
POLITECNICO DI TORINO
Corso di Laurea Magistrale in Ingegneria Matematica

Dipartimento di Scienze Matematiche

Combining Split and Federated
Architectures for Efficiency and Privacy

in Deep Learning

Tesi di Laurea di:
Valeria Turina

Relatore: Prof. Guido Marchetto
Relatore Esterno: Prof. Flavio Esposito

1

Acknowledgements

This thesis has been conducted in the Department of Computer Science at Saint
Louis University. The thesis has been partially supported by the National Science
Foundation, award CNS: #1908574.
Special gratitude goes out to Professor Flavio Esposito that allowed me the op-
portunity to spend an amazing period at the Saint Louis University in Missouri
and followed me in each moment of this experience abroad and to Professor Guido
Marchetto for the precious help from Italy.
A sincere thanks to Francesco, for being close to me, despite the distance, during
the last months, and for all the support over these years.
I would like to thank my parents, my family, and my friends to provide me a con-
tinuous encouragement throughout my years of study and during this experience
in the US.
I am grateful to Emily, Sweta, Matteo, and the two Roberto, that were my US
family in Saint Louis and were able to alleviate the difficulties encountered during
this pandemic period.
Thanks to Chiara, a perfect adventure companion, roommate, and friend.
Finally, a special thought goes to Irene for the great lesson of life that she has
taught me.

2

Table of Contents

Acknowledgements 2

List of Figures 6

List of Tables 8

Abstract 10

1 Introduction 11

2 Background and Related Work on Distributed Learning 13
2.1 Federated Learning . 13
2.2 Private Aggregation of Teacher Ensembles (PATE) Algorithm . . . 17
2.3 Split Learning . 18
2.4 Combining Split and Federated Learning 21

3 Split and Federated Learning Architectures 23
3.1 Parallel Split Learning . 24
3.2 Federated Split Learning . 26
3.3 How to merge Clients’ information 28

4 Performance Analysis 29
4.1 Pysyft Library . 29
4.2 Experiments on MNIST dataset . 31

5 Privacy Attack and Solutions 43
5.1 Split-CNN attack . 43
5.2 Privacy Techniques . 44

5.2.1 Homomorphic encryption and Secure MPC 44
5.2.2 Differential Privacy . 45
5.2.3 Increase Client’s Neural Network 45
5.2.4 Reconstructive Adversarial Network 45

4

5.3 NoPeek Approach . 48
5.3.1 NoPeek Theory . 48
5.3.2 Experiment . 50

6 Health Application 55
6.1 Covid-19 Dataset . 55
6.2 DarkCovidNet . 56
6.3 Experiment . 56

7 Conclusion 63

A Appendix 64
A.1 VirtualWorker’s functions . 64

Bibliography 67

5

List of Figures

2.1 Federated Learning Forward Propagation 15
2.2 Split Learning Algorithm . 19
2.3 Split Learning Sequantial Algorithm 21
2.4 SplitFed Algorithm . 22

3.1 ParallelSplit Architecture . 25
3.2 Federated Split Architecture . 27

4.1 Lenet CNN . 31
4.2 Summary Layers LeNet CNN . 32
4.3 Single Split Learning Algorithm . 32
4.4 Dynamic Computational Graph . 34
4.5 Loss/Accuracy Local and SequentialSplit Learning 36
4.6 Comparison between SequentualSplit and ParallelSplit 38
4.7 Loss/Accuracy ParallelSplit and FederatedSplit 39
4.8 MNIST - Compare ParallelSplit and FederatedSplit increasing the

number of clients . 40

5.1 MNIST - Encoder part of CNN . 44
5.2 MNIST - Decoder part of CNN . 44
5.3 Secure Multi-Party schema . 45
5.4 Adversarial Attack schema . 46
5.5 Original batch of 32 images . 47
5.6 Reconstructed batch of 32 images 47
5.7 NoPeek Attack Procedure . 49
5.10 MNIST - Left: Original Batch of images; Right: reconstructed Batch

of images using the Attacker’s Neural Network 51
5.14 MNIST - ParallelSplit: Reconstruction with and without Privacy . 52
5.18 MNIST - FederatedSplit: Reconstruction with and without Privacy 52
5.19 MNIST - Loss ParallelSplit and FederatedSplit with and without

Privacy . 53

6

5.20 MNIST - Accuracy ParallelSplit and FederatedSplit with and without
Privacy . 54

6.1 DarkCovidNet . 56
6.2 COVID - Compare ParallelSplit and FederatedSplit increasing the

number of clients . 57
6.3 COVID - Encoder DarkCovidNet 58
6.4 COVID - Decoder DarkCovidNet 58
6.7 COVID - Left: Original Batch of images; Right: reconstructed Batch

of images . 59
6.11 COVID - ParallelSplit: Reconstruction with and without Privacy . 60
6.15 COVID - FederatedSplit: Reconstruction with and without Privacy 61
6.16 COVID - Loss and F1-Score ParallelSplit and FederatedSplit with

and without Privacy . 62

7

List of Tables

2.1 Difference between Synchronous and Asynchronous Federated Learning 16

4.1 Megabytes for LeNet parameters . 41
4.2 MNIST Batch Data . 42
4.3 MNIST - Amount of data to send on the network at each epoch . . 42

5.1 MNIST - Parameters used for ParallelSplit-NoPeek Training 50
5.2 MNIST - Parameters used for FederatedSplit-NoPeek Training . . . 50
5.3 MNIST - Distance Correlation . 53

6.1 Megabytes for DarkCovidNet parameters 57
6.2 COVID - Batch Data . 57
6.3 COVID - Amount of data to send on the network at each epoch . . 58
6.4 COVID - Distance Correlation . 59

8

Abstract

Mobile phones and wearable devices are used and carried everywhere by people,
producing every day a large amount of distributed and sensitive data.
Classical machine learning approaches collect such data on usually on a single
machine to compute training models and obtain useful predictions.
To better preserve user and data privacy and at the same time guarantee high
performance, distributed machine learning techniques such as Federated and Split
Learning have been recently proposed.
This work tries to improve the efficiency and privacy of Split and Federated learning
combining them in two different types of architectures using the PySyft library
implemented inside PyTorch. The goal is trying to reduce the computational
power requested from each client by Federated Learning and to parallelize the Split
Learning avoiding problems with unbalanced dataset.
The code has been developed to easily switch from local to remote learning,
simulating the distributed process inside the same machine and, then, running the
neural network on workers located on different devices.
Then, a trade-off analysis between the two architectures in terms of efficiency
and privacy was performed: changing the distribution of data inside each device,
estimating the possibility to rebuild the original data using the neural network
inversion attack, and exploring possible privacy improvements.
Finally, the results encourage us to further investigate the architectures and find
which ones are more suitable to maximize both the performance and privacy,
according to the dataset.

10

Chapter 1

Introduction

The use of mobile phones and wearable devices produces a vast amount of data that
can be useful to improve the user experience if applied to text or speech recognition
or to support the doctors in preventing diseases such as heart attack.

Standard machine learning algorithms are based on a centralized approach in
which the training is performed on a single machine after collecting data coming
from different devices. One of the most critical issues of such architectures is that
the data used for training is usually privacy sensitive.
These facts, combined with the increasing computational power of mobile devices,
lead McMahan et al. [1] to introduce the notion of Federated Learning in 2016.
Federated Learning allows training of a neural network without sharing the raw
training data, that hence can be privately owned by each process (e.g., a device or
an agent) participating in the training. The principle requires sending the model
to the training processes and then an aggregation of the different neural network
weights is exchanged during the training phase.
This approach became popular even among large companies. For example, Google
uses Federated Learning to improve the Gboard mobile keyboard [2] [3], and Apple
is using Federated learning to obtain better performance in the intelligent assistant
"Hey Siri." Furthermore, Federated Learning has proven to be useful also for other
applications that require training over privacy-sensitive distributed systems, such
as for medical imaging or medical data analysis [4].

In 2018 a new distributed paradigm was studied to train a deep neural network
using multiple data sources without sharing raw data. The authors, a team of MIT
researchers, called this approach splitNN [5]: the model is split between two or
more machines, and only the intermediate results of the neural network, computed
by the previous worker, are shared. SplitNN lowered the computing power required
at each device to train the neural network with respect to a classical federated
learning model.

11

Introduction

While Federated Learning needs devices with large computational power, the
Split Learning cannot be computed in a parallel way and it could not arrive at
convergence with a really unbalanced dataset.

In this work, carried out during an exchange program in the Department of
Computer Science at Saint Louis University in Missouri, we study how to improve
the efficiency and privacy of Split and Federated learning, combining them in two
different types of architectures. Our implementation uses the PySyft library [6]
implemented within the PyTorch framework.

We chose that library because (currently) it allows greater versatility and free-
dom than other libraries for distributed training, such as TensorFlow Federated
[7]. We solved several machine learning design and implementation challenges. In
particular, to design our novel combined split and federated learning architectures,
we had to decompose the computational dynamic graph created by Pytorch when
an operation is executed; then using the VirtualWorkers API of PySyft [6] the two
architectures were implemented simulating the presence of different machines on a
single laptop.
We evaluate the performance of our split and federated learning architectures with
respect to efficiency and privacy. In particular, we explored the impact of different
distributions of data between clients, and evaluated under which condition the
architectures preserve privacy even under neural network inversion attacks.
We tested our algorithms on real world datasets, such as MNIST and the Covid-19
CT images of chest dataset where the study of privacy is critical.
Finally, the results encourage us to further investigate the architectures and find
which ones are more suitable to maximize both the performance and the privacy,
according to the dataset.

