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“If you think you understand quantum mechanics, you don’t
understand quantum mechanics.”

Richard Feynman

“In fact, the mere act of opening the box will determine the
state of the cat, although in this case there were three determinate
states the cat could be in: these being Alive, Dead, and Bloody
Furious.”

Terry Pratchett



Summary

The work presented in this thesis is focused on quantum computing and in
particular on the interplay between quantum devices and machine learning.
This interaction gives birth to a relatively recent area of study, called Quan-
tum Machine Learning (QML), which currently represents a hot research
field. This work was carried out in collaboration with an important com-
pany with home in Turin, DATA Reply S.r.l., whose main focuses are Big
Data, Artificial Intelligence, Machine Learning and Quantum Computing.

We start by introducing the fundamental concepts of quantum mechan-
ics, presenting the topic in a formal way from a mathematical point of view
while keeping things as simple as possible, as long as they allow us to un-
derstand quantum computing basics. After an overview on motivations,
possible employments of quantum devices and an analysis of risks and ben-
efits of their development, we proceed to explain quantum computing main
concepts, such as qubits and quantum gates. The introduced formalism is
the so-called Discrete Variable (DV) formalism, which is the most promi-
nent choice in literature for describing quantum systems. However, as ex-
tensively explained during the course of this work, this approach presents
several drawbacks: one of the main goals of this thesis is to introduce the
alternative formalism of Continuous Variables (CV) and investigate how it
can contribute to improve this research area.

Currently, one of the preferred tools for quantum machine learning algo-
rithms are the Variational - or Parametrized - circuits: they allow to train
the quantum devices in the same way as a classical neural network and al-
low to address ML problems, both supervised and unsupervised. After a
detailed description of these tools, we proceed to introduce PennyLane, a
Python library for QML which is very well suited for dealing with variational
circuits.

In the core part of this work, we concentrate on some QML examples,
in particular we analyze some applications in which using the CV formalism
turns out to be the most convenient choice. Integration, more specifically
Monte Carlo integration, is one of those fields which the CV formalism suits
best; in a similar way, Gaussian process regression in its continuous variables
version provides a great advantage, namely an exponential speedup, as long
as some hypothesis are satisfied. We only provide a brief overview of these
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applications, since we opted to leave more room to experiments involving
variational classifiers and quantum neural networks.

Three use cases are analyzed, all involving the CV formalism. The first
one is a variational classifier, employed in a supervised setting for the clas-
sification of a simple dataset. The second one is a quantum neural network,
used to solve a problem of function fitting. The results and the chosen
hyperparameters are presented, together with a formal explanation of the
theoretical concepts behind them. The last use case, the most complex and
detailed one, focuses on a time series forecasting task, carried out with a
quantum neural network, and also presents a comparison with the classical
approach.



Sommario

Il lavoro che viene presentato in questa tesi si concentra sul quantum com-
puting ed in modo particolare sull’interazione tra i dispositivi quantistici ed
il machine learning. Tale interazione dà vita ad un campo di studi relati-
vamente recente, ovvero il Quantum Machine Learning (QML), che al mo-
mento costituisce un settore di ricerca molto attivo. Questo lavoro è stato
eseguito in collaborazione con un’importante azienda torinese, DATA Reply
S.r.l., i cui principali focus sono Big Data, Artificial Intelligence, Machine
Learning e Quantum Computing.

Iniziamo con l’introduzione di alcuni concetti fondamentali della mec-
canica quantistica, presentando l’argomento tramite un rigido formalismo
matematico, cercando al tempo stesso di spiegare i concetti nella maniera
più semplice possibile, in modo da rendere comprensibili le nozioni di base
riguardanti il computer quantistico. Dopo una panoramica sulle motivazioni,
le possibili applicazioni di tali dispositivi ed un’analisi rischi-benefici del loro
sviluppo, procediamo alla spiegazione dei principali concetti di quantum
computing, come i qubit ed i gate. Il formalismo introdotto è il cosid-
detto formalismo delle variabili discrete (DV), che è la scelta prediletta in
letteratura per la descrizione dei sistemi quantum. Tuttavia, come verrà
ampiamente spiegato nel corso del lavoro, l’adozione di tale formalismo pre-
senta alcuni svantaggi: per questo motivo, uno dei principali obiettivi della
tesi è quello di introdurre il formalismo alternativo, che è quello delle vari-
abili continue (CV), e di investigare come tale area di ricerca possa trarne
benefici.

Attualmente, uno degli strumenti più utilizzati negli algoritmi di quan-
tum machine learning sono i Variational - o Parametrized - circuits: questi
permettono di svolgere il training del dispositivo quantum come se fosse
una rete neurale e permettono di affrontare problemi di ML, sia supervi-
sionati che non supervisionati. Dopo una descrizione dettagliata di questi
strumenti, procediamo introducendo PennyLane, una libreria di Python per
il QML che è particolarmente adatta per interfacciarsi con tali circuiti.

Nella parte centrale di questo lavoro, ci concentriamo su alcuni esempi
di QML, in modo particolare analizziamo alcune applicazioni in cui il for-
malismo delle variabili continue si rivela essere la scelta più conveniente da
fare. L’integrazione, ed in modo particolare l’integrazione tramite metodi
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Monte Carlo, è uno di quei campi in cui il formalismo CV si adatta molto
bene; analogamente la regressione tramite processi Gaussiani nella versione
basata sulle variabili continue fornisce un grande vantaggio, in particolare un
miglioramento esponenziale in termini di velocità computazionale, a patto
che alcune ipotesi siano soddisfatte. Forniamo solo una breve panoramica
su questi due argomenti, preferendo lasciare più spazio agli esperimenti che
riguardano i variational classifiers e le reti neurali quantistiche.

Analizziamo tre casi di studio, tutti basati sul formalismo CV. Il primo
è un variational classifier, utilizzato in un contesto supervisionato per la
classificazione di un semplice dataset. Il secondo è costituito da una rete
neurale quantistica, che viene utilizzata per risolvere un problema di function
fitting. Vengono presentati i risultati e la scelta degli iperparametri, senza
trascurare una spiegazione formale dei concetti alla base di essi. L’ultimo
caso di studio, il più articolato ed approfondito, si concentra su un algoritmo
basato su una rete neurale quantum per la predizione di una serie temporale
e presenta inoltre un confronto con l’approccio classico.
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Il pensiero va anche a tutti i docenti e colleghi del mio corso di studi, che
tanto mi hanno insegnato e che hanno contribuito a farmi crescere sia come
studentessa che come persona. In particolare mi fa piacere citare Andrea,
Sara e Sofia, con cui ho speso molto del mio tempo e che sono persone che
ho imparato sinceramente a stimare.

Un ringraziamento particolare, poi, va a Roberta e Mara, che, nonos-
tante gli ostacoli e nonostante la distanza che ultimamente ha reso tutto
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Chapter 1

Introduction

1.1 General ideas about quantum computing

Quantum computing is the study of a non-classical computational model,
based on the laws of quantum mechanics, representing the branch of physics
studying the smallest objects of our physical world. In this setting, the
laws of classical mechanics are no more applicable: this implies the use
of new technologies and algorithms and the possibility to discover new
ways in which computers can improve our lives. Quantum computers,
in particular, exploit some effects of quantum mechanics, like entangle-
ment and superposition, to solve some classes of problems in a more effi-
cient way with respect to classical computers [Kopczyk, 2018]. As stated
in [Calude and Calude, 2017], the quantum potential advantage consists in
having faster computations with respect to the classical case. Furthermore,
quantum computers are not meant to outperform their classical counterparts
in every aspect: researchers are still working to identify which problems are
suited for quantum speed-ups and in which fields these devices can be em-
ployed in the most successful way [Wittek, 2014].

In the latest decades, researchers have wondered if quantum computers
will be able to perform tasks classical computers cannot solve in an efficient
way: this is the quest for quantum supremacy, which, in the latest years,
have involved big companies such as Google or IBM. Quantum supremacy
is achieved when a quantum device manages to perform a given task which
cannot be performed with any known algorithm on any classical machine in a
reasonable time. This definition means that quantum supremacy is reached
if a quantum computer can outperform any classical machine on one specific
problem, even if the classical computers can perform all the remaining tasks
better than a quantum device. It is important to remark the fact that
the achievement of quantum supremacy does not end in making classical
computers obsolete: in fact, as we will better see in this work, quantum
and classical machines can work in synergy, exploiting the capacities of each
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CHAPTER 1. INTRODUCTION 2

of them. In October 2019 Google announced the achievement of quantum
supremacy: they used a processor of 53 qubits to sample an instance of a
quantum circuit 106 times in only 200 seconds. Performing this task on a
classical machine would take approximately 104 years ([Arute et al., 2019]).

Although we will see in more detail most of these concepts, we see here a
brief overview of the main features of quantum computing, i.e. what’s new
with respect to the classical ones.

• Superposition or coherence: While objects obeying to laws of clas-
sical mechanics cannot exist in two different states at the same time
(e.g. the flipping of a coin cannot give as a result head and tails at
the same time), subatomic particles, like electrons, are allowed to have
two states at once. The resulting particle is said to be in superposition
of these two states, meaning that our “quantum coin”, once laid on a
table, is showing head with a certain probability p and, at the same
time, tails with probability 1 − p. This is a fundamental property at
the basis of quantum mechanics and it will be useful to familiarize
with the concept of qubit.

• Measurements: Given our quantum particle in a superposed state,
one thing we are interested in is to discover its actual state: this in-
troduces the concept of quantum measurement. The act of measuring
or observing a quantum particle implies the decoherence of it, i.e. no
matter if it was in a superposition of states, after measurement the
particle will assume one of its possible states.

• Entanglement: This is one of the most interesting and perhaps
counter-intuitive properties in quantum mechanics. In short, once a
particle is entangled to another one, they form a whole system and any
action performed on one of them will inevitably affect also the other
one. The most mind-blowing fact, although, is that the same is still
true even if the two particles are separated and brought at the two
extremes of universe. This property is exploited in a large number of
quantum algorithms.

1.2 Quantum computing in the NISQ era

Quantum computing is at an early stage but, despite this, several classes of
algorithms have been developed in the last decades. However, theoretical
results alone do not do all the work, because we currently dispose of a quite
large number of algorithms which had birth when quantum hardware had
not yet been developed. The actual realization of quantum hardware has
been achieved only in the last years, therefore a lot of theoretical results were
based on “ideal” (i.e. noise-free) devices. On the contrary, practical evidence
shows that quantum devices are inherently noisy and, as a consequence,



CHAPTER 1. INTRODUCTION 3

algorithms developed on them should take this aspect into account. In
order to avoid as much as possible the effect of noise on qubits, quantum
computers must be kept at temperatures very near to the absolute zero,
which is a not a very convenient solution.

Furthermore, it is not so obvious how to handle with devices with a
large number of qubits: nowadays, quantum computers have a relatively
small number of qubits and, for this reason, their computational capacity
is limited. What sounds promising is qubit growth in the latest years: as
we can find in [Ball, 2020], in 2016 IBM constructed a 5-qubit quantum
device, in the first months of 2019 Google and IBM announced their 20-
qubits devices, while now both companies run quantum computers having
from 30 to 50 qubits. However, we cannot be so confident of a continuous
growth in the near future, due to the necessity to keep the whole system
cool for a sufficient time to perform a computation: this is a challenge that
gets harder when numbers grow up.

For these reasons, we can state we currently live in the Noisy, Intermediate-
Scale Quantum (or NISQ) era, a term coined by the quantum information
theorist John Preskill of the California Institute of Technology in Pasadena.
Intermediate-Scale indicates the size, in terms of qubits, of the current and
near-future devices, i.e. from 50 qubits to a few hundreds. Noisy, in-
stead, stands for the inherent noise that undergoes each quantum device
and that is responsible for the decoherence of states. As Preskill states in
[Preskill, 2018], NISQ era should not be seen as an end point, but as a step
towards new technologies we will develop in the future. In fact, it is the
term “Intermerdiate-Scale” itself that conveys this message: we are working
towards much larger devices, with a huge number of qubits and error cor-
rection, often referred to as the fault-tolerant regime. We can be confident
quantum technologies will have a positive impact on future societies, but we
cannot predict how much close we are to this future.

1.3 Potential advantages

As already pointed out, it is still not so clear which problems could benefit
from the development of a powerful quantum computer and one on the
main reasons is that the great part of research was conducted only from a
theoretical perspective. Nevertheless, from this research some interesting
fields have emerged:

• Cryptanalysis A lot of current cryptographical systems - for ex-
ample RSA, to name only one of them - rely on the fact that even
for the most powerful supercomputer at our disposal, it is extremely
expensive to factorize a large number in its prime factors. One of
the first quantum computing algorithms is Shor’s algorithm, which
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shows how the employment of a quantum device can reduce exponen-
tially the time it takes to factor a large number. If we disposed of a
sufficiently powerful device, we could break the great part of current
cryptosystems.

• Simulation For years classical machines have contributed to expand
our knowledge of quantum systems, but the underlying complexity
have forced researchers to opt for approximations which did not pro-
vide great advantages in extracting useful information. Quantum com-
puters can really represent a crucial point in this field, since they are
intrinsically suited to simulate quantum mechanical systems and, for
this reason, study areas like quantum chemistry, materials science or
nuclear physics could really benefit from them. For example, a quan-
tum device with 50 qubits can encode the wave function of the water
molecule, which on a classical device would require to diagonalize an
Hamiltonian of the order of ∼ 1011 [Xanadu, 2019].

• Machine Learning The importance that of Machine Learning algo-
rithms have nowadays makes Quantum ML a compelling area of study.
This thesis focuses exactly on this relatively recent research field and
has the purpose of investigating whether the quantum component can
benefit ML and to which extent.

1.4 Risks and benefits of quantum computing

At the light of most recent discoveries, the achievement of noise-free large
devices looks closer and closer, but we cannot safely state if and when
this goal will be reached. Moreover, to achieve good results we will not
only have to build physical devices but also develop algorithms converg-
ing from many branches of science, from chemistry to material science,
from mathematics to physics. What must be said, however, is that re-
search in the fields of quantum computing has bought to the discovery of
new results in classical branches, for example physics or computer science,
thus contributing to bring new knowledge and developments in this area
([National Academies of Sciences et al., 2019]).

On the other hand, despite the potential benefits research in this field
could likely bring, quantum computing might represent a threat for national
security. As we outlined in the previous section, any organization having
a sufficiently powerful and stable quantum device in its hands could break
current asymmetric cryptosystems, a scary issue that makes flashes apoca-
lyptic pictures before our eyes. It is therefore necessary to be aware of such
risks and begin to develop cryptosystems that will be immune to quantum
cryptanalysis. The issue of information security is only the tip of an iceberg
if we talk about the impact that quantum computers can possibly have on
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our society. In the last decades, we have witnessed the huge impact classical
computers had had on our world and we can only imagine how quantum
devices could change our lives, influencing both economy and technology.





Chapter 2

Theoretical concepts

2.1 Quantum mechanics notation

In this chapter we are going to introduce some fundamental concepts at the
core of quantum mechanics, which will turn out to be useful in the following.
The two main references are [Kopczyk, 2018] and [Wittek, 2014].

2.1.1 State representation

In quantum mechanics, the two fundamental concepts are the state of a
system, which contains statistical information about the system, and ob-
servables, which are the physical quantities we want to measure.

The state vector is an element of a Hilbert space H, most often Cn.
To have a detailed overview about Hilbert spaces, the reader can have a
look to [Klipfel, 2009]. The accepted notation is Dirac’s bra-ket notation: a
vector (or ket) is denoted by |ψ〉 while a covector in the dual Hilbert space
is denoted by a bra: 〈ψ|. Therefore, 〈ψ| = |ψ〉†.

A state before measurement could be in a mixture of states {|x1〉 , . . . , |xn〉}:
therefore a general state |ψ〉 can be represented as a linear combination of the
basis states {|x1〉 , . . . , |xn〉}, having as coefficients the so-called probability
amplitudes:

|ψ〉 = α1 |x1〉+ . . .+ αn |xn〉 = α1


1
0
...
0

+ . . .+ αn


0
0
...
1

 =


α1

α2
...
αn

 . (2.1)

Stating that the quantum state is a linear combination of the basis states is
equivalent to say that the state is in a quantum superposition of basis states.

The probability amplitudes have a fundamental role in determining what
happens after the measurement of a state: in particular, the square norm
|αi|2 represents exactly the probability that the system will be in state |xi〉
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after measurement. Since we deal with probabilities, it is fundamental to
require that their norm is equal to 1:

n∑
i=1

αi = 1.

In summary, the superposition of a quantum system encapsulates the idea
that the system is in all its possible states simultaneously. Only when a
measurement is performed, the system collapses in one of the candidate
states with a probability given by the square norm of the corresponding
probability amplitude.

