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Abstract

Modern embedded system design has a greater complexity than in the past, and
it is increasing more and more. High Level Synthesis (HLS) increases the design
abstraction level and thanks to it, it’s possible to generate with less effort, opti-
mized register transfer level (RTL) hardware in terms of performance, area and
power requirements. This thesis propose an application of the new multithreading
synchronization paradigms introduced in the C++14 standard, such as futures and
promises, to the design of digital electronics components, with a special attention
to High Level Synthesis.
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Chapter 1

Introduction

1.1 Premise

HLS is about synthesizing, generally a C or C++ function into an RTL implemen-
tation in the replacement of traditional RTL design concepts, using a behavioral
design language such as Verilog or VHDL. High level design or high level synthesis
provides different components of functionality. First point is to develop an IP com-
ponent in a software environment but also to functionally verify that component in
the same software environment and integrate that IP into an hardware simulation
environment where is needed to verify at a signal level its functionality. Then starts
the optimization phase of that design and so there is a lot of static reports that gets
generated, as well as performance results from those simulations run. Lastly the
tool allows to easily generate an IP to integrate it in the traditional FPGA design
tool as part of the FPGA design. The motivation for high level synthesis is simple
when looking at a traditional FPGA design process, it is in general a fairly time
consuming effort so it always start with a hardware description language such as
Verilog or VHDL. Then it is needed to write the testbench, and then run it in a
hardware simulator such as modelsim. Once it’s functionally verified at the RTL
level, run it through a logic synthesis1 tool and then run the placement and route
inside a software. This is actually a fairly time consuming process, so the goal of
HLS is to increase the productivity of designing hardware architectures, getting the
benefit of the performance of running the IP on an FPGA without going through
the lengthy development times and optimization times. With HLS it is possible to
develop at much higher level, therefore increase productivity, being able to debug
software much faster than hardware because it’s possible to functional debugging

1In electronics, logic synthesis is a process by which an abstract specification of desired circuit
behavior, typically at register transfer level (RTL), is turned into a design implementation in terms
of logic gates [4]
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1 – Introduction

staying with a software debugging tools and utilities rather than using hardware
simulator or on chip debugging techniques which are much more time consuming.
It is important to specify the functions to accelerate the software so it is needed to
write a testbench as well as a component in C or C++ environment, then easily
indicate to the HLS software the exact component to implement in hardware.

The idea of this thesis starts from the introduction of the quite new features of
the C++ language, futures and promises, whose functionality are later explained.
This work proposes a possible application of this new features in the field of the HLS
process. Starting from some functionality of the HLS tool Bambu, a new mechanism
that is able to translate futures and promises in an RTL implementation is proposed.

1.2 Work introduction

One significant limitation in using high level synthesis tools is that the high level
language accepted, in order to be able to obtain the RTL description, is only a
subset of the whole language and this limits the programmer that cannot exploit
the real power of such programming language.

Nowadays is not only important to write programs, but to write optimized pro-
grams in terms of resources utilization and times. Thanks to compilers some opti-
mization phases are performed automatically, but they are not able to identify the
sections that can be executed in parallel. For these purpose the threads are used
but is totally up to the programmers writing an optimized and functional code. In
order to synchronize them, various techniques are adopted.

In the field of high level synthesis there are already some works introducing the
threads in the description language that a tool can synthesize but no one is talking
about the possibility of using the relatively new features of the C++. This Master
thesis work, aims to first of all analyze the available open source high level synthesis
tools and to choose the one that fits best to our case. Second, using such a tool
to give a possible application of futures and promises together with the threads in
the context of high level synthesis. This work demonstrates that it is possible to
apply such a features in this context, the methodology proposed is not implemented
directly in the tool itself but starting from the verilog code generated by the latter
it was modified to obtain the desired result. This is the starting point to implement
the methodology inside a tool.

Generally, high level synthesis tools synthesize the input source code trying to
parallelize as mush as possible the execution of the tasks, but the result is not
always optimal and even if something could be executed in parallel, it is scheduled
in sequence. Giving the possibility to the programmer of using these features, the
expected improvement is not only in the execution time of the obtained system that
should be a way lesser, but also in the creation of the synchronization graphs by

2



1 – Introduction

the tool that is expected to be faster. Moreover the set of the accepted language is
enlarged.

The next section gives an idea of how this work is organized in its chapters.

1.3 Overview of the thesis

This thesis is divided in 7 chapters describing in detail the application of futures
and promises analyzed in the previous section and an appendix providing C++ and
verilog codes.

Chapter 2 contains a presentation of some basic concepts needed to understand
the rest of the work.

Chapter 3 presents the tool that was used to perform high level synthesis, in
particular talks about the peculiarity that are useful for our goal.

Chapter 4 presents the proposed methodology and the strategy followed to obtain
the desired result.

Chapter 5 gives details about the implementation of thread, futures and promises
in the architecture generated by the high level synthesis tool.

Chapter 6 describes the results and the case studies used to obtain that, focusing
more on the timing obtaining through simulation.

Chapter 7 is the conclusion of the thesis with a final discussion and presents
some future works.

3



Chapter 2

High Level Synthesis and C++

2.1 Introduction to High Level Synthesis

In the HLS model use, starting point is the high level language code, where there is
the main function which could call lots of other functions and it’s possible to run it
in a traditional compiler. Suppose we are talking about C/C++ code, we can run
it using GCC or G++ which will generate the executable file. If we want to convert
certain of these functions into an hardware component, it’s enough to use compiled
specific directives, mark those functions and then run the entire C or C++ code
with the HLS compiler instead of the GCC or G++ compiler. An HLS compiler will
generate the specific IPs for each of the functions that are marked and then it’s pos-
sible to integrate that particular IP for example into an FPGA design. Some of the
HLS compiler are also able to generate emulation environment to allow to function-
ally debug the entire design. A designer will tipically approach to HLS writing the
behavioral specification using an high level language to describe the functionality of
a module that is to be implemented, like a FIR, a controller or a custom hardware.
This step is an abstraction level above the RTL specification in which everything is
untimed, there is no delay and the data types of the variables are not related to the
hardware. HLS tools transform this untimed and hardware unrelated specification
in a custom architecture that correctly implement the described behavior [1].

2.2 High Level Synthesis flow

The HLS tools flow showed in figure 2.1 is similar to the organization of a compiler.
It starts with a front-end which is responsible of performing lexical and syntactical
analysis for then producing an intermediate representation (IR) that is optimized
using the usual techniques such as the dead-code optimization, loop unrolling or
function inlining. Starting from this IR, a formal model is produced in which are

4



2 – High Level Synthesis and C++

Figure 2.1: HLS flow

shown data and control dependencies. All these information are represented by the
tool using for example a data flow graph and a control flow graph in which a node
refers to a basic block operation and the edges represents the execution flow of this
basic blocks. Depending on the tool this information could be showed to the user
or not, but the tool internally use this in order to perform the following steps in the
flow. Next there is the back-end that perform some steps that generate the RTL
representation. These steps could be summarized in allocation, scheduling, binding
and code generation.

The allocation phase deals with, based on the design constraints, the choice of
the components and functional units used to obtain the desired behavior.There are
libraries contained by the tools that implement these modules. The choice is made
not only depending on the functional behavior but also by some time or area per-
formance goal of the design and so the libraries also contain the metrics for each

5
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module. The final result from the allocation phase is the selection of at least one
component contained in the libraries for each operation described in the IR.

Scheduling is about mapping the single operation in clock cycle, so for example
a simple operation like a op b it is expected that variable a and b are read and
bring to the functional unit that was chosen in the previous phase to perform this
operation. Depending on the unit that execute it, the operation can be scheduled
in one or more clock cycles. Notice that if there are no data dependencies between
two operations and there is enough resource availability, it should be possible that
they are executed in the same clock cycle. So the final objective of the scheduling
is to assign operation to clock cycles satisfying the constraints.

In binding phase both operations and values are respectively mapped to func-
tional units and storage resources. The objective of this phase is to optimize the
mapping. It means that if it’s possible share the hardware between more than one
operation or value and if more than one unit could be bound to an operation, the
choice should be made on the metrics this unit has. Finally is performed the con-
nectivity binding that is interconnect resources introducing other logics to perform
the transfer between components.

Before continuing with the last step, a note on the three previous phases must
be added, these are interdependent and so optimizing first one of the three could
be incompatible with the optimization of another, so the choice made in one phase
could influence the others. In this kind of problem the execution order of these is
very important.

The code generation is just the application of the previous design choices and
generates an RTL model using an hardware description language such as verilog or
VHDL that is synthesizable [1] [5].

The generated architecture is usually organized in two blocks showed in figure
2.2, a data path and a controller implemented as a final state machine. The first
contains all that components that are used to move and manipulate the data of the
system, like registers, multipliers, shifters and multiplexers these components are
linked and executed in clock cycles thanks to the previous phases. The controller is
the mind that lead the data flow using control signals. Usually it has a status register
containing the current state in which the controller is. Based on it and on the control
input it has a next state register saying which is the state changing for the next clock
cycle, so follows the behavior of a final state machine. Obviously the system has
to communicate with the external world to receive inputs and give outputs. These
are divided in data and control input and output connected respectively to the data

6



2 – High Level Synthesis and C++

Figure 2.2: Typical architecture [1]

path and controller. This architecture is not fixed and there could be something
different from what previously described [1].

2.3 High Level Synthesis tools

Due to a growing increase in the complexity of digital systems design and verification,
tools are needed to make this process simpler and faster. HLS tools are one of this
design automation that given as input an high level language so a behavioral program
that describe the system you want to produce, it generates the equivalent hardware.
It’s possible to list some of the advantages of having an HLS tool. For example
with this kind of tools it is not necessary anymore to manual translate a behavior
in an RTL that is very time consuming, the program size of such input languages
are smaller and more readable respect to an hardware description language (HDL),
HLS generate code that is optimized and so probably use less components that the
handwritten HDL and moreover it supports verification useful when a very reliable
system is needed [6]. To explore the HLS tools it was necessary to select some
criteria of evaluation.

7



2 – High Level Synthesis and C++

First of all it’s important to understand which source language could be used and
which restrictions are made on the language. This is one of the point of this thesis,
that try to reduce the gap between algorithms and hardware design introducing in
the accepted C++ language the relatively new features, futures and promises. The
more of the language can be used the more comfortable the programmer feels.

Another aspect is how hard is to use the tool, if it has or not a user interface,
how complex is the tool and if it’s enough documented or not.

As said before, verification is an important task in the design process, some tools
are able to automatically generate testbenches for the generated design giving again
the opportunity to be more accurate and saving time.

Other two aspects not ignored for this work are the operating system on which
the tool could run and if it is open source or a proprietary one. More detail on the
motivation of this choice are described in chapter 3.

A table with some tools is provided in table 2.1 showing the property listed
before. More tools with different evaluation criteria are provided here [7].

The following subsections give an overview on some of the HLS tool taking into
account.

2.3.1 GAUT

It is an open source tool developed at Université de Bretagne-Sud and is supported
by Windows and Linux operating systems. The input language accepted by this
tool is the C/C++ and generates an equivalent RTL code written in VHDL. It is
one of the tools that automatically generate a testbench that can be simulated using
third party tools like modelsim. A great strength of GAUT is that it uses an eclipse
IDE so is quite easy to use it, and inside the IDE are shown some useful information
regarding the synthesis such as which components (adder or multiplexer) are used
and in which number, the data control flow (CFG) and the schema of the finite states
machine. On its website1 there is a small guide and a video to help to start using the
tool but there is only a little documentation for the user level so it could be difficult
to understand how does it works. Another aspect is that it works fine with the given
examples but has some problem when trying to change them. Unfortunately the
project is now with a very low priority and so it is not updated anymore.

