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Summary

Additive Manufacturing (AM) is a cutting-edge technology that permits the fabri-
cation of mechanical parts characterized by very complex geometries and provides
also good mechanical properties to final products. However, when the component
to be produced is small-sized and high-detailed AM still presents some limitations.
In particular, lattice structures produced by AM show dimensional inaccuracies
compared to the designed CAD model, so the component is compromised also from
a structural point of view. Thus, there is a substantial discrepancy between the
mechanical properties of the designed lattice structure and the fabricated one.
In an accurate design process, this difference cannot be neglected: this paper
explores which are the most common defects introduced by AM and how they affect
mechanical behavior. Furthermore, this work aims to create a simulation model
able of including the fabrication imperfections to have a prediction of mechanical
properties of the component closer to reality. Since these fabrication defects strongly
depend on the design feature of every single strut, the simulation model has been
developed through a script in Matlab which in turn generates a parametric code to
be run in ANSYS APDL.
This study also proposes a "Design of Experiments" to detect correlations between
geometrical and mechanical properties of lattices. Thanks to this approach it has
been designed an auxetic lattice thought to substitute a honeycomb in a typical
sandwich structure. Lastly, the discrepancy between the mechanical properties of
the designed structure and those predicted for a fabricated one has been highlighted.
So, to close this structural gap, an optimization of the structure has been proposed.
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Chapter 1

Introduction

Cellular solids represent a class of materials that are particularly appreciated in the
engineering fields: their high strength to weight ratio make these materials very
suitable for structural applications. Furthermore, with the advent of cutting-edge
fabrication processes as Additive Manufacturing, these materials are becoming
increasingly used in several fields, such as biomedical, automotive, and aerospace.
Unlike other materials, they are unique in the customizability of mechanical prop-
erties. Since they are made of a series of cells, it has been noticed that there
is a relationship between geometrical features of the latter with the mechanical
properties of the whole designed structure.
The first cellular solids that appeared in engineering applications were 2D dimen-
sional ones and the most famous are certainly honeycomb structures. However,
nowadays manufacturing technologies permit to build structures with very complex
geometry without affecting the production costs. So, as the years go by engineering
designers try to develop continuously more sophisticated structures with the main
objective of optimizing the desired mechanical properties reducing as much as
possible the weight of the overall component. For this reason, many bidimensional
and three-dimensional cellular solids characterized by different topologies have been
developed.
In particular, 2D cellular solids present the alignment of cells only in two dimensions,
while the third dimension is built by extruding the cell walls of the unit cells. The
turning point has been reached when Additive Manufacturing allowed industries to
substitute the cell walls with struts, providing thus even the possibility to line up
the unit cells along with the third dimension. This development allows the designer
to build even lighter structures, the so-called non-stochastic lattice structures.
On the other hand, the geometrical intricacy of the latter requires a higher level of
accuracy of manufacturing processes. Even if this challenge is largely matched by
Additive Manufacturing technologies when a thin-struts lattice must be created,
many geometrical inaccuracies can occur during the fabrication process which in
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turn can compromise the mechanical properties of the designed structure, thus its
suitability for the intended application. For this reason, an accurate prediction of
mechanical properties becomes difficult.
For this purpose, simulation models are generally processed by Finite Element
analysis from the CAD model of the designed structure, thus by using solid elements.
Even if this approach is quite accurate, it can be too time expensive, especially
when geometrical variations caused by manufacturing processes are tried to be
reproduced.
This work aims to create a simulation model made of beam elements that can also
include geometrical variations for an accurate prediction of mechanical properties
of the final product. Since this work has been carried out at ACCIS (Advanced
Composites Collaboration for Innovation and Science) of the University of Bristol,
a lattice structure for the replacement of a honeycomb one has been taken as a
case study. Considering that this structure has been thought to be produced via
EBM the original material of the honeycomb, stainless steel 316L, is kept the same
also for the lattice structure. Thus, this paper does not focus on the selection of
the most suitable material to be used for the optimal structure.
Furthermore, the design phase must optimize the mechanical properties only along
one direction so the advantages to use an auxetic configuration are also studied. The
most suitable structure has been figured out by adopting a Design of Experiment,
in the way to make clear also the correlations existing between the geometrical
parameters of the cells.
It is worth saying that this work has not been verified experimentally so this
numerical investigation only aims to give modeling and design methods, and to
highlight the issues can come from an Additive Manufacturing process.
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Chapter 2

Cellular solids

2.1 Introduction

Nature has always been inspiring for humans because it offers a wide variety of
different materials characterized by particular mechanical properties. Among all of
them, there is a class of material deserving special attention, cellular solids. Their
name derives from the Latin word "cella", which means a small compartment. This
is the perfect definition to give an idea of how cellular solids are shaped because
they appear in fact as a series of packed cells forming a whole structure.
Despite their unusual geometry, cellular materials are quite easy to be found in
nature and historically they always represented a precious resource for the human
being: glaring examples are wood and cork. For instance, the former was used by
Egyptians to build pyramids while the latter by the ancient Romans to make caps
for wine bottles. As can be deduced from the first example, these kinds of materials
show high structural capability against a low weight if compared to conventional
material used in structural applications. This peculiarity meets exactly the modern
engineering challenges, decrease of weight, and this is the reason why Man started
to create cellular solids artificially.
The series of unit cells can develop in two dimensions as the case of honeycomb
structures or in three dimensions as for foams. The latter in turn, can be open-celled
if the unit cells are made only of edges and closed-celled if the faces of cells are
wall-like.

As imagined so far, cellular solids can be named so only if the material shows a
minimum level of porosity. In particular, this parameter is measured in terms of
relative density RD = ρ/ρs, where ρ is the density of the cellular solid and ρs is the
density of the bulk material from which cellular solid is made. Thus, to satisfy the
announced minimum level of porosity, RD should be lower than 0.3. From what it
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has been said so far it is clear that the stiffness of cellular solids is much lower than
that of material they are made of. However, they are appreciated because of their
lightness. Furthermore, their high porosity, in particular for foams, turned out to
be a great advantage in terms of absorption properties. Nowadays they are widely
used as acoustic and thermal insulators but also as impact absorbers. Despite all

(a) "Two-dimensional honeycomb" (b) "three-dimensional foam with open cells"

(c) "three-dimensional foam with closed cells"

Figure 2.1: Cellular solids [1]

these advantages, foams are not preferred for structural applications because since
their geometry cannot be accurately controlled, their mechanical properties cannot
be customized and this represents a big limit.
As a consequence, engineers have always tried to develop personalized cellular struc-
ture but their geometric complexity has represented an obstacle for the fabrication
process. With the advent of Additive Manufacturing (AM) the target of geometric
complexity could be fabricated has changed radically and in turn, it has brought
a revolution also in the way to conceive cellular solids. Unit cells can indeed be
repeated in two and three dimensions with the possibility to give them the desired
shape without affecting production costs.

4
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In fact, nowadays man-made cellular solids are widely used in aerospace, automo-
tive, and biomedical applications. However, the target of reducing the weight of
the components is continuously pushed further leading thus to the necessity of
designing even more complex geometries.
In conclusion comparing their enormous applicative potential and their current
effective number of applications, further research on them has still to be made.

2.2 Unit cells
Cellular solids are interesting to study because their mechanical macro-properties
strictly depend on geometrical features. In particular, cell shape is the most rele-
vant factor that determines the mechanical properties of the overall structure. For
example, honeycomb structures show isotropic properties because of the symmetry
provided by the hexagonal unit cell. Irregularly shaped cells give anisotropy instead.
Thus, two structures made of the same bulk material but with two different shapes
of cells show certainly different mechanical properties. Many examples are reported
in Figure 2.2. Furthermore, the shape of cells is not sufficient to roughly predict
how mechanical properties are distributed along with different directions but the
way they are positioned respect to each other, thus the topology, Figure 2.3, is also
an important feature. So, a multitude of geometric solutions makes cellular solids
very attractive from a design point of view.

Figure 2.2: Common two-dimensional unit cell geometry [1]

It is worth saying that cells characterizing a cellular solid may not be all the
same. When a structure presents all identical cells each of them is called unit cell, if

5
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Figure 2.3: Common two-dimensional topologies [1]

not they are simply named cells. The first case is more common for two-dimensional
cellular solids while the second one is more attributable to three-dimensional cellular
solids as foams.

However in recent years, improvement in the accuracy of manufacturing tech-
nologies is allowing to design uniform three-dimensional cellular structures that
take the name of lattices. This latter is built by replicating a three-dimensional
unit cell, shown in Figure 2.4, in the space. These kinds of structures differ from
honeycomb-like ones because they evolve in the third dimension through intercon-
nected struts rather than cell walls. This solution favors even more material saving
and reduction of weight as well.

Figure 2.4: Common three-dimensional unit cells [1]

6



Cellular solids

2.3 Mechanics
So far it has been seen that cellular solids can have different macro-mechanical prop-
erties depending on shapes of cells and topology of the structure. If the problem is
analyzed from a microscopic point of view, cells with dissimilar geometries can even
undergo completely different deformation mechanisms. On the base of this assertion,
Deshpande et al [2] proposed a classification of lattice structures according to their
dominant deformation mechanism: bending-dominated and stretching-dominated.
To better understand this categorization it is worth introducing two groups of
interconnected struts, as in Figure 2.5.

Figure 2.5: (a) Mechanism; (b) Structure [2]

If the interconnections of struts are seen as pin-joints, the assembly in Figure
2.5a under loading condition undergoes to kinematic rotations of struts so it does
not have any stiffness, this is called mechanism. On the contrary, the assembly in
Figure 2.5b under load generates reaction forces axially to struts. This is called
stretching dominated structure.
However lattice structures do not have pin-jointed edges but they can be considered
rigid. So if the rotation at the joints is locked, the struts of mechanism in Figure
2.5a start to deform by bending. The so-called bending-dominated structure. While
the structure in Figure 2.5b, even under rigidly connected struts hypothesis, keeps
giving mainly axial deformation.
To univocally determine the deformation mechanism of a 3D structure, Deshpande
et al [2] suggest to refer to the Maxwell stability criterion:

M = b− 3j + 6 (2.1)
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As they explain this "algebraic rule sets out the condition for a pin-jointed frame of
b struts and j frictionless joints to be both statically and kinematically determinate
ie. to just be rigid". Effectively this rule is not revealing if the structure is bending
or stretching dominated but only whether a set of non-rigidly interconnected struts
is a mechanism or a structure. However, once the category of the assembly is
identified, it is possible to determine also the dominant deformation mechanism
just by introducing the rigidly-jointed condition.

To give a mathematical interpretation to the problem, it is sufficient to analyze
Eq.2.1:

• M < 0 the pin-jointed assembly is a mechanism. So under rigidly-jointed
condition, it turns out to be a bending dominated-structure

• M >= 0 the pin-jointed assembly is a structure. So under rigidly-jointed
condition, it turns out to be a stretching-dominated structure

Just for sake of clarity, let’s make a brief overview to spot the mechanical differences
between these two types of structures.

Bending-dominated structure

Bending dominated structures are characterized by particular topological config-
urations that favor the bending of cell edges. An example of open-cell foam is
reported in Figure 2.6. The just mentioned image shows how axial reaction forces

Figure 2.6: Open-cell foam [3]

of struts are exerted perpendicularly each other, then forcing the cell edges to bend.
Thus the force F exerted perpendicularly to a strut of length L, with squared cross
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section of side t, and made of a specific material with Young modulus Es produces
a deflection of δ:

δ = FL3

EsI
(2.2)

where I = t4/12 is the area moment of inertia of struts. Furthermore Ashby [3]
also found a correlation between the elastic modulus of the lattice and its relative
density:

E

Es

∝ (RD)2 (2.3)

If the analysis is extended to all deformation field of the cell until the collapse is
reached, Figure 2.7 shows the large plateau a bending-dominated structure can
provide in the field of plastic deformations. Thus, considering the high deformation
capability this kind of structure is very suitable for energy absorption applications.

Figure 2.7: Stress-strain plot for bending dominated lattice [3]

Stretching-dominated structure

The elements characterizing a stretching-dominated structure deform mainly by
stretching or compression. An example is provided in Figure 2.8. Here, there is no
flexural displacement δ but Young’s modulus has been found to have the following
correlation with RD:

E

Es

≈ 1
3(RD) (2.4)

This time the most important mechanical feature can be noticed in Figure 2.9 is
the high stiffness and strength shown in elastic field.
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Figure 2.8: Stretching-dominated unit cell [3]

Figure 2.9: Stress-strain plot for stretching dominated lattice [3]

Comparison between stretching-bending dominated structures

In conclusion, it is possible to say that stretching-dominated structures show a
higher strength and onset of plasticity compared to bending-dominated structures.
But, since the former withstand very high stresses, when they reach buckling or
struts collapse the whole structure undergoes a sudden softening effect. So this
behavior is not suitable for high energy absorption application.
Furthermore the relationships found in Eq. 2.3 and 2.4 are plotted in Figure 2.10
in a logarithmic scale.
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Figure 2.10: Relative elastic modulus plotted against RD on a logarithmic scales
[3]

Auxeticity

So far, it has been clearly said micro-deformation mechanism of cell edges affects the
macro-mechanical properties of all structures. The relationship between microscopic
properties and macroscopic ones is correlated only to geometrical features.
The difference between micro and macro is marked when unit cells are built in
the way to give "auxeticity" to the structure. The term "auxetic" derives from the
Greek word "auxetikos" which means "that increases" and it has been introduced
in the literature of cellular solids for the first time in 1991 by Prof. Evans from
the University of Exeter [4]. As shown in Figure 2.12b, when an auxetic body is
under stretching load it produces an elongation also in the transversal direction.
Thus the auxeticity is strictly related to the macroscopic deformation behavior
of a determined body. For this purpose, it is possible to define a coefficient that
measures the grade of deformability of transversal cross-section respect to that of
the section lying on the plane parallel to the loading direction. This is the Poisson’s
ratio:

ν = −εtrans

εload

(2.5)
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(a) Response of a conventional material
to stretching(above) and compression
(below) loads

(b) Response of an auxetic material to
stretching(above) and compression (be-
low) loads

Figure 2.11: Deformation mechanisms of a conventional (a) and auxetic material
(b)

where εtrans is the transversal deformation and εload is the deformation along loading
direction. Furthermore, for isotropic material, it can link Elastic E and Shear
modulus G as follows:

E = 2G(1 + ν) (2.6)

So far, it has been clearly said micro-deformation mechanism of cell edges affects the
macro-mechanical properties of all structures. The relationship between microscopic
properties and macroscopic ones is correlated only to geometrical features.
The difference between micro and macro is marked when unit cells are built in
the way to give "auxeticity" to the structure. The term "auxetic" derives from the
Greek word "auxetikos" which means "that increases" and it has been introduced
in the literature of cellular solids for the first time in 1991 by Prof. Evans from
the University of Exeter [4]. As shown in Figure 2.12b, when an auxetic body is
under stretching load it produces an elongation also in the transversal direction.
Thus the auxeticity is strictly related to the macroscopic deformation behavior
of a determined body. For this purpose, it is possible to define a coefficient that
measures the grade of deformability of transversal cross-section respect to that of
the section lying on the plane parallel to the loading direction. This is the Poisson’s
ratio:

ν = −εtrans

εload

(2.7)

where εtrans is the transversal deformation and εload is the deformation along loading
direction. Furthermore, for isotropic material, it can link Elastic E and Shear
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(a) Response of a conventional material
to stretching(above) and compression
(below) loads

(b) Response of an auxetic material to
stretching(above) and compression (be-
low) loads

Figure 2.12: Deformation mechanisms of a conventional (a) and auxetic material
(b)

modulus G as follows:
E = 2G(1 + ν) (2.8)

Furthermore, it must be said that ν can take values between −1 and 1 and it
indicates auxeticity when it reaches negative values.
Now that the macroscopic auxetic behavior is clearly explained, it is interesting
to observe what can produce this peculiar deformation mechanism. This work
is focused on cellular solids so let’s see how this class of material can undergo
auxeticity.
Looking at the honeycomb structure illustrated in Figure 2.13a, it possible to
notice that the whole structure shows a typical deformation behavior. While if the
cell struts are set as re-entrant as in Figure 2.13b, the structure behaves like an
auxetic material. So it is evident that the orientation of cell struts determines the
auxeticity of the whole structure. Obviously, the one shown in Figure 2.13 is not
the only solution and actually, the negative Poisson’s ratio can be achieved by using
a multitude of different unit cells. Many simple two-dimensional configurations are
shown in Figure 2.14.
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Figure 2.13: Regular honeycomb (a) and an auxetic one (b)

Figure 2.14: Two dimensional auxetic topologies: re-entrant hexagonal (a),
arrowhead (b), and chiral (c) [5]
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Chapter 3

Manufacturing processes

Lattice structures are characterized by very complex geometrical architectures, so
a very high resolution is required to fabricate them adequately. The most cutting
edge technology able of producing parts regardless of their particular geometrical
shapes is AM.

