.3 Phases

The work is divided in two phases:
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Figure 2.2. Classification and Regression problems

1. Training Phase: we provide some labelled data to the algorithm, and let it
run through all the samples and its known outcomes to arrange its internal
parameters and trying to fit the input to the output in the best way possible.

2. Testing Phase: we provide the algorithm with some unseen samples with no
output, and we measure the performance of its predictions with real ones. For
this reason, we have to pre-store some data with known output and provide
only the input to the algorithm.

Figure 2.3. Splitting the data in training and testing sets

We need the algorithm to predict the results of field measurements, not of training
ones. It is fitting parameters based on training data, but the performance is needed
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on test data, which are the sample closest to field data we have. For this reason,
we save a part of our data for testing purposes, as in Figure 2.3. In this regard,
we want the algorithm to learn from training data, but to be able to generalize its
knowledge and hence to predict new unseen test data. In fact, it is counter-intuitive
a trade-off: we want that the algorithm learns from the data as best as it can, but
not too specifically, otherwise it will face poor performance with unseen samples.
This issue is described by the term overfitting, which indeed is the production of
an analysis that corresponds too closely (or even exactly) to a particular set of data,
but that may therefore fail to predict new data coming from future observations.
This is the opposite of underfitting, which does not fit the data, but gives trivial
(constant) outputs (Figure 2.4).

Figure 2.4. Underfitting provides trivial constant output. Overfitting produces
an analysis that corresponds too closely to the training set
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Overfitting is one of the typical issues in machine learning, and I have experi-
enced it at some point of my work as well. In a more friendly way, we may see it as
the algorithm lying to you. It pretends to produce very good results, but when it
faces new challenges it is completely unable to perform it is not able to reproduce
that performance. Overfitting can be mitigated with different techniques intrinsic
in the specific algorithms (e.g. regularization), and its onset can be recognized and
avoided with the use of a validation set - a portion of the train set not used
during training phase but kept aside for temporary judging purposes, as explained
in Section 3.1.

2.2 Data gathering

The primary task of this work is data collection. It is a continuous process, since
more data usually means more generalizability of the model, and I implemented
the software to be able to add more data afterwards and improve performance. An
important aspect to keep in mind is that the more data are available, the more
accurate the algorithm will be in predicting real-world recordings, and the closer
the parameters will be fit to the optimal ones. In my case, I struggled to collect
enough data in useful time for the deadlines of this work, but since our goal was
also to provide a solid framework for future enhancements, I collected enough data
to get acceptable results, and leave the opportunity open to collect more data and
use the same software to better generalize the results.

2.2.1 Recording Environment

The main sources for the recordings are:

• YouTube videos

• Personal and friends’ cars

• Mechanics’ workshops

For this part of the work the data were recorded under defined conditions, in three
possible locations:

1. Close to the engine compartment (with open hood),

2. Over the closed hood,

3. From the exhaust at the back of the car

Not in all conditions all recordings are available, and the software must be able to
make up for that, considering the input location and engine speed as an additional
feature.
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2.2.2 Data Preparation and Labelling

Audio were captured from different sources, different microphones, different format
and encoding, different sample rates and with some undesirable background noise
or interruptions. There are some important considerations to take into account,
namely some general concepts that applicable to every work done with data:

• Garbage In Garbage Out (GIGO): it is optimistic to expect that good
results will come from bad data. Further, often it is impossible to catch a
“Garbage Out”, because even strong-performing algorithms may provide bad
results if it is fed with bad input (“Garbage In”)

• Data Diversity: As data come from very different environment, they risk
to catch some information about the location, the microphone or the wind.
If instead a large amount of data come from the same source, the results may
be strongly biased.

• Compression: Often data come in a compressed way to save space and
bandwidth, but strong compression may lead to considerable loss of informa-
tion, that maybe are not captured by untrained human ears, but could be
very relevant for an algorithm.

• Consistency: Source matters. We need to take care about the quality of
the source, their compression methods and format, their recording purposes
and strategies. For example, one may be tempted to get car sounds from
websites for video-games developers or cover YouTube videos. Those are
unfortunately often synthetic sounds or loopy ones, and may lead to problems.
Every recording should be done roughly the same way to discard possible
sources of bias.

Since data come often in different formats, I needed to artificially transform them
to increase the consistency of the dataset, with both manual and automatic pre-
processing techniques:

• Manually split recordings in multiple files, when some excessive background
noise or interruptions were recorded. This was achieved using Open Source
Audacity Software, which allowed to save stereo files in 32bit floating point
uncompressed format (.WAV).

I chose this format because it is one of the most informative ones and it is
easily loaded from Python. I made it the standard for my work. It means
that all new data added should have the same characteristics in order to be
compared with my older data. Often data were presented in int16 format,
and it caused troubles when processing them, because int datatype has several
limitations in mathematical operations. The different splits of the same file
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were saved using similar names (e.g. adding an increasing number at the end)
so that I could consider these files as belonging to the same car, and reduced
the risk of leakages of data from train to test samples.

• Automatically load files in Python using a function from the scipy library.
Each sample is given an ID number to indicate a different recording. This
step is needed because during manual pre-processing, the same car’s recording
is split into different files when some noisy and unwanted interruptions are
caught and removed. I needed to group those recordings (called with very
similar filenames) under the same ID, in order to put them under the same
category among test and train split. If this is not done, overfitting problem
may occur, because the same recording may be in both train and test. In this
case, the algorithm would recognize the samples and give misleading non-
representative results with artificially high performance numbers. For that
purpose, I implemented an additional label to the file, called ID. Its generation
is based on the audio filename, and since the WAV files must be ordered
alphabetically in the folder, I increased the ID number from one sample to
the next one only for non-small difference in filenames. That difference is
computed with the Levenshtein distance, with a threshold set to 2. With the
array loaded I needed to separate left from right channel, as most recordings
were captured in stereo mode. This allowed me to have more data to train
on as each channel was treated as independent. If those arrays coming from
different channels of same recording were too similar in terms of their L2-
norm, I averaged them as it was a mono audio. All data had to be consistent
with the others when extracting features, hence each file is re-sampled down or
up to the indicated sample rate (default is 48kHz). Python library librosa [76]
is used for this purpose.

Once all samples were saved to a specific folder, those files needed to be labeled.
Before explaining further how it is implemented, some specifications on the termi-
nology are required, such that it is easier for the non-expert reader to follow.

• Labels are numeric or textual values corresponding to the characteristics of
the engine (or recording, in general terms) we want to try to predict at the
end (e.g. number of cylinders, engine displacement, fuel, ...). In supervised
learning, labels are known in advance during training (learning) phase but
unknown (at least to the algorithm) during real testing. If we (as AI super-
visors) know them during testing, we may be able to judge the performance
of the algorithm based its predicted labels compared to the real ones, called
“ground truth”. Different metrics can be used, as explained in Section 3.4.8.

• Class is the specific category the engine belongs to; they are the different
instances the label can have. For example, considering the label of “number
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of cylinders”, the different classes are 3 cylinders, 4 cylinders, and so on. Each
engine can belong to one class only for each label.

• Feature is the information about the engine the algorithm is able to compute
in a systematic and deterministic manner. This information is known by the
algorithm both in training and testing phases. In fact, they are not predicted
but rather extracted. Some examples of features are the Fourier Transform
of the signal, the statistics relating to it, and many more. These are the
information the algorithm bases its choices and predictions on. Further details
in Section 2.3.

• Category: Each feature can take different values, and those are called cat-
egories. Categories are to Features what Classes are to Labels. If a feature
has continuous domain, a category can be considered to be a partition of that
domain. This concept will be further developed in Section 3.3.3.

One user-friendly way (one of the goal explained in Section 1.7.2) to label sam-
ples is to use an Excel file called Database.xlsx, organized in the following manner
(an example is shown in Figure 2.5:

• Each line is indexed by the filenames, which must be exactly the same as the
list of filenames in the specified folder, both in names and amount.

• Each column represents a specific label I want to investigate, either as goal
(e.g. number of cylinders) or as previously known feature (e.g. engine speed
during recording)

• Each cell at the intersection between the label column and the filename row
represents the class the specific recording belongs to, with respect to the label
of the column.

All recordings are loaded, preprocessed and stored inside a dataframe object pro-
vided by pandas library with columns corresponding to labels, raw audio left chan-
nel, raw audio right channel (if present), features, and ID, as shown in Figure 2.6.
Afterwards it is stored as pickle file [86], so that the user may be able to load it
directly to the program, saving time and reducing complexity. The choice of pickle
was dictated by some constraints of the previously used formats: .h5 files cannot
handle data that are too big, or that have too many vectors inside, while parquet
has by the time of writing some problems in loading bug pandas dataframe. Pickle
has some security and portability issues, but has few problems in saving or load-
ing python objects. This feature has been crucial for my work, because since the
recordings were all of different length they had to be stored as single array object
inside a dataframe cell, and not with each value in a cell.
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Figure 2.5. Screenshot of Excel file where dataset filenames and labels are stored

Figure 2.6. The dataset in Pyhton is organized with the columns shown here
thanks to the pandas [125]. Note that the audio columns store arrays inside and
not values. If the file was mono-channel, “Audio Right” will display a NaN
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2.2.3 Train - Test Split and Chunking

At this stage, all audio data were loaded and resampled to the same sample rate
(e.g. 48000Hz, so that 1 second of recording correspond to an array of 48000
elements), but each of them have a different length. As outlined in Section 2.1.3
the first next step at this point is the separation between train and test split. I used
a function from the sklearn library [16], allowing to not only split the dataset, but
also to stratify based on the labels, thereby keeping similar same class proportions
of class in the both train and test datasets (e.g. 60% 4 cylinders, 20% 6 cylinders,
20% 8 cylinders). Two main precautions must be considered in this phase:

1. Split the dataset based on the ID and not as raw dataset, in order to avoid
that the same car is in both splits, causing overfitting issues. To address that
I passed the vector of IDs to the splitting function, and divided the samples
based on their ID.

2. Each class must be represented by at least two samples, so that one will
appear in both the training and testing set, otherwise the stratification would
not work.

As explained before, the more abundant data leads to better results for most AI
algorithms. I decided to augment the number of samples at my disposal by splitting
the audio file in equally long sub-chunks (e.g. 1 second, 48000 elements). This
simple data augmentation technique helped to reduce the complexity of dealing with
samples of different lengths as well, and reduced per-segment feature computation
time. Different lengths were tried, from 10 milliseconds to 10 seconds. For each
tested length a new dataframe was created and stored. The file was saved with
a name following a pattern allowing for future simulation runs to recognise the
specific pickle file and load it directly. The three information indicating the way I
did the chunking are denoted as follows in the filename:

chunked dataset dur < chunklength > dev < developingmode > <
chunkspersample > < split > < stratificationlabel > .pck

where

• < chunklength > is the duration in seconds of the sample (e.g. 2 seconds).

• < developingmode > is a way to allow the programmer to load a smaller
database and test their algorithms on it, without taking too much time and
resources (e.g. 1, indicating we are using developing mode).

• < chunkspersample >: when using developing mode, I only loaded from the
database the first ¡chunks per sample¿ chunks from every sample, so that I
still had the variability coming from different samples, but not the burden of
a lot of data.
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• < split >: after splitting IDs in train/test, I saved both databases according
to where its ID ended during the random split. Therefore, for each conditions
two disjoint databases were saved.

• < stratificationlabel >: As I divided test and train splits with stratified label
(same class percentage in both datasets) I needed to keep this information as
well.

For example for a < chunklength > of 2 seconds, with < developingmode > and
loading only the first 10 < chunkspersample > (20 seconds of audio) from the ID
in train < split > stratified based on < stratificationlabel > cyl, the resulting
chunked file was called

chunked dataset dur2 dev1 10 train cyl.pck

The above parameters can be directly controlled by the used by means of the
Excel file called Parameters.xlsx, in its sheet called Load. The first rows (shown in
Figure 2.7) are used to manage the loading and chunking procedure. Here I explain
the meaning of each parameter:

• audiopath is the folder path where raw audio files (.wav) are located. This
parameter is useful if the user want change the dataset and has to reload the
audio

• mainpath is where the Parameters.xlsx file Dataset.xlsx and all Python files
are to be located

• storagepath is selected because the user may want to work by syncing all files
in a Cloud platform. However, big files are generated and syncing them would
require excessive bandwidth and remote storage. For this reason, storagepath
should be set to a offline position, possible with large space available (e.g.
external Hard Disk or SSD)

• inWindows is a boolean value used to indicate whether the program is run on
a Windows OS machine (= 1) or on Unix based one like Linux and MacOS
(= 0). It is important to specify because the file-system is handled differently

• chunk duration is the required duration in seconds of each single chunk the
user wants to split the original samples in. It is an important parameter as
shorter chunks means more data, but also less informative one (it is difficult
to recognize something from 10 milliseconds of audio)

• developing mode is a boolean variable to set whether to use a smaller ver-
sion of the dataset, in order to save computing power and time. It is used
for developing purposes only to test the software. Its effect is coupled with
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chunks per sample which sets the maximum amount of chunks to split the
raw sample in. Generally the number of chunks per sample is equal to the
duration of the sample divided by the desired duration of each single chunk,
rounded down. In this case a maximum boundary is set, so that the resulting
chunked dataset is small and easier to test and debug

• test train stratify is one of the label to specify so that roughly the same per-
centage of classes of that specified label is present in train and test. This is
basically a way to split train and test dataset, so that they have the same
proportions and results evaluation is more representative

• sample rate: each sample is recorded with its own sample rate, but they need
to be all sampled with the same one

• test size simply indicate the size of the test dataset. Empirically, it should
be between 20% and 40%

Figure 2.7. Control File: Loading and chunking parameters section

2.2.4 Database Exploration

At this stage, we may already want to gain some insights on the database, such as
statistics on the labels, including:

1. General information about the data

2. Missing values

3. Intra-label relationships

4. Inter-label relationships

41



Machine Learning Workflow: From Sound to Features

General information about the data

To begin with, I present here a table showing some general information about the
data collected.