More generally, the probability of finding a particle |ψ〉 in state |φ〉 is
〈φ|ψ〉, where the previous notation represents the inner product of the two
vectors.

As already stated, the second fundamental concept to be introduced is
that of observables. Briefly, observables O are operands that, applied to a
quantum state, return a real quantity. Keeping in mind that our state |ψ〉
is a vector in a Hilbert space, observables can be represented by matrices
acting on such vectors. After a measurement the result can only be one of
the basis states |xi〉: for this reason, the observable matrix we are looking
for has eigenvector |xi〉 with eigenvalue xi - these eigenvalues are the only
values observables can take after being measured.

The following is the action of observable O on a state:

O |ψ〉 → xi |xi〉 ,

which in words means that the measurement of |ψ〉 performed by the ob-
servable collapses the state in superposition to state |xi〉, with corresponding
eigenvalue xi. Such operation is irreversible, i.e. it is not possible to restore
the superposed form of the collapsed state. Since eigenvalues must be real,
the matrix O must be Hermitian and, as a consequence, eigenvectors of
distinct eigenvalues are orthogonal. It follows that by choosing an orthog-
onal basis for each eigenspace, O holds n orthonormal eigenvectors, which
constitute an orthogonal basis for Cn. Given an orthogonal basis |xi〉 of
eigenvectors and a sequence of real numbers xi, we can write a Hermitian
matrix as O =

∑n−1
i=0 xi |xi〉 〈xi|. In the basis of the |xi〉 vectors, O is simply

a diagonal matrix:

O =


x1 0 . . . 0
0 x2 . . . 0
...

... . . .
...

0 0 . . . xn

 .

The measurement of a particular outcome xi is highly influenced by the
probability |αi|2: the most suitable approach to get a reliable result is to
perform multiple measurements of the system in the same state |ψ〉 and
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measure the expectation value of observable O, that is defined as 〈O〉 =
〈ψ|O|ψ〉.

To summarize:

• A measurement is an irreversible operation that collapses the state |ψ〉
in an eigenvector of the observable O;

• The result of the measurement is always the eigenvalue xi correspond-
ing to the aforementioned eigenvector. The probability of obtaining
such eigenvalue xi is given by | 〈xi|ψ〉 |2, where |xi〉 is the eigenvector
corresponding to xi. Such formula is also known as Born rule.

2.1.2 Density matrix representation

An alternative representation of quantum states is the density matrix, which
is an operator obtained with the outer product of a state vector:

ρ = |ψ〉〈ψ| .

A quantum state that can be written in such from is said to be pure. The
idea under this definition is that by only knowing state |ψ〉 we can describe
a system having all its particles in the same physical configuration. On the
contrary, a mixed state is represented by the following density matrix:

ρmixed =

n∑
i=1

pi |ψi〉〈ψi| ,

where pi represents the probability to find the mixed state in state |ψi〉.

2.1.3 Composite systems

We now want to consider a more complex and interesting setting, in which
we are no longer interested in a single state |ψ〉 in a Hilbert space H, but in
a state in the composite system HA ⊗ HB, where ⊗ is the tensor product
between the two spaces. A vector in this composite space will be denoted as
|ψ〉AB = |ψ〉A ⊗ |ψ〉B = |ψ〉A |ψ〉B. The possibility to combine two or more
Hilbert spaces leads to one of the most useful and fascinating properties of
quantum mechanics: entaglement. In short, composite states that can be
written as the product of two states are called separable, the others are said
to be entangled. From a more intuitive point of view, quantum entanglement
of a composite system consists in having the states composing the system
related to each other and such relationship doesn’t depend on distance. Even
at the two extremes of the Universe, the two entangled states have a strong
bond: the measurement outcome of one of them simultaneously dictates the
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outcome of the other one. The most common example of entangled state is
Bell state, defined as

|ψ〉 =
|00〉+ |11〉√

2
.

Such composite state cannot be written as the product of two states: the
proof of this fact is straightforward and can be found for example in [Kopczyk, 2018].

2.2 Quantum computing

2.2.1 Qubit notation

Just as in classical computing, in which information is encoded by means
of bits, in quantum computing the unit of information is given by a qubit.
While in a classical computer a bit can only be in one of the two well-defined
states, 0 or 1, in a quantum machine qubits obey to the laws of quantum
mechanics and in particular they are governed by superposition. For this
reason, each qubit can be written as a linear combination of two basis states
|0〉 and |1〉:

α1 |0〉+ α2 |1〉 ,

where conventionally

|0〉 =

(
1
0

)
,

|1〉 =

(
0
1

)
,

and α1 and α2 are complex numbers. As we can see, the basis states are
vectors of a two dimensional Hilbert space, most often C2.

From a physical point of view, a qubit is a two-level system like the two
spin states ±1/2 of a particle, or like the horizontal and vertical polarization
of a single photon.

Moving to higher-dimensional spaces, we can write for example the gen-
eral state of two qubits as

α1 |00〉+ α2 |01〉+ α3 |10〉+ α4 |11〉 ,

i.e. as a four dimensional vector. Generalizing a bit more, a state of n qubits
is specified as a 2n− dimensional complex vector.

Going on with our classical/quantum parallel, while a classical machine
stores information as strings of bits like 01100011, a quantum computer uses
the aforementioned tensor product notation to represent the same string.
For this example, it obtains a vector with 28 = 256 components, because in
general a state for a 8 qubits system can be written as

|ψ〉 = α1 |00000000〉+ . . .+ α256 |11111111〉 .
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φ

θ

x

y

z = |0〉

−z = |1〉

|ψ〉

Figure 2.1: Representation of Bloch sphere

Therefore, in a quantum system of 8 qubits it is necessary to use 256 com-
plex numbers, while only 8 are used in a classical computer. On the other
hand, however, superposition of basis states generates an interesting prop-
erty known as quantum parallelism, which arises from the fact that each
quantum memory register can exists in a superposition of basis states. If
we dispose of n qubits in the register, we can explore all 2n possible com-
binations at once and each component of this superposition can be seen as
a single argument of a function. Therefore, applying only once a function
on the register, we get an output for each component of the superposition.
This constitutes one of the main advantages of quantum computing, which
allow to achieve an exponential speedup with respect to classical devices.

2.2.2 The Bloch sphere

We now see from a more formal point of view how qubit states are repre-
sented. It is a common convention to represent the general pure state of a
qubit as

|ψ〉 = eiγ
(

cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉
)
,

with 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π and γ ∈ R. The factor eiγ is referred to as the
global phase: states differing only in the global phase are indistinguishable
and for this reason such factor will be omitted from now on. With the
two inequality constraints, the vector can be represented as a point on the
surface of a sphere, which is called the Bloch sphere. Apart from the north
and south pole, which represent |0〉 and |1〉, all other points of the surface
of the sphere are inaccessible to classical bits, but not to pure qubits. On
the contrary, mixed states represent vectors lying inside the Bloch sphere.

It is now convenient to introduce a concept that will extensively be used
in the following: Pauli matrices, which have the property to be 2×2 unitary
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and Hermitian matrices.

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
.

Adding also the identity matrix I, we get the basis of the Hilbert space of
2× 2 complex matrices.

With this in mind, we can see that the computational basis is given by
the Z axis of the Bloch sphere or, in other words, by the eigenvectors of σz.
In fact, (

1 0
0 −1

)(
1
0

)
= 1

(
1
0

)
and (

1 0
0 −1

)(
0
1

)
= −1

(
0
1

)
.

Actually, the possible basis are in infinite number: for completeness, we
mention here also the basis formed by the eigenvectors of matrix σy, i.e.
|+i〉 and |−i〉, where

|+i〉 =
1√
2

(
1
i

)
, |−i〉 =

1√
2

(
1
−i

)
,

and the basis formed by the eigenvectors of matrix σx, namely |+〉 and |−〉.
These two states are defined as

|+〉 =
1√
2

(|0〉+ |1〉),

|−〉 =
1√
2

(|0〉 − |1〉),

and they can be derived from the application of Hadamard gate to the
elements of the computational Z-basis, as we will better see in the following
section. Figure 2.2 shows the representation of the described states on the
Bloch sphere.

2.2.3 Quantum gates

Having defined quantum bits, we now need a way to manipulate them in
order to obtain useful results. As in classical computers, also in quantum
machines we apply transformations on qubits by means of quantum gates
[Abraham Asfaw, 2020]. Maybe the greatest difference between quantum
gates and classical ones is that the former are always reversible; for this
reason, the number of input and output bits is always the same. From a
mathematical point of view, quantum gates can be represented by matrices
acting on state vectors; in particular, these matrices are unitary ones. In
the following, we will see some of the most common gates.
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φ

θ

x

y

z = |0〉

−z = |1〉

|ψ〉

|i+〉 = 1√
2

(|0〉+ i |1〉)

|i−〉 = 1√
2

(|0〉 − i |1〉)

|+〉 = 1√
2

(|0〉+ |1〉)

|−〉 = 1√
2

(|0〉 − |1〉)

Figure 2.2: Representation of Bloch sphere

NOT gate

Also called X-gate, it is represented by the Pauli matrix σx. To see the effect
of this gate, it is sufficient to apply it to the basis state vector:

σx |0〉 =

(
0 1
1 0

)(
1
0

)
=

(
0
1

)
= |1〉

and conversely

σx |1〉 =

(
0 1
1 0

)(
0
1

)
=

(
1
0

)
= |0〉 .

We can easily see that this gate simply swaps the amplitudes of states |0〉
and |1〉. Generally, the notation for this gate is the following:

X

Hadamard gate

It transforms the elements of the computational basis to a superposition of
states. The corresponding matrix is

H =
1√
2

(
1 1
1 −1

)
and we can see the effect of this gate on |0〉 and |1〉:

H |0〉 =
1√
2

(
1 1
1 −1

)(
1
0

)
=

1√
2

(
1
1

)
=

1√
2

(|0〉+ |1〉) = |+〉

and

H |1〉 =
1√
2

(
1 1
1 −1

)(
0
1

)
=

1√
2

(
1
−1

)
=

1√
2

(|0〉 − |1〉) = |−〉 .

Generally, the notation for this gate is the following:
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H

Z gate

The Z gate leaves qubit |0〉 invariant and changes the sign of |1〉; its matrix
is the Pauli Z matrix σz.

σz |0〉 =

(
1 0
0 −1

)(
1
0

)
=

(
1
0

)
= |0〉

and

σz |1〉 =

(
1 0
0 −1

)(
0
1

)
=

(
0
−1

)
= − |1〉 .

Generally, the notation for this gate is the following:

Z

RX gate

The RX gate corresponds to a rotation around the Bloch sphere x-axis of
the input qubit by a given angle. The only required parameter is indeed the
rotation angle φ. The corresponding matrix is

RX(φ) = e−iφσx/2 =

(
cos(φ/2) −i sin(φ/2)
−i sin(φ/2) cos(φ/2)

)
.

In the following, we will denote this gate with this notation:

RX

RY gate

The RY gate corresponds to a rotation of an input qubit around the y-axis
of the Bloch sphere by a given angle. The only required parameter is indeed
the rotation angle φ. The corresponding matrix is

RY (φ) = e−iφσy/2 =

(
cos(φ/2) sin(φ/2)
sin(φ/2) cos(φ/2)

)
.

We will denote this gate with the following notation:
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RY

RZ gate

The RY gate corresponds to a rotation of an input qubit around the z-axis
of the Bloch sphere by a given angle. The only required parameter is indeed
the rotation angle φ. The corresponding matrix is

RZ(φ) = e−iφσz/2 =

(
e−iφ/2 0

0 eiφ/2

)
We will denote this gate with the following notation:

RZ

CNOT gate

The complete name is Controlled-NOT gate. It takes two input bits, one
is called control qubit, the other is the target qubit. After the application
of CNOT gate, the control qubit remain unchanged, while a NOT gate is
applied on the target depending on the value of control. The matrix is

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

Let’s see how such gate modifies the vectors of the product basis {|00〉 , |01〉 , |10〉 , |11〉}:

CNOT |00〉 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




0
0
0
0

 = |00〉

CNOT |01〉 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




0
1
0
0

 = |01〉

CNOT |10〉 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




0
0
0
1

 = |11〉
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CNOT |11〉 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




0
0
1
0

 = |10〉

In a more compact way, CNOT |A,B〉 = |A,B ⊕B〉. Generally, the
notation for this gate is the following:

A CNOT gate combined with a Hadamard gate produces the already
known Bell state:

H |0〉 ⊗ |0〉 =
|0〉+ |1〉√

2
⊗ |0〉 =

|00〉+ |10〉√
2

CNOT
|00〉+ |10〉√

2
=
|00〉+ |11〉√

2
.

What we have seen is the first example of combination of gates, which ap-
plied one after the other on the |0〉 state, modify it to produce an output
vector. Such combination of gates in called quantum circuit.

H

SWAP gate

The combination of three CNOT gates creates the SWAP gate, which, lit-
erally, swaps the role of first and second qubit in a two-dimensional basis
vector:

|A,B〉 → |A,A⊕B〉 → |A⊕ (A⊕B), A⊕B〉 =

|B,A⊕B〉 → |B, (A⊕B)⊕B〉 = |B,A〉 .

Combining this gates, but also many others we omitted in this section,
it is possible to build a quantum circuit, i.e. an ordered sequence of gates
and measurements.
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We finally introduce the concept of universality in quantum circuits,
since we will use it later in this thesis. Referring to [Abraham Asfaw, 2020],
“a set of quantum gates is said to be universal if any unitary transforma-
tion of the quantum data can be efficiently approximated arbitrarily well as
sequence of gates in the set.” In simple words, it means that any unitary
operation can be written as a finite sequence of gates from this set.

2.3 Continuous variable quantum computing

2.3.1 Motivation and general ideas

Currently, quantum processors are implemented with a multiplicity of phys-
ical systems, such as photons, ions, atoms, solid state and superconductive
devices [Andersen et al., 2015], [Bromley et al., 2020]. Implementation of
fault-tolerant quantum computers is still a great challenge, because of the in-
trinsic fragility of quantum states. For this reason, the used physical systems
must be fully isolated from the external environment, by keeping the systems
at near-absolute zero temperatures or in vacuum environments. A valid al-
ternative to this approach - employed by Xanadu team [Xanadu, 2020] - is
to use photons instead of electrons to carry information and perform cal-
culations: the reason is that photons are more stable and less affected by
random noise from heat, since they have weak interactions with external
environment, thus preventing decoherence. This allows to use a set of room-
temperature operations, paving new paths to a world of more accessible
quantum computers. However, the negative side is that photons do not
interact with each other, making the implementation of two-qubit gates a
challenge [Takeda and Furusawa, 2019].

Whatever the physical implementation, quantum information process-
ing can be found in two different types, according to the observable - or
the degree of freedom - used to encode information. If the observable has
a discrete nature, meaning that its eigenvalues are discrete, we refer to dis-
crete variable computation. This is the kind of approach we focused on in
the previous section. On the contrary, if the observable has a continuous
spectrum, we talk about continuous variable computation. In this section,
we focus on the latter, since it can turn to be useful in a large number of
situations. In fact, many quantum systems are intrinsically continuous, for
example electromagnetic fields or light, to cite only some of them. This
kind of computation has at its root crucial differences with respect to the
DV one: the CV setting implies using an infinite dimensional Hilbert space,
which changes a lot the way things are seen. Despite these differences, which
will be better analyzed in the following, it is possible to embed qubit-based
computations into the CV picture, so the CV model is as powerful as its
qubit counterparts [Killoran et al., 2019b].

One way to practically implement continuous variable information pro-



CHAPTER 2. THEORETICAL CONCEPTS 18

tocols is to exploit the techniques of quantum optics. To be more precise,
information is encoded in single photons - particularly in their degrees of
freedom, such as amplitude and phase - and the state of photonic qubits can
be described in the discrete photon-number basis. An alternative approach
consists in representing the unit of information as a superposition of any
continuous real value: this implies using continuous degrees of freedom of
light, like the amplitude and phase quadratures of a field mode. Both these
approaches will be explained in more detail later. Storing information in
qumodes instead of qubits allows to carry a much larger amount of informa-
tion, since photons propagate at the speed of light and offer large bandwidth
for a high data transmission capacity [Xanadu, 2020].

An interesting and fundamental property of photons is that they sat-
isfy the Plank-Einstein relation, which expresses the photon energy E as a
function of the wave frequency f :

E = hf,

where h is the Plank constant h = 6.62606896 ∗ 10−34J · s. In contexts
where angular frequency is used, it is customary to use the reduced Planck
constant ~ = h/2π, which by convention is set in this work to 2, exactly as
in [Xanadu, 2020].