2.3.2 MyHDL

MyHDL is not really a tool, is an open-source package of Python thanks to which
it is possible to write Python code mixed with this library that has constructs
very similar to an hardware description language and it’s possible to use it for

1http://www.gaut.fr/
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2 – High Level Synthesis and C++

Tool Tested on Input Output
Open
source

IDE OS Testbench

ROCCC No C VHDL Yes Eclipse Linux No

Bambu Ubuntu 18.10 C/C++
Verilog
VHDL

Yes No Linux Yes

GAUT
Ubuntu 12.04
Ubuntu 18.10

C/C++ VHDL Yes Eclipse
Linux

Windows
Yes

Icarus
Verilog

Ubuntu 12.04
Ubuntu 18.10

iVerilog VHDL Yes No
Linux

Windows
No

LegUp No C Verilog Yes No Linux Yes

MyHDL Ubuntu 16.04 Python
Verilog
VHDL

Yes No
Linux

Windows
Yes

xPilot
Ubuntu 12.04
Ubuntu 18.10

C
SystemC

VHDL Yes No Linux No

Kiwi Ubuntu 18.10 C#
Verilog
SystemC

Yes No
Linux

Windows
Yes

Catapult C No
C/C++
SystemC

Verilog
VHDL

No Yes Linux Yes

Agility
compiler

No SystemC
Verilog
VHDL

No No Linux No

Vivado HLS Ubuntu 18.10
C/C++
SystemC

Verilog
VHDL

No Yes
Linux

Windows
Yes

BlueSpec No
BlueSpec
System
Verilog

System
Verilog

No
BlueSVEP

Eclipse-based
Linux

Windows
No

C to silicon No
C/C++
SystemC

Verilog
SystemC

No
Stratus by
cadence

Linux No

Synphony C
compiler

No C/C++
Verilog
VHDL

No No Linux Yes

Cynthesizer No SystemC Verilog No No Linux Yes

Table 2.1: HLS tools

simulation and verification of a design. The MyHDL code can also be converted
into Verilog or VHDL code and then continue the synthesis using a third-party tool.
Python is a very powerful and high level programming language and so using it
for simulation and design purpose could be very simple and useful. As usual there
are few limitations in the Python language to be converted. There is available a
complete documentation on the website and are also provided some examples that
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makes it easier to start with and is also supported by a community. Listing 2.1
shows a simulation example of usage of MyHDL in Python taken from the available
examples. Inside the always block we can write Python code with some limitations
while outside it’s possible to exploit all the power provided by the language [8].

1 from myhdl import block , delay , always , now

2

3 @block

4 def HelloWorld ():

5

6 @always(delay (10))

7 def say_hello ():

8 print("%s Hello World!" % now())

9

10 return say_hello

11

12

13 inst = HelloWorld ()

14 inst.run_sim (30)

Listing 2.1: MyDHL example

2.3.3 Kiwi

This is an open source project developed at university of Cambridge, it is basically
a compiler that converts Csharp bytecode into Verilog or SystemC. The tool has an
IDE and is supported by Windows and Linux operating systems. Compared with
others tools, it has some particular point to underling, first is the input language that
uses Csharp, supports dynamic allocation of objects and floating point manipulation,
it’s possible to control clock cycle from the Csharp file and also supports some
recursive programs. The user guide provided is exhaustive, gives information on
how to correctly install and setup the working environment, the language subset
limitations giving also some examples and a guide for developers that explain which
are the internal operations and how the tool works [9].

2.3.4 Vivado HLS

Vivado HLS is a proprietary tool by Xilinx that extends the already existing tool Vi-
vado HLx for synthesis design. So Vivado is a complete tool chain that starting from
the high level language that can be C/C++ and SystemC, produces the bitstream
that can be inserted in the targeted hardware. It has its own IDE that simplify the
synthesis and verification of the design, moreover it has an additional component
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for simulation and there are a lot of information provided at the end of synthesis
such as power consumption, the number of components used and information on the
timing. There is a well done documentation [10] supported also with video tutorial.

2.4 Futures and promises

Futures and promises are used to handle concurrency, these concept allow a program
to pass values between threads without using any typical synchronization mechanism
used when sharing data between threads like mutexes. Some troubles are centered
around the terminology, various terms have been used by different researchers de-
velopers and computer languages to mean very similar things, it can be challenging
which definition is being used in a given context. Futures and promises are useful
when you have some operation or set of operations which produce a result could take
a significant amount of time or may not need to happen in any particular order a
good example of when you might use future and promise to improve performance is
when you are reading or writing data like opening a file in an editor, ideally it would
be good to allow the user to continue interacting with the program after the first
portion of the file has been loaded, the remainder of the file could then be loaded in
the background. Or there could be a system which is making a call to a web service
using a raw TCP socket and you don’t want to wait for this operation to complete
before moving on to another task. Another example is when doing database queries
which often have long running tasks.

In the late 70s the term promise was first introduced and then a year later
the idea of future was introduced. Over the next 20 years they were implemented
in a few lesser-known computer languages, these construct were considered mostly
theoretical at the time. They were not originally developed to solve the modern-day
problems we have with networks web servers and distributed systems. 30 to 40 years
later were finally realizing the value of this technology. Future and promise were
not widely known until early 2002 when Python introduced the notion of what they
called deferred objects in a library called twisted. The boost library introduced one
of the first thread libraries for C++ in 2001, it wasn’t until 2009 that the boost
thread library added functionality to support future and promise. With the release
of C++11 future and promise became part of the standard library. There have been
several new proposals to expand the functionality of future and promise in the C++
standard and these are available as experimental in some compilers, it is expected
that C++20 will contain most of these enhancements [11].

When you are looking at computer language or browsing through code samples
you need to be very careful, not every computer language has both constructs namely
futures and promises, and the definitions and implementations may be different. If
you are using future and promise in a language other than C++ these constructs

11
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may not be in the core language or standard library in most all cases future and
promise will be supported in various third-party libraries.

For the purpose of this thesis we will focus on C++ features. In C++ futures
and promises are instances of a template class, defined in listing 2.2.

Line code 2 7 base template 2.

Line code 3 8 non-void specialization, used to communicate objects between

threads.

Line code 4 9 void specialization, used to communicate stateless events.

1 \\ Future class

2 template < class T > class future;

3 template < class T > class future <T&>;

4 template <> class future <void >;

5

6 \\ Promise class

7 template < class R > class promise;

8 template < class R > class promise <R&>;

9 template <> class promise <void >;

Listing 2.2: Definition of Future and Promise [3]

A future object is read-only, its purpose is to encapsulate a data that may not
be available yet but will be provided at some point. The template parameter for the
future template indicates the type of data the future will hold. The primary way
you work with a future object is to call the get method, calling get will retrieve the
data stored in the future, if the future is not yet ready, meaning the data has not
been provided the call to get will block. If for some reason an error occurred while
computing the value, the get method will throw an exception.

The template parameter of the promise object indicates the datatype of the
stored value. The T for the promise and the T for the future must match. This may
seem a bit odd, but if you create or instantiate your own future object it will always
be invalid and it cannot be used for anything, there is no way to make this future
valid. The only public constructor for a future creates an invalid empty future, to
create a usable future you first create a promise, when the promise is instantiated it
automatically creates an invalid but usable future object which you can then extract

2A base template class is related to the idea of inheritance in object oriented programming, it’s
on an higher level of the hierarchy respect to the derived classes, which can inherit depending on
some types, attributes and member functions [12]

12



2 – High Level Synthesis and C++

from the promised object if this future will become valid when the promise fills in
the data, this is called fulfilling a promise.

The purpose of the promise object is to guarantee that some function will com-
pute some value and make it available in the corresponding future object. A typical
usage involves first creating a promise object, from the promise object, future is ex-
tracted and hold on to it then the promise is moved to another thread or function.
Once the function has finished it is responsible for setting the value in the promise
and the future becomes available.

At any point the main thread can call a get method of the future object to wait
for the data in the future to be available. If the function has already finished, the
call to get will return immediately, if it is not available the call get will wait until
the future is finished. Figure 2.3 shows a typical work flow.

If the function fails what happens is that, if the promise contains an exception,
when the main thread calls the get method the exception in the promise will be
thrown, there are two ways the promise might contain an exception. If the function
encounters an exception instead of actually throwing it should place the exception
object in the promise, this allow the exception to be thrown later when get is called
and not in the function itself. It would be a very bad practice to throw an exception
in a thread since it is unclear who should catch it and according to the C++ standard
throwing an exception in a thread calls STD terminate. If the function does not set
a specific exception in the promise then the promise will go out of scope without
being fulfilled. When this occurs the promise automatically sets a generic exception
in the future, this is called a broken promise exception. This is accurate, since
the promise was not fulfilled and the function has therefore broken its promise to
compute a value. The problem with relying on the broken promise exception to be
set is that actually does not indicate why the promise was broken and it’s not a very
meaningful error.

Listing 2.3 shows a simple example that uses a future to store a computed value
generated as a result of some function. The main function creates a promise and
extract the corresponding future, a new thread is then started to run the doWork
function and the promise object is moved into the thread. The main thread then
calls get and prints the result, the thread are joined to complete the process. Notice
the T in STD promise and STD future are both int, if you were to change the T for
STD future to a double you will get a compile error saying something like conversion
from future int to future double requested. The doWork function will run at some
point after the thread has started and before the call to get returns, since the main
thread cannot continue until the value is available it waits. If the main thread runs
first it may be blocked until doWork has completed. The reason the promise and
future are separate objects is to encapsulate the two different sets of functionality,
the promise is used by the function which is responsible for computing a value in
order to store the return value or exception in the corresponding future. The future
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Figure 2.3: Typical future and promise work flow [2]

is used by the caller to retrieve the information which was computed, this is why
the get method exists in only the future and the set value method exists in only the
promise.

It’s also important to notice that for each promise there is only a future object
linked to it and you can use them once. This means that is not possible to link for
example two different future to one promise or vice versa and is not possible to call
two times the get method on a future neither the set value on the promise.

The standard library provides a function called std::async which encapsulates a
portion of the complexity of setting up a promise and a future. Async provides the
abstraction of calling a regular function in another thread, the return value of the
thread will automatically be returned in the future. Internally async manages the
promise and calls the set values method in the promise when the function returns. If
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there is a failure async will call set exception to indicate the problem. Basically async
provides a higher level mechanism to call an ordinary function in another thread and
retrieve the value when it’s ready. It is valuable to note that the function which is
called does not have to handle futures or promises in any way, it can be a normal
function which takes parameters and returns a value. This means async allows to
call existing function in a separate thread without modifying the original function.
However this functionality is not a subject of the thesis.

1 #include <iostream >

2 #include <thread >

3 #include <future >

4

5 using namespace std;

6

7 void doWork(promise <int > * promObj){

8 int x;

9 cout <<"Do some work here"<<endl;

10 promObj ->set_value(x);

11 }

12

13 int main(){

14 int x;

15 promise <int > promiseObj;

16 future <int > futureObj = promiseObj.get_future ();

17

18 thread th(doWork , &promiseObj);

19 // retrieve the value from thread function

20 x = futureObj.get();

21 th.join();

22 return 0;

23 }

Listing 2.3: Future and Promise sample [3]
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Chapter 3

PandA Bambu

3.1 Features

PandA [13] project is a framework developed at Politecnico di Milano, as mentioned
on the website ”The primary objective of the PandA project is to develop a usable
framework that will enable the research of new ideas in the HW-SW Co-Design field”.

Bambu is the name of the open source tool that implements High Level Synthesis,
the language accepted as behavioral description is a subset of C and C++ and
generates as output a Verilog or VHDL code that is correctly synthesized by some
commercial tool and so can be used as starting point for a complete synthesis process.

The tool is developed for Linux systems and is written in C++, an overview
about the flow and how does it works is given in section 3.2. Its internal design is
modular, in fact implements the tasks of the HLS process in different C++ classes,
using different internal representations according to the stage involved.

There is no a user interface but everything is managed by the command line,
several options are provided to control some parameter in the various synthesis
phases, it’s possible to include option for the compiler, to get some outputs such as
verbose printing for debugging purpose, it’s possible to specify the algorithm used
for scheduling, binding and memory allocation as well as constraints. A lot of graphs
are used to extract information on the input code and these graphs are built using
the boost::graph library. Including an option the graphs are given in a .dot format
file that is a very interesting output.

Most of the tool restrictions on the language deal with the usage of pointers, that
should be statically allocated at compile time to be synthesized, Bambu override this
restriction and is able to manage these situations producing a working architecture.
This work focuses on this aspect and in particular on the method of synthesis of
function pointers, that is modified allowing the high level user the possibility to
write in his code the C++ futures and promises.
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The same mechanism used to translate function pointers can be found in the tool
in another situation. A state-of-the-art for function calls translation is to instantiate
in the data path of the caller the module implementing the function, the module may
receive input and produce output according to the function definition. If a function is
called more times from different callers, it’s possible that the corresponding module
is also instantiated more times, increasing the area of the design but improving the
speed. According to some criteria and thresholds Bambu can avoid this creating
only one module for each function call and sharing it, reducing the area against a
bit of speed. Think about it as function inlining if we talk about software compilers.
More details useful to then understand the introduced new approach can be found
in section 3.4.

3.2 Tool flow

Like traditional tools the execution flow is similar to software compilation, and can
be divided in three part.

The Bambu front-end can exploit, depending on the user choice, the GNU Com-
piler Collection or LLVM/Clang compiler to parse the source language and thanks
to a plugin generate a GIMPLEpssa intermediate representation that is similar but
not completely equal to the one generated by GCC. An advantage of exploiting
these compiler is that code optimization are performed and the traditional compiler
option are accepted by the tool, in fact as shown in figure 3.1 the intermediate rep-
resentation file is extracted after the middle-end optimization of GCC. This file is
then given in input for the Bambu middle-end.