3.1 Additive Manufacturing
Additive technologies are defined as processes that create three-dimensional parts
by depositing material layer by layer. This manufacturing procedure allows the
production of components without process planning. In particular, through AM it
is possible to fabricate parts by following mathematical models implemented from
Computer-Aided Design (CAD) data.
This technology has made its debut in 1986 when Chuck Hull discovered that "by
exposing UV-curable materials to scanning laser, solid polymers patterns could be
produced" [6]. So he invented the first 3D printing technology, Stereolithography
(SL) (a schematic representation is shown in Figure 3.1). In the beginning, it was
used for "Rapid Prototyping" because it could work only polymeric materials but
this solution was appreciated by industries because prototypes production allowed
them to give shape to ideas and provide evaluations during the development phase.
This way of building objects has been continuously improved over the years so many
new manufacturing machines have been invented and manufacturing processes
optimized. In particular, nowadays 3D printing is even able to create metallic and
ceramic parts with good mechanical properties. So the rule of Additive Manufac-
turing passed from a prototyping procedure to an actual fabrication process of final
products.
The advantages taken from this change are several and as can be observed in
Figure 3.2 the most important is the ability to accomplish very complex geometries
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Figure 3.1: Schematic diagram of SL [6]

without increasing fabrication costs. On the other hand, this technology can not

Figure 3.2: Comparison of fabrication costs between Conventional Manufacturing
(CM) and AM technologies as a function of geometrical complexity and number of
the parts to be produced

replace completely the CM technologies because it has two big drawbacks. The
first one is the machine speed is still limited, so the production process is time
expensive. The second one is the possibility to handle only a few materials and
most of the time, the addition of new material with an AM technology is more
expensive than doing it with conventional technology.
So, in summary, Additive Manufacturing is very suitable for the fabrication of
small-sized components with very complex geometry but it is not satisfying for a
long series of production because too slow.
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As indicated by ASTM there are several layer-by-layer building-based processes
such as Vat Photopolymerization, Powder Bed Fusion, Extrusion-Based, Material
Jetting, Binder Jetting, Sheet Lamination, Direct Energy Deposition, and Direct
Write. All the listed AM processes have different advantages and limitations. So
the choice of the correct fabrication process is strictly related to the material that
must be used, the geometrical resolution required, and the desired mechanical
properties of the final product.
However, this work aims to design a lattice structure made of steel so only an
overview of metal AM technologies is presented.

3.2 Powder Bed Fusion
Powder bed fusion (PBF) is one of the most used AM processes. In the beginning,
this technology has been invented for the production of polymeric parts, with the
Selective Laser Sintering machine (SLS), but later it has been developed the Metal
Laser Sintering (MLS) machine able of treating metals.
All PBF technologies follow the same building procedure: the selective creation of
micro-fusions between powder particles through a thermal source and the deposition
of a new powder layer on a powder bed. A scheme of a generic PBF is represented
in Figure 3.3 The production process consists of many steps:

Figure 3.3: Scheme of PBF process [6]

• A layer of powder particles is brought from feed cartridges to the build platform
by means of a counter-rotating powder leveling roller
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• CO2 Laser selectively heat up particles of powder to create micro-fusion
between each other

• the building platform is lowered down by the thickness corresponding to that
of the desired layer

this sequence is repeated many times as needed to produce the all three-dimensional
component.
It is worth saying that the quality of the final product depends on the conditions
at which the fabrication process is carried out. These can be regulated by setting
adequately the process parameters. These latter are many and they are related
mainly to the thermal source, powder, scanning system and temperature. They are
not completely independent of each other so an optimal set up should be found.
After the building process, post-processing is necessary to clean up the part from
the unbound powder that supports the structure during the fabrication.
Laser Powder Bed Fusion (L-PBF) can produce very complex geometries with a
high-resolution level and it is a very flexible technology because it is compatible
with a multitude of materials, for example, all weldable metals.
Another pro of PBF is the reduction of waste material since the support of the
structure during the building phase is represented by the same powder that in turn
can be re-used.

Among the most diffused PBF technologies, MLS and Electron Beam Melting
(EBM) are those deserving particular attention.

3.2.1 Metal Laser Sintering
MLS follows perfectly the PBF process. The typical machine performing MLS is
built the same way of that represented in Figure 3.3 where the thermal source
emits a laser beam which is focused by a set of lenses and projected on powder
bed through scanning mirrors.
The materials mainly processed by this process are Alluminium, Titanium, Cobalt,
Chrome, and Nickel alloys and steel. Furthermore the high level of resolution of
this technology provides to the final product good mechanical properties. In fact,
it is widely used to create biomedical implants.

3.2.2 Electron Beam Melting
Electron Beam Melting (EBM) has been commercialized for the first time in 2001
by Arcam AB and today it is a widely used process. A representation of an EBM
machine is reported in Figure 3.4 Unlike other PBF technologies, EBM uses an
electron beam to melt the metal powder particles. This means that it can process
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Figure 3.4: "Schematic of an EBM apparatus"[6]

only conductor materials, like metals.
On the other hand, except for the system providing the thermal source and the
environment working condition, the EBM technology performs the same building
steps of a PBF process: metal powder is distributed on a building table and it is
selectively hit by an electron beam. Specifically, the electron beam is generated by
heating a filament to 2500°C. When a voltage difference is applied to the filament,
it reacts emanating electrons which in turn are accelerated by an anode. Then, a
magnetic lens makes the electrons converging in a beam and it even controls its
direction. The electron beam can develop up to 4kW of power. When the electrons
point the powder layer, the metal particles start to heat up by the absorption of
photons. So the kinetic energy of electrons is transformed in thermal energy for
powder. To make this process possible it is necessary to conduct electric current.
This is the reason why only metal powder can be treated, thus EBM is not suitable
for the production of polymeric components.
The main peculiarity of EBM is that it builds the part in a vacuum chamber and
this takes a lot of advantages. In particular, this protected environment allows
the powder to not be subjected to oxidation so the exceeding powder removed in
post-processing can be used again. Thus, material saving.
Since the Electron beam generation occurs at high-efficiency and the beam can
be controlled very rapidly, this technology is also time-saving. However, due to
many conductive problems that can happen in particles, the component produced
by EBM is not so high-detailed as those produced by MLS. Also here, to refine

19



Manufacturing processes

the quality of the product post-processing operations can be made, like machining
operations or heat treatments.
Despite all these pros, an EBM machine is very expensive so this technology is
restricted only to companies having a huge amount of money to invest in it.
Just to give a clear panoramica the main differences between MLS and EBM are
spotted in Table 3.1

Table 3.1: "Differences between EBM and MLS" [6]

Characteristic Electron beam melting Metal laser sintering
Thermal source Electron beam Laser
Atmosphere Vacuum Inert gas
Scanning Deflection coils Galvanometers
Energy absorption Conductivity-limited Absorptivity-limited
Powder preheating Use electron beam Use infrared or resistive heaters
Scan speeds Very fast, magnetically driven Limited by galvanometer inertia
Energy costs Moderate High
Surface finish Moderate to poor Excellent to moderate
Feature resolution Moderate Excellent
Materials Metals (conductors) Polymers, metals and ceramics
Powder particle size Medium Fine

3.3 Directed Energy Deposition

Directed Energy Deposition (DED) is a manufacturing process that uses a focused
heat source to melt powder or wire which is straight deposited, through a nozzle,
in a specific point of the building basement. As stated by Gibson et al [6]: "DED
processes are not used to melt a material that is pre-laid in a powder bed but to
melt materials as they are being deposited."
Even if this technology can process different materials, it is mainly used to treat
metals. In this last case this system is referred as "metal deposition". Usually this
process is used to repair existing components or to produce in series different parts,
because these operations can not be performed with PBF technologies. However
it is also possible to produce three-dimensional complex geometries, but support
material and a multi-axis deposition head are required.
Lastly, in most laser applications there is a moving system allowing relative motion
between beam and part. Usually, it is preferred to move only one of the two.
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Figure 3.5: Representation of a laser powder DED system [6]

3.4 Influence of manufacturing process on lattice
structures

As seen so far, cellular solids can be developed along two or three dimensions. In
both cases, the overall geometry may be very complex so cellular solids are very
difficult to fabricate through conventional solutions. This is the main reason why
the use of cellular solids is spreading across the engineering world for a not long
time.
With the advent of Additive Manufacturing the fabrication of lattice structures is
becoming increasingly easier. As a consequence, this technology is the most used
approach to fabricate cellular solids, even because it does not need complicated
process planning. However, sometimes lattice structures can have a too complex
geometry and require an exaggerated level of accuracy, especially in case of micro-
structures.
The high level of geometric complexity and some limitations of manufacturing
processes make a fabricated lattice structure predisposed to present inaccuracies.
It has been realized that these imperfections caused by fabrication operations alter
the mechanical properties of the manufactured product. Thus the mechanical
properties of a fabricated lattice structure can differ from those predicted in the
design phase performed in a simulation environment. Indeed, these deviations can
make the manufactured component not suitable for the desired application.
For this reason, it is worth doing an overview of how AM fabrication may alter
geometrically the final product respect to the CAD model. Since this work aims to
design a metallic lattice structure, the review focuses on PBF processes: MLS and
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EBM.

3.4.1 Lattice structures fabricated by PBF
Metallic lattices produced by PBF are prone to geometrical alterations of the
structure mainly because of the thermal cycle the metal powder particles undergo
during the fabrication process.
So the quality of the final product is dependent on the process parameters and a
classification of them can be found in the paragraph dedicated to the introduction
to PBF processes.
As a matter of fact, thermal source parameters are linked to the quality fusion
of powder particles. Scan parameters determine how particles are fused. Powder
parameters affect the absorption capability of particles. Temperature-related pa-
rameters influence the repeatability of the manufacturing process [7]. The main
variations that a manufactured lattice shows are dimensional inaccuracies, porosity,
surface irregularities.
Considering the high-detailed requirements of lattice micro-structures and the
accuracy limitations of many PBF solutions, dimensional inaccuracy is one of the
most diffused variations caused by fabrication processes. Dimensional variations
appear differently depending on the considered lattice features. For example,
struts undergo strong dimensional imperfections. One reason why this occurs is
attributable to the sensitivity of metallic particles to rapid temperature changes.
In particular, the high cool-down rate of the melted pool can cause shrinkages
and consequent deviation of struts (Figure 3.6a). Another reason could be the
inclination of the strut respect to the building direction. One of the first studies
on this effect has been conducted by Cansizoglu et al. by using EBM technology
[8]. As illustrated in Figure 3.6b, they attributed the phenomenon to the overlap
of layers. If the thickness of deposited material is not so small compared to the
designed strut dimension, rough struts can be obtained. The smaller is the overlap
between layers the smaller is the resistant strut section with a consequent loss of
mechanical properties. So to not compromise too much the strength of the strut,
they suggest to never have a strut inclination angle lower than 20°.
A deeper study on characterization of struts fabricated by EBM has been carried
out by M.Suard [10] who pointed out not only the dependency of the variation of
the strut diameter on the inclination angle but even its section shape, Figure3.7.
Another important geometrical issue, instead, can be spotted in the vicinity of the
nodes. Since it is the interconnection point of the struts, here an extra deposition
of material commonly occurs as in Figure 3.6a.

Porosity appears in the form of voids with a typical size of the order of µm. Usually,
pores are generated as a consequence of gas trapping during the solidification phase
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(a) Focus on localized dimensional
inaccuracies [9]

(b) Schematic of a inclined strut fabricated by
EBM [8]

Figure 3.6: Representation of typical dimensional inaccuracies

(a) "Difference between designed (blue) and fabricated (green) strut"

(b) Strut shape variation against inclination angle

Figure 3.7: Dimensional struts inaccuracies for different inclination angles [10]

of the fused metallic material, of initial imperfections of the powder particles, and
of scarce provided thermal energy. As illustrated in Figure 3.8, Amani et al. [11]

23



Manufacturing processes

noticed that for a thin-strut lattice produced by Selective Laser Melting (SLM)
, pores dimensions are larger in the nodes because of lack of fusions and smaller
in the struts because of entrapped gas. Furthermore, these voids represent stress
concentrations and the may become very dangerous under cyclic loads because they
promote nucleation of cracks that can drastically reduce the fatigue life. The last

Figure 3.8: Porosity of thin-strut lattice produced by SLM [11]

geometrical inaccuracy appears as surface roughness. Even this problem is related
to the melt pool instability and it has a negative effect on the mechanical properties
of the structure. So far, it has been seen how different variations a designed lattice
structure undergoes during its fabrication process. Actually, this brief overview is
supposed to shed a spotlight on the causes of mechanical discrepancies that there
are between fabricated lattice structures and designed ones.
Since the AM costs are not so small, it is not convenient to detect the actual me-
chanical properties of a fabricated lattice experimentally. For this reason, nowadays
it is diffused to develop simulation models that can include most of the fabrication
variations to correctly predict the properties of the final product.
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Chapter 4

Structure modeling

4.1 Introduction

Nowadays, mechanical simulations are becoming increasingly important for en-
gineering design processes. Thanks to the availability of powerful computers,
simulation software allows the user to run a multiphysics analysis of a product
saving a load of time and costs for industries. In this way it is possible to give
shape to new products, to verify the feasibility of the prototype and where it is
possible, to detect how it is improvable. In particular, it allows the engineering
designer to understand the consequences of a possible modification to the initial
model in terms of performance.
In conclusion, an accurate detail design phase permits to gather a lot of information
about the product, from structural to manufacturing point of view. In particular,
when a design team needs to face with lattice structures, where geometrical features
strongly affect mechanical properties, simulation analysis is essential. For this
reason, a simulacrum to process a Finite Element (FE) analysis is needed. In
particular, when an engineer designs a lattice structure needs to deal with two
issues. The first one is related to the complexity of lattice geometry because usually
it is very detailed and running structural analyses on the CAD model could be
too computationally expensive. The second one is about manufacturing varia-
tions. When lattice structures have very small-sized struts, accuracy limitations
of manufacturing processes cause dimensional imperfections which substantially
penalize the mechanical properties of the component. For this reason, an efficient
simulacrum is needed.

25



Structure modeling

4.2 Finite Element approach
The most simple way to approach a mechanical problem is that of adopting the
continuum mechanics theory. It is well known that at the atomic level all bodies
are made of an assemblage of particles in energetic equilibrium with each other.
Considering that usually mechanical problems focus on studying macroscopic
behavior of materials, the just explained microscopic scenario is simplified by
continuum mechanics. In fact, as suggested by the name, the main assumption
of this theory is to suppose the nature of a solid as a continuum. In this way,
by applying physical relations like conservation of mass, momentum, or by doing
an energy balance it is possible to describe the behavior of a solid or liquid body
through partial differential equations (PDE). However, this approach is not suitable
for complex problems because they can not be solved by means of analytical models,
thus by means of calculators.
In order to make a PDE based problem analytically solvable, many discretization
methods have been invented. The one that has found the most success is definitely
the Finite Element Method (FEM).
The transition from a PDE based problem to an analytical one can be done in a
few and simple mathematical steps. First of all, a functional integral in a finite
domain is required and usually, the principle of virtual work is the most used.
Later, the finite domain must be discretized by means of a shape function which in
turn must be continuous and n times derivative depending on the element, able
to represent rigid motion, constant strain, and to ensure compatibility between
adjacent elements. The most used shape functions used in FEM are polynomial
because with them it is very easy to perform mathematical operations. The last
step is to substitute the shape function in the functional integral and a matrix
problem is obtained.

4.2.1 Preliminary considerations
Several engineering applications require high-strength and lightweight structure,
from aerospace components to medical implants. For this purposes lattice structures
are particulartly appriciated. First of all because by doing minimum modifications
of structure geometry it is possible to vary the overall mechanical properties. Since
they are mainly produced by Additive Manufacturing, the increase of geometrical
complexity is a costless improvement.
Generally speaking, an engineer designing a lattice structure is interested only on
the equivalent mechanical properties, thus those of the whole structure. But the
last ones are strongly affected by deformation mechanism of the unit cell. So micro-
deformation mechanisms are strictly related to deformation of the macro-structure.
In fact, if a lattice structure is homogeneously built, mechanical properties of the
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whole structure are predictable by doing test on a single unit cell. However care
must be taken because this assertion is only valid when lattice structure is large
enough to neglect all the alterations due to boundary conditions.
Now that the relation between micro and macro is highlighted, it is easy to under-
stand how accurate the model should be to detect the right outcomes.
The most accurate model would be a model made by solid elements because it is
the closest to an ideal 3D model. However, this solution i very computationally
expensive and time represents a high cost for a company. In order to optimize the
available time it is possible to create slightly less accurate models but with a much
shorter running time. In order to achieve this objective, a model made of beam
elements can represent a good compromise.
In this chapter all the design steps are reported even to better understand all the
micro deformation mechanisms must be taken into account. Several engineering
applications require high-strength and lightweight structures, from aerospace com-
ponents to medical implants. For these purposes, lattice structures are particularly
appreciated. First of all because by doing minimum modifications of structure
geometry it is possible to vary the overall mechanical properties. Since they are
mainly produced by Additive Manufacturing, the increase of geometrical complexity
is a costless improvement.
An engineer designing a lattice structure is interested only on the equivalent me-
chanical properties, thus those of the whole structure. But the last ones are strongly
affected by the deformation mechanism of the unit cell. So micro-deformation
mechanisms are strictly related to the deformation of the macro-structure.
In fact, if a lattice structure is homogeneously built, mechanical properties of the
whole structure are predictable by doing tests on a single unit cell. However, care
must be taken because this assertion is only valid when the lattice structure is
large enough to neglect all the alterations due to boundary conditions.
Now that the relation between micro and macro is highlighted, it is easy to under-
stand how accurate the model should be to detect the right outcomes.
The most detailed model would be a model made by solid elements because it is
the closest to an ideal 3D model. However, this solution is very computationally
expensive and time represents a high cost for companies. To optimize the available
time it is possible to create slightly less accurate models but with much shorter
running time. To achieve this objective, a model made of beam elements can
represent a good compromise for the representation of lattice structures.
In this chapter all the design steps are reported even to better understand all the
micro deformation mechanisms that must be taken into account.
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4.2.2 Choice of a simulation software
Before starting to think about the model, simulation software should be chosen.
This is a very important step because it represents the environment allowing the
creation of the model and the execution of mechanical tests on it. So, depending
on the desired design approach a particular software can be more or less suitable.
Since the purpose of this work requires a high level of editability of the structure,
Ansys APDL results to be the most appropriate. As stated on ANSYS website
[12] "Regardless of the type of simulation, each model is represented by a powerful
scripting language . . . the Ansys Parametric Design Language (APDL). APDL is
the foundation for all sophisticated features, many of which are not exposed in the
Workbench Mechanical user interface. It also offers many conveniences such as
parameterization, macros, branching and looping, and complex math operations".

