

MASTER DEGREE THESIS
MASTER’S DEGREE IN COMMUNICATIONS AND COMPUTER

NETWORKS ENGINEERING

Fast and scalable routing in large telecommunication
networks

POLITECNICO DI TORINO

Author:
Youkabed Sadri
248219

Supervisor:
Dr. Andrea BIANCO

Co-supervisor:
Dr. Cristina ROTTONDI

JULY, 2020

A thesis submitted in fulfillment of the requirements for the

Master’s degree in Communications and Computer Networks Engineering

Written in

Telecommunication Networks Group
Department of Electronics and Telecommunications

Politecnico di Torino

i

Abstract

Fast and scalable routing in large telecommunication networks

Computing the shortest path between nodes in a graph is the cornerstone of many graph
algorithms and applications. In many real-world problems such as routing in the network,
finding the shortest path is critical. It is also a constrained problem of optimization which has
been studied in recent years.

Typically, Traditional methods such as Dijkstra or breadth-first-search (BFS) can deliver a
good solution in most cases. However, such heuristic algorithms do not satisfy the scalability
and with the problem scale increasing, these approaches are inefficient and can take
considerable time. Hence, the methods must be found to allow scalable graph processing with
significant speed. In this thesis, we proposed a machine learning based method using the
message passing algorithm to find the shortest path between nodes in the large
telecommunication networks. Also, we show that the suggested algorithm has linear runtime
complexity which provides reasonable time for finding the shortest path in a very large network
graph.

KEYWORDS: Shortest Path Problem, Machine Learning, Graph Embedding, Graph

networks, Message Passing.

ii

iii

Acknowledgements

I would like to thank those who with their guidance and advice have patiently helped and
guided me throughout all stages of this research. My deepest appreciation goes to my
supervisors, Prof. Andrea Bianco and Dr. Cristina Rottondi, for their support and motivation.
I am thankful for your helpful comments and advices during my work.

Last but not least, I would like to express my deepest gratitude to the most valuable person in
my life. My husband, Neman, who have always been there to support me in my life. This work
is dedicated to my family.

iv

v

List of Contents

Abstract ... i

Acknowledgements ... iii

Introduction .. 1

1.1 Outline of thesis ... 2

Related works... 3

2.1 Shortest path .. 3

2.1.1 Dijkstra algorithm .. 4

2.2 ML-based Methods for finding the shortest path in the network graph 4

2.2.1. Shortest Path Distance using Deep learning .. 4

2.2.2 Auto Computed Neural Network (ACNN) for Shortest Path Problem 6

Complexity ... 8

2.2.3. Stochastic Shortest Path-based Q-learning (SSPQL) .. 8

Q-learning .. 8

Integrating SSP-finding method with Q-learning .. 9

Computational complexity ... 10

2.3 Comparison to related work .. 10

Background .. 13

3.1 Machine Learning ... 13

3.1.1 Types of Machine Learning tasks .. 13

3.2 Shortest Path Problem ... 14

3.3 Graph neural network (GNN) ... 14

3.3.1 Graph network (GN) block .. 15

3.3.2 Message-Passing Neural Network (MPNN) .. 17

Machine Learning Framework for Routing in Telecommunication Network 20

4.1 Network Routing Workflow (Train Phase).. 20

4.1.1 Graph Generation ... 21

4.1.2 Input graph feature vector .. 21

vi

4.1.3 Target graph feature vector .. 22

4.1.4 Training Model .. 22

4.1.5 Core .. 24

4.1.6 ML output .. 24

4.1.7 Loss Computation and optimization .. 25

4.2 Network Routing Workflow (Test Phase) ... 25

4.2.1 Check mechanism .. 26

4.2.2 Path recovery ... 28

4.3 Performance Assessment... 29

4.4 Complexity analysis ... 30

4.4.1 Node Embedding Complexity.. 30

4.4.2 Edge Embedding Complexity .. 31

4.4.3 Encoder / Decoder Complexity .. 31

4.4.4 Core Complexity .. 31

4.4.5 ML framework Complexity ... 32

Numerical Assessment ... 34

5.1 dataset Generation ... 34

5.2 Determination of hyper-parameters... 34

5.2.1 Change the Learning Rate .. 35

5.2.2 Change the Message Passing Steps.. 35

5.2.3 Change the Number of Neurons .. 36

5.2.4 Change the Number of Layers ... 36

5.2.5 Using an Adaptive Learning Rate .. 37

5.3 Results ... 38

5.3.1 Experiment (1) ... 39

5.3.3 Experiment (3) ... 43

5.3.4 Complexity Evaluation .. 45

Conclusion ... 49

vii

List of Figures

Figure 1. Neuron model of ACNN [5]. .. 6

Figure 2. ACNN topology for SP problem. (a) A weighted digraph: it shows nodes and
weighted edges. (b) The ACNN model for the graph's SP problem, the squares with
" ∑ " inside are the summers on the corresponding links [5]. ... 7

Figure 3. An example of shortest path finding [6]. .. 9

Figure 4. Updates in the GN block. Blue represents the item being updated, and black indicates
other elements involved in the updating [7]. ... 16

Figure 5. Message-passing for 4 nodes in the graph in tow steps of time [11]. 18

Figure 6. Workflow for network routing (Train Phase). .. 21

Figure 7. Proposed algorithm generated graph in [12]. (right) Geographic graph with separate
nodes, (middle) minimum spanning tree, and (left) graph combined. 21

Figure 8. (Right graph) The original graph, (Middle graph) the routed path graph, (Left
graph) the labeled graph... 22

Figure 9. Workflow for Training Model. ... 23

Figure 10. Encoder scheme. ... 23

Figure 11. A fully connected MLP with two layers and 32 neurons in each layers 23

Figure 12. Core scheme. .. 24

Figure 13. Example of node labeling. .. 25

Figure 14. Workflow for network routing (Test Phase). ... 26

Figure 15. Nodes 3 and 4 are labeled incorrectly, But the path has been obtained. 26

Figure 16. detecting path with node labels or edge lables. (large nodes are solution labeled
nodes, thicker edges are solution labeled edges) ... 28

Figure 17. path recovery scheme. .. 29

Figure 18. Neural network scheme. ... 30

Figure 19. Neural network. .. 32

Figure 20. Testing graphs statistics. ... 39

Figure 21. Performance (CTR) of the ML framework for experiment (1-Ⅰ). 40

Figure 22. Performance (STR) of the ML framework for experiment (1-Ⅰ). 40

Figure 23. Performance (CTR) of ML framework for experiment (1-Ⅱ) 40

Figure 24. Performance (STR) of ML framework for experiment (1-Ⅱ)................................. 41

Figure 25. Testing graphs statistics. ... 41

Figure 26. Performance (CTR) of ML framework for experiment (2-Ⅰ) 42

Figure 27.Performance (STR) of ML framework for experiment (2-Ⅰ) 42

Figure 28. Performance (CTR) of ML framework for experiment (2-Ⅱ) 43

Figure 29.Performance (STR) of ML framework for experiment (2-Ⅱ).................................. 43

Figure 30. Performance (CTR) of ML framework for experiment (3-Ⅰ) 44

viii

Figure 31. Performance (STR) of ML framework for experiment (3-Ⅰ) 44

Figure 32. Performance (CTR) of ML framework for experiment (3-Ⅱ) 45

Figure 33. Performance (STR) of ML framework for experiment (3-Ⅱ)................................. 45

Figure 34. Comparison of algorithm's runtime complexity presented in theory and practice. 46

Figure 35. Comparison of Dijkstra's runtime complexity in theory and practice. 46

Figure 36. Comparison of the proposed algorithm complexity with the Dijkstra algorithm
complexity.. 47

Figure 37.To see the intersection of the two graphs and the better performance of the proposed
algorithm, we zoom Figure 36. .. 47

ix

List of Tables

Table 1. Selecting Binary operator correspond to the 𝑖𝑡ℎ part of ∅. .. 5

Table 2. Comparing Ml_based algorithms for finding shortest path. 10

Table 3. node labels in the example graph ... 22

Table 4: Change the Learning Rate ... 35

Table 5: Change the message passing steps ... 36

Table 6: Change the number of neurons .. 36

Table 7: Change the number of neurons in 3 layers .. 36

Table 8: Change the number of layers ... 37

Table 9: Fixed and Adaptive LR with 2 - 3 hidden layers and 16 neurons. 37

Table 10: Fixed and Adaptive LR with 2 - 3 hidden layers and 32 neurons. 37

Table 11: Fixed and Adaptive LR with 2 - 3 hidden layers and 64 neurons. 38

Table 12: using adoptive LR and change the number of neurons.. 38

Table 13: Final Structure for ML framework. ... 38

Table 14. Specifications for experiment 2-Ⅰ .. 42

Table 15. Specifications for experiment 2-Ⅱ ... 43

Table 16. Specifications for experiment 3-Ⅰ .. 44

Table 17. Specifications for experiment 2-Ⅱ ... 44

x

1

Chapter 1

Introduction

Finding the shortest path between nodes in a graph is the cornerstone of many graph algorithms
and applications. In many real-world problems such as routing in the network, finding the
shortest path is a critical issue.

Shortest path computing is a fundamental issue in the routing of today's telecommunication
networks. Routing is usually composed of two entities: a routing protocol and an algorithm for
routing. The routing protocol takes hold of the network states and the available resources and
distributes the information throughout the network. With this information the routing algorithm
determines the shortest paths. A good routing algorithm can help manage bandwidth and delay
for successful support of video and audio applications in real time. All routing algorithms are
usually involved in computing a shortest path from source to destination along the least costly
route.

Shortest path computation is a constrained problem of optimization which numerous authors
studied. Typically, traditional methods such as Dijkstra or breadth-first-search (BFS) can
deliver a good solution in most cases. However, such heuristic algorithms do not satisfy the
scalability and with the problem scale increasing, these approaches are inefficient and can take
considerable time.