In the middle-end others transformations are applied to the IR to cleans up the
code, simplifies memory access and do other stuffs simplifying the next steps. There
are also some FPGA oriented transformations that transform some multiplications
or divisions into simpler expressions, for example a multiplication like 3∗x becomes
(x << 1)+x. Then the file GIMPLEpssa is parsed by Bambu and from this creates
a data structure like a graph in which each node contains the instruction with all the
information related to it. Once finished, the graphs that describe the dependencies
between the instructions and between the basic blocks are constructed and will be
used to obtain the correct design.

Finally in the back-end the HLS is performed. The synthesis process is applied
on each function and so the architecture obtained is modular and follow the struc-
ture of the call graph. Each function is composed by a data-path and a controller.
Here are performed all the steps already discussed in section 2.2, but now let’s see
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Figure 3.1: GCC compiler

some peculiarity implemented in Bambu.

The allocation phase is divided in three, functions allocation defines the hier-
archy of the modules, memory allocation specify the way the variables are stored
and how the dynamic memory is implemented, thanks to the options it’s possible
to choose a bunches of setting for memory allocation such as the algorithm used,
the policy or the base address. Finally the resource allocation maps operation to
functional units, the library used is rich and includes various units for each operation
with different characteristics i.e. latency or resource occupation.

The scheduling algorithm used here is by default a list-based one that associates
a priority to operations following some metrics. At the end of the steps each opera-
tion is associated to a clock cycle. There are options to specify other algorithms to
use or provide a fixed scheduling in an XML file.

The binding is dependent from the previous phase because operations that was
scheduled to be executed in concurrency cannot share the same units in order to
avoid conflicts. This step is performed as a weighted graph coloring problem and
the graph is built looking at the scheduling according to some criteria.

Figure 3.2 shows the complete Bambu process flow.
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Figure 3.2: Bambu tool flow

3.3 Motivations

The aim of this section is to motivate the choice of Bambu over the others to
introduce future and promise in the HLS context. It is important to specify that
this section is not intended to represent Bambu as a better tool than others but only
to provide the reasons why Bambu is the best choice among the tools analyzed for
this specific work, moreover not all the tools available have been analyzed in detail.

The first point to analyze, which obviously excludes about half of the possible
choices, is that the tool must be open source for various reasons. The source code can
be modified introducing new algorithms or optimization techniques in some specific
steps of the process to obtain the required new behavior. This thesis doesn’t aim to
modify the source code of the tool but is a starting point for doing that in the future.
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Having the code is possible to compile it on different operating system environments
and online forums created by programmers that works on open projects can be used
as support for a beginner.

The idea of this work is based on the concepts of futures and promises, which
not all high-level languages have and therefore this is a discriminant. From the
table 2.1 showed in the previous chapter is possible to see that almost the majority
of the proprietary tools supports C++ but very few of the open ones does it. It’s
important to notice that futures and promises are not only implemented in C++,
but there are some construct also in Python. Regarding Python a similar mecha-
nism is provided by using the sub classes of the Executor, ThreadPoolExecutor and
ProcessPoolExecutor abstract class. We focus on ProcessPoolExecutor which there-
fore takes advantage of multi-processes rather than multi-threading because Python
does not support a real parallel execution of threads cause they are scheduled and
blocked by the Global Interpreter Lock which executes them only one at a time but
supports real multi-processes. It is well known that comparing C++ with Python
in terms of speed C++ is much faster, so speed as in development time, Python
hands down, simulation speed is less straightforward.

Compared with others tools Bambu provide a lot of information both in graphical
and written form, that helps understanding the internal mechanism. Some tools
are now abandoned or without documentation, some others accepts only provided
example while introducing an own one does not gives a correct output. Moreover
the design architecture provided by Bambu is quite standard and so could be easier
introduce new modules understanding how it works. The Verilog code given by
Bambu can be introduced in other third-party tools to perform the logic synthesis
obtaining a more detailed results.

Bambu already provide a mechanism that supports function call using function
pointers that is needed to call the thread method necessary to introduce futures and
promises. This mechanism is a key point for the new methodology introduced in
this work and is explained in the following section.

3.4 Function call mechanism

A usual approach of HLS flow to generate a design from the hierarchical point of
view is to follow the schema of the call graph of the input specification, and typically
a function in this graph corresponds to a module instantiated in the data path of
the caller. In some tools what happens is that, if different modules call the same
function, the latter is instantiated in each of the data path of the callers, so they
can’t share this resource. Another weakness of usual HLS tools is the impossibility
of usage of function pointers to call a function due to the non static resolution
of it [14]. Inside Bambu there is a function call mechanism that solve both the
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Figure 3.3: Diagram of the notification mechanism

problems described called builtin wait call and this is the starting point for the new
architecture proposed in this work introducing futures and promises in the C++
input language synthesizable by the tool, so this section describes the mechanism.

The methodology extends the modules using a memory mapped interface, a
module in between the caller and the callee, let’s call it builtin and a communication
protocol based on master and slave signals, having as final result an architecture
interconnected through a bus.

Figure 3.3 shows the sequence diagram of the mechanism in which the caller asks
through the builtin the usage of the callee, so transfer the control to the builtin and
waits until the execution of the called module is terminated. The builtin send the
parameters and make the computation starts and retrieve the return value from the
function, everything is done using the memory mapped interface.

Looking at the prototype of the function is possible to obtain the memory
mapped interface, in fact the inputs of the function are translated in input registers,
the same for the output if present, and then independently from the prototype is
instantiated a status register and a notify caller module. The status register is in
charge of save the state of the function, starts the computation and intercepts when
the computation is completed and the notify caller module will warns the caller
about the completion of the task. In the memory allocation phase Bambu select
an ID for each function and this ID is a unique base address associated to each
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interface so thanks to the communication protocol if more modules want to call the
same function will use the same base address.

An example of how the code in listing 3.1 is translated in a design architecture
is shown in figure 3.4. It’s important to notice some features of the generated archi-
tecture, when the wait call mechanism is used. One waitcall module is instantiated
inside the data path of the caller for each call plus one register to store the return
value if it is present, there is one bus merger in each data path involved in the call,
this module is discussed in the next section. The callee is always instantiated in the
data path of the top level module, and the callee architecture is always the same
regardless the number of calls it receive.

1 int funcA( int (* func_pointer)()) {

2 int res=0;

3 res = (* func_pointer)();

4 res += (* func_pointer)();

5

6 res += funcB (18);

7

8 return res;

9 }

10

11 int start_point () {

12 int res;

13 int varC = 10;

14

15 res = funcA(funcC);

16 return res;

17 }

18

19

Listing 3.1: Code sample

3.4.1 Master and slave chain

Master and slave signals are used in Bambu to start memory operations and are
a key point for the communication protocol presented in the next section. Master
output signals of the chain are composed as follow:

Mout data ram size represents the size of the data as the number of bits for
both read or write operation.

Mout Wdata ram has a mean only if the operation is a write otherwise it is

22



3 – PandA Bambu

Figure 3.4: Architecture example

zero and represents the data to be written.

Mout addr ram is the address of the module or in general is a memory location
where I have to read or write a data.

Mout we ram this signal is 1 if the master wants to perform a write operation.

Mout oe ram this signal is 1 if the master wants to perform a read operation.
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Some information are returned from the slave to the master after completing the
request and are contained in the following signals:

M data rdy after a request the master waits for the termination of the task
and this signal notify that the operation is completed.

M Rdata ram if a master has request a read operation this signal contains the
data read from the target address.

There are two kind of slave signals, the first one is needed to make the request
coming from the master being reached to the slave, so the master output signals are
propagated through the slaves thanks to these signals that are listed here and which
have the same meaning as the master signals:

S data ram size, S Wdata ram, S addr ram, S we ram, S oe ram.

The other kind of slave signals are used to respond to the master request, and
are again with the same meaning:

Sout data rdy and Sout Rdata ram.

So a bus cycle starts when the master request a read or write operation and
terminate when the slave respond to it, and during the entire clock cycle the master
signals remain set.

3.4.2 Communication protocol

This protocol is used to allow the exchange of information between the builtin and
the callee and in general all the modules that uses addresses. It is based on a
master and slave chain, a master makes a request (read or write operation) then
the signals go out of the system and come in as slave signals. A module knows
that it is the target of the request thanks to an address. A module can have both
master and slave signals or only one of them. Suppose we have a top level module
that instantiate module A and B and they want to communicate. A master that
wants to make a request will use Mout signals that enter in the system as S signals
used to propagate the request to the target slave that will answer with Sout signals
that again will come in as M signals. The slave knows he is the target thanks to
S addr ram signal that contains an address. Every read or write request from the
master, terminate with a DataRdy signal notifying the completion of the operation.
The signals chain contain the information to know if the operation is a read or write,
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Figure 3.5: Communication protocol

the data to read or write, the size of the data and the address. Figure 3.5 shows
this example evidencing the operation order.

The bus merger takes in input the master and slave signals coming from all the
modules that are in the data path with the merger and output only one of those
signals. It only compute the logic or between the inputs because is already known
that only one input at a time will have a meaning while the others will output 0’s.
This is possible because thanks to the scheduling is sure that in a certain time, only
one module will use the bus since the function call exploiting this mechanism are
executed in sequence.

Suppose function A calls function B using the wait call method, what happens
is that the controller of function A lets the builtin start and then it performs one
write operation to the input register located in function B, that contains the pa-
rameter it needs to perform its computation, for each input of the function. The
builtin then starts the computation of the function B doing a write operation on the
status register and then waits for the notify caller module saying the computation
is finished. Finally it reads from the return value register of function B the result of
the computation and give back the control to function A.
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Methodology introduced

4.1 Application of Futures and Promises in HLS

The idea of application of futures and promises in the HLS context, starts from the
function call mechanism already implemented inside the tool Bambu that allow the
usage of function pointers in the C and C++ input specifications file. This is an
important feature of the tool that helps the goal of the work, in fact talking about
futures and promises it is necessary to introduce also the concept of threads. In
C++ std::thread is the thread class representing a thread whose definition is shown
in listing 4.1.

import <thread >

std:: thread thread_object(callable , param_list)

Listing 4.1: Thread definition

Simply creating a thread object and passing parameters to it will release a thread
that executes the code specified by the callable. This callable code can be either a
function object, a lambda expression or a function pointer. The first step to do in
order to make Bambu understand this new keywords such as thread, future, promise
and the corresponding member functions is to include in its front-end the library
implementing this functionality so that GCC or LLVM can translate them in an
intermediate representation and then follow the usual flow. Once this is done, we
know that using the thread object, Bambu will activate the function call mechanism
for function pointers, but in the standard version the execution of the functions is
shown in the notification mechanism of figure 3.3 and so the caller before continue
its execution waits for the callee termination. The purpose of the threads is to allow
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the caller to continue its execution immediately after releasing the thread which
will execute another code in parallel, while the goal of futures and promises, in
addition to that of allowing the return of a value from a callee function, is to create
a synchronization point between caller and callee thanks to the get method provided
by the future class. This is exactly the behavior expected for the synthesized design
after introducing this features.

Since we have two functions which in a certain sense are connected to each other
because one, at a certain moment, will need the result of the other in order to
continue the execution, and the two are running in parallel, two different situations
must be handled. The case in which the caller terminate first and this means the
get method is executed first against the set value and so the caller waits the callee
because need its return value and the case in which callee terminate first, so set the
return value and terminate while, when the caller needs that value and call the get,
immediately receive it and so never waits. Figure 4.1 compares these cases in terms
of sequence diagrams, 4.1a is the case in which the caller terminate first and the red
line shows the time in which the caller is working in parallel with the callee while
4.1b is the case the callee terminate first.

(a) Caller terminate first (b) Callee terminate first

Figure 4.1: Comparison of sequence diagrams

There could be a third situation that in fact is a critical case. The software
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implementation of future and promise rely on locking mechanism to avoid the possi-
bility of having the get and set value functions executing at the same time resulting
in an unpredictable behavior. The mechanism implemented in hardware avoid this
critical case thanks to the bus, the communication protocol uses a bus to allow the
modules communicate and since only one at a time can use the bus even if the
modules try to get and set the value at the same time the bus manager will manage
this situation.

About the bus, in the implementation described in the previous chapter, it is
very simple and make the logic or between the inputs. In the proposed new method-
ology the problem is that maybe more than one module wants to access the bus to
communicate so it’s necessary to introduce a bus manager to manage the multiple
requests. This feature is discussed in the next chapter.

