
POLITECNICO DI TORINO
Department of Electronic Engineering

Master degree in Electronic Engineering - Embedded systems

Speed-up of RISC-V core using
Logic-in-Memory operations

Supervisors:
Marco Vacca - Politecnico di Torino
Marco Ottavi - Università degli Studi di Roma Tor Vergata

Candidate:
Antonia Ieva - s253237

Academic year
2019 - 2020

Abstract

The memory-wall is a known issue in modern computing systems, that states the difference
in terms of speed between memory and processor in a typical Von-Neumann architecture.
The memory low speed masks the actual processor speed, becoming the bottleneck of
the communication between these units. To overcome this problem, many research works
started moving towards new memory architectures that allow to increase the communica-
tion speed or to distribute part of the arithmetic computations in the memory itself.
The Logic-in-Memory (LiM) is a new memory architecture that offers the possibility to
have a unit that merges storage and computational capabilities. The literature offers many
applications of the Logic-in-Memory concept, but this work aims to integrate the Logic-
in-Memory architecture in a real-world computing system such as RI5CY. The RI5CY
processor, part of the RISC-V family, has been chosen because it offers the possibility to
customise the available Instruction Set Architecture (ISA) and then to add new instruc-
tions that support the new memory potentials.
The intention of this work is to show that the new memory architecture improves the
average programs execution time, because it reduces the number of memory accesses by
performing some logical operations or entire algorithms directly in memory.
The Logic-in-Memory proposed, is able to perform bitwise operations between some mem-
ory locations and a given input mask, and it can also compute the maximum and minimum
value of the data stored.
To integrate this new memory into the RI5CY core, two solutions have been explored:
’Same Interface’ and ’New Interface’. In the ’Same Interface’ solution, the RI5CY intro-
duces new instructions to coordinate the new memory operations, but it maintains the
original interface with the memory. Instead, in the ’New Interface’ solution, the interface
is changed to maximise the efficiency of the memory operations, therefore the new instruc-
tions are adapted accordingly.
Both implementations show an important reduction of the execution time in the tested
algorithms, so the Logic-in-Memory can be considered a valid approach to overcome the
memory-wall problem and in general to speed-up the programs execution.

Keywords: Logic-in-Memory, RISC-V, memory-wall

Contents

1 Problem statement 1

2 RISC-V ISA 3
1 RISC-V ISA overview . 3

1.1 Extensions . 3
1.2 Instruction Encoding . 4

2 RV32I Base Integer Instruction Set . 5
2.1 User visible registers . 5
2.2 Base Instruction Formats . 6
2.3 Integer Computational Instructions 6
2.4 Control Transfer Instructions . 8
2.5 Load and Store Instructions . 9
2.6 Control and Status Register Instructions 10

3 RV32M Base Integer Instruction Set . 11
3.1 Multiplication Instructions . 12
3.2 Division Instructions . 12

4 RV32F Single-Precision Floating-Point Instruction Set 12
4.1 User visible registers . 12
4.2 Floating-Point Control and Status Register Instructions 12
4.3 Single-Precision Load and Store Instructions 14
4.4 Single-Precision Floating-Point Computational Instructions 14
4.5 Single-Precision Floating-Point Conversion Instructions 15
4.6 Single-Precision Floating-Point Move Instructions 16
4.7 Single-Precision Floating-Point Compare Instructions 16
4.8 Single-Precision Floating-Point Classify Instruction 17

5 RV32C Compressed Instructions . 17
5.1 Load and Store Instructions . 18
5.2 Control Transfer Instructions . 19
5.3 Integer Computational Instructions 20

3 RIC5Y microprocessor 24
1 Introduction . 24
2 Supported ISA . 24
3 RTL top view . 26

3.1 Block diagram . 26
3.2 Interfaces . 26

4 Architecture description . 29
4.1 Instruction Fetch stage . 29
4.2 Decode stage . 33
4.3 Execution stage . 37
4.4 Load and Store Unit stage - Write Back stage 39

i

CONTENTS

4.5 Peripherals and Memory model . 40

4 Logic-in-Memory in RI5CY Framework 42
1 Logic-in-Memory State of Art . 42
2 Logic-in-Memory architecture . 44

2.1 Bitwise operations - Logic-in-Memory cell 45
2.2 Maximum and minimum computation - logic around array 46
2.3 Range operations . 47

3 Logic-in-Memory ISA extension . 48
3.1 Same interface Memory-Processor ISA extension 48
3.2 New interface Memory-Processor ISA extension 51

4 Architectural changes in RISC-V project . 53
4.1 Same interface Memory-Processor RI5CY change 53
4.2 Same interface Memory-Processor RI5CY changes 54
4.3 Differences between the Logic-in-Memory implementations 55

5 Simulations and Synthesis 57
1 Tools . 57
2 Simulation with custom programs . 57

2.1 Bitwise . 58
2.2 Max-Min . 61

3 Simulation with standard programs . 64
3.1 Database search with Bitmap Indexes algorithm 64
3.2 AES Addroundkey algorithm . 68
3.3 Transport problem - Least Cost Method algorithm 71

4 Simulation Results Analysis . 75
5 Synthesis . 76

6 Conclusions and Future Work 78

A System Verilog basics 80
1 Introduction . 80
2 Data objects and data types . 80

2.1 Data types . 80
2.2 Data objects . 82

3 Literal Values . 83
4 Operators . 84
5 Signals and Constants . 84
6 Continuous assignments . 85
7 Procedural assignments . 86

7.1 Procedural blocks . 86
7.2 Procedural statements . 89

8 Design elements . 90
8.1 Module . 90
8.2 Interface . 93
8.3 Package . 94
8.4 Program . 94

9 Assertion . 95
9.1 Immediate assertions . 96
9.2 Concurrent assertions . 97
9.3 Binding assertion . 100

10 System tasks and system functions . 101

ii

CONTENTS

10.1 Simulation time functions . 102
10.2 Math functions . 102
10.3 Severity tasks . 102
10.4 Assertion tasks . 103

Appendices 80

iii

List of Figures

1.1 Memory-wall problem . 1

2.1 RISC-V instruction length encoding. 5
2.2 Integer registers . 5
2.3 Instruction formats . 6
2.4 Integer Register-Immediate instructions with I-type format 7
2.5 Integer Register-Immediate instructions with special I-type format 7
2.6 Integer Register-Immediate instructions with U-type format 7
2.7 Integer Register-Register instructions with R-type format 8
2.8 Control Transfer instruction with J-type format 8
2.9 Control Transfer instruction with I-type format 9
2.10 Control Transfer instructions with B-type format 9
2.11 Load instructions with I-type format . 10
2.12 Store instructions with S-type format . 10
2.13 CSR instructions with I-type format . 11
2.14 Timer and Counter Instructions with I-type format 11
2.15 Multiplication instructions with R-type format 12
2.16 Division instructions with R-type format . 12
2.17 Floating-Point Register File . 13
2.18 Floating-Point Status and Control Register 13
2.19 Single-Precision Load & Store Instructions with S and B format 14
2.20 Single-Precision Register to Register Instructions with R-type format 14
2.21 Single-Precision Register to Register Fused Instructions with specific type

format . 15
2.22 Single-Precision to Integer and Integer to Single-Precision Instructions with

R-type format . 16
2.23 Single-Precision Move Instructions with R-type format 16
2.24 Single-Precision Move Instructions with R-type format 16
2.25 Single-Precision Comparison Instructions with R-type format 17
2.26 Single-Precision Classify Instruction with R-type format 17
2.27 Compressed 16-bit RVC instruction formats. 18
2.28 Three-bit registers rs1’, rs2’, and rd’ . 18
2.29 Stack-pointer-based Load and Stores with CI-type format. 18
2.30 Stack-pointer-based Load and Stores with the CSS-type format 19
2.31 Register-based Load and Stores with CL-type format 19
2.32 Register-based Load and Stores with CS-type format 19
2.33 Compressed Control Transfer instructions with CJ-type format 20
2.34 Compressed Control Transfer instructions with CR-type format 20
2.35 Compressed Control Transfer instructions with CB-type format 20
2.36 Compressed Integer Constant-Generation instructions with CI-type format . 21
2.37 Compressed Integer Register-Immediate instructions with CI-type format . 21

iv

LIST OF FIGURES

2.38 Compressed Integer Register-Immediate instructions with CIW-type format 21
2.39 Compressed Integer Register-Immediate instructions with CI-type format . 22
2.40 Compressed Integer Register-Immediate instructions with CB-type format . 22
2.41 Compressed Integer Register-Immediate instructions with CB-type format . 22
2.42 Compressed Integer Register-Register instructions 23
2.43 Compressed Integer Register-Register instructions 23
2.44 Compressed NOP instruction . 23
2.45 Compressed breakpoint instruction with CR-type format 23

3.1 RI5CY Hardware loops mapping in CSR address space 25
3.2 RI5CY block diagram . 26
3.3 Timing diagram Instruction memory/cache communication protocol 27
3.4 Timing diagram Data memory/cache communication protocol 28
3.5 RI5CY pipeline . 29
3.6 IF stage block diagram . 30
3.7 ID stage block diagram . 34
3.8 EX stage block diagram . 38
3.9 LSU stage block diagram . 39
3.10 Peripherals and Memory model organisation 41

4.1 Logic-in-Memory typologies . 43
4.2 Dual port Logic-in-Memory high level architecture 45
4.3 Logic-in-Memory bit-cell . 45
4.4 Around-array logic for max-min computation 46
4.5 Range decoder . 48
4.6 RISC-V-Logic-in-Memory interface in the ’Same interface’ implementation . 49
4.7 New ISA for ’Same interface’ implementation 49
4.8 Waveforms for ’Same interface’ implementation 50
4.9 RISC-V-Logic-in-Memory interface in the ’New interface’ implementation . 51
4.10 New ISA for ’New interface’ implementation 51
4.11 Waveforms for ’New interface’ implementation 52
4.12 ID stage architectural change for ’Same interface’ implementation 53
4.13 ID stage architectural change for ’New interface’ implementation 54
4.14 LSU stage architectural change for ’New interface’ implementation 55
4.15 Logic-in-Memory implementation differences 55

5.1 Estimation execution time bitwise.c in old_ISA, newIF_ISA and sameIF_ISA 59
5.2 Estimation execution time max_min.c in old_ISA, newIF_ISA and sameIF_ISA 63
5.3 Bitmap indexes example: query result . 65
5.4 Estimation execution time bitmap_search.c in old_ISA, newIF_ISA and

sameIF_ISA . 67
5.5 AES encryption algorithm . 69
5.6 Estimation execution time transport_min_cost.c in old_ISA, newIF_ISA

and sameIF_ISA . 74

v

List of Tables

2.1 Floating-point format encoding . 15
2.2 Domains of float-to-integer conversions and behavior for invalid inputs . . . 15
2.3 Format of result of FCLASS instruction. 17

3.1 Instruction memory/cache communication protocol 27
3.2 Data memory/cache communication protocol 28

5.1 Bitmap indexes example: students age ranges mapped with bits 65
5.2 Transport problem example . 72
5.3 Simulation results comparison . 76
5.4 Synthesis results comparison . 77

A.1 SystemVerilog operators . 84

vi

Chapter 1

Problem statement

Nowadays, every computing system typically includes a microprocessor, that performs
arithmetic operations, and a memory, used to read instructions and store data. A comput-
ing system that has a shared memory for instructions and data is classified as Von-Neumann
architecture.
Over the last decades the technology progress led CPUs to become faster and faster. Ad-
vanced design techniques, such as pipelining, contributed to increase even more the clock
frequency of microprocessors. Nevertheless, the improvements adopted to increase the pro-
cessor speed are masked by the much slower improvement in memory speed. As a matter
of fact, the memory-wall problem is defined as the gap in terms of speed between the
processor and the memory (see Figure 1.1) [1].

Figure 1.1: Memory-wall problem

Many solutions have been adopted to overcome this issue. The most common solution,
available in all computing systems, is the memory hierarchy. In fact, the memory hierarchy
classifies the memories according to speed, complexity and capacity. Typically smaller and
faster memories are placed really close the microprocessor (e.g. cache memories), while
bigger and slower memories are placed far from the microprocessor and do not interact
directly with it (DRAM). The most frequently-accessed data or instructions are copied
into the high-speed memories, therefore the access to less-frequent instructions and data
stored into the low-speed memories is done less often.

1

CHAPTER 1. PROBLEM STATEMENT

This thesis aims to introduce the Logic-in-Memory (LiM) concept as an alternative so-
lution to the stated problem.
The Logic-in-Memory mixes logic and memory in the same device, so that the workload
of the arithmetic computations is not concentrated only on the CPU, but is distributed
between CPU and memory. The central issue of the memory-wall problem is the constant
communication between CPU and memory. As a matter of fact, the LiM is a valid solution
because it would guarantee a less number of accesses in memory. In fact, a partial data
manipulation can be performed directly in the memory itself. As a consequence, there
would be a reduction of the number of operations performed with the memory frequency.

The work done in this research will focus on the architectural implementation of a Logic-
in-memory model, and the related speed advantage it would guarantee in a computing
system.

2

Chapter 2

RISC-V ISA

1 RISC-V ISA overview

The computing system chosen for this thesis is a RISC-V core. RISC-V is an Instruc-
tion Set Architecture (ISA) that was originally designed to support computer architecture
research and education. However, it has now become a standard free with an open ar-
chitecture for industry implementations. The flexibility of this computing system was the
main reason why it was chosen for this Logic-in-Memory study.

However, the main features of the RISC-V ISA are summarised below:

• Freely available to academia and industry.

• Suitable for hardware implementation and suitable for any implementation technol-
ogy: e.g. ASIC or FPGA.

• Extensive user-level ISA: the RISC-V has a base integer ISA, which must be present
in any implementations, plus optional extensions to the base ISA.

1.1 Extensions

The base integer RISC-V provides a restricted set of instructions, sufficient to provide a
reasonable target for compilers, assemblers, linkers, and operating systems, so exhaustive
enough to build a software toolchain skeleton.
Around the base integer RISC-V is possible to build a more customized processor ISAs. As
a matter of fact, the extensions to the basic ISA introduce instructions that provide new
capabilities for architecture in order to improve code density and performance. While the
base integer RISC-V is mandatory for any extensions, any customised RISC-V architecture
can be expanded according one or more extensions.
Between all the possible RISC-V extensions, it is possible distinguish standard and non-
standard extensions:

1. Standard extensions should be generally useful and should not conflict with other
standard extensions.

2. Non-standard extensions may be highly specialized, or may conflict with other stan-
dard or non-standard extensions.

Most common standard extensions:

• Base I. The base integer ISA is named “I” (prefixed by RV32 or RV64 depending
on the architecture parallelism), and contains integer computational instructions,

3

CHAPTER 2. RISC-V ISA

integer loads and stores in memory, and control-flow instructions, and is mandatory
for all RISC-V implementations.

• Extension C. The standard compressed instruction set extension, named “C”, aims
to reduce static and dynamic code size by adding short 16-bit instruction encodings
for common operations. The C extension can be added to any of the base ISAs.

• Extension M. The standard integer multiplication and division extension named
“M”, adds instructions to multiply and divide integer values.

• Extension A. The standard atomic instruction extension, denoted by “A”, adds
instructions that atomically read, modify, and write memory for synchronization
purposes.

• Extension F. The standard single-precision floating-point extension, denoted by
“F”, adds floating-point registers, single-precision computational instructions, and
single-precision loads and stores.

• Extension D. The standard double-precision floating-point extension, denoted by
“D”, expands the floating-point registers, and adds double-precision computational
instructions, loads, and stores.

Usually the most common unions between different extensions is indicated with an ab-
breviation. For example, the group "IMAFD" has the abbreviation “G” and provides a
general-purpose scalar instruction set, then the implementation is called RV32G or RV64G
according to the parallelism. While, the case of study of this thesis will be the RI5CY
that represents the group "IMFC", so in the next sections all the extensions related to this
implementation will be analysed.

While standard extensions exploit the most common processor operations, non-standard
extensions instead, can be created for any scopes and for any specialised operations that
the processor might perform. Therefore, the power and advantage of RISC-V ISA is the
possibility to be customised by anyone in order to meet the requirements of any specific
applications.

1.2 Instruction Encoding

The base integer ISA has a fixed instructions lenght equal to 32 bits. However, the stan-
dard RISC-V encoding scheme is designed to support ISA extensions with variable-length
instructions, where each instruction can have a length equal to a multiple of 16 bits.

• All the 32-bit instructions in the base ISA have their lowest two bits set to 11.

• The optional compressed 16-bit instruction-set extensions have their lowest two bits
equal to 00, 01, or 10.

• Standard instruction-set extensions encoded with more than 32 bits have additional
low-order bits set to 1, with the conventions for 48-bit and 64-bit lengths shown in
Figure 2.1.

• Instruction lengths between 80 bits and 176 bits are encoded using a 3-bit field in
bits [14:12] giving the number of 16-bit words in addition to the first 5x16-bit words.
The encoding with bits [14:12] set to 111 is reserved for future longer instruction
encodings.

4

CHAPTER 2. RISC-V ISA

Figure 2.1: RISC-V instruction length encoding.

2 RV32I Base Integer Instruction Set

This section shows the details about the base integer RISC-V ISA.

2.1 User visible registers

RISC-V ISA guarantees the presence of 31 general-purpose registers x1–x31 in the RISC-V
core which hold integer values, as shown in Figure 2.2. Register x0 is hardwired to the
constant 0. The term XLEN is used to refer to the width of an x register in bits (either 32
in RV32 or 64 in RV64). However, even most of the instructions are independent on the
length of the registers, in this thesis will be considered only instructions supported for a
32-bit core.

Figure 2.2: Integer registers

5

CHAPTER 2. RISC-V ISA

2.2 Base Instruction Formats

In the base ISA, there are six instruction formats (R/I/S/U/B/J) as shown in Figure 2.3.
All formats have a fixed 32 bits in length and must be aligned on a four-byte boundary in
memory.
RISC-V ISA keeps the source (rs1 and rs2) and destination (rd) registers at the same
position in all formats to simplify decoding.

• R format: it is very straightforward. In fact, R type instructions have both sources
that are registers.

• I format: the sources are one immediate and one register.

• S format: it manages one immediate and two source registers.

• B format: as the S type, it has one immediate and two source registers. The 12-bit
immediate field is used to encode branch offsets in multiples of 2.

• U format: it has an immediate as the only source. The 20-bit immediate is shifted
left by 12 bits.

• J format: as the U type, it has one immediate as source. The 20-bit immediate is
shifted left by 1 bit in this case.

Figure 2.3: Instruction formats

2.3 Integer Computational Instructions

Integer computational instructions are either encoded as register-immediate operations
using the I-type format or as register-register operations using the R-type format. The
destination is register rd for both register-immediate and register-register instructions.
Integer computational instructions do not cause arithmetic exceptions.

2.3.1 Integer Register-Immediate Instructions

Instructions with I-type format in Figure 2.4:

• ADDI. It adds the sign-extended 12-bit immediate to register rs1. Arithmetic over-
flow is ignored and the result is simply the low XLEN bits of the result.

• NOP. This instruction does not change any user-visible states, except for advancing
the Program Counter (PC). NOP is encoded as ADDI x0, x0, 0.

• SLTI. It means "set less than immediate" and it places the value 1 in register rd if
register rs1 is less than the sign-extended immediate, else 0 is written to rd. rs1 is
also treated as a signed-number.

6

CHAPTER 2. RISC-V ISA

• SLTIU. It is similar the previous one, but compares the values as unsigned numbers.

• ANDI, ORI, XORI. They are logical operations that perform bitwise AND, OR,
and XOR on register rs1 and the sign-extended 12-bit immediate and place the result
in rd.

Figure 2.4: Integer Register-Immediate instructions with I-type format

Figure 2.5 lists instructions that use the I-type format in a specialized way. The immediate
number is encoded in such a way a shift by a constant operation is performed. The operand
to be shifted is in rs1, and the shift amount is encoded in the lower 5 bits of the I-immediate
field. The right/left shift type is encoded in a high bit of the I-immediate.

• SLLI. It is a logical left shift (zeros are shifted into the lower bits).

• SRLI. It is a logical right shift (zeros are shifted into the upper bits).

• SRAI. It is an arithmetic right shift (the original sign bit is copied into the vacated
upper bits).

Figure 2.5: Integer Register-Immediate instructions with special I-type format

Figure 2.6 lists instructions that use the U-type format:

• LUI. It means "load upper immediate", it is used to build 32-bit constants and
uses the U-type format. It places the U-immediate value in the top 20 bits of the
destination register rd, filling in the lowest 12 bits with zeros.

• AUIPC. It means "add upper immediate to PC", it is used to build PC-relative
addresses and uses the U-type format. AUIPC forms a 32-bit offset from the 20-bit
U-immediate, filling in the lowest 12 bits with zeros, adds this offset to the PC, then
places the result in register rd.

Figure 2.6: Integer Register-Immediate instructions with U-type format

2.3.2 Integer Register-Register Operations

This set of instructions use the R-type format, where rs1 and rs2 are source registers and
the result of an operation is written into the destination register rd. The funct7 and funct3

7

CHAPTER 2. RISC-V ISA

fields select the type of operation.
Figure 2.7 shows all the instructions of this type.

• ADD, SUB. They perform addition and subtraction respectively. Overflows are
ignored and the low 32 bits of results are written to the destination.

• SLT, SLTU. They perform signed and unsigned compares respectively, writing 1 to
rd if rs1 < rs2, 0 otherwise.

• SLL, SRL, SRA. They perform logical left, logical right, and arithmetic right shifts
on the value in register rs1 by the shift amount held in the lower 5 bits of register
rs2.

Figure 2.7: Integer Register-Register instructions with R-type format

2.4 Control Transfer Instructions

RV32I provides two types of control transfer instructions: unconditional jumps and condi-
tional branches.

2.4.1 Unconditional Jumps

• JAL. It uses the J-type format, where the J-immediate encodes a signed offset in
multiples of 2 bytes. The offset is sign-extended and added to the PC to form the
jump target address. JAL stores the address of the instruction following the jump
(PC+4) into register rd. See Figure 2.8. It is possible to fulfill unconditional jumps
encoding JAL with rd=x0.

• JALR. It uses the I-type encoding. The target address is obtained by adding the
12-bit signed I-immediate to the register rs1, then setting the least-significant bit
of the result to zero. The address of the instruction following the jump (PC+4) is
written to register rd. Register x0 can be used as the destination if the result is not
required. See Figure 2.9

The JAL and JALR instructions will generate a misaligned instruction fetch exception
if the target address is not aligned to a four-byte boundary. According to the execution
environment, the exception should cause the execution of a trap handler.

Figure 2.8: Control Transfer instruction with J-type format

8

CHAPTER 2. RISC-V ISA

Figure 2.9: Control Transfer instruction with I-type format

2.4.2 Conditional Branches

All branch instructions use the B-type instruction format. The 12-bit B-immediate encodes
a signed number, that corresponds to the offset to be added to the current PC to compute
the target address.
Figure 2.10 lists the B-type instructions:

• BQE, BNE. They take the branch if registers rs1 and rs2 are equal or unequal
respectively.

• BLT, BLTU. They take the branch if rs1 is less than rs2, using signed and unsigned
comparison respectively.

• BGE, BGEU. They take the branch if rs1 is greater than or equal to rs2, using
signed and unsigned comparison respectively.

• BGT, BGTU, BGT, BGTU. They can be synthesized by reversing the operands
to BLT, BLTU, BGE, and BGEU, respectively.

Figure 2.10: Control Transfer instructions with B-type format

2.5 Load and Store Instructions

RV32I is a load-store architecture, where only load and store instructions access the mem-
ory and arithmetic instructions only operate on CPU registers. RV32I provides a 32-bit
user address space that is byte-addressed and little-endian. The execution environment
will define what portions of the address space are legal to access. Loads with a destination
of x0 must raise any exceptions and action any other side effects even though the load
value is discarded.

Load and store instructions transfer a value between the registers and memory. Loads
are encoded in the I-type format and stores are encoded in S-type. The effective byte
address is obtained by adding register rs1 to the sign-extended 12-bit offset. Loads copy a
value from memory to register rd (See Figure 2.11). Stores copy the value in register rs2
to memory (See Figure 2.12).

• LW, LH, LHU, LB, LBU. LW loads a 32-bit value from memory into rd. LHU
loads a 16-bit value from memory, then sign-extends to 32-bits before storing in rd,
while LHU do the same but performing a zero extension to 32 bits. LB and LBU are
defined analogously to LH and LHU but for 8-bit values.

9

CHAPTER 2. RISC-V ISA

• SW, SH, SB. They store respectively 32-bit, 16-bit, and 8-bit values from the low
bits of register rs2 to memory.

The base ISA supports misaligned accesses for data, but these might be very inefficient
and slow, depending on the implementation. For this reason, only aligned loads and stores
are guaranteed to execute atomically.

Figure 2.11: Load instructions with I-type format

Figure 2.12: Store instructions with S-type format

2.6 Control and Status Register Instructions

System information is stored in special registers called Control Status Registers (CSRs).
Those registers usually store information about the previous instruction executed and the
operating mode. RV32I allows to access those registers with I-type instruction format.
According to the implementation, these instructions can require privileged access to be
executed.

2.6.1 CSR Instructions

In Figure 2.13 below, the full set of CSR instructions is defined:

• CSRRW. It means "Atomic Read/Write CSR", this instruction atomically swaps
values in the CSRs and integer registers. CSRRW reads the old value of the CSR,
zero-extends the value to 32 bits, then writes it to integer register rd. The initial
value in rs1 is written to the CSR. If rd=x0, then the instruction should not read
the CSR.

• CSRRS. It means "Atomic Read and Set Bits in CSR", this instruction reads the
value of the CSR, zero-extends the value to 32 bits, and writes it to integer register
rd. The initial value in integer register rs1 is treated as a bit mask that specifies bit
positions to be set in the CSR. Any bit that is high in rs1 will cause the corresponding
bit to be set in the CSR, if that CSR bit is writable. Other bits in the CSR are
unaffected. As for the previous instruction, if rs1=x0, then the instruction will not
write to the CSR at all.

• CSRRC. it means "Atomic Read and Clear Bits in CSR", this instruction reads the
value of the CSR, zero-extends the value to 32 bits, and writes it to integer register
rd. The initial value in integer register rs1 is treated as a bit mask that specifies
bit positions to be cleared in the CSR. Any bit that is high in rs1 will cause the
corresponding bit to be cleared in the CSR, if that CSR bit is writable. Other bits
in the CSR are not changed. If rs1=x0, then the instruction will not write to the
CSR at all.

10

CHAPTER 2. RISC-V ISA

• CSRRWI, CSRRSI, CSRRCI. They are variants of the previous ones and they are
similar except they update the CSR using an 32-bit value obtained by zero-extending
a 5-bit unsigned immediate (uimm[4:0]) field encoded in the rs1 field instead of a value
from an integer register.
For CSRRSI and CSRRCI, if the uimm[4:0] field is zero, then these instructions will
not write to the CSR. For CSRRWI, if rd=x0, then the instruction should not read
the CSR.

Figure 2.13: CSR instructions with I-type format

2.6.2 Timers and Counters

RV32I provides a number of 64-bit read-only user-level counters, which are mapped into
the 12-bit CSR address space and accessed in 32-bit pieces using CSRRS instructions.

• RDCYCLE[H]. The RDCYCLE pseudo-instruction reads the low 32 bits of the
cycle CSR which holds a count of the number of clock cycles executed by the processor
core which is running from an arbitrary start time in the past. RDCYCLEH is an
RV32I-only instruction that reads bits 63–32 of the same cycle counter. Details like
the cycle rate (cycles/second) of the counter will depend on the implementation.

• RDTIME[H]. The RDTIME pseudo-instruction reads the low 32 bits of the time
CSR, which counts the real time that has passed from an arbitrary start time in
the past. RDTIMEH is an RV32I-only instruction that reads bits 63–32 of the same
real-time counter. The execution environment should provide means of determining
the period of the real-time counter (seconds/tick).

• RDINSTRET[H]. This pseudo-instruction reads the low 32 bits of the instret CSR,
which counts the number of instructions retired from some arbitrary start point in
the past. RDINSTRETH is an RV32I-only instruction that reads bits 63–32 of the
same instruction counter.

Figure 2.14: Timer and Counter Instructions with I-type format

3 RV32M Base Integer Instruction Set

The extension named "M" introduces the standard integer multiplication and division
instructions, that multiply or divide values held in two integer registers.

11

CHAPTER 2. RISC-V ISA

3.1 Multiplication Instructions

• MUL, MULH, MULHU, MULHSU. MUL performs a 32-bit multiplication and
places the lower 32 bits in the destination register. MULH, MULHU, and MULHSU
perform the same multiplication but return the upper 32 bits of the full 32-bit prod-
uct, for signed X signed, unsigned X unsigned, and signed X unsigned multiplication
respectively.

Figure 2.15: Multiplication instructions with R-type format

3.2 Division Instructions

• DIV, DIVU. They perform signed and unsigned integer division of 32 bits by 32
bits.

• REM, REMU. They provide the remainder of the corresponding division operation.

Figure 2.16: Division instructions with R-type format

4 RV32F Single-Precision Floating-Point Instruction Set

The "F" extension describes the standard instruction-set for single-precision floating-point
numbers.

4.1 User visible registers

The F extension requires 32 floating-point registers, f0–f31, and a Floating-point Control
and Status Register (FCSR), which contains the operating mode and exception status of
the floating-point unit. Figure 2.17 shows the floating-point register file and the FCSR.
The term FLEN describes the width of the floating-point registers in the RISC-V ISA.
FLEN=32 corresponds to length for single-precision floating-point extension.

4.2 Floating-Point Control and Status Register Instructions

As for the integer CSRs, the Floating-point Control and Status Register (FCSR), is a 32-bit
register than can be written or read. In fact, it allows to select the dynamic rounding mode
for floating-point arithmetic operations and holds the arised exception flags, as shown in
Figure 2.18.

• FRCSR. It reads FCSR by copying it into integer register rd.

• FSCSR. It swaps the value in FCSR by copying the original value into integer
register rd, and then writing a new value obtained from integer register rs1 into
FCSR.

12

CHAPTER 2. RISC-V ISA

Figure 2.17: Floating-Point Register File

• FRRM. It reads the Rounding Mode field frm and copies it into the least-significant
three bits of integer register rd, with zero in all other bits.