Before analyzing in a more detailed way the continuous variable formal-
ism, we can have a look to an interesting overview, highlighting the main
differences between the DV and CV approaches: Table 2.1 contains this
comparison.

CV DV

Basic element Qumodes Qubits

Relevant operators
Quadrature operators x̂,p̂

Pauli operators σ̂x, σ̂y, σ̂zMode operators â,â†

Common states
Coherent states |α〉

Pauli eigenstates |0/1〉 , |±〉 , |±i〉Squeezed states |z〉
Number states |n〉

Common gates
Rotation, Displacement,

Phase Shift, Hadamard,
Squeezing, Beamsplitter,

Cubic Phase CNOT, T Gate

Common measurements
Homodyne x̂φ,

Pauli-basis measurements
Heterodyne Q(α),

Photon-counting |n〉 〈n| |0/1〉 〈0/1| , |±〉 〈±| , |±i〉 〈±i|

Table 2.1: Comparison between CV and DV formalism, taken from
[Xanadu, 2020].

2.3.2 Formalism

To begin with such complex topic, we start analyzing some concepts from
theory of infinite dimensional vector spaces [Torre, 2017].
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A vector space is a set of vectors

V = {|α〉 , |β〉 , . . .}

with a set of scalars (a, b, . . .) equipped with an addition rule for two vectors

|α〉+ |β〉 = |γ〉 ,

such that the sum of two vectors is another vector, and a multiplication by
scalar rule

a |α〉 = |β〉 ,
such that this product generates another vector. There exists a multiplica-
tive identity element that leaves any vector unchanged when applied to it.
The addition rule is commutative and associative, and the scalar multipli-
cation is distributive over addition but also associative. Finally, there is a
zero vector, which is an additive identity, so for every vector there exists its
additive inverse vector such that they sum to zero.

Wave function space

In classical mechanics, the state of a system is completely described by a
point (x, p) representing the position and momentum. However, in quantum
mechanics it is impossible to know exactly at the same time both position
and momentum of a particle: in fact, a fundamental rule is the position-
momentum uncertainty principle, we will have the opportunity to analyze
later in this work. While position and momentum are not able to completely
describe a quantum system, the wave function ψ performs this task. The
space of wave functions can be viewed as forming a vector space, the vector
space of states. The set is the collection of all square-integrable, complex
valued functions ψ, i.e. ∫ +∞

−∞
|ψ(x)|2dx <∞.

The scalars in the wave function space will be complex numbers, while the
zero function will be ψ(x) = 0. Every vector space admits a basis, a subset
of vectors |ei〉 such that any vector can be written in a unique way as

|ψ〉 =
∑
i

ci |ei〉 ,

where ci are scalar coefficients. Focusing on the vector space of wave func-
tions, it has the property to be infinite dimensional and moreover every
square-integrable function can be expressed as a linear combination - or
superposition - of harmonic oscillatory stationary states ([Torre, 2017]):

ψ(x) =
∞∑
n=0

cnψn(x).
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Moreover, for a vector space of square-integrable, complex-valued functions
we can define the inner product as

〈ψ|φ〉 =

∫ ∞
−∞

ψ∗(x)φ(x)dx.

Let us introduce another fundamental concept we will use in the follow-
ing. An operator T on a vector space is a rule that assigns to any input
vector an output vector, denoted by T |ψ〉. We call T a linear operator if
the output vector is a linear function of the input vector, i.e.

T (a |α〉+ b |β〉) = aT |α〉+ bT |β〉 .

If the vector space is the space of square-integrable functions, then a linear
operator T is a linear method of making a new square-integrable function Tψ
from any given function ψ. Interesting examples are the position operator

x̂ψ(x) = xψ(x)

and the momentum operator

p̂ψ(x) =
~
i

d

dx
ψ(x),

which will be extensively used in the following.
Given a linear operator T , the set of all the eigenvalues of T is called its

spectrum. If it consists of a discrete set of numbers, we say that the operator
has a discrete spectrum. Instead, it is possible for some operators that
their eigenvalues form a continuum, in other words they have a continuous
spectrum. It is the case, for example, of the momentum operator p̂. If we
want to find its eigenvalues, we should solve p̂ψ = λψ: we get

λψ =
~
i

d

dx
ψ(x) → d

dx
ψ(x) =

i

~
λψ,

which is a separable first-order differential equation having as solution

ψ(x) = Ae
i
~λx.

Another example of an operator with a continuous spectrum is the position
operator. We want a function ψ(x) and a constant λ such that x̂ψ(x) =
λψ(x) ∀x. The solution turns out to be, for any choice of λ and constant
A,

ψ(x) = Aδ(x− λ).

Using Fourier analysis, we can build a delta function satisfying the above
eigenvalue equation:

δ(x− λ) =
1

2π

∫ ∞
−∞

dkeik(x−λ).
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2.3.3 Continuous variable systems

As already said, we can describe a continuous variable system as a sys-
tem whose fundamental degrees of freedom are related to operators having
continuous spectra. The eigenstates of such operators form bases for the
infinite-dimensional Hilbert space H of the system. Such a system can be
modeled as a set of non-interacting quantum harmonic oscillators with dif-
ferent frequencies; each oscillator is referred to as a mode of the system
[Adesso et al., 2014]. Then, the CV system of N modes is described by the
composite Hilbert space H = ⊗Nk=1Hk, where Hk is an infinite-dimensional
Hilbert space associated to a single mode.

Operators

The most elementary CV system is the bosonic harmonic oscillator, defined
via the canonical mode operators â and â†, named bosonic annihilation and
creation operators, which describe the creation and annihilation of energy
quanta. The operators corresponding to two separate modes, â1 and â2,
satisfy the following relations:

[â1, â
†
1] = [â2, â

†
2] = 1,

[â1, â1] = [â1, â
†
2] = [â1, â2] = [â2, â2] = 0,

or, more in general,
[âk, â

†
k′ ] = δkk′ ,

[âk, âk′ ] = [â†k, â
†
k′ ] = 0.

It is possible to equivalently describe the system in terms of the self-adjoint
quadrature operators, which depend on the creation and annihilation opera-
tors as

x̂ =

√
~
2

(â+ â†), p̂ = −i
√

~
2

(â− â†),

known as position and momentum operators, respectively. They fulfill the
canonical commutation relation

[x̂k, p̂l] = i~δkl, k, l = 1 : N

and they satisfy the eigenvector equations

x̂ |x〉x = x |x〉x , p̂ |p〉p = p |p〉p .

The previous expressions mean that |x〉x and |p〉p are the eigenstates of
operators x̂ and p̂ respectively, with eigenvalues x and p ∈ R. The eigenvec-
tors |x〉x and |p〉p represent a set of orthogonal states spanning an infinite-
dimensional Hilbert space: |x〉x forms a basis, while |p〉p is its conjugate.
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Talking about the operators, instead, p̂ is the generator of positive transla-
tions in position and −x̂ is the generator of positive translations in momen-
tum. A general pure quantum state |φ〉 of a CV system can be written as a
superposition of either |x〉x or |p〉p.

It is often convenient to work with a vector grouping together the canon-
ical operators:

R̂ = (x̂1, . . . , x̂N , p̂1, . . . , p̂N )T ,

which allows us to write in a more compact form the commutation relation:

[R̂k, R̂l] = i~Ωkl, k, l = 1 : 2N

where Ω is the N−mode symplectic form

Ω =

(
0 IN
−IN 0

)
.

Ω is therefore a 2N × 2N−dimensional matrix, real valued, invertible and
antisymmetric, for which it holds Ω−1 = ΩT = −Ω. This symplectic form
will turn to be essential to translate the description of the system from the
Hilbert space to a phase space formalism.

The spaceHk for each mode k can be spanned by the Fock basis {|n〉k}, n ∈
N of eigenstates of the number operator n̂ = â†â. Hence, the number oper-
ator n̂ satisfies the following equation

n̂ |n〉 = n |n〉 ,

where |n〉 are the eigenstates with relative eigenvalue n, and

[n̂, â†] = â†, [n̂, â] = −â.

Moreover, it holds:

â† |n〉 =
√
n+ 1 |n+ 1〉 , â |n〉 =

√
n |n− 1〉 .

It is clearer from these equations the reason why â and â† are called annihila-
tion and creation operators: they subtract and add a particle to the system.
The eigenstates of the number operator, |n〉, are called number states and
they form a discrete countable basis for the states of any single qumode.

For each mode k there exists a vacuum state |0〉k ∈ Hk, characterized
by the absence of particles, such that

âk |0〉k = 0.

Then the vacuum state for the complete system of N modes will be denoted
by |0〉 = ⊗k |0〉k ∈ H.
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An alternative to the base made of number states is the one constituted
by coherent states, which are the right-eigenstates of the annihilation op-
erator âk. Coherent states |α〉k are obtained with the application of the

single-mode Weyl displacement operator D̂k to the vacuum: |α〉k = D̂k |0〉k,
where

D̂k(α) = eαâ
†
k−α

∗âk

and the coherent amplitude α ∈ C satisfies âk |α〉k = α |α〉k. Tensor products
of coherent states for N different modes are obtained by applying the N -
mode Weyl operators D̂(ξ) to the vacuum state |0〉. We can also define the
operators D̂(ξ) in terms of the canonical operators R̂:

D̂(ξ) = eiR̂
T
Ωξ, ξ ∈ R2N .

Therefore, |ξ〉 = D̂ξ |0〉.

Phase space description

The states of a CV system are a set of positive semidefinite operators {ρ}
on the Hilbert space H = ⊗Nk=1Hk. It could be difficult to deal with infinite-
dimensional matrices: an equally complete and more convenient description
of any quantum state ρ can be provided by the s-ordered characteristic
functions

χsρ(ξ) = Tr[ρD̂(ξ)]es||ξ||
2/2, ξ ∈ R2N .

The vector ξ belongs to the real 2N− dimensional space Γ = (R2N ,Ω),
called the quantum phase space. We know from Heisenberg uncertainty
principle that in the quantum case it is not possible to describe the state
of a system in terms of a single phase space point: for this reason, phase
space regions are usually adopted to represent a particular state. The defini-
tion of the characteristic functions leads to an interesting fact: in the phase
space picture, the tensor product structure is replaced by a direct sum struc-
ture, therefore the N−mode phase space decomposes as Γ = ⊕kΓk, where
Γk = (R2, ω) is the local phase space associated with mode k. Instead, by
employing complex Fourier transform, it is possible to derive an alternative
set of descriptions of the states of a continuous variable system; it is con-
stituted by the real quasi-probability distributions W s

ρ , which are able to
completely describe such states:

W s
ρ (r) =

1

(2π)2N

∫
R2N

χsρ(ξ)e
−irΩξd2Nξ.

The 2N real arguments r of the function are the eigenvalues of the quadra-
ture operators from R̂. These distributions are referred to as quasi-probability
distributions because they sum up to unity, but they differ a bit from regu-
lar probability distributions. In particular, there could exist infinitely many
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quantum states ρ characterized by a function W s
ρ not being a regular prob-

ability distribution for some values of s, since it can present negative values
or singular points in the phase space.

Gaussian states

A Gaussian state is defined as any state whose characteristic functions and
quasi-probability distributions are Gaussian functions on the quantum phase
space Γ. A general multi-mode Gaussian function has the form

f(x) = C exp

(
−1

2
xTAx+ bTx

)
,

where A is a positive definite N ×N matrix.
Our starting point is the vacuum state |0〉. Other states can be created

by evolving the vacuum state according to

|ψ〉 = e−itH |0〉 ,

where H is a bosonic Hamiltonian (i.e., a function of the operators âi and

â†i ) and t is the evolution time. States where the Hamiltonian is at most

quadratic in the operators âi and â†i (equivalently, in x̂i and p̂i) are called
Gaussian.

Generally speaking, a Gaussian state is completely characterized by its

first and second canonical moments and nothing else. Defining
〈
Ô
〉
ρ

=

Tr[ρÔ] as the mean of operator Ô evaluated on state ρ, we can derive the
expressions of these moments. The first moments d of a state ρ are defined
as

dj =
〈
R̂j

〉
ρ

and the second moments σ are

σij =
1

2
〈∆Ri∆Rj + ∆Rj∆Ri〉 , ∆R̂ = R̂−

〈
R̂
〉
ρ
,

which form the so-called covariance matrix σ = (σij). For N -mode Gaussian
states ρ the quasi-probability function is completely characterized by d and
σ and specifically has the form

W (r) =
exp
(
−1

2(r − r̄)σ−1(r − r̄)
)

(2π)N
√

det(σ)
,

having defined r̄ =
〈
R̂
〉
ρ
.

Coherent states are instances of Gaussian states and they have the prop-
erty of being states with minimum Heisenberg uncertainty:

∆x̂k∆p̂k =
~
2
.
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Proof of this fact can be found in Appendix A. They are completely char-
acterized by their first and second moments respectively:

r̄ = 2

√
~
2

(Re(α), Im(α)) , σ =
~
2
I.

Another class of states satisfying this property is that of squeezed states:
they have unbalanced variances on the two quadratures for each modes, i.e.
when they have a large variance on position, they have a small variance on
momentum and vice-versa. The single-mode squeezing operator is defined
as

Ŝ(ζ) = exp

[
1

2
(ζ∗â2

k − ζâ
† 2
k )

]
, ζ = seiθ.

The most general Gaussian pure state |ψ〉k is the displaced squeezed state,
obtained applying on the vacuum state the displacement operator and the
squeezing operator:

|ψα,s,θ〉k = D̂k(α)Ŝk(ζ) |0〉k .

Here the parameters defining the state are the displacement vector α ∈ C,
the squeezing degree s ∈ R+ and the squeezing phase θ ∈ [0, 2π].

α

er

e−r

x

p

Figure 2.3: Simple representation of a Gaussian state for a single mode. Shape
and orientation are determined by the displacement parameter α and squeezing
parameter ζ = reiθ.

We have seen so far that despite the infinite dimension of the associated
Hilbert space, the complete description of an arbitrary Gaussian state ρ is
given by the 2N × 2N covariance matrix σ. A question we can ask at this
point is: given a 2N × 2N real symmetric matrix, how can we check that it
is a valid covariance matrix? It turns out that such matrix σ corresponds
to a Gaussian state if and only if

σ + i
~
2
Ω ≥ 0,
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where the matrix inequality is understood in the sense that the eigenvalues
of the quantity are non-negative. More in general, the previous condition
must hold for the covariance matrix of any continuous variable state, which
in the most general case can present moments of any order.

In many situations it turns out to be convenient to visualize Gaussian
states as hyperellipsoids in the phase space corresponding to all the points
within one deviation of the mean with respect to σ. For example, for
a single-mode system a Gaussian state can be seen as an ellipse in a 2-
dimensional phase space with center in (〈x̂〉 , 〈p̂〉) and with axis orientation
depending on σ [Grimmer et al., 2018].

Fock states

Fock states - or number states - are the discrete counterpart of Gaussian
states: in fact, they form a discrete countable basis for qumode systems
[Killoran et al., 2019b]. They are denoted by |n〉, where n is a non negative
integer and they are the eigenvalues of the number operator n̂. Any Gaussian
state can be expressed in the Fock basis; for example, a coherent state in
this basis will have form

|α〉 = exp

(
−|α|

2

2

) ∞∑
n=0

αn√
n!
|n〉 .

Gaussian unitaries and the symplectic group

Having defined the basic quantities that represent a Gaussian state, one
may wonder: how can we represent unitary transformations? The answer
is constituted by a map from unitary transformations on a Hilbert space to
real symplectic transformations on the first and second moments, defined as

ρ′ = ÛρÛ † →

{
d′ = Sd

σ′ = SσST
,

where S is a symplectic matrix corresponding to the action of Û on state
ρ̂. Gaussian quantum information has at its basis these symplectic transfor-
mations. The group of real symplectic matrices can be defined by

SΩST = Ω.

It can be shown that any symmetric positive-definite matrix can be writ-
ten in a diagonal form by means of a symplectic transformation. An interest-
ing use of this result consists in finding the so-called symplectic eigenvalues
of an arbitrary Gaussian state characterised by a covariance matrix σ. In
fact, the following theorem holds:
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Theorem 2.3.1 Given σ, a 2N × 2N positive definite matrix, there exists
S in the group of real symplectic matrices diagonalizing σ as

σ = S

(
ν 0
0 ν

)
ST .

Collecting the eigenvalues in a single vector ν = diag(ν1, . . . , νN ), we get
the so-called symplectic spectrum of σ. For a physical state the symplectic
eigenvalues must satisfy νk ≥ 1, k = 1 : N .

To sum up, we have constructed a new space description, alternative to
the Hilbert space description: a comparison between the latter and the new
phase space description can be seen in Table 2.2.