This thesis presents a method based on Machine Learning for routing in large
telecommunications networks. The proposed approach is using GNN which is a new class of
neural networks optimized for graph-structured data working. GNNs implement a scheme that
aggregates information about the neighborhood, recursively. In our work we calculate the node
embedding using MPNN. So MPNN applies an iterative message-passing algorithm to
propagate information between graph nodes. The nodes and edges of the input graph at the
MPNN end are labeled. Finally, by minimizing the error considering the Dijkstra solution, we
try to learn the neural network how to correctly label the graph elements on the network. Then,

2

using a post-processing approach we can guarantee to find the path. As the results show, the
ML framework is scalable, meaning that the model achieves almost optimum and fair
efficiency, twice as large as the training graphs. Also, the algorithm proposed is of linear
temporal complexity. While the larger the network would be, the longer the computational time
used by Dijkstra. So, in large networks the suggested algorithm has been quicker and provides
better performance. It can be used for routing in large telecommunication networks and with
good speed and accuracy obtain the shortest possible path.

1.1 Outline of thesis
The rest of the study is structured according to the following:

Chapter 2 provides an overview of relevant topics in literature, focusing on studies that use
machine learning techniques to route and find the shortest path in a network graph and its
associated complexities. It highlights similarities and discrepancies with respect to our work.

Chapter 3 reviews the main principles for understanding the theory of the methods and the
models we use and the experiments are based on. We provide a simple description of ML with
a summary of learning models types. Then, the definition of shortest path problem is
introduced. The concept of graph neural network and the graph networks framework which we
used in our work are presented. At the end, we provide the MPNN concept which our
framework is based on.

Chapter 4 presents a detailed description of the framework created to conduct our experiments.
The scalable enhancement and computational complexity of the Machine Learning framework
is described.

In Chapter 5 we analyze and compare the numerical results obtained. First we offer a summary
of the datasets and determine the hyper-parameter for our framework and then focus on the
assessment of performance metrics in the various scenarios considered.

Chapter 6 concludes and summarizes the goals reached from the performance evaluation.

3

Chapter 2

Related works

This chapter presents the preliminary materials and overview of relevant topics in literature,
focusing on studies that leverage machine learning techniques in routing and finding the
shortest path in a network graph and their corresponding complexities. At the end of those
descriptions, similarities and differences will be highlighted with respect to the work developed
in this thesis.

2.1 Shortest path
In a variety of applications, finding the shortest distances between two nodes in the graph is a
significant primitive function. In social networks for example, the shortest distance is used to
measure the centrality of the proximity. For many real-world issues, such as network routing,
its calculation is a critical issue [1].

Finding the shortest path is also a constrained problem of optimization which has been studied
in recent years by many authors. Typically, it’s solved with heuristic algorithms, like the

popular Dijkstra algorithm, which can faster deliver a good solution in most cases. However,
with the problem scale increasing, these approaches are inefficient and can consume
considerable CPU time [2].

Such conventional methods for computing distance between nodes do not scale with graph size.
Efficient Dijkstra implementations calculate the shortest paths for a node to others in
𝑂(𝑛 𝑙𝑜𝑔 𝑛 + 𝑚) time complexity for a graph with 𝑛 nodes and 𝑚 edges. Dijkstra’s minor

generalization, known as the 𝐴∗ algorithm, uses heuristic methods in order to calculate the
shortest path. In practice, the 𝐴∗ runs at least as fast as the Dijkstra algorithm, but the
complexity of run time is still 𝑂(𝑛 𝑙𝑜𝑔 𝑛 + 𝑚). This time complexity is tolerable for graphs
with small size, but for a large graph with one million nodes computation of shortest path can
take up to one minute [1]. Machine Learning, which widely exploits parallelism in learning
models, can easily solve this issue.

4

2.1.1 Dijkstra algorithm
The Dijkstra’s Shortest Path Algorithm is a popular approach to the problem of Shortest Paths,
that is to find the shortest path from the initial vertex r to the other vertex in a directionally
weighted graph with non-negative weights [3].

The Dijkstra Algorithm is defined as follows [4]:

“Initialize 𝑦, 𝑝;

Set 𝑆 = 𝑉;

While (S ≠ ∅) :

 Choose 𝑣 ∈ 𝑆 with 𝑦 (𝑣) minimum;

 Delete v form S;

 Scan v.”

Initialize means to set 𝑦(𝑣) = ∞ and 𝑦(𝑟) = 0, and 𝑝(𝑣) = 𝑛𝑢𝑙𝑙 for every node 𝑣 except
for 𝑟. Here 𝑦 is a set of 𝑦(𝑣) for each node 𝑣, indicates the size of the shortest path found so
far from 𝑟 to 𝑣; 𝑃 is a sequence of the 'parent vertex' 𝑝(𝑣) of each node v, i.e. the node before 𝑣
in the shortest 𝑟 −to−𝑣 path has been found so far; 𝑆 is a list of nodes not yet scanned, and 𝑉
is the list of all the vertices in the graph;

Scanning a node 𝑢 means checking that 𝑦(𝑢) + 𝑤 𝑦(𝑣) for each edge 𝑎 = (𝑢, 𝑣) with
weight 𝑤, is "correct" and otherwise correcting it.

Correcting an edge 𝑎 = (𝑢, 𝑣) means adjusting the value of 𝑦(𝑣) to 𝑦(𝑢) + 𝑤 such that 𝑎
becomes correct, and setting 𝑝(𝑣) = 𝑢 in the process.

2.2 ML-based Methods for finding the shortest path in the network
graph
Here we look at some ML-based methods for determining the shortest path between two nodes
in a network graph. Some of these approaches employed supervised learning and the other us
leverage reinforcement learning.

2.2.1. Shortest Path Distance using Deep learning
 In [1] authors use Vector Embedding to approximate the shortest distances of paths in large
graphs, through deep learning. A feedforward neural network, which is fed with embedding
vectors, can estimate the shortest path distances with relatively small distortion error. The
approach is illustrated as follow:

5

They consider 𝐺 = (𝑉; 𝐸) as an undirected graph with 𝑛 nodes and 𝑚 edges and the graph is
unweighted. Using Graph embedding techniques they create a real-valued embedding vector
∅(𝑣) ∈ 𝑅𝑑 per node.

The aim of this research is to use a feedforward neural network to approximate the distance as
�̂�, assuming that a node pair 𝑢, 𝑣 ∈ 𝑉 with the true shortest path distance 𝑑𝑢,𝑣 are given.

They define the estimated distance �̂� as:

�̂� ∶ ∅(𝑢) × ∅(𝑣) → 𝑅+

This equation illustrates the mapping of a pair of vector embeddings in G to a real-valued
shortest distance of path 𝑑𝑢,𝑣.

For training the neural network, the training pairs need to be extracted from the entire G graph.
At first, the authors select a small number of 𝑙 nodes as their landmarks, 𝑙 ≪ 𝑛. They then
calculate the true shortest distances between each landmark and all the remaining nodes by
using BFS. It provides 𝑙(𝑛 − 𝑙) pairs for training. By applying a binary operation, namely
subtraction, concatenation, average and point-wise multiplication, over the vector embeddings
of training pair < ∅(𝑣), ∅(𝑢) >, they produce a joint representation as input into the neural
network.

Table 1 lists the definitions of the binary operations. Finally, training set vectors serve as inputs
for a feedforward neural network. The neural network maps the vectors of the input to a real-
valued distance.

Table 1. Selecting Binary operator correspond to the 𝑖𝑡ℎ part of ∅.

Operator Symbol Definition

Subtraction ⊖ ∅𝑖(𝑢) − ∅𝑖(𝑣)

Concatenation ⊕ (∅(𝑢), ∅(𝑣))

Average ⊘ ∅𝑖(𝑢) − ∅𝑖(𝑣)

2

Hadamard ⨀ ∅𝑖(𝑢) ∗ ∅𝑖(𝑣)

The feedforward network includes an input layer, a hidden layer and an output layer. The
number of neurons in the input layer depends on the binary operation over vector embeddings.
For instance subtraction needs 𝑑 neurons whereas concatenation needs 2𝑑 neurons. They use
ReLU as activation function for the two first layers. Since the network performs a task of
regression, the output layer is a single unit of softplus which is a smoother ReLU version over
the range of [0, ∞]. for assessment they use Mean Squared Error (MSE), which measures the

6

average squares of difference between the estimator and what is estimated. Also, they leverage
the Stochastic Gradient Descent for optimizer. In general, this optimizer is quick and efficient
for large-scale learning.

Computational Complexity

The method which is proposed has a linear runtime complexity. Because first, they learn vector
embeddings which takes 𝑂(𝑛) time for precomputation, 𝑛 is the number of nodes in the graph
[1]. Then they use the landmark scheme in order to reduce the number of shortest path
calculations needed to determine the ground truth. They only have to measure a BFS tree for
each landmark by choosing a low, constant number of landmarks. The resulting values provide
the shortest distances from the rest of nodes to these landmarks and they are enough to compose
the training set. 𝑙(𝑛 − 𝑙) training pairs are created by 𝑙 nodes as landmarks, where 𝑙 ≪ 𝑛.
With respect to the time complexity of BFS on unweighted sparse graphs which is 𝑂(𝑛 + 𝑚)
time, it takes 𝑂(𝑙(𝑛 + 𝑚)) time complexity. The benefit of using a graph embedding is that a
feedforward neural network could respond to a distance query between two nodes 𝑢 , 𝑣 very
fast independent of the graph size, so it takes 𝑂(1) time. Therefore the proposed method for
finding shortest path distances from a starting node 𝑢 to all other nodes takes 𝑂(𝑛) time
complexity.

2.2.2 Auto Computed Neural Network (ACNN) for Shortest Path
Problem
In [5], a model of the neural network called Auto-wave-competed Neural Network (ACNN)
has been proposed for the SP problem.

According to Figure 1. Neuron model of ACNN is composed of three components, which are
the minimum selector, the auto-wave generator and the threshold updater.

Figure 1. Neuron model of ACNN [5].