• FSRM. It swaps the value in frm by copying the original value into integer register
rd and then, writing a new value obtained from the three least-significant bits of
integer register rs1 into frm.

• FRFLAGS, FSFLAGS. Instructions defined for the Accrued Exception Flags
fflags, then they respectively copy the field in rd and swap the values with regis-
ter rs1.

• FSRMI, FSFLAGSI. Instructions defined to swap frm or fflags with an immediate
value instead of a register rs1.

Figure 2.18: Floating-Point Status and Control Register

More details about the Accrued Exception Flags (fflags) or the Rounding Mode (frm)
fields are not discussed because out of the scope of this work.

13

CHAPTER 2. RISC-V ISA

4.3 Single-Precision Load and Store Instructions

Floating-point loads and stores use the same base+offset addressing mode as the integer
base ISA, with a base address in register rs1 and a 12-bit signed byte offset.

• FLW. The FLW instruction loads a single-precision floating-point value from memory
into floating-point register rd.

• FSW. It stores a single-precision value from floating-point register rs2 to memory.

Figure 2.19: Single-Precision Load & Store Instructions with S and B format

4.4 Single-Precision Floating-Point Computational Instructions

Floating-point arithmetic instructions with one or two source operands use the R-type for-
mat with the OP-FP opcode. The following instructions perform single-precision floating-
point operations between rs1 and rs2, writing the result to rd.

• FADD.S. It performs the addition.

• FSUB.S. It performs the subtraction.

• FMUL.S. It performs the multiplication.

• FDIV.S. It performs the division.

• FMIN.S. It writes the smaller between rs1 and rs2 to rd.

• FMAX.S. It writes the larger between rs1 and rs2 to rd.

• FSQRT.S. It computes the square root of rs1 and writes the result to rd.

Figure 2.20: Single-Precision Register to Register Instructions with R-type format

The 2-bit floating-point format field fmt is encoded as shown in Table 2.1. It is set to S
(00) for all instructions in the F extension.
Floating-point ISA combine multiply and add instructions using three source registers (rs1,
rs2, and rs3) and a destination register (rd). Fused multiply-add instructions multiply the
values in rs1 and rs2, optionally negate the product, then add or subtract the value in rs3,
writing the final result to rd. The fused multiply-add instructions must raise the invalid

14

CHAPTER 2. RISC-V ISA

fmt field Mnemonic Meaning
00 S 32-bit single precision
01 D 64-bit double-precision
10 - reserved
11 Q 128-bit quad-precision

Table 2.1: Floating-point format encoding

operation exception when the multiplicands are ∞ and zero, even when the addend is a
quiet NaN.

• FMADD.S. It computes rs1×rs2+rs3.

• FMSUB.S. It computes rs1×rs2-rs3.

• FNMSUB.S. It computes -rs1×rs2+rs3.

• FNMADD.S. It computes -rs1×rs2-rs3.

Figure 2.21: Single-Precision Register to Register Fused Instructions with specific type
format

4.5 Single-Precision Floating-Point Conversion Instructions

Floating-point-to-integer and integer-to-floating-point conversion instructions are encoded
in the OP-FP opcode space.

• FCVT.W.S. It converts a floating-point number in floating-point register rs1 to a
signed 32-bit, and writes it integer register rd.

• FCVT.S.W. It converts a 32-bit signed integer in integer register rs1 to a floating-
point number in floating-point register rd.

• FCVT.WU.S, FCVT.S.WU. They are variants of the previous ones and convert
to or from unsigned integer values.

If the rounded result does not fit in the destination format, it is clipped to the nearest
value and the invalid flag is set. Table 2.2 gives the range of valid inputs for FCVT.int.S
and the behavior for invalid inputs.

FCVT.W.S FCVT.WU.S
Min valid input (after rounding) −231 0
Max valid input (after rounding) 231 − 1 232 − 1

Output for -∞ −231 0
Output for +∞ or NaN 231 − 1 232 − 1

Table 2.2: Domains of float-to-integer conversions and behavior for invalid inputs

15

CHAPTER 2. RISC-V ISA

Figure 2.22: Single-Precision to Integer and Integer to Single-Precision Instructions with
R-type format

4.6 Single-Precision Floating-Point Move Instructions

Floating-point to floating-point sign-injection instructions. Sign-injection instructions do
not set floating-point exception flags (Figure 2.23):

• FSGNJ.S. It produces a result that takes all bits except the sign bit from rs1. The
result’s sign bit is rs2’s sign bit.

• FSGNJN.S. It produces a result that takes all bits except the sign bit from rs1.
The result’s sign bit is the opposite of rs2’s sign bit.

• FSGNJX.S. It produces a result that takes all bits except the sign bit from rs1.
The sign bit is the XOR of the sign bits of rs1 and rs2.

Figure 2.23: Single-Precision Move Instructions with R-type format

Other instructions are provided to move bit patterns between the floating-point and integer
registers.

• FMV.X.W. It moves the single-precision value in floating-point register rs1 to the
lower 32 bits of integer register rd.

• FMV.W.X. it moves the single-precision value from the lower 32 bits of integer
register rs1 to the floating-point register rd. The bits are not modified in the transfer.

Figure 2.24: Single-Precision Move Instructions with R-type format

4.7 Single-Precision Floating-Point Compare Instructions

Floating-point compare instructions perform the specified comparison (equal, less than,
or less than or equal) between floating-point registers rs1 and rs2 and record the boolean
result in integer register rd.

• FLT.S, FLE.S. They perform the signaling comparison: an Invalid Operation ex-
ception is raised if either input is NaN.

• FEQ.S. It performs a quiet comparison: it does not cause an Invalid Operation
exception.

16

CHAPTER 2. RISC-V ISA

Figure 2.25: Single-Precision Comparison Instructions with R-type format

4.8 Single-Precision Floating-Point Classify Instruction

Figure 2.26: Single-Precision Classify Instruction with R-type format

• FCLASS.S. This instruction examines the value in floating-point register rs1 and
writes to integer register rd a 10-bit mask that indicates the class of the floating-point
number. The format of the mask is described in Table 2.3. The corresponding bit
in rd will be set if the property is true and clear otherwise. All other bits in rd are
cleared. Note that exactly one bit in rd will be set.

rd bit Meaning
0 rs1 is −∞.
1 rs1 is a negative normal number.
2 rs1 is a negative subnormal number.
3 rs1 is −0.
4 rs1 is +0.
5 rs1 is a positive subnormal number.
6 rs1 is a positive normal number.
7 rs1 is +∞.
8 rs1 is a signaling NaN.
9 rs1 is a quiet NaN.

Table 2.3: Format of result of FCLASS instruction.

5 RV32C Compressed Instructions

This standard describes the extension named "C", that contains the RISC-V standard
compressed instructions. This extension reduces static and dynamic code size by adding
short 16-bit instruction encodings for common instructions. The C extension can be added
to any of the base ISAs (RV32, RV64, RV128), and the generic term “RVC” covers any of
these. Typically, 50%–60% of the RISC-V instructions in a program can be replaced with
RVC instructions, resulting in a 25%–30% code-size reduction.
RVC uses a simple compression scheme that offers shorter 16-bit versions of common 32-bit
RISC-V instructions when:

• the immediate or address offset is small;

• one of the registers is the zero register (x0), the ABI link register (x1), or the ABI
stack pointer (x2);

• the destination register and the first source register are identical;

• the registers used belong to a subset of 8 registers.

17

CHAPTER 2. RISC-V ISA

The C extension allows 16-bit instructions to be freely intermixed with 32-bit instructions,
with the latter now able to start on any 16-bit boundaries. With the addition of the
C extension, JAL and JALR instructions will no longer raise an instruction misaligned
exception.
Figure 2.27 shows the eight compressed instruction formats. CR, CI, and CSS can use any
of the 32 RVI registers, but CIW, CL, CS, and CB are limited to just 8 of them. Figure
2.28 lists these subset of registers, which correspond to registers range from x8 to x15.

Figure 2.27: Compressed 16-bit RVC instruction formats.

Figure 2.28: Three-bit registers rs1’, rs2’, and rd’

5.1 Load and Store Instructions

RVC provides two variants of loads and stores. One uses the ABI stack pointer x2, as
the base address and can target any data register. The other can reference one of 8 base
address registers and one of 8 data registers.

5.1.0.1 Stack-Pointer-Based Loads and Stores

This first type of instructions use the CI format (Figure 2.29):

• C.LWSP. It loads a 32-bit value from memory into register rd. It computes an
effective address by adding the zero-extended offset, scaled by 4, to the stack pointer
x2.

• C.FLWSP. It is an RV32FC-only instruction that loads a single-precision floating-
point value from memory into floating-point register rd. It computes its effective
address by adding the zero-extended offset, scaled by 4, to the stack pointer x2.

Figure 2.29: Stack-pointer-based Load and Stores with CI-type format.

These instructions use the CSS format (Figure 2.30):

18

CHAPTER 2. RISC-V ISA

• C.SWSP. It stores a 32-bit value in register rs2 to memory. It computes an effective
address by adding the zero-extended offset, scaled by 4, to the stack pointer x2.

• C.FSWSP. It is an RV32FC-only instruction that stores a single-precision floating-
point value in floating-point register rs2 to memory. It computes an effective address
by adding the zero-extended offset, scaled by 4, to the stack pointer x2.

Figure 2.30: Stack-pointer-based Load and Stores with the CSS-type format

5.1.1 Register-based Loads and Stores

Load instructions use the CL format (Figure 2.31):

• C.LW. It loads a 32-bit value from memory into register rd’. It computes an effective
address by adding the zero-extended offset, scaled by 4, to the base address in register
rs1’.

• C.FLW. It is an RV32FC-only instruction that loads a single-precision floating-point
value from memory into floating-point register rd’. It computes an effective address
by adding the zero-extended offset, scaled by 4, to the base address in register rs1’.

Figure 2.31: Register-based Load and Stores with CL-type format

Store instructions use the CS format (Figure 2.32):

• C.SW. It stores a 32-bit value in register rs2’ to memory. It computes an effective
address by adding the zero-extended offset, scaled by 4, to the base address in register
rs1’.

• C.FSW. It is an RV32FC-only instruction that stores a single-precision floating-point
value in floating-point register rs2’ to memory. It computes an effective address by
adding the zero-extended offset, scaled by 4, to the base address in register rs1’.

Figure 2.32: Register-based Load and Stores with CS-type format

5.2 Control Transfer Instructions

RVC provides unconditional jump instructions and conditional branch instructions. The
offsets of all RVC control transfer instruction are in multiples of 2 bytes.

19

CHAPTER 2. RISC-V ISA

5.2.1 Unconditional jumps

A group of unconditional jumps instructions use the CJ format (Figure 2.33):

• C.J. It performs an unconditional control transfer. The offset is sign-extended and
added to the PC to form the jump target address. C.J can therefore target a ±2 KiB
range.

• C.JAL. It is an RV32C-only instruction that performs the same operation as C.J,
but additionally writes the address of the instruction following the jump (PC+2) to
the link register x1.

Figure 2.33: Compressed Control Transfer instructions with CJ-type format

Another group of instructions use the CR format (Figure 2.34):

• C.JR. This instruction (jump register) performs an unconditional control transfer
to the address in register rs1.

• C.JALR. This instruction (jump and link register) performs the same operation
as C.JR, but additionally writes the address of the instruction following the jump
(PC+2) to the link register x1.

Figure 2.34: Compressed Control Transfer instructions with CR-type format

5.2.2 Conditional jumps

These instructions use the CB format (Figure 2.35):

• C.BEQZ. It performs conditional control transfers. The offset is sign-extended and
added to the PC to form the branch target address. It can therefore target a ±256
B range. C.BEQZ takes the branch if the value in register rs1’ is zero.

• C.BNEZ. It is defined analogously, but it takes the branch if rs1’ contains a nonzero
value.

Figure 2.35: Compressed Control Transfer instructions with CB-type format

5.3 Integer Computational Instructions

RVC provides several instructions for integer arithmetic and constant generation.

20

CHAPTER 2. RISC-V ISA

5.3.1 Integer Constant-Generation Instructions

The two constant-generation instructions both use the CI instruction format and can target
any integer registers:

• C.LI. It loads the sign-extended 6-bit immediate, into register rd. C.LI is only valid
when rd6=x0.

• C.LUI. It loads the non-zero 6-bit immediate field into bits 17–12 of the destination
register, clears the bottom 12 bits, and sign-extends bit 17 into all higher bits of the
destination. C.LUI is only valid when rd6=x0, x2, and when the immediate is not
equal to zero.

Figure 2.36: Compressed Integer Constant-Generation instructions with CI-type format

5.3.2 Integer Register-Immediate Operations

These integer register-immediate operations are encoded in the CI format and perform
operations on any non-x0 integer registers and a 6-bit immediate. The immediate cannot
be zero:

• C.ADDI. It adds the non-zero sign-extended 6-bit immediate to the value in register
rd then writes the result to rd.

• C.ADDI16SP. It shares the opcode with C.LUI, but has a destination field of x2.
C.ADDI16SP adds the non-zero sign-extended 6-bit immediate to the value in the
stack pointer (sp=x2), where the immediate is scaled to represent multiples of 16 in
the range (-512,496).

Figure 2.37: Compressed Integer Register-Immediate instructions with CI-type format

• C.ADDI4SPN. It is a CIW-format RV32C instruction that adds a zero-extended
non-zero immediate, scaled by 4, to the stack pointer, x2, and writes the result to
rd’.

Figure 2.38: Compressed Integer Register-Immediate instructions with CIW-type format

• C.SLLI. It is a CI-format instruction that performs a logical left shift of the value
in register rd then writes the result to rd. The shift amount is encoded in the shamt
field, where shamt[5] must be zero for RV32C, but the whole shift amount must be
non-zero.

21

CHAPTER 2. RISC-V ISA

Figure 2.39: Compressed Integer Register-Immediate instructions with CI-type format

• C.SRLI. It is a CB-format instruction that performs a logical right shift of the value
rd’ then writes the result to rd’. The shift amount is encoded in the shamt field,
where shamt[5] must be zero for RV32C, but the overall shamt must be non-zero.

• C.SRAI. It is defined analogously to C.SRLI, but instead performs an arithmetic
right shift.

Figure 2.40: Compressed Integer Register-Immediate instructions with CB-type format

• C.ANDI. It is a CB-format instruction that computes the bitwise AND of the value
in register rd’ and the sign-extended 6-bit immediate, then writes the result to rd’.

Figure 2.41: Compressed Integer Register-Immediate instructions with CB-type format

5.3.3 Integer Register-Register Operations

These first group of instructions uses the CR format (Figure 2.42):

• C.MV. It copies the value in register rs2 into register rd. C.MV expands into add
rd, x0, rs2.

• C.ADD. It adds the values in registers rd and rs2 and writes the result to register
rd.

This other group of instructions instead, uses the CS format (Figure 2.43):

• C.AND. It computes the bitwise AND of the values in registers rd’ and rs2’ then
writes the result to register rd’.

• C.OR. It computes the bitwise OR of the values in registers rd’ and rs2’, then writes
the result to register rd’.

• C.XOR. It computes the bitwise XOR of the values in registers rd’ and rs2’, then
writes the result to register rd’.

• C.SUB. It subtracts the value in register rd’ from the value in register rs2’, then
writes the result to register rd’.

22

CHAPTER 2. RISC-V ISA

Figure 2.42: Compressed Integer Register-Register instructions

Figure 2.43: Compressed Integer Register-Register instructions

5.3.4 NOP Instruction

The NOP instruction uses the CS format (Figure 2.44):

• C.NOP. It is a CI-format instruction that does not change any user-visible state,
except for advancing the PC.

Figure 2.44: Compressed NOP instruction

5.3.5 Breakpoint Instruction

This instruction uses the CR format (Figure 2.45):

• C.EBREAK. Debuggers can use the C.EBREAK instruction, to cause control to
be transferred back to the debugging environment. C.EBREAK shares the opcode
with the C.ADD instruction, but with rd and rs2 both zero.

Figure 2.45: Compressed breakpoint instruction with CR-type format

23

Chapter 3

RIC5Y microprocessor

1 Introduction

The case of study of this thesis is the RI5CY or CV32E40P. This work started from the
analysis of an already existing implementation developed and maintained by the PULP
Platform (https://www.pulp-platform.org/), that offers many open source projects.
As already stated, the RIC5Y core has been chosen because of its flexibility that char-
acterises the RISC-V standard family. In fact, as in all the RISC-V implementations it
is possible to extend the ISA, in order to make the core able to support new custom
functionalities. Therefore, the RI5CY core is a good candidate for the integration of the
Logic-in-Memory architecture.
This chapter describes the features and the architecture of the initial version of the core,
that has then been modified to support the new memory operations (https://github.com/
openhwgroup/cv32e40p) [3].

2 Supported ISA

The RI5CY core supports standard and non-standard extensions. While the standard
extensions have been widely discussed in the previous chapter, the non-standard extensions
will be described at a very high level, because they are not the objective of this work.

• Standard - RV32I Base Integer extension. More details about the ISA in
Section [ch. 2, 2].

• Standard - RV32C Compressed extension. Details about the ISA in Section
[ch. 2, 5].

• Standard - RV32M Integer Multiplication and Division extension. Details
about the ISA in Section [ch. 2, 3].

• Standard - RV32F Single Precision Floating Point extension. Details about
the ISA in Section [ch. 2, 4]. This extension is optional. The hardware that manages
the floating-point instructions can be enabled or disabled through the parameter
"FPU" in the top-level file.

• Non-Standard - Post-Incrementing load and store extension. Post-incrementing
load and store instructions perform a load/store operation from/to the data memory
while at the same time increasing the base address by the specified offset. The mem-
ory access uses the base address without offset. Post-incrementing load and stores
reduce the number of required instructions to execute code with regular data access

24

https://www.pulp-platform.org/
https://github.com/openhwgroup/cv32e40p
https://github.com/openhwgroup/cv32e40p

CHAPTER 3. RIC5Y MICROPROCESSOR

patterns, which can typically be found in loops. These post-incrementing load/s-
tore instructions allow the address increment to be embedded in the memory access
instructions without the need of separate instructions. Coupled with the hardware
loop extension, these instructions allow to reduce the loop overhead significantly.

• Non-Standard - Multiply-Accumulate extension. RI5CY supports non-standard
extensions for multiply-accumulate and half-word multiplications with an optional
post-multiplication shift.

• Non-Standard - PULP ALU extension. RI5CY supports advanced ALU oper-
ations that allow to perform multiple instructions that are specified in the base in-
struction set in one single instruction and then to increases efficiency of the core. For
example, those instructions include zero-/sign-extension instructions for 8-bit and
16-bit operands, simple bit manipulation/counting instructions and min/max/avg
instructions. The ALU does also support saturating, clipping, and normalising in-
structions which make fixed-point arithmetic more efficient.

• Non-Standard - PULP Hardware Loops extension. The following feature in
RI5CY allows to use in a more efficient way the instructions for a loop.
As a matter of fact, the hardware loops feature makes it possible to execute a piece of
code multiple times, without the overhead of branches or updating a register counter.
Hardware loops involve zero stall cycles for jumping to the first instruction of a loop.
A hardware loop is implemented with three registers, that respectively represent the
start address (pointing to the first instruction in the loop), the end address (pointing
to the instruction that will be executed last in the loop) and a counter (decremented
every time the loop body is executed).
RI5CY contains two hardware loops (six registers, see Figure 3.1) to support nested
hardware loops. If the end address registers of the two hardware loops are identical,
loop 0 has higher priority and only the counter for hardware loop 0 is decremented. As
soon as the counter of loop 0 reaches 1 when executing the instruction corresponding
to the end address, loop 1 gets active too, because it means that counter of the loop
0 will be decremented to 0. In this case, both counter registers will be decremented
and the core jumps to the start of loop 1.
In order to use hardware loops, the loop instructions need to be preceded by the
hardware loop instructions for the setup of the CSRs. The minimum loop size is two
instructions and the last instruction cannot be any jump or branch instructions.
For debugging and context switches, the hardware loop registers are mapped into
the CSR address space and so it is possible to read and write them via CSR-like
instructions (Section [ch. 2, 2.6]):

Figure 3.1: RI5CY Hardware loops mapping in CSR address space

Since hardware loop registers could be overwritten when processing interrupts, the

25

CHAPTER 3. RIC5Y MICROPROCESSOR

registers have to be saved during the interrupt routine together with the general
purpose registers.

• Non-Standard - PULP Vectorial extension. Vectorial instructions perform
operations in a Single Instruction-Multiple Data (SIMD) manner on multiple sub-
word elements at the same time. This is done by segmenting the data path into
smaller parts when 8 or 16-bit operations should be performed.

• Non-Standard - PULP specific extension. PULP Platform offers some single-
core and multi-core micro-controllers based on the RI5CY. For this reason PULP-
specific instructions are supported by the the RI5CY in order to interact with the
System-on-Chip (SoC) components.

3 RTL top view

3.1 Block diagram

RI5CY is a 4-stage in-order 32-bit core. Figure 3.2 shows an overview of the RI5CY
architecture. More details on the architecture will be covered in Section 4.

Figure 3.2: RI5CY block diagram

3.2 Interfaces

The RI5CY core as any microprocessors, must communicate with the memory to read
the instructions and for exchange data information. The core can also communicate with
external peripherals through interrupts and with the Auxiliary Processing Units (APU).
Anyway, for the scope of this research, the focus will be on the interfaces related to the
memory.

3.2.1 Instruction memory interface

The instruction fetcher of the core is able to supply one instruction per cycle if the in-
struction cache or the instruction memory is able to serve one instruction per cycle. The
instruction address can be half-word-aligned due to the support of compressed instructions
(RVC).

26

CHAPTER 3. RIC5Y MICROPROCESSOR

The protocol and the handshake signals used for this communication are explained below.
The core can only perform reads on the instruction memory:

• Read from memory. The protocol requires that the core initiates the communica-
tion with the memory, when an instruction is needed. The request is performed with
instr_req_o set and the instr_addr_o pointing to the needed instruction. These
signals should remain stable until the memory sees the core request, by setting the
signal instr_gnt_i for only one clock cycle. The address and the request signals
are expected to change after that. Whenever the memory finishes to process the
request, sets the signal instr_rvalid_i to let the core sample the instruction on the
instr_rdata_i bus.

The Table 3.1 and the Timing diagram 3.3 summarise the communication protocol.

Signal Direction Description

instr_req_o output
RI5CY core uses the request signal to start the
communication with the memory. This signal must stay
high until instr_gnt_i is high for one cycle.

instr_gnt_i input This pulse signal is high when the memory accepted
the request: instr_addr_o may change in the next cycle.

instr_addr_o[31:0] output Instruction address to read: sampled by the memory
when instr_gnt_i and instr_req_o are high.

instr_rvalid_i input instr_rdata_i is considered valid when
instr_rvalid_i is high, for exactly one cycle.

instr_rdata_i[31:0] input Instruction data read from memory: sampled by the
prefetcher in RI5CY core when instr_rvalid_i is high.

Table 3.1: Instruction memory/cache communication protocol

Figure 3.3: Timing diagram Instruction memory/cache communication protocol

3.2.2 Data memory interface

The core takes also care of accessing the data memory. Load and stores on words (32 bits),
half words (16 bits) and bytes (8 bits) are supported.
The RI5CY core is able to perform misaligned accesses, so accesses that are not aligned
on natural word boundaries. However, if a misaligned access is really needed, the core will
need to perform two separate word-aligned accesses. This means that at least two cycles
are needed for misaligned loads and stores.
The core communicates with the memory according to the same protocol used for the
instructions. Anyway, the data interface can execute both reads and writes, so more
signals are needed for the handshake. Details below:

• Read from memory. The protocol requires that the core notifies the memory when
it wants to access, providing a valid address in data_addr_o and setting data_req_o
high at the same time. The memory then answers with a data_gnt_i set high as

27

CHAPTER 3. RIC5Y MICROPROCESSOR

soon as it is ready to serve the request. This may happen in the same cycle as the
request was sent or any number of cycles later. After a grant is received, the core may
change the address in the next cycle. After receiving a grant, the memory answers
with a data_rvalid_i set high if data_rdata_i is valid. This may happen one or
more cycles after the grant has been received. The read access in the data memory
is then exactly the same as the instruction memory.

• Write in memory. The protocol is very similar also for a write. In fact, the core
always requires a memory access with data_addr_o and data_req_o, but at this
time it provides also the signals data_wdata_o, data_we_o and data_be_o. The
memory answers with a data_gnt_i set to high, whenever it is ready to process the
request. After a grant is received, the address, data to be written and other control
signals may be changed in the next cycle because it is assumed that the memory has
already processed and stored that information. Note that the memory must answer
with data_rvalid_i set even when a write is performed, although the data_rdata_i
has no meaning in this case.

Table 3.2 and Figure 3.4 summarise this protocol:

Signal Direction Description

data_req_o output Request signal, must stay high until data_gnt_i is
high for one cycle.

data_gnt_i input The signal is high when the other side accepted the
request: data_addr_o may change in the next cycle.

data_addr_o[31:0] output Address to read the data: sampled by other side
when data_gnt_i and data_req_o are high.

data_we_o output Write Enable, high for writes, low for reads,
sent together with data_req_o.

data_be_o[3:0] output Byte Enable. Is set for the bytes to write/read,
sent together with data_req_o.

data_wdata_o[31:0] output Data to be written to memory, sent together with
data_req_o.

data_rdata_i[31:0] input Data read from memory: sampled by the core when
data_rvalid_i is high.

data_rvalid_i input data_rdata_i is considered valid when data_rvalid_i
is high. This signal behaves like a pulse.

Table 3.2: Data memory/cache communication protocol

(a) Read transaction (b) Write transaction

Figure 3.4: Timing diagram Data memory/cache communication protocol

28

CHAPTER 3. RIC5Y MICROPROCESSOR

4 Architecture description

As already mentioned, this RI5CY implementation, is a 4-stage pipeline in-order 32-bit
RISC-V processor core. In this section the microprocessor architecture is described with
more details.
Anyway, before entering into the details of the RTL blocks, it is worth to analyse how the
pipeline works in RI5CY. A representation of the pipeline is showed in Figure 3.5. The
pipeline stages are:

• Instruction Fetch stage (IF stage)

• Instruction Decode stage (ID stage)

• Execution stage (EX stage)

• Load and Store stage (LSU stage)

Each pipeline stage has two control inputs: an enable and a clear : the enable activates the
pipeline stage and the core moves forward by one instruction, while the clear removes the
instruction from the pipeline stage as it is completed and there is not a new instruction to
process.
Every pipeline stage is cleared if the ready coming from the stage to the right is high, and
the valid signal of the same stage is low. If the valid signal is high, the stage is enabled.
Every pipeline stage is independent from its left neighbour, meaning that it can finish its
execution no matter if a stage to its left is currently stalled or not. On the other hand, an
instruction can only propagate to the next stage if the stage to its right is ready to receive
a new instruction. This means that in order to process an instruction in a stage, its own
stage needs to be ready (valid signal high) and so does its right neighbour (ready signal
high).

Figure 3.5: RI5CY pipeline

In the following sections, each stage of the pipeline is fully expanded. The description
will not cover all the details of the architecture, but it is intended to provide a general
background of the RI5CY core.

4.1 Instruction Fetch stage

This first stage allows to read instructions from memory and do some preliminary evalu-
ations on the instruction read. The main components are described below, while a repre-

29

CHAPTER 3. RIC5Y MICROPROCESSOR

sentation of the full stage is available in the Figure 3.6.

Figure 3.6: IF stage block diagram

4.1.1 PC multiplexers

Three multiplexers are used to select the address of the instruction to fecth from the
memory. The control signals used to make the selection come from the ID stage:

• Fetch_addr_mux: this multiplexer selects the 32 bits address signal fetch_addr_n
from a set of available addresses like the immediate next Program Counter (PC), the
boot address, the address related to an exception handler, the address of the of the
PC restored after returning an exception or the address of the target address of a
jump instruction.

• Exception_PC_mux_0: this multiplexer selects the exception address between
an interrupt address (from the ID stage), a trap base address or DM_HaltAddress
(that is a constant value).

• Exception_PC_mux_1: this multiplexer selects the trap handler base address
between the user trap base address and the machine trap base address. Both base
addresses are computed by the CSRs block, not showed here because out of the scope
of this work.

30

CHAPTER 3. RIC5Y MICROPROCESSOR

4.1.2 Prefetch Buffer

A prefetch buffer is the module that directly communicates with the instruction memory,
or instruction cache. It helps to cut overly long critical paths to the instruction memory.
There are two prefetch buffer flavors available, according to the width of the instructions
to read:

1. 32-Bit word prefetcher. It stores the fetched words in a FIFO with three entries
(instruction address, read data and valid bit). Generally, the basic functionality of
the prefetcher consists in computing the address to send over the memory and then
storing this address into a FIFO for future usage.

• Fetch FIFO. The logic outside the FIFO computes the instr_addr_q, and the
in_valid_i, while the instr_rdata comes directly from the memory. Those three
data are written into the fifo according to the valid-ready protocol. In partic-
ular, the input interface of the fifo always accepts data if there is space inside
the fifo. In fact, its in_ready_o goes low only if the fifo is full.
The output interface instead, has out_valid_o\fetch_valid always high if the
fifo has data to be processed. If the interface outside the fifo is ready, the data is
available to the output of the fifo immediately, then within the same clock cycle.
The fifo outputs are then fetch_addr, fetch_rdata and fetch_valid signal.
Moreover, the fetch fifo has logic inside to manipulate the address in case of
compressed instructions and hardware loops instructions. As a matter of fact,
it is expected that the instruction memory is always accessed with aligned ad-
dresses to read 4 bytes, that can correspond to a normal instruction (32 bits)
or to at least one compressed instruction (16 bits). According to the RISCV
ISA, all the 32 bits instructions are coded with the first two bits equal to 2’b11,
while the 16 bits instructions do not show this equality. The logic inside the
fifo evaluates these two bits to distinguish between the two cases. In case of an
hardware loop instruction, the input in_is_hwlp_i is used to detect it.

• Fetch adder. Defining as current instruction address instr_addr_q, that is
the input of the fifo, the Fetch adder computes the next possible instruction
address (fetch_addr) by increasing it by 4.