Property Hilbert space H Phase space Γ

Dimension ∞ 2N
Structure ⊗ ⊕

Description ρ d,σ
Validity condition ρ ≥ 0 σ + iΩ ≥ 0

Unitary operations Û : Û †Û = I S : SΩST = Ω

Spectra Û †ρÛ = diag
0 ≤ λi ≤ 1

{λj}∞j=1 STσS = diag
1 ≤ νk <∞

{(νk, νk)}∞k=1

Table 2.2: Comparison between Hilbert space description and phase space descrip-
tion.

2.3.4 Qumode-based computation

As seen in the previous sections, CV systems are characterized by modes,
which are the main information-carrying units of CV quantum computers.
Moreover, each mode is associated to the canonical mode operators â and
â†. It is sufficient to combine a certain number of modes and to modify
them with a suitable sequence of gates to obtain a general CV quantum
computation.

CV gates

Unitary operations are always linked to a generating Hamiltonian H via the
following rule:

U = exp(−itH).

The common approach is to classify each unitary by the degree of the gen-
erating Hamiltonian. We can build an N -mode unitary by applying a se-
quence of gates from a universal gate set, each gate acting only on one
or two modes. As stated in [Killoran et al., 2019b], “a CV quantum com-
puter is said to be universal if it can implement, to arbitrary precision and
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with a finite number of steps, any unitary which is polynomial in the mode
operators.” Following the above classification, unitaries will be divided in
Gaussian and non-Gaussian gates: the former are one or two-modes gates
which are quadratic in the mode operators, the latter are single-mode gates
with degree 3 or higher. We now see some of the most important gates.

• Displacement gate It is defined from the displacement operator we
introduced in the previous section:

D̂(α) = eαâ
†−α∗â.

The effect of applying this operator in a similarity transformation of
the canonical mode operators results in their displacement:

D̂†(α)âD̂(α) = â+ α,

D̂(α)âD̂†(α) = â− α.

Similarly, the action of this gate on position and momentum operators
is the following:

D̂†(α)x̂D̂(α) = x̂+
√

2~Re(α),

D̂†(α)p̂D̂(α) = p̂+
√

2~Im(α).

The pure position and momentum displacement operators are defined
as:

X(x) = D̂(x/
√

2~) = exp(−ixp̂/~), X†(x)x̂X(x) = x̂+ x,

Z(p) = D̂(ip/
√

2~) = exp(ipx̂/~), Z†(p)p̂Z(p) = p̂+ p.

X(x) displaces a state in phase space by x in position, while Z(p)
displaces a state in phase space by p in momentum. It easy to show
that the displacement operator acts in the following way on coherent
states:

D̂(α) |β〉 = |α+ β〉 .

From now on, we will denote the displacement gate with the following:

D

• Rotation gate One of the simplest gates is the rotation or phase
shift gate, defined as

R̂(φ) = eiφâ
†â.
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The application of such gate in a similarity transformation of â is

R̂†(φ)âR̂(φ) = âeiφ,

while it rotates the position and momentum quadratures to each other:

R̂†(φ)x̂R̂(φ) = x̂ cos(φ)− p̂ sin(φ),

R̂†(φ)p̂R̂(φ) = p̂ cos(φ) + x̂ sin(φ).

In words, the rotation gate rotates a state counterclockwise in phase
space by an angle φ. The phase shifting operator also shifts the phase
of the coherent state:

R̂(φ) |α〉 =
∣∣∣αeiφ〉 .

In the following, we will denote the rotation gate with:

R

• Squeezing gate This gate is defined as

Ŝ(ζ) = exp

[
1

2
(ζ∗â2 − ζâ† 2)

]
.

The application of such gate in a similarity transformation of â is

Ŝ†(ζ)âŜ(ζ) = â cosh s− â†eiφ sinh s,

Ŝ†(ζ)â† ˆS(ζ) = â† cosh s− âe−iφ sinh s,

where ζ = seiφ, r ≥ 0 and φ ∈ [0, 2π). The squeeze gate affects the
position and momentum operators as

Ŝ†(ζ)x̂φŜ(ζ) = e−sx̂φ, Ŝ†(ζ)p̂φŜ(ζ) = esp̂φ.

It squeezes the position quadrature by a factor of s, while stretching
the conjugate quadrature by 1/s. In the following, we will denote the
squeezing gate with:

S

• Beam-splitter gate For the annihilation and creation operators of
two modes, i.e. â1 and â2, the beam-splitter is defined as

B̂(θ, φ) = exp
(
θ(eiφâ1â

†
2 − e

−iφâ†1â2)
)
.
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The beam-splitter will transform the annihilation and creation opera-
tors according to

B̂†(θ, φ)â1B̂(θ, φ) = â1 cos θ − â2e
−iφ sin θ = tâ1 − r∗â2,

B̂†(θ, φ)â2B̂(θ, φ) = â2 cos θ + â1e
iφ sin θ = tâ2 + r∗â2,

having defined t = cos θ and r = eiφ sin θ, which represent the trans-
mittivity and reflectivity amplitudes of the beam-splitter. Therefore,
the beam-splitter transforms in the following way a coherent state:
B̂(θ, φ) = |α, β〉 = |α′, β′〉 where

α′ = α cos θ − βe−iφ sin θ,

β′ = β cos θ + αeiφ sin θ,

which is still a coherent state.

On the other hand, it is possible to see how the beam-splitter trans-
forms the quadrature operators:{

B̂†(θ, φ)x̂1B̂(θ, φ) = x̂1 cos θ − sin θ(x̂2 cosφ+ p̂2 sinφ)

B̂†(θ, φ)p̂1B̂(θ, φ) = p̂1 cos θ − sin θ(p̂2 cosφ− x̂2 sinφ)

{
B̂†(θ, φ)x̂2B̂(θ, φ) = x̂2 cos θ + sin θ(x̂1 cosφ− p̂1 sinφ)

B̂†(θ, φ)p̂2B̂(θ, φ) = p̂2 cos θ + sin θ(p̂1 cosφ+ x̂1 sinφ)

The beam-splitter gate is represented as

BS

• Quadratic phase gate Its definition is

P (s) = exp
(
i
s

2~
x̂2
)

and it acts on the annihilation operator as

P †(s)âP (s) = â+ i
s

2
(â+ â†).

On the other hand, we can see from

P †(s)x̂P (s) = x̂,

P †(s)p̂P (s) = p̂+ sx̂.
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that it preserves position and shears the phase space.

Its representation is

P

• Cubic phase gate It is defined as

V (γ) = exp
(
i
γ

3~
x̂3
)
.

Its action on the annihilation operator is

V̂ †(γ)âV (γ) = â+ i
γ

2
√

2/~
(â+ â†)2,

while when applied on the quadrature operators it returns

V †(γ)x̂V̂ (γ) = x̂,

V̂ †(γ)p̂V̂ (γ) = p̂+ γx̂2.

Its representation is

V

• Kerr gate The Kerr interaction is given by the Hamiltonian

H = n̂2,

which is diagonal in the Fock basis. We can therefore define the Kerr
gate as

K(κ) = exp
(
iκn̂2

)
.

It is represented by

K

We can see that the first six gates are Gaussian, since they are quadratic in
the mode operators; instead the last two are non-Gaussian. Using a suitable
combination of Displacement, Rotation, Squeezing, and Beamsplitter Gates,
it is possible to implement any multimode Gaussian gate, making these
operators sufficient for quadratic unitaries.
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CV measurements

In analogy with CV states and gates, measurements can be classified in
Gaussian and non-Gaussian. The Gaussian class consists of two continu-
ous types: homodyne and heterodyne measurements, while the central non-
Gaussian measurement is given by photon counting. The “-dyne” measure-
ments always preserve the Gaussian property of the initial state, both when
acting conditionally and unconditionally: this is why they are called Gaus-
sian [Serafini, 2017].

• Homodyne measurement Ideal homodyne detection is defined as
a projective measurement onto the eigenstates of the position opera-
tor x̂. By their nature, these states form a continuum, so homodyne
measurements are intrinsically continuous, returning real values. In
formulae, the state is projected onto the states

|xφ〉 〈xφ| ,

so the relative Hermitian operator is

x̂φ = cosφx̂+ sinφp̂. (2.2)

When this operator is measured the outcome probabilities are

p(xφ) = 〈xφ|ρ|xφ〉

where |xφ〉 is an eigenvector of x̂φ. For this reason, homodyne detec-
tion is also called quadrature detection. This means that performing
a homodyne measurement consists in rotating the state by −φ and
performing an x̂-homodyne measurement. If we have a multimode
Gaussian state and we perform a homodyne measurement on one of
the modes, the conditional state on the remaining modes stays Gaus-
sian.

Let’s see now how homodyne detection is practically performed in
optical set-ups [Tyc and Sanders, 2004]. A light field can be written
as a superposition of two quadrature oscillations:

x̂ cos(ωt) + p̂ sin(ωt),

where ω is the wave frequency. Homodyne measurement consists in
extracting the quadrature information of the field. To do so, homodyne
detection matches the input signal with a strong coherent quadrature
reference |α〉 (where α = |α|eiφ, |α| � 1) of a local oscillator: in this
way it is possible to derive photon statistics depending on the phase ϕ
of the local oscillator. The adjective “homodyne” is given by the fact
that the input field is mixed with a laser field at the same frequency.
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Figure 2.4: Homodyne detection scheme: the input state |Ψ〉 is mixed with the
coherent state |α〉 from a local oscillator and photons are counted at the two output
ports. Source: [Tyc and Sanders, 2004].

By letting ϕ vary, it is possible to derive phase dependent properties
of the signal state. In order to obtain non-classical properties of light,
it is necessary to perform a phase sensitive measurement with respect
to the quadrature (2.2).

In practice, to mix the signal fields with the local oscillator, a Beam-
Splitter is used and the two output fields are then photodetected: the
resulting statistics are analyzed to infer the quadrature statistics (See
Figure 2.4). Good results are obtained using a 50:50 Beam-Splitter -
to mix the optical signal and the coherent state - and the difference
between the two photon counts at the output port - as the output
statistics. In this case we talk about of balanced homodyne detection.
The connection between photon statistics and quadrature phase can
be proven by means of computations involving characteristic functions
or quasi probability distributions: the interested reader can find more
details in [Tyc and Sanders, 2004].

• Heterodyne measurement While the above described measurement
involves only x̂, heterodyne measurement can be considered as a si-
multaneous measurement of both the quadrature operators. Because
these operators do not commute, they cannot be simultaneously mea-
sured without some degree of uncertainty. Heterodyne measurement
consists in projecting the state onto the coherent states

1

π
|α〉 〈α| .

The outcomes of the detection are labelled by α and the outcome
probability on a state of a single mode ρ is given by

〈α|ρ|α〉
π

.
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The practical way of implementing heterodyne detection in optical set-
up is very similar to the scheme of homodyne detection, but the input
mode is mixed with the coherent state at a different frequency: from
here the adjective “heterodyne”.

• Photon counting Photon counting is a non-Gaussian projective mea-
surement given by

|ni〉 〈ni| .

It is an alternative measurement with respect to the previous two and
it brings to light the “particle-like” nature of qumodes, instead of the
“wave-like”. Excluding outcome n = 0, this kind of measurement
performed on a single mode of a multimode Gaussian state will result
in making the left modes to become non-Gaussian. For this reason,
photon-counting can be exploited to implement non-Gaussian gates.

Finally, we want to see what happens to a Gaussian state when a portion
of the system modes is measured through -dyne detections [Serafini, 2017].
Given the initial Gaussian state of a system partitioned in subsystems A
and B, with covariance matrix and first moments

σ =

(
σA σAB
σTAB σB

)
, r̄ =

(
r̄A
r̄B

)
,

let us determine the final covariance matrix and first moments of the n−mode
subsystem A given a -dyne measurement outcome on the m−mode sub-
system B. We need to evaluate the overlap between the initial state ρ of
subsystem B and the general-dyne Gaussian state with displacement vector
rm and covariance matrix σm. As stated in [Serafini, 2017], the n−mode
subsystem A will have the following first and second moments:

σA 7→ σA − σAB
1

σB + σm
σTAB,

r̄A 7→ r̄A + σAB
1

σB + σm
(rm − r̄B).

From this, we can note a couple of interesting things. First, the conditional
evolution of the second moments does not depend on the measurement out-
come. Second, if no correlations are present, i.e. if σAB = 0, the above map
reduces to the identity, meaning that measuring subsystem B will have no
effect on subsystem A if the two are not correlated.



Chapter 3

Variational circuits for
Quantum Machine Learning

3.1 Quantum Machine Learning

Machine learning is a branch of Artificial Intelligence that consists in making
a computer automatically learn from experience without being explicitly
programmed. Its purpose is that of recognising patterns and learn from
data thus providing predictions. Machine learning algorithms process a
large amount of data and perform tasks that are natural to the human
brain, like image recognition or pattern identification. The basic task in
machine learning is that of minimizing a constrained multivariate function
to obtain as a result a decision function that maps input points to output
points.

The term learning refers to three main branches of machine learning:
supervised, unsupervised and reinforcement learning [Schuld et al., 2015].
In supervised learning, a computer is given a set if input-output pairs and
has to learn a function that correctly maps a given input to an output.
An example of this is pattern classification, in which vectors of input data
have been assigned to different classes. Differently, unsupervised learning
consists in detecting patterns in data without prior knowledge of it. A
straightforward example of this kind of learning is clustering, which consists
in grouping the input objects in such a way that objects belonging to the
same cluster are more similar to each other than to those in other clusters.
Finally, reinforcement learning has the goal to determine how a software
agent should take actions in an environment of rules and goals in order to
maximize its reward. The general idea is to punish or reward the agent on
the basis of its strategy in order to teach him how to win.

35
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Figure 3.1: Number of publications containing “quantum machine learning” in the
title in the last ten years. Please take into account that information about 2020 is
obviously incomplete. Source: Google Scholar.

During latest years, researchers have started to study how performance
of machine learning algorithms can be improved by the use of quantum
computers, thus giving birth to a new branch of study: quantum machine
learning. Quantum mechanics enters in the machine learning universe and
gives birth to endless number of ways to improve machine learning algo-
rithms. However, quantum machine learning is very young, in the sense it
is not yet clear which commercial applications we can expect from it.

Nevertheless, a lot of companies have decided to invest on it and lately,
quantum machine learning, together with quantum optimization, have be-
come a hot field of research, with a large amount of work developed in this
area: Figure 3.1 shows this increment. From this fact, we can easily under-
stand there is are “positive vibrations” about this topic in scientific world.
Quantum computers are indeed very well suited for machine learning tasks,
since they handle quantum information, corresponding to vectors in high di-
mensional spaces. The use of sufficiently large and fault-tolerant computers
could actually speed-up linear algebra operations, which constitute the core
of many machine learning tasks. In fact, a very likely advantage from the in-
troduction of quantum could be computational speed: quantum computers,
even in these early stages of development, have much higher performances
than their classical counterparts in solving some kinds of problems. It is
therefore reasonable to hope that quantum machine learning could lead to
a quadratic or even exponential speedup of already existing methods. How-
ever, execution time is not the only aspect of learning algorithms: for exam-
ple, storage capacity is another field of interest. As stated in [Wittek, 2014],
the quantum Hopfield networks are capable of storing exponentially more
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Figure 3.2: Intuitive representation of hybrid-quantum mechanism, taken from
[Benedetti et al., 2019]

patterns than their classical analogues. These and many other aspects have
motivated research in this field, opening a large number of roads towards a
new era of computer science.

3.2 Parametrized quantum circuits

Parametrized quantum circuits, also known as variational circuits, are quan-
tum algorithms typically composed of fixed gates, such as CNOT gates, and
of gates depending on free and adjustable parameters, like Rotation trans-
formations. The main approach for solving machine learning problems is to
formalize such problems as variational optimization problems and use hy-
brid quantum-classical approaches to find approximate solutions. As stated
in [Benedetti et al., 2019], the hybrid approach in the most general form
consists of three components: the human, the classical computer and the
quantum computer. The task of the human is to understand the prob-
lem and to select a suitable model to represent it. Data preprocessing is
performed on the classical computer, which provides these inputs to the
quantum machine. The latter reads the processed input data, prepares the
quantum state according to the structure of the variational circuit and per-
forms a measurement. These outcomes are postprocessed by the classical
computer which updates the parameters in order to minimize a given cost
function. The adjusted parameters are then provided again to the quantum
computer in a closed loop.

We now see the three ingredients which compose a supervised learning
model based on a variational circuit:

• Preparation of the initial state, usually the zero state;
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• An encoder circuit Uφ(x) that takes the input and encodes it in the
quantum circuit;

• A variational circuit Uθ which constitutes the core of the model. It
is followed by the measurement of an observable which consists in the
estimation of expectation values.