The rest of the thesis is organized as follows. In Chapter 2, we discuss some
background on distributed learning, while in the following we describe the Parallel
[8] and the Federated Split Learning: two architectures that inherits some prop-
erties from Split and Federated Learning. In Chapter 4, after an explanation of
the Library PySyft [6], we show a performance analysis of the two architectures
based on the dataset MNIST. A privacy attack to these two distributed approaches
is explained proposing a possible solution in Chapter 5. Finally in Chapter 6 we
show the results obtained using the dataset Covid-19.

12

Chapter 2

Background and Related
Work on Distributed
Learning

In this chapter, we present a brief introduction of distributed learning algorithms.
With the term Distributed Learning Algorithms, we define a machine learning
algorithm in which the training phase is performed from many distributed devices
without the need of sharing private data.

First of all, we discuss the Federated Learning and the Split Learning algorithm,
two of the most popular distributed techniques, that we try to join together to
improve their weaknesses. Then, the chapter follows with a description of two
techniques, recently studied, that combine the previous two methods.

2.1 Federated Learning
We describe the Federated Learning algorithm to study how we can improve

this method. In particular, one of the most popular problems is that it requires
distributed devices to have a lot of computational power and to be able to train
the entire model.
For this reason, joining this method with the Split Learning can avoid this problem.

In a centralized system, training and evaluation of a model are computed on
cloud data collected from different devices and stored in a cloud. After the validation
step, the cloud or the server sends the final model to devices to compute the model
inference.

On the other hand, Federated Learning can perform training and evaluate
decentralized data without storing sensitive information on the same machine,
preserving training data privacy.

13

Background and Related Work on Distributed Learning

The different devices merely exchange small updates, necessary to compute the
global training of the model [1].

Notation
K : numbers of clients
w : model parameters
l(xi, yi;w) : loss function
Pk: set of indexes for each local dataset
nk: |Pk|
C : fraction of clients selected at each training round
K : total number of clients
Rd : set of real numbers of dimension d
η : learning rate

Objective function:[1]

min
w∈Rd

f(w)

s.t. f(w) = 1
n

KØ
k=1

nkFk(w)

Fk(w) = 1
nk

Ø
i∈Pk

fi(w)

If the partition of data made by Pk is uniform the function f(w) is the expectation
over Pk of Fk(w). An example of function fi(w) could be the loss function l(xi, yi;w),
where xi and yi represent the set of data.

FederatedSGD Algorithm
This algorithm is based on the federated optimization, and uses the Stochastic

Gradient Descent to compute the final aggregate result. During each round, all
the clients K are selected. Each client computes the gradient ∇Fk(wt) on its local
dataset. Then the server computes the average gradient and updates the parameter
wt. At the beginning of the following step, it sends the updated parameter to each
client[1].

FederatedAveraging Algorithm
This algorithm represents an improvement of the method described above. In

the Federated Averaging Algorithm, each client updates locally the parameter w,
and the server computes the average of the updated parameters.

14

Background and Related Work on Distributed Learning

Figure 2.1: Federated Learning Forward Propagation

Algorithm 1 Federated Averaging [1]
The K clients are indexed by k; B is the local minibatch size, E is the number of
local epochs, and η is the learning rate.
Server executes:
initialize w0

for each round t = 1,2,... do
m← max(CK,1)
St ←(random set of m clients)
for each clients k ∈ St in parallel do

wt+1 ←ClientUpdate(k, w)
end for
wt+1 ←

qK
k=1

nk

n
wk

t+1
end for

ClientUpdate(k, m):
B ← (split Pk into batches of size B)
for each local epoch i from 1 to E do

for batch b ∈ B do
w ← w − η∇l(w; b)

end for
end for
return w to server

Synchronous and Asynchronous Federated Learning
An important aspect of Federated Learning is the difference between Synchronous

and Asynchronous methods to merge the information coming from different clients.
The table 2.1 lists some differences of these two approaches.

15

Background and Related Work on Distributed Learning

Synchronous Asynchronous
It assumes that all Connection between devices
devices can always send the information could not always be
and at the same time possible (i.e. if the device is uncharged)
Less realistic More realistic
Time of transmission is constant Time of transmission is not constant
It needs synchronized clocks It do not need a mechanism to
to manage the goal synchronize processes
The clients’ updates can be sent to The clients’ updates can be send to
the secure server at the secure server continuously,
job completion.
Each client should compute his updates Each client can compute his updates
more or less in the same time, otherwise anytime
there could be a delay for all the algorithm and can send

to the server when finished

Table 2.1: Difference between Synchronous and Asynchronous Federated Learning

Possible problems with Federated Learning
The Federated Learning optimization problem was characterized by the following

aspects [1]:

• Non-IID dataset: each client collects data based on his personal use of the
device. Therefore, the client’s dataset could not be representative of the
population distribution.
The data of each client can vary a lot in term of size collected for each different
types of labels (in this case, we have an unbalanced local dataset); in term of
statistical distribution for each client (for example, for an image classification
task each node can contain different kinds of data if they are situated in a
different part of the world).

• Massively distributed: the number of clients used in training is larger than
the average number of examples in each local dataset.

• Limited communication: some devices could be offline or discharged during
the training rounds.

• Communication cost: each client sends, at each round, the updates to a secure
server that computes the average. Even if sending weights or gradients to a
server is better in terms of privacy than sending the data directly, this could
be expensive in communication. If the machine learning used is a deep neural

16

Background and Related Work on Distributed Learning

network, the number of parameters to send to the server could also be around
40 million data for each client.

2.2 Private Aggregation of Teacher Ensembles
(PATE) Algorithm

Another federated learning algorithm that was recently published with a differ-
ent type of model aggregation (or model averaging) is known as PATE, Private
Aggregation of Teacher Ensembles [9]. The idea is that there are n "teachers" able
to train each model on their disjoint datasets, and at the end, they all reach a
consensus given a new dataset of input never seen before and owned by a Student.
This algorithm is useful when the Student’s data is unlabeled; in fact, sending the
data to each Teacher, we can obtain the prediction on the Student’s data without
sharing the other dataset.

The algorithm can be divided in three main parts [9]:

1. Ensemble of n teacher models: each teacher train a set of data that is a
part of the global partition. They can use different techniques to obtain a
trained model able to solve a specific task. Then working similarly to other
ensemble models such as Random Forest, each teacher computes the label for
the Student’s data.

2. Aggregation mechanism: in the case in which the n Teachers reached a strong
consensus, the labels predicted do not depend on a specific Teacher model.
The aggregation mechanism consists of the count of votes assigned by each
Teacher to each class. Furthermore, to increase privacy during this phase,
Gaussian noise was added to the final aggregated votes.

3. Student model: finally PATE is able to compute the output labels of Student’s
unlabeled data using the Teacher’s knowledge.

One of the most significant drawbacks of this approach is that Student’s data
has to be sent to each Teacher to be labeled. This data exchange may be unfeasible
if, for example, the Student is a hospital that is not allowed to send their sensitive
data to other parties for patient privacy law enforcement.
A variation of the original PATE algorithm was proposed to solve the data privacy
problem: PATE Bidirectionally Private. The latter encrypts the Student’s data to
guarantee confidentiality, using, for example, an Additive Secret Sharing algorithm.

17

Background and Related Work on Distributed Learning

2.3 Split Learning
We describe the Split Learning algorithm, which does not require large com-

putational power for each device. A drawback of this approach is the sequential
training between the clients. In fact, the server can work with just a single client
at a time. This fact can also lead to non-convergence of the neural network in the
case of dealing with very unbalanced clients’ dataset.

In 2018, Otkrist Gupta and Ramesh Raskar [5] [10] proposed a new idea to
train a deep neural network using different data located in different sources (called
Alice(s)) without sharing data with a supercomputer (called Bob) that helps data
entities to obtain the result.
In one of the more straightforward Split Learning configurations, each client (Alice)
trains a deep neural network up to a specific layer, called "cut layer", and then Bob
receives the client’s output and completes the training, despite having no access
to the raw data. The backpropagation phase of the deep neural network follows
a similar approach: the gradient is backpropagated from the last layer computed
by Bob to the "cut layer", and then Alice completes the computation with her
layers [5].

In the rest of this section, we first describe the Split Learning algorithm using a
single agent and a supercomputer , and then an improvement of this method where
multiple agents are used for training.

Distributed training over a single agent
One of the design goals of this split learning algorithm [5] is to produce the

same output of its centralized “unsplit learning" counterpart. The forward and
backward functions are not changed but merely divided into two blocks to run in
separate clients.

Notation:
N : total number of layer of a deep neural network
Fa : Alice’s forward function
Li, i = 1, . . . , n : Alice’s layers of deep neural network
Fb : Bob’s forward function
Li, i = n+ 1, . . . , N : Bob’s layers of deep neural network
Send(X, Y) : function able to sent X to Y
φ : random inizialiation
F T

a : Alice’s backward function
F T

b : Bob’s backward function
GÍ : loss function and gradient
gradient : gradient variable
gradientÍ : gradient variable after back propagation
F Í

a : Alice’s output of backward propagation after updating weights.

18

Background and Related Work on Distributed Learning

Algorithm 2 Distributed training over single agent [10]
initialize:
φ ← Random Initializer (e.g. Gaussian)
Fa ← L0, L1, . . . Ln

Fb ← Ln+1, Ln+2, . . . LN

Alice randomly initializes the weights of Fa using φ
Bob randomly initializes the weights of Fb using φ
while Alice has new data to train on do

X ← Fa(data)
Send((X, label), Bob)
output ← Fb(X)
gradient ← GÍ(output, label)
gradientÍ ← F T

b (gradient)
Send(gradientÍ, Alice)
F Í

a ← F T
a (gradientÍ)

end while

Figure 2.2: Split Learning Algorithm

After a random initialization of the weights, the client Alice computes the
forward propagation and sends the output of her last layer of the neural network
to the supercomputer (Bob) that completes the forward propagation and computes
the gradients. Finally, the gradients computed are sent back to Alice that updates
the deep neural network’s weights.