To obtain the desired behavior is not enough to make Bambu accepting the key-
words but this is just the first step, then the tool must understand the meaning of
them and as a consequence generate the correct synchronization graph. So also the
middle-end of the tool should be updated to obtain the correct result. The gener-
ated graphs are then given to the back-end that should be able to obtain the design
architecture without making changes.

FuncB(promise){

do_something

promise.set_value ()

}

FuncA(){

declaration of F&P

call FuncB(promise)

do_something

future.get()

do_something_else

}

Listing 4.2: Pseudo CPP code

call FuncB(promise){

sendParameters ()

startComputation ()

}

future.get(){

waitForValue ()

}

promise.set_value (){

notify ()

}

Listing 4.3: Pseudo code

Listing 4.2 shows the pseudo code of a program using futures and promises
and listing 4.3 is the translation of that code in terms of actions in the desired
architecture. Here the action of waiting for the returned value of the function called
is disconnected from the call itself but is activated when the main function needs
it so when the get is called, in the meanwhile before calling the get the caller can
perform other stuff instead of being blocked like in the standard version of the wait
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call mechanism. In the proposed architecture the set value notify a module that the
value has been set so when the get is called it is known that the value is already
available and the main has not to wait.

The purpose of this thesis is not to make the right changes to the tool to achieve
this result but to show that it is possible to apply futures and promises in the
context of high level synthesis and how it can be performed. Next section shows the
methodology adopted to get the result without introduce modification in the tool.

4.2 Bypassing tool modification

The tools that perform high level synthesis are projects of not indifferent dimensions
and which take care of performing quite complicated and intertwined tasks that
makes its understanding not easy neither fast to learn, especially if there is no
documentation for programmers. In this case, therefore, before attempting to modify
the tool itself a good alternative way is to test if the idea works, thus avoiding
realizing that you have lost a lot of time for something that is actually not feasible.

Since Bambu uses, to pars the input file, GCC or CLANG if we include the
standard library that implements threads, futures and promises it is not a problem
for them to translate the high level language into an intermediate representation
implementing the correct functionality. The problem raises because the tool plugin
that reads this intermediate representation doesn’t understand the whole set of
instructions generated by the compiler.

In the plugin what happens is that at every operation, if I have a simple one
like and or add operation there is a match one to one, if the operation is not simple
the plugin builds the expression that perform the same operation or if possible
decompose the operation in simple ones. At the end the intermediate representation
is very similar to the gimple GCC IR. Once the instructions are all simple operation
or expression understandable by the tool, it is able to translate it in Verilog code in
the next phases.

The plugin starts from the clang or GCC intermediate representation. When I
compile, clang or GCC they assume that the library is there, then it is the linker
that puts the program together with the library, if the library is not found it is the
linker that does not find it, Bambu has its own linker. Bambu when it starts puts
the object code dumped by the plugin and combines it with the libraries that are
in the same gimple format as the object code. So from the compiler’s point of view
it doesn’t matter that the code is written in C or C++.

All the libraries inside Bambu are written in C, and it does not use the standard
C library but uses libraries adapted for this purpose, that is not to support all
relevant C standards around a wide range of hardware and kernel platforms but are
focused on embedded systems and are much smaller than the standard one.
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Figure 4.2: Bypassing Bambu modification

For what has been said so far, if you try to introduce the standard C++ library
for threads, futures and promises it would not be a problem from the point of
view of the compiler which translates it into intermediate representation, but it is a
problem for the plugin that cannot understand some of the instructions generated
by the compiler.

For the reasons just explained, a minimal library has been created that imple-
ments the functionality of threads, futures and promises but sequentially, without
introducing parallelism, so that there are no problems for plugins to understand the
instructions generated by GCC or clang and another strategy is used to make the
final architecture follow a parallel flow of execution but we will talk about it in a
moment. The library is written in C++ and the code is provided in appendix A
and the analysis of the latter is done in the next chapter.

The library was not introduced directly into the tool, but to obtain the same
result an example from those available in Bambu was exploited and adapted, this
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example shows how it is possible to build an Autotools based project for the high-
level synthesis with Bambu. An exhaustive documentation about Autotools can
be found here [15], in our case is used to automatically create the .o files from a
library and a source file, this files .o are not object files in GIMPLE format but
are in the GIMPLEpssa format that is the one used by Bambu to start with. This
project then take this .o files and act as a linker to create a unique intermediate
representation and then the tool is called, with an option that allow to start the
synthesis process not from an high level specification but from a GIMPLEpssa file
format. In practice this allow to add libraries different from the ones already in the
tool exploiting some scripts and the Autotools suite. The provided example was
written to support libraries written in C so it was necessary to modify it according
to the Autotools specification.

As said previously the library introduced is sequential, and so inside the tool it
should be necessary to identify the blocks running in parallel and schedule it in that
way. Again this can be a future work to implement these functionality in the tool,
while in this work another approach is used. A post-processing of the verilog code
generated by Bambu modify the code introducing the modules needed to support
the features and make the necessary changes to the module already existing. The
whole process is shown in figure 4.2 and the introduced methodology are marked in
red.

In the next chapter an analysis of the library is done and is presented the post-
processing that introduces the modules and the main changes needed to make ev-
erything work.
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Chapter 5

Modification

5.1 The adapted library

HLS tools often start the synthesis from an intermediate representation generated
by compilers as Bambu does. Compilers do not always automatically understand
the sections of parallelizable code and for this reason it is up to the programmer
to specify parallelism directly in the high level code. Standard approaches to do
this is to use open libraries that support multi-threading or the standard libraries
introduced in some of the programming languages. Of course it is possible to specify
parallelism also in HLS tools, and depending on the tool there can be different
methodologies to do that. For example specify loop unrolling through vendor-specific
directives inside the code or doing a much more manual job you could use HLS to
get a module and then duplicate it and get the correct links by hand.

Therefore it would be a great advantage to have a tool that automatically man-
ages to synthesize a high level code containing parallelism, in this way even the
programmer would be free to write good code having fewer limitations. Usually
using threads is difficult to do without synchronization methods, in our case futures
and promises are exploited to obtain parallelism with a synchronization point.

As already said using the standard C++ library for threads, futures and promises
will generate an intermediate representation that is not understandable by the actual
Bambu implementation and moreover this representation is very big because to
manage parallelism in software there is need a lot of low level instructions and so
for example only a call to get method can generate hundreds lines of code.

Using a custom library that makes the C++ code to be sequential avoid to
modify the front-end of Bambu otherwise it would be necessary to take all the in-
struction generated by the compiler that the tool doesn’t already understand and
gives a meaning to it in order to obtain a corresponding hardware behavior. An-
other advantage in using the custom library is that the intermediate representation
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Figure 5.1: bypassing front-end modification

generated by the compiler this time is very small, because no parallelism is intro-
duced. Obviously from the functional point of view, the library must give the same
software result as using the standard one. Since no parallelism is introduced at this
step then Bambu should recognize and schedule the block to be executed in paral-
lel and as a consequence generate the correct synchronization graph to be given to
the back-end obtaining the correct architecture. So at the end of this process, the
functional result generated by the standard library is equal to the one generated
by the custom library and the synchronization graphs are the same if we extract it
from the software parallel program and from the generated architecture. Figure 5.1
shows the entire process.

As already mentioned the goal of this thesis is not to modify the tool itself and
so instead of modify the creation of synchronization graphs, we just let the tool
generate the Verilog code introducing the library so that the code is sequential and
then post-process the Verilog introducing the modules needed to achieve parallelism.

The code of the library is provided in appendix A.1, A.2 and A.3 and is organized
as follow. Listing A.1 is the header file that contains both the declaration of future
and promise classes with the relative member functions and the thread that is not
a class but simply a template function. This because here the only purpose of the
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thread is to call the function received through parameter, that is a function pointer,
in this way the wait call method discussed in chapter 3 is activated. We don’t need
the join method of the thread because our synchronization point is represented by
the get method and moreover since the library makes the program to be sequential,
when the main call the join we already know that the called thread is terminated.
The thread function is implemented as a variadic function so that can receive a
variable numbers of arguments.

The promise class template contains the public member functions set value and
get future so that can be called by outside the class and the private attribute retVal
that is the value contained by the promise object, the one that is obtained in case
a get is called on a future object. The future class template only has the public get
method and a private pointer that is a pointer of kind promise used to keep track
of which promise this future object is linked to.

Everything is put in the std namespace to make the library as similar as possible
to the standard one.

There is another reason why the threads are not a class but just a method, and
for the same reason there are no constructors in the future and promise classes. The
library in addition to providing the same functional result as the standard one, must
also be synthesizable by Bambu, and this is a limitation in the code construct we
can use in it. Bambu does not accepts constructors in the source code specification,
so instead of launching a thread as in the standard way, it’s enough to use it as a
function call. Listings 5.1 and 5.2 show the differences. One way to overcome this
problem would be to create a thread class without constructor and add a method
that starts the thread, while in the standard library the thread object starts as soon
as is created.

std:: thread threadObj(func ,

param);

Listing 5.1: Standard thread

std:: thread(func , param);

Listing 5.2: Custom thread

In the .cpp files there are the implementation of the functions specified in the
header file. In listing A.3 there is the implementation of the only thread function
that just call the received function passing the arguments to it. Listing A.2 shows
the implementation of future and promise member functions. Starting from the
promise class the get future method perform the linking between the promise object
that call the method and a future object which reference is then returned by the
function. So from now a future object has the attribute fPromise pointing to a
promise. In the standard library the get future method doesn’t return a reference
to a future but it returns a future object by value. Again due to a code limitation
is not possible to return objects by value but only by reference. In terms of calling
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it from a function the difference is to use the asterisk to retrieve the object pointed
by the pointer, this is shown in listing 5.3.

// Standard get_future ()

std::promise <int > prom;

std::future <int > fut = prom.get_future ();

// Custom get_future ()

promise <int > myp;

future <int > myf = *(myp.get_future ());

Listing 5.3: get future()

The set value method receive an input that is the value to set in the retVal
attribute of the promise class. This value set by the promise is then retrieved
calling the get from the future object that was previously linked to it.

Before introducing the modification on the Verilog code it is necessary to under-
stand which is the architecture generated by Bambu when using this library.

5.1.1 Generated design

Appendix A.4 shows the main function that was synthesized using Bambu for the
purpose of showing how the library is translated in hardware components.

Futures and Promises objects are translated in array-1D, that stores the return
value in the case of a Promise object and an address in case of a Future. This address
is the address of the Promise the Future is linked to, thanks to get future(). Array-
1D modules are used to store something and they have load and store operation.
Bmemory-ctrl are modules used to control the array-1D, so thanks to master and
slave signals they can load something from the array setting the oe-ram signal equal
1 (read operation) or can store something inside the array setting we-ram signal
equal 1 (write operation). Array-1D has an address associated to it to allow the
bmemory-ctrl targeting one of them.

All the member functions of the classes corresponds to a module in the gener-
ated architecture. The get future module contains an array-1D, in which is stored
the address of another array corresponding to a Promise in the top level mod-
ule called start point in this example. This array is copied thanks to the inter-
nal bambu memcpy from the get future module to another array that represents a
Future. So at the end when the get future is executed in the data path of the top
level module there are two array-1D, a Future pointing to a Promise.

The set value module is located inside the funcA data path, where there are also
other modules to perform the wait call mechanism as discussed in chapter 3 such as
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the input register and the status register. Set value contains a bmemory-ctrl module
that simply perform a write operation to a Promise array object, this means a store
to the array that corresponds to setting the promise value.

Remembering that the get is called from a future object it performs two read
operations because the value to being retrieved is not in the future but in the
promise, so the first read is to obtain the address of the promise that is located in
the array corresponding to the future and the second read, reads the value contained
in the promise.

All the modules know the address of the others or because they read it from
arrays or because are given as constant value.

The thread is only used to call the function thorough function pointers and so
activate the wait call using the builtin mechanism.

The complete architecture schema is showed in figure 5.2. The bus merger here
performs the logic or between the input because thanks to the scheduling is assured
that only one module at a time uses the master and slave chain.

There is an option in Bambu that if active generate some dot files that are
a graph description language files containing the representation of all the graphs
used by the tool to perform the synthesis. Figure 5.3 shows the scheduling of the
start point function and is important to notice that the tool schedules the thread
and the funcB to be executed one after the other while our goal is to execute the
thread in parallel with other functions.