• Fetch FSM. The finite state machine inside the the prefetcher keeps track on
the state to perform the communication with the instruction memory according
to the protocol described in Section 3.2.1. As a matter of fact, this component
can be in one of the following states:

– IDLE, it is the state that the FSM assumes after the reset signal. In this
state if no request to memory is done, the input valid of the fifo is 0 and the
input of the fifo instr_addr_q is equal to 0 as well, because corresponds to
the reset value. The instr_addr_q is the output of a register, whose enable
is the signal addr_valid, set to 0 in this case. If there is no need to rise
a request for an instruction to the memory, the output instr_addr_o can
assume any values.
Otherwise, if a request is raised from the ID stage with the signal req_i,
the request instr_req_o is sent to the memory with a valid value in in-
str_addr_o. The instr_addr_o signal can assume the value of the fetch_addr
signal in a normal case (previous instruction address value incremented by
4), the value of the signal fetch_addr_n computed outside the prefetcher
in case of a branch/jump or the value of the signal hwloop_target_i. More-
over, in case of a request the register instr_addr_q is enabled as well.

31

CHAPTER 3. RIC5Y MICROPROCESSOR

Since a valid address is available and sent to the memory, this address can
be recorded by the register in the next cycle.
A state change occurs only if the request to the memory is sent. In fact,
in the next clock cycle, the state will be WAIT_RVALID if the signal
instr_gnt_i from memory is immediately set to 1, that means that the
memory has read the request of an instruction from the microprocessor. If
this signal is not granted the state changes in WAIT_GNT.

– WAIT_GNT, is the state in which the IF stage waits for the grant from
the instruction memory. As a matter of fact, according to the protocol the
request signal instr_req_o is kept high and the instr_addr_o is still stable,
because the memory did not accept the request yet.
The state will change in the next cycle only if the instr_gnt_i is received,
into the WAIT_RVALID state.

– WAIT_RVALID, is the state in which the processor waits for the instruc-
tion content from the memory. In fact, as soon as the instr_rvalid_i is set,
the fifo is enabled so that it can read the instr_rdata_i (containing a valid
value) and the instr_addr_q (that contains the corresponding memory ad-
dress).
In this cycle another request can be raised again from the ID stage. If
the instr_rvalid_i is still not received when the new request is set by
the core, it means that the previous request is aborted so next state is
WAIT_ABORTED. Otherwise, in case the request signal is concurrent to
the instr_rvalid_i, the previous request is still valid, so fifo will be enabled
and the FSM can start processing the new request starting from the next cy-
cle: according to the grant signal value the next state will be WAIT_GNT
or WAIT_RVALID.
In case of no concurrent request and valid signals received the next cycle
the state will be IDLE.

– WAIT_ABORTED, state in which the FSM goes if in the WAIT_RVALID
state a new req_i is received before instr_rvalid_i. This means that the
previous request has been aborted, and the new one needs to be processed.
Nevertheless, it is expected that the memory will reply with a valid signal
for the old request, in fact as soon as this happens, the read instruction
is not registered into the fifo and the FSM can process the response for
the valid request in the usual way. In other words, this state is needed to
manage two overlapping responses from memory.

– WAIT_JUMP, this state is reachable from every state if the signal in-
str_err_pmp is raised by the PUMP UNIT. So, this state allows to wait
for the branch_req signal, and then to start the processing of a instruction
that follows a jump/branch instruction.

2. 128-Bit cache line prefetcher. The available hardware allows to store one 128-bit
wide cache line plus 32-bit for cross-cache line misaligned instructions. Anyway, a
detailed description is not needed because this version has not been used for this
research work.

4.1.3 Offset FSM

A finite state machine in the IF stage is used to manage the pipeline stage. Two possible
states are possible here:

32

CHAPTER 3. RIC5Y MICROPROCESSOR

• IDLE, state in which there is no request for a new instruction. As a matter of fact,
the fetch_ready signal to be sent at the output of the fifo is set to zero, because no
instruction will be read, and the valid signal of the IF stage is set to zero as well.
In case the request signal req_i is set from the ID stage, the state will change into
WAIT.

• WAIT, in this state, if the fifo in the prefetcher contains an instruction and so the
signal fetch_valid is high, then the valid signal is set to high too. In this case,
if the ID stage is ready, the instruction from the fifo is read by setting the signal
fetch_ready.

4.1.4 Hardware Loops

The hardware loop controller unit is responsible for handling hardware loops. This can be
split into two sub-tasks: first to compare PC to all stored end addresses and then to jump
to the right start address if counter is equal to 0.
The ID stage contains the hardware loop registers, whose values is given to IF stage with
the signals: hwlp_start_i, hwlp_end_i and hwlp_cnt_i.
This module compares through comparators the current fetched address with the value of
the hardware loop end addresses. There are as many comparators as the the hardware
loops supported. If the fetched address has the value of one of the end addresses, the value
of the corresponding hardware loop counter is checked. The signal hwlp_dec_cnt_if will
go high at the next cycle to decrease the value of the counter. As soon as the end the loop
is reached, the hwlp_jump_o is set to 1.

4.1.5 Compressed Decoder

The Compressed Decoder is a fully combinational module, that converts the RISC-V com-
pressed instructions (RV32C) into their extended version (RV32I). The instr_decompressed
is passed to the next stage with the instr_compressed_int that is a flag that indicates that
the instruction read has been decompressed.

4.2 Decode stage

This stage decodes the instructions and hosts the Register File. The main components are
described below, while a representation of the full stage is available in the Figure 3.7.

4.2.1 Decoder

The ID stage receives as input from the the previous stage the instruction read from the
memory. The instruction needs to be interpreted in order to proceed with the specific
actions described by the instruction itself.
The decoder is a combinational logic block that is used for this purpose. This block
sets up the processor control lines as required by the current instruction instr_rdata_i. In
particular, only the fields related to the opcode and more general control bits are evaluated.
It is not worth to describe all the control lines managed by the decoder, but it may be
useful to have an idea on the typologies of control signals that are used into the RI5CY:

• Operands used. Control signals that notify when an operand between Operand_a,
Operand_b and Operand_c is being used. This will enable the forwarding logic
to check the dependency of the current operands from the result of previous non-
completed instructions.

33

CHAPTER 3. RIC5Y MICROPROCESSOR

Figure 3.7: ID stage block diagram

• Floating-Point Register File used. In order to distinguish an integer operation from
a floating-point operation, the decoder sets some control signals in order to select
integer or floating-point operands.

• ALU/MUL. ALU operands selection, that can be registers, immediate values, PC
or a jump target. The ALU operation is also determined by the decoder. The
Multiplication Unit needs also an operation type to be selected and other control
signal, for example signals that select the operand types (integer or floating-point).

• CSR manipulation. It includes signals that enable the access to the Control and
Status Registers and select the operation type to perform on this registers.

• Load and Store Unit. Load and Store instructions determine the value of signals that
will kick off the communication with the memory once the instruction is the next
stage.

• Hardware Loops. Signals that include the enable for the hardware loops registers and
control signals that select the target values to assign to them.

• Jumps. Signals to perform a jump during the execution, in order to select a given
Program Counter (PC).

4.2.2 Immediate sign-extension block

The Immediate sign-extension block is a combinational module that prepares the immedi-
ate field to fit 32 bits, according to all the supported instructions that use an immediate.

34

CHAPTER 3. RIC5Y MICROPROCESSOR

4.2.3 Source and Destination registers selection

An operation in the RISC-V can require up to 3 operators. The operators can be read
from the register files, that need to be addressed. In fact, in there is a section in the decode
stage that manages the address signals for two register files: an Integer Register File and a
Floating-point Register File. Both register files contain 32 registers, but they are wrapped
together so the address signals width is 6 bits.
In order to distinguish a floating point register address from a integer register address,
each address has the most significant bit (MSB) equal to 1 for a FP operation and equal
to 0 for an integer one.
There are four address signals, three for source registers selection and two for destination
registers selection:

• regfile_addr_ra_id, regfile_addr_rb_id, regfile_addr_rc_id : source registers ad-
dress.

• regfile_waddr_id, regfile_alu_waddr_id : destination registers address.

For each source\destination address, the MSB is determined by the regfile_fp_a, reg-
file_fp_b, regfile_fp_c, regfile_fp_d signals coming from the decoder unit, that are set
when a floating-point operation is decoded.

4.2.4 Forwarding detection logic

Forwarding is an optimisation in pipelined CPUs to reduce the pipeline stalls due data
dependencies. In particular, a stall can occur when the current operation has to wait for
the results of an earlier operation which has not yet finished.
The RI5CY microprocessor offers the forwarding mechanism, that consists in simple com-
binational logic that compares the write address of the previous instructions (that are
being processed in a later stage: Execution or Load-Store), with the three source registers
address of the current instruction in the ID stage. The outputs of the forwarding logic
are control signals that will notify if there is a dependency with the result of a previous
instruction, that is still not written in the Register Files.

4.2.5 Controller

The Controller is the logic unit that coordinates all the operations during the instructions
execution. With respect to the decoder, the control signals that this unit produces, come
from an evaluation of external requests (e.g. interrupts) or general pipeline status.
The basic functionalities of this unit are summarised below:

• FSM Core Controller. The key component of the Controller is the Finite-State
Machine (FSM). The FSM is used whenever there is the need to take track of some
subsequent events. In fact, the FSM in the Controller is used to flush the pipeline
in case of branches taken, to manage the core at the boot time, by setting the initial
memory address to fetch, to take action after an interrupt reception and many other
operations that will be not covered into details.

• Forwarding Control Logic. Forwarding logic is finalised into the controller, because
the decoding of the Forwarding detection logic is not enough to guarantee that the
potential dependency is a real one. As a matter of fact, the controller needs to check
if the involved write back registers are really being update or not. As a result, the
controller drives the signal operand_a_fw_mux_sel_o, operand_b_fw_mux_sel_o
and operand_c_fw_mux_sel_o that will be used for the operands selection.

35

CHAPTER 3. RIC5Y MICROPROCESSOR

• Stall Control. Nevertheless the forwarding mechanism is in place, there are cases in
which is unavoidable to stall the pipeline. For example, the result that comes from a
load instruction cannot be retrieved before the load instruction is actually complete,
so the pipeline might be stalled if the next instruction needs the load result. Same
applies for the jump with link instructions or in case of misaligned access in memory.

4.2.6 Hardware loop

This block is the place where the hardware loops registers live. Whenever an hardware loop
instruction is decoded, the hardware loop registers are initialised. The hardware loop logic
in RI5CY allows the management of two nested hardware loops. Once the registers are
enabled, the counter register is decremented every time the signal hwlp_dec_cnt_i[1:0] is
received from the IF stage. In fact, when this signal is set it means that the corresponding
hardware loop has completed one loop, then the program counter matches the end address.
The registers values hwlp_start_id_o[1:0], hwlp_end_id_o[1:0] and hwlp_cnt_id_o[1:0]
are sent to the IF stage in order to perform the evaluation on the fecthed address.

4.2.7 Jump Target

Whenever a jump instruction is encountered, the RI5CY architecture allows to immediately
compute the target address, without waiting for the instruction to reach the EX stage. The
target address jump_target_o will be sent to the ID stage to correctly update the Program
Counter in the next cycle. Its value is different according to the type of jump decoded.

4.2.8 Operand a, Operand b, Operand c

The computational unit in the EX stage can perform an operation with up to three
operands. These operands can assume many different values according to the need of
the instruction being executed:

• alu_operand_a. This operand can assume the value of an immediate for a certain
set of instructions. As a matter of fact, imm_a corresponds only to a subset of
the possible immediate values. Moreover, this operand allows to select the Program
Counter (PC) to perform the operation in case of jump instructions. Lastly, the
operand can also assume the value of one of the registers read through the ports
regfile_data_ra_id, regfile_data_rb_id or regfile_data_rc_id of the Register File.
If the value of these registers is expected to change due to previous instructions, the
forwarding logic will select the expected value of the register instead of the current
one.

• alu_operand_b. The immediate values imm_b correspond to a different subset of
immediate values. Same as before, this operand can assume the value of Register
File ports regfile_data_ra_id, regfile_data_rb_id or regfile_data_rc_id and the
forwarding logic will care to give to the operand the expected value in case of conflicts
with previous instructions.

• alu_operand_c. This operand cannot assume any immediate values. It can instead
select the jump_target value and a the content between only two ports of the Register
File: regfile_data_rb_id or regfile_data_rc_id.

4.2.9 Register Files

The role of the Register File in a microprocessor is to store some useful and most used
variables to perform the computation. RI5CY Register File contains:

36

CHAPTER 3. RIC5Y MICROPROCESSOR

• Integer Register File. It consists in 32 registers each of 32 bits used to store integer
numbers (x0− x31). The register x0 (the first one) is not writable, and contains the
value 0.

• Floating-Point Register File. It also consists in 32 registers each of 32 bits used to
store floating-point numbers (f0− f31).

The two register arrays are accessible through 3 read ports and 2 write ports.

• Read port a: regfile_data_ra_id, regfile_addr_ra_id.

• Read port b: regfile_data_rb_id, regfile_addr_rb_id.

• Read port c: regfile_data_rc_id, regfile_addr_rc_id.

• Write port a: regfile_wdata_wb_i, regfile_waddr_wb_i.

• Write port b: regfile_alu_wdata_fw_i, regfile_alu_waddr_fw_i.

The listed ports are shared between the two Register Files. In fact, accesses to the Integer
Register File and the Floating-Point Register Files are differentiated through the address
ports, that shows the MSB equal to 0 in case of an Integer Register File access, while 1 in
case of a Floating-Point Register File access.
Moreover, the Floating-Point Register File can be disabled through the parameter "FPU".
In fact, this will save power consumption in contexts in which the floating-point ISA
extension is not needed.

4.3 Execution stage

The execution stage is the place where the actual computations are performed between the
operands. Figure 3.8 shows an high-level representation of the full stage.

4.3.1 Arithmetic Logic Unit

The Arithmetic Logic Unit is the computational unit that manages various type of opera-
tions with a maximum of three operands alu_operand_a, alu_operand_b and alu_operand_c:

• Bit manipulation. ALU can work on single bits or groups of bits within a word,
performing negation, shifts, bit-counting operations.

• Arithmetic operations. General operations such as addition, subtraction, comparisons
and divisions.

• Floating-Point classification.

All these operations can be performed within one clock cycle except for the division and
reminder that take between 2 and 32 cycles. The number of cycles depends on the operand
values.

4.3.2 Multiplier

The Multiplier module performs:

• Integer Multiplications. Multiplication generally requires only one clock cycle for
32-bit results. The multiplications with upper-word result of 32-bit x 32-bit multi-
plication, take 4 cycles to compute.

• Multiply-Accumulate operations. Those operations are multi-cycle.

37

CHAPTER 3. RIC5Y MICROPROCESSOR

Figure 3.8: EX stage block diagram

4.3.3 APU and Floating point unit

The available version of the RISC-V does not contain a FPU. Anyway, the structure allows
to easily extend the core with a private FPU, which is capable of performing all RISC-V
floating-point operations that are defined in the RV32F ISA extension. The FP extensions
can be enabled by setting the parameter of the top-level module to 1. To access to the
extended FPU unit, the Auxiliary Processing Unit (APU) is used. In fact, the APU has a
standard valid-ready interface to be connected to an external processing unit, such as the
FPU. Any processing units that have a compatible interface can be connected to the APU
and therefore can be used for introducing new operations in the RI5CY core.

4.3.4 ALU write port

The ALU write port allows to write the result of the execution stage directly into the
Register File to accommodate the forwarding mechanism. The result is selected between
the units presented above or from one control-status register: alu_result, mul_result,
apu_result or csr_rdata.

4.3.5 LSU write port

The LSU write port is used instead for results of the execution stage that takes two clock
cycles (alu_result, mul_result or apu_result) or for writing back the result read from the

38

CHAPTER 3. RIC5Y MICROPROCESSOR

memory. This port is placed into the Execution stage module, but it actually belongs to
the LSU stage in terms of timing.

4.4 Load and Store Unit stage - Write Back stage

The Load and Store unit (LSU) or Write Back (WB) stage manages the communication
with the data memory. For timing purposes the memory communication starts during
the Execution stage and it is completed during the actual Load and Store stage. In fact,
Figure 3.9 shows that some Load and Store Logic actually performs during the previous
stage even if it is inserted into this stage.

Figure 3.9: LSU stage block diagram

4.4.1 FSM Memory Communication

The FSM in the LSU stage takes care of the communication with the Data Memory,
sending and evaluating the control signals according to the communication protocol already
described in 3.2.2. The states the FSM can assume are described below:

• IDLE. This state indicates that in the previous cycle there was not any active
transactions with the memory. The FSM in this state evaluates the request sig-
nal data_req_ex_i coming from the ID stage. If the signal is set, it means that a
Load/Store instruction is being processed in the Execution stage. The request out-
put to the memory data_req_o is raised at the same time. Moreover, the protocol
allows the memory to send the grant signal data_gnt_i immediately, therefore the
grant signal is evaluated in this state too. The next state can be WAIT_RVALID,
in case the signal or WAIT_RVALID_EX_STALL in case of signal equal to 0. This
signal indicates that the Execution stage is going to be stalled.

39

CHAPTER 3. RIC5Y MICROPROCESSOR

• WAIT_RVALID. In this state, the FSM waits for the rvalid signal in the LSU stage.
If the data_rvalid_i is received from the Memory, the transaction can be considered
finished. In fact, in the same cycle, the Execution stage might process another Load/-
Store instruction, so another transaction can be started setting the signal data_req_o
and after that the reception of the data_gnt_i is immediately performed. It means
that the next state can be WAIT_RVALID or WAIT_RVALID_EX_STALL ac-
cording to the same conditions stated before. On the contrary, if the Execution stage
is processing a different instruction, the data_req_o will be 0 and the next state will
be IDLE again.

• WAIT_RVALID_EX_STALL. The FSM assumes this state when the Execution
stage has been stalled for some reasons and the Load/Store instruction waits for
the rvalid signal while is in the Execution stage. In this state it is not possible to
initiate a new memory request. As soon as data_rvalid_i is received, if the stall is
deasserted (ex_valid_i equal to 1) the transaction is completed and the next state
will be IDLE, otherwise the next state will be IDLE_EX_STALL.

• IDLE_EX_STALL. This state is needed only to wait for stall deassertion. As soon
as ex_valid_i is equal to 1, the FSM state will change into IDLE again.

4.4.2 Bytes-Enable Generator & Misalignment Input Logic

The Memory is organised in bytes and it is supposed to accept only aligned accesses,
so within the 4-bytes address ranges. The memory will evaluate only the offset address
{data_addr_o[31:2],2’b00}, so the microprocessor needs to communicate which set of bytes
are actually accessed using another signal data_be_o. This is a 4-bits signal, each bit
corresponds to a byte position starting from the given memory offset address:

• data_be_o[0] corresponds to the first byte with offset address {data_addr_o[31:2],2’b00}.

• data_be_o[1] corresponds to the second byte with offset address {data_addr_o[31:2],2’b00}.

• data_be_o[2] corresponds to the third byte with offset address {data_addr_o[31:2],2’b00}.

• data_be_o[3] corresponds to the fourth byte with offset address {data_addr_o[31:2],2’b00}.

Those bits can be set at the same time in order to access to many bytes at the same time
(e.g. 4’1111b corresponds to a word memory access). This address manipulation is done
to process misalignment accesses. In fact, the RI5CY core splits the misaligned access into
aligned accesses.
In case of stores, the write data should be adapted to have meaningful data corresponding
to the position indicated by the bits set in data_be_o.

4.4.3 Data Sign Extension & Misalignment Output Logic

Data read after a load operation is manipulated in order to perform a sign-extension in
case of bytes and half-words and in case of misaligned accesses. The result is then written
into the Register File through the LSU write port.

4.5 Peripherals and Memory model

For the scope of this thesis, it is worth to briefly describe the memory model adopted by
the RI5CY core.
Figure 3.10 represents the structure available for the simulation of the core. As a matter
of fact, the RI5CY testbench wraps together the RI5CY microprocessor with a memory
model. This model consists of:

40

CHAPTER 3. RIC5Y MICROPROCESSOR

• The actual dual-port ram with the logic that implements the communication protocol.

• Non-synthesisable structures that belong to the testbench. Those are used to emulate
other peripherals and for simulation specific requirements.

Figure 3.10: Peripherals and Memory model organisation

41

Chapter 4

Logic-in-Memory in RI5CY
Framework

1 Logic-in-Memory State of Art

To overcome the communication speed issue between CPU and Memory, research institutes
and industry are moving towards to Processing-in-Memory architectures.
The goal of the Processing-in-Memory concept is to reduce load and store operations in
memory by distributing the computational part in the memory to execute some basic oper-
ations. The classic data movement proposed by the Von-Neumann architecture is revised,
so that data will be not moved back and forward into the memory.
As a matter of fact, memory will not only be the storage center of a computing systems,
but will offer the possibility to manipulate the data stored bypassing the CPU. With this
new system architecture, the CPU will not have the need to read the data, compute the
operation and then store the data back in the memory, because the data processing will be
performed in the memory itself. Therefore, the CPU is left to only coordinate the operation.

The advantage in terms of speed is immediate, reason why this new approach is very
promising for the future and the scientific community is pushing towards this direction.
Literature offers a wide set of Processing-in-Memory (PiM) implementations and defini-
tions. In particular, [7] classifies the four main typologies of PiM according to the role that
memory has for the computation:

• Computation-near-Memory (CnM). According to this definition, memory and com-
putational logic are kept separated. Anyway, thanks to the new 3D-integration tech-
nology, those two entities can be really close, so the length of the interconnections is
extremely reduced. An example of this typology is WIDE-IO2, a 3D stacked DRAM
memory [8] that has a logical layer placed at the bottom of the stack.

• Computation-with-Memory (CwM). Under this definition, are the memories that store
pre-computed results. Often, a combination of Look Up Table (LUT) and Content
Address Memory (CAM) is used. In fact, the LUT indicates the truth table of a
certain operation, while the CAM stores the results. The "computation" is then
performed into two steps. Firstly, the inputs are used to access the LUT, that in
turn access to the CAM, retrieving an address. The second step consists in using the
obtained address to read the result stored in the CAM.

• Computation-in-Memory (CiM). This typology does not change the memory array.
Data computation is instead performed in the peripheral circuitry. For example,

42

CHAPTER 4. LOGIC-IN-MEMORY IN RI5CY FRAMEWORK

sense amplifiers (SAs) can be slightly changed to perform simple bitwise operations,
or particular decoders are also adopted to perform operations between many memory
locations.
Configurable Logic-in-Memory Architecture (CLiMA) [9] is an heterogeneous archi-
tecture composed of an in-memory (LiM and/or CiM) computing unit that offers
much flexibility.

• Logic-in-Memory (LiM). Data computation is performed directly inside the memory
array, by adding some logic in each memory cell.
Example of LiM is [10], an hardware implementation of a the Binary Neural Network,
in particular of the XNOR-Net model, that exploits the usage of XNOR gates.

For the scope of this thesis, it is worth to focus on the Logic-In-Memory. Figure 4.1 shows
a further classification of the Logic-in-Memory, at a very high-level:

(a) Memory array

(b) Pure Logic-In-Memory (c) Hybrid Logic-In-Memory

Figure 4.1: Logic-in-Memory typologies

• Pure Logic-in-Memory. This definition sticks to the LiM definition given previously.
The introduction of new gates within the single memory cell is a very simple and
cost-effective LiM solution. According to the technology used to implement this kind
of memory, very easy bitwise operations can be obtained almost for free from the
array. The new cell will compute some combinational operations in addition to the
classic storage functionality. (See part b).

• Hybrid Logic-in-Memory. A more broaden definition of the LiM can include some
additional control logic around the memory array. The logic within each memory
cell will still be present, but in order to execute more complex functions on the data
stored, some control logic can be added around the array. This solution guarantees

43

CHAPTER 4. LOGIC-IN-MEMORY IN RI5CY FRAMEWORK

much more flexibility and will allow to perform more elaborated operations and
algorithms. This solution can still be classified as LiM and not as CiM. In fact, the
memory cells still requires the additional gates, while the logic around the memory
is only needed to coordinate the gates within the memory array. (See part c).

The Logic-in-Memory considered for this thesis, belongs to the second typology. Of course,
this is a more elaborated and expensive solution, but it allows to consider a various number
of operations and algorithms that the memory could do, without the need of the CPU.
The number and the types of operations that the LiM would perform depend on the actual
implementation and from the needs of the system in which the memory will be integrated.
Those operations can vary from bitwise operations between memory cells to more complex
algorithms.

Logic-in-Memory opens a new world for the data processing design and it is clearly a
desirable feature that must be explored. Nevertheless, it is important to consider that the
LiM will introduce an additional level of complexity and it could have an impact in terms of
area (definitely bigger than a normal memory), power and timing. All these considerations
should be performed on a case by case basis, because depend on the actual implementation.

2 Logic-in-Memory architecture

The RI5CY core supposes to have only one memory for both instructions and data. As
a matter of fact, the instructions and data parts of the memory, not only share the same
physical memory but there is not any specific address that divides the two parts. The
management of the division between them is left to the compiler according to the size of
the program that will be run.
Therefore, the available memory model is a dual port memory, such that fetch and load-
store operations can occur in the same clock cycle and two decoders corresponding to the
two ports, give the possibility to address all memory locations.

The implemented Logic-in-Memory adds some logic around the memory array and within
the memory array itself. The result is a memory capable of some basic bitwise operations
and of few simple algorithms.
In more details the proposed memory architecture can perform the following operations:

• Normal load and store operations: the new memory can still behave as a memory, so
it will perform a read or a write in any memory locations in just 1 clock cycle. Data
port of the memory supports load and store for 8-bit, 16-bit or 32-bit data.

• Bitwise operations: Only the data port of the memory can enable the logic for this
kind of operations. Load and store can be performed together with a bitwise opera-
tion, using an input mask, in just 1 clock cycle. The available bitwise operations are
AND, OR and XOR. Only in case of a store, the bitwise operation is supported also
on a range of memory locations, assuming that the input mask to use is the same for
all the locations selected.
Bitwise operations are supported only on 32-bit data, on aligned addresses.

• Maximum and minimum: a special load operation can give the maximum or min-
imum value on certain range of memory locations. The duration of this memory
operation is 33 clock cycles for any range selected.
Maximum and minimum are computed considering 32-bit data values.

Figure 4.2 shows the high-level Logic-in-Memory structure. As mentioned before, due
to the non-static distinction between instructions and data memory, the logic introduced

44

CHAPTER 4. LOGIC-IN-MEMORY IN RI5CY FRAMEWORK

for the above listed operations, is distributed over all the memory locations, even if is
effectively used with data and not with instructions.

Figure 4.2: Dual port Logic-in-Memory high level architecture

2.1 Bitwise operations - Logic-in-Memory cell

The heart of the bitwise operations is the memory bit-cell as shown in Figure 4.3. The
memory cell has been enlarged in order to compute the bitwise operation between the
content of the cell and an input mask bit.

Figure 4.3: Logic-in-Memory bit-cell

45

CHAPTER 4. LOGIC-IN-MEMORY IN RI5CY FRAMEWORK

Defining as load logic the load operation that perform a logic operation, the load logic
does not compromise the cell memory content: logic gates such AND, OR and XOR are
placed at the output of the memory cell, then on the output bit line. The additional OR
port is needed for max and min computation (more details in Section 2.2). In a store logic
instead, the result of the bitwise operation is fed back as input of the cell.
Both load and store logic requires then just 1 clock cycle to execute.

2.2 Maximum and minimum computation - logic around array

The Logic-in-Memory computes maximum and minimum with a very straightforward al-
gorithm, based on an easy procedure people usually use to perform this computation.
In case of maximum search, the algorithm starts evaluating the MSB of a set of memory
words. If at least one MSB is equal to 1, the words that have MSB equal to 0 are excluded.
The same operation is repeated N times as the number of bits of the words considered.
The last operation is performed on the LSB.
The minimum computation works at the same way, with the only difference that the ex-
clusion is done on words that show the considered bit equal to 1, instead of 0.
The implementation of this algorithm is based on the research work [6] and requires some
additional logic within the memory cells (Figure 4.3) and around the memory array (Figure
4.4):

Figure 4.4: Around-array logic for max-min computation

• Some logic around the memory produces a 32-bit mask at each clock cycle, that has
only one bit set per clock cycle. The initial mask sets the MSB, while the last mask
produced sets the LSB.

• The 32-bit mask is distributed to groups of 4 bytes, therefore the evaluation is done in
parallel in all the memory locations involved. The AND gate inside the new memory
cell that has as inputs the bit cell content and the input mask, gives as result the
bit cell content only in the position of the mask bit set to 1. All the other bits are
masked with a 0. A 32 bits wired-or between the AND gate outputs is performed by
the additional OR gate in the memory cell. The wired-or net gives the value of the
bit to evaluate for each 4-byte group.

46

CHAPTER 4. LOGIC-IN-MEMORY IN RI5CY FRAMEWORK

• Another piece of logic around memory completes the one clock cycle step of the
algorithm. In fact, this part of the logic evaluates the wired-or net corresponding
to the words of interest. In case of max computation, words with the wired-or bit
equal to 1 will be considered in the next cycle, otherwise those words will be excluded
from the comparison. Opposite procedure is done in case of min computation. The
information of the enabled words is stored inside registers enabled_rows and updated
cycle by cycle. The initial value of these registers is given by the range address
decoder, according to the range of words that are of interest. During the execution,
only the registers of the enabled_rows equal to 1, can be updated by the wired-or
result i each cycle. At the end of the algorithm, the enabled words registers that
show a 1, correspond to the memory words with the maximum/minimum value.

The full algorithm requires 33 clock cycles to run: one cycle to initialise the enabled words
information and 32 cycles to evaluate 32-bit words. The algorithm requires 33 clock cycles
despite of the number of words to evaluate, because all the steps are performed in parallel
between words.

2.3 Range operations

As indicated previously, the achieved memory architecture is able to perform operations
on a certain range of memory locations. The range operations are:

• Allowed in case of a store logic with the same input mask;

• Mandatory in case of min/max computation.