Information Label Quantity
Audio samples .WAV 268 files, 19683 seconds (5h 25min), 9.1 GB

Labels
Fuel Classes: Diesel (D), Gasoline (G)

Turbo Classes: Yes (1), No (0)
Cylinders Classes: 2,3,4,5,6,8

Car Makers OEM 23 different classes

Missing Values and example view of database

After the pre-processing phase, the database results in a long table of n samples of
the same length, each with its information stored in a dataset. The database is not
complete, because some labels are unknown. There are several ways to infer those
missing values, but the all of them may lead to some problems. For this reason, I
implemented a function to select from the database only the rows having a defined
class for the label(s) I wanted to investigate during that simulation run. A sheet
called Labels To Consider in the Excel file is used for this purpose. As we can
see in Figure 2.2.4, the first column indicates the names of the labels present in
the database, then the user sets a boolean value (0 or 1) to indicate respectively
if he want to consider that label (1) or not (0). There is a problem that appeared
in this phase, namely if there are some classes with only one sample. Here the
stratification is not possible, and this sample is present only on train or test. If it
is in train dataset, we are not able to see if it can recognize that class among the
testing samples, and if it is in testing we are sure that it is not able to recognize
it, because the algorithm was not trained on that class. Therefore, there are two
possibilities for the third column:

1. To leave the cell blank, so the algorithm will select all samples that have a
valid value for that class, dropping only the rows containing empty values
(NaNs).

2. To list the classes we want to investigate, so that the function will drop all
NaNs and all values not inside that specified list.

In the specific case of Figure 2.2.4, I avoided taking the columns of cc, hp and OEM,
and selected only samples recorded at idle (the value of corresponding Idle column
is equal to 1) and samples with fuel labels being G or D, others were dropped.
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Figure 2.8. Labels to Consider - Control File

Intra-Label relationships - Class Imbalance

One interesting and important property is the balance of the classes. This considers
how each class of a specific labels (e.g. class 4 of label number of cylinders is
represented inside the database. If we have for example a lot of samples with
4 cylinders (e.g. 90%) and very few with 3 cylinders (e.g. remaining 10%), we
encounter a so called Class Imbalance. It is important to consider its effect on
the results, because sometimes AI appears to perform well but instead provides
trivial results. Considering this example (90% 4 cyl, 10% 3 cyl), if the outcome
of our performance test results in an accuracy of 90%, it may simply mean that
the algorithm is predicting 4 cylinders for each sample, and it is 90% of the time
correct! On the other hand, if the database is a set of representative samples of
the engine population, class imbalance may be intrinsic in the problem we want to
solve: following the same example before, this is outstanding if the algorithm will
face 90% 4 cylinders engines when used in a real environment.

Here I present some pie charts and histograms exploring the class distribution of
our sample data. First of all, we explore the appearance of each cars’ maker (OEM)
in the dataset 2.9. We can see a predominance of Fiat vehicles, and then a rather
equal amount of other OEM with fewer samples. Since our data come primarily
from the U.S., Diesel engines are poorly represented in the database, resulting in
a strong class imbalance. To attempt to rebalance the data, Diesel engine samples
were captured and processed from YouTube (Figure 2.10).
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Figure 2.9. OEM Appearance in the Dataset

Figure 2.10. Fuel Type - Classes Distribution: most of the engine samples
are gasoline powered

As we can see in Figure 2.12, I had only few classes for what the cylinder amount
is concerned, and one can observe that the class of 4 cylinders is more represented

44



Machine Learning Workflow: From Sound to Features

than the others, but just because they are more common on the market with re-
spect to other cars, perhaps due to increasingly-strict fuel economy and emissions
standards globally. One problem of having very few samples of one class (e.g.
5cylinders) is that they may not be represented in either test or train database,
preventing the performance evaluation to be representative on all classes. The

Figure 2.11. Engine Shape - Classes Distribution: most of the engine
samples’ shapes are Inline

Figure 2.12. Number of Cylinders - Classes Distribution: most of the engine
samples have four cylinders

distribution of the engine displacement and engine power is instead more granular
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as it is a continuous value (Figures 2.13 and 2.14). I therefore had to make a choice:

1. Keep classes this way and use classification algorithm, if we consider that
each class has its own specific characteristics and there is no similarity of
continuity from one class to the other: if we misclassify an engine of size 2.4
as 2.5, we are not closer to the truth as if we say 1.0. I tried this approach
but granular multi-class classification is a very hard problem, and results were
poor.

2. Round the class to the closest integer and use classification algorithms. This
was my main approach, but results were not satisfactory at the time of pub-
lication.

3. Consider it as a regression problem to eliminate the need for rounding the
classes. This is a good approach. However, since this work was mainly focused
on classification problems, that option is not considered and is left out for
further development of the software.

Figure 2.13. Engine Displacement - Classes Distribution and Statistics

Inter-Label Relationships - Correlation

It may be also interesting to look at the relationship between labels. A good
example is the relationship between the engine displacement and its power. They
are of course not redundant information, but the prior information about one of the
two can help guessing the value of the other. If we know that our engine is a 1.0 liter
displacement, the probability that its power is over 300hp is very low. These insights
shown in the following figures helped me to understand that the best process to
identifying all the characteristics of the engine is iterative. By using the example
above, once you predict the number of cylinders you will use that information as
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Figure 2.14. Engine Power - Classes Distribution and Statistics

feature to predict the engine displacement more reliably, and afterwards we use
those two information (cylinder amount and engine displacement) as features for
predicting the engine power, and so on. I came to that idea after looking at the
relations among labels in a more detailed way, as shown and explained in Figures
2.15 and 2.16.

To measure the intuition coming from the previous charts, I used a statistical
measure called correlation: the degree to which two variables move in relation to
each other. The kind of relationship among the labels was already clear, but it is
always important to answer that question in a quantitative way. I computed the
Pearson Correlation Matrix among the labels, obtaining the matrix in Figure 2.17.
The Pearson’s correlation coefficient is a measure of linear correlation between two
variables. It’s value lies between -1 and +1, -1 indicating total negative linear
correlation, 0 indicating no linear correlation and 1 indicating total positive linear
correlation. Furthermore, it is invariant under separate changes in location and
scale of the two variables, implying that for a linear function the angle to the x-axis
does not affect the correlation. To calculate Pearson Correlation Coefficients for
two variables X and Y, one divides the covariance of X and Y by the product of their
standard deviations. In Figure 2.18 we can see that the engines of my database are
fairly small, that they have a rather linear relationship between cylinder amount,
engine displacement and engine power. Label turbo is good represented whereas
cylinder amount is quite unbalanced.
In Figure 2.19, on the other hand, we can see how those distributions influence the
fuel type of the engine. We can observe that if the engine is turbocharged, it is
more likely that it is a diesel powered one. In facts, red curves are higher when
“turbo” is equal to 1 (bottom right corner). For what Engine Power is concerned,
Diesel engines have a narrower range of operation, and the same is valid for engine
displacement and cylinder amount as well. We know from experience that very

47



Machine Learning Workflow: From Sound to Features

Figure 2.15. Cylinder Amount vs Engine Displacement: Strong correlation observed

small engines are generally gasoline, whereas big ones are diesels. However, I did
not record any truck or van engine, so the cars having big engines (especially in
the US) are generally “muscle cars” or high performance ones, which tend to be
powered by gasoline.
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Figure 2.16. Engine Displacement vs Engine Power: Strong correlation observed
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Figure 2.17. Correlation among Labels: the color of the cell corresponding to the
interception of two labels is colored based on its value. Diagonals represent the
correlation of the labels with themselves, so it is equal to one (dark blue). High
correlation can be observed between engine power (hp), engine displacement (cc)
and cylinders amount (cyl), whereas turbo and cc seem to be independent. cyl is
correlated more to cc than to hp, and also more that cc is to hp
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Figure 2.18. Complete view of distribution of labels: Size of the engines (cc) is
more frequently small and tends to be linearly correlated with power and cylinder
amount. Moreover, larger engines tend to be naturally aspirated. Powerful engines,
on the other hand (hp) and evenly spread among turbo and naturally aspirated,
but with a higher density in medium power turbocharged engines. 4 cylinder
engines are more spread in terms of power, but more compact in terms of size. On
the other side, 3 cylinder engines are mostly small and low powered

51



Machine Learning Workflow: From Sound to Features

2

3

4

5

6

7

8

cy
l

1

2

3

4

5

cc

100

200

300

400

hp

2.5 5.0 7.5
cyl

0.0

0.2

0.4

0.6

0.8

1.0

tu
rb
o

0.0 2.5 5.0
cc

0 200 400
hp

0 1
turbo

fuel
G
D

Figure 2.19. More in depth statistical relations among labels, highlighting label
Fuel. As we can see, most diesel powered engines are turbocharged, and the
opposite for gasoline. Then we can observe that big gasoline engines tend to be
naturally aspirated, whereas smaller ones are turbocharged
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2.3 Feature Engineering

In machine learning, algorithms often benefit from process knowledge. The way
process knowledge is “captured” in algorithms is through thoughtful feature engi-
neering. Here, we explore the types of features generated and the method through
which we do so. Informative characteristics of the audio sample are generated in a
deterministic and repeatable way. The value extracted is called Feature, and since
we extract many of them from each sample, they are referred as Feature Vector. In
machine learning, the feature is often a scalar (e.g. audio volume, mean, number
of peaks, etc.) and Feature Vector is the array containing multiple features, but
in more complex situations features can be vector themselves (e.g. Fourier Trans-
form). Therefore our Feature Vector is a vector containing vectors, causing several
problems in applying standard techniques, as we will see later. I tried also to use
scalar features only, but when removing vectors such as those created by the Fourier
Transform, results suffered.

In the following sections I will provide a short overview on the features I decided
to extract, a simple explanation of their characteristics, and some charts represent-
ing the mean trend of the feature sorted by class. Additionally, I will present an
explanation of the scaling procedure, as well as how the framework is dealing with
custom-made functions in a user-friendly way.

2.3.1 Feature Extraction

Feature Extraction is crucial and needs a lot of attention from the AI designer
because it influences the performance of the outcome. If we extract the wrong
features, with wrong length, or wrong scale, AI may not be able to classify the
engine at all. It is as if we want to classify the an animal from a picture, and the
only information we are able to extract that it is brown, which is clearly useless even
for the most experienced person. The research for the best features to extract from
an audio file is an important field of study in machine learning research, especially
in the last years due to the rise of Natural Language Processing needs. During
the development of the survey on vibroacuostic diagnostics, I had the chance to
get exposed to some of the research best practices, incorporating ideas from other
researchers to implement my solution. The information about the features to to
extract are again provided by the user in the Parameters.xlsx file, sheet Features.
I show a screenshot of an example of the sheet in Figure 2.20.

Discrete Fourier Transform (FFT)

The Fourier Transform is a mathematical operation which decomposes a function
in its constituent frequencies. The discrete version is used when dealing with digital
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Figure 2.20. Control File: Features

signals, and more specifically the Fast Fourier Transform (FFT) is used in this case.

X(f) =
N−1∑
k=0

xke
−i 2π

N
kq with q = 0,1, . . . , N − 1

Since the engine is a rotating machine, frequency is one of the crucial aspects
when dealing with cylinder counts and other aspects. The human ear is able to
differentiate differences in frequencies, and it may be one of the aspects helping
experts humans to recognize the engine characteristics. Since I wanted to put my AI
algorithm in the conditions of recognizing the engine potentially as good as human
expert (or better), we need to give it the signal decomposed into frequencies. Some
workarounds are needed to take care of the borders of the signal to avoid aliasing
when the chunk length is not a multiple of the signal period: windowing. This
procedure is the multiplication of the signal by a window signal like the Hann’s
one, shown in Figure 2.3.1

w(s) = 0.5 ·
(

1− cos( 2πn

N − 1

)
with n = 0,1, . . . , N − 1 and N being the length of the signal

This is not strictly necessary, but it may help the quality of the feature and hence
the robustness to overfitting. In fact, the algorithm will not focus on some specific
and random boundary effects. In fact, if it focus only on some specific aspect,
it may find that pattern repeating in some train samples and use it as indicator
for the prediction. But since this pattern is random, it may not be present (or
even misleadingly present in test samples). According to the Nyquist Theorem,
the useful length of the vector coming out from the FFT is half of the sampling
frequency. It means that for an audio chunk of 1 second sampled at 48000Hz, a
feature of 24000 elements is created. Many algorithms would struggle with such a
high dimensionality. On the other hand, some frequencies may not be caught if the
chunk length is too short, because the minimum frequency is inversely proportional
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Figure 2.21. Hann Window and its effect

to the length of the chunk. I therefore implemented a function with the aim of
binning the feature vector with bins of equal size, with a height equal to the average
amplitude of the point inside that interval.