Note that the labels are sent to Bob at the beginning of each training phase, to
compute the loss function and backpropagate the gradients. This method cannot be
applied in applications in which sending labels means sending private information.

19

Background and Related Work on Distributed Learning

To improve this aspect, a group of MIT researchers [10] proposed an improvement
that consisted of sending the output of Bob’s activation function to Alice, who
owns the labels and can compute the loss function. This algorithm was called U
shape splitNN since the shape of the layers and data workflow recalls the letter U.

Distributed training over multiple agents
Notation:

Fa,j : AliceÍ
js forward function

F T
a,j : AliceÍs backward function
d : number of clients (Alice)
j = 1,. . . , d : index for each Alice

In the algorithm below we present the Distribute training over multiple agent
[5]

Algorithm 3 Distributed training over multiple agent [10]
initialize:
φ ← Random Initializer (e.g. Gaussian)
Fa,1 ← L0, L1, . . . Ln

Fb ← Ln+1, Ln+2, . . . LN

Alice1 randomly initializes the weights of Fa,1 using φ
Bob randomly initializes the weights of Fb using φ
Bob sets Alice1 as last trained
while Bob waits for Alicej to send data do

Alicej requests Bob for last Aliceo that trained
Fa,j ← Fa,o

X ← Fa,j(data)
Send((X, label), Bob)
output ← Fb(X)
gradient ← GÍ(output, label)
gradientÍ ← F T

b (gradient)
Send(gradientÍ, Alicej)
F Í

a,j ← F T
a,j(gradientÍ)

Bob sets Alicej as last trained
end while

This architecture [10] is similar to the previous one, but instead of one client,
a set of multiple agents create a distributed algorithm. This approach exploits
different data owned by the clients in a safer way than the standard centralized
training. In this algorithm, the training is performed sequentially, and each client

20

Background and Related Work on Distributed Learning

Figure 2.3: Split Learning Sequantial Algorithm

receives the last updates on the model weights from the server. Then the training
between Alice and Bob is equal to the Distributed training over single agent [5]
with the only difference that at the end of the backward phase, the updated weights
are sent to the server Bob who sends them to the next client or directly from a
client to the next one.

Remark. In the following chapter, this architecture was called Sequential Split
Learning to distinguish it from other architectures, described below, that try to
parallelize the distributed learning.

2.4 Combining Split and Federated Learning
In this last section, we discuss two distributed techniques that merge Split

Learning and Federated Learning.
They are the Parallel Split Learning [8] and SplitFed Learning [11]. We describe
the Parallel Split Learning in the following chapter because this is one of the two
architectures that we have implemented and analyzed.

SplitFed Learning
The SplitFed Learning [11] is a distributed algorithm that merges the idea of

computing the average, characteristic of Federated Learning, and the neural network
split between client and server as in the Split Learning.

Each client computes the forward propagation, then the result of this com-
putation is sent to the server that finishes the forward propagation. The basic

21

Background and Related Work on Distributed Learning

Figure 2.4: SplitFed Algorithm

version of this algorithm computes this last part using a parallel approach and then
computes an average of all clients’ gradients. A subsequent version of this part of
the algorithm computes the forward propagation of the server’s neural network
sequentially, choosing randomly the clients’ output to use.

The backward propagation is computed inside the server, and then the result is
backward propagated inside each client. Before updating the clients’ weights, a
secure server, called FedServer, computes the average of the clients’ weights and
then sends back to each client the result of this operation.

22

Chapter 3

Split and Federated
Learning Architectures

In this section, we present other two different types of distributed algorithms. They
inherit some properties from Split Learning and Federated Learning. As other
distributed private algorithms, they allow training of a model using data from
different clients to guarantee a higher privacy level. Furthermore, compared to the
distributed models previously described, they try to combine the positive aspects
of Split and Federated Learning to improve their weaknesses.
In fact, in Federated Learning, each client must train the entire model; for this
reason, great computational power on each node is required.
On the other hand, in Federated Learning, each client sends a secure server the
model weights. The Split Neural Network instead shares the data modified by the
first layers computed in the client. To compensate for the privacy loss due to this
property, Split Learning architectures often require the addition of cryptographic
methods or new techniques to prevent privacy attacks, such as reverse engineering
of the neural network to obtain the original data.
To solve this problem, researchers [5, 12] proposed a few possible improvements:
using a fully connected layer, or modifying the loss function in each client to
maximize the difference between the output of the activation function in the cut
layer and the input data.
One of the most critical aspects of these two architectures is the parallelization of
the training phase, impossible in the Sequential Split Learning. In the latter, the
first client has to finish the training with the server before we can send an updated
model to the following client to continue the training phase.

23

Split and Federated Learning Architectures

Notation
N : total number of layer of a deep neural network
φ: Random layer inizializer
X: array of Xi, Alicei’s activation output of the cut layer.
Fa,i: Alicei’s forward function
Li, i = 1, . . . , n : Alice’s layers of deep neural network
Fb: Bob’s forward function
Li, i = n+ 1, . . . , N : Bob’s layers of deep neural network
Send(X, Y) : function able to sent X to Y
GÍ : loss function and gradient
gradient: gradient variable
gradientÍ: gradient variable after back propagation
F Í

a,i : Alicei’s output of backward propagation after updating weights.
I : set of clients.
|.| : cardinality of a set.
n : number of layers to send to each client.

3.1 Parallel Split Learning
Parallel Split Learning [8] consists of |I| different clients that own the first part of

the model and another worker, usually a big server, that has the second part of the
neural network. We do not compute the average of the gradients before updating
each client’s weights, as described in [8], because we assume that the client’s part
should remain different for each client who can own different distribution of data.
First, we initialize the weights of the first part of the neural network to the same
values for each client and the server. Then, for each epoch and each set of a batch
of data, characterized with the same size, we send data to each client and labels to
the big server, called Bob.
The forward propagation is computed for each client, and the intermediate activa-
tion output is sent to the server that continues the forward and computes the loss
function using a batch size equal to |I| ∗ (clientÍs batch).
After this step, the gradient of the loss is computed and backpropagated among
Bob’s layers. Finally, each client receives the same updated gradient and carries
out the last step of the backpropagation. An important aspect to consider is that
each client must send Bob the same number of mini-batches because the server’s
mini-batch size is fixed to |I| ∗ (clientÍs batch).
Furthermore, this is a synchronous algorithm. We can modify it in an asynchronous
architecture using batch size different for each client. The averaging operation was
computed by a secure worker.

24

Split and Federated Learning Architectures

Algorithm 4 ParallelSplit [8]
initialize:
φ ← Random Initializer (e.g. Gaussian)
Fa,i ← L0, L1, . . . Ln, ∀ i in I
Fb ← Ln+1, Ln+2, . . . LN

Alicei randomly initializes the weights of Fa,i using φ, ∀ i in I
Bob randomly initializes the weights of Fb using φ
for epoch in epochs do:

while batches, labels in trainloader do
send batch ∈ batches to Alicei, ∀ i in I
send labels to Bob
Xi ← Fa,i(batch) ∀i in I
Send((Xi, labels), Bob)
output ← Fb(X)
gradient ← GÍ(output, labels)
gradientÍ ← F T

b (gradient)
Send(gradientÍ, Alicei), ∀i in I
F Í

a,i ← F T
a,i(gradientÍ), ∀i in I

end while
end for

Figure 3.1: ParallelSplit Architecture

25

Split and Federated Learning Architectures

3.2 Federated Split Learning
Federated Split Learning, is a merge between the Split Learning [5] and the

Federated Learning [1] algorithm. In fact, at each epoch, we compute the average
weights of some layers of the neural network. In addition, each Federated Learning
client is divided in two parts, Alicei and Bobi, where range of i is between 1 and
|I|.
This fact means that each client may not have a high computational power which
is instead necessary if we use Federated Learning.
Probably a negative aspect could be that we need a number of servers equal to
the number of clients. In any case, in some application, it could not be a big
problem if we think, for example, that we can use some clouds. This architecture
was composed by a number of clients that is equal to the number of servers. The
forward propagation is computed by each client and the result of this computation
is sent to the corresponding server, that finishes the forward propagation and
computes the loss and the gradient. Then each server back propagates the gradient
along the network. Finally, the back propagation continues along the client neural
network.
When all the data of each client have been used to update the parameters, the
weights of the servers’ parts of the neural network are averaged and updated. In
this way we are able to merge the information coming from the different clients
using the same approach exploited by the Federated Averaging Learning [1].

26

Split and Federated Learning Architectures

Algorithm 5 FederatedSplit
initialize:
φ ← Random Initializer (e.g. Gaussian)
Fa,i ← L0, L1, . . . Ln ∀ i in I
Fb,i ← Ln+1, Ln+2, . . . LN

Alicei randomly initializes the weights of Fa,i using φ ∀ i in I
Bobi randomly initializes the weights of Fb,i using φ ∀ i in I
for epoch in epochs do:

while Alicei has new data to train on do
X ← Fa,i(data)
Send((X, labels), Bobi)
output ← Fb,i(X)
gradient ← GÍ(output, labels)
F Í

b,i, gradient’ ← F T
b,i(gradient)

Send(gradientÍ, Alicei)
F Í

a,i ← F T
a,i(gradientÍ)

end while
average of weights for each layer of the Bob model

end for

Figure 3.2: Federated Split Architecture

27

Split and Federated Learning Architectures

3.3 How to merge Clients’ information
One of the most important differences between these two methods is how the

two architectures merge the information from different clients. In this section, we
detail how the merge is computed.