The range operations suppose to have a starting address and the range of 32-bit words to
involve, both given by the processor. The logic adopted to enable the required word lines is
showed in Figure 4.5. The range decoder logic requires two normal address decoders, one
for the starting address and one for the end address (end address is computed by adding
the range to the starting address). The two intermediate nets of word lines are combined
through some bitwise operations such that only the lines in between are effectively acti-
vated. In case of a non-range operation only the starting address is considered and the
range logic is bypassed.

47

CHAPTER 4. LOGIC-IN-MEMORY IN RI5CY FRAMEWORK

Figure 4.5: Range decoder

3 Logic-in-Memory ISA extension

In order to replace the simple RAM model of the RI5CY with the Logic-in-Memory archi-
tecture described, the ISA has been expanded introducing new instructions that manage
the new memory capabilities. The new Logic-in-Memory extension has been created fol-
lowing the rules of the RISC-V ISA (described in section [ch. 2, 1.2]).
This thesis focused on two different extensions of the ISA in order to reflect two different
hardware implementations of the interface Memory-Processor:

• Same interface Memory-Processor : this implementation supports the new Logic-in-
Memory by keeping the same memory interface of the RISC-V core. This is done to
prioritise the flexibility and re-usability of the core in other existing platforms.

• New interface Memory-Processor : this implementation instead, supports the new
Logic-in-Memory operations by changing the RISC-V memory interface to maximise
the efficiency of the communication between processor and memory.

3.1 Same interface Memory-Processor ISA extension

The solution proposed in Figure 4.6, keeps the same Memory-Processor interface. There-
fore, the Logic-in-Memory functionality cannot be set by any inputs but should be stored
somewhere.
This project version proposes:

• The Logic-in-Memory settings are stored inside one specific memory address. The
functionality of the memory will depends on what is written in this memory location,
that will act as control signal for the entire memory. The information needed are the
logic operation type and the range size for the operation.

48

CHAPTER 4. LOGIC-IN-MEMORY IN RI5CY FRAMEWORK

Figure 4.6: RISC-V-Logic-in-Memory interface in the ’Same interface’ implementation

• The processor will program the memory simply by performing a store to this memory
address. The processor must provide the information needed using the write-data
bus already available from the interface.

To support this new functionality the RISC-V ISA introduces new instructions (Figure
4.7):

Figure 4.7: New ISA for ’Same interface’ implementation

• STORE_ACTIVATE_LOGIC. This new instruction allows to program the mem-
ory to operate in a certain mode, by writing in the specific memory location. The I
instruction format gives the possibility to decode the information about the operation
type and the range size. Those two information are packetised to be sent over the
32-bit write data bus. The available operation types are NONE, AND, OR, XOR,
MAX, MIN. The range field should be used accordingly when allowed, otherwise it
should be set to 0.

• LOAD_MASK. The already available LOAD instruction was not sufficient to per-
form a logic operation in memory. In fact, the RVI load instruction does not give

49

CHAPTER 4. LOGIC-IN-MEMORY IN RI5CY FRAMEWORK

the possibility to send to the memory the input mask. In fact, the LOAD_MASK
instruction is introduced only to read the input mask from the Register File through
the rs2 field. The value read will be sent to the memory using the write data bus. The
compiler should always place this instruction after the logic operations in memory
are activated.

• STORE. This is not a new instruction for the RISC-V core. A normal store instruc-
tion is interpreted by the memory as a logic store instruction if the memory has been
programmed accordingly. The value read by the source register rs2 corresponds to
the input mask in case of a logic store or to the data to effectively store in case of a
normal store.

The expected behaviour of memory interface is illustrated in Figure 4.8. In all the cases
each actual Logic-in-Memory operation is preceded by the STORE_ACTIVE_LOGIC
that passes the type of operation and the range of the operation through the write_data
bus. The next load/store instruction in memory will be interpreted by the memory accord-
ing to what is stored in the special address. In case of max/min computation some other
internal signals are showed: start_maxmin is a pulse signal that kicks off the max/min
specific hardware, in fact in the following cycle the enabled_rows will assume an ini-
tial value (computed according to the starting address and the given range size) and the
mask_shifter is updated starting showing the value 231 to isolate the MSB in the compu-
tation; when the mask assumes the value 20 it means that the LSB is being evaluated, so
stop_maxmin_computation is set to stop the algorithm.

(a) Load Max/Min

(b) Load OR/AND/XOR (c) Store OR/AND/XOR

Figure 4.8: Waveforms for ’Same interface’ implementation

50

CHAPTER 4. LOGIC-IN-MEMORY IN RI5CY FRAMEWORK

3.2 New interface Memory-Processor ISA extension

As already mentioned, another version of the processor-memory system has been explored
to reduce as much as possible the memory accesses. Figure 4.9 shows the new signals
needed to drive the LIM:

• logic_memory to differentiate a normal load/store from a logic load/store.

• opcode_mem that specifies the type of the logic operation.

• asize_mem to give the range width of the operation.

Figure 4.9: RISC-V-Logic-in-Memory interface in the ’New interface’ implementation

The new ISA extension includes the following instructions (Figure 4.10):

Figure 4.10: New ISA for ’New interface’ implementation

• STORE_LOGIC. This instruction performs store memory operations on many
memory locations at a time, as many as indicated in the register rsN: the value 0
and 1 will both allow the operation on a single integer memory location. The field
mem_funct indicates the type of the logic operation.

• LOAD_LOGIC. The instruction only allows single location load logic operations.
Max/min computation is performed on a fixed size array equal to 10. If the compar-
ison should be done among less than 10 integers, the compiler should take care of
filling all the memory location involved in order to not compromise the result.

51

CHAPTER 4. LOGIC-IN-MEMORY IN RI5CY FRAMEWORK

Figure 4.11 shows the expected waveforms for this second solution. It is immediately
possible to observe the speed enhancement reached by this architecture. Thanks to the
new Logic-in-Memory instructions, the RISC-V produces all the information needed by
the new memory, so the memory operation takes only one instruction to complete.

(a) Load Max/Min

(b) Load OR/AND/XOR (c) Store OR/AND/XOR

Figure 4.11: Waveforms for ’New interface’ implementation

52

CHAPTER 4. LOGIC-IN-MEMORY IN RI5CY FRAMEWORK

4 Architectural changes in RISC-V project

To support the new ISA extension, the available RI5CY architecture has been slightly
expanded.

4.1 Same interface Memory-Processor RI5CY change

The implementation that keeps the same interface with the memory required some changes
only into the ID stage (see Figure 4.12):

• The Decoder has been expanded to be able to recognise the new ISA extension with
the new instructions STORE_ACTIVE_LOGIC and LOAD_MASK and then to
set the appropriate control signals.

• The LOAD_MASK instruction requires a new Immediate format. For this reason
the imm_logmem_type has been introduced. It is signed extended version of the last
7 MSBs of the instruction to decode instr_rdata[31:25].

• The STORE_ACTIVE_LOGIC instruction needs to pass to the memory the value
of the range and the operation type. The range is obtained by a reading of the
Register File through the rs2 field, while the operation type is obtained directly by
the instruction instr_rdata[14:12]. Those two values are merged in a 32-bit value
and the result is sent to the memory through the alu_operand_c.

Figure 4.12: ID stage architectural change for ’Same interface’ implementation

53

CHAPTER 4. LOGIC-IN-MEMORY IN RI5CY FRAMEWORK

4.2 Same interface Memory-Processor RI5CY changes

This implementation requires changes in the ID and LSU stages because of the new signals
introduced in the interface between microprocessor and memory (see Figures 4.13 and
4.14):

• The Decoder has been expanded as well to support the new instructions LOAD_LOGIC
and STORE_LOGIC.

• The same Immediate format imm_logmem_type has been added also in this case
because it is needed in both instructions.

• The new memory related signals data_opcode_mem_o and data_logic_in_memory_o
are available in the interface with the memory in the LSU stage. Anyway, those
signals are driven in the ID stage by the decoder, that assigns to them 0, or in-
str_rdata[14:12] and 1 respectively.

Figure 4.13: ID stage architectural change for ’New interface’ implementation

54

CHAPTER 4. LOGIC-IN-MEMORY IN RI5CY FRAMEWORK

Figure 4.14: LSU stage architectural change for ’New interface’ implementation

4.3 Differences between the Logic-in-Memory implementations

The Logic-in-Memory used in the two versions of the project are very similar and both
reflect the architectural description done in Section 2 of this chapter.
This section instead, aims to highlight the small differences between the two LiM projects.
Obviously those are caused by the need to have different interfaces. Figure 4.15 emphasises
the variation adopted for the two LiM versions:

(a) ’Same interface’ Logic-in-Memory (b) ’New interface’ Logic-in-Memory

Figure 4.15: Logic-in-Memory implementation differences

• ’Same interface’ Logic-in-Memory keeps the original interface, then the RI5CY can
only communicate with the memory using the standard signals. In fact, information
regarding the logic operation to perform and the range of locations involved in the
operation are stored inside a memory location. The RI5CY performs a store in a

55

CHAPTER 4. LOGIC-IN-MEMORY IN RI5CY FRAMEWORK

specific memory location and all the control signals needed to coordinate the memory
operations are driven directly by that memory location.

• ’New interface’ Logic-in-Memory allows a new interface with the new signals. There-
fore, the needed signals for the coordination of the new memory operations are driven
directly by the RI5CY during a load or a store in memory.

56

Chapter 5

Simulations and Synthesis

1 Tools

The two different versions of the RISC-V and LiM were designed using SystemVerilog
hardware description language (more details in Appendix A). The simulations were made
using Modelsim-Altera Starter Edition 10.6c, while for their synthesis the adopted tool was
Synopsys 2018.06.

2 Simulation with custom programs

Many times in this thesis has been stated that new ISA extension can generally improve
the speed of the RISC-V in terms of execution time. In order to prove that, a set of pro-
grams have been written and simulated.

All the programs have been written in C language and then compiled with available RISC-V
compiler (https://github.com/riscv/riscv-gnu-toolchain). However, the LiM ISA extension
introduced in the hardware with this thesis, is not supported by the compiler. In fact, be-
fore any simulations all the programs have been compiled using the available ISA and then
the new instructions from the LiM ISA extensions have been manually added to replace
some parts of the code. The mixed software and manual compilation is not ideal, because
takes a lot of time and does not guarantee any smart optimisations that the compiler alone
would perform. For this reason, a limited amount of test programs have been compiled
and simulated.

The methodology to determine the correctness of the results, consists of:

1. Writing the C program and compiling it with the available RISC-V compiler. The
result is the <program>.hex file containing the instructions in machine language.
The extensions used are the standard RVI (Base Integer extension) and RVM (Integer
Multiplication and Division extension).

2. Kicking-off the simulation on the RISC-V system with the LiM. The LiM is used as
a normal memory in this case, because the compiler do not use the new implemented
instructions to translate the program. The simulation results will be the baseline for
the comparison with the LiM-specific instructions.

3. Manually converting the instructions file <program>.hex in <program>_lim.hex,
that contains the LiM instructions replacing a subset of compiled instructions.

57

https://github.com/riscv/riscv-gnu-toolchain

CHAPTER 5. SIMULATIONS AND SYNTHESIS

4. Kicking-off the simulation on the RISC-V system with the LiM. This time, the sim-
ulation results contain the new ISA extension.

5. Comparing the two simulation outcomes.

This procedure is executed on the same programs for the both versions of the RISC-V:
Same Interface and New Interface. Obviously, steps 1 and 2 bring to the same <pro-
gram>.hex in both project versions. This is because the ISA used is the same and the
changes done to introduce the two LiM ISA extensions do not alter the execution of the
existing supported instructions.
For the sake of simplicity, the ISA without LiM extension, ISA with LiM extension for the
new interface and ISA with LiM extension for the same interface will be referred respec-
tively as old_ISA, newIF_ISA and sameIF_ISA.

To verify in the first place the functionality of the two project flavours, a couple of pro-
grams have been written and tested. Details about the programs and simulation results
are described in the next sections.

2.1 Bitwise

The aim of this first test is to demonstrate the correct functionality of the two RISC-V
projects with the Logic-in-Memory. In particular, this test program aims to show all the
LiM bitwise operations performed on single memory words or on range of memory words.

Broadly speaking, the program bitwise.c performs the bitwise operations on an integer
vector of 10 elements and on a standalone integer element. The bitwise operations per-
formed are in order OR, AND and XOR. The final result is stored in another memory
location and it is obtained with a combination of the value assumed by an element of the
vector and the standalone variable.

2.1.1 C program

In the below figure is shown the C code used for the compilation. To facilitate the replace-
ment of some instructions with the LiM instructions, the program explicitly declares the
memory address of most variables.

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 int main(int argc, char *argv[])
5 {
6 /* variable declaration */
7 int N = 5, i, mask_or, mask_and, mask_xor;
8 int *vector = 0x030000, *stand_alone = 0x30040, *final_result = 0x30080;
9

10 /* fill vector */
11 for(i=0; i<N; i++){
12 vector[i] = i*13467;
13 }
14 *stand_alone = vector[1]+0x768;
15
16 /* OR operation */
17 mask_or = 0xF1;
18 for(i=0; i<N; i++){
19 vector[i] = vector[i] | mask_or;
20 }
21 *stand_alone = *stand_alone | mask_or;
22
23 /* AND operation */
24 mask_and = vector[N-1] & 0x8F;
25 for(i=0; i<N; i++){
26 vector[i] = vector[i] & mask_and;
27 }
28 *stand_alone = *stand_alone & mask_and;
29
30 /* XOR operation */
31 mask_xor = vector[N-2] ^ 0xF0;
32 for(i=0; i<N; i++){
33 vector[i] = vector[i] ^ mask_xor;

58

CHAPTER 5. SIMULATIONS AND SYNTHESIS

34 }
35 *stand_alone = *stand_alone ^ mask_xor;
36
37 *final_result = ~vector[N-3] + ~(*stand_alone);
38
39 return EXIT_SUCCESS;
40 }

Listing 5.1: Custom program bitwise.c

2.1.2 Execution time estimation

According to the structure of the program, it is possible to perform a rough estimation
of the executed time in terms of number of clock cycles (cc) in the three cases old_ISA,
newIF_ISA and sameIF_ISA. This computation only takes into account the meaningful
part of the code and assumes N as the size of the vector.

Execution_timeold_ISA(bitwise.c) ≈3(3N(vector_element) + 3(single_element))
+ 6(final_result)

(5.1)

Execution_timenewIF_ISA(bitwise.c) ≈3(1(vector_element) + 1(single_element))
+ 4(final_result)

(5.2)

Execution_timesameIF_ISA(bitwise.c) ≈3(1(mem_active) + 1(vector_element)
+ 1(single_element)) + 4(final_result)
+ 1(mem_active)

(5.3)

In 5.1 the factor 3 comes from the consideration that each vector element stored in

Figure 5.1: Estimation execution time bitwise.c in old_ISA, newIF_ISA and sameIF_ISA

memory, needs to be loaded into the microprocessor, combined with the mask value and
then stored back in the memory. Same applies to the standalone element. Those operations

59

CHAPTER 5. SIMULATIONS AND SYNTHESIS

are repeated 3 times as the number of bitwise types (OR, AND, XOR). For the final result
instead, the RISC-V needs to load two variables, perform the negation on both, combine
the values with addition and then store the result.
In 5.2 and 5.3 each memory element and standalone element can be manipulated directly
in memory, so factor equal to 1. The final result is obtained performing the negation
directly during the load from memory, then the addition and the the result is normally
stored back in memory. The only difference between the two is the need to set up the
memory operation in the latter case.
As clearly highlighted from Figure 5.1, the newIF_ISA and the sameIF_ISA execution
times do not depend on the size of vector, because all the elements of the vector perform
the same operation with the same mask. The gap in terms of execution time becomes very
important in case of a large vector. Simulation results are collected with N = 5.

2.1.3 Simulation results

The RISC-V has a debug unit, that is used only during the simulation, which prints a file
containing the simulation results and showing all the meaningful details of the executed
instructions. This debug unit has been very useful to compare the results in the three
cases.
Only meaningful parts of the simulation are reported as follows. A white space between
the rows shows a discontinuity between the parts of the program, always associated to the
execution of loops.
As stated before, the main differences between the old_ISA program and the other ones
are the missing loops replaced by range operations in memory, and bitwise operations are
performed directly in memory whenever possible.
For a better understanding of the simulation results reported below, it would be helpful to
refer to the variables memory addresses.
Time Cycles PC Instr Mnemonic

2016ns 197 00000218 0007a023 sw x0, 0(x15) x15:00030000 PA:00030000
2026ns 198 0000021c 00d7a823 sw x13, 16(x15) x13:0000d26c x15:00030000 PA:00030010
2036ns 199 00000220 00030737 lui x14, 0x30000 x14=00030000
2046ns 200 00000224 01478613 addi x12, x15, 20 x12=00030014 x15:00030000
2056ns 201 00000228 0007a683 lw x13, 0(x15) x13=00000000 x15:00030000 PA:00030000
2066ns 202 0000022c 00478793 addi x15, x15, 4 x15=00030004 x15:00030000
2076ns 203 00000230 0f16e693 ori x13, x13, 241 x13=000000f1 x13:00000000
2086ns 204 00000234 fed7ae23 sw x13, -4(x15) x13:000000f1 x15:00030004 PA:00030000
2096ns 205 00000238 fec798e3 bne x15, x12, -16 x15:00030004 x12:00030014

2376ns 233 00000238 fec798e3 bne x15, x12, -16 x15:00030014 x12:00030014
2386ns 234 0000023c 04072783 lw x15, 64(x14) x15=00003c03 x14:00030000 PA:00030040
2396ns 235 00000240 000306b7 lui x13, 0x30000 x13=00030000
2406ns 236 00000244 0f17e793 ori x15, x15, 241 x15=00003cf3 x15:00003c03
2416ns 237 00000248 04f72023 sw x15, 64(x14) x15:00003cf3 x14:00030000 PA:00030040
2426ns 238 0000024c 01072703 lw x14, 16(x14) x14=0000d2fd x14:00030000 PA:00030010
2436ns 239 00000250 000307b7 lui x15, 0x30000 x15=00030000
2446ns 240 00000254 01478593 addi x11, x15, 20 x11=00030014 x15:00030000
2456ns 241 00000258 08f77713 andi x14, x14, 143 x14=0000008d x14:0000d2fd
2466ns 242 0000025c 0007a603 lw x12, 0(x15) x12=000000f1 x15:00030000 PA:00030000
2476ns 243 00000260 00478793 addi x15, x15, 4 x15=00030004 x15:00030000
2486ns 244 00000264 00e67633 and x12, x12, x14 x12=00000081 x12:000000f1 x14:0000008d
2496ns 245 00000268 fec7ae23 sw x12, -4(x15) x12:00000081 x15:00030004 PA:00030000
2506ns 246 0000026c feb798e3 bne x15, x11, -16 x15:00030004 x11:00030014

2776ns 273 00000268 fec7ae23 sw x12, -4(x15) x12:0000008d x15:00030014 PA:00030010
2786ns 274 0000026c feb798e3 bne x15, x11, -16 x15:00030014 x11:00030014
2796ns 275 00000270 0406a783 lw x15, 64(x13) x15=00003cf3 x13:00030000 PA:00030040
2816ns 277 00000274 00e7f733 and x14, x15, x14 x14=00000081 x15:00003cf3 x14:0000008d
2826ns 278 00000278 00c6a783 lw x15, 12(x13) x15=00000081 x13:00030000 PA:0003000c
2836ns 279 0000027c 04e6a023 sw x14, 64(x13) x14:00000081 x13:00030000 PA:00030040
2846ns 280 00000280 00030737 lui x14, 0x30000 x14=00030000
2856ns 281 00000284 0f07c793 xori x15, x15, 240 x15=00000071 x15:00000081
2866ns 282 00000288 000306b7 lui x13, 0x30000 x13=00030000
2876ns 283 0000028c 01470593 addi x11, x14, 20 x11=00030014 x14:00030000
2886ns 284 00000290 00072603 lw x12, 0(x14) x12=00000081 x14:00030000 PA:00030000
2896ns 285 00000294 00470713 addi x14, x14, 4 x14=00030004 x14:00030000
2906ns 286 00000298 00f64633 xor x12, x12, x15 x12=000000f0 x12:00000081 x15:00000071
2916ns 287 0000029c fec72e23 sw x12, -4(x14) x12:000000f0 x14:00030004 PA:00030000
2926ns 288 000002a0 feb718e3 bne x14, x11, -16 x14:00030004 x11:00030014

3206ns 316 000002a0 feb718e3 bne x14, x11, -16 x14:00030014 x11:00030014
3216ns 317 000002a4 0406a703 lw x14, 64(x13) x14=00000081 x13:00030000 PA:00030040
3226ns 318 000002a8 00000513 addi x10, x0, 0 x10=00000000
3236ns 319 000002ac 00e7c7b3 xor x15, x15, x14 x15=000000f0 x15:00000071 x14:00000081
3246ns 320 000002b0 0086a703 lw x14, 8(x13) x14=000000f4 x13:00030000 PA:00030008

60

CHAPTER 5. SIMULATIONS AND SYNTHESIS

3256ns 321 000002b4 04f6a023 sw x15, 64(x13) x15:000000f0 x13:00030000 PA:00030040
3266ns 322 000002b8 fff7c793 xori x15, x15, -1 x15=ffffff0f x15:000000f0
3276ns 323 000002bc fff74713 xori x14, x14, -1 x14=ffffff0b x14:000000f4
3286ns 324 000002c0 00f707b3 add x15, x14, x15 x15=fffffe1a x14:ffffff0b x15:ffffff0f
3296ns 325 000002c4 08f6a023 sw x15, 128(x13) x15:fffffe1a x13:00030000 PA:00030080
3306ns 326 000002c8 00008067 jalr x0, x1, 0 x1:000001d8

Listing 5.2: Extract of simulation result of bitwise.c - old_ISA

Time Cycles PC Instr Mnemonic

2016ns 197 00000218 0007a023 sw x0, 0(x15) x15:00030000 PA:00030000
2026ns 198 0000021c 00d7a823 sw x13, 16(x15) x13:0000d26c x15:00030000 PA:00030010
2036ns 199 00000220 0f100713 addi x14, x0, 241 x14=000000f1
2046ns 200 00000224 00500693 addi x13, x0, 5 x13=00000005
2056ns 201 00000228 00e7b6bb sw_or N-x13 x14, 0(x15) x14:000000f1 x15:00030000 x13:00000005 PA:00030000
2066ns 202 0000022c 04078593 addi x11, x15, 64 x11=00030040 x15:00030000
2076ns 203 00000230 00e5b03b sw_or N-x0 x14, 0(x11) x14:000000f1 x11:00030040 PA:00030040
2086ns 204 00000234 08f00713 addi x14, x0, 143 x14=0000008f
2096ns 205 00000238 20e7a71b lw_and x14, x14, 16(x15) x14=0000008d x14:0000008f x15:00030000 PA:00030010
2116ns 207 0000023c 00e7a6bb sw_and N-x13 x14, 0(x15) x14:0000008d x15:00030000 x13:00000005 PA:00030000
2126ns 208 00000240 00e5a03b sw_and N-x0 x14, 0(x11) x14:0000008d x11:00030040 PA:00030040
2136ns 209 00000244 0f000713 addi x14, x0, 240 x14=000000f0
2146ns 210 00000248 18e7971b lw_xor x14, x14, 12(x15) x14=00000071 x14:000000f0 x15:00030000 PA:0003000c
2166ns 212 0000024c 00e796bb sw_xor N-x13 x14, 0(x15) x14:00000071 x15:00030000 x13:00000005 PA:00030000
2176ns 213 00000250 00e5903b sw_xor N-x0 x14, 0(x11) x14:00000071 x11:00030040 PA:00030040
2186ns 214 00000254 fff00693 addi x13, x0, -1 x13=ffffffff
2196ns 215 00000258 10d7971b lw_xor x14, x13, 8(x15) x14=ffffff0b x13:ffffffff x15:00030000 PA:00030008
2206ns 216 0000025c 00d5961b lw_xor x12, x13, 0(x11) x12=ffffff0f x13:ffffffff x11:00030040 PA:00030040
2226ns 218 00000260 00c70633 add x12, x14, x12 x12=fffffe1a x14:ffffff0b x12:ffffff0f
2236ns 219 00000264 04c5a023 sw x12, 64(x11) x12:fffffe1a x11:00030040 PA:00030080
2246ns 220 00000268 00000513 addi x10, x0, 0 x10=00000000
2256ns 221 0000026c 00008067 jalr x0, x1, 0 x1:000001d8

Listing 5.3: Extract of simulation result of bitwise.c - newIF_ISA

Time Cycles PC Instr Mnemonic

2016ns 197 00000218 0007a023 sw x0, 0(x15) x15:00030000 PA:00030000
2026ns 198 0000021c 00d7a823 sw x13, 16(x15) x13:0000d26c x15:00030000 PA:00030010
2036ns 199 00000220 00020637 lui x12, 0x20000 x12=00020000
2046ns 200 00000224 0f100713 addi x14, x0, 241 x14=000000f1
2056ns 201 00000228 00500693 addi x13, x0, 5 x13=00000005
2066ns 202 0000022c ffc636bb sw_active_or Nx13 -4(x12) x12:00020000 x13:00000005 PA:0001fffc
2076ns 203 00000230 00e7a023 sw x14, 0(x15) x14:000000f1 x15:00030000 PA:00030000
2086ns 204 00000234 ffc6303b sw_active_or Nx0 -4(x12) x12:00020000 PA:0001fffc
2096ns 205 00000238 04e7a023 sw x14, 64(x15) x14:000000f1 x15:00030000 PA:00030040
2106ns 206 0000023c ffc6203b sw_active_and Nx0 -4(x12) x12:00020000 PA:0001fffc
2116ns 207 00000240 08f00713 addi x14, x0, 143 x14=0000008f
2126ns 208 00000244 20e7a71b lw_mask x14, x14, 16(x15) x14=0000008d x14:0000008f x15:00030000 PA:00030010
2146ns 210 00000248 04e7a023 sw x14, 64(x15) x14:0000008d x15:00030000 PA:00030040
2156ns 211 0000024c ffc626bb sw_active_and Nx13 -4(x12) x12:00020000 x13:00000005 PA:0001fffc
2166ns 212 00000250 00e7a023 sw x14, 0(x15) x14:0000008d x15:00030000 PA:00030000
2176ns 213 00000254 ffc6103b sw_active_xor Nx0 -4(x12) x12:00020000 PA:0001fffc
2186ns 214 00000258 0f000713 addi x14, x0, 240 x14=000000f0
2196ns 215 0000025c 18e7a71b lw_mask x14, x14, 12(x15) x14=00000071 x14:000000f0 x15:00030000 PA:0003000c
2216ns 217 00000260 04e7a023 sw x14, 64(x15) x14:00000071 x15:00030000 PA:00030040
2226ns 218 00000264 ffc616bb sw_active_xor Nx13 -4(x12) x12:00020000 x13:00000005 PA:0001fffc
2236ns 219 00000268 00e7a023 sw x14, 0(x15) x14:00000071 x15:00030000 PA:00030000
2246ns 220 0000026c fff00693 addi x13, x0, -1 x13=ffffffff
2256ns 221 00000270 ffc6103b sw_active_xor Nx0 -4(x12) x12:00020000 PA:0001fffc
2266ns 222 00000274 10d7a71b lw_mask x14, x13, 8(x15) x14=ffffff0b x13:ffffffff x15:00030000 PA:00030008
2276ns 223 00000278 04078793 addi x15, x15, 64 x15=00030040 x15:00030000
2286ns 224 0000027c 00d7a59b lw_mask x11, x13, 0(x15) x11=ffffff0f x13:ffffffff x15:00030040 PA:00030040
2306ns 226 00000280 00b705b3 add x11, x14, x11 x11=fffffe1a x14:ffffff0b x11:ffffff0f
2316ns 227 00000284 ffc6003b sw_active_none Nx0 -4(x12) x12:00020000 PA:0001fffc
2326ns 228 00000288 04b7a023 sw x11, 64(x15) x11:fffffe1a x15:00030040 PA:00030080
2336ns 229 0000028c 00000513 addi x10, x0, 0 x10=00000000
2346ns 230 00000290 00008067 jalr x0, x1, 0 x1:000001d8

Listing 5.4: Extract of simulation result of bitwise.c - sameIF_ISA

2.2 Max-Min

The program max_min.c simply performs the maximum and the minimum computation
within a given vector. The used algorithm is the classical one, where max and min variable
are initialised to the first element of the array. The max and min values are computed by a
comparison of the max/min variable with all the vector elements. This algorithm has been
useful to test the correct functionality of the max/min operations available in the LiM.

61

CHAPTER 5. SIMULATIONS AND SYNTHESIS

2.2.1 C program

The implemented C code for this algorithm also specifies the memory address for the most
meaningful variables.

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 int main(int argc, char *argv[])
5 {
6 /* variable declaration */
7 int N = 10;
8 int i;
9 int *vector = 0x30000;

10 int *max = 0x300F0;
11 int *min = 0x300F4;
12
13 /* fill vector */
14 for(i=0; i<N; i++){
15 vector[i] = i*13467;
16 }
17
18 /* MAX operation */
19 *max = vector[0];
20
21 for(i=1; i<N; i++){
22 if(vector[i]>*max){
23 *max = vector[i];
24 }
25 }
26
27 /* MIN operation */
28 *min = vector[0];
29
30 for(i=1; i<N; i++){
31 if(vector[i]<*min){
32 *min = vector[i];
33 }
34 }
35
36 return EXIT_SUCCESS;
37 }

Listing 5.5: Custom program max_min.c

2.2.2 Execution time estimation

The execution time estimation is showed below, assuming that N is the size of the vector:

Execution_timeold_ISA(max_min.c) ≈4N(max) + 4N(min) (5.4)

Execution_timenewIF_ISA(max_min.c) ≈33(max) + 33(min) (5.5)

Execution_timesameIF_ISA(max_min.c) ≈1(mem_active) + 33(max) + 1(mem_active)
+ 33(min) + 1(mem_active)

(5.6)

The execution time in the case of the old_ISA 5.4, has been estimated taking into ac-
count that the max/min variable will be computed within a for-cycle that evaluates all the
element of the vector. Each cycle consists of loading the max/min and the vector element,
then performing the comparison and finally updating the max/min value. The algorithm
actually initialises the max/min to the first memory element, so theoretically the four de-
scribed operations should be repeated N-1 times. However, N is considered for this rough
estimation to take in to account the overhead due to the max/min variable initialisation.
The new implemented ISAs, also for this second program give a big advantage with a big
N. The reason is again that the LiM computes the max/min in parallel on all the vector
elements, by considering one bit at a time. See 5.5, 5.6 and Figure 5.2. Similarly to the
previous case, also in the max_min.c the only difference between the two LiM implemen-
tations is the need to set up the memory to perform the desired operation. Anyway, for a
big N, this difference is negligible.
The chosen N for the simulation is 10. In fact, according to the approximate estimation,
N=10 should already show an improvement in terms of execution time, Figure 5.2. The

62

CHAPTER 5. SIMULATIONS AND SYNTHESIS

Figure 5.2: Estimation execution time max_min.c in old_ISA, newIF_ISA and
sameIF_ISA

number N has been chosen to minimise the simulation time but at the same time, big
enough to show the LiM benefits.