The following equations describe The ACNN neuron:

7

Zi(t) = {j│Wji ≠ ∞ & yj(t − 1) > 0} Equation 1

ui(t) = {
0 Zi(t) = ∅

(yj(t − 1) + wji) otherwise
j∈Zi(t)

min
Equation 2

yi(t) = f[ui(t), θi(t − 1)] = {
ui(t) ui(t) < θi(t − 1)
0 otherwise

Equation 3

θi(t) = h[yi(t), θi(t − 1)] = {
θi(t − 1) yi(t) = 0

yi(t) otherwise

Equation 4

Where 𝑖 represents the index of neuron, 𝑡 is the iteration number. 𝑢𝑖(𝑡) is the Internal activity,
𝜃𝑖(𝑡) is the threshold and 𝑦𝑖(𝑡) is the output of neuron 𝑖 at time 𝑡. 𝑤𝑗𝑖: The connection weight
between neuron 𝑖 and neuron 𝑗. 𝑍𝑖(𝑡) is the set of neurons that fired to neuron 𝑖 at time t and
is reachable.

An ACNN isomorphic to weighted graph G should be constructed when applied to the SP
problem; which means every node in the graph corresponds to a single network neuron 𝑖, and
𝑤𝑖𝑗 is weight of the edge(𝑖, 𝑗) in the graph (see Figure 2).

Figure 2. ACNN topology for SP problem. (a) A weighted digraph: it shows nodes and weighted edges. (b)

The ACNN model for the graph's SP problem, the squares with " ∑ " inside are the summers on the
corresponding links [5].

The neurons are initialized with infinite threshold and zero-internal-activity. Fire the source
neuron to operate the network, and the firing will cause some propagating auto waves across
the entire network. If the moving distance of an auto wave is the shortest, it will be decreased
on the threshold 𝜃𝑖(𝑡) while going through the neuron 𝑖. The neurons are gradually decreasing
their thresholds until the network stops.

Once the network ends, the threshold is equal to the distance from the source neuron to the
neuron 𝑖 of the shortest path.

8

Complexity
This algorithm’s calculation focuses on the threshold update step. Suppose m is the average
number of adjacent nodes, and n represents the number of nodes in the network the algorithm
computes and compares 𝑛(𝑚 + 1)𝑀 paths in each algorithmic loop. So the computational
complexity of the proposed algorithm is polynomial complexity which takes 𝑂(𝑛2(𝑚 + 1)𝑀)
time complexity.

2.2.3. Stochastic Shortest Path-based Q-learning (SSPQL)
Reinforcement learning (RL) has been commonly used as a method for autonomous robots by
communicating with their environment to learn pairs of state-action. However, most RL
approaches are slow in convergence when in practical applications an optimum policy is
derived. In [6] in order to solve this problem, a stochastic shortest path-based Q-learning
(SSPQL) is suggested, this method is combining a stochastic shortest path-finding method with
Q-learning which is a popular model-free RL method.

Q-learning
The Q-learning algorithm is defined as a simple value iteration equation as follow:

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼 [𝑟 + 𝛾 max
𝑎′𝜖𝐴

𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)] Equation 5

Where Q(s, a) denoted as an action-value function over an action 𝑎 and state s. 𝑟 is the reward
value, 𝛼 is the learning rate, and 𝛾 is the discount factor. In addition, 𝐴 is a series of actions
and 𝑠′ is the state followed in a state 𝑠 by an action 𝑎′.

Stochastic shortest path-finding method

In the SSPQL, to resolve model-free Q learning's slow learning speed, through using an internal
state-transition model, the author obtains optimum local State-action pairs. Then by increasing
the Q-value corresponding for each pair of state-actions, these optimal local State-action pairs
are given a higher selection probability

Figure 3(a) shows a model of state-transition learnt from experience. Figure 3(b) represents the
shortest single-pair path from the initial state, 𝑠0, to the target state, 𝑠𝐺. 𝐴∗ is a heuristic search
method used for this type of problem. According to Figure 3(c), the shortest paths from all
states to a single goal state are found in order to increase the probability of all relevant state
actions in the model.

9

(a) An example of a state
transition model.

(b) A shortest path from 𝑠0 to 𝑠𝐺 . (c) Shortest paths from all states
to a goal state.

Figure 3. An example of shortest path finding [6].

The definition of the expected cost of a state-transition from state 𝑠 to 𝑠′ is as:

𝐸𝐶(𝑠, 𝑠′) = 𝑤𝑒𝑖𝑔ℎ𝑡(𝑠, 𝑠′)𝑒−𝜆𝑃(𝑠′|𝑠) Equation 6

Where 𝑤𝑒𝑖𝑔ℎ𝑡(𝑠, 𝑠′) illustrated true cost function of state-transition from 𝑠 to 𝑠′ and 𝜆 is a
parameter which reflects the probability of a state-transition.

 The set of edges that make up the SSP can be obtained after applying the Dijkstra's algorithm.
To combine SSP with Q-learning, an action-value feature based on SSP was required, which
is denoted as 𝑄𝑆𝑆𝑃(𝑠, 𝑎):

𝑄𝑆𝑆𝑃(𝑠, 𝑎) = {
𝑒−𝐻(𝑠,𝑎) 𝑖𝑓 𝑠 𝑎𝑛𝑑 𝑠′𝜖𝑆𝑆𝑃, 𝑎 = 𝑎𝑟𝑔 max

𝑎′𝜖𝐴
𝑃(𝑠′|𝑠, 𝑎′)

0 𝑒𝑙𝑠𝑒

That 𝐻(𝑠, 𝑎) is the action entropy.

Integrating SSP-finding method with Q-learning
SSPQL algorithm learns and uses state-transition model simultaneously through combining
the Q-learning method and the SSP method. Briefly, action-selection in SSPQL is based on a
Linear Q-value combination, SSP-value, and the exploration bonus value:

𝑎 = argmax
𝑎′𝜖𝐴

[𝑊𝑄𝑄(𝑠′, 𝑎′) + 𝑊𝑆𝑆𝑃𝑡
𝑄𝑆𝑆𝑃(𝑠′,𝑎′) + 𝑊𝐸𝑋𝑃𝑡

𝑄𝐸𝑋𝑃(𝑠′, 𝑎′) + 𝜀] Equation 7

𝑄(𝑠′, 𝑎′), 𝑄𝑆𝑆𝑃(𝑠′, 𝑎′), and 𝑄𝐸𝑋𝑃(𝑠′, 𝑎′) provide different characteristics with respect to the
learning performance. Convergence to optimality can be ensured by using 𝑄(𝑠′, 𝑎′). 𝑄𝑆𝑆𝑃(𝑠′, 𝑎′)
can increase the convergence speed. 𝑄𝐸𝑋𝑃(𝑠′, 𝑎′) can push an agent to unexplored states. In [6],
a simple counter-based exploration bonus is described as:

𝑄𝐸𝑋𝑃(𝑠, 𝑎) =
1

(𝑁(𝑠, 𝑎) + 1)𝜂

Equation 8

Where 𝑁(𝑠, 𝑎) is the action frequency of 𝑎 in state 𝑠, and η is the 𝑄𝐸𝑋𝑃’s weighting parameter.
As it gives higher priority values to actions that lead to unexplored states, and lower priority
values to a regularly visited state, an exploration bonus reveals a property very different from
other action-value functions.

10

Computational complexity
SSPQL's computational complexity is determined by considering the difficulty of finding
shortest paths and estimating QSSP to achieve a target status. The most time-consuming
process in SSP-finding method is the Dijkstra’s algorithm; the computational complexity of
this algorithm is given by 𝑂(𝑚 + 𝑛𝑙𝑜𝑔𝑛) with n nodes and 𝑚 edges 𝑛 when using the
Fibonacci heap to implement the extract-min function as a priority queue. Therefore, in big-O
notation, the complexity of the SSP finding method is 𝑂(𝑚 + 𝑛𝑙𝑜𝑔𝑛). the additional
computational complexity of SSPQL is 𝑂(𝑆𝐴 + 𝑆𝑙𝑜𝑔𝑆) for each episode; where 𝑆 is the
number of states, and 𝐴 the number of actions available. This method's complexity is lower
than many other model-based RL methods.

When integrating the two learning methods, both speed of learning and adaptability showed
improvement compared with previous RL methods. Experimental results show that SSPQL's
convergence speed exceeds both Q-learning and the sweeping method given priority.

2.3 Comparison to related work
Table 2 summarizes the different scenarios illustrated in the preceding subsections [7]:

Table 2. Comparing Ml_based algorithms for finding shortest path.

Authors ML model Complexity Approach

Fatemeh Salehi et al [1] Deep learning O(n) vector embedding

Jiyang Dong et al [5] Artificial Neural Network 𝑂(𝑛2(𝑚 + 1)𝑀)
auto-wave-competed

neural network

Woo Young Kwon [6] Reinforcement learning 𝑂(𝑆𝐴 + 𝑆𝑙𝑜𝑔𝑆)
Q_Learning

Stochastic shortest path

Us [2020] Artificial Neural Network O(n) Graph neural network

In our thesis, we use a model which includes three components:

 An "Encoder" which independently encodes the edge, node features by using the neural
networks.

 A “core” which performs N rounds of processing (message-passing) steps which is a
well-known type of GNNs to propagate information between the nodes of the graph.

 A “Decoder” which independently encodes the edge, node attributes by using the neural
networks.

The model is trained by supervised learning. Input graphs are procedurally generated, and
output graphs have the same structure with the nodes and edges of the shortest path labeled.

11

After around 10000-15000 training iterations the model reaches near-perfect performance on
graphs.

Then we focused on how to handle "wrong" solutions, i.e., solutions that are different from the
shortest path (ground truth). Therefore we implemented a check mechanism to verify whether
the solution provided by the model as output is a path. For those outputs which are paths do
not reach the destination or that are not paths at all we do the following:

1- Build a graph using as link lengths (weights) the labels provided by the ML framework
as output as follows: if the link is in the solution (label 1) then the link length is 0, if
the link is not in the solution (label 0), then the link length is 1

2- Run the Dijkstra algorithm on such graph to find the shortest path between source and
destination.

This way, all outputs are guaranteed to be paths connecting source and destination nodes. And
it achieves a linear runtime complexity 𝑂(𝑛).

The above mentioned methods [5], [6] work well for small graphs, according the table we can
see their complexity is polynomial or logarithmic.

 The recent approach proposed in [1] utilize vector embeddings learnt by deep learning
techniques to approximate the shortest paths distances in large graphs. The method achieves a
linear runtime complexity and it can approximate distances with relatively low distortion error.