The algorithm will extract other features that will depend on the it (e.g. its

Figure 2.22. Control File: FFT Features. String “FFT” in cell “used” indicates
that we extract features from the already extracted FFT

skewness). Since FFT is already computed and stored in a column of our dataset
and since we need to optimize the computational resources needed for features
extraction, we don’t want to recompute FFt or each other feature dependent on it.
For this reason, I developed a system in Excel that allows to use that previously
calculated function (in this case FFT) and apply the statistical function on top of
that instead of the raw signal. Figure 2.22 shows how this is done in practice. As
we can see, we have a table containing:

• Name of the feature (FFT)

• Function to be used (my fft)
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• Parameters to provide to the function (windowing function in this case)

• Flag to set whether it has to be used or not. For normal functions, this flag is
boolean, but I introduced a way to save time when extracting features with
an additional value. Therefore, the flag may take three possible values:

1. 1: The feature vector is computed and stored inside the matrix of the
features

2. 0: the feature calculation is simply skipped

3. Name of the primary function: the feature is computed starting from
a previously extracted feature vector. For example (as in Figure 2.22),
the Skewness of FFT will have “FFT” in the “used” field, instead of
“1”, and only the skewness function in the “function” field, instead of
skewness(FFT (signal))

There may be some situations when we do not need the primary feature (e.g. com-
plete FFT) but only the ones computed from that one (e.g. a binned version of it,
skewness, and so on). For that reason, I put a field in Load sheet of Parameters.xlsx
file to provide this opportunity. The list of feature provided in features to avoid
field will be ignored and not put into the X matrix. With X matrix we mean the
matrix the algorithm will be trained on, i.e. a matrix where each row is represent-
ing a sample and each column is a feature of that sample. For example column 1
may be the skewness of the FFT, columns from 2 to 138 the power spectral density,
and so on. It results in a matrix of size nsamples ×mfeatures that is generally called
X. By y we mean a matrix of size nsamples × llabels, and corresponds to the output
values we want to predict. As we typically want to predict one label at time, y will
be of shape nsamples × 1 (figure 2.25). The following figures (2.3.1 and 2.24) show
how the features computed from the FFT vary, by grouping the values by class.
FFT is plotted averaging over its class, and the standard error is displayed as well,
in order to understand if there is substantial statistical difference in the frequency
spectrum among classes. FFT Binned is shown as line plot, each point of which is
the mean of the points of all samples for that class. Also the standard deviation for
each feature point is displayed, so that one can see the variability of those values.
We observe higher frequencies in gasoline engines but with high variability, and
on the other hand lower amplitude at higher frequencies for diesel engines, with
lower variability. On turbo, instead the difference seams to be not appreciable.
Remember that all recording were captured at idle conditions. By looking at the
number of cylinders, we can see that the behavior at higher frequencies is probably
governed by I4 engines, representing the vast majority of the sample. It means
that maybe those higher frequencies are not caused by solely gasoline engines but
rather by I4 ones, which are mostly gasoline. For features that are represented by
single values, a scatter plot is more appropriate, showing the mean value for each
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Figure 2.23. FFT Binned and averaged by Fuel, Number of Cylinders and Turbo

feature. Coupled to that, a plot showing the standard deviation is needed, in order
to understand the variability of each single value and see if we can differentiate the
classes easily, just by drawing a threshold for one single feature.

Wavelet Decomposition

Wavelets address some limitations of the Fourier Transform. FFT outputs a chart of
frequencies, but without knowing when that frequency happens, the time resolution
of the signal is lost. Short-term Fourier transform attempts to solve this problem
by breaking the signal into shorter segments of equal length and computing the
Fourier transform of each shorter segment.

However, the problem with this approach is that STFT has a fixed resolution:
the smaller we make the window, the more precisely we can identify the time at
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Figure 2.24. FFT-related Features Mean (top) and Standard Deviation (bottom)

58



Machine Learning Workflow: From Sound to Features

Figure 2.25. X and y Matrices. y represent the target whereas X represents the
input. The size of their vertical axis is the number of samples to train on.

which the frequencies are present but the exact frequencies become difficult to
identify. By increasing the window size we can identify frequencies more precisely,
but the time at which they happen become less certain. Wavelets came in hand to
address this issue.

Figure 2.26. Mother Wavelet DB4

Wavelets are mathematical functions that cut up data into different frequency
components and then study each component with a resolution matched to its scale.
They are more suitable than FFT in analyzing situations where the signal contains
discontinuities and sharp spikes. The fact that these wavelets are localized in
time gives an advantage over sinusoidal (infinite) waves for what resolution in time
domain is concerned. Instead of trying to model the signal with an infinite wave,
we are modeling with a finite wave slid across the time domain in a process called
convolution. With the Fourier Transform the signal is multiplied with a series
of sine-waves with different frequencies. If the peak observed is high, this means
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that there is an overlap between those two signals and the selected frequency is
observed in that signal. The same process is done with a prototype wavelet (also
called mother wavelet, respecting certain properties). The process is repeated with
some modifications on the mother wavelet (stretching or squishing) to accommodate
lower and higher frequencies. Temporal analysis is performed with a contracted,
high-frequency version of the mother wavelet, while frequency analysis is performed
with a dilated, low-frequency version of the same wavelet. To summarize, we need a
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Figure 2.27. DWT Kurtosis and Variance: mean lines are quite different but the
variability inside the class is still rather high

bigger time window to catch low frequency and smaller window for higher frequency
and that idea is exploited with wavelets analysis. The most commonly used set of
discrete wavelet transforms was formulated by the Belgian mathematician Ingrid
Daubechies in 1988. This formulation is based on the use of recurrence relations
to generate progressively finer discrete samplings of an implicit mother wavelet
function; each resolution is twice that of the previous scale [4]. I decided to extract
10 levels of discrete wavelet decomposition with DB4 mother wavelet with the
library PyWavelets [66]. Then for each decomposed vector separately I extracted
some statistics instead of keeping the long array (the same process as for the FFT):

• Skewness: indicating the symmetry of a distribution around its mean value.
It is computed from the third moment. A positive value indicates that more
energy is distributed on the left with respect to the mean. Opposite if it is
negative.

• Kurtosis: giving a measure of the flatness of a distribution around its mean
value. It is computed from the fourth moment
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Figure 2.28. DWT-related Features Mean (top) and Standard Deviation (bottom)

• Mean

• Variance

The development of those quantities (their mean and standard deviation) is shown
in Figure 2.28 and 2.27, and are indicated in the Excel file the same way as for
FFT, as shown in Figure 2.29

61



Machine Learning Workflow: From Sound to Features

Figure 2.29. Control File: Discrete Wavelet Transform

Mel Frequency Cepstrum Coefficients (MFCC)

Figure 2.30. How to Compute MFCC

MFCC is a complex transformation made of multiple steps (Figure 2.30), repre-
senting the shape of the spectrum with few coefficients. Let’s first introduce the Mel
frequencies, a set of critical bands filter trying to mimic human ear. Mel frequency
scale is linear at low frequencies (until 1000Hz) and logarithmic at high frequencies.
Cepstrum is defined as the Fourier Transform (or Discrete Cosine Transform) of
the logarithm of the spectrum. MFCC is the vector containing the 12 coefficients
of the cepstrum computed on Mel-bands. Since the output of MFCC is a matrix,
I decided to average by columns to get a vector. This procedure is acceptable be-
cause the signal is considered to be stationary. The mean trend of those vectors is
shown in Figures 2.31 and 2.32).
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Figure 2.31. MFCC Normalized and averaged by Fuel, Number of Cylinders and
Turbo. We can see that MFCC can fairly well differentiate fuel type and some of
cylinder amount classes, but not the presence of turbo

Spectral Centroids

Spectral Centroid is the baricenter of the spectrum. It is computed pretending that
the spectrum is a distribution, with the probabilities being is the normalized FFT
amplitude and the values being the frequencies (figure 2.35) It is computed as the
weighted mean of the frequencies present in the signal, determined using a Fourier
transform, with their magnitudes as the weights

µ =

∑N−1
n=0 f(n)x(n)∑N−1

n=0 x(n)

where x(n) is the weighted frequency value (amplitude) of bin n, and f(n) the
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Figure 2.32. MFCC-related Feature Mean (top) and Standard Deviation (bottom)
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center frequency of that bin n [84].

Spectral Roll-off

Spectral Roll-off is the frequency value so that 95% of the signal energy is contained
below this frequency. It is formulated as

fc∑
0

a2(f) = 0.95

sr/2∑
0

a2(f)

where a is the amplitude of the spectrum, fc is the spectral roll-off frequency and
sr/2 is the Nyquist frequency (half of the sample rate) [84].The obtained values of
spectral roll-off are shown in Figure 2.35.

Zero Crossings

Zero crossing rate is a measure of the number of time the signal value cross the x
axis. Periodic sounds tent to have a small value of it, while noisy sounds tend to
have a high one. Generally it is computed at each time frame of the signal, but
since I already chunked the audio, I used it on the whole length. A plot of this is
shown in Figure 2.35 alongside with other features.

Power Spectral Density (PSD)

A Power Spectral Density (PSD) is the measure of signal’s power content versus
frequency. The amplitude of the PSD is normalized by the spectral resolution
employed to digitize the signal. I computed this transformation with the Welch
Method. Each word represents an essential component of PSD computation [136,
137]:

• Power refers to the fact that the magnitude of the PSD is the mean-square
value of the signal. It does not refer to the physical quantity power (Watt),
but since power is proportional to the mean-square value of some quantity
the mean-square value of any quantity has become known as the power of
that quantity.

• Spectral refers to the fact that the PSD is a function of frequency. The PSD
represents the distribution of a signal over a spectrum of frequencies.

• Density refers to the fact that the magnitude of the PSD is normalized to
a single hertz bandwidth. For example, with a signal measuring acceleration
in unit G, the PSD has units of G2Hz.
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Figure 2.33. Power Spectral Density Trend sorted by class

MFCC Autocorrelated

This feature is extracted following an empirical procedure and was not found in
any literature. Instead, I explored some new functions starting from the previously
computed MFCC, and applied some sort of autocorrelation and spectral analysis.
An interesting aspect of this new feature is that it was selected as “important” by
some of our algorithms. It is computed as

MFCCAutocorr = Normalization
(
Convolution(MFCC(signal)))

It is padded with parameters “same” and only the first half of the signal is taken.
It is shown in Figure 2.3.1.
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Figure 2.34. MFCC Autocorrelated: Engine disposition (V vs I) and
Cylinders amount

Fuel, Location and Turbo

As explained in chapter 1, each predicted label may and should be used for the fur-
ther prediction of subsequent labels. For example, once successfully predicted the
fuel type, that information is used to predict the cylinder amount or the turbocharg-
ing. For that reason, I implemented a function to convert label into a feature. If
this label was a category or a string (e.g. fuel has “G” or “D”), I converted this
string into the integer representing its UNICODE character. Then, after the Min-
MaxScaler function (see Section 2.4), the feature values will be between 0 and 1.
Turbo, on the other hand, is already a boolean label, so just a simple function is
needed, that takes that label’s classes and stacks it to the X matrix.

Others

There are other features we computed, such as Chroma Values, Spectral Bandwidth
and Spectral Contrast, but as those are not so relevant for the results, they are just
shown in Figure 2.35 without any further explanation. There are features I did not
generate by choice, keeping in mind the main side goals explained in Section 1.7.2
the main reason of that choice is that they are very expensive to compute (e.g.
Empirical Mode Decomposition) and could not run efficiently on a mobile device.
Further development of this work can lead to even better feature selection and bring
better results. This framework is perfectly suited for this purpose.
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Figure 2.35. Other Features Mean (top) and Standard Deviation (bottom)
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2.4 Feature Scaling

When all features are extracted and stored into the X matrix, there is one aspect
that is worth taking into account, namely that the values got out from the extraction
process have a wide range. Kurtosis values are generally very low, whereas number
of zero crossings can be considerably big. Several classification algorithms, as well as
dimensionality reduction tools seen in Section 3.2 require the feature values to have
similar range, and work better if their distribution is close to normal. For instance
many elements used in the objective function of a learning algorithm such as the
RBF kernel of Support Vector Machines (section 3.11) assume that all features are
centered around 0 and have variance in the same order. If a feature has a variance
that is orders of magnitude larger that others, it might dominate the objective
function and make the estimator unable to learn from other features correctly as
expected. For those reasons, feature scalers from preprocessing module of sklearn
library are used.

2.4.1 Feature Values Scaling

In this paragraph, I first consider the scaling procedure of feature that are monodi-
mensional (only one value per sample, e.g. Kurtosis). There are different approach
in this context:

• Standard Scaler: it is the most used scaling function. It generally takes
the vector of the specified feature (e.g. Kurtosis) of each sample (a column
of matrix X) and scale each values according to this formula

zi =
xi − µ
σ

where µ is the feature mean and σ the standard deviation.

• Robust Scaler: it scales features using statistics that are robust to out-
liers. This scaler removes the median and scales the data according to the
interquartile range (IQR), which is the range between the 1st quartile (25th

quantile) and the 3rd quartile (75th quantile).

• MinMax Scaler: if we need more control on our feature values, we might
decide to scale them linearly to a given range (e.g. from 0 to 1, called re-
spectively bottom and top in the following formula). For this purpose, the
following formula is used:

zi =
xi −min(x)

max(x)−min(x)
· (top− bottom) + bottom

• No Scaling: This option is still a possibility left open to the user.
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• Custom Scaler: I left the possibility to the user to define his own scaler and
still be able to apply it without hard-coding anything.

In the Excel file it is possible to indicate a list of scalers, which are applied sequen-
tially to the data. For the features not needed, but just used to compute further
statistics (e.g. FFT or DWT), there is the possibility for the user to drop it, in
order to reduce the dimensionality of the data in a preventive way.

2.4.2 Feature Vector Scaling

The procedure described before works only for monodimensional features. We can
also scale the FFT as it was a series of single feature, but we would then lose
the relationship among values, and a higher low-frequency values would not be
captured. In order to maintain the horizontal relationship among the data, and
still scale it in a defined range (e.g. 0 to 1) I implemented a normalization function
with the aim of first reducing the amplitudes of the vector elements maintaining
the horizontal relations, by keeping tracks of the maximum value of the function
and scale only than value with respect to the others. Let’s make an example: we
extract the Fourier Transform, which is a vector of 500 elements. We scale that
vector horizontally between 0 and 1 with the MinMax Scaler described above. The
relationship between high and low frequencies are kept, but we would lose track of
its peak amount. For this reason, I followed a four steps approach:

1. Extract the maximum value within the FFT vector

2. Scale the FFT vector between 0 and 1

3. Add that max value computed in step 1 in front of the vector

4. Scale only that new first element with one of the scalers described in previous
Section (as it was a single value) while we keep the rest of the vector as is,
due to the fact that it is already scaled in a range (0,1) in step 1 through
normalization.