3.2.1 Information encoding

There are several ways to encode data in a quantum circuit, all related
to kernel methods, whose main goal is to embed data into a higher di-
mensional feature space where our problem can be solved in an easier way
[Schuld and Killoran, 2019]. Given n qubits, the common approach is to
start from the product state |0〉⊗n. Then, an encoder circuit Uφ(x) is ap-
plied to the input state: this can be interpreted as a feature map

x→ Uφ(x) |0〉⊗n

to the high-dimensional Hilbert space of n qubits. Data can now be analyzed
in this feature Hilbert space. If we take the inner product of two points in
such space, we obtain a kernel function that allows to compute the distance
between data points. Different kernels correspond to different models of
pattern recognition: the technique consisting in switching between different
kernels is said to be the kernel trick which, in short, consists in changing
the data encoding.

Let us now see in a more detailed and formal way the theory behind
kernel methods and data encoding. For a generality purpose, let us consider
a classical dataset of M records and N features

D = {x(1), . . . , x(m), . . . , x(M)},

where x(m) is a N− dimensional vector from a certain input set X . Our
goal is to embed data into a quantum system of n qubits. Kernel methods
consist in using a distance measure κ(x, x′) for any input x, x′ ∈ X with
the purpose of constructing models which capture the properties of a data
distribution. Such distance measure is connected to inner products in the
so-called feature space.

Definition 3.2.1 Let F be a Hilbert space, more specifically our feature
space, and let X be the input set with x its generic entry. Then, we can
define a feature map as a map φ : X → F which maps input x to a vector
φ(x) ∈ F , which is called feature vector.

We can now introduce an additional concept, i.e. that of kernel functions.
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Definition 3.2.2 A function κ : X×X → C is said to be a kernel function if
the Gram matrix K, defined as Km,m′ = κ(xm, xm

′
), is positive semidefinite,

namely if for any finite subset {x(1), . . . , x(M)} of X and for any c1, . . . , cM ∈
C, it holds

M∑
m,m′=1

cmc
∗
m′κ(xm, xm

′
) ≥ 0.

Given these definitions, we can write the inner product of two points in
the feature space as

κ(x, x′) = 〈φ(x), φ(x′)〉F , (3.1)

which defines a kernel κ(x, x′). Therefore, if we want to encode an input x
into a feature vector |φ(x)〉 of the Hilbert space, it is sufficient to exploit the
feature map φ : X → F to derive a kernel κ from equation (3.1).

Let us go on with some further definitions.

Definition 3.2.3 Consider a Hilbert space R of functions f : X → C and
let 〈·, ·〉 be an inner product defined on R. R is said to be a Reproduc-
ing Kernel Hilbert Space (RKHS) if every point evaluation is a continuous
functional F : f → f(x) for all x ∈ X . Equivalently, there exists a function
κ : X × X → C such that

〈f, κ(x, ·)〉 = f(x),

with κ(x, ·) ∈ R and ∀f ∈ H, x ∈ X .

Considering an input map φ : X → F giving rise to a kernel κ(x, x′) =
〈φ(x), φ(x′)〉F , the corresponding RKHS has the form

Rκ = {f : X → C : f(x) = 〈u, φ(x)〉F ,∀x ∈ X , u ∈ F}.

The functions 〈u|·〉 in the RKHS associated with the feature map can be
seen as linear models for which u ∈ F defines a hyperplane in the feature
space.

A fundamental theoretical result is the following theorem.

Theorem 3.2.1 (Representer Theorem) Let κ : X × X → R a kernel,
D a dataset made of pairs (xm, ym) ∈ X ×R and f : X → R a class of model
functions in the RKHS Rκ. Moreover, assume we dispose of a cost function
C, quantifying the distance of the predicted outputs f(xm) from the targets
ym, which has a regularization term of the form g(||f ||) where g : [0,∞)→ R
is a strictly monotonically increasing function. Then any function f∗ ∈ Rκ
minimizing the cost function can be written as

f∗(x) =

M∑
m=1

αmκ(x, xm),

for some αm ∈ R.
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This theorem implies that instead of minimizing over an infinite dimensional
RKHS we can simply solve the problem of finding parameters αm of the
previous expression.

One may now wonder how to combine the explained theory of kernels
and the construction of variational circuits. The approach we follow consists
in associating a quantum Hilbert space with a feature space and derive a
kernel from the inner product of quantum states. From the previous results,
this procedure will automatically give us a RKHS on which we can apply
kernel theory. Specifically, given a feature map φ : X → F which allows
to encode an input x into a vector |φ(x)〉, it is straightforward to derive
its kernel from equation (3.1). Then, from the previous results, the derived
kernel is the reproducing kernel of the RKHS Rκ, whose functions are the
inner product

f(x;u) = 〈u|φ(x)〉 ,

with |u〉 ∈ F , which defines a linear model.
Going back to our circuit-based approach, as already stated the quantum

feature map x → |φ(x)〉 can be seen as an encoder circuit Uφ(x) acting on

the ground state |0〉⊗n:

Uφ(x) |0〉⊗n = |φ(x)〉 .

The aforementioned linear model consists in the inner product between |φ〉
and a general quantum state |u〉 ∈ F . It is therefore necessary to consider a
second circuit U for which it holds U |0〉⊗n = |u〉: it specifies the hyperplane
of a linear model in the Hilbert space. If the feature state |φ(x)〉 is orthogonal
to |u〉 then x lies on the decision boundary, if the inner product is positive,
then x lies on the left of the hyperplane and on the contrary if the product
is negative, the point is on the right of the plane.

In the following, we will use U as a variational circuit which will be
parametrized, so U = U(θ): a hybrid training of θ will learn the optimal
model |u(θ)〉 = U(θ) |0〉⊗n, or, taking into account also the encoding circuit,
U(θ)Uφ |0〉⊗n. From this state, a measurement will determine the output of
the model. Depending on the measurement, this is not necessarily a linear
model in the feature Hilbert space.

We present here some of the most common ways to encode classical infor-
mation into quantum circuits (they are taken from [Hubregtsen et al., 2020]
and [Xanadu, 2019]).

Basis encoding

It consists in encoding n binary features into a basis state of n qubits. Input
data, i.e. classical information, must be a binary string: then the embedding
is simply the bit-wise translation of classical data into the relative states in
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the quantum system. In mathematical terms, we have x(m) ∈ {0, 1}N and
our dataset can be written as a superposition of the basis states:

|D〉 =
1√
M

M∑
m=1

∣∣∣x(m)
〉
.

Taking for example a dataset withM = N = 2, with x(1) = 01 and x(2) = 10,
we have

|D〉 =
1√
2
|01〉+

1√
2
|10〉 .

The generic kernel for this encoding is the Kronecker delta

κ(x, x′) = 〈i|j〉 = δij .

Amplitude encoding

It encodes 2n features into the amplitude vector of n qubits. If the dimension
of the feature vector is smaller than the number of amplitudes, it is possible
to pad it with a constant for the missing dimensions. A vector of dimension
n will be encoded in quantum form using log2(n) qubits or, equivalently,
a classical 2n−dimensional vector is represented by the amplitudes of a n
qubit quantum state |ψx〉. The feature map x → |ψx〉 thus provides an
exponential advantage in terms of memory.

|ψx〉 =
2n∑
i=1

αi |xi〉 ,

where we have denoted with |xi〉 the i−th computational basis state and
with αi the i−th component of vector x (see also equation (2.1)).

Note that, keeping in mind the hypothesis at the basis of (2.1), the
amplitudes αi must be normalized, i.e.

∑
i |αi|2 = 1.

This type of encoding provides an advantage with respect to the previous
one, since now data can also be integer or floating point.

We now want to see what happens to our example dataset if we per-
form amplitude encoding to it. As suggested in [Xanadu, 2019], we should
concatenate all input records to obtain a single vector:

α = Cnorm{x(1)
1 , . . . , x

(1)
N , . . . , x

(M)
1 , . . . , x

(M)
N },

where Cnorm is the necessary normalization constant. The representation of
our dataset will therefore be

|D〉 =

2n∑
i=1

αi |xi〉 .
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As an example, if we want to encode the vector x = (3.3, 0.0, 1.2, 0.0) ∈
Rn, n = 4 with amplitude embedding, we should do the following. First, we
normalize it, obtaining xnorm = 1√

12.33
(3.3, 0.0, 1.2, 0.0) and then we use two

qubits to represent it as

|ψxnorm〉 =
1√

12.33
(3.3 |00〉+ 1.2 |10〉).

In this case, the kernel is linear:

κ(x, x′) = 〈ψx|ψx′〉 = xTx′.

Product encoding

Also called angle encoding, it can be constructed using a single rotation
of angle xi for each qubit and can encode n features with n qubits. For
example, xi is encoded as

|φ(xi)〉 = cos(xi) |0〉+ sin(xi) |1〉 , i = 1 : N.

This corresponds to a feature embedding circuit with the effect

Uφ : x ∈ RN →
(

cos(x1)
sin(x1)

)
⊗ . . .⊗

(
cos(xN )
sin(xN )

)
and implies a cosine kernel

κ(x, x′) =

N∏
i=1

cos
(
xi − x′i

)
.

3.2.2 The variational circuit

It is always possible to model any given problem with a parametrized quan-
tum circuit: the issue is that such circuit could be infeasible to use due to a
too large number of qubits or to an excessive depth. The aim of the study
and construction of variational circuits is to get a circuit with suitable depth
and with a feasible number of parameters.

The variational circuit Uθ takes as input the set of free parameters θ
together with a set of fixed parameters: all of these enter in the circuit
as the gates arguments. This allows to convert classical information into
quantum information Uθ |0〉. Then, after the circuit processing, quantum
data is again converted to classical data thanks to the evaluation of the
expectation value of an observable B̂:

fi(x;θ) =
〈
B̂
〉

= 〈0|U(x;θ)†B̂U(x;θ)|0〉 .
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In Figure 3.3 we can see the structure of a variational circuit in its en-
tirety as described above. First the zero state is prepared and, after this,
an encoder circuit is applied. The concatenation of the encoder and the
following model circuit allows to convert our data into quantum informa-
tion. Finally, a measurement is performed, returning a classical result which
contributes to the update of circuit parameters, which are provided again
to the quantum component, generating a loop.

encoding model

|0〉

|0〉

|0〉

|0〉

A(x) B(θ)

Figure 3.3: Schematic representation of a variational circuit in its most general
form.

3.2.3 Circuit learning

As already seen, parametrized quantum circuits are used to solve data-driven
tasks. The goal is to learn a given function and this problem is mathemat-
ically summarized by the task of minimizing a cost function C(Θ), which
represents our objective function, with respect to the parameters Θ. The
set Θ includes both the free parameters θ and the input x. The problem
of updating these parameters while minimizing the objective function is not
a trivial one and can be addressed in different ways. In the next section,
we present a Python library for quantum optimization which facilitates the
task of hybrid optimization of variational circuits.

3.3 PennyLane

PennyLane is a hardware-friendly Python 3 library designed for quantum
optimization, automatic differentiation and machine learning, which allows
to perform hybrid quantum-classical computations [Bergholm et al., 2018].
Moreover, it is the first library for quantum machine learning, taking advan-
tage of quantum hardware to calculate gradients and perform tasks such as
machine learning and optimization. In fact, using PennyLane it is possible
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to run machine learning algorithms directly on available quantum hardware
platform, such as IBM Q.

3.3.1 Parametrized quantum circuits in PennyLane

Consider again the setting of the previous section, in which we have a
parametrized quantum circuit having as arguments Θ. Our task is to min-
imize a predefined cost function C(Θ), which quantifies the quality of our
solution, using the already explained hybrid quantum-classical approach. In
general, we can imagine quantum and classical ingredients as classical and
quantum nodes. These nodes are combined together according to the struc-
ture of a Directed Acyclic Graph (DAG), meaning that information flows
from one node to its successors, with no possibility of incurring in loops.
Each node may involve a number of input and output variables represented
by the incoming and outgoing edges. Apart from this basic rule, the way
gates are arranged, i.e. the circuit architecture, is arbitrary.

In PennyLane, a quantum node is the encapsulation of a function f(x;θ)
that is executed on a quantum device, which can be quantum hardware or
a classical simulator.

PennyLane is able to automatically compute gradients of each node and
therefore it can compute the derivative of the final node with respect to
the input variables. Each node in the variational circuit can depend on ad-
justable parameters θ and can receive an input x from the previous nodes;
finally it produces an output f(x;θ). Going through the circuit, information
about derivatives is accumulated following the rules of automatic differen-
tiation: in this way it is possible to compute the gradient of the objective
function in order to minimize it using a gradient descent approach. In a nut-
shell, automatic differentiation is the ability for software to automatically
compute derivatives of code with respect to free parameters. It is common
to implement automatic differentiation by means of the backpropagation al-
gorithm, which relies on the chain rule from calculus: in the next section we
are going to see how it works in a more detailed way.

3.3.2 Gradient computation

PennyLane grounds its optimization on the gradient-descent algorithm and
its variants. In order to approach the minimum of the objective function, at
every step the single variables µ in Θ are updated according to the following
rule:

Algorithm 1 Gradient descent step

1: procedure GRADIENT-DESCENT STEP
2: for µ ∈ Θ do
3: µ(t+1) = µ(t) − η(t)∂µC(Θ)
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η(t) is the learning rate and can be adapted at each step t. The compu-
tation of the partial derivative ∂µC(Θ) is necessary to compute the gradient
of the cost function with respect to all variables Θ, ∇ΘC(Θ). This com-
putation is done by means of automatic differentiation techniques, such as
backpropagation, a classical algorithm which has been adapted to the case
in which computations are done in presence of quantum nodes.

There are three ways to compute derivatives of quantum nodes: analyt-
ical, numerical, or device-provided. By default, PennyLane uses the device
or analytical derivatives whenever it can.

Analytical derivatives

The idea of this approach is based on the fact that the gradient of a quan-
tum function f(θ) can often be expressed as a linear combination of other
quantum functions, which use the same circuit and differ only in a small
shift of the argument:

Figure 3.4: Visual representation of the fact that the gradient of a quantum cir-
cuit can be decomposed in a linear combination of quantum circuit functions from
[Xanadu, 2019].

Denoting with f(x;θ) = f(µ) the output of a quantum node, we have

∂µf(µ) = c(f(µ+ s)− f(µ− s)),

where c, s are parameters typical for each kind of gate. This is called the
parameter shift differentiation rule and gives exact gradients. We should
note that it is different from finite differences: first, the shift s is usually
a macroscopic shift, while in a finite difference method the increment is
infinitesimal; second, the parameter shift formula gives exact derivatives,
while the finite difference method only provides an approximation.

Let’s now see in a more detailed way the mathematical computations be-
hind this rule. The unitary transformation of our circuit can be decomposed
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into the product of unitaries:

U(x;θ) = UN (θN )UN−1(θN−1) . . . Ui(θi) . . . U1(θ1)U0(x),

where x is the input and θ are the parameters.
We can focus for a first moment on the case we have only two gates,

Ui(θi) and U0(x). Then, the quantum circuit function will be

f(x; θi) =
〈
B̂
〉

= 〈0|U †0(x)U †i (θi)B̂Ui(θi)U0(x)|0〉 = 〈x|U †i (θi)B̂Ui(θi)|x〉 .

Setting U †i (θi)B̂Ui(θi) =Mθi(B̂), we can compute the gradient of the quan-
tum circuit function as

∇θif(x; θi) = 〈x|∇θiMθi(B̂)|x〉 .

In many cases we can express this gradient as a linear combination of the
same transformation M, but with different parameters:

∇θiMθi(B̂) = c(Mθi+s(B̂)−Mθi−s(B̂)),

where c, s are parameters depending on the transformation M and not on
the θi.

To complete our study, let us see what happens if we consider the case
in which we have many gates. We can absorb any gate applied before i as

|ψi−1〉 = Ui−1(θi−1) . . . U1(θ1)U0(x) |0〉

and any gate applied after i as

B̂i+1 = U †i+1(θi+1) . . . U †N (θN )B̂UN (θN ) . . . Ui+1(θi+1)

thus obtaining

f(x; θi) = 〈ψi−1|U †i (θi)B̂i+1Ui(θi)|ψi−1〉 = 〈ψi−1|M(B̂i+1)|ψi−1〉 .