12

13

Chapter 3

Background

Machine-learning is a computer science sub field which is related to statistical computations;
recently, ML techniques have been used in many application fields. It discusses the
construction and analysis of algorithms in order to learn from and predict data. These methods
work by constructing a model from inputs to predict or make decisions based on the data [8].

This chapter provides some information on ML, such as ML definitions, the algorithm
categories which have been designed to address different problems. Then we define the shortest
path problem and finally, the models and the framework which are used in our thesis are
described.

3.1 Machine Learning
Machine learning was defined in 1959 by Arthur Samuel. He was the pioneer in ML and
described it as [8]:

“Field of study that gives computers the ability to learn without being explicitly programmed.”

Tom M. Mitchell offered a more formal description which was widely quoted:

“A computer program is said to learn from experience E with respect to some class of tasks T

and performance measure P, if its performance at tasks in T, as measured by P, improves with
experience E.”

3.1.1 Types of Machine Learning tasks
Machine learning algorithms are usually divided into three groups, based on the type of the
learning "signal" or "feedback" that a learning system can access [8]:

Supervised learning

The machine is provided by a "teacher" with example inputs and their desired outputs, and the
goal is to learn a general rule that maps inputs to outputs.

Unsupervised learning

The learning algorithm is not given labels, so it is left alone to find structure in its data.
Unsupervised learning may be a goal in itself (the discovery of secret patterns in the data).

14

Reinforcement learning

A program deals with a dynamic environment in which it has to accomplish a certain objective
(such as driving a vehicle), without a teacher telling it explicitly whether or not it has come
close to its goal.

Another classifying of machine learning methods arises when the desired output of a learned
machine system is considered [8]:

In classification

Inputs are categorized in some classes, and the learner should generate a model in order to
assign inputs which are unseen to these classes. It is generally dealt with in a supervised
manner. An example of classification is spam filtering where the email messages are and the
classes are “spam” and “not spam”.

In regression

It is a supervised problem as well, the outputs are continuous instead of discrete.

In clustering

A collection of inputs shall be broken down into classes. The groups are not known in advance,
unlike in classification; this is typically an unsupervised task.

Density estimation

 It finds the inputs distribution in a multidimensional space.

Dimensionality reduction

It simplifies inputs by mapping them into a space of lesser dimensions. Topic modeling is a
related issue, where a list of documents in the human language is given to a program and it is
charged with figuring out which documents cover similar issues.

3.2 Shortest Path Problem
One of the well-studied topics in computer science, especially in graph theory, is the shortest-
path problem. The ideal shortest path is one with minimal length from source to destination.
Work in the shortest-path algorithms has surged due to the various and diverse applications of
the problem. Some of these applications are network routing protocols, route planning, traffic
management, social network path finding, computer games, and transport systems [9].

3.3 Graph neural network (GNN)
For some applications the information is expressed naturally by graphs. Traditional methods
handle graphical data structures through a preprocessing step that converts the graphs into a set

15

of nodes. However, important topological information may be lost in this way, and the results
obtained can rely heavily on the stage of preprocessing [10].

In the last few years, there has been an increase in interest in Graph Neural Network (GNN)
approaches to graph learning representation. GNNs perform a scheme of recursive
neighborhood aggregation of information (or message passing), in which every node
aggregates attribute vectors of its neighbors to determine its new feature vector. A node is
represented by its transformed feature vector after k iterations of aggregation. It collects the
structural information within the node’s k-hop neighborhood.

In the next sub sections, we present the graph networks framework which is proposed in [7].

3.3.1 Graph network (GN) block
GN framework defines a graph as a 3-tuple G= (u; V; E). The u represents a global feature; a
node is denoted as 𝑣𝑖 which is the node attribute and the V is the set of nodes

V={𝑣𝑖}𝑖=1:𝑁𝑣 . edge attribute is denoted as 𝑒𝑘 and The E={(𝑒𝑘 , 𝑟𝑘, 𝑠𝑘)}
𝑘=1:𝑁𝑒 indicates the set

of edges. Note that 𝑠𝑘 and 𝑟𝑘 denote the sender and receiver nodes for edge k, respectively. To
be more precise, some terminology provided in [7] is presented:

Directed: it means edges of one-way, from the node \sender to the node \receiver.

Attribute: it is the properties which can be encoded as a vector.

Global Attribute: an attribute at a graph level.

Internal structure of a GN block

The GN block includes three functions for updating and three functions for aggregation which
are denoted as ∅ and 𝜌 [7].

Multi-Layer Perceptron (MLP) is used for implementation of Update Functions (∅): (Noted
below to show that these different functions have different parameters)

e’k = ∅𝑒(𝑒𝑘 , 𝑣𝑟𝑘
, 𝑣𝑠𝑘

, 𝑢) = 𝑀𝐿𝑃𝑒([𝑒𝑘 , 𝑣𝑟𝑘
, 𝑣𝑠𝑘

, 𝑢]) Equation 9

𝑣𝑖
′ = ∅𝑣(�̅�𝑖

′, 𝑣𝑖 , 𝑢) = 𝑀𝐿𝑃𝑣([�̅�𝑖
′, 𝑣𝑖 , 𝑢]) Equation 10

𝑢′ = ∅𝑢(�̅�′, �̅�′, 𝑢) = 𝑀𝐿𝑃𝑢(�̅�′, �̅�′, 𝑢) Equation 11

The Aggregation Functions (𝜌) are implemented trough elementwise summation:

�̅�𝑘 = 𝜌𝑒→𝑣(𝐸𝑖
′) = ∑ 𝑒𝑘

′

{𝑘:𝑟𝑘=𝑖}

 Equation 12

�̅�′ = 𝜌𝑒→𝑢(𝐸′) = ∑ 𝑣𝑖
′

𝑖

Equation 13

16

�̅�′ = 𝜌𝑣→𝑢(𝑉′) = ∑ �̅�𝑘
′

𝑘

Equation 14

Where 𝐸𝑖
′ = {(e′′𝑘 , 𝑟𝑘, 𝑠𝑘)}

𝑘=1:𝑁𝑒 , 𝐸′ = ⋃ 𝐸𝑖
′ = {(e′𝑘 , 𝑟𝑘, 𝑠𝑘)}

𝑘=1:𝑁𝑒 𝑖 and 𝑉′ = {𝑣𝑖
′}

𝑖=1:𝑁𝑣 .

The ∅𝑒 is mapped in all edges to measure updates per edge, the ∅𝑣 is mapped to all nodes to
determine updates per node, and the ∅𝑢 is used as a global update.

Each aggregation function takes a set as an input and reduces it to a single element representing
aggregated information. These functions should be invariant to permutations of their inputs and
variable number of arguments shall be allowed (e.g. summation, mean, maximum).

Computational steps within a GN block

Once a graph, G, is supplied as an input to a GN block, the computations proceed from the
edge, to the node, to the global variables. Figure 4 provides a representation of which graph
elements are involved in each of those calculations. Algorithm 1 indicates the steps of
computation in the GN block.

Figure 4. Updates in the GN block. Blue represents the item being updated, and black indicates other

elements involved in the updating [7].

Algorithm 1: computation steps in the block GN [7].

17

The following subsection describes the computation steps in the GN block:

1. ∅𝑒 with arguments (e𝑘 , 𝑣𝑟𝑘
, 𝑣𝑠𝑘

, u) is applied per edge, and it returns 𝑒𝑘
′ . The

resulting set of per-edge outputs for each node 𝑖 is 𝐸𝑖
′ = {(e′𝑘 , 𝑟𝑘, 𝑠𝑘)}

𝑟𝑘,=𝑖 ,𝑘=1:𝑁𝑒 .

𝐸′ represents the set of all outputs per-edge which is 𝐸′ = 𝑈𝑖 𝐸𝑖
′ =

{(e′𝑘 , 𝑟𝑘, 𝑠𝑘)}
𝑘=1:𝑁𝑒 .

2. 𝑝𝑒→𝑣 is applied to 𝐸𝑖
′, it aggregates the edge features which is updated for edges that

project to node 𝑖, and the output is �̅�𝑖
′ used in the next node update stage.

3. ∅𝑣 is applied to every node 𝑖, in order to update node features, then it returns 𝑣𝑖
′. The

per-node outputs resulting set is: 𝑉′ = {𝑣𝑖
′}

𝑖=1:𝑁𝑣 .

4. 𝑝𝑒→𝑢 aggregates all edge updates, into �̅�′by applying to 𝐸′, which will then be used
in the global update of the next step.

5. 𝑝𝑣→𝑢 is applied to 𝑉′, so aggregates all node attributes which is updated, into �̅�′ ,
then it will be used in the next step's global update.

6. Finally ∅𝑢 is applied once to every graph, and computes an update the global
features,𝑢′.

Note, the order is not enforced strictly: the update functions can be reversed to go from global
level update, to per-node, to per-edge updates.

3.3.2 Message-Passing Neural Network (MPNN)
MPNN are a well-known class of GNNs that use an iterative message-passing algorithm for
the propagation of information between graph nodes.

Each node k receives messages from all its neighbor's nodes 𝑁(𝑘), in a message-passing step.
Messages are created by a message function 𝑚(.) which is applied to the node-pair’s hidden
state in the graph, then they are aggregated by an aggregation function such as an elementwise
summation. Then, an update function 𝑢(.) is implemented to provide a new hidden state for
each node. Figure 5 and the following equations describe the Message-Passing method [11].

𝑀𝑘
𝑡+1 = ∑ 𝑚(ℎ𝑘

𝑡 , ℎ𝑖
𝑡)

𝑖∈ 𝑁(𝑘)

Equation 15

ℎ𝑘

𝑡+1 = 𝑢(ℎ𝑘
𝑡 , 𝑀𝑘

𝑡+1) Equation 16

Message functions 𝑚(・) and update function 𝑢(・) can be implemented by MLP. After
several iterations, the update function outputs 𝑢(.) are aggregated by an elementwise
summation then transfers the result to a readout function 𝑅(.). MLP is used for implementation
of this function, as well.

18

Figure 5. Message-passing for 4 nodes in the graph in tow steps of time [11].