2.2.3 Simulation results

Here below the details on the simulations. Note that the vector has been initialised with
increasing numbers, so the maximum is in the last position, while the minimum corresponds
to the first element. In the old_ISA case, white spaces are used to indicate the presence
of loops.
Time Cycles PC Instr Mnemonic

2086ns 204 00000254 0007a023 sw x0, 0(x15) x15:00030000 PA:00030000
2096ns 205 00000258 0e07a823 sw x0, 240(x15) x15:00030000 PA:000300f0
2106ns 206 0000025c 02870613 addi x12, x14, 40 x12=00030028 x14:00030000
2116ns 207 00000260 00478793 addi x15, x15, 4 x15=00030004 x15:00030000
2126ns 208 00000264 0007a683 lw x13, 0(x15) x13=0000349b x15:00030004 PA:00030004
2136ns 209 00000268 0f072583 lw x11, 240(x14) x11=00000000 x14:00030000 PA:000300f0
2156ns 211 0000026c 00d5d463 bge x11, x13, 8 x11:00000000 x13:0000349b
2166ns 212 00000270 0ed72823 sw x13, 240(x14) x13:0000349b x14:00030000 PA:000300f0
2176ns 213 00000274 00478793 addi x15, x15, 4 x15=00030008 x15:00030004
2186ns 214 00000278 fec796e3 bne x15, x12, -20 x15:00030008 x12:00030028
2216ns 217 00000264 0007a683 lw x13, 0(x15) x13=00006936 x15:00030008 PA:00030008

2886ns 284 00000270 0ed72823 sw x13, 240(x14) x13:0001d973 x14:00030000 PA:000300f0
2896ns 285 00000274 00478793 addi x15, x15, 4 x15=00030028 x15:00030024
2906ns 286 00000278 fec796e3 bne x15, x12, -20 x15:00030028 x12:00030028
2916ns 287 0000027c 00072783 lw x15, 0(x14) x15=00000000 x14:00030000 PA:00030000
2926ns 288 00000280 00470713 addi x14, x14, 4 x14=00030004 x14:00030000
2936ns 289 00000284 0ef72823 sw x15, 240(x14) x15:00000000 x14:00030004 PA:000300f4
2946ns 290 00000288 000307b7 lui x15, 0x30000 x15=00030000
2956ns 291 0000028c 02878613 addi x12, x15, 40 x12=00030028 x15:00030000
2966ns 292 00000290 00072683 lw x13, 0(x14) x13=0000349b x14:00030004 PA:00030004
2976ns 293 00000294 0f47a583 lw x11, 244(x15) x11=00000000 x15:00030000 PA:000300f4
2996ns 295 00000298 00b6d463 bge x13, x11, 8 x13:0000349b x11:00000000
3026ns 298 000002a0 00470713 addi x14, x14, 4 x14=00030008 x14:00030004
3036ns 299 000002a4 fec716e3 bne x14, x12, -20 x14:00030008 x12:00030028
3066ns 302 00000290 00072683 lw x13, 0(x14) x13=00006936 x14:00030008 PA:00030008

3766ns 372 00000290 00072683 lw x13, 0(x14) x13=0001d973 x14:00030024 PA:00030024
3776ns 373 00000294 0f47a583 lw x11, 244(x15) x11=00000000 x15:00030000 PA:000300f4
3796ns 375 00000298 00b6d463 bge x13, x11, 8 x13:0001d973 x11:00000000
3826ns 378 000002a0 00470713 addi x14, x14, 4 x14=00030028 x14:00030024
3836ns 379 000002a4 fec716e3 bne x14, x12, -20 x14:00030028 x12:00030028
3846ns 380 000002a8 00000513 addi x10, x0, 0 x10=00000000
3856ns 381 000002ac 00008067 jalr x0, x1, 0 x1:000001d8

63

CHAPTER 5. SIMULATIONS AND SYNTHESIS

Listing 5.6: Extract of simulation result of max_min.c - old_ISA

Time Cycles PC Instr Mnemonic

2086ns 204 00000254 0007a023 sw x0, 0(x15) x15:00030000 PA:00030000
2096ns 205 00000258 0007e69b lw_max N10 x13 0(x15) x13=0001d973 x15:00030000 PA:00030000
2436ns 239 0000025c 0ed7a823 sw x13, 240(x15) x13:0001d973 x15:00030000 PA:000300f0
2446ns 240 00000260 0007d59b lw_min N10 x11 0(x15) x11=00000000 x15:00030000 PA:00030000
2786ns 274 00000264 0eb7aa23 sw x11, 244(x15) x11:00000000 x15:00030000 PA:000300f4
2796ns 275 00000268 00000513 addi x10, x0, 0 x10=00000000
2806ns 276 0000026c 00008067 jalr x0, x1, 0 x1:000001d8

Listing 5.7: Extract of simulation result of max_min.c - newIF_ISA

Time Cycles PC Instr Mnemonic

2086ns 204 00000254 0007a023 sw x0, 0(x15) x15:00030000 PA:00030000
2096ns 205 00000258 00020637 lui x12, 0x20000 x12=00020000
2106ns 206 0000025c 00a00593 addi x11, x0, 10 x11=0000000a
2116ns 207 00000260 ffc665bb sw_active_max Nx11 -4(x12) x12:00020000 x11:0000000a PA:0001fffc
2126ns 208 00000264 0007069b lw_mask x13, x0, 0(x14) x13=0001d973 x14:00030000 PA:00030000
2136ns 209 00000268 ffc655bb sw_active_min Nx11 -4(x12) x12:00020000 x11:0000000a PA:0001fffc
2466ns 242 0000026c 0007059b lw_mask x11, x0, 0(x14) x11=00000000 x14:00030000 PA:00030000
2476ns 243 00000270 ffc6003b sw_active_none Nx0 -4(x12) x12:00020000 PA:0001fffc
2806ns 276 00000274 0ed7a823 sw x13, 240(x15) x13:0001d973 x15:00030000 PA:000300f0
2816ns 277 00000278 0eb7aa23 sw x11, 244(x15) x11:00000000 x15:00030000 PA:000300f4
2826ns 278 0000027c 00000513 addi x10, x0, 0 x10=00000000
2836ns 279 00000280 00008067 jalr x0, x1, 0 x1:000001d8

Listing 5.8: Extract of simulation result of max_min.c - sameIF_ISA

3 Simulation with standard programs

The following sections instead are intended to show the usage of the LiM in real world
algorithms, so called standard algorithms.
In order to fully exploit the advantages of the Logic-in-Memory, the selection of the algo-
rithms has been done according to the following criteria:

• High data demand. Applications with high memory content are suitable because the
LiM can reduce the data movement to/from memory.

• Data manipulation with supported LiM operations. The implemented LiM can per-
form a limited amount of operations without the need of the microprocessor. To
exploit its functionality it is needed to select algorithms that would use these opera-
tions.

• Simple algorithms. Not too complex algorithms are needed at this stage because the
compiler does not support the new LiM ISAs. Simple algorithms avoid the risk to
introduce errors during the partial manual compilation.

3.1 Database search with Bitmap Indexes algorithm

A bitmap index [11] is a special kind of data structure that uses bitmaps to speed-up the
processing of stored data. In fact, it is usually used for search operations in large data
warehouses.
The basic idea is to use bits (0 or 1) to indicate whether a feature is satisfied or not. The
index is mapped with 1 if the feature is satisfied, or with 0 if not.
For example, considering the Table 5.1, the first column contains the student ID (the
index) and the remaining ones the age brackets (the features) that can be satisfied or
not. Bitmap indexes can efficiently process any queries, using bitwise operations [12]. The
search algorithm is therefore reduced to simple bitwise operations, resulting extremely fast.
This is the reason why this kind of algorithms are really used in real world applications.

64

CHAPTER 5. SIMULATIONS AND SYNTHESIS

Student ID Age 17 Age 18 Age 19
00 1 0 0
01 0 1 0
10 0 0 1
11 1 0 0

Table 5.1: Bitmap indexes example: students age ranges mapped with bits

According to the students example, a possible query can be: Which students are over 18?
The answer is showed in Figure 5.3.

Figure 5.3: Bitmap indexes example: query result

3.1.1 C program

The Logic-in-Memory could further speed-up the data search algorithm, performing some
bitwise operations in memory.
The C program developed for this thesis is very similar to the example showed above. The
dataset includes a set of features on some high school students. Features considered are
gender and range ages, while the queries are:

1. Which students are male and older than 19?

2. Which students are older than 18?

Note that 160 students are considered in the dataset. The features associated to the
students are distributed over 5 integer vectors, because Logic-in-Memory operations can
only be performed on 32-bit data.

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 int main(int argc, char* argv[])
5 {
6 /* variable declaration */
7 int i;
8 int *result_M_over19=0x300B0;
9 int *result_over18 =0x300D0;

10
11 /* Initialize bitmap */
12 int *v_age16 = 0x30000;
13 int *v_age17 = 0x30018;
14 int *v_age18 = 0x30030;
15 int *v_age19 = 0x30048;
16 int *v_age20 = 0x30060;
17 int *v_genderM = 0x30078;
18 int *v_genderF = 0x30090;
19
20 v_genderM[0]=0x00000000; v_genderM[1]=0x00000000; v_genderM[2]=0x00000000; v_genderM[3]=0xFFFFFFFF; v_genderM[4]=0

xFFFFFFFF; v_genderM[5]=0xFFFFFFFF;
21 v_genderF[0]=0xFFFFFFFF; v_genderF[1]=0xFFFFFFFF; v_genderF[2]=0xFFFFFFFF; v_genderF[3]=0x00000000; v_genderF[4]=0

x00000000; v_genderF[5]=0x00000000;
22 v_age16[0] =0x00000000; v_age16[1] =0x00000000; v_age16[2] =0x0000FFFF; v_age16[3] =0x00000000; v_age16[4] =0

x00000000; v_age16[5] =0x0000FFFF;
23 v_age17[0] =0x00000000; v_age17[1] =0x00000000; v_age17[2] =0xFFFF0000; v_age17[3] =0x00000000; v_age17[4] =0

x00000000; v_age17[5] =0xFFFF0000;
24 v_age18[0] =0x00000000; v_age18[1] =0x0000FFFF; v_age18[2] =0x00000000; v_age18[3] =0x00000000; v_age18[4] =0

x0000FFFF; v_age18[5] =0x00000000;
25 v_age19[0] =0x00000000; v_age19[1] =0xFFFF0000; v_age19[2] =0x00000000; v_age19[3] =0x00000000; v_age19[4] =0

xFFFF0000; v_age19[5] =0x00000000;
26 v_age20[0] =0xFFFFFFFF; v_age20[1] =0x00000000; v_age20[2] =0x00000000; v_age20[3] =0xFFFFFFFF; v_age20[4] =0

x00000000; v_age20[5] =0x00000000;

65

CHAPTER 5. SIMULATIONS AND SYNTHESIS

27
28 /* Initialise results to 0 */
29 for(i=0; i<6; i++) {
30 result_M_over19[i] = 0;
31 result_over18[i] = 0;
32 }
33
34 /* Query: identify male people that are 19 or 20 */
35 for(i=0; i<6; i++) {
36 result_M_over19[i] = v_genderM[i] & (v_age19[i] | v_age20[i]);
37 }
38
39 /* Query: identify people that are older than 18 */
40 for(i=0; i<6; i++) {
41 result_over18[i] = ~v_age16[i] & ~v_age17[i] ;
42 }
43
44 return EXIT_SUCCESS;
45 }

Listing 5.9: Standard program bitmap_search.c

3.1.2 Execution time estimation

The approximate time estimation consider N = Nindexes
32 , because 32 corresponds to the

parallelism of data memory operations.

Execution_timeold_ISA(bitmap_search.c) ≈6N(result_M_over19) + 5N(result_over18)
(5.7)

Execution_timenewIF_ISA(bitmap_search.c) ≈4N(result_M_over19) + 4N(result_over18)
(5.8)

Execution_timesameIF_ISA(bitmap_search.c) ≈1(mem_active) + 5N(result_M_over19)+
4N(result_over18) + 1(mem_active)

(5.9)

In case of the old_ISA, the execution time for the first query considers a factor equal
to 6, because of the need to load three different memory variables, perform two bitwise
operations and then store the result in the required memory location. The same query
can be computed for newIF_ISA by loading the first variable, performing a load-OR for
the second variable, then proceeding with a load-AND for the third variable and finally
store the result in memory. The second query is computed similarly taking into account
the compiler will recognise the optimisation (∼ A)&(∼ B) =∼ (A|B), according to the De
Morgan’s Law.
For this application a special note is needed for the same_ISA system. As a matter of fact,
this system needs to assume that the memory location where to store the queries results
needs to be initialised to zero. The reason behind this assumption is that, to keep the
efficiency of the Logic-in-Memory instructions the memory should be set on one memory
operation for the entire algorithm execution. In this case, the most convenient logic op-
eration to choose is the OR operation. Therefore, assuming the results memory locations
initialised to zero would avoid to change the memory configuration, because the store-OR
operation between a value and zero corresponds to a normal store operation.
For this reason, in the case of sameIF_ISA the execution time will include the activation
and deactivation of the OR operation in memory, all the neutral operations will be per-
formed using x0 as the input mask. The first query will require a load of the first variable,
then a load OR of the second variable using the first variable as input mask, afterwards
the third variable is loaded and a normal AND is performed. The result is finally stored in
memory. The second query instead, requires the loading of the first variable, the load-OR
of the second variable, the NOT operation on the partial result and the final result can be
stored in memory.

66

CHAPTER 5. SIMULATIONS AND SYNTHESIS

Figure 5.4: Estimation execution time bitmap_search.c in old_ISA, newIF_ISA and
sameIF_ISA

3.1.3 Simulation results

The simulation shows a really slight improvement for N = 5 (Nindexes = 160). The im-
provement is not much as expected because of the stall of the RISC-V pipeline when per-
forming an operation that needs the result of a load operation. The stall is caused because
of the forwarding mechanism not possible with a data read from memory. The instructions
saved with the Logic-in-Memory operations are partially wasted with the introduction of
these stalls, resulting in a smaller improvement than expected.
Time Cycles PC Instr Mnemonic

2276ns 223 000002a0 09078793 addi x15, x15, 144 x15=00030090 x15:00030000
2286ns 224 000002a4 fe872603 lw x12, -24(x14) x12=ffffffff x14:00030078 PA:00030060
2296ns 225 000002a8 fd072683 lw x13, -48(x14) x13=00000000 x14:00030078 PA:00030048
2306ns 226 000002ac 00470713 addi x14, x14, 4 x14=0003007c x14:00030078
2316ns 227 000002b0 00c6e6b3 or x13, x13, x12 x13=ffffffff x13:00000000 x12:ffffffff
2326ns 228 000002b4 ffc72603 lw x12, -4(x14) x12=00000000 x14:0003007c PA:00030078
2346ns 230 000002b8 00c6f6b3 and x13, x13, x12 x13=00000000 x13:ffffffff x12:00000000
2356ns 231 000002bc 02d72a23 sw x13, 52(x14) x13:00000000 x14:0003007c PA:000300b0
2366ns 232 000002c0 fef712e3 bne x14, x15, -28 x14:0003007c x15:00030090

2836ns 279 000002a4 fe872603 lw x12, -24(x14) x12=00000000 x14:0003008c PA:00030074
2846ns 280 000002a8 fd072683 lw x13, -48(x14) x13=00000000 x14:0003008c PA:0003005c
2856ns 281 000002ac 00470713 addi x14, x14, 4 x14=00030090 x14:0003008c
2866ns 282 000002b0 00c6e6b3 or x13, x13, x12 x13=00000000 x13:00000000 x12:00000000
2876ns 283 000002b4 ffc72603 lw x12, -4(x14) x12=ffffffff x14:00030090 PA:0003008c
2896ns 285 000002b8 00c6f6b3 and x13, x13, x12 x13=00000000 x13:00000000 x12:ffffffff
2906ns 286 000002bc 02d72a23 sw x13, 52(x14) x13:00000000 x14:00030090 PA:000300c4
2916ns 287 000002c0 fef712e3 bne x14, x15, -28 x14:00030090 x15:00030090
2926ns 288 000002c4 000307b7 lui x15, 0x30000 x15=00030000
2936ns 289 000002c8 01878693 addi x13, x15, 24 x13=00030018 x15:00030000
2946ns 290 000002cc 0187a703 lw x14, 24(x15) x14=00000000 x15:00030000 PA:00030018
2956ns 291 000002d0 0007a603 lw x12, 0(x15) x12=00000000 x15:00030000 PA:00030000
2966ns 292 000002d4 00478793 addi x15, x15, 4 x15=00030004 x15:00030000
2976ns 293 000002d8 00c76733 or x14, x14, x12 x14=00000000 x14:00000000 x12:00000000
2986ns 294 000002dc fff74713 xori x14, x14, -1 x14=ffffffff x14:00000000
2996ns 295 000002e0 0ce7a623 sw x14, 204(x15) x14:ffffffff x15:00030004 PA:000300d0
3006ns 296 000002e4 fed794e3 bne x15, x13, -24 x15:00030004 x13:00030018

3396ns 335 000002cc 0187a703 lw x14, 24(x15) x14=ffff0000 x15:00030014 PA:0003002c
3406ns 336 000002d0 0007a603 lw x12, 0(x15) x12=0000ffff x15:00030014 PA:00030014
3416ns 337 000002d4 00478793 addi x15, x15, 4 x15=00030018 x15:00030014
3426ns 338 000002d8 00c76733 or x14, x14, x12 x14=ffffffff x14:ffff0000 x12:0000ffff
3436ns 339 000002dc fff74713 xori x14, x14, -1 x14=00000000 x14:ffffffff
3446ns 340 000002e0 0ce7a623 sw x14, 204(x15) x14:00000000 x15:00030018 PA:000300e4

67

CHAPTER 5. SIMULATIONS AND SYNTHESIS

3456ns 341 000002e4 fed794e3 bne x15, x13, -24 x15:00030018 x13:00030018
3466ns 342 000002e8 00000513 addi x10, x0, 0 x10=00000000
3476ns 343 000002ec 00008067 jalr x0, x1, 0 x1:000001d8

Listing 5.10: Extract of simulation result of bitmap_search.c - old_ISA

Time Cycles PC Instr Mnemonic

2276ns 223 000002a0 09078793 addi x15, x15, 144 x15=00030090 x15:00030000
2286ns 224 000002a4 fd072683 lw x13, -48(x14) x13=00000000 x14:00030078 PA:00030048
2306ns 226 000002a8 d0d7361b lw_or x12, x13, -24(x14) x12=ffffffff x13:00000000 x14:00030078 PA:00030060
2316ns 227 000002ac 00470713 addi x14, x14, 4 x14=0003007c x14:00030078
2326ns 228 000002b0 f8c7269b lw_and x13, x12, -4(x14) x13=00000000 x12:ffffffff x14:0003007c PA:00030078
2346ns 230 000002b4 02d72a23 sw x13, 52(x14) x13:00000000 x14:0003007c PA:000300b0
2356ns 231 000002b8 fef716e3 bne x14, x15, -20 x14:0003007c x15:00030090

2786ns 274 000002a4 fd072683 lw x13, -48(x14) x13=00000000 x14:0003008c PA:0003005c
2806ns 276 000002a8 d0d7361b lw_or x12, x13, -24(x14) x12=00000000 x13:00000000 x14:0003008c PA:00030074
2816ns 277 000002ac 00470713 addi x14, x14, 4 x14=00030090 x14:0003008c
2826ns 278 000002b0 f8c7269b lw_and x13, x12, -4(x14) x13=00000000 x12:00000000 x14:00030090 PA:0003008c
2846ns 280 000002b4 02d72a23 sw x13, 52(x14) x13:00000000 x14:00030090 PA:000300c4
2856ns 281 000002b8 fef716e3 bne x14, x15, -20 x14:00030090 x15:00030090
2866ns 282 000002bc 000307b7 lui x15, 0x30000 x15=00030000
2876ns 283 000002c0 01878693 addi x13, x15, 24 x13=00030018 x15:00030000
2886ns 284 000002c4 0187a603 lw x12, 24(x15) x12=00000000 x15:00030000 PA:00030018
2906ns 286 000002c8 00c7b71b lw_or x14, x12, 0(x15) x14=00000000 x12:00000000 x15:00030000 PA:00030000
2916ns 287 000002cc 00478793 addi x15, x15, 4 x15=00030004 x15:00030000
2926ns 288 000002d0 fff74713 xori x14, x14, -1 x14=ffffffff x14:00000000
2936ns 289 000002d4 0ce7a623 sw x14, 204(x15) x14:ffffffff x15:00030004 PA:000300d0
2946ns 290 000002d8 fed796e3 bne x15, x13, -20 x15:00030004 x13:00030018

3336ns 329 000002c4 0187a603 lw x12, 24(x15) x12=ffff0000 x15:00030014 PA:0003002c
3356ns 331 000002c8 00c7b71b lw_or x14, x12, 0(x15) x14=ffffffff x12:ffff0000 x15:00030014 PA:00030014
3366ns 332 000002cc 00478793 addi x15, x15, 4 x15=00030018 x15:00030014
3376ns 333 000002d0 fff74713 xori x14, x14, -1 x14=00000000 x14:ffffffff
3386ns 334 000002d4 0ce7a623 sw x14, 204(x15) x14:00000000 x15:00030018 PA:000300e4
3396ns 335 000002d8 fed796e3 bne x15, x13, -20 x15:00030018 x13:00030018
3406ns 336 000002dc 00000513 addi x10, x0, 0 x10=00000000
3416ns 337 000002e0 00008067 jalr x0, x1, 0 x1:000001d8

Listing 5.11: Extract of simulation result of bitmap_search.c - newIF_ISA

Time Cycles PC Instr Mnemonic

2396ns 235 000002d0 09078793 addi x15, x15, 144 x15=00030090 x15:00030000
2406ns 236 000002d4 00020837 lui x16, 0x20000 x16=00020000
2416ns 237 000002d8 ffc8303b sw_active_or Nx0 -4(x16) x16:00020000 PA:0001fffc
2426ns 238 000002dc a007261b lw_mask x12, x0, -48(x14) x12=00000000 x14:00030078 PA:00030048
2436ns 239 000002e0 00470713 addi x14, x14, 4 x14=0003007c x14:00030078
2446ns 240 000002e4 c8c7269b lw_mask x13, x12, -28(x14) x13=ffffffff x12:00000000 x14:0003007c PA:00030060
2456ns 241 000002e8 f807261b lw_mask x12, x0, -4(x14) x12=00000000 x14:0003007c PA:00030078
2476ns 243 000002ec 00c6f6b3 and x13, x13, x12 x13=00000000 x13:ffffffff x12:00000000
2486ns 244 000002f0 02d72a23 sw x13, 52(x14) x13:00000000 x14:0003007c PA:000300b0
2496ns 245 000002f4 fef714e3 bne x14, x15, -24 x14:0003007c x15:00030090

2926ns 288 000002dc a007261b lw_mask x12, x0, -48(x14) x12=00000000 x14:0003008c PA:0003005c
2936ns 289 000002e0 00470713 addi x14, x14, 4 x14=00030090 x14:0003008c
2946ns 290 000002e4 c8c7269b lw_mask x13, x12, -28(x14) x13=00000000 x12:00000000 x14:00030090 PA:00030074
2956ns 291 000002e8 f807261b lw_mask x12, x0, -4(x14) x12=ffffffff x14:00030090 PA:0003008c
2976ns 293 000002ec 00c6f6b3 and x13, x13, x12 x13=00000000 x13:00000000 x12:ffffffff
2986ns 294 000002f0 02d72a23 sw x13, 52(x14) x13:00000000 x14:00030090 PA:000300c4
2996ns 295 000002f4 fef714e3 bne x14, x15, -24 x14:00030090 x15:00030090
3006ns 296 000002f8 000307b7 lui x15, 0x30000 x15=00030000
3016ns 297 000002fc 01878693 addi x13, x15, 24 x13=00030018 x15:00030000
3026ns 298 00000300 3007a71b lw_mask x14, x0, 24(x15) x14=00000000 x15:00030000 PA:00030018
3036ns 299 00000304 00478793 addi x15, x15, 4 x15=00030004 x15:00030000
3046ns 300 00000308 f8e7a61b lw_mask x12, x14, -4(x15) x12=00000000 x14:00000000 x15:00030004 PA:00030000
3066ns 302 0000030c fff64613 xori x12, x12, -1 x12=ffffffff x12:00000000
3076ns 303 00000310 0cc7a623 sw x12, 204(x15) x12:ffffffff x15:00030004 PA:000300d0
3086ns 304 00000314 fed796e3 bne x15, x13, -20 x15:00030004 x13:00030018

3476ns 343 00000300 3007a71b lw_mask x14, x0, 24(x15) x14=ffff0000 x15:00030014 PA:0003002c
3486ns 344 00000304 00478793 addi x15, x15, 4 x15=00030018 x15:00030014
3496ns 345 00000308 f8e7a61b lw_mask x12, x14, -4(x15) x12=ffffffff x14:ffff0000 x15:00030018 PA:00030014
3516ns 347 0000030c fff64613 xori x12, x12, -1 x12=00000000 x12:ffffffff
3526ns 348 00000310 0cc7a623 sw x12, 204(x15) x12:00000000 x15:00030018 PA:000300e4
3536ns 349 00000314 fed796e3 bne x15, x13, -20 x15:00030018 x13:00030018
3546ns 350 00000318 ffc8003b sw_active_none Nx0 -4(x16) x16:00020000 PA:0001fffc
3556ns 351 0000031c 00000513 addi x10, x0, 0 x10=00000000
3566ns 352 00000320 00008067 jalr x0, x1, 0 x1:000001d8

Listing 5.12: Extract of simulation result of bitmap_search.c - same_ISA

3.2 AES Addroundkey algorithm

The Advanced Encryption Standard (AES) plays an important role in the security of data
transmission [13] [14] [15]. The algorithm has been already implemented in hardware or

68

CHAPTER 5. SIMULATIONS AND SYNTHESIS

software in many different ways, because of its broad range of applications.
The cryptography algorithm encrypts chunks of 128-bit data (also called plaintext) organ-
ised in a 4x4 matrix defined as states. In the AES-128 case, the data is transformed by
means of a 128-bit key also organised in a 4x4 matrix. Figure 5.5 describes at a very high
level the 10 rounds that perform the data encryption and all the steps needed in each
round.

Figure 5.5: AES encryption algorithm

The work done in this thesis for the AES, aims to speed-up the software implementation
of the AddRoundKey step, that is performed 11 times in the whole encryption process.
The AddRoundKey consists in XOR operations between the bytes of the states matrix and
the key matrix, element by element. The result is the next states matrix, which is used for
the subsequent steps that lead to the encryption.

3.2.1 C program

The C code implemented, initialises the states and the key into predefined memory loca-
tions. The execution of the algorithm itself is very straightforward.

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 int main(int argc, char* argv[])
5 {
6 /* input variables declaration */
7 int (*states)[4][4] = 0x30000;
8 (*states)[0][0]=0x32; (*states)[0][1]=0x88; (*states)[0][2]=0x31; (*states)[0][3]=0xE0;
9 (*states)[1][0]=0x43; (*states)[1][1]=0x54; (*states)[1][2]=0x31; (*states)[1][3]=0x37;

10 (*states)[2][0]=0xF6; (*states)[2][1]=0x30; (*states)[2][2]=0x98; (*states)[2][3]=0x07;
11 (*states)[3][0]=0xA8; (*states)[3][1]=0x8D; (*states)[3][2]=0xA2; (*states)[3][3]=0x34;
12
13 int (*key)[4][4] = 0x30200;
14 (*key)[0][0]=0x00; (*key)[0][1]=0xA5; (*key)[0][2]=0xA8; (*key)[0][3]=0xA0;
15 (*key)[1][0]=0xE9; (*key)[1][1]=0x09; (*key)[1][2]=0xBB; (*key)[1][3]=0x2A;

69

CHAPTER 5. SIMULATIONS AND SYNTHESIS

16 (*key)[2][0]=0xC9; (*key)[2][1]=0xD4; (*key)[2][2]=0xB7; (*key)[2][3]=0xAB;
17 (*key)[3][0]=0xF2; (*key)[3][1]=0xE8; (*key)[3][2]=0x60; (*key)[3][3]=0x08;
18
19 /* Others */
20 int i, j;
21
22 /* Add around key */
23 for (i=0; i<4; i++) {
24 for (j=0; j<4; j++) {
25 (*states)[i][j] = (*states)[i][j] ^ (*key)[i][j];
26 }
27 }
28
29 return EXIT_SUCCESS;
30 }

Listing 5.13: Standard program aes128_addroundkey.c

3.2.2 Execution time estimation

The estimation of the number of clock cycles needed by the addroundkey.c program does
not depend on any variables, because the size of the input data is fixed. In fact, the number
of elements N is 16.

Execution_timeold_ISA(aes128_addroundkey.c) ≈4N = 64cc (5.10)

Execution_timenewIF_ISA(aes128_addroundkey.c) ≈2N = 32cc (5.11)

Execution_timesameIF_ISA(aes128_addroundkey.c) ≈1(mem_active) + 2N

+ 1(mem_active) = 34cc

(5.12)

For each element of the array, the operations to consider with the old_ISA are, the load
of the states and key elements, the XOR operation between them and the store back in
memory of the result. The newIF_ISA saves two clock cycles per each element, because
the operation is performed directly in memory. As usual, the sameIF_ISA introduces two
additional clock cycles because of the operations needed for the memory configurations.