With Federated learning [1] and Split Learning [5] we obtain a global model
at the end of the training phase. Using these two architectures, we merge the
information of the last part of the CNN (after the cut layer) because they own the
most specific part of the CNN.
We consider the first part of our CNN a way to extract the easier features, making
input data safer than before and reducing the amount of information to send on
the network. Usually, the first layers of a CNN act as an encoder able to find the
straightforward features and, at the same time, summarize them in smaller images.
Since the clients’ data are different from each other, it is not necessary that each
client has the same weights and uses the same first part of CNN. Therefore, we
want to analyze how to make a summary of the second part of the CNN.

ParallelSplit can compute the merge as follows: the batch size of the server is
equal to the sum of each batch size of all the clients. In this way, the loss function
computed at each round is influenced by the first part of the CNN that is owned
by each client.

Bserver =
NØ

i=0
Bclienti

where B = number of images in batch size.

On the other hand, to compute the merge of all the information coming from
the clients’ data, the FederatedSplit calculates the average of all the weights of the
server’s part of the neural network.

28

Chapter 4

Performance Analysis

In this chapter we describe the analysis performed on the two previous architectures.
Using the PySyft library [6] and we begin from the implementation on the Single
Agent Split Learning moving to the Multi Agent Sequantial Split Learning and
finally concluding with the two architectures.

4.1 Pysyft Library
The tool used in this work is the open-source library PySyft [6]. It is developed

to make deep learning algorithms more private than before. In fact, if these kind
of procedures exploit users’ data to make a prediction or to solve a problem they
should preserve the user’s data as much as possible.
PySyft [6] is an extension of PyTorch, TensorFlow, and Keras. Basically, it is
helpful to simulate and then create a remote execution for the distributed learning
algorithm described in the previous chapter.
This library was divided into three main sections:

• Encrypted Computation: in order to send the data or other components of
a deep learning model PySyft [6] develops a section based on cryptographic
techniques: Multi-Party computation [13] and Homomorphic Encryption [14].
The first method is able to preserve privacy if a model is shared with more
than one client. In general, a way to do this is the following: each different
client owns a small part of the model and anyone can build the total model.
The second one is used when all the model is owned by a single user. It tries
to preserve privacy inside a machine in order to avoid that the model is stolen.

• Differential Privacy [15]: with really huge data it is possible to share data
without getting private information from an individual, using the output of
the final model trained on the dataset. In PySyft framework [6], there are

29

Performance Analysis

two types of differential privacy: general techniques, such as Laplace and
Exponential mechanisms of DP-SGD and automatic DP that help the user to
find the more private and better privacy tool to perform differential privacy
for a certain goal and set of data.

• Remote Execution: It is another way to preserve privacy information. Instead
of sending user’s data to a server to train an algorithm it sends the model
to each client in order to avoid sharing of private data and at the same time
train the algorithm.
This is the general idea behind Federated Learning. Furthermore, it can be
used also to perform a prediction directly on a certain device without sending
data on the network.

PySyft Workers
In order to achieve the result above we override all tensors’ methods on the

PyTorch. Working in this way PySyft [6] is able to extend the functions available
to adapt them to another goal. In this section we describe the two different workers
Virtual Workers

In PySyft [6] there are a method to simulate the remote execution of the code:
Virtual Workers. They are tensor pointer which are able to simultate remote
machines.
Each workers are identified by an Id and authomatic added to a list of tensor
pointers.
Two of the most important functions of these objects are: send(), get() and move().
The first one can send something that is inside a certain worker to another one
passing through a local secure worker. This function is really useful to send the
weights of a model to a worker for example during a federated learning algorithm.
The second one is used to receive something that is owned by a Virtual Worker in
local, into a safe machine. We used, for example this method to receive the final
loss function obtained after the training phase or the value of the accuracy score.
Finallly, the function move() is able to send directly a tensor from a Virtual Worker
to another without using the local machine.
It is possible to see an example of these three methods in appendix A.
Remote Workers

Remote Workers are really similar to a Virtual Worker and they are called
WebsocketClientWorker. In order to create one of this worker we should create a
tensor pointer that contains all the information necessary to use a socket connection.
In fact, we should specify an Id and the Port that represents the address to a
remote machine.

30

Performance Analysis

4.2 Experiments on MNIST dataset
Dataset

The dataset that we used is MNIST [16]. MNIST is a dataset composed by
60000 training images and 10000 testing images of digits from 0 to 9. It was created
from Yann LeCun, Corinna Cortes and Christopher J.C. Burges in 2010 as a subset
of a larger NIST dataset.
The dimension of these images is 28x28 pixels.

Neural Network
For the MNIST dataset we used LeNet [17]. It is a convolutional neural network

designed by Yann LeCun in 1998. It is one of the first Deep Neural Network and it
became popular when it was used to recognize handwritten zip code digits in U.S.
In the following picture 4.1 we presents a schema of this architecture. We can
notice that each convolutional layer is followed by a non linear activation function
(Tanh) and by an Average Pooling that can reduce the shape of the original image.
A summary of this architecture is shown in Figure 4.2, in which we can see also
the total amount and size of parameters.

Figure 4.1: Lenet CNN

Single Split Learning
In this section we describe how to obtain the Single Split Learning using PySyft

library [6].
In the beginning, we create a Simulation of the remote workers using the Virtu-
alWorkers API. We then develop a class in which we overwrite the forward and
the backward methods to send the activation function from the client to the server
machine and send back the gradient in the opposite direction. In the schema 4.3,
we present in detail how the Forward and Backward function work.

Furthermore, we can notice that the performance are the same respect to train

31

Performance Analysis

Figure 4.2: Summary Layers LeNet CNN

Figure 4.3: Single Split Learning Algorithm

all the model on the same machine because we divide the computational graph
built by PyTorch in two parts and then we join it again.
Dynamic Computational Graph

To better understand how to divide the neural network workflow, we should
focus on the comprehension of the process that PyTorch do every time an operation
is computed.
PyTorch computes a graph called Dynamic Computational Graph, that is composed
of a forward and a backward process.
To easily explain this approach, we show an example, and then we try to show
how to split the two operations described below into two different VirtualWorkers.
Finally, instead of simple operations, we used this approach with the two neural
network parts. We can imagine computing these two operations:

C = A ∗B

32

Performance Analysis

E = C +D

where A,B,C,D,E are torch.tensor(). In particular we set:

• A = torch.tensor(3.0)

• B = torch.tensor(4.0)

• D = torch.tensor(2.0)

Sum and Product are also fundamental operations for a neural network.
As notable in the Figure 4.4, each torch.tensor is characterised by the following
attributes:

• data : the value and the type of the variable

• grad : gradient (at the beginning set to None)

• grad_fn : computational operation

• is_leaf : if the variable does not depend from any other operation (in our
case A,B,D)

• requires_grad : True if we want to compute the gradient during the Backward
propagation

Forward propagation
First, we compute the product between tensors A and B. To do this, we can see
that the grad_fn of the result C has as value the word MulBackward; a context
variable called ctx is used to save the value of the tensor and create a vector of two
functions used during the Backward phase (in the figure: [(AccumulateGrad, 0),
(AccumulateGrad, 0)]).
Then we compute the sum between the variable C and the variable D. This time
the box created is called AddBackward.

Backward propagation
In order to get the gradient of each operation (it is, for example, essential inside a
neural network) we called the function:

E.backward()

It computes the value of the gradient of the tensors used to compute E. Then if
the tensor is a leaf, it calls the function AccumulateGrad that accumulates the
gradients computed until that time and memorizes the result inside the attribute
grad of the leaf tensor. The accumulation is made using the Chain Rule:

∂z

∂x

x

= ∂z

∂y

y(x)

.
∂y

∂x

x

33

Performance Analysis

where the function z = y(x).
If the tensor is not a leaf, we send the gradient computed to the variable represented
the previous operation (in the case in the example, we send the value 1.0 to the
green box represented the Mulbackward operation).
Finally, in this case, we compute the next two gradients of the inputs data, and we
accumulate the gradient. Furthermore, the tensors A and B are two leaves and so
we can save the result in the attribute grad, and the backward propagation is ended.

Now, we can imagine splitting these two operations between two VirtualWorkers.

Figure 4.4: Dynamic Computational Graph

As we can expect by looking at the computational graph, we should find a way to
cut and then rejoin the graph created inside PyTorch.

34

Performance Analysis

For the previous easy example, the operations that we should do are the following:

1 import torch
2

3 # Def ine the t enso r A and B
4 A = torch . t en so r (3 . 0)
5 B = torch . t enso r (4 . 0)
6

7 # Set the a t t r i b u t e requi res_grad equa l s to True to compute the
g rad i en t

8 A. requi res_grad=True
9 B. requi res_grad=True

10

11 # Compute product between A and B
12 C = A∗B

To divide the computational graph we should detach the variable C computed in
order to send it to the other machine (for example from the client to the server).
To do this we use the function detach() and then the function requires_grad =
True.

1 # Def ine v a r i a b l e I as :
2 I = C. detach () . requires_grad_ ()
3

4 # Move the value I to the other machine (f o r example : c l i e n t −>
s e r v e r)

5

6 # Def ine the t enso r D
7 D = torch . t en so r (2 . 0)
8

9 # Set the requ i res_grad equa l s to True
10 D. requi res_grad=True
11

12 # Compute the sum between the I and D
13 E = I + D
14

15 # Cal l the backward func t i on on E
16 E. backward ()

We divided the computational graph, so, we can backpropagate and compute the
gradient just until the tensor I. Therefore, copy the value of the attribute grad in
the variable grad_in and we move back the value of the gradient from the server
to the client (in this example).
We call the backward function on the vector C this time using as argument the
value of grad moved back.