MPNN can be transformed into GN formalism naturally [7]:
 The 𝑚(.), message function plays the role of ∅𝑒 in the GN block, but doesn't use 𝑢 as

data.
 The aggregation function which is elementwise summation is used for the GN’s 𝜌𝑒→𝑣

and 𝜌𝑒→𝑢.
 The 𝑢(.), update function plays the role of ∅𝑣 in the GN block.
 The 𝑅(.) readout function, which is implemented by MLP, plays the function of ∅𝑢 in

the GN block, but does not use 𝑢 or 𝐸′ as input.

19

20

Chapter 4

Machine Learning Framework for Routing
in Telecommunication Network

We provide a comprehensive overview of the Machine Learning Framework in this chapter
that is used to do our experiments. We’ll then describe the scalable enhancement of the
Machine Learning framework and its computational complexity.

Finally, we give experiments design. The implementation of the ML framework is written in
Python programming language, using libraries such as Networkx, Tensorflow.

4.1 Network Routing Workflow (Train Phase)
In our thesis we used the ML framework which is proposed in [12]. The framework is trained
by a variety of graphs with a random number of nodes and edges. Then it is tested by
samples of a test set which are independent of the training set.

The overall view of the ML framework illustrated in Figure 6.

As the training method is supervised learning we need target graphs and input graphs. Target
graphs are used in computing error and optimization process. Input graphs are used in the
training process. According to the graph definition, the graph is illustrated by the node’s

attributes and edge’s attributes.

21

Figure 6. Workflow for network routing (Train Phase).

4.1.1 Graph Generation
To generate random graphs we used the method proposed in [12]. According to Figure 7, two
graphs with the same number and location of nodes are combined in order to generate fully
connected graph. The graphs are geographic threshold graphs, but with a minimum spanning
tree algorithm added edges to ensure that all nodes are connected.

Figure 7. Proposed algorithm generated graph in [12]. (right) Geographic graph with separate nodes,

(middle) minimum spanning tree, and (left) graph combined.

4.1.2 Input graph feature vector
Node’s attributes in the input graphs consist of a vector of five elements which are as following:

 Node position: [x coordinate, y coordinate]
 Weight
 Start node
 End node

Weight is an exponential random value that specifies if there is a connection between the nodes
or not.

Start and End are binary values that indicate if the node is source or destination node of the
path or not.

Edge’s attribute in the input graph is a vector of one element which is:

 Distance

It shows the distance between two edge-belonging nodes.

22

4.1.3 Target graph feature vector
The Dijkstra algorithm is used to mark the nodes and edges of the shortest path problem. In
Dijkstra algorithm distance is used as weight to find the shortest path. It marks each node and
edge as bellow:

The nodes and edge which are in the Dijkstra's shortest path marks to [0, 1]. We call them
nodes of solution (T), and edges of solutions (T). The nodes and edge which are not in the
Dijkstra's shortest path labels to [1, 0]. We name these nodes and edges non-solution (F).
Figure 8 shows an example graph which are labeled.

Figure 8. (Right graph) The original graph, (Middle graph) the routed path graph, (Left graph) the labeled graph.

The Table 3 shows the labels of each node in the example graph. These labels used as feature
vectors.

Table 3. node labels in the example graph

Nodes
ID

Label Attribute
vector

0 False [1,0]

1 False [1,0]

2 True [0,1]

3 False [1,0]

4 False [1,0]

5 True [0,1]

6 True [0,1]

7 True [0,1]

4.1.4 Training Model
According to the Figure 9 the model which we used includes 3 parts [12]:

23

Figure 9. Workflow for Training Model.

 Encoder: It encodes the edge vector and node vector independently. That means 2
separate MLPs independently map edge and node vectors to a 32-elements vector (see
Figure 10).

Figure 10. Encoder scheme.

 Core: It executes massage passing steps N times. The core input
is a concatenation of the core’s prior output and the encoder output. This section will
be illustrated in detail.

 Decoder: It decodes the edge vector and the node vector independently on each
message-passing step. So, similarly to the encoder we have 2 separate MLPs that
independently map edge and node vectors to a 32-elements vector (see Figure 11).

Figure 11. A fully connected MLP with two layers and 32 neurons in each layers

24

4.1.5 Core
The Core section is the Graph Network block which is proposed in [7]. It is consist of 3 blocks
(see Figure 12):

Figure 12. Core scheme.

 Edge Block: in this block features of each edge will be updated using MLP. The input
of MLP is a concatenation of the preceding edge features, and the adjacent node features
which called the sender node and receiver node.

 Node Block: the block updates every node features using a MLP. At first, it aggregated
the features of adjacent edges. Then a concatenation of aggregated adjacent edge and
previous node feature used as the input to MLP.

 Global Block: this block updates global features. Using the MLP a concatenation of
aggregated edge features and aggregated node features will be updated.

4.1.6 ML output
Nodes and edges are labeled in the input graph at the MPNN end. As Figure 13 shows the two
element vectors with different values are represented and associated to label. By interpreting
the labels we classify them and create 2 output classes. These classes are defined by the
following equation:

𝑐𝑙𝑎𝑠𝑠𝑜𝑢𝑡𝑖
= 𝑎𝑟𝑔𝑚𝑎𝑥(𝐿𝑎𝑏𝑒𝑙𝑀𝑃𝑁𝑁𝑖

) Equation 17

25

Nodes
ID

Node Labels at the MPNN
Output

0 [6.0417661 -2.23854092]

1 [3.35104672 -2.1593072]

2 [-4.89505307 3.83677993]

3 [5.43695683 -2.35722765]

4 [0.72520728 -0.88029439]

5 [-0.90006829 0.30690665]

6 [-4.14749179 3.46277]

7 [-4.68965861 3.7333144]

Figure 13. Example of node labeling.

4.1.7 Loss Computation and optimization
Softmax Cross-Entropy is used as loss function. Softmax function 𝑆(.) takes a vector with
C-dimension, 𝑧 as input. It returns a real vector with C-dimension, y which is between 0 and
1.

𝑦𝑐 = 𝑆(𝑧)𝑐 =
𝑒𝑍𝑐

∑ 𝑒𝑍𝑑𝑐
𝑑=1

 𝑓𝑜𝑟𝑐 = 1 ⋯ 𝐶
Equation 18

The softmax function can be used in the output layer of a neural network, which is represented
graphically by a layer with C neurons.

Using the ADAM optimizer from Tensorflow, the optimization method for the training step
was performed to minimize Softmax cross-entropy as the classification loss function. The
extension of the stochastic gradient descent is the Adam optimization algorithm. Since it
quickly achieves good results, it is a commonly adopted in deep learning algorithms.

Our ML system executes 15,000 iterations of training steps with an adaptive learning rate of
0.02 starting rate (in each step 32 training graphs are used as batch size input). Also, it performs
10 rounds of message passing. The satisfactory generalization results will be obtained after a
number of trial and error experiments, by checking the classification error in the train, test and
validation sets.

4.2 Network Routing Workflow (Test Phase)
When the ML framework has learned and the datasets are created, into the trained network will
be fed by a graph during the test process, and the decoder will output the labels for all nodes
and edges in that network. We must ensure that the solution is a connected and constitutes a

26

valid path, because the nodes and edges are labeled independently. Figure 14 shows the
workflow of the test phase

Figure 14. Workflow for network routing (Test Phase).

4.2.1 Check mechanism
We may have extra nodes or edges which are identified as solutions in the node and edge labels
(see Figure 15), or even sometimes we may have a path which is not continuous or is
disconnected. So we are proposing an independent check mechanism over the path based on
node and edge labels to check if the solution is a path or not. In the following we'll describe the
mechanism's pseudocode.

Figure 15. Nodes 3 and 4 are labeled incorrectly, But the path has been obtained.

𝐺 = (𝑉, 𝐸) represents a graph in which V is the set of graph nodes and E is the set of edges.
As we know, the aim of the shortest path problem is to find a path between the source (𝑣𝑠𝑟𝑐)
and destination (𝑣𝑑𝑠𝑡) nodes. In the check mechanism we start from 𝑣𝑠𝑟𝑐 and traverse over the
nodes which are marked as the solution, then determine the number of possible outgoing nodes
at each step. If the number of outgoing nodes is zero and the current node is not the destination
node, the current node is assumed to be a dead-end node and removed from the search domain.
When the number of outgoing nodes is equal to 1, implies that it only has one option to pass,
so the next step is to choose that node. If the number of outgoing nodes is more than one, it

27

means that there is a branch, so the node is added to the Branch list and one of the available
nodes is chosen as the next node. The Branch list helps the algorithm in order to go back in
selecting the right way in case of a dead end or wrong path selected.

The algorithm only stops when the route reaches the destination node or discontinuity is
detected.

𝐺 = (𝑉, 𝐸)

𝐵𝑟𝑎𝑛𝑐ℎ 𝑙𝑖𝑠𝑡 = []

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑛𝑜𝑑𝑒 = 𝑣𝑠𝑟𝑐

𝑊ℎ𝑖𝑙𝑒 𝑝𝑎𝑡ℎ = 𝑛𝑜𝑡 𝐹𝑜𝑢𝑛𝑑

 𝑁𝑢𝑚 𝑛𝑜𝑑𝑒𝑠, 𝑛𝑜𝑑𝑒 𝑖𝑑 = 𝑂𝑢𝑡𝑔𝑜𝑖𝑛𝑔𝑁𝑜𝑑𝑒𝑠(𝐺, 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑛𝑜𝑑𝑒, 𝑛𝑜𝑑𝑒 𝐿𝑎𝑏𝑒𝑙𝑠)

 𝐼𝑓 (𝑁𝑢𝑚 𝑛𝑜𝑑𝑒𝑠 = 1)

 𝑁𝑒𝑥𝑡 𝑛𝑜𝑑𝑒 = 𝑛𝑜𝑑𝑒 𝑖𝑑

 𝐸𝑙𝑠𝑒 𝑖𝑓(𝑁𝑢𝑚 𝑛𝑜𝑑𝑒𝑠 = 0)

 𝐷𝑒𝑙𝑒𝑡𝑒(𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛)

 𝑁𝑒𝑥𝑡 𝑛𝑜𝑑𝑒 = 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑏𝑟𝑎𝑛𝑐ℎ
 If (branch list = empty)
 break

 𝐸𝑙𝑠𝑒 𝑖𝑓(𝑁𝑢𝑚 𝑛𝑜𝑑𝑒𝑠 > 1)

 𝐵𝑟𝑎𝑛𝑐ℎ_𝑙𝑖𝑠𝑡 += 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑛𝑜𝑑𝑒

 𝑁𝑒𝑥𝑡 𝑛𝑜𝑑𝑒 = 𝑟𝑎𝑛𝑑𝑜𝑚_𝑛𝑜𝑑𝑒 𝑓𝑟𝑜𝑚 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑛𝑜𝑑𝑒𝑠

 𝐼𝑓(𝑁𝑒𝑥𝑡 𝑛𝑜𝑑𝑒 = 𝑣𝑑𝑒𝑠)

 𝑃𝑎𝑡ℎ = 𝐹𝑜𝑢𝑛𝑑
 Current node = 𝑁𝑒𝑥𝑡 𝑛𝑜𝑑𝑒
𝑒𝑛𝑑

The same is achieved for the edge marks, but the algorithm crosses the edges of the solution to
get the 𝑣𝑑𝑠𝑡 . Detected paths using both methods will then combine to obtain a path with greater
certainty.