In this way, both goals are reached: scaling and keeping track of the original peak
of the FFT. Another idea would be in step 1 to keep track of the norm of the FFT
vector instead of its maximum, but it generally leads to similar results.

2.4.3 Resulting Feature Distributions

To put it all together, features distribution sorted by label are shown in the following
figures:

• In Figure 2.36 distribution is shown sorted by different fuel type.
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• In Figure 2.38 distribution is shown sorted by the number of cylinders.

• In Figure 2.37 distribution is shown sorted by the presence of the turbocharger.
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Figure 2.36. Features Distribution by fuel. We have often different distribu-
tion, hinting that a good classification is possible. Location distribution is very
similar, meaning that this feature is unlikely to bias the results. FFT Mean is
one of the most significant features that differs from the two classes. In fact,
Diesel engines of this dataset have higher values of the mean of FFT. This
intuition is tested and verified in chapter 5
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Figure 2.37. Features Distribution by turbo. Distributions are similar and often
overlapping, making it difficult separate in a visual manner
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Figure 2.38. Features Distribution by number of cylinders: 5 cylinders class
is different from the others, but with few data its distribution is not robust
enough. Multiclass classification increases the complexity, and also from a visual
perspective is not immediate to separate the classes
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2.5 Exploratory Data Analysis (EDA)

The obtained database is too large to be able to look into manually, i.e. exploring
each sample independently. This work is left to AI. However, there are some insights
that can be gained by combining the samples, their feature and by doing some
statistics on it before writing an algorithm. We seek to understand both process
physics and the data itself from exploratory data analysis process by plotting several
charts:

• Mean feature value or vector per class

• Standard deviation of the feature (or feature vector) within the class. In fact,
the mean development of the feature could be pointless if we do not look at
its variability, and I addressed this need by plotting the standard deviation
of each feature, broken down by class.

• Feature vector plot with deviation band

• Distribution of the features at per-class level

In this section I will provide describe analysis that helped looking into the fea-
ture characteristics before passing the “X” and “y” matrices 2.25 to the classifiers.
We must pay attention to the fact that if one could not see (as humans) relation-
ships between features and classes, it does not mean that neither an algorithm
could do it. Algorithms often are able to capture non-linear relationships among
classes. The main features relationship shown are:

1. Heatmap showing mean and standard deviation of the features. This en-
hance relationship visibility and provides a more general view on the features
(picture 2.39 and 2.40). Different labels are observed in the different columns
and the features in different rows with title. In each figure, vertical axis in-
dicate the different classes of that label (columns) and horizontal axis the
different values of that feature vector indicated in the row and in the title.

2. Correlation among features. A correlation matrix may provide insights
about how features relate to one another, shown and explained in Figure 2.41.

3. Pairplot of all features divided by classes provides a more deeper observation
(with respect to correlation matrix) of the relationship among the features
broken down by label. This plot can be confusing, but it has the of allowing
a look into the relationships among features and their distribution. It may
be used as advanced technique with respect to the simple correlation matrix.
Again I sorted it by Fuel (Picture 2.42), by Cylinder Amount (Picture 2.43),
and by Turbo (Picture 2.44).

Unfortunately, in this dataset is too complex to enable this layout to provide good
results. Some considerations are however interesting.
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Figure 2.39. Features Mean Heat-map
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Figure 2.40. Features Standard Deviation Heat-map
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Figure 2.41. In the bottom right corner we see a strong correlation among the
spectral analysis features, that are strongly negative correlated with MFCC statis-
tics. This could mean that one of the two features is redundant. Variance and
Standard Error (SE) show the same value because they are scaled the same way,
so we see a perfect correlation between the two. Also Kurtosis and Skweness are
strongly correlated, either positively (FFT) or negatively (MFCC)
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Figure 2.42. Pairplot by Fuel
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Figure 2.43. Pairplot by Cylinder Amount
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Figure 2.44. Pairplot by Turbo
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Chapter 3

Machine Learning Workflow:
Algorithms and Metrics

3.1 Cross Validation

As we outlined in Section 2.1.3, overfitting is a challenge when dealing with artificial
intelligence algorithms. As a recap, overfitting is when the algorithm perform well
on data it trains on (training set), but is not able to generalize its “knowledge” and
therefore performs poorly on previously unseen data (test set). Cross validation
helps to detect and reduce the effects of overfitting. To understand cross validation
we first have to introduce the concept of the validation set. This is a subset of
the training set, which is considered as a test set during the training phase. We
save this portion of the training set for validation purposes, fit the algorithm to
the remaining part of training set, and test the performance of the algorithm on
that previously-unseen validation set. This helps to give an idea of what the test
outcome would be without touching it and to change the parameters to improve
the performance (Figure 3.1). For this purpose instead of directly using the test set
it is wise to use the validation set. If instead we manually tweak the parameters
based on the performance on the test set we risk to artificially overfit the problem.

The concept of validation may be expanded through cross validation. The
idea of cross validation is that there is some chance that the results on the single
validation set are not representative. To have a more robust evaluation of the
training phase performance, we are repeat the train-validate procedure multiple
times on different portions of the sample called folds (Figure 3.2). We then collect
all performance results by averaging the score of each validation fold.

A final cross validated score is then used to benchmark the set of hyperparam-
eters. It the allows to optimize them and achieve a higher validation score, but
still guaranteeing a certain degree of generalization. We can understand the perfor-
mance by comparing the scores (or errors) computed respectively on the training
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Figure 3.1. How to use cross validation in order to tweak the best algorithm’s
parameters without the risk overfitting the test sample

Figure 3.2. Cross Validation 3 folds

and validation set. As shown in Figure 3.3, if the error on the training and vali-
dation set are both high, we are experiencing underfitting. On the other hand, if
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training error is much lower than validation error, we are experiencing overfitting.
The optimal condition is when validation error is only slightly higher than training
one, and they are both low. There are cross-validation strategies, and the choice

Figure 3.3. Train - Validate Curve and Overfitting. Source: [89]

among them depends on the type of problem we are dealing with. To illustrate
those differences, we refer to an example provided by the Python library sklearn’s
documentation [16], by collecting the plots in Figure 3.4. Common strategies in-
clude:

• Shuffle: if the data are collected sequentially, it may happen that they con-
tain some trend. If we shuffle the data before splitting train and validate we
overcome the problem of unwanted trends intrinsic in the data

• Stratify: strategy used to keep the same proportions of classes in train and
validate

• Group: this possibility is crucial for this use-case, because we want to keep
separated different samples belonging to the same ID. In fact, if we have the
same sample ID in both splits (train and validate), we encounter the problem
of overfitting the validation set (not representative of test set). With group
cross validators samples with the same ID belong to only one of the two splits

• Mix of the above
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Figure 3.4. Cross Validation Strategies Compared

3.2 Feature Selection and Dimensionality Reduc-

tion

Once we extract features, there are several reasons why we may want to reduce
that amount by selecting only the most informative ones:

• To avoid extracting them again in the future, when the computing re-
sources are important (e.g. application embedded in a smartphone)

• Speed up classification algorithm, since the more features we have, the more
time it will take to find relationships among those and the class to predict

• Reduce Overfitting, since many useless features may “distract” the algo-
rithm, which risks to focus on wrong ones

• Curse of Dimensionality: Many classification algorithms are based on the
concept of distance between points. If we have 3 features, the distance is
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computed on a tri-dimensional plane and it is working fine. But when dimen-
sionality increases a lot, every observation appears equidistant from all the
others. If the distances are all approximately equal, then all the observations
appear equally alike (as well as equally different), and no meaningful clusters
can be formed

For those reasons, we need a step that prepares the matrix X for the classification
algorithms by reducing the size of the feature matrix. We use sklearn’s [16] Pipeline
function, which concatenates a sequence of estimators and applies cross-validation
on a unique object, avoiding the information leakage from training set. It would
imply validation scores that may result in misleadingly-high performance results.

3.2.1 Principal Components Analysis (PCA)

We aim to select features with three characteristics [140]:

• High Variance: features with a lot of variance contain a lot of potentially
useful information.

• Uncorrelated from each other: so that the systemic risk of having all the
same tendency (and potentially being wrong) is mitigated.

• Few enough: they should be few compared to the amount of data we are
using, as explained before.

In this regard, Principal Components Analysis (PCA) gives us an ideal set of fea-
tures, because it creates a set of principal components that are ranked by the
variance of the dataset they can explain, they are uncorrelated and reduced down
to a specified number. We could specify that amount of values (new features) that
we want to be left, or the percentage of variance explained from those remaining
features. Those principal components are created by a linear combination of the
different features and are orthogonal to each other. The features are then projected
to that new coordinate system, resulting in a lower dimensional space explaining a
great percentage of the variance of the original one, namely approximating it. An
interesting way to show the effects of PCA is to see how the explained variance
increases by increasing the number of components. In our case, the trend is shown
in Figure 3.2.1. We show the difference of PCA behavior depending on the different
output labels. As we can see, to reach approximately 80% of the variance it needs
around 10 first principal components. Another interesting way to look at it is to
check whether we can already spot some clustering from the first two components.
We have to remember that PCA is an unsupervised method, so it does not know
the classes outcome in advance. We can plot the values of the projection of the
features on those two axis, and color the resulting point based on the class. As we
can see, it is not easy to already cluster the two classes.
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Figure 3.5. PCA explained Variance and 2D projection of first 2 principal components

3.2.2 Kernel Principal Components Analysis (KPCA)

PCA performs a linear transformation on a given data, but many real-world data are
not linearly separable. Kernel PCA is a non-linear form of PCA that better exploits
the complicated spatial structure of high-dimensional features. It maps features to
a higher dimensional space by means of a non-linear function (exploited with Kernel
trick), and subsequently applies PCA. Due to its versatility, it is generally more
powerful than PCA in my tests.

3.2.3 Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis (LDA) is another tool for dimensionality reduction
similar to PCA, but with the key difference that it uses the information from both
features and classes (supervised method) to create new axis and projects the data
on those axis in order to:

1. Minimize the within-class variance.

2. Maximize the distance between the means of the two classes (between-class
variance).

Since this method is supervised and does not make use of cross validation, we
discovered that it did not lead to good results on testing due to overfit.

3.2.4 Univariate Feature Selection

While the previous methods combine features to obtain a lower dimensional space,
the following ones score each feature and select the best ones. We can threshold
this selection by the top p percent of features, or the best k features. Either ways,
only a specified number of the “best” features is selected, whereas the others are
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Figure 3.6. LDA explained Variance and projection

discarded because of their low estimated impact on the prediction. The way we
used in this project to select the optimal number of features consists of giving a
uniform distribution of percentiles to keep (e.g. from 10 to 40 %, called “Mixed-
PercFew”, and another run from 40 to 70%, called “MixedPercLot”) and the grid
search will select the optimal one. For example, as shown in Figure 3.7 on the left,
34% of features were selected, whereas the others were discarded. We can notice
that this method of selecting features privileges the feature values belonging to the
same feature vector, such as PSD or MFCC Autocorr. To score the feature im-
portance, Univariate Feature Selection can use different functions, such as Fisher
Score, Mutual Information Score or Chi Square.

3.2.5 Tree Based Selection

An interesting method for feature selection makes use on tree-based algorithms and
their ability to select the features that they find more relevant for the classifica-
tion, based on the purity they reach in the leaves (more details in Section 3.3.3).
Some examples we used during our work include Random Forest Reducer 3.4.1 and
XGBoost Reducer 3.4.4. Some limitations of these reducers include:
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Figure 3.7. Features Left with Univariate Feature Selection

• Correlated features will be given equal or similar importance, but overall re-
duced importance compared to the same tree built without correlated coun-
terparts. This is why we need to check features correlation, as done in Sec-
tion 2.5.

• Random Forests and decision trees, in general, give preference to features with
high cardinality, and this may serve as motivation for the complex procedure
of feature scaling highlighted in Section 2.4 [42].

As we can see in Figure 3.8, tree based methods like XGBoost select different
features with respect to univariate feature selection method, and we can see that
they are more variable, i.e. not all related to one feature vector (e.g. Power Spectral
Density PSD of Figure 3.7), even though less then 9% of them were selected.

To see which features are considered important by Random Forest in all different
target labels, see Figure 3.2.5

It may be also interesting to check how and if the tree-based reduction improves
the clustering implemented by PCA and LDA, applying those transformers only to
the features left after another tree based method (e.g. XGBoost). We can see PCA
requires 10 features to get to 80% of explained variance (figure 3.2.1), whereas if
we first apply XGBoost as reducer, just the first three components are sufficient
for LDA and five for PCA, as shown in Figure 3.10

88



Machine Learning Workflow: Algorithms and Metrics

Figure 3.8. Features Left with XGBoost Reducer
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Figure 3.9. Feature Importance with Random Forest for Fuel (top left), Turbo
(top right), Cylinder Amount (bottom left), All compared (bottom right). FFT,
MFCC and MFCC Autocorr are considered important for all labels

Figure 3.10. PCA and LDA after XGBoost: Clear reduction in number of com-
ponents to explain 80% of the variance
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3.3 Main Algorithms

In this section, we start describing the relevant classification algorithms serving a
basis for the ensemble methods explained in section 3.4. We will briefly explain the
intuition behind those algorithms, some details on their way of working and the
main advantages and disadvantages.