35

Performance Analysis

1 # Copy the value o f the grad computed i n s i d e I
2 grad_in = I . grad
3

4 # Move back the g rad i ent to the c l i e n t
5

6 # Cal l the backward func t i on on the t enso r C
7 C. backward (grad_in)

Sequential Split Learning
After this approach, we implement the Multi-Agent Split Learning (Sequential

Split Learning [5]) and we compare the performance respect the model obtained
sending all the data on the same machine.
In Figure 4.5 we can notice that the value of accuracy obtained during the training
and the validation phase in the local learning is more or less equal to the one got
using 2 or more clients and the Sequential Split Learning as architecture.

Figure 4.5: Accuracy Train/Val Set: Local Learning compared with Sequen-
tial Learning

Weaknesses
One of the most critical weaknesses of this method is that two or more clients

cannot collaborate with the server at the same time.

36

Performance Analysis

We should wait that, for example, the first client has finished training the model
before starting the training phase with the second one.
Furthermore, this method needs a trained client to send his weights to the following
client before starting the training phase. The principle behind this approach is
similar to transfer learning.
Therefore, a positive aspect can be that if the second client’s dataset, in this
example, is similar to the first one, this can speed the convergence of the second
training phase. However, if it is different, the model might not even reach the
convergence.
We will analyze this aspect in the following section.

Sequential and Parallel Split Learning
This section describes an experiment made on an unbalanced dataset to show

in detail the most prominent drawbacks of the Sequential Learning Algorithm.
Dataset
The dataset used for this experiment is the MNIST dataset [16]. The most important
difference between the previous approach is that we decide to use two clients, and
we distributed the digits in the following way: we send the even digits to the
first client and odd digits to the second one. We define with the parameter λ the
percentage of data unbalance on each client.
As it is possible to observe in Figure 4.6, when the parameter λ goes toward
the number 1, the first client has a large number of “even numbers," and the
performance reached by the Sequential Split Learning are poor. If the clients’
distribution is different, and their data distribution is unbalanced, this architecture
may not reach convergence.
Algorithm 6 describes how to split the dataset between clients in an unbalanced
way.

Algorithm 6 Client 1 - Dataset (majority of even digits)
initialize:
mask = [1 if trainset[i][1]%2 == 0 else 0 for i in range(len(trainset))]
for i in range(len(mask)) do:

if mask[i] == 0 then:
if random.uniform(0,1)> λ then:

mask[i] = 1
end if

end if
end for

37

Performance Analysis

Figure 4.6: Comparison between SequentualSplit and ParallelSplit

Parallel Split and Federated Split Learning
In this section, we show the comparison between Parallel Split and Federated

Split Learning. These two algorithms differ from how they compute the merge
of the information between clients. In fact, in the first procedure, we use just
one server, and the loss function computed by this machine can sum up all the
results obtained by the different inputs arrived from each client. The second one
is similar to the Federated Averaging Learning and computes the average of the
weights computed by each server.

We show below two plots (Figure 4.7) related to the Loss function and the accuracy
of the test set obtained using the MNIST dataset, and the LeNet neural network
split at the third layer. To obtain these two plots, we divide the whole dataset
between two clients in a balanced way.
As we can see, the accuracy obtained with the two architectures is similar and
similar to the accuracy level reached on the local machine with the Sequential Split
Learning.

Note how the accuracy changes if we change the number of data items that each
client uses at the beginning of the training process. One of the federated learning

38

Performance Analysis

Figure 4.7: Top: Loss-Test, Bottom: Accuracy-Test for ParallelSplit and Feder-
atedSplit

algorithms’ issues is that if the dataset is massively distributed, the performance
can degrade. The second architecture, FederatedSplit, is a mixture between the
Split Learning and the Federated Learning approach; therefore, we can see in Figure

39

Performance Analysis

4.8 that it inherits the negative aspect owns by the Federated that if the clients
have a small dataset, the performance reached by the neural network could be
worse.
To do this experiment, we fix the dataset used (MNIST), and at the same, we try
to increase the number of clients. Furthermore, the cut level was fixed to the third
layer of the LeNet neural network.

Figure 4.8: Compare ParallelSplit and FederatedSplit increasing the number of
clients

40

Performance Analysis

Data to send on the network
In this section, we would like to estimate how many data we should send on the

network for the two architectures that we described in the previous chapters.
In Table 4.3, we summarize the shape and the corresponding number of Megabytes
for each batch of 32 images and for both the architectures; finally, we estimate the
total number of Megabyte to send on the network for the training phase.
To compute these two estimations, we need to know the number of trainable
parameters (in Megabyte) that the LeNet Neural Network uses to compute the
classification. This is shown in the table 4.1.

Network Topology Megabytes
LeNet 0.24

Server_LeNet 0.23
Client_LeNet 0.01

Table 4.1: Megabytes for LeNet parameters

Finally, we present in Table 4.3 the result of this estimation. To compute the
total amount of Megabytes, we assume to compute the average of the weights for
the FederatedSplit Architecture at the end of each epoch. We can notice that this
can be reduced based on the result obtained by the model to avoid sending too
much data on the network.
The column called Tot(Mb) represents the number of Megabytes that we should
send on the network at each epoch.
It was computed using the following formula for Parallel Split Learning:

Tot (Mb) = ç Training set / Batch size è x (Intermediate Result Batch + Gradient
Batch)

and the following one for the Federated Split Learning:

Tot (Mb) = çTraining set/Batch sizeè x (Intermediate Result Batch+Gradient
Batch) + 2 x (Server LeNet parameters)

We can notice that the number 2 means that we send the servers’ weights to
a secure worker and then we send back the averaged weights from the secure worker
to the servers.

41

Performance Analysis

Data Shape Megabytes Training set (number of images)
Input [32, 1, 32, 32] 0,131144 60000

Table 4.2: MNIST Batch Data

Dataset: MNIST
Architecture Name Batch Shape Megabytes Tot(Mb)
ParallelSplit Intermediate Result [32, 6, 14, 14] 0,150600 ∼ 565

Gradient [32, 6, 14, 14] 0,150600
SplitFederated Intermediate Result [32, 6, 14, 14] 0,150600

Gradient [32, 6, 14, 14] 0,150600 ∼ 565
Server_LeNet 0.23

Table 4.3: Amount of data to send on the network at each epoch

42

Chapter 5

Privacy Attack and
Solutions

One of the main problems of the Split Learning procedure is that the encoder part
of the CNN, in other words, the part before the cut layer, could be reversed by an
attacker who has enough data to train a decoder CNN.
In this chapter, we analyze some methodologies to avoid this fact to be sure that
the privacy of the client’s data is preserved, and then we show some results obtained
using the NoPeek [12] approach.

5.1 Split-CNN attack
Using the Lenet CNN described above, we build a decoder CNN that has input

images the intermediate output of the first layers of the CNN (encoder-CNN). As
the previous experiments, we decided to cut CNN after the third layer.
The Encoder-CNN is composed by a Convolutional layer following by a Tangent
Hyperbolic layer and finally by an Average Pooling that can reduce the dimension
of the original image in order to summarize the most essential features of an image
and, at the same time, reduce the amount of data to send on the network.

After this part, we built an attacker that is a Decoder-CNN. This part of CNN
aims to invert the previous layers to define a measure of privacy. The more the
reconstructed data differs from the initial one, the more the model can preserve
data privacy. Using a large amount of data, we can reconstruct the input data
using just this simple attacker. It has been implemented using two Convolutional
Transpose layers that can reverse the early part of the CNN.

43

Privacy Attack and Solutions

Figure 5.1: Encoder part of CNN

Figure 5.2: Decoder part of CNN

5.2 Privacy Techniques
In this section, we discuss some of the most famous techniques to avoid data

loss during the training phase of a general distributed algorithm.

5.2.1 Homomorphic encryption and Secure MPC
These two techniques are the first two methods used to protect what we should

send to a server in a distributed learning algorithm.
These two methodologies’ main issues are that they are computationally expensive
and not scalable to use during the training phase of a deep neural network.
In particular, the HE can compute operation on encrypted data without decrypting
them [14]. At the end of the algorithm decrypting the output, we can obtain
the same result that the algorithm without HE can produce. It was used in the
federated Learning algorithm to protect the weights of the deep neural network
that each client should send to a secure server to compute the average and merge
clients’ contribution.
Secure Multi-Party Computation [13] is another way to make the information

44

Privacy Attack and Solutions

private. The idea is the following: we can imagine that a group of n clients should
compute a function f , which has as input the client’s input values.
The goal of this method is to preserve the privacy of those inputs. Furthermore,
each client cannot obtain information from other clients.
These two methods are often used to compute simple functions, and they can be
really slow and computationally expensive if they are employed in the computation
of a deep neural network.

Figure 5.3: Secure Multi-Party schema

5.2.2 Differential Privacy
Differential privacy [15] can be used for huge dataset. It adds noise to data

in order to preserve individual information. If the random substitutions of the
original data are small enough, they cannot modify the algorithm’s performance,
but they can be able to preserve sensible information.

5.2.3 Increase Client’s Neural Network
Another possible solution to deal with the privacy attack in Split Learning could

be to increase the number of layers to give to each client. The Encoder’s output is
hence encrypted and, at the same time, more private than before. Furthermore,
we should create an attacker with more layers and more weights to train, and
consequently, more data are necessary.
We could try to find the correct balance between the number of layers to give to
each client and the amount of memory and power required to train that part of
the neural network. On the other hand, we should remember that we are under
the assumption that the clients are devices with little computational power.