The previous example was the simplest one, in which there was only one couple
of future and promise and one thread. Synthesizing a more complicated one where
there are two couples of future and promises with two threads we obtain the following
result. The get future module now contains a bmemory-ctrl that control a temporary
array in the top level module data path and the operations performed calling the
module are a write in this temporary array writing the address of a promise array and
then the internal Bambu memcpy copy this value in the corresponding future array,
calling for the second time the get future the same operations are performed unless
that the address written in the future is now the address of the second promise. So
a general rule for the number of array-1D in the data-path of the top level module
is 2*F&P couples + 1 where one is the temporary array.

For what concern the set value, since now is used by two functions Bambu instead
of duplicate it, instantiate in the data-path of the top level module one copy of the
set value and the functions that use it, have a proxy that calls the instantiated
module providing all the information needed to complete its work. In fact the proxy
send to the set value module the address of the promise, the value he wants to set
and a start signal. The proxy merger performs the same action as the bus merger.
A schema of this architecture is showed in figure 5.4.

Finally the get and the thread modules do not change respect to the first example.
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Figure 5.2: Architecture example

This conclude the description about the architecture generated when the pro-
vided library is used. The next sections describe the modules introduced in the
design explained here to obtain the desired behavior.

37



5 – Modification

Figure 5.3: Start point schedule
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Figure 5.4: Architecture with proxy
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5.2 New modules

Starting from the already implemented wait call method of Bambu, different strate-
gies could be applied to parallelize the execution of some functions according to
the high level specification. Obviously the less the modules generated by Bambu
are modified the better is so that in future it should be easier to implement this
methodology inside the tool. An important observation is that the goal is not to
optimize as much as possible the parallelization of the tasks, but to parallelize the
functions that the programmer writing the high level language file wants to execute
in parallel through the thread, future and promise features of C++. So it will be
up to the programmer to exploit such features to optimize the code.

Having said that it is clear that the scheduling and the actions performed before
and after the calls to thread methods are not modified, so for example the get future
module is not touched respect to the one generated by the tool. The gets are
scheduled by Bambu in sequences so only one get module is enough to manages all
the get calls executed, moreover since this is the synchronization point it is necessary
to not execute them in a different order it’s specified in the description. Imagine
more than one thread executing different functions are used in the source code,
depending on how many clock cycles are needed to execute the functions there will
be cases in which two or more set value are executed at the same time so differently
from the get more than one set value module should be needed. As already said
Bambu uses some proxies and only one set value module as showed in figure 5.4
so the bus manager proxy that is introduced in the next chapter manages multiple
calls at the same time.

In Bambu controllers are organized as finite state machines, so they have states
and for each state perform some actions that then are executed by the data-path.
To make the threads run in parallel it is enough to modify the controller of the top
level module, that has not to wait for the termination of one to start the other, and
so instead of waiting on a variable in the same state, it will go directly to the next
state.

Now we want that if the value inside the promise object is already set, the get has
to receive this value otherwise blocks the execution of the main. A promise object
is translated in an array 1D and to obtain the desired behavior should be modified
for example introducing a flag that is one if the value is set or zero if not so that the
get can know if wait or read the value and let the main continue the execution. But
in order to not modify the modules that Bambu generates the following strategy
is used. The promise objects is now a module (promise FU) containing the array-
1D used as usual to store a value and a new module called notify caller p, both the
modules uses the master and slave signals so inside the promise FU also a bus merger
is instantiated. The derived architecture is showed in figure 5.5.

The notify caller p is build as a finite state machine and the code is provided in
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Figure 5.5: Promise FU module

appendix B.1. This module’s goal is to keep track of the state of the value in the
array-1D and to let the get module know if the value has already been set or not yet.
Here two situations can happens, one between set value and get is executed before
the other, so the initial state of this module check this possibility, and if intercepts
first the set value, the notify caller p goes in a state while if the get is executed first
it goes in another state. Doing this the module knows which operation has been
executed first and so in the case of the set value the second operation is the get and
this means that the get is not waiting because the value is set, while in case the get
is executed first the second will be a set value and this means to wake up the get
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Figure 5.6: getManager module

module and provide the correct value to it.

The second module that was introduced in the architecture is called getManager
and is instantiated inside the data-path of the get in which there is the bmemory-ctrl,
the bus merger and other modules needed, the design is showed in figure 5.6.

Again this module is implemented as a finite state machine and the code is in
appendix B.2. Is controlled by the controller of the get module and is started after
the first read operation of the get. As already discussed the get performs two read
operations, the first one can be executed without controls because it just retrieve the
address of the promise from a future array while the second can be performed only
if the value in the promise has already been set. So before executing the second
read this module starts and performs a write operation, through the master and
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slave signals, to the notify caller p meaning that the get is executed, then waits for
a message from the notify caller p that can arrive in the same instant if the set has
already been executed or in the future if not.

A pseudo code of the getManager and notify caller p is showed respectively in
listing 5.4 and listing 5.5.

write(notify_caller_p_address);

step2:

if(notify){

//this signal will start the get

done;

}

else

goto step2;

Listing 5.4: getManager pseudocode

step1:

if(set_value)

goto step2;

else if (getManager_write)

goto step3;

else

goto step1;

step2:

if(getManager_write)

goto step4;

else

goto step2;

step3:

if(set_value)

goto step4;

else

goto step3;

step4:

notify_getManager;

Listing 5.5: notify caller p pseudocode
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5.3 The bus architecture

The modifications introduced until now are enough to manage parallelism in Bambu
unless for the bus system. A bus is already implemented in the tool and everything
works well if the calls are executed in sequence, because it is sure that only one
module at a time will use the master and slave signals so implementing a bus that
perform the logic OR between the inputs is enough.

Figure 5.7 shows the bus architecture implemented in Bambu. There is one
bus merger for each signal and the input that receives is the union of all the signals
coming from the different modules, so for this example the Sout Rdata ram is 384
bits because there are 12 modules using the bus each with a 32 bits signal. This
architecture cannot work in a parallel scenario because how could they be synchro-
nized to output the input number one rather than input number two? Imagine this
situation, a module wants to perform a read operation, so the Mout oe ram signal is

Figure 5.7: Bambu bus architecture
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set to one and the other needed signals have some values that we don’t care, another
module at the same time is asking for a write operation so this time its Mout we ram
is set. At this point what happens is that the bus managing the read signal request
will output one because looking at the input there is only one module that whats
to read, and the same thing happens to the write bus and so at the end the output
master and slave signals are meaningless because is like a module is asking for a
read and write operation at the same time.

To avoid this kind of situations the following strategy was implemented. Instead
of having one bus merger for each signals, there is only one, and for each module
that uses the master and slave signals there is a new one called compacting FU that
takes in input the signals used by a module and output the union of these following a
precise order showed in figure 5.8 so that when the bus will output a signal, another
module called unzip FU takes this and again unzips the signal that was compacted
by the compacting FU module. Doing this it is not necessary to modify any of the
modules unless for the bus merger that obviously has to be modified to manage
multiple requests but the details are provided in the next section.

A schema of the new architecture is showed in figure 5.9. Notice that now the
bus merger takes in input the union of all the signals coming from the compact-
ing FU modules that are associated to each of the module that uses the master and
slave signals. The compacting FU module creates a fixed length output and in case
a module has for example only slave signals, the master are set to 0 and the output
of the compacting has the same length as a module that uses both masters and
slaves. So the problem explained before doesn’t exists anymore because think about
the same example, if the bus decide to output first the read operation it will output

Figure 5.8: Compacting FU order
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Figure 5.9: New bus architecture

a signal with Mout oe ram equal to one and Mout we ram equal to zero thanks to
the work of the compacting FU.

The code of these two modules is provided in appendix B.3 and B.4. This was the
preliminary phase to now in the next section provide an overview of the bus manager
that is the last step to obtain a working architecture supporting parallelism thorough
thread, future and promise.

5.3.1 Bus manager

Since we want to parallelize the functions called by the thread method and then
synchronize them through futures and promises the actions executed by the archi-
tecture generated by Bambu before the call to the thread functions are not modified.
So even if a bus manager is introduced in the architecture, the old bus merger is kept
and thanks to a signal is possible to switch from the old to the new. The new one
is activated just before the call to a thread, so before the parallel execution starts.
The wrapper module is called bus manager and it contains both implementations
and the signal to select which bus to use is called busSelector. The bus merger is
implemented using just a function in Verilog, while to implement the bus manager
a controller and a FIFO buffer are used and instantiated inside the bus manager
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Figure 5.10: Bus manager architecture

module. The complete architecture excluding the bus merger is showed in figure
5.10.

In the already existing bus system a bus cycle consist in a master doing a request,
which keep the signals value up until it receives a response of operation complete
from the slave. So also with the bus manager the goal is to keep in output the
master signals until the slave responds.

The controller bus manager checks if the buffer is empty or not, when it is not
empty it reads from the FIFO a value that corresponds to the first master request
registered in the buffer. Then it is looking for the slave response checking at all the
slave signals entering in the bus module if is not zero. Found the slave response it
is looking again in the FIFO buffer for the next master request.

The FIFO buffer is able to fill itself with new values, in fact it receive the input
coming from all the modules that uses master and slave signal and filter the master
signals that are different from zero and put it in the buffer. In the meanwhile it can
react to a read request done by the controller. The FIFO dimension is twice the
number of the modules that use the bus and this guarantees with a margin that the
buffer will never been full, since each module doing a request through the bus stays
blocked until the slave response, even in the worst cases is not possible to exceed
the FIFO dimension.

A clarification must be made regarding the DataRdy signal, the one which is in
charge of notify the master that the operation of reading or writing was successful.
In the architecture implemented by Bambu the dimension of this signal is one bit,
because by construction is assured that only one master at a time is doing a request
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and so the DataRdy signal for sure is for that master. In our case is not like that
but maybe more than one master is waiting for a slave response, if the signal is
again one bit long both the master receive it and the two may understand that the
request they done is successful and so both continue the execution, while a response
from a slave is associated to one master request and not more.

So it was necessary to modify the meaning of this signal enlarging it to 32 bits,
now it is a signal specifying the address of the slave that is notifying the master that
the operation is successful. To clarify it, if a master with address X made a request,
the slave with address Y when it has completed, writes Y in the DataRdy signal to
target that particular master that made the request, if other masters are waiting for
a slave response will ignore that. For construction there will never be two masters
waiting for the same slave response.

The Bambu architecture is very modular, and regarding the bus merger it is
instantiated in each data-path involved in the function call. Since we add parallelism
only in the top level module the bus manager is instantiated in the data-path of that
module while for the others the bus merger is kept.

The complete code of the bus manager can be found in appendix B.5.

5.3.2 Proxy manager

As already discussed in section 5.2 this component is needed to make the system
properly works because there can be situations in which more than one set value is
performed at the same time so like the bus manager also here is needed a sort of
manager that let pass one request at a time.

Since the mechanism of the proxy is different from the communication protocol
adopted by the bus a different, but with some common point, strategy is used to
create the arbiter. The compacting and unzip modules are adapted to this situation,
so an architecture similar to the previous one is obtained and is showed in figure
5.11.

Each function that uses the set value module is linked to a modified version of
the compacting FU and then all these modules are linked to the proxy manager that
again choose which function can use first the set value module. So the output of the
manager goes to an unzip FU module which output is the input for the set value.
When the operation of setting is complete the done goes, in addition to the calling
functions, through the manager so that it is aware that another request can be
satisfied.

Here the arbiter is simpler than the bus manager, it has only one state in which
looks for requests and when one is found is checking the done signal coming from
the set value and when it is set starts again founding a request.

This functionality must be implemented cause the architecture generated by the
tool but since the set value module is not so complicated and not so area consuming
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Figure 5.11: Architecture with proxy manager

probably it should be better to avoid using proxies but directly implement the
set value module inside each function using it.

Again the code of this module is showed in appendix B.6.
This section concludes the changes made to the verilog code generated by the

tool, and in the next chapter the results obtained using this system are discussed.
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Chapter 6

Discussion

6.1 Case studies

One of the case studies chosen is not a well-known example used in many case study
works concerning high level synthesis, but is a custom example specifically created
to show in a simple way how the introduced methodology works. This choice is made
for two reasons, first of all to demonstrate that futures and promises can be applied
in an high level synthesis context. If the methodology is applied to parallelize a
FIR filter more than an histogram equalization process is not important; the most
relevant aspect is the execution flow of our system. Second the methodology is not
implemented automatically by the tool. Starting from the Verilog code generated,
it is implemented by hand to demonstrate that it works, so using a complex system
could be very difficult and time consuming to apply all the needed modification to
the code.