4.3 Choice of elements
As already stated, the most precise way to represent a lattice structure would be
a model built with solid elements but a less computationally expensive model is
needed. So to obtain the optimal model, a model of solid elements can be pointed
out as a benchmark.
The idea is to create a model with beams but before identifying the best solution
to be adopted it is better to do a brief overview of the elements available in the
ANSYS library and the theory that is behind them.

4.3.1 Euler-Bernoulli beam
The Bernoulli-Euler beam is the simplest model to describe the mechanics of a
beam. This approach introduces an approximation because it works under the
assumption that deformation caused by shear is negligible compared to that caused
by bending. As a consequence, even under load conditions, the beam cross-section
remains always perpendicular to its neutral axis. However, when a beam has the
main dimension, like the length, much larger than the other, like the thickness, the
results of this model are quite reliable.
In ANSYS, the Bernoulli-Euler beam is represented by beam3 element for two-
dimensions analyses and by beam4 element for three-dimensional environments.

Beam3

beam3 element is only suitable for two-dimensional analyses. Since this element
can only undergo stretching and bending deformations, it is fully descripted by
three degrees for freedom per each node. Making reference to Figure 4.1 it can
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produce two translation displacement, along x and y and a rotational one abou z
axis. Furthermore, its geometry is set by the "real constants" command and the

Figure 4.1: "beam3 element geometry [13]"

features that can be entered are the cross-section area and area moment of inertia,
the height. Then, also the material of which the beam is made must be defined
by the "material properties" option. Since it is a two-dimensional element and the
shear deformation is neglected, for this purpose, only the elastic modulus Ex is
mandatory to be set. Other key-options are available in the ANSYS library but
this work aims to a simplified structural analysis they can be neglected.
Lastly, the solution that the user obtains from this element can be expressed as
"nodal displacements solution".

Beam4

If the simulation model must be developed in a three-dimension environment a
beam with a higher order of degrees of freedom is required. A 3-D elastic beam
adhering to the Euler-Bernoulli theory is identified in the Ansys library as beam4
element, Figure 4.2. This element is defined by at least 2 nodes, a third node
can be optionally entered. Since this element has stretching, torsion, and bending
capabilities, it is provided with six degrees of freedom per node: translations UX,
UY, UZ and rotations ROTX, ROTY, ROTZ along and about x, y, z respectively.
For this element, the necessary geometrical information that should be entered
in the software to represent accurately all the possible deformations are more in
number than those of beam3. So, for the sake of simplicity, they all are listed in
Table 4.1. Material properties, instead, are set through Elastic and Shear moduli
and the density. Other key options are available but they are not relevant for the
work of this paper. Even here, the output can be easily read by nodal displacements.
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Figure 4.2: "beam4 element geometry [13]"

Table 4.1: beam4 Real constants [14]

No. Name Description
1 AREA Cross-sectional area
2 IZZ Area moment of inertia
3 IYY Area moment of inertia
4 TKZ Thickness along Z axis
5 TKY Thickness along Y axis
6 THETA Orientation about X axis
7 ISTRN Initial strain
8 IXX Torsional moment of inertia
9 SHEARZ Shear deflection constant Z
10 SHEARY Shear deflection constant Y
11 SPIN Rotational frequency (required if KEYOPT(7) = 1)
12 ADDMAS Added mass/unit length

4.3.2 Timoshenko beam

Unlike the Euler-Bernoulli theory, Timoshenko has included the deformation contri-
bution due to shear stress. So, this model overcomes many limitations found in the
Euler-Bernoulli beam. For this reason, the Timoshenko beam is the most accurate
model for the study of beam mechanics. However depending on the application,
Euler-Bernoulli still provides a good representation of actual beams behavior, thus
the choice of the element is not so obvious.
In the ANSYS library Timoshenko beam is identified by the beam188 element.
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Beam188

beam188 is a linear, quadratic, or cubic 3-D element and as beam4, it is defined by
two nodes and provided with the same six degrees of freedom, Figure 4.3. This

Figure 4.3: beam188 Element geometry [13]

element becomes much accurate than beam3 or beam4 when the beam model to
be analyzed is characterized by low slenderness. beam188 is a 3D element and
as beam4, it is defined by two nodes and provided with the same six degrees of
freedom.
Furthermore, since this element has the limitation of considering a first-order
shear deformation it is not suitable for a too stout beam. To make an idea of
the difference in results between Timoshenko and Euler-Bernoulli beams, some
values of deflections as functions of the slenderness are listed in Table 4.2. Where

Table 4.2: Ratio between Timoshenko and Euler-Bernoulli deflection against
slenderness [14]

Slenderness Ratio (GAL2/(EI)) δ Timoshenko /δ Euler-Bernoulli
25 1.120
50 1.060
100 1.030
1000 1.003

slenderness ratio is expressed as a function of G shear modulus, A cross section
area, L length of the member and EI flexural rigidity.
From the just observed beam deflections values, it can be noticed how for low values
of slenderness there is a larger discrepancy of results between Timoshenko and
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Euler beam while for high values of slenderness these two models are equivalent.
This highlights that shear contribution becomes negligible with the increasing of
the beam slenderness.

4.3.3 Solid element
As already described in the incipit of this chapter, a model made of solid elements
is the most accurate. Ansys has several types of elements but for the representation
of a beam, a solid45 element is a good option, Figure 4.4.
Usually, solid45 is used for the 3-D modeling of solid structures. The element is
defined by eight nodes and provided with three degrees of freedom at each node:
only translations along x, y, and z.

Figure 4.4: Schematic of solid45 element geometry [13]

How can be understood from the element description, solid45 represents the so
called brick element. Even if it allows a very detailed representation of three-
dimensional parts, the numerical model can become too computationally expensive
because of the high number of nodes must be defined.

4.3.4 Comparison between element types
To understand which is the optimal element to model a lattice structure, the
modeling of the simplest lattice unit is sufficient to be carried out.
As already explained lattice structures can be seen as a series of interconnected
struts where interconnections can be modeled as rigid joints. Considering the
constraints and loading conditions imposed by the continuity of lattice structure
[1], for this analysis it is possible to isolate a half strut rigidly fixed to one end
(left) and guided to the other (right), Figure 4.5.
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F

Figure 4.5: Fixed-guided beam model

For this purpose, the strut made of solid45, beam3 and beam188 elements must
have the same features of the solid beam. The main parameters defining a beam
are:

• L is the length of the strut

• b is the width and t is the height or thickness of the strut, which multiplied
by each other define A, the cross-section area

• I is the Area moment of inertia of the cross-section

• E is the Young’s modulus

For the sake of clarity let express the dependent variables in formulae:

A = b · t (4.1)

and for this investigation the cross-section shape has been considered arbitrarily
rectangular, thus the area moment of inertia turns out to be:

I = b · t3

12 (4.2)

As already shown in the first chapter, a lattice structure can be bending or
stretching dominated and for this reason, a bending and a stretching test on a strut
are required. Processing these two types of test it is possible to observe the strut
deformation mechanism and to make a comparison between the above model built
with different element types.

Stretching test

A stretching test is easy performed by applying an axial, thus horizontal, distribution
of force on the right end of the strut.
Obviously, as can be seen in Figure 4.6, the stretching test produces an axial
deformation and the produced displacement ∆x is determined by the physical
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/\ /
 \Δx

Figure 4.6: Stretching test of a strut

and geometrical properties of the strut. In particular it can be quantified by the
following expression:

∆x = F

kx

(4.3)

Where:
kx = EA

L
(4.4)

kx is the axial stiffness. Actually, this paragraph has been written just for illustrative
purpose beacuse, since the error introduced by the different elements is related only
to shear deformation, the results obtained by the strut built with the three element
types are equivalent. So this investigation assumes meaning in the bending anlysis.

Bending test

To perform a bending test a vertical load is applied on the right end of the strut.
As already said, the solid beam is the benchmark of this study. The parameters

\/

\/

δ

Figure 4.7: Strut under bending load

used to make a comparison between the element types during a bending test are
the flexural rigidity kf and the slenderness α which are defined as follows:

kf = F

δ
(4.5)

α = L

ó
A

I
∝ L

b
(for squared cross section) (4.6)

where F is the vertical force applied on the right-end of the beam and δ is the
vertical displacement produced by the beam under the described loading conditions.
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In order to detect the accuracy of the element types at different levels of slenderness,
this test is repeated many times by keeping constant the cross-section area and
increasing the beam length.
As shown in Figure 4.8, the model built with beam3 elements has a higher flexural
rigidity at low values of slenderness. On the contrary, the strut made of beam188
elements and that of solid45 seem to behave the same way, independently from
the slenderness level.
The different trend of beam3 is mainly because the Euler beam does not consider
any shear deformation which becomes a relevant mechanism when the strut is stout.
Thus, the lower is the level of slenderness and the higher is the stiffening effect
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Figure 4.8: Comparison of flexural behavior between different elements

caused by the beam3 element. So the gap existing between the flexural rigidity of
the strut made of beam3 and those of beam188 and solid45 can be seen as an error.
So having a look at Figure 4.9, it can be seen that for α ranging from 10 to 15 the
percentage of error takes values up to 11.
From all that has been said so far, beam188 seems to be the most suitable element.
The problem is that, to get the correct results a strut, made of beam188 elements,
needs to reach convergence in the solution. A mesh convergence study is therefore
indispensable to evaluate the feasibility of using beam188 element type. Taken
a strut with defined geometrical features, in this case, α=20, Figure 4.10a shows
how the strut is studied by discretizing it in many parts, where variable ndiv
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Figure 4.9: Error of beam3 at varying the slenderness

(a) Strut with ndiv = 1 (b) Strut with ndiv = 20

Figure 4.10: Discretization of the strut

indicates the number of divisions of the strut. The analysis has been carried out
discretizing until ndiv=20, Figure 4.10b, because at this mesh level the solution of
beam response already converges so it is meaningless to investigate further, Figure
4.11. As can be seen in Figure 4.12, for a number of divisions lower than three
the strut made of beam188 produces an important error: minimum error 10%.
Considering such limitation, it is important to investigate whether it is convenient
to use beam188 rather than beam3. In order to do so, the number of ndiv above
which beam188 gives an error lower than that of beam3 must be identified.
The first consideration is that a strut discretized by using beam3 elements keeps
the error constant regardless of the number of elements used. So, for the strut
characterized by α=20 the percentage error is about 2%, Figure 4.9.
Now, analyzing the percentage error trend produced by beam188 elements illustrated
in Figure 4.12, it is easy to conclude that the strut must be divided at least in six
elements to get an error lower than that of beam3.
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Figure 4.11: Convergence for beam188 element

It is worth highlighting that the choice of considering α=20 is completely arbitrary.
It is true that decreasing the slenderness the error produced by beam3 increases
while the error produced by beam188 depends much more on mesh level than
the strut slenderness. Usually, for lattice structures struts α is about 20, thus
having an advantage in the accuracy of beam188 over beam3, the already indicated
discretization is required.
In conclusion, the choice of using beam188 can be quite reliable in terms of accuracy
of results but it is computationally more expensive compared to a model made of
beam3 elements since this latter does not need convergence.
Considering that during manufacturing processes lattice structures are subject to
dimensional inaccuracies due to limitations of machines, the use of beam3 element
is advantageous within a certain margin of error.
Obviously, this choice strictly depends on design constraints and since for the
prediction of lattice structures mechanical properties the computational error
coming from the "element type" is negligible compared to all the issues related to
the fabrication process, the use of beam3 elements is preferred.
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Figure 4.12: Convergence solution for beam188 element

4.4 Modelling approach
As seen in literature, the prediction of mechanical properties of lattice structures is
very important during a design process because it represents important time and
costs saving for an entire project. Thus, accurately modeling a structure becomes
crucial for this phase. However, it has been seen also how different fabricated lattice
structures are compared to designed ones because of the many building limitations
of additive manufacturing processes. The layer by layer deposition generates a
lot of dimensional inaccuracies especially for the thin inclined struts used to build
lattice structures.
It is worth remembering the nature of many variations the structures undergo dur-
ing fabrication processes in the way to understand which effects they can produce
on the structure from a mechanical point of view. Lattice structure imperfections
are mainly dimensional inaccuracies, porosity, and over-deposition of material in
the vicinity of nodes.
Dimensional inaccuracies are strongly influenced by the machine level of accuracy
and by many process parameters. In particular, AM technologies build the struc-
ture by following a specific orientation of the component. The oriented deposition
of material becomes a significant factor for the fabrication of an accurate lattice
structure, even for the anisotropy generated by the layering. Furthermore, lattice
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structures struts are very small-sized and when they are oriented along with partic-
ular directions respect to the building one, they are very sensitive to inaccuracies.
What really matters is that this effect strongly reduces the core strut dimension
and consequently also its strength. Porosity is a marginal effect on fabricated
structures but it is more or less important depending on the used technology. They
appear in the form of voids and represent stress concentration areas. Then, in
the case of a relatively high percentage of porosity, it may also alter the elastic
mechanical properties of members. Lastly, another issue related to layer-by-layer
building procedure is the excess of material deposited close to struts junctions.
Even if the extra-deposition of material at the interconnections of members can
imply a localized stiffening of the joint, the overall behavior of fabricated structures
turns to be softer than the ideal designed one.
This thesis aims to create a structure model able to provide a certain tunability
to the structure in order to reproduce all the possible geometric variations due to
fabrication processes.
For this purpose, the Gibson approach illustrated in Figure 4.5 and widely used to
model lattice structures has been revisited by adding compliant supports allowing
to control the stiffness of the structure. Specifically, the just mentioned model has
been improved by substituting the clamped end with an end supported by a set of
springs.
The conceptual phase has been developed by considering a two-dimensional prob-
lem, thus the left end is equipped with two concentrated longitudinal springs, one
along x-axis and the other one along y-axis, and one torsional spring allowing to
control the flexural behavior of the beam about z-axis, Figure 4.13. The model has
been approved by using a simple FE approach.

F

ky
kx

kt

Figure 4.13: Springs-supported and guided beam model

Considering that the strut is treated as a single Euler-Bernoulli beam element, here
it is possible to directly describe the mechanics of the member just introducing a
polynomial expression. This mathematical relation is able to correctly describe the
generalized displacements and setting the right boundary conditions it is possible
to obtain the correct nodal displacement. Before describing the shape function it
is worth highlighting the relationship linking the beam vertical displacement uy(x)
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to rotations φz(x), bending moment Mz(x) and shear force Ty(x) .

φz(x) = duy

dx
= uÍ

y(x) (4.7)

Mz(x) = EI
d2uy

dx2 = EIuÍÍ
y(x) (4.8)

Ty(x) = EI
d3uy

dx3 = EIuÍÍÍ
y (x) (4.9)

After defining many relations about the mechanics of beam, a shape function able
to represent the deformation of the beam and to respect all the boundary conditions
must be defined. From the just listed equations it can be noticed that in order to
describe the shear stress, a polynomial of third order is required. Since rotations
moments and shear forces are a function of displacement, the easiest approach is
to use a Hermite polynomial. In this way it is also easy to compute its derivatives
as shown below:

uy(x) = ax3 + bx2 + cx+ d (4.10)

uÍ
y(x) = 3ax2 + 2bx+ c (4.11)

uÍÍ
y(x) = 6ax+ 2b (4.12)

uÍÍÍ
y (x) = 6a (4.13)

where a, b, c, d are unknown constant multipliers that must be determined by
imposing the boundary conditions characterizing the problem.
For the model under analysis it has been seen that the left end is supported by two
longitudinal and a torsional spring. Thus, on this side, the shear force is balanced
by the vertical longitudinal spring and the flexural moment by the torsional spring.

EIuÍÍÍ
y (0) = −Kyuy(0) (4.14)

EIuÍÍ
y(0) = Ktu

Í
y(0) (4.15)

On the right end, the force applied on the beam is balanced by the shear while the
rotation can be considered null because of the vertical guide.

EIuÍÍÍ
y (L) = F (4.16)

uÍ
y(L) = 0 (4.17)
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By substituting the boundary conditions in the polynomial formulations and
assuming

β = KtL

EI
(4.18)

the unknown constants assume the following values:

a = F

6EI (4.19)

b = − 3aL
2(1 + βL) (4.20)

c = 2βLb (4.21)

d = − F

Ky

(4.22)

This analytical solution has been implemented in Matlab and verified in Ansys
APDL. So this model is validated and when it is characterized by infinitely stiff
springs it produces a deformed shape as follows in Figure 4.14: It is interesting
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Figure 4.14

observing that the deformation values of the beam under load is dependent on the
stiffnesses Kt and Ky of the springs. Obviously, in this case Kx does not appear
because the load is vertically oriented and the axial deformation is neglected. This
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Figure 4.15

means that by tuning the stiffness of the springs the beam becomes more or less
softer. What is worth observing is that when Kt assumes an infinite value the
model is equivalent to a clamped beam and the derivative of the displacement,
thus the rotation uÍ

y(0) = φz(0) = 0 while when Kt is tuned to lower values
uÍ

y(0) = φz(0) > 0. In this way, it is possible to give a softening effect to the beam.
More specifically, as illustrated in Figure 4.16, by keeping constant all the beam
features and decreasing Kt, thus β, the rotation about the left-side node and the
maximum vertical displacement δmax of the right-end both increase. Anyway, even
if the torsional spring takes a null value the vertical displacement is limited by the
right guided end.