5.2.4 Reconstructive Adversarial Network
To find a way to overcome this kind of attack, the first approach that we want

to study is described in [18].
The scheme below summarizes how the algorithm works. It optimizes at the same
time two loss functions: the reconstruction error and the cross-entropy. The first
one represents a measure of our algorithm; instead, the second one is a measure of
the accuracy obtained.
The name of this attack is RAN : Reconstructive Adversarial Network, a deep

45

Privacy Attack and Solutions

learning algorithm that can maximize at the same time privacy and utility.

It is based on a max min optimization. In other words, the loss function

Figure 5.4: Adversarial Attack schema

that we want to optimize is the following:

min
E
λ

mØ
i=1

Hi − (1− λ)
mØ

i=1
MSEi

where E is the Encoder Neural Network, m is the number of samples inside the
batch size, H represents the cross-entropy and MSE is the mean square error that
is the reconstruction error.
This function was obtained from the two following optimization problems:

max
E

Prob(Y Í
i = Yi)

that is the probability that the predicted label Y Í
i is equal to Yi and,

max
E

min
X
|Ii − I Í

i|2

that before minimize on the Decoder Neural Network to improve the reconstruction
and then optimize on the Encoder Neural Network (client’s part) to change the
parameters to make the reconstruction as tricky as possible.
In other words, the network trains the Decoder (attacker’s part) and the Classifier
(server’s part) in order to improve the reconstruction of the original image and,
at the same time, obtain an adequate level of accuracy. However, it changes the
weights of the Encoder neural network to avoid the reconstruction using the output
of this part of the network.
We should correctly optimize the Encoder NN because otherwise, this can lead to

46

Privacy Attack and Solutions

poor privacy with a possible reconstruction of the original data.
The algorithm 7 describes how to optimize the three parts of the neural network.

Algorithm 7 Algorithm to optimize Adversarial Neural Network [18]
for epoch in epochs do

for on the data batch by batch do
for k in K = number of local update do

minH – update Classifier’s and Encoder’s weights
minMSE – update Decider’s weights

end for
end for
minLOSS – sum of H and MSE update Classifier’s and Encoder’s weights

end for

The figure below represents a batch of 32 images; we can see the result of the
reconstruction in 5.6: it is the output produced by the attacker’s neural network.
Note how the reconstructed images have low quality, and it is impossible to identify
the original digits. Furthermore, this algorithm’s accuracy remains more or less
the same as the neural network trained without the attacker. One of the most

Figure 5.5: Original batch of 32 images

Figure 5.6: Reconstructed batch of 32 images

critical aspects of this method is that only at the end of the training phase, the
Encoder can produce a safe image to send to the Classifier. We should send on the
network all the training images until the convergence of the network is reached.
Thus, it is not a good solution for our goal because we want that the images used
during the training are private.

47

Privacy Attack and Solutions

5.3 NoPeek Approach
The NoPeek algorithm is described in [12]. The authors tried to reduce the

possibility to easily reconstruct the original image decoding the output of the
activation function. This paper aims to find a way to improve the privacy level
during a Split Learning Algorithm and, at the same time, maintain a high level of
accuracy. The general idea consists of adding a part to the original loss function
called Distance Correlation. Minimizing this measure, they try to minimize the
dependence between the two images: the input and the output of the activation
got from the client’s neural network (the output of the cut layer).

5.3.1 NoPeek Theory
In the paper [19], the authors explain that one of the most important aspects of

the distance correlation is that:

Theorem
For all the distribution X and Y with a finite mean: the distance correlation
between X and Y is equal to zero if and only if X and Y are independent.
Furthermore, this measure can underline the linear and the non-linear relationship
between the random variables.
In line with the standard Person’s Correlation the authors of [19] define the Distance
Correlation as:

dCor(X, Y) = dCov(X, Y)ñ
dV ar(X)dV ar(Y)

In particular, the sample Distance Correlation is derived from the definition of
Distance Covariance Correlation and from Distance Variance Correlation:

dCov2
n(X, Y) := 1

n2

nØ
j=1

nØ
k=1

Aj,kBj,k

dV ar2
n(X) := dCov2

n(X,X) = 1
n2

nØ
j=1

nØ
k=1

A2
k,j

dV ar2
n(Y) := dCov2

n(Y, Y) = 1
n2

nØ
j=1

nØ
k=1

B2
k,j

where, Aj,k and Bj,k are respectively:

Aj,k = aj,k − āj. − āk. + ā ∀k, j = 1, 2, ..., n

Bj,k = bj,k − b̄j. − b̄k. + b̄ ∀k, j = 1, 2, ..., n
where:

aj,k = ||Xj −Xk|| ∀k, j = 1, 2, ..., n

48

Privacy Attack and Solutions

bj,k = ||Yj − Yk|| ∀k, j = 1, 2, ..., n

which the symbol ||.|| represents the Euclidean Norm, with the symbols āj,. we
represent the mean of the j-th row, ā.,k k-th column mean and finally with ā the
mean of of the vectors in the distance matrix. Therefore, they exploited this concept
to provide a method that can, at the same time, maximize the accuracy of the
model and data privacy.s They implement this method on the Single Split Learning
Architecture. In order to do that the standard loss function (for example Cross
Entropy) was changed in the following way [19]:

F (X,Z, Y, Ȳ) = α1dCor(X,Z) + α2CCE(Y, Ȳ)

where α1 and α2 are two scalars, X is the input data, Z output of the activation
function that results from the client’s neural network, Y true label, and Ȳ predicted
label. The optimization problem behind this approach is trying to minimize the
loss function described above using the gradient descent and forward/backward
propagation.

Figure 5.7: A) Split Learning Training using with/without Privacy on Original
dataset; B) Train the Attacker Neural Network on Attacker’s dataset; C) Data
Reconstruction from the client’s activation function (Decoder in inference phase)

49

Privacy Attack and Solutions

5.3.2 Experiment
We decide to apply the NoPeek method to the two architectures described above:

ParallelSplit and FederatedSplit to see if this method can improve the privacy of
the data and avoid the reverse-attack for these two distributed methods.
Therefore, we replace the Single Split Learning Algorithm in Figure 5.7 A) with
the two architectures.
To do this, we add the Distance Correlation to the Cross Entropy. The process is
different for both architectures. How the two algorithms compute the loss function
is not the same.
In particular, for the ParallelSplit we have just one server that can compute the
loss function adding the Distance Correlation of each client.
Instead, for the FederatedSplit and for each pair of client and server, we compute a
specific loss function.
Finally, the client’s contribution is merged, computing the average of the servers’
weights of the neural network.
In particular, the parameters used for the ParallelSplit and the FederatedSplit are
the following:

Learning rate 3e−4
Epochs for Distributed Training 20

Number of clients 2
Cut Layer 3rd

Initial Topology LeNet

Table 5.1: Parameters used for ParallelSplit-NoPeek Training

Learning rate 1e−4
Epochs for Distributed Training 20

Number of clients 2
Cut Layer 3rd

Initial Topology LeNet

Table 5.2: Parameters used for FederatedSplit-NoPeek Training

In order to simulate as much as possible the presence of an attacker, based on the
GitHub repository [20], we use a subset of the EMNIST dataset [21] (in the Figure
5.7 we called this one: Attacker’s dataset). It is composed of handwritten letters
of the alphabet. We decide to use this one instead of the MNIST dataset with
digits to train the attacker to reverse the clients’ neural network because we try
to emulate the dataset that an attacker could have to train his part of the neural

50

Privacy Attack and Solutions

network.
The decoder part of this neural network is the same used above in section RAN,
and the encoder is represented by the client’s neural network (in other words, the
part of the global convolutional neural network before the cut layer).
In the images below, we show the result obtained after the training of the attacker-
Neural Network. We try to train the network using a different amount of data; we
use a subset of 500 and 5000 images of the EMIST dataset.
The left column of the picture 5.8 and 5.9 represent the original images of a batch;
instead, the right column is composed of the reconstructed images after training
the Attacker’s Neural Network for 20 epochs.
We can see that with just 500 images, the reconstruction is not accurate. Instead,
increasing the number of images using for the train the Attacker’s Neural Network
seems more or less identical to the original.

Figure 5.8: Subset of 500 images

Figure 5.9: Subset of 5000 images

Figure 5.10: MNIST - Left: Original Batch of images; Right: reconstructed
Batch of images using the Attacker’s Neural Network

The Figures 5.14 and 5.18 show the result obtain in both the architectures using
the NoPeek approach to avoid data reconstruction.
As it is possible to see, both algorithms can preserve the privacy of data. The left
column represents the data reconstruction without the NoPeek approach instead of
the right column the data reconstruction with the NoPeek approach.

51

Privacy Attack and Solutions

Figure 5.11: Input Batch of images

Figure 5.12: Subset of 500 images

Figure 5.13: Subset of 5000 images

Figure 5.14: ParallelSplit - Left: Reconstruction without Privacy, Right: Re-
construction with Privacy. The rows represent the result of the input images get
using the Attacker Neural Network trained respectively with 500, 5000 images.

Figure 5.15: Input Batch of images

Figure 5.16: Subset of 500 images

Figure 5.17: Subset of 5000 images

Figure 5.18: FederatedSplit - Left: Reconstruction without Privacy, Right:
Reconstruction with Privacy. The rows represent the result of the input images
using the Attacker Neural Network trained respectively with 500, 5000 images.

Table 5.3 shows the value of the Distance Correlation computed between the
intermediate result and the input images for both the architectures with and

52

Privacy Attack and Solutions

without the privacy approach.