The C++ code of this first case study is showed in appendix A.5. The idea is
to have some functions that are not dependent on each other so that the execution
flow can be parallelized applying the methodology. Bambu rely on the GCC or
LLVM compiler concerning code optimization. If the compiler is able to generate an
intermediate representation where section of code that can be executed in parallel
is already identified, there would be no need of these constructs to parallelize the
execution. Given to Bambu the provided example, it is not able to understand
that the functions can be executed in parallel and so it make sense to apply future
and promise in this case. The functions chosen implement a for loop and this is an
important point because in this way it’s possible to control the execution time of any
function and changing this time is possible to made some considerations that will
be done in the next section. Moreover the loop is made in a way that the compiler
cannot optimize, otherwise there are cases in which a loop of hundreds of iterations
are executed in one clock cycle. Listing 6.1 shows an example of loop that can be
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optimized by the compiler and for any value of y the execution time will always be
one clock cycle.

for(y = 0; y < iterations; y++)

result += varA;

//the above loop becomes result = iterations*varA

Listing 6.1: Loop optimization example

The case study taken in consideration is a quite complete example which explores
different application cases of futures and promises, in fact we test the case in which
a function receive more than one promise and execute more than one set value.
The main function called start point has three future and promise objects and so
execute three get. Having in mind this example, the others can be obtained by
replicating the current architecture, since Bambu is very modular so the system can
change in number of elements it has, but not in the way they are created and linked.
A comparison schema between the execution flow of this example implemented by
Bambu with and without the methodology is provided in figure 6.1 and the next
section shows some results obtained in terms of execution time and area.

The second case study taken in consideration is a FIR filter, in which the multi-
plication of coefficients is parallelized by the methodology. Instead of executing a for
loop performing the multiplication in one thread, it is split in three and is executed
by different threads, then synchronized through the get method. The code of the
FIR filter is given in listing A.6. As can be noted, the three filter mul functions
have different definitions and names, it is a strategy to make Bambu creating three
different modules so that we can have effective parallelism, the same consideration
is made for the set value function. Another strategy adopted is to split the array
named insamp, that holds the input samples in three arrays, so that every function
can work in parallel on a different component avoiding to wait for the bus access.
In this way there is a splitting in the control and data bus, since every function
has its own bus line to access the array. This strategy is needed to not congestion
the bus manager and to make more efficient the mechanism of parallelization. The
example was taken from the ones provided by bambu and adapted for our case[16].
A discussion about the result obtained with this case study is provided in the next
section.
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Figure 6.1: Comparison execution flow

6.2 Results

Bambu is a tool that given a C or C++ specification translate it in Verilog or
VHDL but cannot be used for simulation and implementation goal. So the Vivado
HLx 2019.1 tool [17] was used for this purpose, and thanks to which the results were
obtained.

Three variations of the case study are taken in consideration: the one generated
by the tool without introducing any parallelism, the second variation is the intro-
duction of the wait call mechanism in the standard version, and the last one is with
the new methodology introduced in this work.

Observe that the version with the wait call is not very significant in this case
because an improvement in performance, particularly in the area usage is obtained
when testing this mechanism with examples in which there are multiple calls to
the same function by different modules, which is not our case. The study of this
mechanism has already been carried out [14], for this reason we have not gone into
this aspect in detail.

52



6 – Discussion

6.2.1 Custom sample

From the functional point of view the new methodology introduced is perfectly
working, in fact it was tested with some simulations giving different input and
obtaining the correct result for all of them compared with the results of the standard
version.

Established that the result provided is correct it was possible to analyze the
qualitative aspect. Table 6.1 shows the execution time in terms of clock cycles of
the three versions as the number of iterations change, so for example 100i means
that each function perform a loop of 100 iterations. The simulations was done using
a clock frequency equal to 50MHz obtaining a clock period of 20ns.

0i 1i 10i 100i 1000i 10000i 100000i 1000000i
Standard 4 8 44 404 4004 40004 400004 4000004
Wait call 126 130 166 526 4126 40126 400126 4000126
Parallel 409 363 372 661 3432 30432 300432 3000432

Table 6.1: Timing results of the three versions in number of clock cycles

Analyzing the results it is possible to say that in terms of time is preferable to
use the standard method when the number of iterations, and so in general when the
execution time of such functions is lesser than a certain threshold. If the functions are
doing something that require more time, the proposed methodology is a way better
than the other two. This is something that could be predicted, in fact we already
know that introducing this method there is an overhead due to the communication
protocol and the bus manager, and to get an improvement in the final execution
you have to overcome this overhead making the functions be executed in parallel as
long as possible.

To better explain this concept let’s take the numbers of the table 6.1, in particular
let’s consider the iteration 100. In our there are four loops and each loop to complete
an iteration uses one clock period. Now in the standard version the four loops are
executed in sequence, this means that the final execution time considering only the
loops in terms of number of clock cycles is:

1× 100× 4 = 400

Since other operations are needed to retrieve the result, the simulation lasts 404
clock cycles and we can say that an overhead of 4 is added to the execution of the
standard version. Considering the new methodology again, the number of iterations
is 100, here again there are four loops but they are not executed in sequence, two
of them are executed in parallel and the other two in sequence so at the end we
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have to considering three loops instead of four. We obtain a number of clock cycles
considering only the loops of:

1× 100× 3 = 300

So if we consider only the execution of the functions, there is already an im-
provement but due to the overhead that in this case is about 661 − 300 = 361 our
methodology is not convenient in this case.

Using a bit of mathematics it’s possible to calculate which is the minimum execu-
tion time of the functions to obtain an improvement using the methodology proposed
against the standard one. In reality it is not the execution time of the functions
to overcome a given threshold but is the time in which two functions are executed
in parallel that must overcome the threshold. Suppose you are parallelizing two
functions, one lasts 1 clock while the second one lasts 100, the gain in executing
them in parallel respect to do them in sequence is just 1. If both last 100 clock
cycles the gain is of 100. So if this methodology was implemented in Bambu, the
tool to decide if is better to use the standard or the new version should make this
consideration first.

The relation that must be satisfied in order to privilege the new methodology
against the standard one is Ov < tp that is the overhead introduced by the method
must be lesser than the parallel execution time.

Some numbers that can draw attention are shown again in table 6.1 regarding
iterations zero and one, the new methodology requires more time to execute zero
loop than one and this could seems a bit odd but thinking about how the method
works there is an explication. Studying the trend of the three versions more in detail
in the small numbers of iterations, it is possible to conclude that differently from
the other two versions, the overhead introduced by the methodology is not fixed but
depends on the number of iterations and so on the execution time of the functions.
A graphic of this trend is shown in figure 6.2.

Since we have a FIFO queue that manages the master requests, it is possible
that a master waits zero time or a time that can be more or less long. So we can
differentiate between two limit cases, the one in which all the masters waits zero
time that is the best scenario in terms of execution time, and the case in which the
summation of the waiting time of all the masters is maximum, and this is the worst
case. It is evident that in the case with zero iteration the bus is more congested
than the case with one iteration.

Figure 6.3 shows that after a certain number of iteration the overhead introduced
by the bus manager becomes fixed.

The goal of this work was to demonstrate the feasibility of application of futures
and promises in the high level synthesis context and an important aspect related to
it, is the time analysis that we already discussed. Since a previous work[14] already
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Figure 6.2: Timing for few iterations

talks about the area comparing the standard architecture generated by Bambu, we
will not focus to much on that. Moreover this example was done with the idea
to collect information on the execution time more than the area aspect and is not
appropriate to discuss about the latter. Respect to the wait call method the new
methodology introduce some other modules to manage the parallelism and so it is
obvious that there is an increment in the area utilization. Table 6.2 reports the
results for the three versions.

LUT FF BUFG
Standard 549 205 1
Wait call 2394 1883 1
Parallel 3524 1990 2

Table 6.2: Area results of the three versions
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Figure 6.3: Timing for high number of iterations

With this case study, the area utilization is a way lower for the standard version
with respect to the others two, due to the compiler choice to inlining all functions.
In fact, inlining functions can generate an architecture that is bigger if the functions
are big and are called many times, while can lead to a smaller system in case of small
functions called few times because then the schedule and the optimization phases can
better optimize the inlined function body considering it inside the calling function.

In general thanks to the previous work done on the wait call mechanism, it is
possible to say that if the same function is called many time from different callers,
there is a significant gain in the area using the wait call because it will instantiate
only one instance of the called module instead of one for each call.

For our methodology is true that we use the same wait call mechanism to call
the functions but since we want parallelism, it is not possible to instantiate only one
module for all the call to it, otherwise we don’t obtain a real parallelism. It should
be necessary to introduce a method that evaluate the trade off between area and
time. Let’s suppose having one function called ten times using threads, futures and
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promises. The programmer through an option must have the possibility to choose
if the tool has to synthesize the high level specification as it is and so having a
complete parallelism instantiating ten equal modules and executing them in parallel
so using more area but saving time or to let the tool optimize the system evaluating
a good trade off between the two.

6.2.2 FIR filter

Ideally the same considerations made for the previous example can be done also
for the FIR filter, because the case of application is quite the same, there are three
functions executing a for loop, this time for a fixed number of iterations. A difference
is that now the function creating futures, promises and using the threads is called
inside a for loop in the main, so is like calling the parallel methodology a certain
number of times. The final overhead that before was calculated one time, now must
be multiplied by the number of times the method is called in the for loop, 800 in
this case. As already mentioned, the FIR example was taken from the one provided
by bambu[16] but it was necessary to make some modification in order to obtain a
system functionally working and also more efficient. In the original version there
is only a loop that performs the multiplication and interacts with a global array
containing the input samples. In the parallel version it was necessary to split the
global array in three, one for each function, and create separate bus line in order
to access these, otherwise since there is no concept of parallelism in bambu, it uses
a unique bus line to access the arrays causing an high congestion of the bus. In
previous case study this problem did not arise since no global memory was used,
so the only purpose of the bus was to manage the control signal used to allow the
parallel execution. Here there is a separation of control and data signals to relax
the bus overload and have a gain in the execution time. For this example it was
necessary to modify the high level language program to make bambu generating an
architecture functionally working and optimized. Theoretically, if bambu had these
concepts, it should be able to automatically perform this code optimization hiding
the details to the programmer that could code without thinking too much at these
kind of problems.

Let’s focus now on some timing results. The times collected in terms of clock
cycles are showed in table 6.3 and are now discussed.

Clock cycles
Standard 253603
Parallel 413591

Table 6.3: Timing result fir filter
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For what concerns the standard version we have the main that calls 800 times
the firfilter function that has a loop of 63 iterations each lasts 3 clock cycles, one is
used to load the two values of the global array, one for the multiplication operation
and the last for storing the result. The shift of the global array is performed at the
end of the function and here again there is a for loop of 63 iterations each lasts 2
clock cycles, one load and one store operation. In addition outside the loops, there
are other 2 clock cycles. Having this numbers we obtain:

800× (63× 3 + 63× 2 + 2) = 253600

The same considerations can be done for the parallel version with the difference
that now we have to consider the overhead introduced at every iteration of the main
loop and that there are three functions executing the loop in parallel, so each loop
is of 21 iterations instead of 63 as previously said, obtaining the following formula:

800× (21× 3 + 63× 2 + 2 +Ov) = 152800 + 800×Ov

This falls into the cases previously showed in which is not convenient applying the
methodology, cause the overhead introduced in a single iteration of the main loop
is higher than the gain we have in executing the functions in parallel. Each function
executed by a thread is too short in terms of execution time to see a gain. it should
be possible to see an improvement by increasing the size of the filter window, causing
an increment in the execution time of for loops and also increasing the number of
threads that run in parallel. But again the high level synthesis tool should make
some considerations also in terms of area before saying which version to use, taking
into account that more threads means more area.

A last consideration should be done on this case study. The main operation
performed by the functions that are executed in parallel is the multiplication between
the coefficients and the input samples, this operation acts on integers, and bambu
assumes that it is computed in one clock cycle. In some real cases, it is possible
that for designing reasons this operation can lasts more than one clock cycle, or
that instead of having a multiplication between integers, real numbers are involved
and so with high probability, is not possible to execute it in only one clock cycle.
Figure 6.4 shows the trend of the execution time referred to the standard and parallel
version increasing the time required to perform the multiplication. It is possible to
see that if the multiplication required more than six clock cycles there would be
an improvement in the performance of the FIR filter execution time. This is in
accordance with the results obtained in the first case study, in which varying the
duration of the parallel functions at a certain moment the gain obtained by the
parallel execution against the sequential one overcome the overhead introduced by
the methodology.
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Figure 6.4: Execution time of fir filter, varying the mul clock cycles
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Chapter 7

Conclusions

7.1 Final considerations

This work has presented a methodology that introduce the features of the C++
futures and promises in the frame of the high level synthesis. To obtain this result,
the functionality of the tool Bambu was exploited, that is able to synthesize function
calls through function pointers.