Figure 16 (a) shows an example which illustrates the path is detected by tracking node labels,
while by following edge labels the path will not be achieved. Similarly Figure 16 (b) indicates
an example that the path is detected by tracking edge labels, while by following node labels it
cannot reach the destination.

𝐺 = (𝑉, 𝐸)

𝐵𝑟𝑎𝑛𝑐ℎ 𝑙𝑖𝑠𝑡 = []

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑛𝑜𝑑𝑒 = 𝑣𝑠𝑟𝑐

𝑊ℎ𝑖𝑙𝑒 𝑝𝑎𝑡ℎ = 𝑛𝑜𝑡 𝐹𝑜𝑢𝑛𝑑

28

 𝑁𝑢𝑚 𝑒𝑑𝑔𝑒𝑠, 𝑛𝑜𝑑𝑒 𝑖𝑑 = 𝑂𝑢𝑡𝑔𝑜𝑖𝑛𝑔𝐸𝑑𝑔𝑒𝑠(𝐺, 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑛𝑜𝑑𝑒, 𝑒𝑑𝑔𝑒 𝐿𝑎𝑏𝑒𝑙𝑠)

 𝐼𝑓 (𝑁𝑢𝑚 𝑒𝑑𝑔𝑒𝑠 = 1)

 𝑁𝑒𝑥𝑡 𝑛𝑜𝑑𝑒 = 𝑛𝑜𝑑𝑒 𝑖𝑑

 𝐸𝑙𝑠𝑒 𝑖𝑓(𝑁𝑢𝑚 𝑒𝑑𝑔𝑒𝑠 = 0)

 𝐷𝑒𝑙𝑒𝑡𝑒(𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛)

 𝑁𝑒𝑥𝑡 𝑛𝑜𝑑𝑒 = 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑏𝑟𝑎𝑛𝑐ℎ
 If (branch list = empty)
 break

 𝐸𝑙𝑠𝑒 𝑖𝑓(𝑁𝑢𝑚 𝑒𝑑𝑔𝑒𝑠 > 1)

 𝐵𝑟𝑎𝑛𝑐ℎ_𝑙𝑖𝑠𝑡 += 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑛𝑜𝑑𝑒

 𝑁𝑒𝑥𝑡 𝑛𝑜𝑑𝑒 = 𝑟𝑎𝑛𝑑𝑜𝑚_𝑒𝑑𝑔𝑒 𝑓𝑟𝑜𝑚 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑒𝑑𝑔𝑒𝑠

 𝐼𝑓(𝑁𝑒𝑥𝑡 𝑛𝑜𝑑𝑒 = 𝑣𝑑𝑒𝑠)

 𝑃𝑎𝑡ℎ = 𝐹𝑜𝑢𝑛𝑑
 Current node = 𝑁𝑒𝑥𝑡 𝑛𝑜𝑑𝑒
 𝑒𝑛𝑑

(a)

(b)

Figure 16. detecting path with node labels or edge lables. (large nodes are solution labeled nodes, thicker edges
are solution labeled edges)

4.2.2 Path recovery
According to the Figure 17 after applying the check mechanism the path can be set in the most
graphs, but for some cases the search mechanism algorithms cannot find a path, so we proposed
the Path Recovery algorithm to find a path.

1. It Builds a graph using the labels given by ML framework as output then the link length
consider as weights in this way:

 If the link is in the solution (label 1) then the link length is 0.
 If the link is not in the solution (label 0), then the link length is 1.

29

2. It Runs the Dijkstra algorithm on the created graph in order to find the shortest path based
on new weights between source and destination.

Figure 17. path recovery scheme.

4.3 Performance Assessment
To evaluate the performance of the model which has used, we used the metrics involved in the
measurement of the accuracy of the routing (node and edge classification problem) [12], these
metrics are defined as bellow:

 STR: training fraction examples solved correctly

This metric measures the “float” fraction of training graphs which are correctly solved the
path and defined as bellow:

𝑆𝑇𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑠𝑜𝑙𝑣𝑒𝑑 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎𝑠𝑒𝑡

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
 Equation 19

 SGE: test fraction examples solved correctly

This metric measures the “float” fraction of generalization graphs which are correctly solved

the path and defined as:

𝑆𝐺𝐸 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑠𝑜𝑙𝑣𝑒𝑑 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑡𝑒𝑠𝑡 𝑑𝑎𝑡𝑎𝑠𝑒𝑡

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑡𝑒𝑠𝑡 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
 Equation 20

 CTR: training fraction of nodes/edges labeled correctly

This metric measures the “float” fraction of training graphs which are correctly labeled the
Nodes/Edges and defined as bellow:

𝐶𝑇𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑙𝑎𝑏𝑒𝑙𝑒𝑑 𝑛𝑜𝑑𝑒𝑠/𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎𝑠𝑒𝑡

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠/𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
 Equation 21

30

 CGE: test fraction of nodes/edges labeled correctly

This metric measures the “float” fraction of generalization graphs which are correctly
labeled the Nodes/Edges and defined as:

𝐶𝐺𝐸 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑙𝑎𝑏𝑒𝑙𝑒𝑑 𝑛𝑜𝑑𝑒𝑠/𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝑡𝑒𝑠𝑡 𝑑𝑎𝑡𝑎𝑠𝑒𝑡

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠/𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝑡𝑒𝑠𝑡 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
 Equation 22

4.4 Complexity analysis
Here, we analyze the framework time complexity which it includes a large amount of the
algorithm's computational time. So we will compute the complexity in Encoder, Core, and
Decoder.

The main operations in Neural Network consist of matrix multiplication in each layer. We
know, for 𝐴𝑖×𝑗 ∗ 𝐵𝑗×𝑘, the Time Complexity of matrix multiplication is 𝑂 (𝑖 × 𝑗 × 𝑘) [13].

As we mentioned, the neural network which we used in the implementation of the algorithm,
has 2 layers and each layer has 32 number of neurons.

So we do as follow for computing the complexity of node and edge embedding:

Figure 18. Neural network scheme.

As there are 3 layers, 2 weight matrixes is needed. We’ll denote them by 𝑊32×5 , 𝑊32×32, for
node embedding and 𝑊32×1 , 𝑊32×32 for edge embedding.

4.4.1 Node Embedding Complexity

In general, to propagate from layer 𝑖 to layer 𝑗, we first do following multiplication:
𝑍𝑗1 = 𝑊𝑗𝑖 × 𝑋𝑖1

The time complexity of this operation is 𝑂(𝑗 ∗ 𝑖). Then the activation function is applied:
𝑋𝑗1 = 𝑓(𝑍𝑗1)

Since the operation is element_wise the complexity would be 𝑂(𝑗 × 1). Therefore total
complexity in propagating between 2 layers is:

𝑂(𝑗 × 𝑖 + 𝑗) = 𝑂(𝑗 × (𝑖 + 1)) = 𝑂(𝑗 × 𝑖)

31

According to the Figure 18, each node represented as a five_element vector in the framework,
so the time complexity of the node embedding for each node, is computed as following:

propagation Weight matrix Time Complexity
First 𝑊32×5 𝑂(32 × 5)

Second 𝑊32×32 𝑂(32 × 32)

 𝐶 (𝑁𝑜𝑑𝑒 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔) = 𝑂 (32 × 5) + (32 × 32) = 𝑂(32 × 32)

4.4.2 Edge Embedding Complexity

The time complexity of the edge embedding for each edge is determined as below, According
to the Figure 10.

propagation Weight matrix Time Complexity
First 𝑊32×1 𝑂(32 × 1)

Second 𝑊32×32 𝑂(32 × 32)
𝐶 (𝐸𝑑𝑔𝑒 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔) = 𝑂 (32 × 1) + (32 × 32) = 𝑂(32 × 32)

4.4.3 Encoder / Decoder Complexity

The encoder performs edge embedding for each edge and also node embedding for each node
in the graph. Suppose we have N nodes and E edges in each graph, so the encoder time
complexity will be:

𝐶(𝐸𝑛𝑐𝑜𝑑𝑒𝑟) = 𝑁 ∗ 𝐶(𝑁𝑜𝑑𝑒 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔) + 𝐸 ∗ 𝐶(𝐸𝑑𝑔𝑒 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔)

𝐶(𝐸𝑛𝑐𝑜𝑑𝑒𝑟) = O ((𝑁 + 𝐸) ∗ (32 × 32))

Note that Decoder complexity is the same as encoder complexity.

𝐶(𝐷𝑒𝑐𝑜𝑑𝑒𝑟) = O ((𝑁 + 𝐸) ∗ (32 × 32))

4.4.4 Core Complexity

According to Figure 12, the core carries out N rounds of node block, edge block and global
block. In each block features will be updated by following MLP.

32

Figure 19. Neural network.

 Node block complexity:

According to the Figure 19, the time complexity of feature updating for each node is
𝑂(32 × 32). So, the complexity of node block for N number of nodes would be 𝑂(𝑁 ×

32 × 32).