4.4.1 Spring model
How it is well explained in 4.1, simulation model equipped with torsional springs is
aimed to allow the designer a certain control of the deformation mechanism in the
vicinity of the nodes.
In the beginning, this model has been created to understand if it was possible to
represent many complications due to anisotropy of the deposited layer or to the
creation of porosity by tuning the stiffness of the available set of springs. However,
since the porosity inside the node is randomly distributed, it has not been possible
to establish a correlation between the level of present voids and the stiffness of the
springs.
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Figure 4.16: Maximum deflections against β

Furthermore, it has been noticed that the torsional spring, obviously allows the
rotation of the strut about the node. If this effect is studied in a solid simulation
model, the torsional spring can not control the deformation of the solid-represented
node. This is mainly caused by the fact that the solid strut turns out to be fixed at
the joint anyway. So, to reproduce a starting rotation of the strut in the vicinity of
the node, the addition of symmetrical notches in the solid model came out as the
best choice, as illustrated in Figure 4.17. With this configuration is clear that the
strut can rotate in the vicinity of the node and a study has been carried out to
figure out the correlation between the size of the notches and the stiffness of the
torsional spring.
First of all, the notch shape is rectangular and the study has been performed by
increasing only its main dimension: the depth. For a strut with 1mm of thickness,
the notches depth has been increased from 0.1mm to 0.3mm. The results are
expressed in Table 4.3.

Table 4.3: Comparison between a solid model with notches and a beam model
with springs

Solid Model E [MPa] Beam model E [MPa]

Notch depth [mm]
0.1 43.11

Kt [Nmm/rad]
5000 43.1

0.2 34.36 2470 34.32
0.3 20.27 900 20.2
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Figure 4.17: Representation of symmetrical notches

However, including micro notches in the structure, would mean introducing stress
concentrations. Since there are many solutions to softening the structure, such as
reducing the strut thickness, this design choice could be meaningless.

4.4.2 Modeling oversized nodes
Lattice structures could show an extra-deposition of material in the vicinity of
struts junctions causing a localized stiffening of nodes. So, this paragraph aims to
better understanding this microscopic effect and evaluating if it is exploitable in a
design process.
So far the struts have been considered as beams with uniform cross-section but if
the extra-material deposited at the node must be taken into account the model
previously observed should be modified. In Figure 4.18 an interconnection of three
struts of a honeycomb unit cell is represented.
From the modeling point of view, the lattice structure strut can be represented as
a series of beams with different cross-section areas. Those beams located in the
vicinity of interconnections (purple) with other struts are thought to be thicker to
reproduce the extra-deposition of material while the rest of strut is characterized by
the geometrical features of the designed strut (light-blue), Figure 4.19. To detect
the differences between this configuration and that of a single beam at uniform
cross-section a tensile and bending tests are performed and the results in terms
of stretching and bending deformations are shown in Figure 4.20 and Figure 4.21
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Figure 4.18: Representation of an oversized as-fabricated node

Figure 4.19: Modeling of a strut with oversized node

respectively.
Furthermore, it is possible to notice that since the cross-section is constant the
axial deformation turns to have a linear trend along the largest dimension of the
beam (blue line). This is the reason why the strut built with two different beams
has a lower axial displacement slope in the first part (red line). Even the bending
behavior is strongly affected by the beam close to the node position. In fact, the
thickening of the node produces a stiffening in its surrounding area so the overall
strut bends less causing a lower maximum vertical displacement.
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Figure 4.20: Comparison between uniform strut and one with thickened node
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Figure 4.21: Comparison between uniform strut and one with thickened node

4.4.3 Modeling of dimensional inaccuracies of struts
The dominant variation that a designed lattice structure undergoes during the
fabrication process is dimensional inaccuracy. It is clear that the magnitude of
this imperfection depends on the accuracy level of the machine used to produce
the lattice and also to the process parameters. So, it is difficult to create a model
that works for each manufacturing process and for all combinations of parameter
conditions.
This work aims just to give a method to include this kind of fabrication imperfection
to a beam simulation model. From literature it has been already studied that
for a predefined manufacturing process with its set of parameter processes, the
magnitude of dimensional inaccuracy can be related to geometrical features of the
struts: inclination angle θ and thickness b. In particular, it has been noticed by
Suard [10] that for an EBM manufacturing process the geometrical inaccuracy
of the struts was more important with decreasing the strut thickness and also
with the inclination: the more is parallel to building direction (θ = 0) (vertical
struts) and the higher is the inaccuracy. Following this reasoning, a fictitious
trend of dimensional inaccuracy is sketched in Figure 4.22. Since the geometry of
the simulation model is built through a Matlab scripted that in turn generates a
parametric code for Ansys APDL, it is possible to variate the dimensions of the
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Figure 4.22: Dimensional inaccuracy trend as a function of b and θ

struts on the basis of the input thickness and inclination angle.
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Chapter 5

Mechanical properties

5.1 Introduction

Usually, mechanical testing is performed to define the intrinsic materials’ mechani-
cal properties regardless of the geometry of the component. In the case of lattice
structures, the study of bulk material properties is not enough. As already seen,
cellular solids are becoming increasingly used in the engineering field because of
their high strength to weight ratio and this appreciated mechanical feature is the
result of a well-designed combination of geometric disposition of cells and the
properties of the material chosen to build them.
From this reasoning it is possible to conclude that in lattice structures the micro-
scopic deformation mechanism, for instance, that of a single cell strut, generates
a completely different macroscopic effect on the whole structure. For example,
a strut of generic metal lattice structure has a positive Poisson’s ratio (it takes
the value of the material which it is made of, like ν = 0.3 in case of steel) but if
the unit cell is characterized by an auxetic configuration the overall structure will
have certainly ν < 0. So the nature of the material adopted to build the structure
is not the only information needed to evaluate the characteristics of the cellular
solid. Even if in the ideal case the used material is considered isotropic the lattice
structure can assume anisotropic behavior. For this reason, it is necessary to find
out equivalent mechanical properties describing the behavior of the whole lattice.
Generally speaking, to evaluate Elastic and Shear Moduli of any component it is
needed to apply a load on it and to quantify its response in terms of deformations
or vice versa. So there is a strict connection between loads and deformations and in
the specific case of elastic deformation field there is a constitutive equation relating
them, the so-called Hook’s law:

σij = Eijhkεhk (5.1)
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where σij represents the stress vector, Eijhk the tensor of elasticity and εhk the
deformation vector. For cellular solids it is possible to assume three mutually
perpendicular planes of symmetry, hence obtaining an orthotropic material. So
in conclusion, the relationship between stress and deformation written respect to
reference frame coincident with axes of symmetry can be expressed as follows:
This section aims to provide a method of analysis intended to define equivalent

mechanical properties of the overall desired structure. As anticipated in previous
chapters the main problem related to the numerical analysis of cellular solids is
their geometry complexity. Since they are made of countless interconnected struts,
lattices require a load of elements to reproduce accurately a simulation model. This
means that running a numerical analysis of a lattice structure can be time expensive.
For this reason, in literature, several approaches can be found and one of the fastest
to process the analysis is the homogenization method. However, this approach
works only for periodic lattice structures because it consists in characterizing only
a block of the structure, creating a fully solid model having properties equivalent
to those of the analyzed lattice block. Since the periodicity of the structure is
valid, the lattice can be substituted by the equivalent solid which needs much fewer
elements to be processed.
However, today’s cutting-edge manufacturing technologies permit to create easily
also non-periodic lattice structure and this requires a certain tunability of the
simulation model. For this reason, the work of this thesis aims to create a beam
numerical model able to adapt to all the possible details characterizing a lattice
structure and a Finite Element Approach is used to analyze it.
Since this work studies only in plane linear elastic deformations of cellular solids,
mechanical properties are expressed in terms of two Young’s moduli E and a Shear
modulus G. The formers are calculated by performing compression or tensile tests
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(in the range of linear elastic deformation they are equivalent) while the latter by
means of shear tests.

To minimize the computer processing time the mechanical tests are performed only
on a quarter of the whole structure. Depending on the type of mechanical test to
be run, particular boundary conditions must be set at the cut sections.
The nature of the problems imposes a set of symmetry boundary conditions for the
compression test while anti-symmetry boundary conditions for the shear test. On

Symmetry or anti-symmetry
planes

Figure 5.1: Symmetry or anti-symmetry planes

the contrary, anti-symmetry boundary conditions allow the displacement along the
direction perpendicular to the plane and the rotations about the directions tangent
to the plane.

5.2 Compression test
The strength of materials is detectable from tensile or compression tests. The
response of a component under tensile or compressive load can be completely
different under plastic deformation, especially for lattice structures because of the
different failure mechanisms that occur when struts are stretched or compressed.
However, under the linear elastic deformation assumption, the rigidity of the
material is independent of the load direction but since the experimental tests of
the actual sample of lattices are performed under compressive deformation, this
latter is preferred.
Usually, mechanical tests are performed under displacement control because it
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permits to study deeply how materials get deformed preventing sudden failures
or collapses of the structure. However, this information is not relevant within the
elastic deformation field but it is worth highlighting all the criteria adopted during
the analysis. Since the lattice structure is considered to be orthotropic, it is clear
that the response is different along with the various directions and one compression
test must be performed for each of them.
As anticipated in the previous paragraph, to perform correctly a mechanical analysis
on the quarter model it is necessary to set appropriate boundary conditions, in this
case, symmetry b.c.. From theory it is known that a plane of symmetry allows the
rotation about the direction perpendicular to it and the displacements along with
the directions tangent to the plane. So as can be observed in Figure 5.2, along
the plane x-z the displacement UY and rotations ROTX, ROTZ are locked, along
the plane plane y-z the displacement UX and rotations ROTY, ROTZ are locked
and all the remaining degrees of freedom are free. For the compression test along

Figure 5.2: Constraints for compression test along with y-direction

the y-direction, a vertical downward displacement of about 2mm on all the upper
surface is imposed. The deformation given to the structure generates reaction forces
internal to the structure which are required to compute Ey. In order to compute
the elastic modulus along this direction many and easy mathematical steps must
be followed. It is possible to identify the physics of the problem by recalling the
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elastic constitutive Eq. 5.1 and isolating Ey it gets:

Ey = σy

εy

(5.2)

where σy it is easily computed by summing up the components along y-direction of
all reaction forces Ry of the N nodes on x-z plane at the bottom divided by the
surface Ay0 lying on the same plane. This can be expressed in formulae as follows:

σy = Fy

A0x

(5.3)

where:
Fy =

NØ
k=1

Ry (5.4)

A0x = x0z0 (5.5)

εy = ∆y
y0

(5.6)

with x0 y0 and z0 representing respectively the total initial width height and depth
of the structure while ∆y is the vertical displacement imposed by the user to
perform the compression test. In order to compute Ex a compression test along
x-direction is performed so the simmetry contraints are kept the same as before
while a horizontal leftward displacement ∆x of about 2mm on all the right-side
surface is imposed. Here:

Ex = σx

εx

(5.7)

where
σx = Fx

A0y

(5.8)

Fx =
MØ

k=1
Rx (5.9)

A0y = y0z0 (5.10)

εx = ∆x
x0

(5.11)

with M the number of nodes lying on the vertical left-end surface.

When studying the intrinsic in-plane mechanical properties of a homogeneous
infinite lattice structure the procedure indicated above needs a convergence study
for one main reason. The boundary conditions generate distortions so the structure
should be large enough to make this effect marginal, thus negligible.
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Figure 5.3: Constraints for compression test along with x-direction

5.3 Shear test
The shear test is performed to evaluate the ability of a certain body to withstand
shear stresses. Keeping working within the limits of elastic deformations, the just
mentioned mechanical property is quantified by the shear modulus G.
As in the compression test, even here it is possible to express a mathematical
relation between stresses and deformations:

τ = Gγ (5.12)

where τ is the shear stress and γ the angular deformation. Even here, to reduce
the size of the problem the numerical analysis is performed on a quarter of the
entire model but the constraints to be set at the cut sections are meant to be
anti-symmetry boundary conditions. Thus, they allow longitudinal displacement
normal to the interested plane and the rotations about the axes tangent to the
same. For the purposed model, at the bottom x-z plane UX UZ and ROTY while
at the vertical left-end y-z plane UY UZ and ROTX are locked.
Here the deformation of the body is produced by applying a sliding displacement
to the external surfaces depending on the direction must be analyzed. In the plane
investigation, it is enough to performe the shear test only along with one direction.
In this case the test is done by applying a rightward displacement ∆X of about
0.1mm to the top horizontal surface. This deformation produces shear stress inside
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the structure useful to compute the shear modulus Gyx, Figure 5.4. By recalling

Figure 5.4: Constraints for shear test along with x-direction

and rearranging Eq. 5.12 it gets:

Gyx = τyx

γyx

(5.13)

where τyx is the shear stress computed by summing up all the x-components of
reaction forces at those nodes standing on the bottom surface parallel to x-z plane
while γyx is the angular defomation. In formulae:

τyx = Fx

A0x

(5.14)

Fx =
NØ

k=1
Rx (5.15)

γyx = ∆x
y0

(5.16)

5.4 Convergence study
A FE approach allows the discretization of a continuum model and the study of the
deformation of all body by interpolating the displacements of known points, the
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nodes. It is clear that the finer is the mesh, thus the number of known points, and
the more accurate are the results of interest. This effect has been well observed
during the choice of the elements to be used for building the structure and it has
also been noticed that the chosen Eulerian beam doesn’t need convergence for the
nodal solution.
However, when a lattice structure is homogeneously developed the overall mechan-
ical properties are dictated by the topology characteristics. On the other hand,
if they must be studied by running the simulation above described, the results
can be altered by the b.c.. So the structure to be analyzed should be sufficiently
large in order to make the perturbation caused by b.c. negligible. As an example
of a convergence study, a honeycomb structure with regular hexagons is chosen
because this geometry behaves isotropically in the plane so it is easier to detect
many effects due to topology and others to b.c..

The convergence study is performed by increasing the number of cells lined up
along the x-axis and y-axis and for the sake of simplicity, this number is increased
proportionally. From Figure 5.5 it is possible to notice how Ex converges from
the bottom upwards and Ey from the top downwards. This different trend is due
to the different geometry along the two axes and when the number of cells is low
the anisotropy is consistent. Furthermore, the large gap between the two Young’s
moduli at low number of cells is also attributable to b.c.. The constraints and
loading conditions imposed on the various surfaces generate distortions around the
boundary areas and the deformation of unit cells cannot deform uniformly as it
happens at the core of the structure. On the contrary, when the number of cells
is quite large the cell size becomes infinitesimal compared to that of the whole
structure and the anisotropy disappears. As consequence, Ex and Ey tend to the
same value.
Since the convergence of intrinsic mechanical properties of the cellular structure
is strictly related to the size of the whole structure, thus to the number of cells
involved to build it, also the solution of the shear modulus will convergence for the
same number of cells at which elastic modulus converges.
The results of this discussion are reported in Figures 5.5 and 5.6, where k represents
a constant multiplier and it is equal to 104.
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Figure 5.5: Elastic moduli convergence for a regular honeycomb

0 5 10 15 20 25 30 35 40
15.5

16

16.5

17

17.5

18

18.5

Figure 5.6: Shear modulus convergence for regular honeycomb
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Chapter 6

Design and Optimization of
the structure

6.1 Introduction
This work aims to provide a method to design and optimize a three-dimensional
lattice structure through a simulation model able of including all the variation that
may come from manufacturing processes. Specifically, the objective of the project
is about the replacement of a honeycomb structure with a lattice one. Since this
is a development of previous work, the architecture of the lattice to be used has
already been conceived by Piccagli [15].
The architecture is a starting point for a designed phase, but since the mechanical
properties of the lattice structure depend on the multitude of geometrical features,
in this work a methodic approach is used to figure out the optimal design. In
particular, the design process is developed as follows: Design of Experiments
approach is used to find correlations between geometrical features of the lattice,
choice of optimal lattice, analysis of the designed lattice through the as-fabricated
lattice simulation model, study of mechanical discrepancies between designed and
as-fabricated lattice, and final optimization of the structure.

6.1.1 Initial honeycomb structure
The initial honeycomb structure shown in Figure 6.1 is made of 316L stainless steel
and its unit cells are characterized by the following relevant geometrical features:

• length of inclined struts, L = 20 [mm]

• length of horizontal struts, h = 20 [mm]

• thickness of cell wall, t = 1 [mm]
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Figure 6.1: Honeycomb structure

The in-plane mechanical properties of this structure are characterized by the
following moduli:

• Ex ≈ 59 [MPa]

• Ey ≈ 59 [MPa]

• Gyx ≈ 13 [MPa]

and with this configuration it has the following relative density

• RD = ρ/ρs = 0.0577

where ρ is the density of the cellular solids while ρs is the density of bulk material.
So, as anticipated, this honeycomb should be sobstituted by a lighter one and with
much higher stiffness along y-direction, thus Ey must be increased.