3.2.3 Simulation results

Simulation results show an important improvement in terms of execution time in both cases.
Considering that in the full AES algorithm, this piece of program would be executed 11
times for each 128-bit chunk of input data, the overall speed-up introduced by the LiM is
remarkable.
Time Cycles PC Instr Mnemonic

2516ns 247 000002e0 000308b7 lui x17, 0x30000 x17=00030000
2526ns 248 000002e4 00400313 addi x6, x0, 4 x6=00000004
2536ns 249 000002e8 00000693 addi x13, x0, 0 x13=00000000
2546ns 250 000002ec 00261813 slli x16, x12, 0x2 x16=00000000 x12:00000000
2556ns 251 000002f0 00d80733 add x14, x16, x13 x14=00000000 x16:00000000 x13:00000000
2566ns 252 000002f4 00271713 slli x14, x14, 0x2 x14=00000000 x14:00000000
2576ns 253 000002f8 00e88533 add x10, x17, x14 x10=00030000 x17:00030000 x14:00000000
2586ns 254 000002fc 00e78733 add x14, x15, x14 x14=00030200 x15:00030200 x14:00000000
2596ns 255 00000300 00052583 lw x11, 0(x10) x11=00000032 x10:00030000 PA:00030000
2606ns 256 00000304 00072703 lw x14, 0(x14) x14=00000000 x14:00030200 PA:00030200
2616ns 257 00000308 00168693 addi x13, x13, 1 x13=00000001 x13:00000000
2626ns 258 0000030c 00e5c733 xor x14, x11, x14 x14=00000032 x11:00000032 x14:00000000
2636ns 259 00000310 00e52023 sw x14, 0(x10) x14:00000032 x10:00030000 PA:00030000
2646ns 260 00000314 fc669ee3 bne x13, x6, -36 x13:00000001 x6:00000004

4516ns 447 00000300 00052583 lw x11, 0(x10) x11=00000034 x10:0003003c PA:0003003c
4526ns 448 00000304 00072703 lw x14, 0(x14) x14=00000008 x14:0003023c PA:0003023c
4536ns 449 00000308 00168693 addi x13, x13, 1 x13=00000004 x13:00000003
4546ns 450 0000030c 00e5c733 xor x14, x11, x14 x14=0000003c x11:00000034 x14:00000008
4556ns 451 00000310 00e52023 sw x14, 0(x10) x14:0000003c x10:0003003c PA:0003003c
4566ns 452 00000314 fc669ee3 bne x13, x6, -36 x13:00000004 x6:00000004
4576ns 453 00000318 00160613 addi x12, x12, 1 x12=00000004 x12:00000003
4586ns 454 0000031c fcd616e3 bne x12, x13, -52 x12:00000004 x13:00000004
4596ns 455 00000320 00000513 addi x10, x0, 0 x10=00000000
4606ns 456 00000324 00008067 jalr x0, x1, 0 x1:000001d8

Listing 5.14: Extract of simulation result of aes128_addroundkey.c - old_ISA

70

CHAPTER 5. SIMULATIONS AND SYNTHESIS

Time Cycles PC Instr Mnemonic

2516ns 247 000002e0 000308b7 lui x17, 0x30000 x17=00030000
2526ns 248 000002e4 00400313 addi x6, x0, 4 x6=00000004
2536ns 249 000002e8 00000693 addi x13, x0, 0 x13=00000000
2546ns 250 000002ec 00261813 slli x16, x12, 0x2 x16=00000000 x12:00000000
2556ns 251 000002f0 00d80733 add x14, x16, x13 x14=00000000 x16:00000000 x13:00000000
2566ns 252 000002f4 00271713 slli x14, x14, 0x2 x14=00000000 x14:00000000
2576ns 253 000002f8 00e88533 add x10, x17, x14 x10=00030000 x17:00030000 x14:00000000
2586ns 254 000002fc 00e78733 add x14, x15, x14 x14=00030200 x15:00030200 x14:00000000
2596ns 255 00000300 00072703 lw x14, 0(x14) x14=00000000 x14:00030200 PA:00030200
2606ns 256 00000304 00168693 addi x13, x13, 1 x13=00000001 x13:00000000
2616ns 257 00000308 00e5103b sw_xor N-x0 x14, 0(x10) x14:00000000 x10:00030000 PA:00030000
2626ns 258 0000030c fe6692e3 bne x13, x6, -28 x13:00000001 x6:00000004

4176ns 413 000002f0 00d80733 add x14, x16, x13 x14=0000000f x16:0000000c x13:00000003
4186ns 414 000002f4 00271713 slli x14, x14, 0x2 x14=0000003c x14:0000000f
4196ns 415 000002f8 00e88533 add x10, x17, x14 x10=0003003c x17:00030000 x14:0000003c
4206ns 416 000002fc 00e78733 add x14, x15, x14 x14=0003023c x15:00030200 x14:0000003c
4216ns 417 00000300 00072703 lw x14, 0(x14) x14=00000008 x14:0003023c PA:0003023c
4226ns 418 00000304 00168693 addi x13, x13, 1 x13=00000004 x13:00000003
4236ns 419 00000308 00e5103b sw_xor N-x0 x14, 0(x10) x14:00000008 x10:0003003c PA:0003003c
4246ns 420 0000030c fe6692e3 bne x13, x6, -28 x13:00000004 x6:00000004
4256ns 421 00000310 00160613 addi x12, x12, 1 x12=00000004 x12:00000003
4266ns 422 00000314 fcd61ae3 bne x12, x13, -44 x12:00000004 x13:00000004
4276ns 423 00000318 00000513 addi x10, x0, 0 x10=00000000
4286ns 424 0000031c 00008067 jalr x0, x1, 0 x1:000001d8

Listing 5.15: Extract of simulation result of aes128_addroundkey.c - new_ISA

Time Cycles PC Instr Mnemonic

2516ns 247 000002e0 000308b7 lui x17, 0x30000 x17=00030000
2526ns 248 000002e4 00400313 addi x6, x0, 4 x6=00000004
2536ns 249 000002e8 000204b7 lui x9, 0x20000 x9=00020000
2546ns 250 000002ec ffc4903b sw_active_xor Nx0 -4(x9) x9:00020000 PA:0001fffc
2556ns 251 000002f0 00000693 addi x13, x0, 0 x13=00000000
2566ns 252 000002f4 00261813 slli x16, x12, 0x2 x16=00000000 x12:00000000
2576ns 253 000002f8 00d80733 add x14, x16, x13 x14=00000000 x16:00000000 x13:00000000
2586ns 254 000002fc 00271713 slli x14, x14, 0x2 x14=00000000 x14:00000000
2596ns 255 00000300 00e88533 add x10, x17, x14 x10=00030000 x17:00030000 x14:00000000
2606ns 256 00000304 00e78733 add x14, x15, x14 x14=00030200 x15:00030200 x14:00000000
2616ns 257 00000308 0007271b lw_mask x14, x0, 0(x14) x14=00000000 x14:00030200 PA:00030200
2626ns 258 0000030c 00168693 addi x13, x13, 1 x13=00000001 x13:00000000
2636ns 259 00000310 00e52023 sw x14, 0(x10) x14:00000000 x10:00030000 PA:00030000
2646ns 260 00000314 fe6692e3 bne x13, x6, -28 x13:00000001 x6:00000004

4196ns 415 000002f8 00d80733 add x14, x16, x13 x14=0000000f x16:0000000c x13:00000003
4206ns 416 000002fc 00271713 slli x14, x14, 0x2 x14=0000003c x14:0000000f
4216ns 417 00000300 00e88533 add x10, x17, x14 x10=0003003c x17:00030000 x14:0000003c
4226ns 418 00000304 00e78733 add x14, x15, x14 x14=0003023c x15:00030200 x14:0000003c
4236ns 419 00000308 0007271b lw_mask x14, x0, 0(x14) x14=00000008 x14:0003023c PA:0003023c
4246ns 420 0000030c 00168693 addi x13, x13, 1 x13=00000004 x13:00000003
4256ns 421 00000310 00e52023 sw x14, 0(x10) x14:00000008 x10:0003003c PA:0003003c
4266ns 422 00000314 fe6692e3 bne x13, x6, -28 x13:00000004 x6:00000004
4276ns 423 00000318 00160613 addi x12, x12, 1 x12=00000004 x12:00000003
4286ns 424 0000031c fcd61ae3 bne x12, x13, -44 x12:00000004 x13:00000004
4296ns 425 00000320 ffc4803b sw_active_none Nx0 -4(x9) x9:00020000 PA:0001fffc
4306ns 426 00000324 00000513 addi x10, x0, 0 x10=00000000

Listing 5.16: Extract of simulation result of aes128_addroundkey.c - same_ISA

3.3 Transport problem - Least Cost Method algorithm

The transport problem is an algorithm that minimises the cost of distributing a product
from a number of sources or origins to a number of destinations [16]. Applications of this
algorithm can be found in the logistic and shipment activities, where the aim is to minimise
the cost of the shipments.
The origin of a transport problem is the location from which shipments start, while the
destination of a transport problem is the location to which shipments are transported. The
unit transport cost is the shipment cost related to a unique path between an origin and a
destination.
Assuming to organise the transport problem data in a matrix, the matrix would follow the
this structure:

• In the rows there are the M suppliers (s1, s2, ..., sM).

• In the columns there are the M buyers (b1,b2, ..., bM).

71

CHAPTER 5. SIMULATIONS AND SYNTHESIS

• In each cell of the matrix, are the associated transport cost from the supplier to the
buyer. For instance the cost of transport from the supplier 1 to the buyer 1 will be
c11, while the cost to transport from supplier 1 t buyer 2 will be c12 and so on.

• Two additional variables are needed: the supply capacity and buying demand for
each of the suppliers and buyers.

Therefore, as shown in the Table 5.2 , it is possible to see all the related transport costs that
will influence the final distribution. In fact, this problem aims at minimize the transport
cost while meeting the various supply and demand. For the sake of simplicity the cost
matrix and the supply and demand vectors are represented in the same table.

Supplier\Buyer b1 b2 b3 Supply
s1 5 8 4 50
s2 6 6 3 40
s3 3 9 6 60
Demand 20 95 35

Table 5.2: Transport problem example

The algorithm that computes the total minimum cost, works in the following way:

1. Find the minimum cost in the cost matrix.

2. In case of a tie, determine the path si-bj giving the priority to the path with the
maximum demand.

3. Update the demand demandj of the buyer bj and the capacity supplyi of the supplier
si. Both quantities should subtract the transfer amount, that in order to minimise
the cost should be the maximum number of items that the supplier can give to the
buyer, according to its demand.

4. Update the total cost: Total_cost = Total_cost+ transfer ∗ cij .

5. Repeat points 1-4 for all the elements of the cost matrix, then for all the possible
paths, excluding already considered cost elements. At the end of the last iteration
Total_cost contains the minimum cost for the overall transports.

3.3.1 C program

The C program used for the simulation reflects the example showed in 5.2. This algorithm
has been chosen because of the minimum function that the LiM could perform on the cost
matrix, for each iteration. Moreover, in order to avoid the evaluation of already considered
costs, a mask is applied to the considered cost element. The masking operation can be
performed by the LiM as well.

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 int main(int argc, char* argv[])
5 {
6 /* input variables declaration */
7 int (*costs)[3][3] = 0x30000;
8 (*costs)[0][0]=5; (*costs)[0][1]=8; (*costs)[0][2]=4;
9 (*costs)[1][0]=6; (*costs)[1][1]=6; (*costs)[1][2]=3;

10 (*costs)[2][0]=3; (*costs)[2][1]=9; (*costs)[2][2]=6;
11
12 int *demand = 0x30030;
13 demand[0]=20; demand[1]=95; demand[2]=35;
14 int *supply = 0x30040;
15 supply[0]=50; supply[1]=40; supply[2]=60;
16 int *total_cost = 0x30060;
17
18 /* Others */
19 int i, j, s, d, dest_i, src_i;
20 int min_cost, max_demand, transfer;

72

CHAPTER 5. SIMULATIONS AND SYNTHESIS

21
22 *total_cost = 0;
23
24 for (i=0; i<3; i++) {
25 for (j=0; j<3; j++) {
26
27 /* Minimum value */
28 min_cost = 0x7FFFFFFF;
29 for(s=0; s<3; s++) {
30 for(d=0; d<3; d++) {
31 if((*costs)[s][d] < min_cost) min_cost = (*costs)[s][d];
32 }
33 }
34
35 /* Path computation: source and demand */
36 max_demand = 0;
37 for(s=0; s<3; s++) {
38 for(d=0; d<3; d++) {
39 if(((*costs)[s][d] == min_cost) && (demand[d]>=max_demand)) {
40 max_demand = demand[d];
41 dest_i = d;
42 src_i = s;
43 }
44 }
45 }
46
47 /* Total cost update */
48 if(supply[src_i] <= demand[dest_i])
49 transfer = supply[src_i];
50 else
51 transfer = demand[dest_i];
52 demand[dest_i] = demand[dest_i] - transfer;
53 supply[src_i] = supply[src_i] - transfer;
54 (*costs)[src_i][dest_i] = (*costs)[src_i][dest_i] | 0x7FFFFFFF;
55 *total_cost = *total_cost + (transfer * min_cost);
56 }
57 }
58
59 return EXIT_SUCCESS;
60 }

Listing 5.17: Standard program transport_min_cost.c

3.3.2 Execution time estimation

The execution time estimation for transport_min_cost.c program, considers N = M ∗
M the total number of cost elements, corresponding to the number of possible paths
between supplier and buyers. Only the parts of the code that could be executed with LiM
instructions are considered in the computation. The code that remains unchanged between
the three versions is considered as fixed and it is not included as offset in the Figure 5.6.

Execution_timeold_ISA(transport_min_cost.c) ≈N(4N(min) + fixed+ 3(maskmin))
(5.13)

Execution_timenewIF_ISA(transport_min_cost.c) ≈N(33(min) + fixed+ 1(maskmin))
(5.14)

Execution_timesameIF_ISA(transport_min_cost.c) ≈N(1(mem_active) + 33(min)

+ 1(mem_active) + fixed

+ 3(maskmin))

(5.15)

From the execution with the old_ISA instructions, it is expected to see a quadratic depen-
dency on the number N , as immediately visible from Figure 5.6. In fact, the total number
of clock cycles needed is computed considering that the minimum needs 4 steps for each
matrix element. In fact, in each iteration the RISC-V should read the matrix element and
the minimum variable, compare the two and save the minimum between them. After all
the updates are done with the new minimum, the considered cost element in the matrix
is masked, and so a factor 3 is considered to load the data, mask with 1s, store the data
back in memory. Those operations are repeated for all the possible N paths in the matrix.
The LiM instructions instead allow to change the dependency on N from quadratic to

73

CHAPTER 5. SIMULATIONS AND SYNTHESIS

Figure 5.6: Estimation execution time transport_min_cost.c in old_ISA, newIF_ISA and
sameIF_ISA

linear. As a matter of fact, for both newIF_ISA and sameIF_ISA, the minimum compu-
tation takes always 33 clock cycles so there is not a dependency on N anymore. As always,
the only difference between the two are the additional two clock cycles needed for the
memory configuration. Regarding the mask computation, only the newIF_ISA introduced
a change with respect to the initial version. In fact, while for newIF_ISA the masking
operation can be done directly in the memory, for the sameIF_ISA doing it, would not
have allowed to a reduction of the instructions required because of the needed configuration
instructions.

3.3.3 Simulation results

Simulations show a really good improvement in terms of execution time in both cases for
N = 9. By increasing the number N the improvement is expected to be even better.
Time Cycles PC Instr Mnemonic

2086ns 204 00000254 0607a023 sw x0, 96(x15) x15:00030000 PA:00030060
2096ns 205 00000258 00300f13 addi x30, x0, 3 x30=00000003
2106ns 206 0000025c fffe4e13 xori x28, x28, -1 x28=7fffffff x28:80000000
2116ns 207 00000260 00c00593 addi x11, x0, 12 x11=0000000c
2126ns 208 00000264 00300f93 addi x31, x0, 3 x31=00000003
2136ns 209 00000268 04078293 addi x5, x15, 64 x5=00030040 x15:00030000
2146ns 210 0000026c 00300e93 addi x29, x0, 3 x29=00000003
2156ns 211 00000270 1280006f jal x0, 296
2176ns 213 00000398 000e0613 addi x12, x28, 0 x12=7fffffff x28:7fffffff
2186ns 214 0000039c 00000693 addi x13, x0, 0 x13=00000000
2196ns 215 000003a0 ed5ff06f jal x0, -300
2216ns 217 00000274 02b68733 mul x14, x13, x11 x14=00000000 x13:00000000 x11:0000000c
2226ns 218 00000278 00e78733 add x14, x15, x14 x14=00030000 x15:00030000 x14:00000000
2236ns 219 0000027c 00472503 lw x10, 4(x14) x10=00000008 x14:00030000 PA:00030004
2246ns 220 00000280 00072703 lw x14, 0(x14) x14=00000005 x14:00030000 PA:00030000
2266ns 222 00000284 00e55463 bge x10, x14, 8 x10:00000008 x14:00000005
2296ns 225 0000028c 02b68533 mul x10, x13, x11 x10=00000000 x13:00000000 x11:0000000c
2306ns 226 00000290 00a78533 add x10, x15, x10 x10=00030000 x15:00030000 x10:00000000
2316ns 227 00000294 00852503 lw x10, 8(x10) x10=00000004 x10:00030000 PA:00030008
2336ns 229 00000298 00e55463 bge x10, x14, 8 x10:00000004 x14:00000005
2346ns 230 0000029c 00050713 addi x14, x10, 0 x14=00000004 x10:00000004
2356ns 231 000002a0 00c75463 bge x14, x12, 8 x14:00000004 x12:7fffffff
2366ns 232 000002a4 00070613 addi x12, x14, 0 x12=00000004 x14:00000004
2376ns 233 000002a8 00168693 addi x13, x13, 1 x13=00000001 x13:00000000
2386ns 234 000002ac fdf694e3 bne x13, x31, -56 x13:00000001 x31:00000003

18036ns 1799 00000378 00e78733 add x14, x15, x14 x14=0003001c x15:00030000 x14:0000001c
18046ns 1800 0000037c 00072503 lw x10, 0(x14) x10=00000009 x14:0003001c PA:0003001c

74

CHAPTER 5. SIMULATIONS AND SYNTHESIS

18066ns 1802 00000380 01c56533 or x10, x10, x28 x10=7fffffff x10:00000009 x28:7fffffff
18076ns 1803 00000384 00a72023 sw x10, 0(x14) x10:7fffffff x14:0003001c PA:0003001c
18086ns 1804 00000388 0607a703 lw x14, 96(x15) x14=00000253 x15:00030000 PA:00030060
18106ns 1806 0000038c 00d706b3 add x13, x14, x13 x13=000003bb x14:00000253 x13:00000168
18116ns 1807 00000390 06d7a023 sw x13, 96(x15) x13:000003bb x15:00030000 PA:00030060
18126ns 1808 00000394 000e8863 beq x29, x0, 16 x29:00000000
18156ns 1811 000003a4 ffff0f13 addi x30, x30, -1 x30=00000000 x30:00000001
18166ns 1812 000003a8 ec0f12e3 bne x30, x0, -316 x30:00000000
18176ns 1813 000003ac 00000513 addi x10, x0, 0 x10=00000000
18186ns 1814 000003b0 00008067 jalr x0, x1, 0 x1:000001d8

Listing 5.18: Extract of simulation result of transport_min_cost.c - old_ISA

Time Cycles PC Instr Mnemonic

2086ns 204 00000254 0607a023 sw x0, 96(x15) x15:00030000 PA:00030060
2096ns 205 00000258 00300f13 addi x30, x0, 3 x30=00000003
2106ns 206 0000025c fffe4e13 xori x28, x28, -1 x28=7fffffff x28:80000000
2116ns 207 00000260 00c00593 addi x11, x0, 12 x11=0000000c
2126ns 208 00000264 00300f93 addi x31, x0, 3 x31=00000003
2136ns 209 00000268 04078293 addi x5, x15, 64 x5=00030040 x15:00030000
2146ns 210 0000026c 00300e93 addi x29, x0, 3 x29=00000003
2156ns 211 00000270 0ec0006f jal x0, 236
2176ns 213 0000035c 000e0613 addi x12, x28, 0 x12=7fffffff x28:7fffffff
2186ns 214 00000360 00000693 addi x13, x0, 0 x13=00000000
2196ns 215 00000364 f11ff06f jal x0, -240
2216ns 217 00000274 02c7a223 sw x12, 36(x15) x12:7fffffff x15:00030000 PA:00030024
2226ns 218 00000278 0007d61b lw_min N10 x12, 0(x15) x12=00000003 x15:00030000 PA:00030000
2236ns 219 0000027c 00000693 addi x13, x0, 0 x13=00000000

15426ns 1538 00000344 00e78733 add x14, x15, x14 x14=0003001c x15:00030000 x14:0000001c
15436ns 1539 00000348 01c7303b sw_or N-x0 x28, 0(x14) x28:7fffffff x14:0003001c PA:0003001c
15446ns 1540 0000034c 0607a703 lw x14, 96(x15) x14=00000253 x15:00030000 PA:00030060
15466ns 1542 00000350 00d706b3 add x13, x14, x13 x13=000003bb x14:00000253 x13:00000168
15476ns 1543 00000354 06d7a023 sw x13, 96(x15) x13:000003bb x15:00030000 PA:00030060
15486ns 1544 00000358 000e8863 beq x29, x0, 16 x29:00000000
15516ns 1547 00000368 ffff0f13 addi x30, x30, -1 x30=00000000 x30:00000001
15526ns 1548 0000036c f10f10e3 bne x30, x16, -256 x30:00000000 x16:00000000
15536ns 1549 00000370 00000513 addi x10, x0, 0 x10=00000000
15546ns 1550 00000374 00008067 jalr x0, x1, 0 x1:000001d8

Listing 5.19: Extract of simulation result of transport_min_cost.c - new_ISA

Time Cycles PC Instr Mnemonic

2086ns 204 00000254 0607a023 sw x0, 96(x15) x15:00030000 PA:00030060
2096ns 205 00000258 00020cb7 lui x25, 0x20000 x25=00020000
2106ns 206 0000025c 00300f13 addi x30, x0, 3 x30=00000003
2116ns 207 00000260 fffe4e13 xori x28, x28, -1 x28=7fffffff x28:80000000
2126ns 208 00000264 00c00593 addi x11, x0, 12 x11=0000000c
2136ns 209 00000268 00300f93 addi x31, x0, 3 x31=00000003
2146ns 210 0000026c 04078293 addi x5, x15, 64 x5=00030040 x15:00030000
2156ns 211 00000270 00300e93 addi x29, x0, 3 x29=00000003
2166ns 212 00000274 0fc0006f jal x0, 252
2186ns 214 00000370 000e0613 addi x12, x28, 0 x12=7fffffff x28:7fffffff
2196ns 215 00000374 00000693 addi x13, x0, 0 x13=00000000
2206ns 216 00000378 f01ff06f jal x0, -256
2226ns 218 00000278 00900613 addi x12, x0, 9 x12=00000009
2236ns 219 0000027c ffccd63b sw_active_min Nx12 -4(x25) x25:00020000 x12:00000009 PA:0001fffc
2246ns 220 00000280 0007861b lw_mask x12, x0, 0(x15) x12=00000003 x15:00030000 PA:00030000
2256ns 221 00000284 ffcc803b sw_active_none Nx0 -4(x25) x25:00020000 PA:0001fffc
2586ns 254 00000288 00000693 addi x13, x0, 0 x13=00000000

15856ns 1581 00000350 00e78733 add x14, x15, x14 x14=0003001c x15:00030000 x14:0000001c
15866ns 1582 00000354 00072503 lw x10, 0(x14) x10=00000009 x14:0003001c PA:0003001c
15886ns 1584 00000358 01c56533 or x10, x10, x28 x10=7fffffff x10:00000009 x28:7fffffff
15896ns 1585 0000035c 00a72023 sw x10, 0(x14) x10:7fffffff x14:0003001c PA:0003001c
15906ns 1586 00000360 0607a703 lw x14, 96(x15) x14=00000253 x15:00030000 PA:00030060
15926ns 1588 00000364 00d706b3 add x13, x14, x13 x13=000003bb x14:00000253 x13:00000168
15936ns 1589 00000368 06d7a023 sw x13, 96(x15) x13:000003bb x15:00030000 PA:00030060
15946ns 1590 0000036c 000e8863 beq x29, x0, 16 x29:00000000
15976ns 1593 0000037c ffff0f13 addi x30, x30, -1 x30=00000000 x30:00000001
15986ns 1594 00000380 ee0f18e3 bne x30, x0, -272 x30:00000000
15996ns 1595 00000384 00000513 addi x10, x0, 0 x10=00000000
16006ns 1596 00000388 00008067 jalr x0, x1, 0 x1:000001d8

Listing 5.20: Extract of simulation result of transport_min_cost.c - same_ISA

4 Simulation Results Analysis

All the simulation results are collected in the Table 5.3 in order to evaluate and compare
the improvements introduced by the Logic-in-Memory.
Generally the estimations done in the previous sections were quite accurate. Even if the
estimated execution time was a bit different from the actual execution time, the given

75

CHAPTER 5. SIMULATIONS AND SYNTHESIS

NO LiM NEW IF LiM SAME IF LiM
Custom programs

bitwise.c 129 cc 24 cc (-82%) 33 cc (-74%)
max_min.c 177 cc 71 cc (-59%) 74 cc (-58%)

Standard programs
bitmap_search.c 119 cc 113 cc (-5%) *116 cc (-2%)
aes128_addroundkey.c 208 cc 176 cc (-15%) 179 cc (-14%)
transport_min_cost.c 1609 cc 1345 (-16%) 1391 cc (-14%)

Table 5.3: Simulation results comparison

formulas revealed to be a good method to perform an approximation and then to evaluate
if it is convenient or not use the new LiM instructions on a given algorithm.

Going into the details of the simulation results, the RI5CY processor with the LiM in-
structions showed an improvement of more than 70% in the case of the custom programs.
The improvement is quite high because the programs were tailored to take advantage of
the new LiM instructions. However, this is still a significant result since it demonstrate
which is the upper bound of the improvement allowed by the Logic-in-Memory.
The simulation results of the standard programs instead were as expected different. The
bitmap_search.c algorithm came out to be not really suitable for Logic-in-Memory oper-
ations. The main reason is the usage of the LOAD LiM instruction. In fact, the RI5CY
processor cannot use the forwarding technique in case of a data coming from the memory.
For this reason when the instruction gives a result needed by the immediate next instruc-
tion, the microprocessor stalls for one clock cycle. As a consequence, since this algorithm
mostly relied on the LOAD LiM instruction to reduce the execution time, the result was
not so good as expected. Anyway, a compiler can avoid as much as possible the dependen-
cies and so fully exploit the Logic-in-Memory instructions.
A significant result is instead found for aes128_addroundkey.c and transport_min_cost.c,
that showed around 15% of reduction in any LiM versions.

Anyway, for all the tested algorithms, as expected the RI5CY that supports the Logic-in-
Memory keeping the original interface, always performs worse than the one with the new in-
terface and in some cases it is even not convenient to use. For example, the bitmap_search.c
program in the case of the sameIF_ISA (*) required an additional assumption that is not
always true in every application of the algorithm. However, in most of the cases the im-
provement in terms of percentage is almost equivalent, so it could be more desirable to
have a microprocessor that does not have a special interface.

Another last important consideration to make, is that the simulations have been done
with a small amount of memory data, because of simulation time and manual compilation
restrictions. Real world programs have to work with huge amount of data, so it possible
to affirm that the new Logic-in-Memory ISA extensions would perform even better in that
context.

5 Synthesis

The main goal of this thesis was to demonstrate the potentiality of the Logic-in-Memory
in a system like the RISC-V microprocessor. The focus has always been to work on the
architectural and behavioural point of view to reduce the execution time of the software
running on the microprocessor.

76

CHAPTER 5. SIMULATIONS AND SYNTHESIS

However, the synthesis step has been performed just to have an idea on how the Logic-
in-Memory can impact the characteristics of the entire system RISC-V and Memory. The
gate library used for the synthesis is the 15nm Opengate Library.

NO LiM NEW IF LiM SAME IF LiM
RI5CY

Area 11188.518 µm2 11259.691 µm2 11193.385 µm2

Minimum period 37.08 ns 38.01 ns 37.06 ns
Total power 112.5419 mW 114.0089 mW 112.5414 mW

RAM
Area 19479.13 µm2 40627.27 µm2 40679.47 µm2

Minimum period 10.87 ns 9 ns 18.14 ns
Total power 299.7810 mW 3.1012e+03 mW 1.4009e+03 mW

Table 5.4: Synthesis results comparison

Synthesis results of the two versions of the RI5CY that support the Logic-in-Memory ISA
extension do not show any significant change (see Table 5.4). At basically the same cost in
terms of timing, power and area, the RI5CY microprocessor can now support any kind of
Logic-in-Memory operations. In fact, the new supported instructions are not LiM-specific,
so a more complex Logic-in-Memory could be interfaced or even a Logic-in-Memory with a
completely different structure but that keeps the same interface with the microprocessor.

The area and power are slightly bigger in the case of the new interface RI5CY. The reason
is obviously related to the new interface ports, driven by the microprocessor. The result
related to the minimum clock period does not have an explanation related to the new
signals. As a matter of fact, the critical path does not change between the three designs.
Therefore, it is possible to consider that the small difference is caused by the noise of
the synthesis tool, because the algorithms that perform the synthesis can produce slightly
different results with two slightly different initial conditions.