Distance Correlation Without Privacy With Privacy
ParallelSplit 0.9964 0.9944
FederatedSplit 0.9958 0.9085

Table 5.3: Distance Correlation

Furthermore, as is possible to notice in the following graph for both architectures,
the level of loss reached with the NoPeek approach is higher than the one reached
without privacy. This fact is in line with what we might expect because the term
we added to the loss function can make the intermediate output as independent as
possible from the input data.
Finally, as a consequence of the previous statement, we can see that the accuracy
level for the model with privacy is lower than the result obtained from the model
without NoPeek.

Figure 5.19: Loss -Test for ParallelSplit and FederatedSplit with and without
Privacy

53

Privacy Attack and Solutions

Figure 5.20: Accuracy-Test for ParallelSplit and FederateSplit with and without
Privacy

54

Chapter 6

Health Application

In this chapter, we apply the previous results on a health application: the classifi-
cation between COVID-19 and healthy chest using x-ray images.

6.1 Covid-19 Dataset
The COVID-19 dataset is composed of 625 CT images [22]: 125 related to

COVID-19 affected patients and 500 of NO-COVID-19 patients; we can observe
that even if this proportion does not correspond to the definition of an unbalanced
dataset, there is a class (NO-COVID-19, also called No-Findings) that is more
present.
Since we have a small dataset, we used a data augmentation approach in order to
prevent over-fitting.
We used the Pytorch Dataloader function that has as parameter an object called
transform. It give us the possibility to specify what kind of transformations the
Dataloader will do on our dataset to augment the images.
First of all we resized the images to 256 x 256 pixels because the original data have
different shapes. Then we decide to use:

• Random Horizontal Flip with a probability p = 0.5

• Color Jitter with brightness = 0.2, contrast = 0.2

Finally, we transformed the images to tensors to send them to a neural network.
Using these transformations, the training set is randomly modified at each epoch.
It must be noticed that this approach was performed only on the training set while
concerning the test set and the validation set, we just resized and transformed the
images to tensors.

55

Health Application

6.2 DarkCovidNet
We built a CNN architecture for the binary classification task (NO-COVID-19

vs. COVID-19), starting from the DarkCovidNet in the reference paper [23].
The following graph illustrates the chosen architecture.

Figure 6.1: DarkCovidNet

To send the images to the model, we make them fit the first convolutional layer’s
input size, which is 256×256 pixels. Each image has three input channels for the
CNN that correspond to RGB channels.
In our model, the convolutional layers had 3×3 kernel size, stride equal to 1, and
zero-padding. Concerning max-pooling layers, the filter size is 2×2 pixels, with
stride equal to 2.

6.3 Experiment
We try to reproduce the same experiments made with the MNIST dataset also

with the COVID-19 CT images.
First of all, we decide to split the DarkCovidNet Model into two parts (the first
one owned by a client and the second one by a server).
Looking to the schema of the model 6.1, we consider the second MaxPooling layer
a good cut level for the model. Cutting the network after this layer means cutting
it after six operations of convolution. This can improve privacy instead of choosing
a previous layer. Simultaneously, after two operations of MaxPooling, the image of
output is smaller than before.
If we increase the number of clients, fixing the batch size, we can see similar behavior
compared to the MNIST Dataset. In fact, in Figure 6.2, we notice that distributing
dataset on more than clients, the performance obtaining with FederatedSplit is
worse than the one computed with ParallelSplit.

56

Health Application

Figure 6.2: Compare ParallelSplit and FederatedSplit increasing the number of
clients

Data to send on the network
In this section, we try to estimate the amount of data that we should send on

the network using, like topology, the DarkCovidNet, and divide the network after
the second MaxPooling layer. Table 6.1 represents the number of megabytes of
the trainable parameters of the DarkCovidNet split between Client and Server,
instead of the Table 6.2 represents the batch-Megabytes that we should send on
the network in the case of a centralized training.

Network Topology Megabytes
DarkCovidNet 4.44

Server_DarkCovidNet 4.43
Client_DarkCovidNet 0.01

Table 6.1: Megabytes for DarkCovidNet parameters

Data Shape Megabytes Training set (number of images)
Input [32, 1, 256, 256] 25,165896 500

Table 6.2: Batch Data

Finally the Table 6.3 summarizes the amount of data that we should send on the

57

Health Application

network at each epochs using the ParallelSplit and FederatedSplit architecture. The
formula computed to obtain the Tot amount of Megabytes is the same using for
the MNIST Dataset.

Dataset: Covid
Architecture Name Batch Shape Batch(Mb) Tot(Mb)
ParallelSplit Intermediate Result [32, 16, 64, 64] 8,38868 ∼ 268

Gradient [32, 16, 64, 64] 8,38868
SplitFederated Intermediate Result [32, 16, 64, 64] 8,38868

Gradient [32, 16, 64, 64] 8,38868 ∼ 277
Server_DarkCovidNet 4.43

Table 6.3: Amount of data to send on the network at each epoch

Privacy
In this section, we reproduce the privacy experiment described in Figure 5.7

using the two architectures instead of the Single Split Learning.
The topology used by the Attacker is described in Figure 6.3 and 6.4.

Figure 6.3: Encoder DarkCovidNet

Figure 6.4: Decoder DarkCovidNet

In order to train this network, the Attacker uses chest x-ray images with

58

Health Application

Pneumonia or without pathologies [24].
Figures 6.5 and 6.6 show the result after 20 epochs of training. As it is possible to
notice with 5000 images, the decoder can reconstruct the original images.

Figure 6.5: Subset of 500 images

Figure 6.6: Subset of 5000 images

Figure 6.7: Left: Original Batch of images; Right: reconstructed Batch of images

In Table 6.4, we compute the Distance Correlation values between the interme-
diate results and the input images of the last batch after twenty epochs of training.
As it is possible to notice the value of Distance Correlation obtaining using the
privacy approach is lower in the FederatedSplit Learning. This means that the
intermediate result is more independent from the input data than the one obtained
using the ParallelSplit Learning Algorithm.

Distance Correlation Without Privacy With Privacy
ParallelSplit 0.9967 0.9848
FederatedSplit 0.9955 0.8865

Table 6.4: Distance Correlation

Finally, Figures 6.11 and 6.15 describe the result obtaining trying to reconstruct
one of the intermediate results for both the architectures trained on the Dataset
[22] using the NoPeek Approach.

59

Health Application

Figure 6.8: Input Batch of images

Figure 6.9: Subset of 500 images

Figure 6.10: Subset of 5000 images

Figure 6.11: ParallelSplit - Top: Reconstruction without Privacy, Bottom:
Reconstruction with Privacy. for both the results obtained the Attacker Neural
Network trained respectively with 500, 5000 images.

60

Health Application

Figure 6.12: Input Batch of images

Figure 6.13: Subset of 500 images

Figure 6.14: Subset of 5000 images

Figure 6.15: FederatedSplit - Top: Reconstruction without Privacy, Bottom:
Reconstruction with Privacy. for both the results obtained using the Attacker
Neural Network trained respectively with 500, 5000 images.

61

Health Application

Figure 6.16: Top: Loss-Test Set for ParallelSplit and FederatedSplit with and
without Privacy; Bottom: F1-Score-Test Set for ParallelSplit and FederatedSplit
with and without Privacy 62

Chapter 7

Conclusion

In this thesis, we implemented two architectures that combine the Split and Feder-
ated learning algorithms using the PySyft library based on PyTorch.
The code was designed and implemented to easily switch from "local" to "remote"
learning. We compared the two architectures in terms of efficiency and privacy,
changing the data distribution between the clients, monitoring the accuracy level
reached with respect to the number of iterations, and analyzing the privacy leakage.
We notice that if we reduce the quantity of data owned by each client, increasing
the number of clients, the FederatedSplit architecture is worse than ParallelSplit
in terms of accuracy reached. But at the same time, if we consider the level of
privacy for the FederatedSplit, it is higher respect to the one obtained with the
ParallelSplit.
Finally, we tested our algorithms on real-world datasets, such as MNIST and a
medical dataset (COVID-19 CT chest images), where privacy is critical.

63

Appendix A

Appendix

A.1 VirtualWorker’s functions
In this section we explain three functions of PySyft Library used in the code to

send and receive tensors between different VirtualWorkers [25].

First of all after overwrite the hook method inside PyTorch;then to better ex-
plain these functions, we decide to declare two VirtualWorkers: client and server.
They are two entities that can use as different machines inside the same laptop.
They are really useful to implement an algorithm that in the future should be run
on real different machine.
They are identified by an id

1 import s y f t as sy
2 import torch
3

4 hook = sy . TorchHook (torch)
5 c l i e n t = sy . VirtualWorker (hook , id=" c l i e n t ")
6 s e r v e r = sy . VirtualWorker (hook , id=" s e r v e r ")

The function send() can send the tensor from a local owner (for example a pc) to a
certain VirtualWorker (in this example: id = "client"); but it can be used also to
send a tensor from a VirtualWorker to another VirtualWorker (in this example:
from id = "client" to id = "server").

Therefore, we define a Torch tensor called v and we show how to send it from the
local machine (called: me) to respectively client and server.

64

Appendix

1 v = torch . t enso r ([1 , 2 , 3])
2 v = v . send (c l i e n t)
3 v = v . send (s e r v e r)

1 # Output o f v :
2 (Wrapper) >[PointerTensor | me:89712727978 −> c l i e n t :39290507290]
3 (Wrapper) >[PointerTensor | me:98378852286 −> s e r v e r :89207102262]

We can see that the PointTensor of the tensor v after these two operations points
from the local machine to the client and from the local to the server.
The client entity has inside the tensor v:

1 # Cl i en t ’ s Output :
2 {35637621589: t enso r ([1 , 2 , 3]) }

Instead, the server entity has inside the following Wrapper PointTensor :

1 # Server ’ s Output :
2 (Wrapper) >[PointerTensor | s e r v e r :87666169779 −> c l i e n t :35637621589]

Therefore, the tensor is on the client machine and there is a PointTensor of the
tensor v on server that points to the client device.