Therefore, the gradient will be

∇θif(x; θi) = 〈ψi−1|∇θiMθi |ψi−1〉 ,

which is the same as the simpler case, replacing |x〉 with |ψi−1〉 and B̂ with
B̂i+1. This means that in order to compute the gradient with respect to
parameter i, it is sufficient to leave all other gates as they are and to modify
only U(θi).
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Numerical derivatives

Using this approach, the partial derivative estimation is computed by evalu-
ating the output node f(µ) at several values which are close to µ. Therefore,
the approximation of the derivative will be

∂µf(µ) ≈ f(µ+ ∆µ)− f(µ)

∆µ

if we use a forward finite-differences method and

∂µf(µ) ≈ f(µ+ 0.5∆µ)− f(µ− 0.5∆µ)

∆µ

if we use a centered finite-differences method.

Device derivatives

In this approach, we query the device for derivatives, if they are known. This
clearly constitutes a speedup with respect to the previous methods, since
information required to compute derivatives is already stored and reused
from the forward circuit evaluation.





Chapter 4

Applications and
experiments

4.1 Applications of continuous variable formalism

In this section we study in a more detailed way some of the most interest-
ing employments of continuous variable formalism of quantum mechanics to
the fields of Machine Learning and Mathematics. In particular, our goal
is to understand in which fields and in which ways the continuous variable
model can improve already existing classical or quantum discrete variable
algorithms. The general idea is quite simple and intuitive: continuous vari-
ables offer a significant improvement, with respect to the discrete case, in
those cases in which continuous quantities are involved. Discretizing such
quantities can lead to lower performances and information loss: the use of a
continuous model helps to avoid these drawbacks and allows to write more
suitable and efficient models.

The first four applications are taken from the literature; in particular,
sections 4.1.1 and 4.1.2 only present two examples of applications, but we
did not try to implement these algorithms and to reproduce the presented
results. Sections 4.1.3 and 4.1.4, instead, represent a step further, since we
tried to implement the algorithms presented in the reference papers and
we report here the obtained results. Finally, next section, 4.2, presents an
independent study focused on an application of continuous variable quantum
neural networks to the problem of time series forecasting.

4.1.1 Monte Carlo integration

Integration is one of those fields which the CV formalism suits best, since
discretization could affect its performance in a negative way. In particular,
following the paper [Rebentrost et al., 2018], we focus on a CV version of
quantum Monte Carlo integration for the evaluation of single and multi-

49
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dimensional integrals. As stated in the cited paper, under some conditions,
this algorithm can provide quadratic speedups with respect to the classical
case.

Let us first see a brief overview of Monte Carlo integration. Assume we
are given a n−dimensional function g(x) : Rn → R, whose integral over a
region R of Rn will be

I =

∫
R
dxg(x).

In most cases the evaluation of this integral is hard and it could be a good
idea to opt for MC sampling to find an approximate solution. In particular,
the basic idea is to represent the integral as an expected value:

I =

∫
Rn
dxp(x)f(x),

where f(x) : Rn → R is an arbitrary function describing a random variable
of the outcomes and p(x) : Rn → R is a multidimensional probability dis-
tribution. Therefore, our integral can be approximated with MC using NC

samples as

I ≈ Ĩ =
1

NC

N∑
i=1

f(xi),

where xi ∼ p(x). The probability to have an error greater than ε is given by

P(|I − Ĩ| ≥ ε) ≤ σ2

NCε2
,

where σ2 denotes the variance of p(x). Hence, in order to have a constant
error probability it is enough to choose NC = O(σ2/ε2).

The proposed CV quantum Monte Carlo algorithm allows a quadratic
speedup with respect to the classical one in terms of the number of steps: it
is enough to pick NC = O(1/ε). The high level description of the algorithm
can be seen in Figure 4.1, representing the circuit used to implement QMC.
The procedure consists of two stages:

• The first stage prepares the first mode using a unitary G such that its
position wavefunction matches

√
p(x). The second and third modes

are squeezed in the position eigenbasis as much as possible and then
H imprints f(x) using the CV analog of a controlled rotation. The
probability of performing a successful postselection on these two modes
then gives the integral. This step does not provide a speedup with
respect to the classical analog: on the contrary, the CV version of
amplitude estimation used in the next stage allows to achieve better
results.
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• The second stage is to perform a CV version of amplitude estimation.
Multiple applications of the three-mode unitary Q amplifies the ampli-
tude corresponding to the projection. Adding a squeezed ancilla mode
and instead applying the controlled unitary Qc imprints the integral
into the final mode. Measuring the final mode in the position eigenba-
sis then gives the integral as an expectation value. The total number
of applications of Qc can be O(1/ε) for an approximation error ε.

Figure 4.1: Quantum circuit diagram for one dimensional integration using CV
QMC. Source: [Rebentrost et al., 2018].

The presented algorithm has evident advantages over its discrete counter-
part, since it allows to perform multidimensional integration using a fixed
number of modes, in contrast with the discrete case, which requires dis-
cretization and the use of a number of qubits that increases with the desired
accuracy. However, some requirements must be satisfied for the algorithm
to work:

• The function f(x) must be bounded, i.e. 0 ≤ f(x) ≤ 1 for all x;

• There exists a polynomial h(x) which is related to the function f(x)
via f(x) = 1/|h(x)|2 with pointwise error at most εh on a compact
set. Outside of the set, the integral is vanishingly small;

• There exists a unitary G that allows to efficiently prepare a quantum
state which encodes

√
p(x) in its amplitudes;

• An efficient continuous-variable gate sequence related to the polyno-
mial function h(x) can be constructed;

• A reflection around the computational initial state and the state defin-
ing the projective measurement can be efficiently implemented.
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4.1.2 Gaussian process regression

Another interesting field in which the continuous variable formalism provides
good results is that of Gaussian process regression. In [Das et al., 2018], the
authors claim that the CV version of this model can provide an exponential
speedup, thus reducing in a sensible way the computational time. The
setting is that of supervised learning, in particular regression: the goal is to
predict a continuous output, given an input training dataset.

As a general idea, Gaussian process regression is a Bayesian approach to
regression: assuming a linear relation y = f(x) + ε (where x is the input
vector, f is the function value, y is the observed target value and ε is a
bias), we start specifying a prior distribution P (f). Then, the posterior
distribution can be easily derived from the Bayes formula

P (f |y, X) =
P (y|X, f)P (f)

p(y|X)

and includes both the information about the prior distribution and the
dataset. In the following section, we see in a more detailed and formal
way the mentioned concepts.

Classical Gaussian process regression

Let’s start with a given dataset D = {xi, yi} of N d−dimensional inputs xi
and scalar outputs yi. We assume also that the outputs are noisy, i.e.:

yi = f(xi) + ε,

where f is the latent function and ε ∼ N (0, σ2) (i.i.d. Gaussian noise). A
Gaussian process is a collection of random variables, any number of which
have a joint Gaussian distribution [Rasmussen and Williams, 2016]. It is
completely characterized by its mean and covariance function (also called
kernel), which for a real process f(x) is defined by

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))],

where m(x) is the mean function of f(x). We can denote the process as

f(x) ∼ GP(m(x), k(x,x′)).

In the context of regression, our purpose is to predict the distribution of
f∗ = f(x∗) of a given new test point x∗, .

Exploiting some nice properties of the normal distribution, we are able
to write the joint distribution of the target values and the function value in
the test point:(

y
f∗

)
∼ N (0,K), K =

(
k(x,x) + σ2I k(x,x∗)
k(x∗,x) k(x∗,x∗)

)
,
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where, without loss of generality, we have set the mean vector to zero.
Now, using again the properties of multivariate normal distribution we

are able to write the conditional probability

P (f∗|y) ∼ N (f̄∗,Σ∗),

where
f̄∗ = k(x∗,x)[k(x,x) + σ2I]−1y

Σ∗ = k(x∗,x∗)− k(x∗,x)[k(x,x) + σ2I]−1k(x,x∗).

Therefore, in order to predict the distribution of f∗, it is sufficient to compute
the mean f̄∗ and the variance Σ∗.

Quantum Gaussian process regression

In order to efficiently compute the mean f̄∗ and the variance Σ∗, the authors
follow a process based on a quantum SVD algorithm for non-sparse low rank
matrices. Therefore, let’s start outlining the main steps of this method.

• Assume that N = 2n and call K = k(x,x) + σ2I ∈ RN×N .

• Encode K as K̂ =

(
K

I

)
.

• To access K̂, build a one-sparse Hermitian matrix H having only one
non-vanishing element in each row: this can be approximated by a
matrix H̃, having only even integers as entries.

• H̃ can be decomposed as the sum of matrices having eigenvalues ±1,
encoding efficiently a good approximation to all the information in the
matrix K̂.

• Next, we need to prepare states containing encodings of |y〉 and |k∗〉,
where k∗ = k(x,x∗). This can be achieved by applying a series of
rotations to the vacuum state |0 . . . 0〉.

The routine to compute mean and variance is inspired by the algorithm
above. First, our input state can be written in terms of the states |y〉 and
|k∗〉 defined in the last bullet point. To this we append two CV resource
modes in a squeezed state with squeezing parameter ξ, which should be

kept as small as possible. Next, we apply the unitary eiγ
K̂
4N

N̂pRp̃R , where
N̂ = I−Z

2 and γ is a parameter that can be adjusted at will. The next steps
are a bit technical and we will not focus on them in this work, but it is
worth to mention that, repeating the entire process M times, the error is

ε . γ2

M2ξ4
||K̂||2. We choose a small enough squeezing parameter and a large

enough γ in such a way the error is ε, i.e. γ ∼ ξ2

ε . Forcing the parameters
ξ and γ to be in the specified range simplifies the computation of the mean
and the variance.
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4.1.3 Neural networks

Classical neural networks

Neural networks are one of the most successful models in Machine Learning
and they are used for many tasks, such as regression and classification, to
cite only a couple of them. The typical structure of a neural network can
be seen in Figure 4.2, showing in particular a feedforward net.

Input #1

Input #2

Input #3

Input #4

Output #1

Output #2

Hidden
layer

Input layer
Output

layer

Figure 4.2: General structure of a neural network

The network begins with an input layer of real-valued neurons, which
feed forward onto a series of one or more hidden layers. If the n neurons
at one layer are represented by vector x ∈ Rn, then the m neurons in the
subsequent layer are

L(x) = ϕ(Wx+ b),

where W ∈ Rm×n is the weight matrix, b ∈ Rm is the bias vector and ϕ
is a non-linear activation function. Finally, the output layer performs an
affine transformation on the last hidden layer and this time the activation
function can be linear, or nonlinear, for example a function such as softmax.

Generally, both the weight matrix and the bias vector are characterized
by free parameters θW and θb, while the activation function contains no free
parameters and acts element-wise on its inputs. Each layer will have its
own set of parameters: collecting all the parameters in vector θ, an N -layer
neural network model is given by

y = fθ(x) = LN ◦ . . . ◦ L1(x)

and maps an input x to a final output y.
All these things are made possible by some universality results, which

assure that, given a sufficient number of free parameters, any continuous
function on a closed and bounded subset of Rn can be approximated by



CHAPTER 4. APPLICATIONS AND EXPERIMENTS 55

feedforward neural networks to an arbitrary degree of accuracy. This is a
fundamental result proving the power of neural networks, but it says nothing
about how to find the approximation of our function and how much this
procedure is efficient. In order to adjust the network parameters so that it
fits the input data, it is customary to use variations of the gradient descent
algorithm on a cost function characterizing the similarity between outputs
of the neural network and training data.

Quantum neural networks in CV framework

In their paper [Killoran et al., 2019a], the authors propose a CV version
of the described neural network, claiming it provides several advantages
over the discrete-variable model. The most prominent one is that the CV
model naturally fits the continuous, or analog, nature of neural networks.
Moreover, it is able to easily apply non-linear transformations using the
phase space picture, a task which qubit-based models struggle with.

In analogy with the classical case, we can define the concept of universal-
ity in the CV model, which is defined as the ability to approximate arbitrary
transformations of the form

UH = exp(−itH),

where the generator H = H(x̂, p̂) is a polynomial function of (x̂, p̂), the
position and momentum operators. As the reader should remember from
section 2.3.4, a set of gates is universal if it can be used to build any UH
through a polynomial-depth quantum circuit. Any circuit of this kind is
composed of Gaussian transformations and non-Gaussian transformations
(like the Kerr gate or the cubic phase gate) which correspond to non-linear
functions in the phase space. More specifically, the universal gate set must
contain Rotations, Displacements, Squeezing and Beam-Splitter transforma-
tions, combined with any non-Gaussian gate.

The scheme for quantum neural networks is based on two main con-
cepts: first, the structure of classical networks, which have proven to be
very efficient in a high number of situations, and second the variational cir-
cuit, which is one of the preferred ways to approach quantum algorithms on
near-term quantum devices.

A general CV quantum neural network is built up as a sequence of layers,
where each layer contains every gate from the universal gate set. In partic-
ular, a layer L consists of the successive gate sequence shown in Figure 4.3:

L = Φ ◦ D ◦ U2 ◦ S ◦ U1, (4.1)

where:

• Ui(θ,ϕ) are generalN−port linear inferometers containing beam-splitters
and rotations;
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. . . . . . . . .

U1(θ1,φ1)

S(ζ1)

U2(θ2,φ2)

D(α1) Φ(λ1)

S(ζ2) D(α2) Φ(λ2)

S(ζN ) D(αN ) Φ(λN )

Figure 4.3: General structure for a single layer L of a CV neural network. The first
four components carry out an affine transformation, followed by a final nonlinear
transformation.

• D = ⊗Ni=1D̂(αi) is a collection of displacement operators, each acting
independently on each mode;

• S = ⊗Ni=1Ŝ(si) is a collection of squeezing operators, in analogy with
the previous bullet point;

• Φ = Φ(λ) is some non-Gaussian gate.

The collection of gate variables (θ,ϕ, r,α,λ) represents the free param-
eters of the network.

The expression (4.1) describes a unitary affine transformation on N
qumodes; the application of a non-Gaussian gate Φ has a double effect,
namely adding a non-linearity term and the achievement of universality.
Using z = (x,p), we can write an expression for a single layer,

L(z) = Φ(Mz +α),

which reminds the expression of a layer of the classical feedforward network.
This architecture can also receive classical inputs: to do this, it is suf-

ficient to replace some of the free parameters with input data. Finally, the
output of the network can be obtained by performing measurements and/or
computing expectation values.

Having seen a high level description of both classical and quantum neural
network structures, it is interesting to see how our quantum layer can embed
the transformation L(x) = ϕ(Wx + b) characterizing the classical layer.
First of all, we need to encode classical data, in the form of aN− dimensional
vector, into position eigenstates as

x↔ |x〉 = |x1〉 ⊗ . . .⊗ |xN 〉 .

With our purpose in mind, i.e. performing the transformation L(x) =
ϕ(Wx + b), we can start focusing only on Wx + b. In particular, we
can write the singular value decomposition of the weight matrix, namely
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W = O2ΣO1, with O1 and O2 orthogonal matrices and Σ positive diagonal.
This transformation can be carried out by a pair of inferometers, together
with a squeezing gate. The required inferometers are characterized by only
phaseless beam-splitters and are employed to perform the orthogonal trans-
formations:

Uk(θk,0) |x〉 = |Okx〉 .

On the other hand, the squeezing transformation has the task of reproducing
the effect of the positive diagonal matrix Σ = diag({si}Ni=1):

⊗Ni=1S(ζi) |x〉 ∝ |Σx〉 ,

with ζi = log(si). Finally, the displacement transformation has the role of
adding the bias vector b = {αi}Ni=1, αi ∈ R:

⊗Ni=1D(αi) |x〉 = |x+ b〉 .

Hence, the “inner part” of our transformation is given by the sequence of
CV gates D ◦ U2 ◦ S ◦ U1; what’s missing is the non linear function ϕ. The
latter can be achieved thanks to a certain type of non-Gaussian gates (see
[Killoran et al., 2019a] for details) acting on each qumode:

⊗Ni=1Φ(λi) |x〉 = |ϕ(x)〉 .

Therefore, we have seen how transformation (4.1) represents the classical
neural network layer on position eigenstates.

A fundamental property of quantum physics, which, as already stated,
contributes to make quantum devices so advantageous, is that we can act not
only on some fixed basis states, e.g., the states |x〉, but also on superpositions
of them, |ψ〉 =

∫
ψ(x) |x〉 dx, where ψ(x) is a multimode wavefunction. The

general CV neural network provides a greater improvement with respect to
its classical counterpart since it takes advantage of the power of universal
quantum computation. For this reason, in general we expect that a CV
quantum NN cannot be easily and efficiently simulated on a classical com-
puter: as stated in [Killoran et al., 2019a], for many applications a classical
device would require an exponential number of resources to approximate the
quantum net.

On the other hand, it is interesting to remark that a classical neural
network can be embedded into the quantum formalism. In fact, the quantum
version can be used to run the classical version, by using the former in such
a way it does not generate any quantum behaviour, such as entanglement
or superposition.