3.3.1 Support Vector Machine (SVM)

A Support Vector Machine is a supervised machine learning model for classification
and regression problems. SVM is based on the idea of finding a hyperplane that
best-separates the features into distinct regions: it takes the data as input and
provides a separation boundary as output. We can imagine the situation in 2D
(two features per sample). By plotting each sample on our feature space, we may
identify some regions where the different classes are generally located (same as
Figure 2.2). Many possible straight lines are available, and SVM chooses the one
maximizing the distance from the classes. To compute the distance, the algorithm
will select some points for each class and consider them as reference. Those points
are called support vectors. It then computes the distance between the line and
the support vectors: the margin, as shown in Figure 3.11. The primary goal is
find the optimal separation line (slope and intercept) that maximizes the margin.
When the feature dimension is three, instead of a line it will build a plane [121],
and since the amount of features is generally higher than that (around 200 features
left in my case), a hyperplane is generated. In an n-dimensional Euclidean space a
hyperplane is a flat, n-1 dimensional subset of that space that divides the space into
two disconnected parts. Originally, SVM was only able to draw flat hyperplanes,
but today there is the possibility to draw non-linear boundaries between classes
thanks to the kernel approach, allowing to enlarge the feature space, similar to the
strategy implemented by KPCA (section 3.2.2).

There are three parameters driving the Kernel SVM behavior:

• C: This controls the trade off between smooth decision boundary and clas-
sifying training points correctly. A large value of C means that it gets more
training points correctly, with a higher risk of overfitting.

• Kernel Function: is the kernel function used for building nonlinear decision
boundaries. The mot common kernels are Radial basis function kernel (RBF)
also called Gaussian Kernel, characterized by γ

K(x1, x2) = e−γ||x1−x2||
2

and the polynomial kernel characterized by a and b

K(x1, x2) = (a+ xT1 x2)
b

91



Machine Learning Workflow: Algorithms and Metrics

Figure 3.11. Support Vector Machine

• γ : since I primarily used RBF kernels, an important parameter to control is
γ. It defines how far the influence of a single training example reaches. If
it has a low value it means that every point has a far reach and conversely
high value of gamma means that every point has close reach. The higher is γ,
the higher is the chance that the model will overfit, because of smaller radius
kernels. On the other hand, if the gamma value is low even the far away
points get considerable weight and we get a more linear curve.

SVM is a great classifier because it is effective with higher-dimension input data
(when there are many features) and because it is influenced only by support vectors,
possible outliers in the sample have reduced impact. On the other hand, SVM
requires a large amount of time to process large datasets, and performance is heavily
influenced by manual parameter selection.
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3.3.2 k Nearest Neighbors (kNN)

An idea we can exploit to classify samples is to look where they lie in the feature
space compared to the others already present and to infer its class from those
neighbors. It follows a natural principle stating that you are the average of your
k closest people. If they belong to a class (e.g. usual golf players), it is likely that
you belong to that class as well. Even though this principle might be questionable,
it is intuitive and simple to use. As an example, we consider the feature space of
dimension 2 shown in Figure 3.12, so that we can plot the location of each train
sample on a 2D plane and mark each point’s class by a specific color (green and
blue). If a new unknown (red) sample is to be classified, we look at its location in
its feature space. Once placed we look at its closest neighbor in terms of euclidean
distance to define its class. The idea behind this intuition is that the class of a
data point is determined by the data points around it. However, as we can see
from Figure 3.12 it may happen that there are some outliers, like the green sample
placed in the blue cluster on the right, leading to a mis-classification of the new (red
= to-be-classified) one. For this reason, in order to make the model more robust,
we introduce the term k, defining the number of neighbors you have to look at to
classify a new sample. If in this case we set k = 5, we check the class of five closest
training points, each one will vote for its class, and the majority defines the class to
be assigned to this new point. The parameter k has to be carefully chosen, because
it impacts both performance and generalizability. This classification algorithm

Figure 3.12. k Nearest Neighbors
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is easy to implement, it requires short training time, it is suitable for parallel
implementation and for classes that are well separated in feature space. On the
other hand, it consumes a lot of memory because it has to store each point of
the training dataset, and compare each test sample to the whole dataset during
the test phase, which results in long computing time, Furthermore it is susceptible
to the “curse of dimensionality”, (that is, small increases in dimensionality result
in rapidly-increasing resource requirements for computation). For this project I
needed fast predicting time during testing even with limited device resources, so
kNN is unsuitable.

3.3.3 Decision Tree

Decision Tree is a classification and regression algorithm. The name “tree” comes
from the fact that it involves splitting the prediction space into a number of simple
regions and the set of splitting rules can be summarized in a tree, drawn upside
down 3.13. In tree structures, leaves represent class labels and branches represent
conjunctions of features that lead to those class labels. The idea behind decision
trees is to create a list of subsequent questions to narrow down the options. More
formally, the decision tree is the algorithm that partitions the observations into
similar data points based on their features. It is built through an iterative process
of splitting the data in each node, and then splitting it further on each nodes of
the created branches [20, 33]. While single-tree performance is often worse than

Figure 3.13. Decision Tree Structure

other classification algorithms, this approach is suitable to be used in ensemble
methods such as bagging, random forest and boosting thanks to its simplicity (see
section 3.4).
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Way of splitting

Algorithms for constructing decision trees usually work top-down, by choosing a
variable at each step that best splits the set of features. Different algorithms use
different metrics for measuring “best”. These typically measure the homogeneity of
the target variable within the subsets. These metrics are applied to each candidate
subset, and the resulting values are combined (e.g., averaged) to provide a measure
of the quality of the split.
The most common cost functions for this evaluation are Gini Impurity and Index,
Entropy and Information Gain [15]:

• Gini Index is computed in order minimize the feature noise after the split. It
is based on the concept of Gini Impurity, which measures how much noise a
feature category has. If a feature is a continuous variable, the reasoning is the
same as the algorithm split the features in two blocks through a threshold,
exactly like categories. Gini Index is computed with the following formula:

Gini(K) =
∑
i∈N

Pi,K(1− Pi,K)

where N is the list of classes and P is the probability of category K of having
class i Gini Index is then computed by weighting the sum of Gini Impurities
based on the corresponding fraction of the category in the feature. It combines
the category noises together to get the feature noise.

• Information gain maximizes the reduction in uncertainty towards the final
decision by minimizing the entropy of the child split. It is based on the
concept of Entropy, representing the unpredictability of a random variable,
thet is computed as

H =

{
−
∑

i∈N Pi,K · log2 · Pi,E if Pi,K /= 0 ∀i
0 otherwise

After obtaining the entropy for each category, we can combine them to get
the information gain values for the features. The more information we gain
after each split, the better.

IG = H(T )−H(T |a) = H(T )−
∑
i∈K

Pi,a ·H(i)

where T is the sample space, a is the feature and H(T |a) can be understood
as weighted sum of all entropies.

Using the decision algorithm, we start at the tree root and split the data on the
feature that results best. Due to this procedure, this algorithm is also known as
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a greedy algorithm, as it has the only goal (excessive desire) of maximizing that
parameter. In an iterative process, we can then repeat this splitting procedure at
each child node until the leaves are pure (only one class). As the data become more
complex, the decision tree also expands. If we keep the tree growing until all the
training data are classified, our model will be overfit. Setting when to stop is an
important parameter and is based on some criteria:

• The number of observations in the node: if we reach that (lower) limit, the
algorithm stops.

• The node’s purity: The Gini index shows how much noise each feature has
for the current dataset and then chooses the minimum noise feature to apply
recursion.

• The tree’s depth: we can pre-specify the limit of the depth so that the tree
will not expand excessively when splitting complex datasets.

• Max features: Since the tree is split by feature, reducing the number of fea-
tures will result in reducing the size of the tree.

Some advantages Decision Trees classifiers is related to the fact that they are [20]:

• Inexpensive to construct,

• Extremely fast at classifying new testing samples,

• Easy to interpret, understand and visualize for small sized trees,

• Comparable in accuracy to other classification techniques for simple datasets,

• Non-Parametric: they make no assumptions about the space distribution,

• Able to exclude unimportant features and give importance to the remaining
ones,

• Able to handle both numerical and categorical data,

• Able to capture nonlinear relationships.

Some disadvantages include:

• Tendency to overfit,

• Decision boundary restricted to being parallel to features axes,

• Often biased toward splits on features having a large number of levels,

• Small changes in the training data can result in large changes to decision
logic,

• Large trees can be difficult to interpret.
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3.3.4 Passive Aggressive Classifier

Passive-Aggressive is one of the few “online learning” algorithms and may be very
efficient for large datasets. In online machine learning algorithms, the input data
comes to the learner in sequential order and the model is updated step-by-step. Nor-
mal algorithms are referred as “batch learning”, where the entire training dataset
is used at once. Online learning is very useful in situations where there is a such
large amount of data that it is computationally impossible to train on the entire
dataset at once. We can simply say that an online learning algorithm will get a
training example, update the classifier, and then forget that sample [83].

Even though the working principles of this algorithm are rather complex and
sophisticated, we can have an intuition of it by the words composing its name:

• Passive: If the prediction is correct, keep the model and do not make any
changes.

• Aggressive: If the prediction is incorrect, make changes to the model.

Some important parameters are:

• C is the regularization parameter, and regulates the penalization of an incor-
rect prediction

• Tolerance is the criterion by which the model will stop, i.e. when loss >
previousloss–tolerance.

3.4 Ensemble Learning

Ensemble methods use multiple combined individual learning algorithms to obtain
better predictive performance than could be obtained from any of the constituent
learning algorithms alone. The fundamental concept behind Ensemble Algorithms
is a simple but powerful one: the wisdom of the crowd.

Wisdom of the Crowd

Wisdom of crowds is the idea that large groups of people are collectively smarter
than individual experts when it comes to problem-solving, decision making, in-
novating and predicting. For crowds to be wise, they must be characterized by
a diversity of opinion and each person’s opinion should be independent of those
around him or her. For example, by averaging together the individual guesses of a
large group about the weight of an object, the answer may be more accurate than
the guesses of experts most familiar with that object, and probably more accurate
than the single-best guess, as described by the statistician Francis Galton in 1906,
when he observed the guesses of 800 people participated in a contest to estimate
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the weight of a slaughtered and dressed ox [44] The concept can be expanded to
the Machine Learning world by combining individual weak models, each of which
performs poorly by themselves, either because they have a high bias (low degree of
freedom models, for example) or because they have too much variance to be robust
(high degree of freedom models, for example).

Bias and Variance

The ensemble model tends to be more flexible (less bias) but are mostly used to
reduce variance of the model, to be less data-sensitive and less overfitting. Bias
and variance are in fact strictly correlated with overfitting and underfitting, and a
trade-off is often needed (figure 3.14).
There are two main tools to apply Ensemble Learning: Bagging and Boosting [89]:

Figure 3.14. Bias vs Variance Tradeoff

• Bagging (or Bootstrap Aggregating): It consists of training in a parallel
way a bunch of individual models on a random subset of the data (bags) to
get a fair idea of the distribution (complete set). It uses a sampling technique
called Bootstraping in which we create multiple subsets of observations by
extracting samples from the original dataset with replacement. The size of
the subsets is the same as the size of the original set, but they may be some
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repetitions, so that they are not equal to the original one. Models are then
run in parallel, as they are independent from each other. The algorithms
trained on those different datasets are aggregated to get the ensemble, and
the final predictions are determined by combining the predictions from all the
models.

• Boosting: It is a technique that consists in fitting sequentially multiple weak
learners so that each model is fitted giving more importance to observations
in the dataset that were badly handled by the previous ones. Each individual
model learns from mistakes made by its predecessors. In sequential methods
the different combined weak models are no longer fitted independently from
each others. The idea is to fit learners iteratively such that the training of a
model at a given step depends on the models fitted at the previous steps. The
boosted ensemble model produces an algorithm that is in general less biased
than the weak learners that compose it. Being mainly focused at reducing
bias, the base models considered for boosting are often characterized by low
variance and high bias, such as shallow decision trees. The final model (strong
learner) is the weighted mean of all the models (weak learners).

Very roughly, we can say that bagging will mainly focus at getting an ensemble
model with less variance than its components whereas boosting and stacking will
mainly try to produce strong models less biased than their components.

3.4.1 Random Forest

Random forest is a classification algorithm consisting of many decisions trees. It
uses bagging and feature randomness when building each individual tree to try
to create an uncorrelated forest of trees whose prediction by committee is more
accurate than that of any individual tree. The low correlation between models is
the key, and is ensured thanks to two important methods [128]:

• Bagging: Decisions trees are very sensitive to the data they are trained on,
and small changes to the training set can result in significantly different tree
structures. Random forest takes advantage of this by allowing each individ-
ual tree to randomly sample from the dataset with replacement, resulting in
different trees.

• Feature Randomness: In a normal decision trees’ node, we consider ev-
ery possible feature and pick the one that produces the greatest separation
(according to Gini or Entropy metrics) between the observations in the left
node and those in the right node. In contrast, each tree in a random forest
can pick only from a random subset of features. Sampling over features has
indeed the effect that all trees do not look at the exact same information to
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make their decisions and, so, it reduces the correlation between the different
returned outputs.

To summarize, the random forest approach is a bagging method where deep trees,
fitted on bootstrap samples and random subspace of features, are combined to
produce an more robust output with lower variance.

Another version of the Random Forest is the Extremely Randomized Trees (or
ExtraTrees) model introduced in 2006 by Pierre Geurts, Damien Ernst and Louis
Wehenkel [45], which introduces more variation in the ensemble and is faster to
compute and shows lower variance than Random Forest.

3.4.2 AdaBoost (Adaptive Boosting)

Adaboost is the first boosting algorithm, that iteratively increases the weight of the
samples misclassified by the previous model before the fitting phase. As all others
Boosting Algorithms, Adaboost algorithm works in several subsequent steps:

1. Initialize the sample weights

2. Train a shallow decision tree

3. Calculate the weighted error rate of the decision tree (err)

4. Calculate the decision tree’s weight in the ensemble with the following formula

WeightTree = Learning rate · log
(1− err

err

)
5. Update weight of misclassified samples

New Weight = Old Weight · eWeightTree

Note that the higher the weight of the tree (the more accurate this tree per-
forms), the more boost (importance) the misclassified data point by this tree
will get. The weights of the data points are normalized after all misclassified
points are updated.