6.1.2 From honeycomb to lattice structure
The optimization of mechanical properties and the weight minimization represent
always an engineering challenge. So, even though the honeycomb structure is
categorized as lightweight, the saving of material is a goal that keeps renewing itself.
For this purpose, the first idea is the replacement of cell walls of the honeycomb
with a particular set of interconnecting struts, in the way to obtain a lattice
structure. The latter is characterized by a very detailed geometry that makes the
design phase and fabrication process difficult. Specifically, nowadays manufacturing
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technologies still have some resolution limitations so it is very unlikely to obtain a
fabricated lattice the same as the designed one. So, considering the geometrical
and structural discrepancies introduced by the fabrication process, the design of
lattices becomes even more articulated. For this reason, this work aims to set a
design procedure able of taking in account also the structural variations introduced
during manufacturing.
The basic architecture of the lattice is illustrated in Figure 6.2 and it is provided
by previous studies [15]. This configuration has been designed to give bending
dominated in plane deformation mechanism to have high elastic energy absorption
and a stretch dominated out of plane deformation mechanism so guaranteeing
high rigidity. However, once this paper has put in evidence all the fabrication
variations, this structure still deserves deeper analysis and for this reason here a
methodic procedure thought to identify the optimal topology is reported: Design
of Experiments.

ϑ

L

H Lz

Figure 6.2: Unit cell of the lattice structure

6.2 Design of experiments
Design of Experiments (DOE) is an approach aimed to design and organize experi-
ments to analyze systematically the nature and the outcomes of them. Thus, the
main goal is to detect as much information as possible about a process minimizing
the number of experiments. Through DOE, the costs of a project can drastically
decrease.
Matrices are used to combine the various parameters involved in the process and to
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get important evaluations by using a few experiments. This design phase consists
mainly of understanding how input parameters affect the output. For this purpose,
the engineering designer should choose a predetermined number of input parameters
to be analyzed at different levels to detect many correlations between each other
and how sensitive the output is to their variations.
Input parameters can be controllable or uncontrollable. In the case of prediction
of lattice structures mechanical properties, the controllable parameters can be
related to geometrical features such as dimension and inclination of struts while the
uncontrollable parameters can be related to all variations determined by external
factors.
The purpose of this work is the substitution of a honeycomb structure with an
auxetic lattice one to increase the in-plane stiffness along with y-direction reducing
its weight, by considering also the variations can be produced during the fabrication
process. Lastly, a DOE turns out to be a very useful approach to understand how
mechanical properties change by varying the geometrical features of the lattice.

The DOE is performed as follows:

• setting of the problem and objectives

• identification of most interesting input variables affecting the output

• selection of the values that input variables can take

• study of the correlation existing between variables

• choice of the optimal solution

It is worth saying that at the beginning this procedure is executed for an idealized
lattice structure like that coming from a CAD model. Then the same study is
performed by applying all the corrections due to the variations of the fabrication
process.

6.2.1 Setting of the problem and objective
As already explained, the aim of this project is to replace the core of a honeycomb
sandwich structure with a lighter one, thus a lattice structure, without neglecting
the problems can come from the fabrication process. Since sandwich structures
are generally compression-loaded in plane and considering this investigation is
limited only to elastic deformations, the objectives of this design procedure are to
increase the stiffness along the load direction, thus the equivalent Young modulus
in this specific case along y-direction without penalizing too much the properties
in other directions, and to reduce the weight as much as possible. Since the lattice
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is thought to be produced with the same material of the honeycomb, the weight
saving is related only to the geometrical features of the lattice. Furthermore, it is
important to highlight that one of the design constraints is the auxeticity of the
lattice to obtain the peculiar macro-deformation mechanism characteristic of those
materials with negative Poisson’s ratio.

6.2.2 Identification of input and output factors
At this point of the paper, it is well known that the mechanical properties of the
lattice structure are strongly affected by geometric features of the cells so after
the overview of the problem given in the last paragraph, it is easy to deduce that
the geometrical parameters defined in Figure 6.2 represent the input factors while
the in plane elastic, shear moduli and relative density represent the output factors.
Since the number of geometrical parameters is large, a preliminary study is done
by varying them singularly to observe the effect of each parameter on the output
of interest.
At this point it is worth remembering that mechanical properties of the structure
are detected by performing every time the numerical tests illustrated in chapter 5.
For the sake of clarity Ex and Ey are found by executing the compression tests along
x and y directions respectively while Gyx through the shear test along x-direction.
Since it is only an explorative phase, the Young and Shear moduli shown in the
following graphs are preferred to be normalized. The input parameters to be
analysed are θ, A, L, h, Lz.
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Figure 6.3: Moduli varying inclination angle
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Figure 6.4: Moduli varying cross-section area
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Figure 6.5: Moduli varying inclined struts length
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Figure 6.6: Moduli varying horizontal struts length
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Figure 6.7: E and G moduli and relative density by varying Lz
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From Figure 6.3 it is possible to observe how much Ey is sensitive to the variation
of struts inclination angle. In particular, there is a range between −5° and 10° in
which Young’s modulus along y increases drastically. This behavior is justified by
the fact that, when the structure is compressed along this direction, the more the
lateral struts are vertically orientated the less is the bending moment acting on
these struts. So the struts are more subjected to stretching stresses and since the
axial stiffness of the strut is larger than the bending one, the overall structure gains
in Ey.
On the other hand, this reasoning has the opposite effect on Ex. More specifically,
this modulus does not seem to be sensitive to angle variations when the topology
has an auxetic configuration but according to what it has been said before when
the struts start to orient along x-axis Ex shows an increasing trend. Lastly, the
shear modulus shows a decrease in value as long as the structure becomes more
auxetic.
From now on, since the auxeticity is a design constraint all the following tests are
done on a structure with a constant strut inclination angle of about −10°. So when
the cross-section is varied, lattice structure mechanical properties always increase.
This trend is shown in Figure 6.4 is quite obvious because considering Eq. 4.4 the
thickening of struts implies an increase of stiffness.
As Figure 6.5 shows, at increasing the size of L the structure undergoes a softening
effect instead. This is explained by the fact that in any stress condition the struts
are longer and since their stiffness is inversely proportional to the length, a softening
effect occurs. From Figure 6.6 it is possible to observe that the lengthening of
horizontal struts causes the same effect of the lengthening of L except for the
trend of Ex that shows a strengthening trend. Lastly, Figure 6.7 shows how the
contribution of Lz on mechanical properties is not so relevant as others. The Young
and Shear moduli increase with decreasing Lz. However, the gain of mechanical
properties at the expense of the increase in density, thus weight, is considered
unsatisfactory from the beginning so this geometrical parameter is not involved in
the following step of DOE.
Furthermore to reduce even more the size of DOE, variables h and L have been put
together in only one dimensionless parameter α = h/L. This first step of analysis
has highlighted how the variations of single parameters affect the overall behavior
of the structure. Even if this investigation provides the necessary information to
begin the design process, it is not enough since it does not take into account the
combination of multiple factors. For this purpose, a two-way interactions turns out
to be a good approach to find correlations between factors.
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6.2.3 Selection of levels
So just to recap, the input parameters are the inclination of the struts respect to
the vertical θ, the cross-section of the struts A, and the dimensionless parameter
α = h/L which is tuned by varying h. On the other side the output factors are
the in plane elastic and shear moduli Ex, Ey, Gyx. Relative density ρ/ρs is also a
factor of interest but it does not represent an output factor for DOE because it
can be easily computed by every structure configuration set to perform the various
analysis. So this does not produce the necessity of new experiments.
In order to study the correlation between multiple factors, their concomitant
variation must be imposed. It is clear that by imposing a variation, each factor
should take different values so the engineering designer must choose which are the
most interesting and how many values be studied. Before taking this decision it is
worth saying that the number of input parameters and levels are related to the
number of analysis must be run to perform a complete DOE. In particular, they
are linked by the following mathematical formulation:

n = (l)f (6.1)

Nexp = m · n (6.2)

where n is the number of combinations, Nexp is the total number of experiments, f
is the number of input factors, l the number of levels and m the number of output
parameters. And in the specific case, as abovementioned, m = 3 and f = 3. Only l
must be chosen and since the trend of the outputs plotted by varying singularly
the input factors is quite regular, two levels are considered sufficient.
The choice of values the parameters must take at different levels is dictated by the
objectives of the project. Here the main goal is to increase Young’s Modulus along
y-axis without too much penalizing other output parameters. So considering the
auxeticity requirement and observing the graphs studied in the previous paragraph,
the following parameters have been considered the most interesting:

• θ(−) = −15°, θ(+) = −5°

• α(−) = 1, α(+) = 1.5

• A(−) = 1 mm2, A(+) = 2 mm2

It is worth highlighting that for the sake of simplicity the data indicated with a
(−) refer to level 1 while (+) to level 2. Once all the input parameters are set it
is necessary to analyze all the possible combinations, listed in Table 6.1, in the
way to study the multifactor correlations and how they affect the output. However
considering that output parameters are four, this series of experiments must be
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Table 6.1: Combinations of values used to perform experiments

Input factors Output parameters
Comb θ α A Ey [MPa] Gyx [MPa] Ex [MPa] ρ/ρs

1 − − − 54,74 0,76 2,40 0,0227
2 − − + 211,65 3,03 9,53 0,0305
3 − + − 32,83 0,47 3,85 0,0149
4 − + + 126,99 1,88 15,26 0,0201
5 + − − 319,13 0,96 2,54 0,0178
6 + − + 1017,55 3,81 10,12 0,024
7 + + − 205,15 0,53 3,86 0,0127
8 + + + 655,30 2,12 15,33 0,0171

Average value 327,92 1,70 7,86 0,02

repeated for each of them. In fact, by solving Eq.(6.2) comes out that Nexp = 24
and the results of them are even reported in Table 6.1 under the voice of "Output
parameters".

6.2.4 Factorial analysis and two way interactions

As seen so far, the selection of input factors and levels let to gather a series of
information useful to run the minimum number of experiments to study all the
correlations existing between parameters. Now an interpretation of the results
obtained from experiments is needed and also a correlation between input factors
should be found out. Since all the needed experiments are already carried out, as
suggested in [16] a full factorial analysis can be performed treating "the data as a
series of paired comparisons, one parameter at a time". Furthermore, the effect of
the jth factor (Ej) can be computed through the following relation:

Ej =

nØ
i=1

lijYi

nØ
i=1

Yi

(j = 1,2, ...., n) (6.3)

where Yi is the response variable for the ith combination and as reported in Table
6.1 the parameter lij is equal to −1 when the jth factor takes the lower level and
to +1 at the higher level. While the interaction between jth and kth factors is
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obtained as follows:

Ijk =

nØ
i=1

[(lij lji)Yi]
nØ

i=1
Yi

(j = 1,2, ...., n) (6.4)

Lastly, to give an idea of the interactions occurring between factors a graphical
representation can be done plotting the variation of the normalized output by
varying the two input parameters understudy at the two different levels. As can
be noticed in Table 6.1, when a specific combination of levels between two factors
appears twice then an average of the output can be done. The alternative procedure
is to perform a three-way interactions which is more accurate but since the error
produced by the two-way interactions study can be considered negligible, the latter
is preferred because it is faster.

6.3 Results and discussion
To detect the effect of each geometrical factors on the mechanical properties of
the structure, a full factorial analysis has been carried out. Specifically, the just
mentioned effect has been studied by solving Eq. 6.3 and the results are listed
as percentages in Table 6.2. These factorial effects are expressed as averaged

Table 6.2: Effects of geometrical parameters on Young’s and Shear moduli

θ[%] α [%] A [%]
Ey 67,51 -22,22 53,35
Gyx 9,39 -26,25 59,93
Ex 1,30 21,80 59,75

values considering computed over all the conducted experiments. For instance,
the transition of inclination angle θ from the low level −15° to the high level −5°
produces an "average increase" in Ey of about 67,51% respect to the "Average
value" reported in the last row of Table 6.1.

On the other hand, it is not said that each parameter, varied alone, produces
the same effect on the desired output compared to when it is varied in combination
with another parameter. To highlight this difference, a two-way interaction study
has been conducted by solving Eq. 6.4 and results are shown in Table 6.3.
After the illustration of results, it is interesting observing how single inputs affect
different output parameters disparately. In particular θ produces a strong effect
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Table 6.3: Effect of two way interactions between geometrical parameters

θ-α[%] θ-A[%] α-A[%]
Ey -14,09 34,21 -11,86
Gyx -5,02 5,61 2,29
Ex -1,04 0,80 13,00

on Ey but it loses its dominance on other output parameters. On the contrary,
A seems to have a significant and similar influence on all mechanical features of
the structure. Lastly, α shows a softening effect on all the output parameters
except Ex which increases by 20% respect to its average value. Actually these
results are completely in accordance to the trends shown in Figures 6.3, 6.4, 6.5,
6.6, confirming thus the validity of the approach used.

The two way interactions have been find out through the mathematical expression
6.4: the results are listed in Table 6.3 and can be also observed graphically in
Figures 6.8, 6.9, and 6.10.
The strongest interconnection can be observed between θ-A related to Ey with
about 34 percentage points, in fact in Figure 6.8b the divergence between the two
line is quite marked. On the contrary, the lowest interaction effect is shown again
by the θ-A but this time related to Ex and as predictable, Figure 6.10b shows two
parallel segments. This point underlines how counter-intuitive the interactions
between input factors can be and this demonstrates that a planned Design phase
turns out to be useful, even to detect non-obvious information.
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Figure 6.8: Two-way interactions for Ey
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Figure 6.10: Two-way interactions for Ex
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6.3.1 Choice of the designed structure
Since the constraint of the design phase was limited to the increase of Ey trying
to obtain the lightest structure as possible, Combination 8 was considered the
most suitable. As can be noticed from Table 6.4, the 8th combination results to

Table 6.4: Properties of the chosen designed structure respect to average values
of DOE

Input factors Output parameters
Comb θ α A Ey [MPa] Gyx [MPa] Ex [MPa] ρ/ρs

8 + + + 655,30 2,12 15,33 0,0171
Average value 327,92 1,70 7,86 0,02
Difference[%] +99,83 +24,7 +95,04 -14,5

be a good compromise even because it shows all the mechanical features over the
average values and a relative density lower than the average. In particular Ey

shows a value almost double than the average while the relative density is about
14,5% lower than the average.
However, the analysis conducted so far is not sufficient for an accurate design phase
of a lattice structure because variations due to the fabrication process should be
included and they can even compromise the effects of interaction between input
parameters studied so far. For this purpose, many steps of a planned design of
experiments must be done for the as-fabricated lattice structure.

6.3.2 DOE for the as-fabricated lattice structure
As observed in subsection 3.4.1 a fabrication process is quite compromising for the
structural integrity of the lattice: porosity, roughness, and dimensional inaccuracies
may penalize mechanical properties of the structure. Specifically, it has been
noticed that dimensional inaccuracies are the main geometric variation of struts
representing thus the most critical structural influencing factor. For this purpose, as
explained in subsection 4.4.3 a numerical model able of differentiating the features
of each strut has been created. So, it is possible to observe all the discrepancies
existing between the designed lattice and the as-fabricated one.
In figure 6.11, 6.12, 6.13 a qualitative representation of how geometrical parameters
affect the varied structure and a comparison with the designed one can be made.
From these graphs can be suddenly noticed that the discrepancy between the
two models is negligible so the interactions between geometrical factors can be
considered the same as those observed in the designed structure.
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Figure 6.11: Qualitative comparison between designed and fabricated structure
at varying θ
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Figure 6.12: Qualitative comparison between designed and fabricated structure
at varying A
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Figure 6.13: Qualitative comparison between designed and fabricated structure
at varying h

6.3.3 Comparison between designed and as-fabricated struc-
ture models

The conclusion deduced in the last paragraph is just a qualitative observation and
not a quantitative one. So, to understand the difference in mechanical properties
the following steps are performed:

• building the structure identified in previous DOE (combination 8 ) by including
the fabrication variations defined in the model explained in subsection 4.4.3

• running all the mechanical analyses to quantify the Young’s and Shear moduli
of the as-fabricated structure

• comparison between results of the as-fabricated and designed structure

The first step is performed by generating the structure using the Matlab script and
the mechanical analyses are conducted by using the same values reported in Figure
4.22. In the end, the results are listed in Table 6.5
As predictable, the difference in mechanical properties between a designed structure
and a fabricated one is huge and processing the model created in this work there is
a loss at least of 44% in every in-plane modulus. So, it is clear that the fabricated
structure could not withstand the loading conditions it is destined for.
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Table 6.5: Mechanical properties differences between designed and fabricated
lattice structure with the same starting geometric features

Comb 8 Input factors Output parameters
θ α A Ey [MPa] Gyx [MPa] Ex [MPa]

Designed structure + + + 655,30 2,12 15,33
As-fabricated structure + + + 366,21 1,05 8,45

Difference[%] -44,11 -50,25 -44,86

6.3.4 Optimization of the structure
This work proposes also an optimization of the lattice in order to get the mechan-
ical features obtained in the first design. This optimization phase is conducted
by working with the simulation model that includes the fabrication imprecisions.
To accomplish this task a solution able of increasing the mechanical properties
of the structure uniformly. The only two geometrical parameters allowing this
modification are Lz and A. As seen in Figure 6.7 the gain of mechanical properties
is too low compared to the increase in weight of the structure so the tuning of A is
preferred.

It has been noticed that increasing A by 50%, the mechanical properties are
pratically restored. The detailed elastic and shear moduli are listed in absolute
terms in Table 6.6 at the voice "Optimized structure".