The strategy used to test the method, without entering in the implementation
details of such a tool is to use an autotool project to link the library implemented
to support threads, futures and promises, still following a sequential execution flow
and then modify the generated Verilog introducing the needed modules to support
the parallel execution.

The benefits produced by introducing this synchronization method for the threads
are over than the execution time that is reduced. Other benefits are the widening
of the input language that the tools can accept, and so as a consequence the more
confidentiality of the high level programmer that can exploit better its capability of
writing codes. Moreover if in future this methodology will be implemented inside
the tool itself, it could be possible to reduce the time in creating the synchronization
graph that are the starting point of the tools to then produce the working architec-
ture. This graphs could be extracted faster because of the well known schedule and
synchronization method introduced by futures and promises.

The final conclusion is that the basic concept was introduced and a working im-
plementation of that is provided. Since only two case studies were taken in consid-
eration, even if they care about different situations of usage of futures and promises
it is not possible to conclude that the method works for every design until more and
more testing will be produced. Since for now the implementation of such a method
is not automated, a better choice could be implementing first the method in the
tool; then conduce more test on other case studies. However since the general idea
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and a first implementation is provided there should be more effort in verification
and testing of the methodology to find and solve potential bugs.

7.2 Future work

The library proposed in this thesis is very minimal and could be improved to make
it much more similar to the standard one, implementing also some errors checking.
This library should be put directly inside the tool Bambu so that it is possible to use
it without the need of an autotool project. Then for what concern the methodology
introduced, it can be the starting point to implement it in a way that the tool can
automatically generates the desired architecture and test with more different case
studies if the proposed solution can be adapted to all the cases of usage of futures
and promises.
Moreover it should be possible to introduce some strategies that get an improvement
in the execution time due to the overhead saving some clock cycles. Even saving
very few clock cycles in the control sequence that enable the methodology to work,
in some contexts can have a big impact, think about the FIR example, in which the
methodology is called inside a for loop, if that loop has a huge number of iterations
the gain in reducing the overhead time is very significant.

7.2.1 Async

Async is a function introduced to simplify the usage of the futures and promises fea-
tures, in fact using that function it is possible to achieve the same result managing
only the future object, while the rest is automated. Async runs a function asyn-
chronously and returns a future object, then when the called function terminates
and maybe return a value, this value is automatically set in the future object, and
can be retrieved by the main with the get method. So with Async there is no need
of managing promises and threads but just futures.

template < class Function , class ... Args >

async( std:: launch policy , Function && f, Args &&... args

Listing 7.1: async

Listing 7.1 shows the function template definition, in which policy can be
std::launch::async or std::launch::deferred. The first one means that the function f
is launched in a separate thread and it is executed independent of the main thread
so the main thread continue to execute. std::launch::deferred with this policy the
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function f is executed by the main thread only when the get is called on the future
object.

Without going more in depth in the async function, it is possible to say that
on the bases of what achieved in this work, it should be possible to implement
the function in the high level synthesis context, in fact the async only mask some
behaviors that have already been implemented. It could also be easier with respect
to using threads, futures and promises because there will be the need to map only
the async function in doing what has been done using threads and promises while
the same meaning is assigned to future objects.
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C++ library code

Listing A.1: Library header

#ifndef MYLIB_HPP_

#define MYLIB_HPP_

namespace std {

// forward declaration

template <class P>

class promise;

template <class F>

class future;

template <class T, class ... _Args >

void thread( T (*f)(_Args ... __args), _Args ... __args);

template <class P>

class promise {

P retVal;

public:

void set_value(P val);

future <P>* get_future ();

};

template <class F>

class future {

promise <F> *fPromise;
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public:

F get();

};

}// namespace std

#endif

Listing A.2: future and promise class

#include "FP.h"

namespace std {

// //////////////// FUTURE /////////////////////

template <class P>

future <P> tmp = * (new future <P>);

template <class F>

F future <F>:: get(){

return this ->fPromise ->retVal;

}

// //////////////// PROMISE ///////////////////

template <class P>

void promise <P>:: set_value(P val){

this ->retVal = val;

}

template <class P>

future <P>* promise <P>:: get_future (){

tmp <P>. fPromise = this;

return &tmp <P>;

}

// ////////////////////////////////////////

// explicit instantiations

template class promise <bool >;

template class future <bool >;
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template class promise <char >;

template class future <char >;

template class promise <signed char >;

template class future <signed char >;

template class promise <unsigned char >;

template class future <unsigned char >;

template class promise <int >;

template class future <int >;

template class promise <unsigned int >;

template class future <unsigned int >;

template class promise <short int >;

template class future <short int >;

template class promise <unsigned short int >;

template class future <unsigned short int >;

template class promise <long int >;

template class future <long int >;

template class promise <unsigned long int >;

template class future <unsigned long int >;

template class promise <long long int >;

template class future <long long int >;

template class promise <unsigned long long int >;

template class future <unsigned long long int >;

template class promise <float >;

template class future <float >;

template class promise <double >;

template class future <double >;

template class promise <long double >;

template class future <long double >;

}// namespace std

Listing A.3: thread class

#include "FP.h"

namespace std{

template <class T, class ... _Args >

void thread( T (*f)(_Args ... __args), _Args ... __args) {

(*f)(__args ...);
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}

// //////////////////////////////////////

// explicit instantiations

template void thread <void , promise <int >*, int >(void (*f)(promise <

int > *prom , int a), promise <int >* prom , int a);

template void thread <void , promise <int >*, promise <int >*, int , int >(

void (*f)(promise <int > *prom , promise <int > *prom1 , int a, int b)

, promise <int >* prom , promise <int > *prom1 , int a, int b);

}// namespace std

Listing A.4: Example 1

#include "FP.h"

using namespace std;

void funcA(Promise <int > *prom , int varA){

int res = 0;

for (int i = 0; i < varA; i++){

res += varA+i;

}

prom ->set_value(res);

}

int funcB(int varB) {

int res=0;

for (int i = 0; i < varB; i++)

{

res += varB+i;

if(res > 12)

res+= 2;

else

res+= 3;

}

return res;

}

int start_point(int varA , int varB)
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{

int res , var;

Promise <int > myp;

Future <int > myf = *(myp.get_future ());

thread (funcA , &myp , varA);

var = funcB(varB);

res = var + myf.get();

return res;

}

Listing A.5: Example 2

#include "FP.h"

using namespace std;

void funcA(promise <int > *prom , promise <int > *prom1 , int varA , int

varAa){

int res = 0;

int res1 = 0;

for (int i = 0; i < varA; i++) {

res += varA+i;

}

for (int i = 0; i < varAa; i++) {

res1 += varAa+i;

}

prom ->set_value(res);

prom1 ->set_value(res1);

}

int funcB(int varB) {

int res=0;

for (int i = 0; i < varB; i++){

res += varB+i;

}
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return res;

}

void funcC(promise <int > *prom , int varC){

int res = 0;

for (int i = 0; i < varC; i++) {

res += varC+i;

if(res > 12)

res+= 2;

else

res+= 3;

}

prom ->set_value(res);

}

int start_point(int varA , int varB , int varC , int varAa)

{

int res , var;

promise <int > myp;

future <int > myf = *(myp.get_future ());

promise <int > myp1;

future <int > myf1 = *(myp1.get_future ());

promise <int > myp2;

future <int > myf2 = *(myp2.get_future ());

thread (funcA , &myp , &myp2 , varA , varAa);

thread(funcC , &myp1 , varC);

var = funcB(varB);

res = var + myf.get() + myf1.get() + myf2.get();

return res;

}

Listing A.6: Parallel FIR filter

#include <stdio.h>

#include <stdint.h>

#define _USE_MATH_DEFINES
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#include <array > // array

#include <utility > // index_sequence , make_index_sequence

#include <cmath > // sinf ,cosf

#include <cstddef > // size_t

#include <unistd.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <cassert >

#include "FP.h"

using namespace std;

// maximum length of filter than can be handled

#define FILTER_LEN 63

#define array_length 21

// arrays to hold input samples

int16_t insamp0[ array_length ];

int16_t insamp1[ array_length ];

int16_t insamp2[ array_length ];

void filter_mul(Promise <int > *prom);

void filter_mul1(Promise <int > *prom , int x);

void filter_mul2(Promise <int > *prom , int x, int y);

template <int filter_len >

class firFixedClass

{

constexpr static short int compute_coeff(size_t index)

{

// parameters and simulation options

float fc = 0.20; // normalized cutoff frequency

// generate time vector , centered at zero

float t = (float)index + 0.5f - 0.5f*( float)filter_len;

// generate sinc function (time offset in ’t’ prevents

divide by zero)

float s = sinf (2* M_PI*fc*t + 1e-6f) / (2* M_PI*fc*t + 1e-6f)

;

// generate Hamming window

float w = 0.53836 - 0.46164* cosf ((2* M_PI*( float)index)/((

float)(filter_len -1)));

// generate composite filter coefficient

return (s * w)*(1<<14);

}

template <std:: size_t ... I>

constexpr static std::array <short int , sizeof ...(I)> coeff_fill

(std:: index_sequence <I...>)

{
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return std::array <short int , sizeof ...(I)>{compute_coeff(I)

...};

}

template <std:: size_t N>

constexpr static std::array <short int , N> coeff_fill ()

{

return coeff_fill(std:: make_index_sequence <N>{});

}

public:

static const ::std::array <short int ,filter_len > coeffs;

short int operator ()(short int inputt)

{

int16_t output;

int32_t acc; // accumulator for MACs

Promise <int > myp;

Future <int > myf = *(myp.get_future ());

Promise <int > myp1;

Future <int > myf1 = *(myp1.get_future ());

Promise <int > myp2;

Future <int > myf2 = *(myp2.get_future ());

// put the new samples at the high end of the buffer

insamp2[array_length - 1] = inputt;

// load rounding constant

acc = (1 << 14)+(( int32_t)(coeffs [0]) * (int32_t)(inputt));

thread(filter_mul , &myp);

thread(filter_mul1 , &myp1 , 0);

thread(filter_mul2 , &myp2 , 0, 0);

acc = acc + myf.get() + myf1.get() + myf2.get();

// saturate the result

if ( acc > 0x3fffffff ) {

acc = 0x3fffffff;

} else if ( acc < -0x40000000 ) {

acc = -0x40000000;

}

// convert from Q30 to Q15

output = (int16_t)(acc >> 15);

// shift input samples back in time for next time

for (int k = 0; k < array_length -1; k++){
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insamp0[k] = insamp0[k+1];

}

insamp0[array_length -1]= insamp1 [0];

for (int k = 0; k < array_length -1; k++){

insamp1[k] = insamp1[k+1];

}

insamp1[array_length -1]= insamp2 [0];

for (int k = 0; k < array_length -1; k++){

insamp2[k] = insamp2[k+1];

}

return output;

}

firFixedClass () {}

};

template <int filter_len >

const ::std::array <short int ,filter_len > firFixedClass <filter_len

>:: coeffs = coeff_fill <filter_len >();

// the FIR filter function

#ifdef WITH_EXTERNC

extern "C"

#endif

short int

__attribute__ (( noinline))

firFixed( short int inputt)

{

firFixedClass <FILTER_LEN > fir;

return fir(inputt);

}

int start_point ()

{

int16_t input [800] = fill_input ();

int16_t output [800];

for (int i = 0; i < 800; i++){

output[i] = firFixed(input[i]);

}

return output [796];
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}

void filter_mul(Promise <int > *prom) {

int k;

int32_t acc = 0;

for ( k = 0; k < array_length; k++ ) {

acc += (int32_t)(firFixedClass <FILTER_LEN >:: coeffs[

FILTER_LEN - 1 -k]) * (int32_t)(insamp0[k]);

}

prom ->set_value(acc);

}

void filter_mul1(Promise <int > *prom , int x) {

int k;

int32_t acc = 0;

for ( k = 0; k < array_length; k++ ) {

acc += (int32_t)(firFixedClass <FILTER_LEN >:: coeffs[

FILTER_LEN - 1 -k - array_length ]) * (int32_t)(insamp1[k]);

}

prom ->set_value1(acc , 0);

}

void filter_mul2(Promise <int > *prom , int x, int y) {

int k;

int32_t acc = 0;

for ( k = 0; k < array_length; k++ ) {

acc += (int32_t)(firFixedClass <FILTER_LEN >:: coeffs[

FILTER_LEN - 1 -k - 2* array_length ]) * (int32_t)(insamp2[k]);

}

prom ->set_value2(acc , 0, 0);