 Edge block complexity:

Edge features updates using the MLP in Figure 12, it has 𝑂(32 × 32) for each edge. Se the
edge block complexity for E number of edges is 𝑂(𝐸 × 32 × 32).

 Global block complexity:

Same as node block and edge block the complexity of global block is 𝑂(32 × 32).

The time complexity of core with respect to the performing 10 rounds of mentioned blocks in
our implementation, would be:

𝐶(𝐶𝑜𝑟𝑒) = 𝑁𝑠𝑡𝑒𝑝𝑠 ∗ (𝐶(𝑁𝑜𝑑𝑒 𝑏𝑙𝑜𝑐𝑘) + 𝐶(𝐸𝑑𝑔𝑒 𝑏𝑙𝑜𝑐𝑘) + 𝐶(𝐺𝑙𝑜𝑏𝑎𝑙 𝑏𝑙𝑜𝑐𝑘))

𝐶(𝐶𝑜𝑟𝑒) = O (10 ∗ (𝑁 + 𝐸 + 1) ∗ (32 × 32)))

4.4.5 ML framework Complexity

The ML framework time complexity is summation of Encoder complexity, Decoder
complexity and Core complexity:

𝐶(𝑀𝐿 𝑓𝑟𝑎𝑚𝑒𝑤𝑜𝑟𝑘) = 𝐶(𝐸𝑛𝑐𝑜𝑑𝑒𝑟) + 𝐶(𝐶𝑜𝑟𝑒) + 𝐶(𝐷𝑒𝑐𝑜𝑑𝑒𝑟)

𝐶(𝑀𝐿 𝑓𝑟𝑎𝑚𝑒𝑤𝑜𝑟𝑘) = 𝑂((𝑁 + 𝐸) × (12 × 32 × 32)) = 𝑂(𝐶 × (𝐸 + 𝑁))

It shows the ML framework has a linear Run Time Complexity. So by this method finding the
shortest path for the large networks has reasonable time complexity.

𝐶(𝑀𝐿 𝑓𝑟𝑎𝑚𝑒𝑤𝑜𝑟𝑘) = 𝑂(𝐸 + 𝑁)

33

34

 Chapter 5

Numerical Assessment

This chapter offers a detailed description of the experiments performed in this work and shows
the numerical evaluation for each.

We first explain how datasets are generated to perform experiments and provide statistical
characteristics of the data. Then we present the environment and conditions of the simulations,
and how they are applied.

Finally, the simulation results of the presented method are compared with the results of the
benchmark and these results will be analyzed.

5.1 dataset Generation
In order to generate the graphs for our dataset, we consider two graphs with the same number
and location of nodes that are combined to create a fully connected graph. These graphs are
geographic threshold graphs and through a minimum spanning tree algorithm edges are added
to ensure all nodes are connected to each other. Therefore the combined graph would be a fully
connected graph for sure [12].

 Using this method, we can create a different number of batch size graphs as our input set for
the training and test phase.

5.2 Determination of hyper-parameters

In our framework we have different parameters and variables. These parameters are:

 Number of Nodes per training graph

 Number of Nodes per test graph

 Number of Message Passing Steps

 Number of Iterations

 Batch Size (Training/Test)

 Learning rate

 Adaptive Learning Rate

35

 Number of Layers

 Number of Neurons

 Time (Hour)

To find the best configuration for our framework we changed the parameters and evaluated the
results. At each step, we change only one parameter so that the variation in the performance
the ML framework can be measured by applying that parameter change. In all of these
experiments, the number of fixed graph nodes is assumed, also the batch size and the number
of iterations are fixed:

• Number of nodes per training graph sampled uniformly from the range (8, 16).

• Number of nodes per test graph sampled uniformly from the range (17, 33).

• Number of Iterations: 1000.

• Batch Size (Training/Test): 32/100.

To measure the effectiveness of the parameters we use the SGE factor which measured the
fraction of test graphs which are correctly solved the path.

5.2.1 Change the Learning Rate
We fixed all other parameters in our framework and just changed the value of the learning rate.
Table 4 shows the results, as we can see by setting the lowest Learning Rate, we can get the
best result. So for the following tests, we have used fixed Learning Rate 0.001.

 Table 4: Change the Learning Rate

Iterations
Message
Passing

steps

Learning
Rate

Number of
Layers

Number of
Neurons

Time
(Hours)

SGE

10000 10 1e-1 2 16 1.04h 0.8333
10000 10 1e-2 2 16 0.79h 0.9397
10000 10 1e-3 2 16 0.67h 0.9433

5.2.2 Change the Message Passing Steps
To find a reasonable number of massage passing steps for the ML framework, we just changed
the number of massage passing steps. As Table 5 shows, by setting the highest number of
massage passing steps we can get the best result but it takes more time. So for the following
tests, we have used a fixed number of message passing steps equal to10.

36

Table 5: Change the message passing steps

Iterations
Message
Passing

steps

Learning
Rate

Number of
Layers

Number of
Neurons

Time
(Hours)

SGE

10000 8 1e-3 2 16 0.58h 0.9233
10000 10 1e-3 2 16 0.67h 0.9433
10000 12 1e-3 2 16 0.73h 0.9437
10000 14 1e-3 2 16 0.79h 0.9509

5.2.3 Change the Number of Neurons
As Table 6 shows by setting the highest number of neurons in each layer we can get the best
result but it takes more time to train. But the improvement obtained by setting the number of
neurons 64 in comparison with the number of neurons 32 is negligible moreover, it took much
more time. So it seems training with 32 neurons is more reasonable.

Table 6: Change the number of neurons

Iterations
Message
Passing

steps

Learning
Rate

Number of
Layers

Number of
Neurons

Time
(Hours)

SGE

10000 10 1e-3 2 16 0.67h 0.9433
10000 10 1e-3 2 32 0.9h 0.9570
10000 10 1e-3 2 64 1.7h 0.9627

Again, we set number of layers 3 and we performed previous experiments, similar results were
achieved:

Table 7: Change the number of neurons in 3 layers

Iterations
Message
Passing

steps

Learning
Rate

Number of
Layers

Number of
Neurons

Time
(Hours)

SGE

10000 10 1e-3 3 16 0.78h 0.9085
10000 10 1e-3 3 32 0.99h 0.9310
10000 10 1e-3 3 64 1.89h 0.9528

5.2.4 Change the Number of Layers
Here we analyze the impact of changing the number of layers. Table 8 shows with the same
number of neurons if we have less number of layers the result is better and also it takes less
time. So it seems training with 32 neurons and 2 layers is more reasonable.

37

Table 8: Change the number of layers

Iterations
Message
Passing

steps

Learning
Rate

Number of
Layers

Number of
Neurons

Time
(Hours)

SGE

10000 10 1e-3 2 16 0.67h 0.9433
10000 10 1e-3 3 16 0.78h 0.9085

10000 10 1e-3 2 32 0.9h 0.9570
10000 10 1e-3 3 32 0.99h 0.9310

10000 10 1e-3 2 64 1.7h 0.9627
10000 10 1e-3 3 64 1.89h 0.9528

5.2.5 Using an Adaptive Learning Rate
We repeated the previous experiments, according to following tables we found out that the
results improved by using an Adaptive Learning Rate than using a Fixed Learning Rate. Also,
training with 2 layers is better than 3 layers with the same number of neurons.

Table 9: Fixed and Adaptive LR with 2 - 3 hidden layers and 16 neurons.

Iterations
Message
Passing

steps

Learning
Rate

Number of
Layers

Number of
Neurons

Time
(Hours)

SGE

10000 10 Fix 2 16 0.67h 0.9433
10000 10 Adaptive 2 16 0.64h 0.9588

10000 10 Fix 3 16 0.78h 0.9085
10000 10 Adaptive 3 16 0.68h 0.9245

Table 10: Fixed and Adaptive LR with 2 - 3 hidden layers and 32 neurons.

Iterations
Message
Passing

steps

Learning
Rate

Number of
Layers

Number of
Neurons

Time
(Hours)

SGE

10000 10 Fix 2 32 0.9h 0.9570
10000 10 Adaptive 2 32 0.93h 0.9840

10000 10 Fix 3 32 0.99h 0.9310
10000 10 Adaptive 3 32 1h 0.9632

38

Table 11: Fixed and Adaptive LR with 2 - 3 hidden layers and 64 neurons.

Iterations
Message
Passing

steps

Learning
Rate

Number of
Layers

Number of
Neurons

Time
(Hours)

SGE

10000 10 Fix 2 64 1.7h 0.9627
10000 10 Adaptive 2 64 1.6h 0.9707

10000 10 Fix 3 64 1.89h 0.9528
10000 10 Adaptive 3 64 1.78h 0.9573

So far, we found the results improved by using adoptive LR and training with 2 Layers.
Table 12 indicates training with 32 neurons is more reasonable whit respect to the training
time.

Table 12: using adoptive LR and change the number of neurons.

Iterations
Message
Passing

steps

Learning
Rate

Number of
Layers

Number of
Neurons

Time
(Hours)

SGE

10000 10 Adaptive 2 16 0.64h 0.9588
10000 10 Adaptive 2 32 0.93h 0.9840
10000 10 Adaptive 2 64 1.6h 0.9707

Finally, we have chosen the following structure for the ML framework:

Table 13: Final Structure for ML framework.

Iterations
Message
Passing

steps

Learning
Rate

Number of
Layers

Number of
Neurons

10000 10 Adaptive 2 32

 5.3 Results
The ML framework is trained with network topologies of different sizes and it is tested to
evaluate the scalability and the capability of our approach to generalize. The training dataset
includes 8~200-node network topologies and the testing dataset includes network topologies
of the 16~400-nodes. The experiments have been performed, using of the cluster of the High
Performance Computing (HPC) [14] center of the Politecnico di Torino, running python
scripts. The following are the parameters and results of the experiments performed:

39

5.3.1 Experiment (1)
Training phase

I. In this experiment, first we considered the same number of nodes for training and
validation graphs, in order to see how well is the ML framework for unseen test graphs
having the same size of the training graphs.

o Number of nodes per training graph sampled uniformly from the range (8, 16).
o Training batch size: 32.
o Number of nodes per validation graph sampled uniformly from the range (8, 16).
o Validation batch size: 100.
o Figure 20 represents the training graphs statistics.