Regarding the memory synthesis results, it is necessary to state that the tool synthe-
sised the memory as a set of flip-flops, so ignoring all the possible optimisations that can
be applied on memory arrays. The synthesis memory compiler was not available, so the
obtained data should not be considered valid in an absolute form, but can be used to to
perform a relative comparison between the initial version of the memory and the two LiM
versions.
During the simulation a memory of 222 Bytes has been used, but the synthesis tool could
not process such a large array, so data in the Table 5.4 are related to a memory of 210

Bytes. Power consumption results are not considered reliable, because the introduction
of the new ISA extensions should result in a different switching activity in the memory
due to the less frequent memory operations, so resulting in a different total power. The
synthesis tool did not have this information so the result is not considered valid to build a
discussion.
The timing measurements, are not reliable as well because they do not corresponds to the
real memories implementation and real memories size.
Area measurements can instead be considered more meaningful. In fact, even keeping in
mind that the absolute area values do not correspond to the real implementation, it is pos-
sible to observe that the Logic-in-Memory has an area twice as big as a normal memory.
This is the known cost to pay in order to have better performance in terms of execution
time of programs.

77

Chapter 6

Conclusions and Future Work

The Logic-in-Memory integration in the RI5CY computing system allowed to achieve an
improvement in the execution time in almost all the tested programs. However, in order
to have much more flexibility, the Logic-in-Memory should support additional operations
to balance the workload between memory and processor. In this way, a wider range of
programs would benefit from the new memory.
The limit of the shifting of data-processing from processor to memory should be established
by timing, area and power constraints, according to the actual physical implementation
and the core involved. In fact, in case of the RI5CY core synthesis, the synthesised 1KB
memory (typical cache size) does not limit the core in terms of timing, so if no additional
constraints are required, it would be possible to apply many other LiM operations.

This Thesis aimed to introduce the Logic-in-memory concept in a microprocessor system
and the validity of this approach has been demonstrated. Hence, future works can keep
exploring this new path and new Logic-in-Memory models, introducing new operations
and algorithms. Moreover, an important focus can be the actual physical implementation
of the memory cell, that can exploit the available technologies to minimise the cell area.
Therefore, the Logic-in-Memory feature seems to be a promising option to overcome the
microprocessor-memory communication bottleneck in Von-Neumann architectures.

This thesis opens many paths on possible future works. A path to explore is for sure
the RISC-V compiler expansion that will include the new LiM extensions, supported now
only by the hardware. Having the new ISA extension available with the compiler, not only
would allow to consider a very wide set of benchmarks but it would also allow to perform
all the optimisation at the machine language level that are not manually possible.

78

Appendices

79

Appendix A

System Verilog basics

1 Introduction

SystemVerilog is a hardware description and hardware verification language used to model,
design, simulate, test and implement electronic systems. SystemVerilog is built on top of
the Verilog standard but improves the productivity, readability, and reusability of Verilog
based code. The language enhancements in SystemVerilog provide more concise hard-
ware descriptions. The enhancements also provide extensive support for directed and
constrained-random testbench development, coverage driven verification, and assertion
based verification.

2 Data objects and data types

2.1 Data types

SystemVerilog offers many improved data structures compared with Verilog. Some of these
were created for designers but are also useful for testbenches.
Data types in SystemVerilog are used to describe how many states can be associate to a
single bit of logic.

2.1.1 Most common data-types

• Logic. It is a four-state data type, then each but can be 0,1,X or Z. Size is user-
defined.

• Bit. It is a two-state data type, so each bit can assume value 0 or 1. Size is user-
defined.

• Byte. It is a two-state data type with a size of 8 bits. By default is a signed number.

• Byte unsigned. The unsigned version of the bit data type.

• Shortint. It is a two-state data type with a size of 16 bits. By default is a signed
number.

• Shortint unsigned. The unsigned version of the shortint data type.

• Int. It is a two-state data type with a size of 32 bits. By default is a signed number.

• Int unsigned. The unsigned version of the int data type.

80

APPENDIX A. SYSTEM VERILOG BASICS

• Integer. It is a four-state data type with a size of 32 bits. By default is a signed
number.

• Integer unsigned. The unsigned version of the integer data type.

• Longint. It is a two-state data type with a size of 64 bits. By default is a signed
number.

• Longint unsigned. The unsigned version of the longint data type.

• Shortreal. It represents a signed floating point number, with a size of 32 bits.

• Real. It represents a signed floating point number, with a size of 64 bits.

• Time. It is typically a 64-bit unsigned data type, used for the simulation.

• String. It is an ordered collection of characters. Its length is user-defined and each
character is of type byte.

• Enum. It defines a set of named constants. A data-type can be associated to it, but
in absense of a data-type declaration, the default data type should be int. The way
to declare it is:

1 enum data_type {enum_list_declaration} enum_name_declaration;

Example:
1 enum { red, green, blue, yellow, white, black } Colors; // each color is an int data-type, ordered numbers
2 enum {a=3, b=7, c} alphabet; // c is automatically assigned the increment-value of 8
3 enum {a=0, b=7, c, d=8} alphabet; // Syntax error: c and d are both assigned 8
4 enum bit [3:0] {bronze=’h3, silver, gold=’h5} medal4; // each constant is bit [3:0] data-type

• Struct. It is a way to group several data types. The entire group can be referenced
as a whole, or the individual data type can be referenced by name. Struct can be
defined as packet or unpacket.

– A packet struct is treated as a single vector, and each data type in the structure
is represented as a bit field. The entire structure is then packed together in
memory without gaps. Only packed data types and integer data types are
allowed in a packed struct. Because it is defined as a vector, the entire structure
can also be used as a whole with arithmetic and logical operators. Packet
structures can be followed by the signed or unsigned keywords, according to the
desired arithmetic behavior.

– An unpacked SystemVerilog struct, on the other hand, does not define a packing
of the data types. It is tool-dependent how the structure is packed in memory.
It is the default one, when not specified. Unpacked struct probably will not be
synthesize by a synthesis tool, so to not use in RTL code.

In general struct data-type should be declared as:
1 struct {data_type_list} struct_object_identifier;
2 struct packet {data_type_list} struct_object_identifier;

Example:
1 // Declaration
2 struct { bit [7:0] opcode; bit [23:0] address;} IR; // anonymous structure, IR name of variable
3 // Usage od struct
4 IR.opcode = 1; // set field opcode in IR.
5 IR.address = 1; // set field address in IR.

1 // Declaration
2 struct packed signed { int a; shortint b; byte c; bit [7:0] d;} pack1; // signed, 2-state
3 struct packed unsigned { time a; integer b; logic [31:0] c; } pack2; // unsigned, 4-state

81

APPENDIX A. SYSTEM VERILOG BASICS

• Void. It represents non-existent data. This type can be specified as the return type
of functions, with no return value.

• User-defined. Using the existent data-types is possible to create a user-defined
data-type with some specific characteristics. Typedef allows to create a new data-
type (not a variable), to be used later in a variable declaration. The way to define it
is:

1 typedef data_type type_name;

Example:
1 // Declare an alias for this long definition
2 typedef unsigned shortint u_shorti; // name new shortint-based data-type, no variable
3 typedef bit [7:0] ubyte; // name new bit-based data-type, no variable
4 typedef enum {NO, YES} boolean; // name enum type, no variable
5 typedef struct { bit [7:0] opcode; bit [23:0] addr;} instruction; // name structure type, no variable
6 // Creation of variables with the new data-types
7 u_shorti my_data;
8 ubyte my_byte;
9 boolean myvar;

10 instruction IR;

2.1.1.1 Arrays

All data types can be declared as arrays in SystemVerilog. Data-types like logic, bit, can
have the vector-size associated to them. The dimension declared before the object name is
referred to as the “vector width” dimension or "packet" dimension. The dimension declared
after the object name is referred as the “array” dimension or "unpacket" dimension. To
declare an array:

1 data_type [vector_dimension] name_variable [array_dimension]

Example:
1 bit [7:0] c1; // packed array, one byte
2 bit [7:0] c1 [0:9]; // unpacked array of bytes
3 real u [7:0]; // unpacked array

2.2 Data objects

2.2.1 Net data objects

Nets represent structural connections between parts of design, such as gate primitives or
module instances. Nets have values that depend on the drivers to which they are connected
to. They can be used as scalar and vector wires to connect together the ports of design
blocks . They can be treated as physical wires so no values get stored in them. They need
to be driven by either continuous assign statement or from a port of a module. Assignments
to nets can have a single driver or multiple ones and in the second case, the net will have
a resulting value according to defined resolution function.

• Wire. It is probably the most common net data type. It is usually driven by one
driver. In case many drivers are assigned to the wire net, the resolution function will
give as result X with drivers with different value, and the value of the drivers if they
show all the same value. By default, is associate to a 4-state data type with initial
state equal to Z.

• Wand. It is used to be driven by multiple driver. In particular, the resolution
function solves the conflict by giving as result of the net the value given by an AND
gate that has as input the drivers of the net.

82

APPENDIX A. SYSTEM VERILOG BASICS

• Wor. It is used to be driven by multiple driver. In particular, the resolution function
solves the conflict by giving as result of the net the value given by an OR gate that
has as input the drivers of the net.

2.2.1.1 Variable data objects

Variables generally represent a piece of storage. Variables are used to store combinational
and sequential values. They retain their value till next value is assigned to them only
using procedural assignments (this means inside an always block, an initial block, a task,
a function). They can be synthesized as a flip-flop, latch or combinatorial circuit or they
might not be synthesizable. They can be single or multi-bit.

• Reg/Var. It is associate by default to a 4-state data type with initial value equal
to X.

3 Literal Values

This section explains how the numbers are interpreted and represented by SystemVerilog
according to different categories of data-types.

• Integer and Logical literals. Numbers for this category can be represented using
this format (<> is optional):

1 <size> ’ <signed> <radix> value

– size indicates the number of binary bits the number involved. Default is the
lenght of the data-type.

– ’ is just a separator.

– signed indicates if the value is signed, using s or S.

– radix indicates the radix of the number: b or B (binary), o or O (octal), h or H
(hexadecimal), d or D (decimal). Default is decimal.

Example:
1 logic [11:0] var1 = 12’b1011; //var1 = 0000_0000_1011
2 logic [11:0] var2 = 12’hB; //var2 = 0000_0000_1011
3 logic [11:0] var3 = 4’shB; //var3 = 1111_1111_1011, sign extention with MSB at position 3 (length-1)
4 logic [11:0] var4 = ’shB; //var4 = 0000_0000_1011, sign extention with MSB at position 11 (length-1)
5 logic [11:0] var5 = 11; //var5 = 0000_0000_1011
6 logic [11:0] var6 = ’X; //var6 = XXXX_XXXX_XXXX
7 logic [11:0] var7 = ’1; //var7 = 1111_1111_1111

• Real literals. The default type is real for fixed-point format and exponent format.
Example:

1 real var1 = 1.46;
2 real var2 = 1.46e0;

• Time literals. Time is written in integer or fixed point format, followed without a
space by a time unit (fs ps ns us ms s).
Example:

1 time delay = 5ns;

• String literals. The string literal is enclosed in quotes. The length of a string literal
is not limited. A string literal can be assigned to an unpacked array of bytes.
Example:

1 byte var1 [0:20] = "it is a string literal\n";

83

APPENDIX A. SYSTEM VERILOG BASICS

• Array literals. Array literals are syntactically similar to C initializers, but with the
replicate operator ({{}}) allowed. Example:

1 int n [1:2][1:3] = ’{’{0,1,2},’{3{4}}}; // n = ’{’{0,1,2},’{4,4,4}}
2 int n [1:2][1:6] = ’{2{’{3{4,5}}}}; // n = ’{’{4,5,4,5,4,5},’{4,5,4,5,4,5}}

4 Operators

The SystemVerilog operators are a combination of Verilog and C operators. SystemVerilog,
exactly as Verilog and C requires that the operands have the same data-type and the same
size. The Table A.1 shows the most common operators.

Operator Type Operator Symbol Operation Performed
Arithmetic * Multipy

/ Division
+ Addition
- Subtraction
% Modulus
++ Increment
- - Decrement

Logical ! Logical negation
&& Logical and
|| Logical or

Relational > Greater than
< Less than
>= Greater than or equal
<= Less than or equal

Equality == Equality
!= Inequality

Reduction ∼ Bitwise negation
& Bitwise and
∼& Bitwise nand
| Bitwise or
|∼ Bitwise nor
∧ Bitwise xor
∧ ∼ Bitwise xnor
∼ ∧ Bitwise xnor

Shift » Right shift
« Left shift

Concatenation {} Concatenation = packed vector of bits
Conditional ? Conditional

Table A.1: SystemVerilog operators

5 Signals and Constants

Signals are all the objects in the design that are not placed at the interface of a design
module. A full declaration for them should have:

1 object_type data_type name;

Anyway, it is equally possible for signals to use the implicit declaration:

84

APPENDIX A. SYSTEM VERILOG BASICS

• The default data_object is var/reg ;

• The default data_type is logic;

Here below an example:
1 wire my_wire; // implicitly means "wire logic my_wire"
2 wire logic my_wire; // explicit declaration
3 wire [7:0] my_wire_bus ; // implicitly means "wire logic[15:0] my_wire_bus"
4 wire logic [7:0] my_wire_logic_bus; // explicit
5 struct_data_type my_struct; // implicitly means "var struct_data_type my_struct"
6 wire struct_data_type my_struct; // explicit
7 var[15:0] my_reg_bus; // implicitly means "var logic[15:0] my_reg_bus"
8 logic my_var; // implicit means "var logic my_var"

Constants instead, are parameters that are used only within a design module and do not
need to be declared in the interface. Declaration:

1 localparam data_type name;

The default data-type is integer signed.

6 Continuous assignments

The continuous assignment is the basic mechanism for placing values into nets and vari-
ables, in order to describe the functionality of the hardware, This assignment should occur
whenever the value of the right-hand side changes.
There are two forms of continuous assignments:

• Net declaration assignments. It allows a continuous assignment to be placed on a net
in the same statement that declares the net. Since the declaration of net is done one
time, it is possible to use this assignment only once.
Example:

1 /* Declaration and assignment */
2 wire logic mynet = enable;

• Continuous assign statements. It can be used with net and variables object types.
Assignments on nets or variables are continuous and automatic. In other words,
whenever an operand in the right-hand expression changes value, the whole right-
hand side is evaluated.
Nets can be driven by multiple continuous assignments or by a mixture of primitive
outputs, module outputs, and continuous assignments. Variables can only be driven
by one continuous assignment or by one primitive output or module output.

1 /* Declaration */
2 wire logic mynet;
3
4 /* Continous assignments */
5 assign mynet = enable;

1 module adder (sum_out, carry_out, carry_in, ina, inb);
2 /* Ports declaration */
3 output [3:0] sum_out;
4 output carry_out;
5 input [3:0] ina, inb;
6 input carry_in;
7
8 /* Signal declaration */
9 wire carry_out, carry_in; // net type is assigned to ports

10 wire [3:0] sum_out, ina, inb; // net type is assigned to ports
11
12 /* Continous assignment */
13 assign {carry_out, sum_out} = ina + inb + carry_in;
14
15 endmodule

85

APPENDIX A. SYSTEM VERILOG BASICS

7 Procedural assignments

Procedural assignments occur within procedures and can be thought of as “triggered”
assignments. The trigger occurs during the simulation time and depends on the procedural
block. The right-hand side of a procedural assignment can be any expression that evaluates
a value, but the lefthand side should be a variable that receives the assignment from the
right-hand side.
The most common procedural blocks are:

7.1 Procedural blocks

7.1.1 Initial block

This block, as the name suggests, is executed only once when simulation starts, then it
can be useful for initialization in testbenches.

1 initial begin
2 ...
3 end

7.1.2 Final block

This block, on the contrary is executed only once at the end of the simulation.
1 final begin
2 ...
3 end

Example:
1 module blocking_assignment;
2 //variables declaration
3 int a,b;
4
5 initial begin
6 $display("__");
7 //initializing a and b
8 a = 10;
9 b = 15;

10
11 //displaying initial value of a and b
12 $display("\tBefore Assignment :: Value of a is %0d",a);
13 $display("\tBefore Assignment :: Value of b is %0d",b);
14
15 a = b;
16 b = 20;
17
18 $display("\tAfter Assignment :: Value of a is %0d",a);
19 $display("\tAfter Assignment :: Value of b is %0d",b);
20 $display("__");
21 end
22
23 final begin //final block will get executed at end of simulation
24 $display("__");
25 $display("\tEnd of Simulation :: Value of a is %0d",a);
26 $display("\tEnd of Simulation :: Value of b is %0d",b);
27 $display("__");
28 end
29
30 endmodule

7.1.3 Always blocks

Blocks of this type execute a loop forever. An important note about always block is that
they can not drive wire data type. There are few types of always blocks:

• Always. An always block should have a sensitive list or a delay associated with it.
The sensitive list is the one which tells the always block when to execute the block
of code. The @ symbol after reserved word ’ always’, indicates that the block will be
triggered "at" the condition in parenthesis after symbol @.

86

APPENDIX A. SYSTEM VERILOG BASICS

1 always @ (<sensivity_list>)
2 begin
3 ...
4 end

Example:
1 always
2 begin
3 #5 clk = ~clk; //#5 in front of the statement delays its execution by 5 time units.
4 end

• Always_comb. SystemVerilog provides a special always procedure for modeling
combinational logic behavior. always_comb automatically executes once at time
zero, whereas always @ waits until a change occurs on a signal in the inferred sen-
sitivity list. always_comb is sensitive to all changes within the contents described
function.

1 always_comb
2 begin
3 ...
4 end

• Always_latch. SystemVerilog also provides a special always_latch procedure for
modeling latched logic behaviour. The always_latch procedure determines its sen-
sitivity and executes identically to the always_comb procedure. Software tools can
perform additional checks to warn if the behaviour is equal to a latch.

1 always_latch
2 begin
3 ...
4 end

Example:
1 always_latch
2 begin
3 if(ck) q <= d;
4 end

• Always_ff. The SystemVerilog always_ff procedure can be used to model synthe-
sisable sequential logic behaviour. This block imposes that it should contain one and
only one event control and no blocking timing controls. Software tools will perform
additional checks to warn if the behaviour within an always_ff procedure does not
represent sequential logic behaviour.

1 always_ff @ (<sensivity_list>)
2 begin
3 ...
4 end

Example:
1 always_ff @(posedge clock iff reset == 0 or posedge reset)
2 begin
3 r1 <= reset ? 0 : r2 + 1;
4 ...
5 end

7.1.4 Task

SystemVerilog allows a compact code by avoiding repetition, using tasks.
1 task <identifier> (<input_and_output>)
2 ...
3 endtask

Example:

87

APPENDIX A. SYSTEM VERILOG BASICS

1 module sv_task;
2 int x;
3
4 //task to add two integer numbers.
5 task sum(input int a,b,output int c);
6 c = a+b;
7 endtask
8
9 initial begin

10 sum(10,5,x);
11 $display("\tValue of x = %0d",x);
12 end
13 endmodule

7.1.5 Function

Functions work exactly as tasks, but they can return only one value.
1 function <data_type> <identifier> (<input_and_output>)
2 ...
3 endtask

Example:
1 module sv_function;
2 int x;
3 //function to add two integer numbers.
4 function int sum(input int a,b);
5 sum = a+b;
6 endfunction
7
8 initial begin
9 x=sum(10,5);

10 $display("\tValue of x = %0d",x);
11 end
12 endmodule

7.1.6 Generate

The generate construct allows to create multiple instances of an object, such as a module
or an assign statements or to create or not objects according to a certain condition. The
generate statement is not a run-time construct, as a matter of fact it is used to create
hardware that cannot be removed at the simulation time. For this reason, the data-
type genvar is an integer that exists only during elaboration time and is deleted before
simulation time.

1 genvar i_var
2 generate
3 for_loop_based_on_i_var
4 endgenerate

1 generate
2 if_else_construct_for_parameter_evaluation
3 endgenerate

Example:
1 module mux_16(
2 input logic [0:15] [127:0] mux_in,
3 input logic [3:0] select,
4 output logic [127:0] mux_out
5);
6
7 logic [0:15] [127:0] temp;
8
9 // The for-loop creates 16 assign statements

10 genvar i;
11 generate
12 for (i=0; i < 16; i++) begin
13 assign temp[i] = (select == i) ? mux_in[i] : 0;
14 end
15 endgenerate
16
17 assign mux_out = temp[0] | temp[1] | temp[2] | temp[3] |
18 temp[4] | temp[5] | temp[6] | temp[7] |
19 temp[8] | temp[9] | temp[10] | temp[11] |
20 temp[12] | temp[13] | temp[14] | temp[15];
21 endmodule: mux_16

88

APPENDIX A. SYSTEM VERILOG BASICS

7.2 Procedural statements

Within the above-listed procedural blocks, it is possible to use many kind of statements.

7.2.1 Assignments

• Blocking assignment. It corresponds to ’=’. It is executed in series order within a
procedural block, so it blocks the execution of the next statement until the completion
of the current assignment execution.

• Non-blocking assignment. It corresponds to ’<=’. It is executed in parallel, at
the same time in the simulation time.

7.2.2 If-else

If-else statements check a condition to decide whether or not to execute a portion of code.
If a condition is satisfied, the code is executed. Else, it runs this other portion of code.

1 if (<condition>) begin
2 ...
3 end
4 else begin
5 ...
6 end

7.2.3 Case.

Case statements are used where there is one variable which needs to be checked for multiple
values (e.g. an address decoder, where the input is an address and it needs to be checked
for all the possible values.

1 case (<condition>) begin
2 <value_1> : ... ;
3 ...
4 <value_n> : ... ;
5 default : ... ;
6 ...
7 endcase

7.2.4 While

This loop-statement executes the code within it repeatedly if the condition assigned to
check returns true.

1 while (<condition>) begin
2 ...
3 end

Example:
1 module counter (clk,rst,enable,count);
2 /* Port declaration */
3 input clk, rst, enable;
4 output [3:0] count;
5 var [3:0] count;
6
7 always @ (posedge clk or posedge rst)
8 if (rst) begin
9 count <= 0;

10 end else begin : COUNT
11 while (enable) begin
12 count <= count + 1;
13 disable COUNT;
14 end
15 end
16 endmodule

89

APPENDIX A. SYSTEM VERILOG BASICS

7.2.5 For loop

SystemVerilog for loop allows to declare a loop variable within the for loop, to use one or
more initial declaration or assignment within the for loop one or more step assignment or
modifier within the for loop.

1 for(initialization; condition; modifier) begin
2 <statement_1>
3 ...
4 <statement_n>
5 end

8 Design elements

Design elements are the primary building blocks used to build a design and its verification
environment. These building blocks contains the declarations, parallel and procedural
code.

8.1 Module

The basic building block in SystemVerilog is the module. Modules are primarily used to
represent design blocks, but can also serve as containers for verification code and intercon-
nections between verification blocks and design blocks. A module can represent a simple
digital components, such as a gates, or a complex digital system. Modules can instantiate
other design elements, thereby creating a design hierarchy. Modules are defined using two
keywords module and endmodule, identified with a unique name/identifier.

1 module();
2 ...
3 endmodule

Usually a module contains many parts that allow to describe the hardware structure and
functionality. These parts are described in the following paragraphs.

8.1.0.1 Module header

The module header is the part that describes the interface of the module. It is placed right
after the keyword module and the identifier (module name). The module header contains:

• Parameter list: the constant parameters associated to the module.
1 parameter data_type identifier;

• Ports list: each port should usually has direction (input, output or inout), data
object, data type and identifier.

1 direction object_type data_type identifier;

Anyway, it is possible to not use the full declaration but instead using the implicit
ways to define the missing part:

– The default direction is inout ;

– The default data_object is wire for input and inout ports. While the default
data_object for output ports is wire if data_type is also omitted and var if
data_type specified.

– The default data_type is logic;

Example:

90

APPENDIX A. SYSTEM VERILOG BASICS

1 module mh0 (wire x); // inout wire logic x
2 module mh1 (integer x); // inout wire integer x
3 module mh2 (inout integer x); // inout wire integer x
4 module mh3 ([5:0] x); // inout wire logic [5:0] x
5 module mh4 (var x); // ERROR: direction defaults to inout, which cannot be var
6 module mh5 (input x); // input wire logic x
7 module mh6 (input var x); // input var logic x
8 module mh7 (input var integer x); // input var integer x
9 module mh8 (output x); // output wire logic x

10 module mh9 (output var x); // output var logic x
11 module mh10(output signed [5:0] x); // output wire logic signed [5:0] x
12 module mh11(output integer x); // output var integer x

Modules header can be declared according to two different styles:

• Non-ANSI style
1 module module_name (port_identifier_list); //module header
2 parameter_declaration_list
3 port_declarations_list
4
5 Continous_assignments_or_procedural_blocks
6
7 endmodule: module_name

• ANSI style
1 module module_name #(parameter_declaration_list)
2 (port_declarations_list); //module header
3
4 Continous_assignments_or_procedural_blocks
5
6 endmodule: module_name

Examples:
1 module test(a,b,c,d,e,f,g,h);
2 /* NON-ANSI */
3 input logic [7:0] a; // no explicit net declaration - net is unsigned
4 input wire logic [7:0] b;
5 input wire logic signed [7:0] c;
6 input logic signed [7:0] d; // no explicit net declaration - net is signed
7 output logic [7:0] e; // no explicit net declaration - net is unsigned
8 output wire logic [7:0] f;
9 output wire logic signed [7:0] g;

10 output logic signed [7:0] h; // no explicit net declaration - net is signed
11
12 Continous_assignments_or_procedural_blocks
13
14 endmodule

1 module test
2 (/* ANSI */
3 input logic [7:0] a, // no explicit net declaration - net is unsigned
4 input wire logic [7:0] b,
5 input wire logic signed [7:0] c,
6 input logic signed [7:0] d, // no explicit net declaration - net is signed
7 output logic [7:0] e, // no explicit net declaration - net is unsigned
8 output wire logic [7:0] f,
9 output wire logic signed [7:0] g,

10 output logic signed [7:0] h // no explicit net declaration - net is signed
11);
12
13 Continous_assignments_or_procedural_blocks
14
15 endmodule

8.1.1 Module instance and hierarchy

There are two ways to instantiate a module: hierarchical or top level.

• Top Level. Top-level modules are implicitly instantiated. A design should contain
at least one top-level module, whose instance name is the same as the module name.
The name $root is used to unambiguously refer to a top-level instance. Since $root
is the root of the instantiation tree, it allows to access through the tree.
Example:

1 $root.A.B // item B within top instance A
2 $root.A.B.C // item C within instance B within instance A

91

APPENDIX A. SYSTEM VERILOG BASICS

• Hierarchical. Hierarchical instantiation allows more than one instance of the same
module. The module name can be a module previously declared or one declared
later. Parameter assignments can be named or ordered. Port connections can be
named, ordered, or implicitly connected. They can be nets, variables, or other kinds
of interfaces, events, or expressions.

1 module_instance_name module_identifier (ports_and_parameters_connection);

Connections can be made to module instances in the following four ways:

1. Positional connections by port order. With this method the port expressions
listed for the module instance should be in the same order as the ports listed
in the module declaration. A connection is done using simple net or variable
identifiers, an expression, or a blank (no connection).
Example:

1 module alu_accum1 (
2 /* Module header */
3 output [15:0] dataout,
4 input [7:0] ain, bin,
5 input [2:0] opcode,
6 input clk, rst_n, rst);
7
8 /* Signals */
9 wire [7:0] alu_out;

10
11 /* Sub-modules instances */
12 alu alu_i (alu_out, , ain, bin, opcode);
13 accum accum_i (dataout[7:0], alu_out, clk, rst_n);
14 xtend xtend_i (dataout[15:8], alu_out[7], clk);
15
16 endmodule

2. Connecting module instance ports by name. The second way to connect module
ports consists of explicitly linking the two names for each side of the connection:
the port declaration name from the module declaration to the expression, i.e.,
the name used in the module declaration, followed by the name used in the
instantiating module. The order is irrelevant.
Example:

1 module alu_accum2 (
2 /* Module header */
3 output [15:0] dataout,
4 input [7:0] ain, bin,
5 input [2:0] opcode,
6 input clk, rst_n, rst);
7
8 /* Signal */
9 wire [7:0] alu_out;

10
11 /* Sub-modules instances */
12 alu alu (.alu_out(alu_out), .zero(), .ain(ain), .bin(bin), .opcode(opcode));
13 accum accum (.dataout(dataout[7:0]), .datain(alu_out), .clk(clk));
14 xtend xtend (.dout(dataout[15:8]), .din(alu_out[7]), .clk(clk), .rst(rst));
15
16 endmodule

3. Connecting module instance using implicit named port connections. SystemVer-
ilog can implicitly instantiate ports using a .name syntax if the instance port
name matches the connecting port name and their data types are equivalent. If
a signal of the same name does not exist in the instantiating module, an error
is issued.
Example:

1 module alu_accum3 (
2 /* Module header */
3 output [15:0] dataout,
4 input [7:0] ain, bin,
5 input [2:0] opcode,
6 input clk, rst_n, rst);
7
8 /* Signal */
9 wire [7:0] alu_out;

10
11 /* Sub-modules instances */

92

APPENDIX A. SYSTEM VERILOG BASICS

12 alu alu (.alu_out, .zero(), .ain, .bin, .opcode);
13 accum accum (.dataout(dataout[7:0]), .datain(alu_out), .clk, .rst_n());
14 xtend xtend (.dout(dataout[15:8]), .din(alu_out[7]), .clk, .rst);
15
16 endmodule

4. Connecting module instances using wildcard named port connections. SystemVer-
ilog allows to implicitly instantiate ports using a .* wildcard syntax for all ports
where the instance port name matches the connecting port name and their data
types are equivalent. This eliminates the requirement to list any port where the
name and type of the connecting declaration match the name and equivalent
type of the instance port. This implicit port connection style allows to spec-
ify the connection only for ports that do not match: a named port connection
can be mixed with a .* connection to override a port connection to a different
expression or to leave a port unconnected.

1 module alu_accum4 (
2 /* Module header */
3 output [15:0] dataout,
4 input [7:0] ain, bin,
5 input [2:0] opcode,
6 input clk, rst_n, rst);
7
8 /* Signal */
9 wire [7:0] alu_out;

10
11 /* Sub-modules instances */
12 alu alu (.*, .zero());
13 accum accum (.*, .dataout(dataout[7:0]), .datain(alu_out));
14 xtend xtend (.*, .dout(dataout[15:8]), .din(alu_out[7]));
15
16 endmodule

8.2 Interface

SystemVerilog uses the interface construct to describe the communication between blocks,
as a matter of fact an interface is just a bundle of signals or nets. Interfaces can be used
for the communication between a testbench and a design module or between design blocks.
The interface allows:

1. to group together the number of signals as a single port: the single port handle is
passed instead of multiple signal/ports.