6. Repeat from step 1 until enough models are built

7. Make the final prediction by adding up the weight of each tree multiplied by
the prediction of that tree. In this way, the trees with higher weight will have
more influence on the final decision.

A key difference of Adaboost with respect to Random Forest is the effect of the
number of trees in the ensemble. In facts, the more tree we add in our Boosting
mode, the less bias we get, hence the more likely we are to overfit the data. In
Random Forest algorithm, on the other hand, the higher number of trees only
impacts the computing time and will not decrease the performance of the model.
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Figure 3.15. Adaboost working principle - picture inspired by [41]

3.4.3 Gradient Boosting Machine (GBM)

Gradient Boosting Machines are also correcting errors made by previous models,
but instead of adjusting weights like AdaBoost, each model directly train on the
errors of the previous one. This method is named gradient boosting as it uses a
gradient descent algorithm to minimise loss when adding subsequent models to the
ensemble. Its intuition is built upon 2 key insights:

1. If we can account for our model’s errors, we will be able to improve our model’s
performance. For example, if we have a regression model which predicts 3 for
a sample whose actual outcome is 1, and if we know the error (Actual −
Predicted = 3− 1 = 2), we can fine-tune the prediction. We simply subtract
the error (2) from the original prediction (3) and obtain a more accurate
prediction (1).

2. We can train a new model to predict the errors made by the original model.
We can improve the accuracy of a model by training another model to predict
its current errors. Then we form a third new improved model that is account-
ing for the predicted error of the original one. The improved model, which
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requires the outputs of both the original predictor and the error predictor, is
now considered an ensemble of the two predictors. In gradient boosting, this
process is repeated to continually improve the accuracy.

This repeated process is the fundamental of gradient boosting, literally learns from
the mistake in a direct way.

1. Train a decision tree

2. Calculate the error of this decision tree, and save it as the new label to predict,
so that the new trees will literally train on the errors of the previous ones

3. Repeat from step 1 until the number of trees we set to train is reached

4. Make the final prediction

The Gradient Boosting makes a new prediction by simply adding up the predictions
of all trees. Here the learning rate parameter is to be coupled with the number of
estimators. If we give less importance to each estimator (lower learning rate) we
have to increase the number of trees, but like AdaBoost we have to pay attention
not to overfit the model with too many trees.

3.4.4 Extreme Gradient Boosting (XGBoost)

XGBoost is a gradient boosting machine which improves the results obtained by
standard GBM models using a combination of software and hardware optimization
techniques. It generally provides superior results using when using less computing
resources and time. Without going too much into details, here are the advantages
of XGBoost with respect to previous generations of GBMs:

• Parallelized Tree Building.

• Tree Pruning using depth-first approach, that improves computational per-
formance significantly.

• Cache and out-of-core computing, optimizing available disk space while han-
dling big data-frames that do not fit into memory.

• Regularization to reduce overfitting.

• Automatic handling of missing data.

• Built-in Cross Validation capability.
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Figure 3.16. Hystory of XGBoost. Source: [78]

3.4.5 Light Gradient Boosting (LightGBM)

LightGBM is a further evolution of XGBoost, optimized for big data by Microsoft
developers. Therefore, it has all the innovations of XGBoost with some additional
ones. One of the main changes is the way tree is constructed. LightGBM adopts
a leaf-wise tree growth strategy, whereas all other GBM implementations follow a
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level-wise tree growth (figure 3.17 and 3.18), where you find the best possible node
to split and you split that one level down. This strategy will result in symmetric
trees, where every node in a level will have child nodes resulting in an additional
layer of depth. LightGBM, instead, finds the leaves which will maximize the reduc-

Figure 3.17. Level-wise tree growth

tion of loss. It then splits only that leaf and not the rest of the leaves in the same
level. This results in an asymmetrical tree, where subsequent splittings can happen
only on one side. Another improvement lies in the way features are considered:

Figure 3.18. Leaf-wise tree growth

they are grouped into set of bins and splits are performed based on those bins.
This reduces the algorithm time complexity from O(ndata) to O(nbins) [55]. Leaf-
wise tree growth strategy tend to achieve lower loss as compared to the level-wise
growth strategy, but it also tends to overfit on small datasets. Our dataset is not
considered big enough to need LightGBM, and XGBoost is enough. However, we
included it in this Thesis because the future vision is to expand the dataset. The
parameters space of LightGBM is rather big, so it is not easy to optimize. How-
ever, there are some suggestions taken from the official documentation for what
the parameters is concerned, depending on what we want to pursue. For better
accuracy

• Use large max bin, but may be slower

• Use small learning rate with large num iterations
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• Use large num leave, but may cause over-fitting

For dealing with over-fitting you do the opposite of the suggestions before.

3.4.6 CatBoost

CatBoost is a new generation of Gradient Boosting Machine developed by Yandex
and released Open-Source. CatBoost addresses another need, in some way opposite
to the one of LightGBM, especially for what the parameters tuning is concerned. In
fact, it is supposed to provide good results with no parameters tuning. It automat-
ically supports categorical features coming from different sources, making it more
flexible than other GBM algorithms, and uses a novel gradient boosting scheme
that helps improving accuracy. Some of the advantages of CatBoost is also on the
performance side, with support to GPU computation and reduction of internal la-
tency to speed up the prediction.
Taking the description from the official website, it states:

Figure 3.19. CatBoost [18]

CatBoost is an algorithm for gradient boosting on decision trees.
It is developed by Yandex researchers and engineers, and is used for search,

recommendation systems, personal assistant, self-driving cars, weather prediction
and many other tasks at Yandex and in other companies,

including CERN, Cloudflare, Careem taxi.
It is in open-source and can be used by anyone [18]

CatBoost also differs from the rest in another key aspect: the kind of trees that is
built in its ensemble. CatBoost, by default, builds Symmetric Trees or Oblivious
Trees: This has a two-fold effect [56, 54]:

1. Regularization: Since we are restricting the tree building process to have
only one feature split per level, we are reducing the complexity of the algo-
rithm, resulting in a regularization strategy.
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2. Computational Performance: One of the most time consuming part of
any tree-based algorithm is the search for the optimal split at each nodes.
Since we are restricting the features split per level to one, we only have to
search for a single feature split resulting in a much faste inference phase.

Another important detail of CatBoost is that it considers combinations of categori-
cal variables in the tree building process. This helps to consider joint information of
multiple categorical features. Furthermore, it has an inbuilt Overfitting Detector.
CatBoost can stop training earlier if it detects overfitting.

3.4.7 Voting

Voting is maybe one of the most intuitive ensemble algorithm, because it is exactly
what humans do when they have to make a decision: voting. The basic idea is
to combine several learners (e.g. classifiers) of any kind (not necessarily decision
trees) and make them vote for the best class. Each model makes a class prediction
for a defined sample, and vote for it to influence the final decision. There are two
ways of voting:

• Hard Voting: Each classifier makes its prediction and the final outcome
is the class predicted by the highest number of classifier. For example, if
classifier 1 (e.g. Decision Tree) predicts class C1 and classifers 2 (e.g. SVM)
and 3 (e.g. kNN) also predict class C2, then with hard voting strategy the
final prediction will be class C2, as the majority is voting for class C2.

Class = mode(C1, C2, C2) = C2

• Soft Voting: With this method, we also want to take into account how
sure each classifier is about its prediction, by looking at the probabilities for
each class, average them across the different classifiers, and select the class
resulting with the highest probability. For example, if classifier 1 predicts
class C1 with 90% (class C2 with 10%) and classifiers 2 and 3 predicts class
C2 with 60%, we get an average probability of:

P (C2) =
0.1 + 0.6 + 0.6

3
= 0.43 = 43%

P (C1) = 1− P (C2) =
0.9 + 0.4 + 0.4

3
= 0.57 = 57%

Class = argmax
(
P (C1), P (C2)

)
The final prediction resulting from Soft Voting procedure is hence class C1.

Voting can be used also downstream to other ensemble methods, such as Random
Forest or Gradient Boosting. In my software, I used it to combine the outcome of
the n best scoring classifiers.
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3.4.8 Stacking

Stacking brings the idea of voting one step further. In facts, it combines different
parallel classifiers like in Soft Voting algorithm, but instead of averaging the prob-
abilities it stack those results, building a new much smaller dataset. It then fits a
meta-classifier (generally a simple Logistic Regression) on this new dataset made of
probability predictions of previous models rather than on the original features [38].

Figure 3.20. Stacking Algorithm Flow

I implemented Stacking in my code with some more tweaks and cross validation
strategy in order to avoid overfitting. The same way I did with Voting, the best
n classifiers are selected and stacking with logistics regression as meta-classifier is
applied. It allowed to improve the results even further, as shown in chapter 5. ]
sectionPerformance Metrics In previous chapters we briefly explained the main
algorithms tested. The ultimate goal is to select one of them in order to give the
final result. To achieve that, we need a metrics allowing to score the performance
of each estimator. In this chapter I briefly describe the main metrics used, on top
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of which the best model is selected [94].

3.4.9 Confusion Matrix (CM)

When dealing with classification tasks, the main tool to use to look deeper into
the results is the confusion matrix. It is basically a matrix counting the number of
predicted label with respect to the actual label. Each row is indexed by the true
label and each columns by the predicted one. The cell of the intersection of the is
how many samples labelled as i were predicted as j, as shown in figure 3.4.9. Of
course the diagonal shows the correctly classified samples. For simplicity we refer to
a binary classification task (like Turbo-Naturally Aspirated, Gasoline-Diesel, Vee -
Inline, ...) but the concepts can be expanded to multi-class problems as well From

Figure 3.21. Confusion Matrix

the CM we can compute some useful measures:

• True Positive (TP): Number of labels of positive class (Inline for engine shape,
Turbocharged for turbo classification, Gasoline for fuel, but in our case they
may be interchangeable) that are labelled as positive (correctly classified).

• True Negative (TN): Same as before, all negative samples correctly classified
as negative.
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• False Positive (FP): Amount of samples belonging to the negative class but
incorrectly classified as positive.

• False Negative (FN): Amount of samples belonging to the positive class but
incorrectly classified as negative.

• Sensitivity, also called Recall or True Positive Rate (TPR): it is the amount
of true positive over the total amount of positive samples P = TP + FN

TPR =
TP

P
=

TP

TP + FN

Its value goes from 0 to 1: a recall of 1 means that every item from class C1
was labeled as belonging to class C1 (but says nothing about how many items
from other classes were incorrectly also labeled as belonging to class C1).

• Specificity, also called Selectivity or True Negative Rate (TNR): exactly as
before, it measures the proportion of actual negatives that are correctly iden-
tified as such.

TNR =
TN

N
=

TN

TN + FP

• Precision, or Positive Predicted Value (PPV): it is computed as

PPV =
TP

TP + FP

Being the ratio of positive classes correctly classified as positive, precision
measures the value of confidence we have that a samples predicted as being
positive is effectively positive.

• Accuracy: measures the ratio of positively classified samples, (both positive
and negative) over the total amount of samples.

Accuracy =
TP + TN

TP + TN + FP + FN

Accuracy is a great performance indicator for balanced classes, but as ex-
plained in section 2.2.4 it can be misleading for unbalanced classes.

• F1 Score combines precision and recall into one metric, giving equal impor-
tance to both

F1 =
precision · recall
precision+ recall

=
PPV · TPR
PPV + TPR
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• Fβ is the generalization of F1, as it allows to give more importance to precision
(β < 1) or to recall (β > 1)

Fβ = (1 + β2) · precision · recall
β2 · precision+ recall

• Cohen Kappa: tells us how much better is our model over the random classifier
that predicts based on class frequencies.

k =
Accuracy − AccuracyRandomClassifier

1− AccuracyRandomClassifier
It is a great alternative to accuracy when the classes are not balanced

• Matthews Correlation Coefficient MCC is a correlation between predicted
classes and ground truth, and can just be computed from the Classification
Matrix as follows

MCC =
TP · TN − FP · FN

(TP + FP ) · (TP + FN) · (TN + FP ) · (TN + FN)

3.4.10 Curves

Classification algorithms often make use of probability to predict the various classes,
hence they compute for each sample the probability of belonging to each of the
possible classes, and after setting a threshold they define the class. This threshold
is a tradeoff between two different performance metrics, and varying this we can
plot the trend of these metrics, obtaining insightful curves. These are the Receiver
Operating Characteristic Curve (ROC) and the Precision Recall Curve (PR)

• ROC Curve: this curve shows the relationship between Sensitivity and
Specificity by varying the threshold level. Generally in the x axis the pa-
rameter 1 − Specificity is used. Besides the shape of the curve, an inter-
esting parameter could be computed starting from it: the Area under the
Curve (AUC). This chart is bounded horizontally and vertically between 0
and 1, hence the maximum that AUC can achieve is 1. Any trivial clas-
sifier has the points (0,0) and (1,1) belonging to the curve, by putting all
samples in one of the two classes, reaching sensitivity = 0 for specificity = 1
(1−specificity = 0), and sensitivity = 0. By increasing sensitivity, a random
classifier would linearly decrease specificity, reaching an AUC of 0.5 (Fig-
ure 3.22). This is the reference value for judging our classifier: if AUC < 0.5,
a random classifier would have performed better. For good results, we want
sensitivity and specificity to be both higher than 0.5.