Figure 20. Testing graphs statistics.

Figure 21 shows the accuracy of the ML framework in terms of the CTR metric: as we can see
the network was able to correctly label the vast majority of the edges and nodes for both training
datasets and validation datasets. The accuracy is very close to 1.

Also, in Figure 22 we measure the STR metric, and it indicates that it can correctly identify the
shortest paths with 98% accuracy.

40

Figure 21. Performance (CTR) of the ML framework for experiment (1-Ⅰ).

Figure 22. Performance (STR) of the ML framework for experiment (1-Ⅰ).

II. In the next step, we considered validation graphs with the twice number of nodes of the
training graphs to evaluate the generalizability of the model.

o Number of nodes per training graph sampled uniformly from the range (8, 16).
o Number of nodes per validation graph sampled uniformly from the range (16, 32).

The CTR metric is shown in Figure 23, it reaches almost the perfect performance in nodes
and edges labeling.

Figure 23. Performance (CTR) of ML framework for experiment (1-Ⅱ)

41

According to Figure 24, the model achieves high accuracy for graphs with a scale twice
greater than the training graphs after 1000 iterations. It achieves STR of 0.94.

Figure 24. Performance (STR) of ML framework for experiment (1-Ⅱ)

Test Phase

Finally once the model is trained we tested it with 1000 samples of graphs with nodes in the
range (16-32). Figure 25 represents the testing graphs statistics.

Figure 25. Testing graphs statistics.

The model can correctly solve the path with 0.9 accuracy so the shortest path is found. For the
remaining graphs we use the check mechanism. In the check mechanism:

1- In some graphs the path can be detected by tracking the node labels.
2- In some graphs the path can be detected by tracking the edge labels.
3- In some graphs the path is not detected so it is obtained using the path recovery

algorithm.

Therefore the algorithm can guarantee to find the route.

42

 5.3.2 Experiment (2)

Training phase

I. Using the same number of nodes for training and validation graphs.

Table 14. Specifications for experiment 2-Ⅰ

training graph
size

validation graph
size

Training batch
size

Validation
batch size

(40-50) (40-50) 32 100

According to CTR metric in Figure 26 we can say, the model achieves results very close to 1
in nodes and edges labeling for both the training datasets and the validation datasets. Similarity
to the previous experiment, the STR metric also closely approaches 1 when identifying the
shortest path (see Figure 27).

Figure 26. Performance (CTR) of ML framework for experiment (2-Ⅰ)

Figure 27.Performance (STR) of ML framework for experiment (2-Ⅰ)

II. Using Validation graphs with the training graphs having twice the number of nodes to
evaluate generalizability of model.

43

Table 15. Specifications for experiment 2-Ⅱ

training graph
size

validation graph
size

Training batch
size

Validation
batch size

(40-50) (80-100) 32 100

Figure 28 shows the model achieves almost the optimal value for graphs with a scale twice
greater than the training graphs. Also, STR reaches 0.93 (Figure 29).

Figure 28. Performance (CTR) of ML framework for experiment (2-Ⅱ)

Figure 29.Performance (STR) of ML framework for experiment (2-Ⅱ)

Test Phase

Once the model has been trained we tested it with 1000 graph samples with nodes in the range
(80-90).

Same as before, the model performs near perfectly and acceptable results with twice the size
of the training graphs (0.93 accuracy) can be obtained. After applying check mechanism and
path recovery, the algorithm can guarantee to always find a feasible route.

5.3.3 Experiment (3)
Training phase

I. Using the same number of nodes to graphs for training and validation.

44

Table 16. Specifications for experiment 3-Ⅰ

training graph
size

validation graph
size

Training batch
size

Validation
batch size

(150-200) (150-200) 32 100

Similar to previous experiments Figure 30, Figure 31 shows that the model performs optimally
for the same size training and validation datasets.

Figure 30. Performance (CTR) of ML framework for experiment (3-Ⅰ)

Figure 31. Performance (STR) of ML framework for experiment (3-Ⅰ)

II. Using Validation graphs with the twice number of nodes of the training graphs to
evaluate the generalizability of the model.

Table 17. Specifications for experiment 2-Ⅱ

training graph
size

validation graph
size

Training batch
size

Validation
batch size

(150-200) (300-400) 32 100

Figure 32 shows that the model can label nodes/edges perfectly for graphs twice as large as the
training graphs. With respect to the STR in Figure 33 we can say the model obtains acceptable
results with twice the size of the training graphs, it can solve the route correctly with STR=0.85.

45

Figure 32. Performance (CTR) of ML framework for experiment (3-Ⅱ)

Figure 33. Performance (STR) of ML framework for experiment (3-Ⅱ)

Test Phase

After training of the model we tested it with 1000 samples of graphs with nodes in the range
(350-400).

Just like the previous experiments our model will guarantee that the route will be found in all
graph sizes.

5.3.4 Complexity Evaluation
We have performed experiments to test the scalability of the algorithm so far, and the algorithm
is scalable, as observed. In this section, we look at the algorithm in terms of time and compare
it with the popular Dijkstra algorithm which can quickly provide the shortest path.

As we discussed in the section 4.4, the proposed algorithm has a linear time complexity. Figure
34 is proof of this claim. As can be seen, the blue curve indicates the time needed to perform
calculations for graphs of different sizes in the range (10-500). This curve coincides with the
curve theoretically obtained.

As we know, the computational complexity of the Dijkstra algorithm is 𝑂(|𝐸| + |𝑉| 𝑙𝑜𝑔 |𝑉|).
Figure 35 shows the correspondence between the time taken to implement Dijkstra and the
theory.

46

Figure 34. Comparison of algorithm's runtime complexity presented in theory and practice.

Figure 35. Comparison of Dijkstra's runtime complexity in theory and practice.

In Figure 36 a comparison of the proposed algorithm with the Dijkstra algorithm is given. For
small networks the Dijkstra algorithm works well and quickly. But the larger the network, the
longer it takes to find the shortest path, while our algorithm for larger networks has acceptable
and fast runtime complexity.

Therefore our algorithm finds the path faster for very large networks than Dijkstra.

47

Figure 36. Comparison of the proposed algorithm complexity with the Dijkstra algorithm complexity.

Figure 37.To see the intersection of the two graphs and the better performance of the proposed algorithm, we

zoom Figure 36.

48

49

Chapter 6

Conclusion

In this study, a method based on Machine Learning for routing in large telecommunication
networks was proposed. The proposed method uses GNN which is a new family of neural
networks designed to work with graph-structured data. GNNs execute a scheme that aggregates
neighborhood information, recursively, in which every node aggregates its neighbors attribute
vectors to determine their new feature vector.

In our work, the node embedding is calculated using MPNN which aggregating node-neighbor
information through non-linear transformation and aggregation functions. So MPNN applies
an iterative message-passing algorithm to propagate information between graph nodes. Then,
nodes and edges are labeled in the input graph at the MPNN end. Finally, by propagating the
error regarding the Dijkstra solution, we try to minimize the error and teach the neural network

how to correctly label the graph elements on the network. Then, we can guarantee to find the
path using a post-processing approach. We assessed the performance of our ML framework
and Dijkstra algorithm to find the shortest possible route, Achieved results show that our ML
framework is scalable which means the model obtains nearly optimal and reasonable
performance with test graphs twice as large as the training graphs. Additionally, the proposed
algorithm has a linear temporal complexity whereas the Dijkstra algorithm, a well-known and
fast criterion, has a complexity of N. log 𝑁 order. In other words, the larger the network would
be, the longer computational is used by Dijkstra algorithm. While the proposed algorithm was
faster for large networks and offers better performance. As the results show, this approach can
be used for routing in large telecommunication networks and get the shortest possible path with
good speed and accuracy.

50

51

Bibliography

[1] Fatemeh Salehi Rizi,Joerg Schloetterer,Michael Granitzer, "Shortest Path Distance
Approximation using Deep learning Techniques," arXiv, vol. 1, 12 Feb 2020.

[2] Hong Qua, Simon X. Yang, Zhang Yi, Xiaobin Wang, "A novel neural network method
for shortest path tree computation," Elsevier, June 2012.

[3] Fernando Michel Tavera, "Dijkstra's Shortest Path Algorithm," no. University of
Mexico (UNAM).

[4] William J. Cook, William H. Cunningham,William R. Pulleyblank Alexander,
Schrijver, "Combinatorial Optimization," ISBN 0-471-55894-X, September 18, 1997.

[5] Jiyang Dong, Junying Zhang, "Neural Network Based Algorithm for Multi-Constrained
Shortest Path Problem," Springer-Verlag Berlin Heidelberg, p. 776–785, 2007.

[6] Woo Young Kwon, Il Hong Suh, and Sanghoon Lee, "SSPQL: Stochastic Shortest
Path-based Q-learning," International Journal of Control, Automation, and Systems, pp.
328-338, 2011.

[7] Peter W. Battaglia, Jessica B. Hamrick, et al, "Relational inductive biases, deep
learning, and graph networks," arXiv, vol. 3, October 2018.

[8] Introduction to Machine Learning, The Wikipedia Guide.

[9] Amgad Madkour, Walid G. Aref, Faizan Ur Rehman, Mohamed Abdur Rahman, "A
Survey of Shortest-Path Algorithms," May 8, 2017.

[10] Gori, M., Monfardini, G., and Scarselli, F., "A new model for learning in graph
domains," Proceedings of the International Joint Conference on Neural Networks
(IJCNN), vol. 2, pp. 729-734, 2005.

[11] Paul Almasan, José Suárez-Varela, et al, "Deep Reinforcement Learning meets Graph
Neural Networks: exploring a routing optimization use case," arXiv, vol. 2, 14 Feb
2020.

52

[12] "https://github.com/deepmind/graph_nets," [Online].

[13] "https://ai.stackexchange.com/questions/5728/what-is-the-time-complexity-for-training-
a-neural-network-using-back-propagation," [Online].

[14] "Computational resources provided by HPC@POLITO.," which is a project of
Academic Computing within the Department of Control and Computer Engineering at
the Politecnico di Torino., [Online]. Available: (http://hpc.polito.it).