Training of continuous variable quantum neural networks can be per-
formed following two different approaches: through classical simulation or
directly on quantum hardware. Classical simulation consists in evaluat-
ing the cost functions and the gradients with respect to the parameters of
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each layer. However, as the size of the network grows, this task becomes
less tractable: for this reason, direct evaluation on hardware will likely be
necessary for large scale networks. The PennyLane library provides tools
for training hybrid quantum-classical machine learning models, using both
simulators and real-world quantum hardware.

An application to function fitting

One of the most straightforward and simple applications of neural nets is
the problem of curve fitting: in this paragraph we will focus on the imple-
mentation of a CV quantum neural network to reproduce the action of a
simple function f(x) on a one-dimensional input vector x. The employed
network is the one described in the previous section, but since the input
vector is real valued, only one qumode is needed, thus simplifying a lot the
structure. A single layer of the resulting network is therefore the following:

D R S R K

Figure 4.4: Single layer of the CV QNN for function fitting.

First of all, input data x is encoded in our circuit by means of the ap-
plication of the displacement gate D̂(x) on the vacuum state |0〉. Then, the
resulting state is fed forward the core of the algorithm, i.e. the variational
circuit above characterized by free parameters to be trained. Finally, we
measure the expectation value of the position operator x̂, which is desirably
very near, or even equal, to the value of f(x). For this reason, we define a
loss function as the mean squared error between the circuit output and the
target function values: we aim to minimize this function, since in the ideal
case there is exact correspondence between predicted and actual values and
the loss is 0. However, it turns out to be convenient to minimize a cost func-
tion constituted by the loss defined above plus a penalty term. The latter
is needed when performing numerical simulations of quantum circuits, since
each qumode is truncated to a given cutoff dimension in the Fock space.
During training it is possible that some gate parameters grow excessively,
thus pushing the output state outside the given Fock space. For this reason,
we penalize such unnormalized states having trace different from one. In
this way, during training the loss function is kept as much as possible near
to zero, while checking that the state trace is one.

Figure 4.5 shows the result of this algorithm for the fitting of function
f(x) = x3. The training was done for 1000 epochs on a 6 layers circuit, built
as in Figure 4.3; since the system is constituted by a single mode, the two
inferometers simply reduce to a Rotation gate. The optimization algorithm
which turned out to perform best in this setting is Adam (see Appendix B
for a description of this procedure) and the minimum attained loss is equal
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(a) Loss (b) Plot

Figure 4.5: Loss function and plot for the function f(x) = x3 on [−1,+1] domain.
The red circles represent training data, while the blue crosses the predictions.

to 0.002.

4.1.4 Variational classifiers

In this section we extend and further explore some of the concepts we in-
troduced in Section 3.2 as found in [Schuld and Killoran, 2019] and see an
application to a real problem. In particular, we will see how a parametrized
quantum circuit can be employed for an elementary classification task in the
continuous variable framework, thus becoming a CV variational classifier.
Given a simple dataset, we want our machine to learn the structure of data
and predict the correct label of each point.

As the reader should remember, the basic idea for building a variational
circuit is very similar to that of kernel methods: we define a feature map
φ : X → F from the input space to the higher dimensional Hilbert space F
where points in X can be classified in an easier way. The use of the feature
map implies the definition of a kernel, which measures the distance between
points in the feature space: each kernel is related to a different information
encoding approach. Such data embedding method from X to the feature
Hilbert space can be written as a state preparation circuit Uφ(x) acting
on the vacuum state. It is then followed by the so-called model circuit,
U(θ), which contains both non-parametrized and parametrized gates, thus
resulting in the following transformation:

U(θ)Uφ |0〉⊗n .

The final step consists in some measurement of the resulting state, which,
in the case of variational classifiers, can represent either the final class label
(0/1 or -1/1) or the probability of measuring such outcomes. In order to
make the circuit learn the structure of our input data it is necessary to define
a cost function which quantifies the difference between the expected output
and the predicted one. The set of circuit parameters are updated at each
training iteration in order to approach the minimum of the cost function and
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the final choice of these parameters provides a set of labels (or probabilities)
which is hopefully as close as possible to the real ones.

In the remaining part of this section, we will see two different experiments
exploiting the feature map: the first one consists in deriving a kernel from
its definition and using it in a classical classification algorithm. On the
other hand, the second experiment uses the feature map - in particular the
squeezing feature map - as an information encoding tool in a variational
circuit.

A classical classifier with squeezing feature map

In this paragraph we are going to see how a classification problem can be
solved using a classical approach, namely a Support Vector Classifier, while
using a custom kernel deriving from a quantum feature map.

Let us start by defining a squeezed vacuum state:

|z〉 =
1√

cosh r

∞∑
n=0

√
(2n)!

2nn!
(−eiϕ tanh r)n |2n〉 ,

where {|n〉} is the Fock basis and z = reiϕ is the complex squeezing factor.
It is convenient to use the notation |z〉 = |(r, ϕ)〉 and to define a feature map
from R to the Fock space as x → |(c, x)〉, where c represents the strength
of squeezing. The resulting feature map is called the squeezing feature map
with phase encoding and its corresponding kernel is

κ(x,x′; c) =
N∏
i=1

〈
(c, xi)|(c, x′i)

〉
,

where 〈
(c, xi)|(c, x′i)

〉
=

√
sech c sech c

1− ei(x′i−xi) tanh c tanh c
. (4.2)

This kernel is easy to compute on a classical computer: for this reason, we
can use it in our Support Vector Classification algorithm.

The problem we want to solve is that of binary classification of points
from the moons dataset of sklearn ([Pedregosa et al., 2011]). The training
of the algorithm was performed using SVC with a custom kernel implement-
ing equation (4.2). As stated and proven in [Schuld and Killoran, 2019], the
squeezing feature map makes data linearly separable in the Fock space, so we
are able to obtain a perfect fit on training data. Further experiments were
performed also using other popular kernel already implemented in sklearn,
but only the rbf one was able to provide satisfying results. Figure 4.6 shows
the outcomes of the experiments.
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Figure 4.6: Overview of classification results on moons dataset using SVC with 4
different kernels.

A CV quantum variational classifier

It is now the moment to see how the already seen feature map can be
combined with a parametrized circuit with continuous variable gates to build
a CV variational classifier with the purpose of classifying a bi-dimensional
dataset. The used encoding function is the already introduced squeezing
feature map: we therefore start with two vacuum modes |0〉⊗|0〉 and we map
the input point x = (x1, x2) to a quantum state |(c,x)〉 = |c, x1〉⊗ |c, x2〉 by
squeezing each of the quantum modes. The model circuit shown in Figure
4.7 is then applied on the resulting quantum state: it is constituted by
a sequence of a Beam-Splitter, Displacement, Quadratic and Cubic Phase
gates.

BS(θ1, θ2)

D(θ3) P (θ5) V (θ7)

D(θ4) P (θ6) V (θ8)

Figure 4.7: Model circuit of the variational classifier with Beam-Splitter (BS),
Displacement (D), Quadratic (P) and Cubic (V) Phase gates.

Finally, the output of our continuous variable model will be the proba-
bility p(n1, n2) of measuring a certain Fock state |n1, n2〉. The authors of
the paper preferred to measure instead the probabilities p(n1 = 2, n2 = 0)
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and p(n1 = 0, n2 = 2) thus obtaining vector (o0, o1). This array can then be
normalized

1

o0 + o1

(
o0

o1

)
=

(
p(y = 0)
p(y = 1)

)
,

to obtain the probabilities to predict class 0 and 1 respectively.
We built a 4-layers structure obtained from the repetition of the circuit

of Figure 4.7 and defined a square loss function to measure the distance
between the actual class label and the probability of measuring the positive
class:

L =
1

N

N∑
i=1

(yi − p(y = 1))2,

where yi is the real class label.
We tested our algorithm on two different datasets, sklearn’s moons and

a bi-dimensional dataset constituted of two overlapping “blobs”. By varying
the cutoff dimension of the Fock space, the squeezing strength parameter
c, the optimization algorithm, the number of epochs and the gate initial
parameters, we obtain different results, which can be more or less satisfying.

• Moons dataset: The best results (i.e. minimum loss equal to 0.096)
were obtained with the following choice of parameters:

cutoff c optimizer n epochs init params

7 1 Adagrad 2000 Theta1

Table 4.1: Hyperparameters and optimizer for the Moons dataset

Figure 4.8 shows in its first row the obtained results for this dataset.
4.8a shows on the same figure both training and validation loss: they
are approximately equal and both converging, so we can safely state
that we are not overfitting nor underfitting. On the other hand, in 4.8b
we can see our dataset representation, together with some shaded areas
representing the probability of predicting the positive class.

• Blobs dataset: Good results were obtained using the following com-
bination of parameters:

cutoff c optimizer n epochs init params

7 1 Adagrad 2000 Theta1

Table 4.2: Hyperparameters and optimizer for the Blobs dataset

The minimum attained error in this case is equal to 0.099. The second
row of Figure 4.8 shows the results for this dataset: as before, training
and validation loss functions (4.8c) are very close to each other, which
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(a) Loss for Moons (b) Decision boundary for Moons

(c) Loss for Blobs (d) Decision boundary for Blobs

Figure 4.8: Overview of the CV variational classifier results for moons dataset
(first row) and blobs dataset (second row). Both datasets have a test fraction of
0.25.

is an indicator of a satisfying result. In 4.8d we see our dataset together
with some shaded areas representing the probabilities of predicting
class 1.

Above we defined
Theta1 = (0.05*np.random.rand(n layers,2,4),0.05*np.random.rand())

and the interested reader can find some notes about Adagrad optimizer in
Appendix B.

4.2 CV quantum neural networks for time series
forecasting

This section presents a detailed analysis on a time series dataset, with the
goal of forecasting. We will take two different approaches, one based on
feedforward neural networks (FFNN), the other based on recurrent networks
(RNN) and for both of them we will make a comparison between a classi-
cal setting and a quantum one. While theoretical concepts about FFNNs
has already been presented in the previous part, we give here a theoretical
overview about RNNs, in order to deeply understand how they work and
why they are so useful for time series prediction.
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(a) Humidity (b) Mean pressure

(c) Wind speed (d) Mean temperature

Figure 4.9: Plot of features and target in our dataset, obtained from merging
training and test sets and after cleaning data.

4.2.1 Dataset

The chosen dataset, [Weather Underground API, 2019], is a quite simple one
in which, given three features - mean pressure, wind speed and humidity -
we want to fulfill the task of temperature prediction in the city of Delhi,
India. From an exploratory analysis, we can see data have a daily frequency
and the involved time period ranges from 1st January 2013 to 24th April
2017; furthermore, the provided dataset is split in a training set with 1461
observations and a test set with 114 rows.

After data cleaning, a plot of the given features and target shows fore-
seeable patterns in data, in particular a strong seasonal component due to
the nature of our dataset. In Figure 4.9 we can see these patterns, together
with a strong negative correlation between target and mean pressure: this
correlation turns out to be equal to −0.88.

4.2.2 FeedForward networks

Quantum version

The first experiment regards the quantum version of a FFNN, built in a
similar fashion as in the relative theoretical part. The difference is that this
time we do not employ it to fit a curve, but to predict the value of Mean
temperature, using the other three features. As a consequence, the employed
layer will present three qumodes and it will have the following structure:
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U1(θ1,φ1)

S(ζ1)

U2(θ2,φ2)

D(α1) K(κ1)

S(ζ2) D(α2) K(κ2)

S(ζ3) D(α3) K(κ3)

Figure 4.10: General structure for a single layer L of our 3-modes CV neural
network.

First, normalized data are encoded in the quantum circuit by means
of Displacement embedding: qumode i is displaced by quantity xi, i =
1, 2, 3, where each xi represents one of the features. Then, layer of Figure
4.10 is applied a suitable number of times: the depth of the circuit is a
hyperparameter of our model and it represents a tradeoff between better
results (higher depth) and low computational time (low depth). In fact,
stacking different layers one after the other increases the number of trainable
parameters: this results in longer computational times. Our choice fell upon
2. Finally, a measurement is performed on one of the wires; since the circuit
structure is symmetric, none of them is preferred. The measured quantity
is the expectation value of the position operator x̂, i.e. a single scalar.

The most convenient choice of Loss function is given by the mean squared
error between the measured value, representing the prediction of Mean tem-
perature, and the actual value of the target variable. In order to prevent
overfitting, it turns out to be convenient to add to the Loss function a L2-
regularization term, defined as

η ∗ 0.5 ∗ wTw,

where η is the regularization strength and w is a vector obtained from the
concatenation of input parameters of active gates, namely Squeezing, Dis-
placement and Kerr, which can change the energy of the system.

After training our model for a suitable number of steps, we obtain the
optimal set of parameters, providing the prediction shown in Figure 4.11
with a mean squared error of 7.73.

Classical version

It is now interesting to see how the classical counterpart of the above quan-
tum neural network performs on the same data. Again, we normalize input
data to have range in [0, 1] and feed them into a structure built with Ten-
sorFlow [Abadi et al., 2015] in such a way it resembles the quantum FFNN
as much as possible. In particular, since the quantum version has three
qumodes and a depth of two, we build a net constituted by two Dense Lay-
ers, with three neurons each, followed by a single neuron with a sigmoid
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(a) Loss (b) Plot

Figure 4.11: Figure on the left shows both training and validation loss for the
quantum FFNN. In the picture on the right we see real and predicted values on
test set.

Input #1

Input #2

Input #3

Output #1

Hidden
layer
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Output

layer

Figure 4.12: Graphical representation of the employed classical neural network,
obtained from the concatenation of three Dense layers.

activation function, in order to output only one value in the [0, 1] interval
(Figure 4.12).

The described model is quite simple and, fortunately, it returns results
which are similar to the ones obtained in the quantum version. In particular,
the obtained mean squared error is equal to 7.88 and we can see in Figure
4.13 training and validation loss plot and forecast vs. actual values.

4.2.3 LSTM networks

Traditional neural networks, like the feedforward NN introduced and em-
ployed above, are not able to identify a pattern in data having a temporal
dependence, like in the case of time series data. Recurrent neural networks
[Olah, 2015] come to our aid in these cases: they are networks with loops
inside and are built in such a way they are able to remember data structures
over time. Actually, they do not differ a lot from a standard neural network,
since the loops can be unfolded and the resulting net has as many layers as
are the input data points: in this way information is propagated though
time (see Figure 4.14 for a better understanding).

Theoretically, this kind of neural network is able to learn both short-term
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(a) Loss (b) Plot

Figure 4.13: Figure on the left shows both training and validation loss for the
classical FFNN. In the picture on the right we see real and predicted values on test
set.

A A A A=A

h0

x0

h1

x1

h2

x2

ht

xt

ht

xt . . .

. . .

Figure 4.14: Simple scheme of a Recurrent Neural Network. The core of the
network, A, takes as input a value xt and returns ht as output.
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and long-term dependencies; unfortunately, in practical settings the latter is
not always guaranteed. Furthermore, recurrent neural networks are affected
by the problem of vanishing gradient [Arbel, 2018], which makes the algo-
rithm stagnate and not further improve. For these reasons, while handling
time series data, it is convenient to use a particular type of RNN, namely a
Long Short Term Memory (LSTM) net. A LSTM network is quite similar to
the one already presented, but, while each repeating module of a RNN has
a very simple structure, the one of a LSTM is quite complex: Figure 4.15
shows how each layer of such network is built. Information flows from left to
right and each module receives two inputs from the previous one, ct−1 and
ht−1, together with xt, which represents our input data. Symmetrically, it
provides ct and ht to the following layer and outputs yt, which, in the case
of time series forecasting, represents the predicted data point.

We now see in a detailed manner each of its components and the role
they play in handling information.

σ σ Tanh σ

× +

× ×

Tanh

ct−1

Cell

ht−1

Hidden

xtInput

ct

Cell

ht

Hidden

ytOutput

ft

it

C̃t

ot

Figure 4.15: LSTM internal structure

Cell state

We start with the horizontal line crossing the layer in its entirety: it is
called the cell state and it is responsible for handling long-term memory
information. For this reason, it has a minimal interaction with the rest
of the components, namely some linear transformations. The cell state is
shown in Figure 4.16.
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Figure 4.16: Cell state

Forget gate layer

The first task our layer performs is to determine which information retain
and which throw away. This is done by taking as input a concatenation
of ht−1 and xt, performing on them a linear transformation and applying
on the result a sigmoid function. This kind of function returns an output
between 0 and 1, which represents how much of the previous information
we want to retain: 0 means we completely throw away it, while 1 we keep
it entirely. This is the reason why it is called forget gate layer. The output
of this operation is ft:

ft = σ(Wf · [ht−1, xt] + bf ),

which is also shown in Figure 4.17.
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Figure 4.17: Forget gate layer
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Input and Tanh layer

This part has the task to determine which new information has to be stored
in the cell state. It is composed of two parts, the first is a sigmoid layer,
known as input gate layer, with the aim to decide which value we update;
the second is a Tanh layer, whose output will be combined with that of the
previous part to later update the cell state. The two performed operations
are

it = σ(Wi[ht−1, xt] + bi)

C̃t = Tanh(Wc[ht−1, xt] + bc).