• PR Curve is the trend of Precision and Recall, again by changing the thresh-
old. Similar reasoning as before could be made.
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Figure 3.22. Example of ROC Curve

Both results are computed only for binary classification problems, but we are able
to extrapolate this concept to multiclass problems computing the score at per-class
level. We can score the results of each class against all the others combined (One
Versus Rest, OVR) or against each of the other (One Versus One, OVO), resulting
in a binary classification problem, and then merge the results obtained by each
class. This merge may be done at the macro level, simply averaging the scores, at
weighted level, i.e. weighting the score with the number of sample of that class,
or at micro level, which also takes into account the impact of class size. Another
interesting curve to observe is the learning curve, which shows the score (e.g.
Accuracy) on train and validation set over the training process. It tells us how the
algorithm is improving over the training ”epochs” and whether it is overfitting. If
we see that our training error is decreasing significantly, whereas the validation is
constant or even increasing, we can get some insights that the model is overfitting
and the training phase should be stopped. We can deduce that the parameters for
regularization are too permissive, or that some features are not informative enough
and mislead the judgement of the classifier during validation.
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3.4.11 Reconstruct Audio

Figure 3.23. Sample reconstruct procedure: each sub-chunk votes for the class of
its “parent” chunk. Even though they are treated separately, they belong to the
same sample, on which actual classification is made

As outlined before, I decided to chunk the audio signal in pieces of the same
length, to reduce sensitivity to noise and have features consistent among the dataset.
This allows us get more robust predictions on the original sample. In fact, we can
consider to track back the predictions of each sub-chunk by its ID, so that each
of them will vote for the class of its parent sample. For example: sample with
ID = 15 is 32 seconds long. we chunk it with 3 seconds pieces, resulting in 10
sub-samples with ID = 15 (and 2 seconds lost). If 6 of them are predicted to
belong to class C1 and the other 4 to class C2, when we reconstruct the sample
the final prediction would be C1, because of the majority of sub-samples ”voting”
for class C1 (Figure 3.23). We could really see an improvement on the results with
this technique, as detailed in chapter 5.
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Chapter 4

Framework

Following the structure of this Thesis, it is clear that the work code framework is
divided into three main parts: From Sound to Features (Chapter 2), From Features
to Results (Chapter 3), and Results Evaluation (Chapter 5)

In this chapter I will provide a major overview on how the framework works,
including input and processing pathways. It is a collection of the pieces explained
in the previous chapters and wraps them all together to form the big picture. This
explanation is carried on without the burden of technical details. For those specific
aspects, such as dealing with particular data structure limitations and computing
performance, I refer to the actual documentation of the framework, provided as
exhaustive comments inline within the code.

4.1 From Sound to Features Flowchart

To provide an in depth look into some of the sub-functions for feature extraction
and their general usage, a flowchart comes very useful. (figure 4.1) Here I will only
focus the attention on the following sub-functions:

1. Import WAV files, responsible for the conversion between standard uncom-
pressed audio format to numpy array and pandas dataframe.

2. Chunk samples, responsible for the chunking of the samples, as explained
in section 2.2.3, and the management of the dimension of the dataset in case
we want to use a smaller version for developing purposes.

3. Select Labels and Classes Subset, used to filter the database and remove
the empty lines.

4. Feature Generation, the core function of this part, responsible for feature
extraction and feature scaling.

5. EDA for database exploration, as outlined in section 2.5.
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Figure 4.1. From Sound to Features Framework Flowchart
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4.2 From Features to Results Flowchart

This part is the actual machine learning where estimators are fitted to the data
and a grid search over defined parameters is run. Here in flowchart of Figure 4.2,
the functions I want to focus the attention on are:

1. Load X, y and go which takes care of all initialization steps of the process

2. Build Testing Package which packages an environment stored in a folder,
allowing to do real testing on new samples. It will provide the whole process
(from loading the raw audio to the prediction of the class)

3. Stacking and Voting Ensemble is a way to combine the best n estimators
in a stronger one, either with stacking or voting strategies

4.3 Results Evaluation Flowchart

The functions for evaluating the results are used straight after all estimators have
been fitted, so they belong to the same flowchart shown in Figure 4.2. For the
purpose of results evaluation several plots are saved, in order to have insights on
how the algorithms are performing and select the one(s) that are giving the highest
Accuracy, Precision, F1 or ROC-AUC. There are three main functions dealing with
this purposes:

1. Compute Results plotting the results in a lot of different ways, as shown
in next section

2. RFECV: Recursive Feature Elimination with Cross Validation uses a Ran-
dom Forest Classifier and computes the cross validated accuracy several times,
removing one feature at time until only one is left. In this way one can see
how many features are truly necessary for a good classification task.

3. Show Features Removed is a function that tries to give some insights about
the features in relations with the output. Some tree-based classifiers are able
to attribute importance to the features they split. Furthermore one can look
at the first components of PCA and LDA and their explained variance.
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Figure 4.2. Machine Learning Fitting Algorithms Framework Flowchart
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Results

In this chapter I am going to present the results obtained after fine-tuning of pro-
cedures steps. The class prediction of which I obtained the most successful results
are:

• Turbo

• Fuel

• Cylinders amount

Those results are proposed in this specific order, because the correlation among
labels enables a sequential investigation of the characteristics of the engine. I went
through several iterations before deciding which engine characteristics is the easiest
to infer without previous knowledge about other ones, resulting at the end in the list
shown before. I first predicted the engine fuel type, then used this information to
infer the presence of turbocharging, and finally used both information to predict the
number of cylinder. The production of the best results is a long process, searching
for the best of the potentially infinite combinations:

• Which features to extract and

• Parameters of the extracted features

• Dimensionality reduction method

• Dimensionality reduction hyper-parameters

• Classification algorithm

• Classification algorithm hyper-parameters

• Metric to optimize
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To do this I ran a grid search several times over the parameter space, but since
I realized that the most important feature are FFT and PSD, minor tweaks in
features parameters did not change the performance of a considerable amount. As
explained in Section 3.4.8, there are a lot of ways to judge the performance of a
classifier, and since I explored several classifiers with several preceding dimensional-
ity reducers, the possible pictures are a lot. For this reason, it was needed to build
a function that automatically create several images for each fitted pipe (sequence of
one dimensionality reducer and one classifier). The main pictures used to evaluate
the performance are:

• A comparison between confusion matrix on train and on test dataset, one for
each pipe.

• A comparison between Classification report of train and test. Classification
report (CR) is a tool allowing to compute different metrics at the same time,
and compare them in a heat-map matrix.

• A chart containing all confusion matrices computed on the test dataset, be-
cause quite all the ones computed from the train dataset were almost perfect
diagonal. This was exploited to see at glance a fast comparison among all
different algorithms.

• A bar chart showing some selected metrics in a bar chart, again used to
compare the different algorithms.

• ROC curve and Precision Recall Curve, as well as feature importances and
confusion matrix, allowing to look more in depth the performance of the best
selected classifiers.

In the following sections, I will present some of the best algorithms for each target
label with different pictures, and finally I will show a table with the very best
performance figures, in order to set a benchmark for future research in the field.
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5.1 Target Label: Turbo

In the sequential procedure aiming at classifying the engine, the first step is to
predict the type of aspiration, that is either turbocharged (turbo = 1) of naturally
aspirated(turbo = 0). In the following Sections, I will provide several charts show-
ing the results obtained in all different combination of dimensionality reduction
methods and learning algorithms. I will then focus my attention on the ones that
performed best, by looking at some of metrics and curves described in Section 3.4.8.
At the end, the final Confusion Matrix for turbo is shown.

Comparison among algorithms

Figure 5.1. Comparison of the F1 Score for Turbo prediction

As shown in Figure 5.1, Extremely Randomized Trees algorithm outperformed
the others independently from used dimensionality reduction method. In Figure 5.2
we can see the reasons why the other algorithms perform worse: It is not because
they completely misclassify some classes, but simply they are less “sure”, and tend
to distribute the samples less specifically. Furthermore, if we look at the confusion
matrices of on the training set they are perfect, meaning that the algorithms tend to
overfit. We can state that they have high variance. Random Forest and ExtraTrees
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Figure 5.2. Comparison Confusion Matrices for Turbo prediction

are specifically designed to reduce the variance of the problem, and therefore the
results obtained by the combination of Random Forest as dimensionality reducer
and ExtraTrees as learning algorithm yields the best performance.

Confusion matrices and Curves of the best performers

It seems that univariate features selection is a better reduction method in this
case, but if we look at the other metrics, such as Precision, Recall and F1. For
this reason, I decided to select Random Forest as a ultimate reducer for ExtraTree
when prediction the presence of turbocharger. These difference can be observed in
Figures 5.4, in two views than facilitate the comparison.

As a last step, we look at the Confusion Matrix in Figure 5.5 to have a more
detailed view of the above-mentioned metrics.
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Figure 5.3. ExtraTree for Turbo: ROC and PR Curves. Comparison between
Random Forest Reducer (ROC-AUC= 0.82 and PR-AUC= 0.8) and Univariate
Features Selection (ROC-AUC= 0.86 and PR-AUC= 0.86)

Informative Features

To understand our process and optimize feature extraction, let’s have a look at
the features selected by the dimensionality reduction methods in Figure 5.6. This
chart has to be read in the following manner: The dots at the very bottom of
each square represents the features that are discarded (e.g. MFCC Var feature was
discarded by all algorithms), and each algorithms represents with a colored dot the
features kept (e.g. FFT Kurt was kept by everyone, and only some element of the
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Figure 5.4. Scoring Bars and Classification Report: the performances of Random
Forest as reducer are higher in every metric with respect to Univariate Selection

DWT Kurt feature vector were selected by some algorithms). They are shown in
different y-levels only for appearance purposes, so that they can be: y-axis does
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Figure 5.5. Confusion Matrix of ExtraTrees reduced by Random Forest:
we noticed a strong diagonal, with one of the values above 0.9. This result
is satisfactory

not represent quantitative values.

For a more aggregate look about the quantities of features kept, we refer to
Figure 5.8 After the feature selection process, ExtraTrees also ranks the features
and gives them an “importance”. It says how relevant they are for the learning
process. In Figure 5.7, the values of the importance given to each feature value
is displayed. In this chart we can see that some of the square are empty. This is
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loc FFT Kurt FFT Skew FFT Var FFT SE

FFT Mean FFT Binned MFCC Norm MFCC Kurt MFCC Skew

MFCC Var MFCC SE MFCC Mean DWT Kurt DWT Skew

DWT Var DWT SE DWT Mean PSD MFCC Autocorr

MixedPercFew
MixedPercLot
RandomForest_reducer
XGBoost_reducer

Figure 5.6. Dot Chart for comparison of features selection for Turbo

simply because those features did not pass the first filtering level of Random Forest
Reducer.

Running Time and Hyperparameters

In order to provide useful information for future work and for reference, I provide
here the list of hyperparameters and the time needed to run the fitting procedure.
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Figure 5.7. Detailed features importance by ExtraTrees in Turbo classification

Hyperparameter Value
max features log2
criterion gini
n estimators 2000
max depth 443
min samples leaf 5
min samples split 2
ccp alpha 0
min impurity decrease 0
min weight fraction leaf 0
fitting time 42sec

Table 5.1. Hyper-parameters of ExtraTrees
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Figure 5.8. Bar Chart for features selection and importance for Turbo
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5.2 Target Label: Fuel

Fuel type prediction is crucial when dealing with diagnostics, because most of the
engine-related issues are tightly related to the kind of fuel. For example, when
running a vibroacoustic diagnostics tool, the software will never predict “ignition
coil failure” if it knows that the engine it is inspecting is diesel powered. Now
the algorithms can use the information about the presence of Turbo as feature,
because this was computed in the step before. In the following Sections, I will
provide several charts showing the results obtained in all different combination
of dimensionality reduction methods and learning algorithms. I will then focus
my attention on the one that performed best, by looking at some of the values and
curves described in Section 3.4.8, as well as the Confusion Matrix. After that, I will
show the improvement that comes from the reconstruction of the audio explained
in Section 3.4.11 and the benefit coming from using a stacking classifier.

After several experiments, I want to present two particular results, obtained
with completely different features sets:

1. One more essential, where only few features are computed, and in particular
long features vector (FFT, PSD and MFCC Autocorr) are discarded. It is
useful to consider a shorter version of the features in order to save computa-
tional time in case the results are not sufficiently weaker than the complete
option.

2. One more complete, where all features discussed in Section 2.3.1 are ex-
tracted. The results are more powerful, but at the expense of running time.

5.2.1 Comparison among algorithms

As shown in Figure 5.9, the two matrices showing the F1 score for each combina-
tion of classifier and feature selector, the scores are higher than the ones obtained
for turbo classification. More specifically, we can notice that boosting algorithms
are performing better than the others and that PCA reduction methods are not
effective in capturing the informative features. As opposed to Turbo classification,
where models tend to overfit the training data in Fuel they are not perfect when
we try to classify the training set again. Several algorithms are reaching high per-
formances, so we can say that this problem have low variance. Boosting algorithms
are specifically designed to reduce bias and keeping variance low. For this reason,
we can see that the performance of Adaboost, Catboost is considerably higher than
ExtraTrees, especially in the set with a lot of features. Furthermore, in the feature
set with FFT, PSD and MFCC Correlated (Complete set, matrix on the right of
Figure 5.9) Gradient Boosting struggles, as opposed to XGBoost that achieves good
performance. On the other hand, Gradient Boosting is very good when the number
of features is lower, as in the Figure on the left.
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Figure 5.9. Comparison of F1 Scores for Fuel prediction: Essential Feature Set
on the left and Complete Feature Set on the right. We can see that boosting
algorithms generally performed better, whereas PCA reducers are not effective
enough to capture the important features

5.2.2 Informative Features

In order to choose which algorithm to use in the definitive solution, it is interesting
to look at the features and their importance first, and then compare ROC and other
metrics. In the following I take into account CatBoost and Adaboost, as well as
Gradient Boosting and XGBoost for feature set 1 and 2 respectively. There are two
different aspects to consider here:

1. Concentration: how the “importance” is spread across different features.
We refer as concentrated feature importance if few features reach more than
60% of the total importance, and distributed if the importance is spread across
different features.