Table 6.6: Mechanical properties differences between designed and fabricated
lattice structure with the same starting geometric features

Comb 8 Output parameters
Ey [MPa] Gyx [MPa] Ex [MPa] ρ/ρs

Designed structure 655,30 2,12 15,33 0,0171
As-fabricated structure 366,21 1,05 8,45 0,0115
Optimized structure 667,65 2,19 17,57 0,0173
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Design and Optimization of the structure

Figure 6.14: Representation of the optimized lattice structure
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Chapter 7

Conclusions

This paper aimed to create a simulation model for an accurate prediction of an
auxetic lattice structure’s mechanical properties to be fabricated through an EBM
process.
For this purpose a methodic procedure, such as DOE, has been provided to find
out which are the geometrical features affecting most the in plane mechanical
properties of the overall structure, in terms of elastic and shear moduli. It has been
noticed that each geometrical parameter has a different influence on the mechanical
properties depending on the analyzed modulus and direction. In particular θ turned
out to be the most significant parameter affecting Ey for values ranging from −10°
to 10°, A increased all the in plane moduli independently from the direction, while
an increase of h has shown a softening effect for all moduli except for Ex.
However, a DOE is performed by tuning also many parameters simultaneously so
also the interconnection existing between geometrical parameters has been studied
and θ and A have shown the strongest interaction in the influence of Ey.
Furthermore, it has been noticed that, despite the high scan speed that the EBM
process provides, it still has many limitations in terms of surface finish when
manufacturing thin-struts lattices. This issue produces non-negligible structural
variations to the designed structure. For this reason, an overview of the main
inaccuracies generated by AM processes, and in particular by EBM, has been done.
It has been concluded that dimensional inaccuracies represent the most compro-
mising imperfection from a structural point of view: their magnitude depends on
the strut inclination angle respect to the building direction, and on their cross-
section size. Thus the lower is the dimensional accuracy of the manufactured strut
and the lower is its strength. This effect can more or less reduce the mechanical
properties of the overall structure depending on many process parameters. For this
purpose, a simulation model of an EBM as-fabricated structure that includes just
the qualitative trend of dimensional inaccuracies as a function of the designed strut
diameter and the inclination angle.
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Conclusions

Running the mechanical tests of the designed structure through the as-fabricated
simulation model, it has been possible to highlight the structural discrepancies
between a designed lattice and an as-manufactured one. In the specific case of the
proposed lattice, it has been detected that the as-manufactured lattice has shown
a decrease of the in plane moduli of about 45% respect to those of the designed
one. So to close this gap, an optimization procedure has been identified: since
A presented the most advantageous gain in mechanical properties compared to
the increase of relative density, the tuning of this parameter has been preferred to
recover the properties of the starting designed structure.
Lastly, the "as-fabricated simulation model" created in this paper is fictitious, thus
these values can not be considered reliable if compared to the actual mechanical
discrepancies existing between CAD models and actual fabricated structures. Even
because this mechanical gap strongly depends on the EBM process parameters.
However, if the input parameters of this model are pre-set accordingly to the
mechanical characterization of single struts, this method could represent a time
and material saving procedure for a correct prediction of mechanical properties of
lattices.
Then, the DOE approach has proved to be a success because it allows the designer
to clearly understand which mechanical effects can be produced by varying the
multitude of geometrical parameters, as well as achieving the starting objectives,
the increase of Ey and the decrease of ρ/ρs.
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Appendix A

2D honeycomb code

2D_cellular_solid.m
1 clc
2 clear all
3 close all
4 %
5 %Data for the material
6 nu=0.27;
7 E=205000; %MPa
8 rho=8.81e-9; %t/mm^3
9 %Geometrical features of the squared cross-section strut

10 b=1; %[mm] side of the square
11 A=b^2; %[mm^2] cross-section area
12 J=b^4/12; %[mm^4] area moment of inertia
13 h=20; %[mm] length of horiz struts
14 L=20; %[mm] length of inclined struts
15 nod=20; %(nod)^-1 indicates the length of
16 %thickened with respect to L
17 teta=(pi*(-5)/180); %rad inclination angle respect
18 %the vertical line
19 %Geometrical features of the thickened node
20 v=2; %multiplier constant defining the
21 %thickness of node respect to the main
22 %strut
23 b5=v*b;
24 A5=b5^2;
25 J5=b^4/12;
26 %longitudinal spring constants
27 Kx=1000000000; %N/mm
28 Ky=1000000000; %N/mm
29 %torsional spring constant
30 Kt=1000000000; %[N mm/rad]

81



2D honeycomb code

31 %
32 %Structure geometry design
33 prompt = 'What is the desired number of cells to be lined up? ';
34 n_cell = input(prompt)
35 map_leng=n_cell*(2*h+2*L*sin(teta)); %[mm]
36 %Mapping all geometry structure
37 x1=[0:(2*h+2*L*sin(teta)):map_leng-h];
38 x2=[h:(2*h+2*L*sin(teta)):map_leng];
39 x_1((1:length(x1))*2-1)=x1;
40 x_1((1:length(x2))*2)=x2;
41 x_11=0;
42 k=1;
43 for i=1:length(x_1)
44 if i<length(x_1) && round(abs(x_1(i)-x_1(i+1)))==h
45 %
46 x_11(k)=x_1(i);
47 k=k+1;
48 x_11(k)=x_1(i)+L/8;
49 k=k+1;
50 x_11(k)=x_1(i)+L*7/8;
51 k=k+1;
52 else
53 x_11(k)=x_1(i);
54 k=k+1;
55 end
56 end
57 %
58 x1=[-(L/8*sin(teta)):(2*h+2*L*sin(teta)):map_leng-h];
59 x2=[h+(L/8*sin(teta)):(2*h+2*L*sin(teta)):map_leng];
60 x_2((1:length(x1))*2-1)=x1;
61 x_2((1:length(x2))*2)=x2;
62 %
63 x1=[-L*sin(teta)+(L/8*sin(teta)):(2*h+2*L*sin(teta)):map_leng-L*sin(teta)-h];
64 x2=[h+L*sin(teta)-(L/8*sin(teta)):(2*h+2*L*sin(teta)):map_leng];
65 x_3((1:length(x1))*2-1)=x1;
66 x_3((1:length(x2))*2)=x2;
67 %
68 x1=[-L*sin(teta):(2*h+2*L*sin(teta)):map_leng-L*sin(teta)-h];
69 x2=[h+L*sin(teta):(2*h+2*L*sin(teta)):map_leng];
70 x_4((1:length(x1))*2-1)=x1;
71 x_4((1:length(x2))*2)=x2;
72 %
73 x_44=0;
74 k=1;
75 for i=1:length(x_4)
76 if i<length(x_4) && teta /=0 && round(abs(x_4(i)-x_4(i+1)))==h
77 %
78 x_44(k)=x_4(i);
79 k=k+1;
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2D honeycomb code

80 x_44(k)=x_4(i)+L/8;
81 k=k+1;
82 x_44(k)=x_4(i)+L*7/8;
83 k=k+1;
84 else
85 x_44(k)=x_4(i);
86 k=k+1;
87 end
88 end
89 %
90 x_44=[-L*sin(teta)-h/2,-L*sin(teta)-L/8,x_44];
91 %
92 N = length(x_1);
93 x=[x_11,x_2,x_3,x_44,x_3,x_2];
94 X=repmat(x,[1 N/2]);
95 X=[X,x_11];
96 %
97 y1=[0:2*L*cos(teta):(n_cell*2*L*cos(teta))];
98 y2=[L*cos(teta)/8:2*L*cos(teta):(n_cell*2*L*cos(teta))];
99 y3=[L*cos(teta)*7/8:2*L*cos(teta):(n_cell*2*L*cos(teta))];

100 y4=[L*cos(teta):2*L*cos(teta):(n_cell*2*L*cos(teta))];
101 y5=[L*cos(teta)+L*cos(teta)/8:2*L*cos(teta):(n_cell*2*L*cos(teta))];
102 y6=[L*cos(teta)+L*cos(teta)*7/8:2*L*cos(teta):(n_cell*2*L*cos(teta))];
103 %
104 y((1:length(y1))*6-5)=y1;
105 y((1:length(y2))*6-4)=y2;
106 y((1:length(y2))*6-3)=y3;
107 y((1:length(y2))*6-2)=y4;
108 y((1:length(y2))*6-1)=y5;
109 y((1:length(y2))*6)=y6;
110 % Generation of vector Y
111 cont=1;
112 for i=1:length(y)
113 %
114 if i==1
115 %
116 for j=1:2*N
117 Y(j)=y(i);
118 end
119 end
120 %
121 %
122 if i>1 && rem(y(i),L*cos(teta))==0
123 %
124 dummY=0;
125 for j=1:(2*N)
126 dummY(j)=y(i);
127 end
128 Y=[Y,dummY];
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2D honeycomb code

129

130 elseif i>1 && rem(y(i),L*cos(teta)) /= 0
131 dummY=0;
132 for j=1:N
133 dummY(j)=y(i);
134 end
135 Y=[Y,dummY];
136 end
137 end
138 %% Printing Ansys APDL code
139 fid = fopen('Structure.txt','w');
140 %
141 fprintf(fid,'/CLEAR \n');
142 fprintf(fid,'/PREP7 \n');
143 %Elements type definition
144 fprintf(fid,'ET,1,BEAM3\n'); %main struts
145 fprintf(fid,'ET,5,BEAM3\n'); %thickened nodes
146 fprintf(fid,'ET,2,COMBIN14,,6\n'); %Kt torsional spring
147 fprintf(fid,'ET,3,COMBIN14,,1\n'); %Kx longitudinal spring
148 fprintf(fid,'ET,4,COMBIN14,,2\n'); %Ky longitudinal spring
149 %
150 %Real constant definition
151 fprintf(fid,'R,1,%f,%f,%f\n',A,J,b);
152 fprintf(fid,'R,2,%f\n',Kt);
153 fprintf(fid,'R,3,%f\n',Kx);
154 fprintf(fid,'R,4,%f\n',Ky);
155 fprintf(fid,'R,5,%f,%f,%f\n',A5,J5,b5);
156 %
157 %Material Properties definition
158 fprintf(fid,'mp,ex,1,%d\n',E);
159 fprintf(fid,'mp,nuxy,1,%f\n',nu);
160 fprintf(fid,'mp,dens,1,%f\n',rho);
161 %
162 %NODES DEFINITION
163 %LAYER 1
164 for i=1:length(X)
165 %
166 string=['N,' num2str(i) ',' num2str(X(i)), ',' ...

num2str(Y(i)) ',0 \n'];
167 %
168 fprintf(fid,string);
169 %
170 end
171 %LAYER 2
172 for i=1:length(X)
173 %
174 string=['N,' num2str(i+length(X)) ',' num2str(X(i)), ',' ...

num2str(Y(i)) ',0 \n'];
175 %
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2D honeycomb code

176 fprintf(fid,string);
177 %
178 end
179 %LAYER 3
180 for i=1:length(X)
181 %
182 string=['N,' num2str(i+2*length(X)) ',' num2str(X(i)), ',' ...

num2str(Y(i)) ',0 \n'];
183 %
184 fprintf(fid,string);
185 %
186 end
187 %%
188 %ELEMENTS DEFINITION
189 %Struts
190 %LAYER 1
191 for i=2:length(X)
192 %
193 d=round(X(i)-X(i-1),3);
194 if d == round(h-2/8*L,3)
195 fprintf(fid,'TYPE,1 \n');
196 fprintf(fid,'REAL,1 \n');
197 string=['E,' num2str(i-1) ',' num2str(i) '\n'];
198 fprintf(fid,string);
199 end
200 %
201 if d == round(h/2-L/8,3)
202 fprintf(fid,'TYPE,1 \n');
203 fprintf(fid,'REAL,1 \n');
204 string=['E,' num2str(i-1) ',' num2str(i) '\n'];
205 fprintf(fid,string);
206 end
207 if d==round(L/8,3)
208 fprintf(fid,'TYPE,5 \n');
209 fprintf(fid,'REAL,5 \n');
210 string=['E,' num2str(i-1) ',' num2str(i) '\n'];
211 fprintf(fid,string);
212 end
213 end
214 %%
215 %LAYER 2
216 for i=1:length(X)-2*N
217 %
218 for k=i:(i+2*N)
219 %
220 if round(X(k)-X(i),3) == round(L/8*sin(teta),3)
221 %
222 fprintf(fid,'TYPE,5 \n');
223 fprintf(fid,'REAL,5 \n');
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2D honeycomb code

224 string=['E,' num2str(i+length(X)) ',' ...
num2str(k+length(X)) '\n'];

225 fprintf(fid,string);
226 elseif round(X(k)-X(i),3) == round((L-2*L/8)*sin(teta),3)
227 %
228 fprintf(fid,'TYPE,1 \n');
229 fprintf(fid,'REAL,1 \n');
230 string=['E,' num2str(i+length(X)) ',' ...

num2str(k+length(X)) '\n'];
231 fprintf(fid,string);
232 end
233 end
234 end
235 %
236 %LAYER 3
237 for i=1:length(X)-2*N
238 %
239 for k=i:(i+2*N)
240 %
241 if round(X(k)-X(i),3) == -round(L/8*sin(teta),3)
242 %
243 fprintf(fid,'TYPE,5 \n');
244 fprintf(fid,'REAL,5 \n');
245 string=['E,' num2str(i+2*length(X)) ',' ...

num2str(k+2*length(X)) '\n'];
246 fprintf(fid,string);
247 elseif round(X(k)-X(i),3) == -round((L-2*L/8)*sin(teta),3)
248 %
249 fprintf(fid,'TYPE,1 \n');
250 fprintf(fid,'REAL,1 \n');
251 string=['E,' num2str(i+2*length(X)) ',' ...

num2str(k+2*length(X)) '\n'];
252 fprintf(fid,string);
253 end
254 end
255 end
256 %Spring elements
257 fprintf(fid,'TYPE,2 \n');
258 fprintf(fid,'REAL,2 \n');
259 for i=4:length(X)
260 %
261 if X(i) /=(-L*sin(teta)-h/2) && ...

(round(X(i)-X(i-3),3)==round(h,3) || ...
round(X(i+1)-X(i),3)==round(2*L*sin(teta)+h,3))

262 %
263 string=['E,' num2str(i) ',' num2str(i+length(X)) '\n'];
264 fprintf(fid,string);
265 string=['E,' num2str(i+2*length(X)) ',' ...

num2str(i+length(X)) '\n'];
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2D honeycomb code

266 fprintf(fid,string);
267 string=['E,' num2str(i) ',' num2str(i+2*length(X)) '\n'];
268 fprintf(fid,string);
269 %
270 end
271 %
272 end
273 %
274 for i=1:length(X)-3
275 %
276 if X(i) /=(-L*sin(teta)-h/2) && ...

(round(X(i+3)-X(i),3)==round(h,3) || ...
round(X(i)-X(i-1),3)==round(2*L*sin(teta)+h,3))

277 %
278 string=['E,' num2str(i) ',' num2str(i+length(X)) '\n'];
279 fprintf(fid,string);
280 string=['E,' num2str(i+2*length(X)) ',' ...

num2str(i+length(X)) '\n'];
281 fprintf(fid,string);
282 string=['E,' num2str(i) ',' num2str(i+2*length(X)) '\n'];
283 fprintf(fid,string);
284 %
285 end
286 %
287 end
288 %
289 fprintf(fid,'TYPE,3 \n');
290 fprintf(fid,'REAL,3 \n');
291 for i=1:length(X)
292 %
293 if X(i) /= (-L*sin(teta)-h/2)
294 %
295 string=['E,' num2str(i) ',' num2str(i+length(X)) '\n'];
296 fprintf(fid,string);
297 string=['E,' num2str(i+2*length(X)) ',' ...

num2str(i+length(X)) '\n'];
298 fprintf(fid,string);
299 string=['E,' num2str(i) ',' num2str(i+2*length(X)) '\n'];
300 fprintf(fid,string);
301 %
302 end
303 %
304 end
305 fprintf(fid,'TYPE,4 \n');
306 fprintf(fid,'REAL,4 \n');
307 for i=1:length(X)
308 %
309 if X(i) /= (-L*sin(teta)-h/2)
310 %
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2D honeycomb code

311 string=['E,' num2str(i) ',' num2str(i+length(X)) '\n'];
312 fprintf(fid,string);
313 string=['E,' num2str(i+2*length(X)) ',' ...

num2str(i+length(X)) '\n'];
314 fprintf(fid,string);
315 string=['E,' num2str(i) ',' num2str(i+2*length(X)) '\n'];
316 fprintf(fid,string);
317 %
318 end
319 %
320 end
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Appendix B

3D designed lattice code

designed_lattice.m
1 clear all
2 clc
3 %Data for the material
4 nu=0.27;
5 E=205000;%MPa
6 G=E/(2*(1+nu));
7 rho=8.81e-9; %t/mm^3
8 %Geometrical features of the squared cross-section strut
9 b0=1.4142; %[mm] side of the square

10 H0=1.4142; %[mm] side of the square
11 A0=b0*H0; %[mm^2] cross-section area
12 Jz0=b0*(H0^3)/12; %[mm^4] area moment of inertia
13 Jy0=(H0)*(b0^3)/12; %[mm^4] area moment of inertia
14 b=b0;
15 H=H0;
16 A=A0;
17 Jz=Jz0;
18 Jy=Jy0;
19 h=30; %[mm] length of horiz struts
20 L0=20; %[mm] length of inclined struts
21 L=L0;
22 Lz=20;
23 teta=(pi*(-5)/180); %[rad] inclination angle respect
24 %the vertical line
25 %Definition of the aspect ratio
26 asp=h/L;
27 gradasp=0; %aspect ratio gradient variable
28 slend0=L0/b0;
29 slend=slend0;
30 gradA=0;
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3D designed lattice code

31 %struts angle gradient
32 gradalpha=0;
33 %Structure geometry design
34 prompt = 'How many cells would you like to have in X ...

direction? ';
35 n_cell_x = input(prompt);
36 prompt = 'How many cells would you like to have in Y ...

direction? ';
37 n_cell_y = input(prompt);
38 prompt = 'How many cells would you like to have in Z ...