In order to directly move the tensor we can use the function move(). After
sending the tensor to the client we can move this tensor to the server using this
function.

1 v = torch . t enso r ([1 , 2 , 3])
2 v = v . send (c l i e n t)
3 v = v . move(s e r v e r)

1 # Cl i en t ’ s and Server ’ s Output :
2 {}
3 {36989781708: t enso r ([1 , 2 , 3]) }

Finally, we can receive the output that is owned by a VirtualWorker to the local
machine using the function get():

65

Appendix

1 v = torch . t enso r ([1 , 2 , 3])
2 v = v . send (c l i e n t)
3 v = v . get ()

66

Bibliography

[1] H. McMahan, Eider Moore, D. Ramage, S. Hampson, and Blaise Agüera y Ar-
cas. «Communication-Efficient Learning of Deep Networks from Decentralized
Data». In: AISTATS. 2017 (cit. on pp. 11, 14–16, 26, 28).

[2] Andrew Hard, Chloé M Kiddon, Daniel Ramage, Francoise Beaufays, Hubert
Eichner, Kanishka Rao, Rajiv Mathews, and Sean Augenstein. Federated
Learning for Mobile Keyboard Prediction. 2018. url: https://arxiv.org/
abs/1811.03604 (cit. on p. 11).

[3] Francoise Beaufays, Kanishka Rao, Rajiv Mathews, and Swaroop Ramaswamy.
Federated Learning for Emoji Prediction in a Mobile Keyboard. 2019. url:
https://arxiv.org/abs/1906.04329 (cit. on p. 11).

[4] Micah J Sheller, G Anthony Reina, Brandon Edwards, Jason Martin, Spyridon
Bakas. «Multi-Institutional Deep Learning Modeling Without Sharing Patient
Data: A Feasibility Study on Brain Tumor Segmentation». In: (2018). doi:
https://arxiv.org/pdf/1810.04304.pdf (cit. on p. 11).

[5] Otkrist Gupta and Ramesh Raskar. «Distributed learning of deep neural
network over multiple agents». In: Journal of Network and Computer Applica-
tions 116 (Aug. 2018), pp. 1–8. doi: 10.1016/j.jnca.2018.05.003 (cit. on
pp. 11, 18, 20, 21, 23, 26, 28, 36).

[6] PySyft. url: https://github.com/OpenMined/PySyft (cit. on pp. 12, 29–
31).

[7] Martın Abadi et al. TensorFlow: Large-Scale Machine Learning on Hetero-
geneous Systems. Software available from tensorflow.org. 2015. url: https:
//www.tensorflow.org/ (cit. on p. 12).

[8] Jeon Joohyung and Joongheon Kim. «Privacy-Sensitive Parallel Split Learn-
ing». In: Jan. 2020, pp. 7–9. doi: 10.1109/ICOIN48656.2020.9016486
(cit. on pp. 12, 21, 24, 25).

67

https://arxiv.org/abs/1811.03604
https://arxiv.org/abs/1811.03604
https://arxiv.org/abs/1906.04329
https://doi.org/https://arxiv.org/pdf/1810.04304.pdf
https://doi.org/10.1016/j.jnca.2018.05.003
https://github.com/OpenMined/PySyft
https://www.tensorflow.org/
https://www.tensorflow.org/
https://doi.org/10.1109/ICOIN48656.2020.9016486

BIBLIOGRAPHY

[9] Nicolas Papernot, Shuang Song, Ilya Mironov, Ananth Raghunathan, Kunal
Talwar, and Úlfar Erlingsson. «Scalable Private Learning with PATE». In:
International Conference on Learning Representations (ICLR). 2018. url:
https://arxiv.org/abs/1802.08908 (cit. on p. 17).

[10] Vepakomma, Praneeth and Gupta, Otkrist and Swedish, Tristan and Raskar,
Ramesh. «Split learning for health: Distributed deep learning without sharing
raw patient data». In: (2018). url: https://arxiv.org/abs/1812.00564
(cit. on pp. 18–20).

[11] Chandra Thapa, M.A.P. Chamikara, and Seyit Camtepe. «SplitFed: When
Federated Learning Meets Split Learning». In: (Apr. 2020) (cit. on p. 21).

[12] Praneeth Vepakomma, Abhishek Singh, Otkrist Gupta, and Ramesh Raskar.
«NoPeek: Information leakage reduction to share activations in distributed
deep learning». In: CoRR abs/2008.09161 (2020). arXiv: 2008.09161. url:
https://arxiv.org/abs/2008.09161 (cit. on pp. 23, 43, 48).

[13] Yehuda Lindell. Secure Multiparty Computation (MPC). Cryptology ePrint
Archive, Report 2020/300. https://eprint.iacr.org/2020/300. 2020
(cit. on pp. 29, 44).

[14] Craig Gentry. «Fully homomorphic encryption using ideal lattices». In: In
Proc. STOC. 2009, pp. 169–178 (cit. on pp. 29, 44).

[15] Cynthia Dwork and Aaron Roth. «The Algorithmic Foundations of Differential
Privacy.» In: Foundations and Trends in Theoretical Computer Science 9.3-4
(2014), pp. 211–407. url: http://dblp.uni- trier.de/db/journals/
fttcs/fttcs9.html#DworkR14 (cit. on pp. 29, 45).

[16] Yann LeCun and Corinna Cortes. «MNIST handwritten digit database». In:
(2010). url: http://yann.lecun.com/exdb/mnist/ (cit. on pp. 31, 37).

[17] Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. «Gradient-
based learning applied to document recognition». In: Proceedings of the IEEE.
1998, pp. 2278–2324 (cit. on p. 31).

[18] Sicong Liu, Anshumali Shrivastava, Junzhao Du, and Lin Zhong. Better
accuracy with quantified privacy: representations learned via reconstructive
adversarial network. Jan. 2019 (cit. on pp. 45, 47).

[19] Gábor J. Székely, Maria L. Rizzo, and Nail K. Bakirov. «Measuring and
testing dependence by correlation of distances». In: Ann. Statist. 35.6 (Dec.
2007), pp. 2769–2794. doi: 10.1214/009053607000000505. url: https:
//doi.org/10.1214/009053607000000505 (cit. on pp. 48, 49).

[20] NoPeekNN. url: https://github.com/TTitcombe/NoPeekNN (cit. on p. 50).

68

https://arxiv.org/abs/1802.08908
https://arxiv.org/abs/1812.00564
https://arxiv.org/abs/2008.09161
https://arxiv.org/abs/2008.09161
https://eprint.iacr.org/2020/300
http://dblp.uni-trier.de/db/journals/fttcs/fttcs9.html#DworkR14
http://dblp.uni-trier.de/db/journals/fttcs/fttcs9.html#DworkR14
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1214/009053607000000505
https://doi.org/10.1214/009053607000000505
https://doi.org/10.1214/009053607000000505
https://github.com/TTitcombe/NoPeekNN

BIBLIOGRAPHY

[21] Cohen G., Afshar S., Tapson J., and van Schaik A. «EMNIST: an extension
of MNIST to handwritten letters.» In: (2017). url: http://arxiv.org/abs/
1702.05373 (cit. on p. 50).

[22] COVID-19. url: https://github.com/muhammedtalo/COVID-19 (cit. on
pp. 55, 59).

[23] Tulin Ozturk, Muhammed Talo, Azra Yildirim, Ulas Baloglu, Özal yıldırım,
and U Rajendra Acharya. «Automated Detection of COVID-19 Cases Using
Deep Neural Networks with X-ray Images». In: Computers in Biology and
Medicine 121 (Apr. 2020). doi: 10.1016/j.compbiomed.2020.103792 (cit.
on p. 56).

[24] Chest X-Ray Images (Pneumonia). url: https://www.kaggle.com/paulti
mothymooney/chest-xray-pneumonia (cit. on p. 59).

[25] Introduction to Federated Learning and Privacy Preservation using PySyft
and PyTorch. url: https://blog.openmined.org/federated-learning-
additive-secret-sharing-pysyft/ (cit. on p. 64).

69

http://arxiv.org/abs/1702.05373
http://arxiv.org/abs/1702.05373
https://github.com/muhammedtalo/COVID-19
https://doi.org/10.1016/j.compbiomed.2020.103792
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
https://blog.openmined.org/federated-learning-additive-secret-sharing-pysyft/
https://blog.openmined.org/federated-learning-additive-secret-sharing-pysyft/

	Acknowledgements
	List of Figures
	List of Tables
	Abstract
	Introduction
	Background and Related Work on Distributed Learning
	Federated Learning
	Private Aggregation of Teacher Ensembles (PATE) Algorithm
	Split Learning
	Combining Split and Federated Learning

	Split and Federated Learning Architectures
	Parallel Split Learning
	Federated Split Learning
	How to merge Clients' information

	Performance Analysis
	Pysyft Library
	Experiments on MNIST dataset

	Privacy Attack and Solutions
	Split-CNN attack
	Privacy Techniques
	Homomorphic encryption and Secure MPC
	Differential Privacy
	Increase Client's Neural Network
	Reconstructive Adversarial Network

	NoPeek Approach
	NoPeek Theory
	Experiment

	Health Application
	Covid-19 Dataset
	DarkCovidNet
	Experiment

	Conclusion
	Appendix
	VirtualWorker's functions

	Bibliography