Figure 4.18 highlights the involved part of the layer.

σ σ Tanh σ

× +

× ×

Tanh

ct−1

Cell

ht−1

Hidden

xtInput

ct

Cell

ht

Hidden

ytOutput

ft

it

C̃t

ot

Figure 4.18: Input and Tanh layer

Cell state update

The next step consists in updating the cell state that will be provided to
the next layer (Figure 4.19). The performed operation is quite simple:

Ct = ft ∗ Ct−1 + it ∗ C̃t,

which, in words, means that we forget information from the previous state
with the multiplication by ft and we add the new information by summing
the second factor.
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Figure 4.19: Cell state update

Output layer

The final part consists in determining what to output. Referring to Figure
4.20, the highlighted sigmoid layer decides what fraction of the cell state we
will output and returns ot. Then, the cell state passes through Tanh and it
is multiplied by ot:

ot = σ(Wo[ht−1, xt] + bo),

ht = ot ∗ Tanh(Ct).

This provides ht, which will be inputted to the next layer as a short-term
memory component. If necessary, the prediction yt can be obtained from ht
with a final linear transformation:

yt = Wv · ht + bv.
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Figure 4.20: Output layer
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Quantum part

This part is devoted to the presentation of the results of our experiments
involving LSTM nets plus a quantum component. The quantum part enters
in the model as a KerasLayer, a class from PennyLane, which is a useful
tool to transform a quantum node into a Layer of Keras library. Therefore,
it is simply necessary to define a convenient quantum circuit and then use
it as a layer of Keras Model or Sequential classes to build more complex
models. In particular, the employed quantum circuit is chosen to be very
similar to the one described in the previous section, with three qumodes,
a Displacement embedding and one layer of quantum neural network; the
three measurements are once again the expectation values of the position
operator x̂.

|0〉

|0〉

|0〉

D(x1)

U1(θ1,φ1)

S(ζ1)

U2(θ2,φ2)

D(α1) K(κ1)

D(x2) S(ζ2) D(α2) K(κ2)

D(x3) S(ζ3) D(α3) K(κ3)

Figure 4.21: Complete quantum circuit to be embedded inside a Keras Layer.

Exploiting this layer, we can build a sequential model stacking a LSTM
layer with three neurons, our quantum layer and finally a Dense layer with a
single neuron and a sigmoid activation function. This structure is chosen in
such a way to be as similar as possible to the feedforward network presented
above.

Keras LSTM requires input data to have a specific input structure, so,
besides normalizing our input, it is necessary to reshape data to have shape
[Samples, Timesteps, Features].

• Samples represents the number of sequences we use;

• Timesteps is the number of obervations for each sample;

• Features stands for the number of input units.

Here we choose timesteps=2, since it provides the most satisfying results.
After training our model, we get the optimal set of weights which we

use to compute the predictions on the test set. The reference metric is as
usual the mean squared error, which in this case is 8.45; Figure 4.22 shows
instead the training and validation loss plots and the predicted values vs.
the original ones.
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(a) Loss (b) Plot

Figure 4.22: Figure on the left shows both training and validation loss for the
quantum version of LSTM model. In the picture on the right we see real and
predicted values on test set.

(a) Loss (b) Plot

Figure 4.23: Figure on the left shows both training and validation loss for the
classical version of LSTM model. In the picture on the right we see real and
predicted values on test set.

Classical part

With the purpose of building a classical model to be compared to the pre-
vious one, we normalize and reshape data in the already described way in
order to provide them as input to the LSTM net. The resulting model sub-
stitutes the quantum layer with a simple Dense layer, therefore the resulting
network presents a first LSTM with three neurons, a Dense layer with the
same number of units and a final layer with a sigmoid activation function.

Results are satisfying, since the mean squared error is this time equal to
7.76; the plot of loss and predictions can be seen in Figure 4.23.

4.2.4 Conclusions and final considerations

To conclude, it is convenient to see in a tabular form the results we exten-
sively commented above: in particular, we report the value of mean squared
error for each experiment.
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Classical Quantum

FFNN 7.88 7.73

LSTM 7.76 8.45

Table 4.3: Tabular summary of the main results of our experiments on time series
data. The table shows the value of mean squared error in each single case.

From the point of view of performance error, the four models provide
comparable results, which might suggest that choosing a quantum or classi-
cal approach is totally indifferent. Actually, this is not so true, since all the
experiments involving a quantum component took a lot more time than their
classical counterpart. This is due to the fact that we need to simulate three
qumodes, which of course takes time: in particular the model involving the
KerasLayer was quite slow and this is the reason why we trained the model
- and the corresponding classical one - for a lower number of iterations.
This remark is somehow a confirmation of a concept we already presented
in the introductory part of this thesis: quantum machine learning is a quite
new research field and researches are still working in order to understand
in which fields using a quantum component could benefit the most. Going
on making experiments and studies in this field is definitely worth it, since
we can only imagine what amazing results we could reach in the very next
years.

We now want to rethink of our work and try to analyze it in a critical
way, in order to find some aspects to be improved and to detect some starting
points for possible further research studies.

• An interesting point from which to start could consist in analyzing in a
deeper way the impact the choice of some hyperparameters may have
on our model. In particular, focusing for example on the quantum
FFNN, we could run our model with different values for the circuit
depth while keeping track of mean squared error. We can try to fore-
see the results, i.e. we will probably see a reduction of the error as the
number of layers increases, until a saturation point in which we would
see no more improvement. This point will indicate the optimal number
of layers, which in this case would be derived from more reliable ob-
servations with respect to our approach which was based on trial and
error. This example could obviously apply to other hyperparameters
and to other experiments, leading not only to more accurate results,
but also to a more interesting analysis of our model.

• Another way our four experiments could be improved may consist in
employing a rolling window to produce a more reliable forecast. In fact,
what we have done is to use the training set as it is and to directly
predict the values in our test set. With a rolling window approach,
instead, we would predict only one step at a time and each time we
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would add the next point to our training set. The size of the window
could be constant or not, depending on what turns out to be more
convenient, and the downside is that we would have an additional
hyperparameter, namely the window size.

• An interesting alternative to the LSTM network with a quantum com-
ponent could be represented by the following model. It consists in
building a quantum neural network in the way we have already seen,
this time with some input wires devoted to receiving input data and
the others to take the input from the previous layers:

|ht−1〉

L

|ht〉

|xt〉 |yt〉

Figure 4.24: General structure for a single layer L of a hypothetical quantum
recurrent network, as suggested in [Killoran et al., 2019a].

This structure, however, could be quite difficult to implement for some
reasons: the first is that it would be necessary to increment the num-
ber of employed wires, thus leading to a higher computational time.
Secondly, it would require to use a circuit with a number of layers equal
to the number of input rows: also this would increment the number of
trainable parameters an consequently the computational time. Last,
we should note that the internal structure of each layer is not so ob-
vious and using the standard neural network could not provide the
hoped results: probably, a deeper study of the layer structure would
be necessary.





Chapter 5

Conclusions

We started describing quantum computers and giving an overview of the
main properties in quantum mechanics, which contribute to making quan-
tum devices so unique and advantageous. We have introduced the concept
of quantum supremacy and we have stressed the fact that this kind of ma-
chines are not meant to outperform their classical counterparts in every
aspect. This leads to the description of the main fields researchers agree
will benefit the most from the introduction of quantum devices, like for ex-
ample machine learning, which constitutes the focus of this work. We have
then seen how the period we are now living can be addressed as NISQ era,
since current devices have a small number of qubits and are characterized
by inherent noise. We therefore remarked how hardware implementation is
nowadays a challenge and, to conclude the introductory part, we have briefly
analyzed how quantum computers could impact on our lives in the future
and what the main challenges will be.

For the theoretical part, we started introducing the concepts of state of
a system and of observables, presenting them by means of a rigorous mathe-
matical formalism. We have seen that states can be represented as elements
of a finite Hilbert space and that they can be written as a superposition of
states: the coefficients of this linear combination contribute to determining
the output state we get after a measurement. Similarly, we introduced the
concept of observable, which can be written as a matrix acting on a quan-
tum state: this matrix is Hermitian and the measurement will always make
the state collapse onto an eigenvector of the observable, while the result of
such operation will be represented by the corresponding eigenvalue. The
eigenvalues are always real and the eigenvectors of the observables form an
orthonormal basis for the Hilbert space. After this, we have defined a qubit
as a two-level system (like the spin up or down of an electron), representing
the quantum counterpart of a classical bit. We have seen how qubits can be
represented on the Bloch sphere and we have introduced the Pauli matrices,
which constitute the most common observables in this context. Finally, we
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described some of the most used gates, which are unitary matrices acting on
qubits and manipulating them: differently from their classical counterparts,
quantum gates are always reversible and have the same number of input and
output bits. Besides, we introduced the concept of circuit, obtained from
the combination of a certain number of gates.

Next to this, we have briefly seen how current hardware implementations
of quantum devices could be improved by using photons instead of electrons
to carry information: this leads to the definition of photonic quantum com-
puters, which can work at room temperatures, since photons are less affected
by noise with respect to electrons. Quantum optical computers are very well
suited to work adopting a continuous variable (CV) formalism, which op-
poses to the already described one, usually addressed as the discrete variable
(DV) formalism. The main differences are that the involved Hilbert spaces
are now infinite dimensional and the operators have continuous spectra: the
continuous component is provided by this aspect. We have explained the
elements at the basis of this formalism, namely qumodes (which are the con-
tinuous counterpart of qubits), states, operators, transformations and the
phase space description. Furthermore, we have remarked how the contin-
uous variable formalism, though less present in literature, can turn to be
convenient in certain situations in which continuous quantities are involved:
using the DV formalism would require to discretize the involved variables,
thus leading to information loss and worse performances. The goal of this
thesis was indeed to analyze some situations in which this kind of formalism
is more convenient with respect to the discrete one.

After this theoretical introduction, we have explained in a more detailed
way quantum machine learning and remarked the fact that it is not so clear
which benefits could emerge from the introduction of a quantum component
into machine learning field. We then introduced the concept of quantum
parametrized or variational circuit, which are currently the preferred way
to solve machine learning tasks. Such circuits are composed of the initial
preparation of the state, an encoder part to insert input data into the circuit
and a model component constituting the core of the circuit and formed by
gates whose arguments are the trainable parameters. Finally, a measure-
ment is performed, thus returning a classical quantity, which will be used by
a classical machine to update the trainable weights with the goal of minimiz-
ing a given objective function. This helps us to understand how quantum
and classical computers can work in synergy in a hybrid quantum-classical
approach. We then presented the most common information encoding tech-
niques, together with their pros and cons. Furthermore, we have seen how
quantum variational circuits - and in particular their encoding component -
have a strong bond with kernel methods, of which we presented the math-
ematical theory in a formal way. Next to this, we began describing Penny-
Lane, a library for automatic differentiation, quantum machine learning and
optimization over hybrid quantum-classical computations. In particular, we
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have analyzed how PennyLane computes gradients and how it handles quan-
tum circuits.

In the final chapter, we presented some examples in which quantum ma-
chine learning is exploited together with the continuous variable formalism to
solve different kind of problems. We start with two examples taken from the
literature, Monte Carlo Integration and Gaussian process regression: these
two have only been inserted and briefly described, but we did no attempt in
reproducing the results in the papers. They are followed by other two exam-
ples taken from literature, Variational classifiers and Neural networks: this
time we tried to implement the algorithms described in the reference articles
and we presented and commented the obtained results. The last part of this
section is devoted to an application of continuous variable quantum Neural
nets, employed for time series forecasting. This application was developed in
a more detailed way with respect to the previous ones and it constitutes the
core of its chapter. Two different kinds of quantum neural networks were
employed, feedforward and recurrent, while a classical parallel was done in
both cases. We gathered and commented all the results and, moreover, we
provided some starting points for further researches.

The obtained results encourage us to keep exploring the field of quantum
machine learning, since a lot is already to be discovered. They also high-
light some limitations of current quantum devices and simulators, especially
the reduced number of qumodes it is possible to simulate, but we can be
confident we will see a lot of improvements in the very next years.





Appendix A

Proof of minimum
uncertainty for coherent
states

Let us use this space to prove that a coherent state has minimum uncertainty,
as promised in Section 2.3.3. The following computations are inspired by
some remarks taken from [Anlage, 2016]. For convenience, we remind the
definition of quadrature operators
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2
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and we remark that for a coherent state it holds
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Basically, in the previous computations we have used the fact that if
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Appendix B

Adam optimizer

Adam optimization is an effective algorithm which can be used instead of
Stochastic Gradient Descent to update the weights of a neural network.
In order to have a better insight of this, it is convenient to have a look
to the Gradient Descent algorithm, its Stochastic version and to Adagrad
algorithm. The main references for this topic are [Kingma and Ba, 2014]
and [Xanadu, 2019].

B.0.1 Gradient Descent optimization

Given the following optimization problem, in which we aim to minimize a
function in the n− dimensional space Rn,

min f(x), x ∈ Rn,

the Gradient Descent algorithm starts from a random solution x0 and up-
dates it at every step t as

x(t+1) = x(t) − η∇f(x(t)),

where η is a suitable step-size. This method relies on the fact that for a
given function f(x) the maximum descent direction from a certain point x̃
is provided by the opposite of the gradient in that point, −∇f(x̃).

The Gradient descent algorithm, though simple and intuitive, presents
some drawbacks:

• Computing the gradient can be expensive and inefficient in some sit-
uations especially when dealing with large datasets: the stochastic
version of this procedure helps to overcome this issue.

• The choice of a suitable step-size is not so obvious: this problem should
be tackled using a line search method.

• When the problem is not well-conditioned, the level curves can turn
to be too elliptical in shape, thus resulting in a “zig-zag” path towards
the solution, which interferes with convergence.
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B.0.2 Stochastic Gradient Descent optimization

A valid alternative to the previous method is provided by its stochastic vari-
ant. In fact, the Stochastic Gradient Descent algorithm consists in replacing
the descent direction ∇f(x̃) with g(t)(x(t)), where {g(t)(x)} is a sequence of
random variables such that

E(g(t)(x)) = ∇f(x̃).

Stochastic Gradient Descent algorithm is usually preferred to the vanilla
version for a lot of reasons; to mention only some of them, g(t)(x) is usually
easier to compute than the actual gradient and randomness helps to avoid
being stuck in local optima. Numerical experiments show that this algorithm
performs better than Gradient Descent and for this reason it is often used.

B.0.3 Adagrad optimization

Adagrad stands for ADAptive GRADient algorithm and it is characterized
by the choice of adjusting the learning rate for each individual parameter
based on past gradients. Parameters update is therefore done component-
wise:

x
(t+1)
i = x

(t)
i − η

(t+1)
i ∂xif(x(t)),

where we have obviously replaced the gradient with a partial derivative. The
learning rate at iteration t is given by

η
(t+1)
i =

ηinit√
a

(t+1)
i + ε

, a
(t+1)
i =

t∑
k=1

(∂xif(x(k)))2.

One of the main drawbacks of this algorithm is the squared derivative ac-
cumulation at denominator: each addend is positive, so the denominator
keeps growing at each step t. As a result, the learning rate becomes increas-
ingly small and there is the possibility that the algorithm stagnates with no
possibility of improving.

B.0.4 Adam optimization

One of the limits of Stochastic Gradient Descent is that the step-size (or
learning rate) is maintained constant during training. A valid and more effi-
cient alternative is Adam optimization, which takes its name from ADAptive
Moment estimation. Numerical experiments have shown that Adam is often
more efficient than other stochastic methods ([Kingma and Ba, 2014]).

In contrast with Stochastic Gradient Descent version, Adam uses a step-
dependent learning rate, a first moment a and a second moment b, thus
resulting in the following update rule:

x(t+1) = x(t) − η(t+1) a(t+1)

√
b(t+1) + ε

.
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Here ε is used to avoid division by 0 and the step-dependent parameters are
updated as:

a(t+1) =
β1a

(t) + (1− β1)∇f(x(t))

1− β1
,

b(t+1) =
β2b

(t) + (1− β2)(∇f(x(t)))�2

1− β2
,

η(t+1) = η(t)

√
1− β2

1− β1
.

(∇f(x(t)))�2 denotes the element-wise square operation, meaning that each
element in the gradient is multiplied by itself. Initially the first and second
moments are 0.
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