direction? ';
39 n_cell_z = input(prompt);
40 %
41 Z=(0:n_cell_z);
42 Z=-Z*Lz;
43 %Relative densities
44 %Volume of the lattice
45 Vl=A/4*(4*h+6*Lz+8*L)+(4*((L^2)+(Lz^2))^0.5+2*(Lz^2+h^2)^0.5)*A/2;
46 %Volume of the honeycomb
47 Vh=(4*L+2*h)*(H0/2*Lz);
48 %Volume of the solid
49 Vs=((2*L*cos(teta)*h)+2*(cos(teta)*sin(teta))*L^2)*Lz;
50 %Honeycomb relative density
51 rdh=Vh/Vs;
52 %Lattice relative density
53 rdl=Vl/Vs;
54 %
55 h_step=(2*h+2*L*sin(teta));
56 v_step=(2*L*cos(teta));
57 if (teta)>0
58 map_leng_x=n_cell_x*h_step; %mm
59 else
60 map_leng_x=n_cell_x*h_step+L*sin(teta);
61 end
62 map_leng_y=n_cell_y*v_step; %mm
63 %
64 %Mapping all geometry structure
65 X=0;
66 for k=1:n_cell_y
67 x1=[0:h_step:map_leng_x-(h)];
68 x2=[h:h_step:map_leng_x];
69 x_1((1:length(x1))*2-1)=x1;
70 x_1((1:length(x2))*2)=x2;
71 if k==1
72 deteta=teta;
73 else
74 deteta=deteta+(pi*(gradalpha)/180);
75 end
76 %
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3D designed lattice code

77 for i=1:length(x1)
78 x1(i)=x1(i)-L*sin(deteta);
79 end
80 %
81 for i=1:length(x2)
82 x2(i)=x2(i)+L*sin(deteta);
83 end
84 %
85 x_2=0;
86 x_2((1:length(x1))*2-1)=x1;
87 x_2((1:length(x2))*2)=x2;
88 x_2=[-L*sin(teta)-h/2,x_2];
89 x=[x_1,x_2];
90 X=[X,x];
91 %
92 end
93 X=X(2:end);
94 X=[X,x_1];
95 y(1)=0;
96 for i=2:(n_cell_y*2+1)
97

98 y(i)=y(i-1)+L*cos(teta);
99 %

100 if rem(i,2) /=0 && i /=1
101 asp=asp+gradasp*asp/100;
102 L=h/asp;
103 end
104

105 end
106 %
107 N = length(x_1);
108 % Generation of Y vector
109 for i=1:length(y)
110 %
111 if i==1
112 %
113 for j=1:N
114 Y(j)=y(i);
115 end
116 end
117 %
118 if rem(i,2)==1 && i>1
119 dummY=0;
120 for j=1:N
121 dummY(j)=y(i);
122 end
123 Y=[Y,dummY];
124 end
125 %
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126 if rem(i,2)==0
127 dummY=0;
128 for j=1:N+1
129 dummY(j)=y(i);
130 end
131 Y=[Y,dummY];
132 end
133 end
134 %%
135 %Printing the Ansys APDL code
136 fid = fopen('Structure.txt','w');
137 %
138 fprintf(fid,'/CLEAR \n');
139 fprintf(fid,'/PREP7 \n');
140 %Elements type definition
141 fprintf(fid,'ET,1,BEAM4\n');
142 %%Real constant definition
143 fprintf(fid,'R,1,%f,%f,%f,%f,%f\n',A,Jz,Jy,b,b);
144 %Material Properties definition
145 fprintf(fid,'mp,ex,1,%d\n',E);
146 fprintf(fid,'mp,nuxy,1,%f\n',nu);
147 %
148 %NODES DEFINITION
149 for k=1:length(Z)
150 for i=1:length(X)
151 %
152 string=['N,' num2str(i+(length(X)*(k-1))) ',' num2str(X(i)) ...

',' num2str(Y(i)) ',' num2str(Z(k)) ', \n'];
153 fprintf(fid,string);
154 %
155 end
156 end
157 %%
158 %ELEMENTS DEFINITION - beams
159 %Beams
160 %LAYER 1 horizontal struts
161 fprintf(fid,'TYPE,1 \n');
162 fprintf(fid,'REAL,1 \n');
163 cont=0;
164 for i=1:length(X)
165 %
166 cont=cont+1;
167 if cont<length(x) && rem(cont,2) /=0
168 for k=1:length(Z)
169 string=['E,' num2str(i+(k-1)*length(X)) ',' ...

num2str((i+(k-1)*length(X)+1)) '\n'];
170 fprintf(fid,string);
171 end
172 end
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173 %
174 if cont==length(x)
175 A=A+gradA/100;
176 b=sqrt(A);
177 H=sqrt(A);
178 Jz=b*(H^3)/12;
179 Jy=(H)*(b^3)/12;
180 fprintf(fid,'R,1,%f,%f,%f %f %f\n',A,Jz,Jy,b,b);
181 fprintf(fid,'REAL,1 \n');
182 cont=0;
183 end
184 end
185 %LAYER 2 left-sided inclined struts
186 for r=1:length(Z)
187 L=L0;
188 b=b0;
189 H=H0;
190 A=b*H;
191 Jz=b*(H^3)/12;
192 Jy=(H)*(b^3)/12;
193 fprintf(fid,'R,1,%f,%f,%f,%f,%f\n',A,Jz,Jy,b,b);
194 fprintf(fid,'REAL,1 \n');
195 q=0;
196 for i=1:length(y)-1
197 if rem(i,2)==1
198 for k=1:2:length(x_1)-1
199 string=['E,' ...

num2str((i-1)/2*length(x)+k+((r-1)*length(X))) ',' ...
num2str((i-1)/2*length(x)+k+length(x_2)+((r-1)*length(X))) ...
'\n'];

200 fprintf(fid,string);
201 end
202 end
203 %
204 if rem(i,2)==0
205 if i==2
206 for k=3:2:length(x_2)
207 string=['E,' ...

num2str(length(x_1)+k+((r-1)*length(X))) ',' ...
num2str(length(x_1)+k+length(x_1)+((r-1)*length(X))) '\n'];

208 fprintf(fid,string);
209 end
210 else
211 for k=3:2:length(x_2)
212 string=['E,' ...

num2str(((i)/2*length(x)-length(x_2))+k+((r-1)*length(X))) ...
',' ...
num2str(((i)/2*length(x)-length(x_2))+k+length(x_1)+((r-1)*length(X))) ...
'\n'];
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213 fprintf(fid,string);
214 end
215 end
216 end
217 %
218 q=q+1;
219 if q==2 && i /=length(y)-1
220 %
221 A=A+gradA/100;
222 L=(y(i+2)-y(i+1))/cos(teta);
223 b=sqrt(A);
224 H=sqrt(A);
225 A=b*H;
226 Jz=b*(H^3)/12;
227 Jy=(H)*(b^3)/12;
228 fprintf(fid,'R,1,%f,%f,%f,%f,%f\n',A,Jz,Jy,b,b);
229 fprintf(fid,'REAL,1 \n');
230 %
231 q=0;
232 end
233 end
234 end
235 %LAYER 3 right-sided inclined struts
236 for r=1:length(Z)
237 L=L0;
238 b=b0; %mm
239 H=H0; %mm
240 slend=slend0;
241 A=b*H; %mm^2
242 Jz=b*(H^3)/12; %mm^4
243 Jy=(H)*(b^3)/12; %mm^4
244 fprintf(fid,'R,1,%f,%f,%f,%f,%f\n',A,Jz,Jy,b,b);
245 fprintf(fid,'REAL,1 \n');
246 q=0;
247 %
248 for i=1:length(y)-1
249 if rem(i,2)==1
250 for k=2:2:length(x_1)
251 string=['E,' ...

num2str((i-1)/2*length(x)+k+((r-1)*length(X))) ',' ...
num2str((i-1)/2*length(x)+k+length(x_2)+((r-1)*length(X))) ...
'\n'];

252 fprintf(fid,string);
253 end
254 end
255 %
256 if rem(i,2)==0
257 if i==2
258 for k=2:2:length(x_2)
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259 string=['E,' ...
num2str(length(x_1)+k+((r-1)*length(X))) ',' ...
num2str(length(x_1)+k+length(x_1)+((r-1)*length(X))) '\n'];

260 fprintf(fid,string);
261 end
262 else
263 for k=2:2:length(x_2)
264 string=['E,' ...

num2str(((i)/2*length(x)-length(x_2))+k+((r-1)*length(X))) ...
',' ...
num2str(((i)/2*length(x)-length(x_2))+k+length(x_1)+((r-1)*length(X))) ...
'\n'];

265 fprintf(fid,string);
266 end
267 end
268 end
269 q=q+1;
270 if q==2 && i /=length(y)-1
271 %
272 A=A+gradA/100;
273 L=(y(i+2)-y(i+1))/cos(teta);
274 b=sqrt(A);
275 H=sqrt(A);
276 A=b*H;
277 Jz=b*(H^3)/12;
278 Jy=(H)*(b^3)/12;
279 fprintf(fid,'R,1,%f,%f,%f,%f,%f\n',A,Jz,Jy,b,b);
280 fprintf(fid,'REAL,1 \n');
281 %
282 q=0;
283 end
284 end
285 end
286 %horizontal struts along with z-direction
287 L=L0;
288 b=b0;
289 H=H0;
290 A=b*H;
291 Jz=b*(H^3)/12;
292 Jy=(H)*(b^3)/12;
293 fprintf(fid,'R,1,%f,%f,%f,%f,%f\n',A,Jz,Jy,b,b);
294 fprintf(fid,'REAL,1 \n');
295 fprintf(fid,'TYPE,1 \n');
296 cont=0;
297 for i=1:length(X)
298 %
299 cont=cont+1;
300 if cont≤length(x) && i≤length(X) && X(i) /=x_2(1)
301 for k=1:length(Z)-1
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302 string=['E,' num2str(i+(k-1)*length(X)) ',' ...
num2str((i+k*length(X))) '\n'];

303 fprintf(fid,string);
304 end
305 end
306 %
307 if cont==length(x)
308 A=A+gradA/100;
309 b=sqrt(A);
310 H=sqrt(A);
311 A=b*H;
312 Jz=b*(H^3)/12; %mm^4
313 Jy=(H)*(b^3)/12; %mm^4
314 fprintf(fid,'R,1,%f,%f,%f,%f,%f\n',A,Jz,Jy,b,b);
315 fprintf(fid,'REAL,1 \n');
316 %
317 cont=0;
318 end
319 end
320 %Inclined struts along with z direction
321 b=b0;
322 H=H0;
323 A=b*H;
324 Jz=b*(H^3)/12;
325 Jy=(H)*(b^3)/12;
326 fprintf(fid,'R,1,%f,%f,%f,%f,%f\n',A,Jz,Jy,b,b);
327 fprintf(fid,'REAL,1 \n');
328 fprintf(fid,'TYPE,1 \n');
329 cont=0;
330 for i=1:length(X)
331 %
332 cont=cont+1;
333 if cont≤length(x_1) && i≤length(X)-N
334 for k=1:length(Z)-1
335 string=['E,' num2str(i+(k-1)*length(X)) ',' ...

num2str((i+k*length(X))+N+1) '\n'];
336 fprintf(fid,string);
337 end
338 end
339 %
340 if cont>length(x_1) && i≤length(X)-N && X(i) /=x_2(1)
341 for k=1:length(Z)-1
342 string=['E,' num2str(i+(k)*length(X)) ',' ...

num2str((i+(k-1)*length(X))+(N)) '\n'];
343 fprintf(fid,string);
344 end
345 end
346 if cont==length(x)
347 A=A+gradA/100;
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348 b=sqrt(A);
349 H=sqrt(A);
350 Jz=b*(H^3)/12;
351 Jy=(H)*(b^3)/12;
352 fprintf(fid,'R,1,%f,%f,%f,%f,%f\n',A,Jz,Jy,b,b);
353 fprintf(fid,'REAL,1 \n');
354 %
355 cont=0;
356 end
357 end
358 %Diagonal horizontal struts
359 b=b0; %mm
360 H=H0; %mm
361 A=b*H; %mm^2
362 Jz=b*(H^3)/12; %mm^4
363 Jy=(H)*(b^3)/12; %mm^4
364 fprintf(fid,'R,1,%f,%f,%f,%f,%f\n',A,Jz,Jy,b,b);
365 fprintf(fid,'REAL,1 \n');
366 fprintf(fid,'TYPE,1 \n');
367 cont=0;
368 for i=1:length(X)
369 %
370 cont=cont+1;
371 if cont≤length(x_1) && i≤length(X) && rem(cont,2) /=0
372 for k=1:length(Z)-1
373 string=['E,' num2str(i+(k-1)*length(X)) ',' ...

num2str((i+k*length(X))+1) '\n'];
374 fprintf(fid,string);
375 end
376 end
377 %
378 if cont>length(x_1) && cont<length(x) && X(i) /=x_2(1) && ...

rem(cont,2) /=0
379 for k=1:length(Z)-1
380 string=['E,' num2str(i+(k-1)*length(X)) ',' ...

num2str((i+k*length(X))+1) '\n'];
381 fprintf(fid,string);
382 end
383 end
384 %
385 if cont==length(x)
386 A=A+gradA/100;
387 b=sqrt(A);
388 H=sqrt(A);
389 A=b*H;
390 Jz=b*(H^3)/12; %mm^4
391 Jy=(H)*(b^3)/12; %mm^4
392 fprintf(fid,'R,1,%f,%f,%f,%f,%f\n',A,Jz,Jy,b,b);
393 fprintf(fid,'REAL,1 \n');
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394 %
395 cont=0;
396 end
397 end
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3D as-fabricated lattice code

as_fabricated_lattice.m
1 clear all
2 clc
3 %Data for the material
4 nu=0.27;
5 E=205000; %[MPa]
6 G=E/(2*(1+nu));
7 rho=8.81e-9; %[t/mm^3]
8 %Geometrical features of the squared cross-section strut
9 b0=1.7321; %[mm] side of the square

10 H0=1.7321; %[mm] side of the square
11 A0=b0*H0; %[mm^2] cross-section area
12 Jz0=b0*(H0^3)/12; %[mm^4] area moment of inertia
13 Jy0=(H0)*(b0^3)/12; %[mm^4] area moment of inertia
14 b=b0;
15 H=H0;
16 A=A0;
17 Jz=Jz0;
18 Jy=Jy0;
19 h=30; %[mm] length of horiz struts
20 L0=20; %[mm] length of inclined struts
21 L=L0;
22 Lz=20;
23 angle=-5; %[ ] inclination angle respect
24 %the vertical line
25 teta=(pi*(angle)/180); %[rad]
26 %Definition of the aspect ratio
27 asp=h/L;
28 gradasp=0;
29 slend0=L0/b0;
30 slend=slend0;
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31 gradA=0;
32 gradalpha=0;
33 Vf=0;
34 %Structure geometry design
35 prompt = 'How many cells would you like to have in X ...

direction? ';
36 n_cell_x = input(prompt);
37 prompt = 'How many cells would you like to have in Y ...

direction? ';
38 n_cell_y = input(prompt);
39 prompt = 'How many cells would you like to have in Z ...

direction? ';
40 n_cell_z = input(prompt);
41 %
42 Z=(0:n_cell_z);
43 Z=-Z*Lz;
44 %Relative densities
45 Vl=A/4*(4*h+6*Lz+8*L)+(4*((L^2)+(Lz^2))^0.5+2*(Lz^2+h^2)^0.5)*A/2;
46 Vh=(4*L+2*h)*(H0/2*Lz);
47 Vs=((2*L*cos(teta)*h)+2*(cos(teta)*sin(teta))*L^2)*Lz;
48 rdh=Vh/Vs;
49 rdl=Vl/Vs;
50 h_step=(2*h+2*L*sin(teta));
51 v_step=(2*L*cos(teta));
52 if (teta)>0
53 map_leng_x=n_cell_x*h_step;
54 else
55 map_leng_x=n_cell_x*h_step+L*sin(teta);
56 end
57 map_leng_y=n_cell_y*v_step;
58 %Mapping all geometry structure
59 X=0;
60 for k=1:n_cell_y
61 %first row
62 x1=[0:h_step:map_leng_x-(h)];
63 x2=[h:h_step:map_leng_x];
64 x_1((1:length(x1))*2-1)=x1;
65 x_1((1:length(x2))*2)=x2;
66 %second row
67 if k==1
68 deteta=teta;
69 else
70 deteta=deteta+(pi*(gradalpha)/180);
71 end
72 %
73 for i=1:length(x1)
74 x1(i)=x1(i)-L*sin(deteta);
75 end
76 %
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77 for i=1:length(x2)
78 x2(i)=x2(i)+L*sin(deteta);
79 end
80 %
81 x_2=0;
82 x_2((1:length(x1))*2-1)=x1;
83 x_2((1:length(x2))*2)=x2;
84 x_2=[-L*sin(teta)-h/2,x_2];
85 x=[x_1,x_2];
86 X=[X,x];
87 %
88 end
89 X=X(2:end);
90 X=[X,x_1];
91 y(1)=0;
92 for i=2:(n_cell_y*2+1)
93 y(i)=y(i-1)+L*cos(teta);
94 %
95 if rem(i,2) /=0 && i /=1
96 asp=asp+gradasp*asp/100;
97 L=h/asp;
98 end
99 end

100 %
101 N = length(x_1);
102 % Generate vector Y
103 for i=1:length(y)
104 %
105 if i==1
106 %
107 for j=1:N
108 Y(j)=y(i);
109 end
110 end
111 %
112 if rem(i,2)==1 && i>1
113 dummY=0;
114 for j=1:N
115 dummY(j)=y(i);
116 end
117 Y=[Y,dummY];
118 end
119 %
120 if rem(i,2)==0
121 dummY=0;
122 for j=1:N+1
123 dummY(j)=y(i);
124 end
125 Y=[Y,dummY];
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126 end
127 end
128 %%
129 fid = fopen('Structure.txt','w');
130 fprintf(fid,'/CLEAR \n');
131 fprintf(fid,'/PREP7 \n');
132 %Elements type definition
133 fprintf(fid,'ET,1,BEAM4\n');
134 %Real constant definition
135 fprintf(fid,'R,1,%f,%f,%f,%f,%f\n',A,Jz,Jy,b,b);
136 %Material Properties definition
137 fprintf(fid,'mp,ex,1,%d\n',E);
138 fprintf(fid,'mp,nuxy,1,%f\n',nu);
139 %NODES DEFINITION
140 for k=1:length(Z)
141 for i=1:length(X)
142 %
143 string=['N,' num2str(i+(length(X)*(k-1))) ',' num2str(X(i)) ...