2. to add and delete signals in an easy way.
3. the declare the interface once, and then just the handle is passed across the mod-

ules/components.
In other words, the interfaces aim is to encapsulate communication.
The declaration of an interface can include ports, parameters, constants, functions, and
tasks. An interface cannot instantiate a module, but on the contrary, a module can instan-
tiate an interface. The most common declaration of an interface has the declaration of the
signals (the connections between modules) and then the declaration of modules with the
ports that specify the direction associated to the connections. If the modport construct is
not specified, then all the nets and variables in the interface are accessible with direction
inout. The syntax is:

1 interface <interface_identifier> #(parameters)(ports);
2 signal_declaration
3
4 modport module_1 (signal_direction); //optional
5 modport module_2 (signal_direction); //optional
6
7 endinterface

The declaration of an interface inside a module is placed instead of the ports.
1 module module_identifier (interface_identifier.module_instance_int interface_instance_name)

Example:

93

APPENDIX A. SYSTEM VERILOG BASICS

1 //**
2 // Define the interface
3 //**
4 interface simple_bus(input logic clk); // Define the interface
5 logic req, gnt;
6 logic [7:0] addr, data;
7 logic [1:0] mode;
8 logic start, rdy;
9

10 modport MEM(input address, inout data, input mode, input gnt, input start, output rdy, output req);
11 modport CPU(output address, inout data, output mode, output gnt, output start, input rdy, input req);
12 endinterface: simple_bus
13
14 //***
15 // Mem module with the interface
16 //***
17 module memMod(simple_bus.MEM a); // simple_bus interface port
18 logic avail;
19 // When memMod is instantiated in module top, a.req is the req
20 // signal in the sb_intf instance of the ’simple_bus’ interface
21 always @(posedge clk) a.gnt <= a.req & avail;
22 endmodule
23
24 //***
25 // Cpu module with the interface
26 //***
27 module cpuMod(simple_bus.CPU b); // simple_bus interface port
28 ...
29 endmodule
30
31 //***
32 // Top module with the interface
33 //***
34 module top;
35 logic clk = 0;
36
37 simple_bus.MEM sb_intf_mem(.clk(clk)); // Instantiate the mem interface
38 simple_bus.CPU sb_intf_cpu(.clk(clk)); // Instantiate the cpu interface
39
40 memMod mem(.a(sb_intf_mem)); // Connect interface to module instance
41 cpuMod cpu(.b(sb_intf_cpu)); // Connect interface to module instance
42 endmodule

8.3 Package

SystemVerilog packages provide an additional mechanism for sharing parameters, data,
type, task, function, sequence, and property declarations amongst multiple SystemVerilog
modules, interfaces and programs. Packages are explicitly named in the source text (at
the same level as top- level modules). All the shared objects in the design can be declared
within a package.
Package definition:

1 package <package_name>;
2 ...
3 endpackage : <package_name>

Package declaration:
1 import <name_package> ::*;

8.4 Program

For the testbench, the emphasis is not in the hardware-level details such as wires, structural
hierarchy, and interconnects, but in modeling the complete environment in which a design
is verified. The environment must be properly initialised and synchronised, automating
the generation of input stimuli, and reusing existing models and other infrastructure.
In SystemVerilog the program construct contains full environment for testbench..
The program construct can be considered like a module with special execution semantics.
Once declared, a program block can be instantiated in the required hierarchical location
(typically at the top level), and its ports can be connected in the same manner as any
other module (ports connection or interface).

1 program test (port_declaration_or_interface);
2 initial begin
3 ...
4 end

94

APPENDIX A. SYSTEM VERILOG BASICS

5
6 ...
7 endprogram

Moreover, the main differences between a module and a program are:

1. Program block can not contain always block.

2. A module (design) can not call task/function inside a program block. But a program
can call task/function inside module (design).

Example:
1 //***
2 // Program declaration
3 //***
4 program simple(
5 input wire clk,
6 output logic reset, enable,
7 input logic [3:0] count);
8
9 //Initial block

10 initial begin
11 $monitor("@%0dns count = %0d",$time,count);
12 reset = 1;
13 enable = 0;
14 #20 reset = 0;
15 @ (posedge clk);
16 enable = 1;
17 repeat (5) @ (posedge clk);
18 enable = 0;
19 // Call task in module
20 simple_program.do_it();
21 end
22
23 //Task inside program
24 task do_it();
25 $display("%m I am inside program");
26 endtask
27
28 endprogram
29
30 //***
31 // Module declaration for program instance
32 //***
33 module simple_program();
34 logic clk = 0;
35 always #1 clk ++;
36 logic [3:0] count;
37 wire reset, enable;
38
39 //Counter
40 always @ (posedge clk) begin
41 if (reset) count <= 0;
42 else if (enable) count ++;
43 end
44
45 //Program instance
46 simple prg_simple(clk,reset,enable,count);
47
48 //Task inside module
49 task do_it();
50 $display("%m I am inside module");
51 endtask
52
53 endmodule

1 //***
2 // Simulation output
3 //***
4 @0ns count = x
5 @1ns count = 0
6 @23ns count = 1
7 @25ns count = 2
8 @27ns count = 3
9 @29ns count = 4
10 I am inside module
11 @31ns count = 5

9 Assertion

One of the goals of SystemVerilog assertions is to provide a common semantic meaning for
assertions so that they can be used to drive various design and verification tools.
Verification with assertions refers to the use of an assertion language to specify expected

95

APPENDIX A. SYSTEM VERILOG BASICS

behavior in a design. Assertions are primarily used to validate the behavior of a design.
In addition, assertions can be used to provide functional coverage and to flag that input
stimulus, which is used for validation, does not conform to assumed requirements.
Assertion statements appear with these keywords:

• Assert. Used to specify the property as an obligation for the design that is to be
checked to verify that the property holds. Failure of an assert statement indicates a
violation of the requirement and thus a potential error in the design.

• Assume. Used to specify the property as an assumption for the environment. Sim-
ulators check that the property holds, while formal tools use the information to
generate input stimulus.

• Cover. Used to monitor the property evaluation for coverage. The cover statement
specifies that successful evaluation of its expression is a coverage goal. Tools should
collect coverage information and report the results at the end of simulation. The
results of coverage for an immediate cover statement should contain the number of
times evaluated and the number of times succeeded.

• Restrict. Used to specify the property as a constraint on formal verification com-
putations. Simulators do not check the property.

If in the simulation a violation of an assertion occurs, the information about assertion
failure can be printed using a severity system tasks in the action block (if available with
the assertion type). Severity system tasks are explained in the Paragraph 10.3.

9.1 Immediate assertions

Immediate assertions are tests executed after simulation events, and are executed like a
statement in a procedural block. Immediate assertions are primarily intended to be used
with simulation. There is no immediate restrict assertion statement.
The expression is non-temporal and is interpreted the same way as an if procedural ex-
pression. If the expression evaluates to X, Z or 0, then it is interpreted as being false and
the assertion is said to fail. Otherwise, the expression is interpreted as being true and the
assertion is said to pass.
There are two types of immediate assertions:

• Simple immediate assertions. With this assertion, pass and fail actions take
place immediately upon assertion evaluation.

– Assert.
1 <label>: assert (expression) action_block

– Assume.
1 <label>: assume (expression) action_block

– Cover.
1 <label>: cover (expression) statement_or_null

Example:
1 /* Assert */
2 assert_f: assert(f) $info("passed");
3 else $error("failed");
4 /* Assume */
5 assume_inputs: assume (in_a || in_b) $info("assumption holds");
6 else $error("assumption does not hold");
7
8 /* Cover */

96

APPENDIX A. SYSTEM VERILOG BASICS

9 cover_a_and_b: cover (in_a && in_b) $info("in_a && in_b == 1 covered");
10
11 /* Assertion repetitions */
12 time t;
13 always @(posedge clk)
14 if (state == REQ)
15 assert (req1 || req2)
16 else begin
17 t = $time;
18 #5 $error("assert failed at time %0t",t); //If the immediate assert fails at time 10,
19 end //the error message should be printed at time 15
20 end

• Deferred immediate assertions. With this assertion, the actions are delayed until
later in the time step, providing some level of protection against unintended multiple
executions on transient or “glitch” values.
When a deferred assertion passes or fails, the action block is not executed immedi-
ately. Instead, the action block subroutine call and the current values of its input
arguments are placed in a deferred assertion report queue. Such a call is said to be a
pending assertion report. If a deferred assertion flush point is reached in a process,
its deferred assertion report queue is cleared and the pending assertion reports will
not be executed. While pending assertion report that has not been flushed from
its queue should mature, or be confirmed for reporting. Once a report matures, it
may no longer be flushed. The deferred assertion flush point is reached if any of the
following occur in the process:

– The process, having been suspended earlier due to reaching an event control or
wait statement, resumes execution.

– The process was declared by an always_comb or always_latch, and its execution
is resumed due to a transition on one of its dependent signals.

– Assert.
1 <label>: assert #0 (expression) action_block

– Assume.
1 <label>: assume #0 (expression) action_block

– Cover.
1 <label>: cover #0 (expression) statement_or_null

Example:
1 assign not_a = !a;
2 always_comb begin : b1
3 a1: assert (not_a != a);
4 a2: assert #0 (not_a != a); // Should pass once values have settled
5 end

9.2 Concurrent assertions

Concurrent assertions are executed after simulation clock events, then evaluate sampled
values of variables, ignoring any timing or event behavior between clock edges. The key-
word property distinguishes a concurrent assertion from an immediate assertion.

9.2.1 Sequence layer

Concurrent assertions are often based on sequential behaviour. The sequence feature pro-
vides the capability to build and manipulate sequential behaviours. A sequence is a finite
list of SystemVerilog boolean expressions in a linear order of increasing time. The sequence
is said to match along a finite interval of consecutive clock ticks provided the first boolean

97

APPENDIX A. SYSTEM VERILOG BASICS

expression evaluates to true at the first clock tick, the second boolean expression evaluates
to true at the second clock tick, and so forth, up to and including the last boolean expres-
sion evaluating to true at the last clock tick. A single boolean expression is an example
of a simple linear sequence, and it matches at a single clock tick provided the boolean
expression evaluates to true at that clock tick.

The construct to declare a sequence is:
1 sequence <sequence_identifier>
2 @ (clock_event)
3 list_of_boolean_expressions
4 endsequence

A sequence can also not specify a clock. In this case, a clock would be inherited from some
external source at a higher layer, such as a property or an assert statement:

1 sequence <sequence_identifier>
2 list_of_boolean_expressions
3 endsequence

The sequences can use the following operators:

• ##. This operator followed by a number or a range specifies the delay from the
current clock tick to the beginning of the sequence that follows. The delay ##1
indicates that the beginning of the sequence that follows is one clock tick later than
the current clock tick. The delay ##0 indicates that the beginning of the sequence
that follows is at the same clock tick as the current clock tick.
Example:

1 //SEQUENCE 1: it means that gnt is expected to be asserted one clock cycle later req is asserted
2 sequence req_gnt_1clock_seq;
3 req[0] ##1 gnt[0];
4 endsequence
5
6 //SEQUENCE 2: it means that gnt is expected to be asserted 0 to 3 clock cycles after req is asserted.
7 sequence req_gnt_3to5clock_seq;
8 req[1] ##[3:5] gnt[1];
9 endsequence

10
11 //SEQUENCE 3: it means that the second sequence should occur once cycle later the first one occurs
12 sequence master_seq;
13 req_gnt_1clock_seq ##1 req_gnt_3to5clock_seq;
14 endsequence

• $. This operator is used when something needs to be checked till end of simulation.
It means that something will happen eventually before end of simulation.

• [*<n>] Consecutive repetition. operator is used to describe the repetition of
a sequence. This operator specifies finitely many iterative matches of the operand
sequence, with a delay of one clock tick from the end of one match to the beginning
of the next. The overall repetition sequence matches at the end of the last iterative
match of the operand.

• [-><n>] Goto repetition. It is used to describe the repetition of a sequence. This
operator specifies finitely many iterative matches of the operand boolean expression,
with a delay of one or more clock ticks from one match of the operand to the next
successive match and no match of the operand strictly in between. The overall
repetition sequence matches at the last iterative match of the operand.

• [=<n>] Nonconsecutive repetition. It is used to describe the repetition of a
sequence. This operator specifies finitely many iterative matches of the operand
boolean expression, with a delay of one or more clock ticks from one match of the
operand to the next successive match and no match of the operand strictly in between.
The overall repetition sequence

98

APPENDIX A. SYSTEM VERILOG BASICS

• throughout. It is a match operator. To check if some condition is valid over period
of sequence.

• within. It is a match operator. To check containment of one sequence in another
sequence.

• intersect. It is a binary operator. When both sequence are expected to match, and
both the sequence start and end at same time.

• and. It is a binary operator. When both sequence are expected to match, and both
the sequence start at same time, but are not expected to finish at same time.

• or. It is a binary operator. When one of the both sequence are expected to match.

• |-> overlapped implication operator. If there is a match for the antecedent
sequence expression, then the first element of the consequent sequence expression is
evaluated on the same clock tick.

• |=> non-overlapped implication operator. If there is a match for the an-
tecedent sequence expression, then the first element of the consequent sequence ex-
pression is evaluated on the next clock tick.

9.2.2 Property layer

Property layer is built on top of sequence layer. It uses zero or more sequences to check
a design assumption. Zero sequences because, property layer can contain boolean layer
directly. So, generally a property defines a behavior of the design. A named property may
be used for verification as an assumption, an obligation, or a coverage specification. In
order to use the behavior for verification, an assert, assume, or cover statement must be
used. A property declaration by itself does not produce any result.
To declare a property:

1 property <property_identifier>
2 list_of_sequences_and_boolean_expressions
3 endproperty

Example:
1 /* Sequence declaration */
2 sequence seq;
3 a ##2 b;
4 endsequence
5
6 /* Property declaration */
7 property p;
8 @(posedge clk) seq; //clock for sequence inherited by the property
9 endproperty

10 a_1 : assert property(p);

9.2.3 Assertions layer

• Assert property.
1 <label>: assert property (property_identifier) action_block

• Assume property.
1 <label>: assume property (property_identifier) action_block

• Cover property.
1 <label>: cover property (property_identifier) statement_or_null

• Cover sequence.

99

APPENDIX A. SYSTEM VERILOG BASICS

1 <label>: cover sequence ([clocking_event] [disable iff (expression_or_dist)] sequence_expr) statement_or_null

• Restrict property.
1 <label>: restrict property (property_identifier)

Example:
1 /* Assert */
2 property abc(a, b, c);
3 disable iff (a==2) @(posedge clk) not (b ##1 c);
4 endproperty
5
6 env_prop: assert property (abc(rst, in1, in2))
7 $display("env_prop passed."); else $display("env_prop failed.");
8
9 /* Assume */

10 property abc(a, b, c);
11 disable iff (c) @(posedge clk) a |=> b; //one cycle after a, b must be asserted
12 endproperty
13
14 env_prop:
15 assume property (abc(req, gnt, rst)) else $error("Assumption failed.");

9.3 Binding assertion

When RTL is already written and it becomes responsibilty of a verification engineer to add
assertion, but an RTL designer does not want verification engineer to modify his RTL. For
this reason, SystemVerilog provides a bind construct to keep verification code separated
from the design code.
It is possible to write all the assertions in a separate file and using the bind statement, it
is equally possible to bind the ports of his assertion file with the port/signals of the RTL
in his testbench code. A bind feature can be used in modules or interfaces, so that the
assertions can be instantiated in a target module or interface in a non-intrusive manner.
The syntax to bind all instances of a module is:

1 bind RTL_module_identifier Assertion_module_identifier Assertion_module_instance

The syntax to bind only one instance of a module is:
1 bind RTL_module_instance_path Assertion_module_identifier Assertion_module_instance

Example:
1 //***
2 // DUT With assertions
3 //***
4 module RTL_module(
5 input wire clk,req,reset,
6 output reg gnt);
7
8 //RTL description
9 always @ (posedge clk)

10 gnt <= req;
11 end
12 endmodule
13
14 //***
15 // Assertion Verification IP
16 //***
17 module assertion_ip(input wire clk_ip, req_ip,reset_ip,gnt_ip);
18
19 // Sequence Layer
20 sequence req_gnt_seq;
21 (~req_ip & gnt_ip) ##1 (~req_ip & ~gnt_ip);
22 endsequence
23
24 // Property Specification Layer
25 property req_gnt_prop;
26 @ (posedge clk_ip)
27 disable iff (reset_ip)
28 req_ip |=> req_gnt_seq;
29 endproperty
30
31 // Assertion Directive Layer
32 req_gnt_assert : assert property (req_gnt_prop)
33 else $display("@%0dns Assertion Failed", $time);
34 endmodule

100

APPENDIX A. SYSTEM VERILOG BASICS

35
36 //***
37 // Binding File version 1
38 //***
39 module binding_module();
40
41 // Bind by Module name : This will bind all instance of DUT
42 bind RTL_module assertion_ip U_assert_ip (
43 .clk_ip (clk),
44 .req_ip (req),
45 .reset_ip (reset),
46 .gnt_ip (gnt)
47);
48 endmodule
49
50 //***
51 // Binding File version 2
52 //***
53 module binding_module();
54
55 // Bind by instance name : This will bind only instance names in list
56 bind $root.bind_assertion_tb.dut assertion_ip U_assert_ip (
57 .clk_ip (clk),
58 .req_ip (req),
59 .reset_ip (reset),
60 .gnt_ip (gnt)
61);
62 endmodule
63
64 //***
65 // Testbench Code
66 //***
67 ‘include "assertion_ip.sv"
68 ‘include "bind_assertion.sv"
69 ‘include "binding_module.sv"
70
71 module bind_assertion_tb();
72 reg clk = 0;
73 reg reset, req = 0;
74 wire gnt;
75
76 always #3 clk ++;
77
78 initial begin
79 reset <= 1;
80 #20 reset <= 0;
81 // Make the assertion pass
82 #100 @ (posedge clk) req <= 1;
83 @ (posedge clk) req <= 0;
84 // Make the assertion fail
85 #100 @ (posedge clk) req <= 1;
86 repeat (5) @ (posedge clk);
87 req <= 0;
88 #10 $finish;
89 end
90
91 RTL_module dut (clk,req,reset,gnt);
92 endmodule

1 //***
2 // Simulation output
3 //***
4 "assertion_ip.sv", 22: bind_assertion_tb.dut.U_assert_ip.req_gnt_assert:
5 started at 237s failed at 243s
6 Offending ’((~req_ip) & gnt_ip)’
7 @243ns Assertion Failed
8 "assertion_ip.sv", 22: bind_assertion_tb.dut.U_assert_ip.req_gnt_assert:
9 started at 243s failed at 249s
10 Offending ’((~req_ip) & gnt_ip)’
11 @249ns Assertion Failed
12 "assertion_ip.sv", 22: bind_assertion_tb.dut.U_assert_ip.req_gnt_assert:
13 started at 249s failed at 255s
14 Offending ’((~req_ip) & gnt_ip)’
15 @255ns Assertion Failed
16 "assertion_ip.sv", 22: bind_assertion_tb.dut.U_assert_ip.req_gnt_assert:
17 started at 255s failed at 261s
18 Offending ’((~req_ip) & gnt_ip)’
19 @261ns Assertion Failed
20 $finish called from file "bind_assertion_tb.sv", line 26.

10 System tasks and system functions

10.0.1 Simulation control tasks

• $stop(). The $stop system task causes simulation to be suspended.

• $finish(). The $finish system task causes the simulator to exit and pass control back
to the host operating system.

101

APPENDIX A. SYSTEM VERILOG BASICS

• $exit(). The $exit control task waits for all program blocks to complete, and then
makes an implicit call to $finish. A program block may terminate the threads of all
its initial procedures as well as all of their descendents explicitly by calling the $exit
system task.

10.1 Simulation time functions

The following system functions provide access to current simulation time:

• $time. The $time system function returns an integer that is a 64-bit time, scaled to
the time unit of the module that invoked it.

• $stime. The $stime system function returns an unsigned integer that is a 32-bit
time, scaled to the time unit of the module that invoked it. If the actual simulation
time does not fit in 32 bits, the low order 32 bits of the current simulation time are
returned.

• $realtime. The $realtime system function returns a real number time that is scaled
to the time unit of the module that invoked it.

10.2 Math functions

10.2.1 Integer math functions

• $clog2. The system function $clog2 should return the ceiling of the log base 2 of the
argument (the log rounded up to an integer value). The argument can be an integer
or an arbitrary sized vector value. The argument should be treated as an unsigned
value, and an argument value of 0 should produce a result of 0.

10.2.2 Real math functions

Here below are listed only the most common functions:

• $ln(x). Natural logarithm.

• $log10(x). Decimal logarithm.

• $exp(x). Exponential.

• $sqrt(x). Square root.

• $pow(x,y). x**y.

10.3 Severity tasks

SystemVerilog provides special text messaging system tasks that can be used to flag various
exception conditions. The tasks are defined as follows:

• $fatal. It should generate a run-time fatal error, which terminates the simulation
with an error code. Calling $fatal results in an implicit call to $finish.

• $error. It should be a run-time error.

• $warning. It should be a run-time warning.

• $info. It should indicate that the message carries no specific severity

102

APPENDIX A. SYSTEM VERILOG BASICS

10.4 Assertion tasks

10.4.1 Assertion control tasks

SystemVerilog provides the following three system tasks to control the evaluation of asser-
tion statements:

• $assertoff. It should stop the checking of all specified assertions until a subsequent
$asserton. An assertion that is already executing, including execution of the pass or
fail statement, is not affected. In the case of a deferred assertion, currently queued
reports are not flushed and may still mature, though further checking is prevented
until the $asserton. In the case of a pending procedural assertion instance, currently
queued instances are not flushed and may still mature, though no new instances may
be queued until the $asserton.

• $assertkill. It should abort execution of any currently executing specified assertions
and then stop the checking of all specified assertions until a subsequent $asserton.
This also flushes any queued pending reports of deferred assertions or pending pro-
cedural assertion instances that have not yet matured.

• $asserton. It should reenable the execution of all specified assertions.

10.4.2 Assertion system functions

Assertions are commonly used to evaluate certain specific characteristics of a design imple-
mentation, such as whether a particular signal is “one-hot”. The following system functions
are included to facilitate such common assertion functionality:

• $onehot. It returns true if 1 and only 1 bit of expression is high.

• $onehot0. It returns true if at most 1 bit of expression is high.

• $isunknown. It returns true if any bit of the expression is X or Z.

103

Bibliography

[1] Machanick P., n.d. Approaches To Addressing The Memory Wall. School of IT and
Electrical Engineering, University of Queensland.

[2] Waterman A. and Asanović K., 2017. The RISC-V Instruction Set Manual Volume I:
User-Level ISA.

[3] Traber A., Gautschi M. and Schiavone P., April 2019. RI5CY: User Manual. Micrel
Lab and Multitherman Lab University of Bologna, Italy and Integrated Systems Lab
ETH Zürich, Switzerland.

[4] Iis-projects.ee.ethz.ch. 2019. PULP - iis-projects. [online] Available at: http://
iis-projects.ee.ethz.ch/index.php/PULP [Accessed 24 Nov. 2019].

[5] Suri M. et al, n.d. Applications Of Emerging Memory Technology.

[6] Vacca M., Tavva Y., Chattopadhyay A. and Calimera A. 2018. Logic-In-Memory Ar-
chitecture For Min/Max Search. Department of Electronics and Telecommunications,
Politecnico di Torino (Italy), School of Computer Science and Engineering, Nanyang
Technological University (Singapore), Department of Control and Computer Engi-
neering, Politecnico di Torino (Italy)

[7] Santoro G., Turvani G. and Graziano M., 2019. New Logic-In-Memory Paradigms: An
Architectural And Technological Perspective. Politecnico di Torino (Italy).

[8] Akin B., Franchetti F., Hoe J.C., 2015. Data reorganization in memory using 3D-
stacked DRAM. ACM SIGARCH Comput. Architect. News (USA).

[9] Santoro G., 2019. Exploring New Computing Paradigms For Data-Intensive Applica-
tions. Politecnico di Torino (Italy).

[10] Coluccio A., Vacca M. and Turvani G., 2020. Logic-In-Memory Computation: Is It
Worth It? A Binary Neural Network Case Study. Department of Electronics and
Telecommunications, Politecnico di Torino (Italy)

[11] Wu M. and Buchmann A., n.d. Encoded Bitmap Indexing For Data Warehouses. DVS1,
Computer Science Department Technical University Darmstadt (Germany).

[12] Docs.oracle.com. 2020. Database Data Warehousing Guide - Indexes. [online] Avail-
able at: https://docs.oracle.com/cd/B28359_01/server.111/b28313/indexes.htm [Ac-
cessed 5 July 2020].

[13] Singh A., Agarwal P. and Chand, M., 2017. Analysis Of Development Of Dynamic
S-Box Generation.

[14] Zhang X. and Parhi K., 2004. High-Speed VLSI Architectures For The AES Algorithm.

[15] Mahajan P. and Sachdeva A., 2013. A Study Of Encryption Algorithms AES, DES
And RSA For Security. Global Journals Inc. (USA).

104

http://iis-projects.ee.ethz.ch/index.php/PULP
http://iis-projects.ee.ethz.ch/index.php/PULP
https://docs.oracle.com/cd/B28359_01/server.111/b28313/indexes.htm

BIBLIOGRAPHY

[16] Business Jargons, 2020. What Is Least Cost Method? Definition And Meaning. Busi-
ness Jargons. [online] Available at: https://businessjargons.com/least-cost-method.
html#:~:text=Definition%3A%20The%20Least%20Cost%20Method,the%20least%
20cost%20of%20transportation. [Accessed 5 July 2020].

[17] IEEE Computer Society, 2009. 1800-2009 IEEE Standard for System Verilog-Unified
Hardware Design, Specification, and Verification Language.

[18] Kumar Tala D., 2014. SystemVerilog Tutorial. [online] Asic-world.com. Available at:
http://www.asic-world.com/systemverilog/tutorial.html [Accessed 25 Oct. 2019].

[19] Spear C. and Tumbush G., 2012. SystemVerilog for Verification - A Guide to Learning
the Testbench Language Features. 3rd ed. Springer.

[20] Verificationguide.com, 2019. SystemVerilog Tutorial. [online] Available at: https://
www.verificationguide.com/p/systemverilog-tutorial.html [Accessed 2 Nov. 2019].

[21] Chipverify.com, 2019. SystemVerilog. [online] Available at: https://www.chipverify.
com/systemverilog/systemverilog-tutorial [Accessed 6 Nov. 2019].

[22] Systemverilog.io, 2019. systemverilog.io. [online] Available at: https://www.
systemverilog.io/generate#overview [Accessed 11 Nov. 2019].

105

https://businessjargons.com/least-cost-method.html#:~:text=Definition%3A%20The%20Least%20Cost%20Method,the%20least%20cost%20of%20transportation.
https://businessjargons.com/least-cost-method.html#:~:text=Definition%3A%20The%20Least%20Cost%20Method,the%20least%20cost%20of%20transportation.
https://businessjargons.com/least-cost-method.html#:~:text=Definition%3A%20The%20Least%20Cost%20Method,the%20least%20cost%20of%20transportation.
http://www.asic-world.com/systemverilog/tutorial.html
https://www.verificationguide.com/p/systemverilog-tutorial.html
https://www.verificationguide.com/p/systemverilog-tutorial.html
https://www.chipverify.com/systemverilog/systemverilog-tutorial
https://www.chipverify.com/systemverilog/systemverilog-tutorial
https://www.systemverilog.io/generate#overview
https://www.systemverilog.io/generate#overview

	Problem statement
	RISC-V ISA
	RISC-V ISA overview
	Extensions
	Instruction Encoding

	RV32I Base Integer Instruction Set
	User visible registers
	Base Instruction Formats
	Integer Computational Instructions
	Control Transfer Instructions
	Load and Store Instructions
	Control and Status Register Instructions

	RV32M Base Integer Instruction Set
	Multiplication Instructions
	Division Instructions

	RV32F Single-Precision Floating-Point Instruction Set
	User visible registers
	Floating-Point Control and Status Register Instructions
	Single-Precision Load and Store Instructions
	Single-Precision Floating-Point Computational Instructions
	Single-Precision Floating-Point Conversion Instructions
	Single-Precision Floating-Point Move Instructions
	Single-Precision Floating-Point Compare Instructions
	Single-Precision Floating-Point Classify Instruction

	RV32C Compressed Instructions
	Load and Store Instructions
	Control Transfer Instructions
	Integer Computational Instructions

	RIC5Y microprocessor
	Introduction
	Supported ISA
	RTL top view
	Block diagram
	Interfaces

	Architecture description
	Instruction Fetch stage
	Decode stage
	Execution stage
	Load and Store Unit stage - Write Back stage
	Peripherals and Memory model

	Logic-in-Memory in RI5CY Framework
	Logic-in-Memory State of Art
	Logic-in-Memory architecture
	Bitwise operations - Logic-in-Memory cell
	Maximum and minimum computation - logic around array
	Range operations

	Logic-in-Memory ISA extension
	Same interface Memory-Processor ISA extension
	New interface Memory-Processor ISA extension

	Architectural changes in RISC-V project
	Same interface Memory-Processor RI5CY change
	Same interface Memory-Processor RI5CY changes
	Differences between the Logic-in-Memory implementations

	Simulations and Synthesis
	Tools
	Simulation with custom programs
	Bitwise
	Max-Min

	Simulation with standard programs
	Database search with Bitmap Indexes algorithm
	AES Addroundkey algorithm
	Transport problem - Least Cost Method algorithm

	Simulation Results Analysis
	Synthesis

	Conclusions and Future Work
	Appendices
	System Verilog basics
	Introduction
	Data objects and data types
	Data types
	Data objects

	Literal Values
	Operators
	Signals and Constants
	Continuous assignments
	Procedural assignments
	Procedural blocks
	Procedural statements

	Design elements
	Module
	Interface
	Package
	Program

	Assertion
	Immediate assertions
	Concurrent assertions
	Binding assertion

	System tasks and system functions
	Simulation time functions
	Math functions
	Severity tasks
	Assertion tasks