2. Absolute importance of Turbo feature. Surprisingly, some algorithms con-
sider turbo as less important than other feature values. This could mean
more robustness. In any case, every dimensionality reducer maintains it, so
the responsibility of discarding is handed to the classifier.

CatBoost

Catboost is particular because it is one of the most concentrated in terms of impor-
tance given to the features. This is probably due to the peculiarity of this algorithm
to work with categorical features. Another pattern is to be observed: the more are
the features the more importance CatBoost gives to Turbo. In Figure 5.10, we see
that turbo reaches around 50% of importance in the feature set 1 (Complete one)
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even if their number is reduced to 50% by univariate feature selection. Consider-
ing features set 2, on the other hand, CatBoost gives 30% importance to turbo, if
reduced their amount is reduced to 30%.
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Figure 5.10. Feature Selected by CatBoost in two different features set: Essential
on the left and Complete on the right, where turbo receives more importance than
the other features combined

AdaBoost

AdaBoost is surprising because even though it reached very high F1 score (0.97)
its certainty about the features importance is very low. As opposed to CatBoost, it
distributes the importance among the features, and the most important one reaches
only around 20%. This is even more evident in the Complete feature set, where the
importance is so distribuited that the first one has less than 10% (Figure 5.11 on
the right). Furthermore, the uncertainty is even wider. Another thing to notice is
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that the feature “turbo” is not judged as having privileged relevance among other
features, even though we observed a good correlation with the fuel in Section 2.2.4.

Figure 5.11. Feature Selected by AdaBoost in two different features set: Essential
on the left and Complete on the right, the importance of the features is more
distributed and turbo is not considered. It is relevant to note that “turbo” has
little relevance in the feature set

Gradient Boosting and XGBoost

Because both AdaBoost and CatBoost present some difficulties in selecting a rea-
sonable importance to the features, more standard Gradient Boosting Machine and
its evolution XGBoost can come as a definitive solution. Let’s start looking at
the performance of Gradient Boosting applied (after Univariate Selection) on the
Essential feature set with the help of Figure 5.12. By observing the features im-
portance, we can clearly notice a good balance and a good mix. It considers the
mean of the FFT arounf 35%, then turbo with 25% and subsequently the values of
normalized vector of MFCC. After that, some FFT higher moments (FFT Skew-
ness and Kurtosis) are considered alongside Variance (SE and Var) of the Wavelet
transforms. Results are higher than expectations and outperformed the ones ob-
tained for turbo, resulting in a robust process. Area under the curve of ROC curve
is obtaining 0.99 in both micro and macro averages. Area under Precision Recall
Curve goes even further, reaching 0.994 when micro averaged. As explained in Sec-
tion 3.4.11, this performance was obtained at a per-chunk level. But when we have
to classify an engine, all chunks must be merged together to obtain a final predic-
tion. Each chunk votes for the class it was attributed to, so that the parent sample
gets the class of the majority of its sub-chunks. This is what we call Reconstruction
of the Samples. We can see the performance resulting from this procedure in Fig-
ure 5.13. The performance improved even further, reaching a ROC-AUC of 1.00.
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this number is rounded, but the meaning is that it goes beyond 0.995. Precision
Recall Curve has an area under it of 0.997. What may be even more interesting
is the Confusion Matrix, where we can see that it reached perfection in classifying
the Diesel samples. It means that if AI predicts “Diesel” we are sure that it is a
Diesel indeed. If insted it predicts “Gasoline”, this trust reduces to 96%. Note that
this and the other values are higher than the one obtained before reconstructing
the sample, proving the effectiveness of this procedure for our goal. XGBoost,

Figure 5.12. Report on Gradient Boosting for Essential : Performance for
Fuel at chunk level. We can see a good mix of features importance, as well as
high values for ROC-AUC (0.99), PR-AUC (0.994) and the values inside the
diagonal of the confusion matrix

on the the other hand, was suitable for processing more features, obtaining good
results in the Complete Feature set. Even though the performance were not as
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Figure 5.13. Report on Gradient Boosting Reconstructed for Essential. The
reconstruction of the sample from the different chunks voting for their class
improves the results. ROC-AUC reaches (rounded) 1.00 and PR-AUC 0.997.
Confusion Matrix values also improved, reaching perfect classification for
Diesel engines and 96% for Gasoline

stellar as the ones obtained by Gradient Boosting on the Essential feature set, it
is interesting to observe to which features it gives the maximum amount of impor-
tance. As we can see in Figure 5.14, most of the importance was given to high
values in the FFT Binned vector (high frequencies). One low frequency was also
judged as relevant, ranked fourth. Turbo feature is also in the top five, and plays
its role in classifying the fuel type. Afterwards MFCC vector is considered. This
is important as a proof, because two different algorithms trained on different fea-
ture sets (XGBoost on Complete and Gradient Boosting on Essential) consider as
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“important” the same aspects of the problem. It means that the features extracted
have intrinsic value and are meaningful.

Figure 5.14. Report on XGBoost for Complete Set. Performance comparable to
Gradient Boosting on Essential Set

Final decision and Hyper-parameters

Performance are similar, but the process to generate the feature set and the running
time is different. Essential Set is faster to extract and have a smaller impact on
the memory usage. Furthermore, as shown in Table 5.2.2 the time needed to fit the
classifier is significantly higher for the Complete Feature Set, even if XGBoost is
used, that is supposed to run faster than standard Grandient Boosting Machines.
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Classifier Dimensionality Reducer Feature Set Fit Time
XGBoost Univariate Selection to 13% Complete 3 min 11 sec
Gradient Boosting Univariate Selection to 46% Essential 0 min 11 sec

Table 5.2. Fitting Time comparison between XGBoost and Gradient Boosting

Following the previous consideration, I decided to select Gradient Boosting as final
Classifier for Fuel, and the feature set that does not hold FTT, PSD and MFCC
Autocorr vectors inside the feature space. Only further statistics on FFT are kept.
In the following table, I provide the list of hyper-parameter set to GBM Classifier
that resulted best from the random grid search.

Hyperparameter Value
max depth 6
min impurity decrease 0.43
n estimators 20
Univariate Feature Selection Parameters’ Value
score func mutual info classif
mode percentile
param 46
Fitting Time 11 sec

Table 5.3. Hyper-parameters of Gradient Boosting
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5.3 Target Label: Cylinder Amount

The number of cylinders is an important characteristic that strongly influence the
way an engine sounds. As already anticipated, this classification problem have
several issues:

• Multi-Class classification. The more classes are describing the problem,
the more difficult it is for the algorithm to perform well. During training, the
procedure for the algorithm is more complex, and during testing there are
simply more classes to choose from.

• Strongly unbalanced classes. Some classes (4 cylinders) are much more
represented than others (3, 5 and 8 cylinders). 5 cylinders class is poorly
represented, and there are not enough samples for both training and testing
phases, so I decided to discard it. 3 and 8 classes are strongly influencing
the results, as algorithms struggle with those classes. For this reason, I show
in the following section different types of results obtained when filtering the
database for a subset of classes.

5.3.1 Confusion Matrices and Performance Scores

If only classes 4 and 6 are considered (the ones where enough data are available),
several algorithms performed with a perfect confusion matrix. Boosting algorithms
are here better on average. The different confusion matrices are shown in Fig-
ure 5.15, without the intention of highlighting details, but just to show the domi-
nance of the diagonals, that in some cases are perfect.

This is already a satisfactory result, because those two classes (4 and 6 cylinders)
represent 91% of the cars of the dataset. However, it may be interesting to explore
a more exhaustive solution. To counteract the difficulties of a complete model
with very small classes, I tried to infer some useful information on the samples by
exploring the dataset further. I observed that the size and number of cylinders of
a sample engine strongly vary depending on the country where the recording was
made. In my case, only samples from Europe (mostly Italy) and US are collected.
By observing more carefully, I noticed that no 3 cylinders engine was recorded in
the US samples, and no 8 cylinders in the Italian sample. Furthermore, we can
suppose that an Italian user with a V8 car knows that its engine has 8 cylinders.
Those are in fact niche product for enthusiast drivers. For this reason, I developed
three different models, presented in the following sections:

1. European model

2. US model

3. General (weaker) model
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Figure 5.15. Comparison Confusion Matrices with 4 and 6 cylinders (91% of the
cars, recalling Figure 2.12). This image is not intended to highlight details, but
have a view on the dominance of the diagonals, that in some cases are perfect

5.3.2 European Model

European Model is a solution to the problem that considers only samples belonging
to classes 3, 4 and 6 cylinders, accounting for 97% of the cars in the database, and
100% of the engines recorded in Europe. The best model, in this case, is Random
Forest Classifier used together with Univariate Features Selection. As we can see in
Figure 5.16, Confusion Matrix features a dominant diagonal, and the misclassified
samples are considered to be 4 cylinders. It means that if the Random Forest
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outputs 4 cylinders, in around 12% of the cases it is actually a 6 cylinder. On
the other hand, if a 4 cylinder is tested, in 100% cases it wil be recognized. This
precision on the 4 cylinders class is highlighted by the value of the are under the
Precision Recall Curve of 0.939. Average Precision Recall Curve features an area
underneath of 0.903, showing some weakness in the 3 cylinders class. Depending
on the type of averaging, ROC-AUC goes from 0.83 and 0.95, with a constant value
across classes. Features considered important are mainly in the normalized vector
of MFCC, both in low and high values. Kurtosis of the Wavelet transform is very
present in the top 20 feature values.

5.3.3 US Model

8 cylinders are more difficult to recognize, and this is especially evident because of
the general lower performance of the models. After several fine-tuning activities,
the best results are obtained by ExtraTrees and shown in Figure 5.17. In this
case, we cannot see the importance that the classifier gave to the single features,
as the reducer employed in this case (PCA) linearly combines features. For this
reason, ExtraTrees gave importance to some of the linear combination of the original
features, which do not have a physical meaning in most cases. Performance were
perfect in 8 and 6 cylinders classes for what the normalized confusion matrix shows.
It means that if AI predicts, 6 or 8, this result is relatively sure. On the other hand,
we can see that all misclassified samples are predicted as 4 cylinders, lowering the
area under the curve of those classes. This impact is more evident on 8 cylinders
class. This means that if we provide AI with a 4 cylinders sample, it will recognize
it with good confidence.

Even though improvements would be possible, more data would be needed for
this purpose, as only 3% of the dataset belongs to class 8 cylinders.

5.3.4 General Model

Figure 5.16 shows the report of the Random Forest Classifier applied on all classes
available in the dataset. As the performance of this general model is considerably
worse than the ones obtained in the previous sections (EU model and US model,
I suggest to use those when possible. One could imagine an iterative process here
as well or consider to change strategy and apply a regression model. MFCC plays
a crucial role in the features, as it is ranked several times in the first 20 important
features. FFT Mean and Kurtosis are also considered to be relevant, ranking 5th

and 6th respectively. The confusion matrix is not diagonal dominated anymore,
whereas the average ROC-AUC scores between 0.82 and 0.93, depending on the
average strategy. Precision on class 6 is influencing the results, leading to an average
area under the precision recall curve of 0.86
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Figure 5.16. Report on Random Forest for European Model. Confusion Matrix
features a dominant diagonal, and the misclassified samples are considered to be
4 cylinders. Depending on the type of averaging, ROC-AUC goes from 0.83 and
0.95. Precision Recall Curve features an area underneath of 0.903, showing some
weackness in the 3 cylinders class
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Figure 5.17. Report on ExtraTrees for US Model. Confusion Matrix features
a dominant diagonal, and features importance is not related to original features
as PCA combines them. Depending on the type of averaging, ROC-AUC goes
from 0.86 and 0.93. Precision Recall Curve features an area underneath of 0.88,
showing some weakness in the 8 cylinders class
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Figure 5.18. Report on Gradient Boosting for General Model. With 4
classes, the area under the curves reaches a 93% for ROC and 86% for PR,
because of the dominance of 4 cylinders class driving the metrics. However,
when looking at the confusing matrix, it is clear that performance is worse
than the previous area-specific models. For this reason, it is suggested to use
those models when possible.
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5.4 Conclusions and Next Steps

With this Thesis, I showed the opportunity to develop an iterative process to rec-
ognize the characteristics of the engine (Turbo, Fuel type and finally Cylinder
amount). By exploiting the correlation among the labels, it allows to achieve higher
performances. Results obtained are robust enough to be applied in a context iden-
tification phase for vibroacoustic diagnostics purposes. In the following Table 5.4,
I recall the major numerical results obtained with Thesis broken down label.

Label Classifier Reducer ROC* PR*
Turbo ExtraTrees Random Forest 0.86 0.857
Fuel GBM Univariate Selection >0.995 0.997
Cyl (4 and 6) Boosting (all) Univariate Selection 1 1
Cyl (EU model) Random Forest Univariate Selection 0.95 0.9
Cyl (US model) ExtraTrees PCA 0.93 0.88
Cyl (Complete) GBM XGBoost 0.93 0.856

Table 5.4. Results Table.
∗ : micro-averaged Area Under the Curves in multi-class problems

Furthermore, it is important to stress the fact that this framework is working au-
tomatically from the raw sounds to the automatic production of the results charts,
meaning that it could be used by other researchers to obtain results in this or other
fields where an acoustic diagnostics is employed.
Hereby, I recall some of the next steps that could bring this framework to achieve
even more powerful results:

• Explore regression strategies

• Automatize audio conversion process

• Build app for interfacing with the user

• Connect to diagnostics software

• Implement context identification procedure outlined in Chapter 1

• Unleash own imagination for innovative use-cases

The world of smartphone based diagnostics has the potential to become a relevant
technology in every aspect of our lives in the coming years. I am proud to have
given my contribution to the development of such an ambitious goal: making AI
listen to the surroundings, learn to predict their status, and ultimately suggest
procedures to improve the world.
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