',' num2str(Y(i)) ',' num2str(Z(k)) ', \n'];
144 fprintf(fid,string);
145 %
146 end
147 end
148 %%
149 %%Printing the Ansys APDL code
150 %LAYER 1-horizontal struts
151 fprintf(fid,'TYPE,1 \n');
152 fprintf(fid,'REAL,1 \n');
153 cont=0;
154 [A,Jz,Jy]=horiz(b0,H0);
155 for i=1:length(X)
156 %
157 cont=cont+1;
158 if cont<length(x) && rem(cont,2) /=0
159 for k=1:length(Z)
160 string=['E,' num2str(i+(k-1)*length(X)) ',' ...

num2str((i+(k-1)*length(X)+1)) '\n'];
161 fprintf(fid,string);
162 end
163 end
164 %
165 if cont==length(x)
166 A=A+gradA/100;
167 b=sqrt(A);
168 H=sqrt(A);
169 Jz=b*(H^3)/12;
170 Jy=(H)*(b^3)/12;
171 fprintf(fid,'R,1,%f,%f,%f,%f,%f\n',A,Jz,Jy,b,b);
172 fprintf(fid,'REAL,1 \n');
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173 cont=0;
174 end
175 end
176 Vf=Vf+A*h;
177 %LAYER 2 left-sided inclined struts
178 for r=1:length(Z)
179 L=L0;
180 [A,Jz,Jy]=resetparameters(b0,H0);
181 [A,Jz,Jy]=parametri(angle,b0,H0);
182 b=sqrt(A);
183 fprintf(fid,'R,1,%f,%f,%f,%f,%f\n',A,Jz,Jy,b,b);
184 fprintf(fid,'REAL,1 \n');
185 q=0;
186 for i=1:length(y)-1
187 if rem(i,2)==1
188 for k=1:2:length(x_1)-1
189 string=['E,' ...

num2str((i-1)/2*length(x)+k+((r-1)*length(X))) ',' ...
num2str((i-1)/2*length(x)+k+length(x_2)+((r-1)*length(X))) ...
'\n'];

190 fprintf(fid,string);
191 end
192 end
193 %
194 if rem(i,2)==0
195 if i==2
196 for k=3:2:length(x_2)
197 string=['E,' ...

num2str(length(x_1)+k+((r-1)*length(X))) ',' ...
num2str(length(x_1)+k+length(x_1)+((r-1)*length(X))) '\n'];

198 fprintf(fid,string);
199 end
200 else
201 for k=3:2:length(x_2)
202 string=['E,' ...

num2str(((i)/2*length(x)-length(x_2))+k+((r-1)*length(X))) ...
',' ...
num2str(((i)/2*length(x)-length(x_2))+k+length(x_1)+((r-1)*length(X))) ...
'\n'];

203 fprintf(fid,string);
204 end
205 end
206 end
207 %
208 q=q+1;
209 if q==2 && i /=length(y)-1
210 %
211 A=A+gradA/100;
212 L=(y(i+2)-y(i+1))/cos(teta);
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213 b=sqrt(A);
214 H=sqrt(A);
215 A=b*H;
216 Jz=b*(H^3)/12; %mm^4
217 Jy=(H)*(b^3)/12;
218 fprintf(fid,'R,1,%f,%f,%f,%f,%f\n',A,Jz,Jy,b,b);
219 fprintf(fid,'REAL,1 \n');
220 %
221 q=0;
222 end
223 end
224 end
225 %
226 Vf=Vf+A*L;
227 %LAYER 3 right-sided inclined struts
228 for r=1:length(Z)
229 L=L0;
230 [A,Jz,Jy]=resetparameters(b0,H0);
231 [A,Jz,Jy]=parametri(angle,b0,H0);
232 b=sqrt(A);
233 fprintf(fid,'R,1,%f,%f,%f,%f,%f\n',A,Jz,Jy,b,b);
234 fprintf(fid,'REAL,1 \n');
235 q=0;
236 %
237 for i=1:length(y)-1
238 if rem(i,2)==1
239 for k=2:2:length(x_1)
240 string=['E,' ...

num2str((i-1)/2*length(x)+k+((r-1)*length(X))) ',' ...
num2str((i-1)/2*length(x)+k+length(x_2)+((r-1)*length(X))) ...
'\n'];

241 fprintf(fid,string);
242 end
243 end
244 %
245 if rem(i,2)==0
246 if i==2
247 for k=2:2:length(x_2)
248 string=['E,' ...

num2str(length(x_1)+k+((r-1)*length(X))) ',' ...
num2str(length(x_1)+k+length(x_1)+((r-1)*length(X))) '\n'];

249 fprintf(fid,string);
250 end
251 else
252 for k=2:2:length(x_2)
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253 string=['E,' ...
num2str(((i)/2*length(x)-length(x_2))+k+((r-1)*length(X))) ...
',' ...
num2str(((i)/2*length(x)-length(x_2))+k+length(x_1)+((r-1)*length(X))) ...
'\n'];

254 fprintf(fid,string);
255 end
256 end
257 end
258 q=q+1;
259 if q==2 && i /=length(y)-1
260 %
261 A=A+gradA/100;
262 L=(y(i+2)-y(i+1))/cos(teta);
263 b=sqrt(A);
264 H=sqrt(A);
265 A=b*H;
266 Jz=b*(H^3)/12;
267 Jy=(H)*(b^3)/12;
268 fprintf(fid,'R,1,%f,%f,%f,%f,%f\n',A,Jz,Jy,b,b);
269 fprintf(fid,'REAL,1 \n');
270 %
271 q=0;
272 end
273 end
274 end
275 Vf=Vf+A*L;
276 %horizontal struts along with z-direction
277 L=L0;
278 [A,Jz,Jy]=resetparameters(b0,H0);
279 [A,Jz,Jy]= horiz(b0,H0);
280 fprintf(fid,'R,1,%f,%f,%f,%f,%f\n',A,Jz,Jy,b,b);
281 fprintf(fid,'REAL,1 \n');
282 fprintf(fid,'TYPE,1 \n');
283 cont=0;
284 for i=1:length(X)
285 %
286 cont=cont+1;
287 if cont≤length(x) && i≤length(X) && X(i) /=x_2(1)
288 for k=1:length(Z)-1
289 string=['E,' num2str(i+(k-1)*length(X)) ',' ...

num2str((i+k*length(X))) '\n'];
290 fprintf(fid,string);
291 end
292 end
293 %
294 if cont==length(x)
295 A=A+gradA/100;
296 b=sqrt(A);
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297 H=sqrt(A);
298 A=b*H;
299 Jz=b*(H^3)/12;
300 Jy=(H)*(b^3)/12;
301 fprintf(fid,'R,1,%f,%f,%f,%f,%f\n',A,Jz,Jy,b,b);
302 fprintf(fid,'REAL,1 \n');
303 %
304 cont=0;
305 end
306 end
307 Vf=Vf+6*Lz*A/4;
308 %%Inclined struts along with z direction
309 [A,Jz,Jy]=resetparameters(b0,H0);
310 [A,Jz,Jy]=inclined(teta,L,Lz,b0,H0);
311 b=sqrt(A);
312 fprintf(fid,'R,1,%f,%f,%f,%f,%f\n',A,Jz,Jy,b,b);
313 fprintf(fid,'REAL,1 \n');
314 fprintf(fid,'TYPE,1 \n');
315 cont=0;
316 for i=1:length(X)
317 %
318 cont=cont+1;
319 if cont≤length(x_1) && i≤length(X)-N
320 for k=1:length(Z)-1
321 string=['E,' num2str(i+(k-1)*length(X)) ',' ...

num2str((i+k*length(X))+N+1) '\n'];
322 fprintf(fid,string);
323 end
324 end
325 %
326 if cont>length(x_1) && i≤length(X)-N && X(i) /=x_2(1)
327 for k=1:length(Z)-1
328 string=['E,' num2str(i+(k)*length(X)) ',' ...

num2str((i+(k-1)*length(X))+(N)) '\n'];
329 fprintf(fid,string);
330 end
331 end
332 if cont==length(x)
333 A=A+gradA/100;
334 b=sqrt(A);
335 H=sqrt(A);
336 Jz=b*(H^3)/12;
337 Jy=(H)*(b^3)/12;
338 fprintf(fid,'R,1,%f,%f,%f,%f,%f\n',A,Jz,Jy,b,b);
339 fprintf(fid,'REAL,1 \n');
340 %
341 cont=0;
342 end
343 end
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344 Vf=Vf+4*sqrt((L^2)+(Lz)^2)*A/2;
345 %Diagonal horizontal struts
346 [A,Jz,Jy]=resetparameters(b0,H0);
347 [A,Jz,Jy]= horiz(b0,H0);
348 fprintf(fid,'R,1,%f,%f,%f,%f,%f\n',A,Jz,Jy,b,b);
349 fprintf(fid,'REAL,1 \n');
350 fprintf(fid,'TYPE,1 \n');
351 cont=0;
352 for i=1:length(X)
353 %
354 cont=cont+1;
355 if cont≤length(x_1) && i≤length(X) && rem(cont,2) /=0
356 for k=1:length(Z)-1
357 string=['E,' num2str(i+(k-1)*length(X)) ',' ...

num2str((i+k*length(X))+1) '\n'];
358 fprintf(fid,string);
359 end
360 end
361 %
362 if cont>length(x_1) && cont<length(x) && X(i) /=x_2(1) && ...

rem(cont,2) /=0
363 for k=1:length(Z)-1
364 string=['E,' num2str(i+(k-1)*length(X)) ',' ...

num2str((i+k*length(X))+1) '\n'];
365 fprintf(fid,string);
366 end
367 end
368 %
369 if cont==length(x)
370 A=A+gradA/100;
371 b=sqrt(A);
372 H=sqrt(A);
373 A=b*H;
374 Jz=b*(H^3)/12;
375 Jy=(H)*(b^3)/12;
376 fprintf(fid,'R,1,%f,%f,%f,%f,%f\n',A,Jz,Jy,b,b);
377 fprintf(fid,'REAL,1 \n');
378 %
379 cont=0;
380 end
381 end
382 Vf=Vf+2*sqrt((h^2)+(Lz)^2)*A/2;
383 rdl=Vf/Vs;

horiz.m
1 function [A,Jz,Jy]= horiz(b0,H0)
2 %function adjusting geometrical features
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3 %of horizontal as-fabricated struts
4 if b0≤1
5 b=0.93*b0;
6 H=0.93*H0;
7 elseif b0>1
8 b=0.85*b0;
9 H=0.85*H0;

10 end
11

12 A=b*H; %mm^2
13 Jz=b*(H^3)/12; %mm^4
14 Jy=(H)*(b^3)/12;
15 end

parametri.m
1 function [A,Jz,Jy]=parametri(angle,b0,H0)
2 if b0≤1
3 if abs(angle)==0
4 b=0.68*b0;
5 H=0.68*H0;
6 elseif abs(angle)>0 && abs(angle)≤10
7 b=0.72*b0;
8 H=0.72*H0;
9 elseif abs(angle)>10 && abs(angle)≤20

10 b=0.75*b0;
11 H=0.75*H0;
12 elseif abs(angle)>20 && abs(angle)≤45
13 b=0.78*b0;
14 H=0.78*H0;
15 elseif abs(angle)>45 && abs(angle)≤70
16 b=0.84*b0;
17 H=0.84*H0;
18 elseif abs(angle)>70 && abs(angle)≤90
19 b=0.93*b0;
20 H=0.93*H0;
21 end
22 elseif b0>1
23 if abs(angle)==0
24 b=0.75*b0;
25 H=0.75*H0;
26 elseif abs(angle)>0 && abs(angle)≤10
27 b=0.76*b0;
28 H=0.76*H0;
29 elseif abs(angle)>10 && abs(angle)≤20
30 b=0.77*b0;
31 H=0.77*H0;
32 elseif abs(angle)>20 && abs(angle)≤45

108



3D as-fabricated lattice code

33 b=0.79*b0;
34 H=0.79*H0;
35 elseif abs(angle)>45 && abs(angle)≤70
36 b=0.81*b0;
37 H=0.81*H0;
38 elseif abs(angle)>70 && abs(angle)≤90
39 b=0.85*b0;
40 H=0.85*H0;
41 end
42 end
43 A=b*H;
44 Jz=b*(H^3)/12;
45 Jy=(H)*(b^3)/12;
46 end

resetparameters.m
1 function [A,Jz,Jy]=resetparameters(b0,H0)
2 b=b0;
3 H=H0;
4 A=b*H;
5 Jz=b*(H^3)/12;
6 Jy=(H)*(b^3)/12;
7 end
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Mechanical tests

mechanical_tests.m
1 %Mechanical tests to be chosen by the user
2 %Code working for all the generated structures
3 prompt = 'What is the test to be performed? Shear (S) or ...

tensile (T) test? ';
4 test = input(prompt,'s');
5 if isempty(test)
6 test = 'T';
7 end
8 switch test
9 case 'T'

10 %Constraining the y direction
11 fprintf(fid,'NSEL,S,LOC,Y,0 \n');
12 fprintf(fid,'D,ALL,UY,0 \n');
13 fprintf(fid,'D,ALL,ROTZ,0 \n');
14 fprintf(fid,'D,ALL,ROTX,0 \n');
15 fprintf(fid,'NSEL,ALL \n');
16 %
17 %Constraining the x direction
18 fprintf(fid,'NSEL,S,LOC,X,%f \n',x(N+1));
19 fprintf(fid,'D,ALL,UX,0 \n');
20 fprintf(fid,'D,ALL,ROTZ,0 \n');
21 fprintf(fid,'D,ALL,ROTY,0 \n');
22 fprintf(fid,'NSEL,ALL \n');
23 %
24 %
25 prompt = 'What is the load direction? X/Y \n';
26 dir = input(prompt,'s');
27 if isempty(test)
28 test = 'X';
29 end
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30 %
31 if dir == 'X'
32 %Imposing displacement
33 if teta≥0
34 fprintf(fid,'NSEL,S,LOC,X,%f \n',X(2*N+1));
35 fprintf(fid,'D,ALL,UX,-0.1 \n');
36 fprintf(fid,'NSEL,ALL \n');
37 end
38 %
39 if teta<0
40 fprintf(fid,'NSEL,S,LOC,X,%f \n',X(N));
41 fprintf(fid,'D,ALL,UX,-0.1 \n');
42 fprintf(fid,'NSEL,ALL \n');
43 end
44 %
45 elseif dir == 'Y'
46 %
47 fprintf(fid,'NSEL,S,LOC,Y,%f \n',Y(end));
48 fprintf(fid,'D,ALL,UY,-0.1 \n');
49 fprintf(fid,'NSEL,ALL \n');
50 %
51 end
52 %
53 case 'S'
54 %
55 %
56 %Constraining the x plane
57 fprintf(fid,'NSEL,S,LOC,Y,0 \n');
58 fprintf(fid,'D,ALL,UX,0 \n');
59 fprintf(fid,'NSEL,ALL \n');
60 %
61 %Constraining the y plane
62 fprintf(fid,'NSEL,S,LOC,X,%f \n',x(N+1));
63 fprintf(fid,'D,ALL,UY,0 \n');
64 fprintf(fid,'NSEL,ALL \n');
65 %
66 %
67 %
68 prompt = 'What is the load direction? X/Y \n';
69 dir = input(prompt,'s');
70 if isempty(dir)
71 dir = 'X';
72 end
73 %
74 if dir == 'X'
75 %
76 %Displacement definition
77 fprintf(fid,'NSEL,S,LOC,Y,%f \n',Y(end));
78 fprintf(fid,'D,ALL,UX,0.1 \n');
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79 fprintf(fid,'D,ALL,UY,0 \n');
80 fprintf(fid,'NSEL,ALL \n');
81 %
82 elseif dir == 'Y'
83 %
84 %Displacement definition
85 if teta≥0
86 fprintf(fid,'NSEL,S,LOC,X,%f \n',X(2*N+1));
87 fprintf(fid,'D,ALL,UY,0.1 \n');
88 fprintf(fid,'D,ALL,UX,0 \n');
89 fprintf(fid,'NSEL,ALL \n');
90 end
91 %
92 if teta<0
93 fprintf(fid,'NSEL,S,LOC,X,%f \n',X(N));
94 fprintf(fid,'D,ALL,UY,0.1 \n');
95 fprintf(fid,'D,ALL,UX,0 \n');
96 fprintf(fid,'NSEL,ALL \n');
97 end
98 end
99 %

100 end
101 fprintf(fid,'/SOLU \n');
102 %Solution and post processing
103 fprintf(fid,'antype, static \n');
104 fprintf(fid,'SOLVE \n');
105 fprintf(fid,'/POST1 \n');
106 fprintf(fid,'PLDISP,1 \n');
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