}
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Verilog codes

Listing B.1: notify caller p

module notify_caller_p(clock , reset , Min_oe_ram , Mout_oe_ram ,

Min_we_ram , Mout_we_ram , Min_addr_ram , Mout_addr_ram ,

M_Rdata_ram , Min_Wdata_ram , Mout_Wdata_ram , Min_data_ram_size ,

Mout_data_ram_size , M_DataRdy , S_we_ram , S_addr_ram ,

Sout_DataRdy , Sin_DataRdy);

parameter BITSIZE_Min_addr_ram =1, BITSIZE_Mout_addr_ram =1,

BITSIZE_M_Rdata_ram =1, BITSIZE_M_DataRdy =1,

BITSIZE_Min_Wdata_ram =1, BITSIZE_Mout_Wdata_ram =1,

BITSIZE_Sin_DataRdy =1, BITSIZE_Sout_DataRdy =1,

BITSIZE_Min_data_ram_size =1, BITSIZE_S_addr_ram =1,

BITSIZE_Mout_data_ram_size =1, MY_ADDRESS =0, ARRAY_ADDRESS =0,

notifyAddress =0;

// IN

input clock , reset;

input Min_oe_ram , Min_we_ram , S_we_ram;

input [BITSIZE_Min_addr_ram -1:0] Min_addr_ram;

input [BITSIZE_M_Rdata_ram -1:0] M_Rdata_ram;

input [BITSIZE_Min_Wdata_ram -1:0] Min_Wdata_ram;

input [BITSIZE_Min_data_ram_size -1:0] Min_data_ram_size;

input [BITSIZE_S_addr_ram -1:0] S_addr_ram;

input [BITSIZE_M_DataRdy -1:0] M_DataRdy;

input [BITSIZE_Sin_DataRdy -1:0] Sin_DataRdy;

// OUT

output Mout_oe_ram , Mout_we_ram;

output [BITSIZE_Sout_DataRdy -1:0] Sout_DataRdy;

output [BITSIZE_Mout_addr_ram -1:0] Mout_addr_ram;

output [BITSIZE_Mout_Wdata_ram -1:0] Mout_Wdata_ram;

output [BITSIZE_Mout_data_ram_size -1:0] Mout_data_ram_size;

reg [31:0] state =0;
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reg [31:0] next_state;

reg Mout_oe_ram , Mout_we_ram;

reg [BITSIZE_Mout_addr_ram -1:0] Mout_addr_ram;

reg [BITSIZE_Mout_Wdata_ram -1:0] Mout_Wdata_ram;

reg [BITSIZE_Mout_data_ram_size -1:0] Mout_data_ram_size;

wire condition;

assign condition = S_addr_ram == MY_ADDRESS;

assign Sout_DataRdy = condition ? MY_ADDRESS : Sin_DataRdy;

parameter [31:0] S_0 = 32’d0,

S_1 = 32’d1,

S_2 = 32’d2,

S_3 = 32’d3,

S_4 = 32’d4;

always @ (posedge clock ) begin

if (reset == 1’b0) begin

state <= 0;

end

else begin

state <= next_state;

end

end

always @ (*) begin

Mout_we_ram = Min_we_ram;

Mout_Wdata_ram = Min_Wdata_ram;

Mout_oe_ram = Min_oe_ram;

Mout_addr_ram = Min_addr_ram;

Mout_data_ram_size = Min_data_ram_size;

if (state == S_0) begin

if (S_we_ram && S_addr_ram == ARRAY_ADDRESS) begin //set

executed first

next_state = S_1;

end

else if (S_we_ram && condition) begin //get executed first

next_state = S_2;

end else begin

next_state = S_0;

end

end

else if (state == S_1) begin

if (S_we_ram && condition) begin

next_state = S_3;

end else begin

next_state = S_1;

end
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end

else if (state == S_2) begin

if (S_we_ram && S_addr_ram == ARRAY_ADDRESS) begin

next_state = S_3;

end else begin

next_state = S_2;

end

end

else if (state == S_3) begin

Mout_we_ram = 1’b1;

Mout_addr_ram = notifyAddress; // address of the getManager

Mout_Wdata_ram = 1’b0;

Mout_data_ram_size = 32;

if (M_DataRdy == notifyAddress) begin

next_state = S_0;

end else begin

next_state = S_3;

end

end

end

endmodule

Listing B.2: getManager

module getManager(clock , reset , start_port , in1 , Min_oe_ram ,

Min_we_ram , Min_addr_ram , Min_Wdata_ram , Min_data_ram_size ,

M_DataRdy , S_oe_ram , S_we_ram , S_addr_ram , Sin_Rdata_ram ,

Sin_DataRdy , done_port , Mout_oe_ram , Mout_we_ram , Mout_addr_ram ,

Mout_Wdata_ram , Mout_data_ram_size , Sout_Rdata_ram ,

Sout_DataRdy);

parameter MyAddress=0, BITSIZE_Min_addr_ram =1,

BITSIZE_Mout_addr_ram =1, BITSIZE_Min_Wdata_ram =1,

BITSIZE_Mout_Wdata_ram =1, BITSIZE_Min_data_ram_size =1,

BITSIZE_Mout_data_ram_size =1, BITSIZE_S_addr_ram =1,

BITSIZE_Sin_Rdata_ram =1, BITSIZE_Sout_Rdata_ram =1,

BITSIZE_M_DataRdy =1, BITSIZE_Sin_DataRdy =1, BITSIZE_Sout_DataRdy

=1, BITSIZE_in1 =1;

// IN

input clock , reset , start_port;

input [BITSIZE_in1 -1:0] in1;

input Min_oe_ram , Min_we_ram;

input [BITSIZE_Min_addr_ram -1:0] Min_addr_ram;

input [BITSIZE_Min_Wdata_ram -1:0] Min_Wdata_ram;

input [BITSIZE_Min_data_ram_size -1:0] Min_data_ram_size;

input [BITSIZE_M_DataRdy -1:0] M_DataRdy;
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input S_oe_ram , S_we_ram;

input [BITSIZE_S_addr_ram -1:0] S_addr_ram;

input [BITSIZE_Sin_Rdata_ram -1:0] Sin_Rdata_ram;

input [BITSIZE_Sin_DataRdy -1:0] Sin_DataRdy;

// OUT

output done_port;

output Mout_oe_ram , Mout_we_ram;

output [BITSIZE_Mout_addr_ram -1:0] Mout_addr_ram;

output [BITSIZE_Mout_Wdata_ram -1:0] Mout_Wdata_ram;

output [BITSIZE_Mout_data_ram_size -1:0] Mout_data_ram_size;

output [BITSIZE_Sout_Rdata_ram -1:0] Sout_Rdata_ram;

output [BITSIZE_Sout_DataRdy -1:0] Sout_DataRdy;

reg [31:0] step =0;

reg [31:0] next_step;

reg done_port;

reg Mout_oe_ram , Mout_we_ram;

reg [BITSIZE_Mout_addr_ram -1:0] Mout_addr_ram;

reg [BITSIZE_Mout_Wdata_ram -1:0] Mout_Wdata_ram;

reg [BITSIZE_Mout_data_ram_size -1:0] Mout_data_ram_size;

wire condition;

assign condition = S_addr_ram == MyAddress;

assign Sout_DataRdy = condition ? MyAddress : Sin_DataRdy;

assign Sout_Rdata_ram = Sin_Rdata_ram;

parameter [31:0] S_0 = 32’d0,

S_1 = 32’d1,

S_2 = 32’d2;

always @ (posedge clock )

if (reset == 1’b0)

begin

step <= 0;

end else begin

step <= next_step;

end

always @(*)

begin

done_port = 1’b0;

next_step = S_0;

Mout_we_ram = Min_we_ram;

Mout_Wdata_ram = Min_Wdata_ram;

Mout_oe_ram = Min_oe_ram;

Mout_addr_ram = Min_addr_ram;

Mout_data_ram_size = Min_data_ram_size;
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if (step == S_0) begin

if (start_port == 1’b1) begin

next_step = S_1;

end else begin

next_step = S_0;

end

end

else if (step == S_1) begin

Mout_we_ram = 1’b1;

Mout_addr_ram = in1 + 32’d500; // address of notify_caller_p

Mout_Wdata_ram = 32’d0;

Mout_data_ram_size = 32;

if (M_DataRdy == (in1 + 32’d500)) begin

next_step = S_2;

end else begin

next_step = S_1;

end

end

else if (step == S_2) begin

if (S_we_ram == 1 && condition) begin

done_port = 1’b1;

next_step = S_0;

end else begin

next_step = S_2;

end

end

end

endmodule

Listing B.3: compacting FU

module compacting_FU(Sout_DataRdy , Sout_Rdata_ram , Mout_oe_ram ,

Mout_we_ram , Mout_addr_ram , Mout_Wdata_ram , Mout_data_ram_size ,

out1);

parameter BITSIZE_Sout_DataRdy =1, BITSIZE_Sout_Rdata_ram =1,

BITSIZE_Mout_addr_ram =1, BITSIZE_Mout_Wdata_ram =1,

BITSIZE_Mout_data_ram_size =1;

// IN

input [BITSIZE_Sout_Rdata_ram -1:0] Sout_Rdata_ram;

input Mout_we_ram;

input Mout_oe_ram;

input [BITSIZE_Mout_addr_ram -1:0] Mout_addr_ram;

input [BITSIZE_Sout_DataRdy -1:0] Sout_DataRdy;

input [BITSIZE_Mout_Wdata_ram -1:0] Mout_Wdata_ram;

input [BITSIZE_Mout_data_ram_size -1:0] Mout_data_ram_size;
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// OUT

output [( BITSIZE_Sout_DataRdy + BITSIZE_Sout_Rdata_ram + 2 +

BITSIZE_Mout_addr_ram + BITSIZE_Mout_Wdata_ram +

BITSIZE_Mout_data_ram_size)+(-1):0] out1;

assign out1 = {Sout_Rdata_ram , Sout_DataRdy , Mout_addr_ram ,

Mout_Wdata_ram , Mout_data_ram_size , Mout_oe_ram , Mout_we_ram };

endmodule

Listing B.4: unzip FU

module unzip_FU(M_DataRdy , M_Rdata_ram , S_oe_ram , S_we_ram ,

S_addr_ram , S_Wdata_ram , S_data_ram_size , in1);

parameter BITSIZE_M_DataRdy =1, BITSIZE_M_Rdata_ram =1,

BITSIZE_S_addr_ram =1, BITSIZE_S_Wdata_ram =1,

BITSIZE_S_data_ram_size =1;

// IN

input [( BITSIZE_M_DataRdy + BITSIZE_M_Rdata_ram + 2 +

BITSIZE_S_addr_ram + BITSIZE_S_Wdata_ram +

BITSIZE_S_data_ram_size)+(-1):0] in1;

// OUT

output [BITSIZE_M_Rdata_ram -1:0] M_Rdata_ram;

output S_we_ram;

output S_oe_ram;

output [BITSIZE_S_addr_ram -1:0] S_addr_ram;

output [BITSIZE_M_DataRdy -1:0] M_DataRdy;

output [BITSIZE_S_Wdata_ram -1:0] S_Wdata_ram;

output [BITSIZE_S_data_ram_size -1:0] S_data_ram_size;

assign M_Rdata_ram = in1[( BITSIZE_M_DataRdy + BITSIZE_M_Rdata_ram

+ 2 + BITSIZE_S_addr_ram + BITSIZE_S_Wdata_ram +

BITSIZE_S_data_ram_size) +(-1) : (BITSIZE_M_DataRdy + 2 +

BITSIZE_S_addr_ram + BITSIZE_S_Wdata_ram +

BITSIZE_S_data_ram_size)];

assign M_DataRdy = in1[( BITSIZE_M_DataRdy + 2 +

BITSIZE_S_addr_ram + BITSIZE_S_Wdata_ram +

BITSIZE_S_data_ram_size) +(-1) : (2 + BITSIZE_S_addr_ram +

BITSIZE_S_Wdata_ram + BITSIZE_S_data_ram_size)];

assign S_addr_ram = in1 [(2 + BITSIZE_S_addr_ram +

BITSIZE_S_Wdata_ram + BITSIZE_S_data_ram_size) +(-1) : (2 +

BITSIZE_S_Wdata_ram + BITSIZE_S_data_ram_size)];

78



B – Verilog codes

assign S_Wdata_ram = in1[(2 + BITSIZE_S_Wdata_ram +

BITSIZE_S_data_ram_size) +(-1) : (2 + BITSIZE_S_data_ram_size)];

assign S_data_ram_size = in1 [(2 + BITSIZE_S_data_ram_size) +(-1)

: (2)];

assign S_oe_ram = in1 [1:1];

assign S_we_ram = in1 [0:0];

endmodule

Listing B.5: busManager

module FIFObuffer( clock , dataIn , RD , dataOut , reset , EMPTY ,

busSelector);

parameter PORTSIZE_in1 =1, BITSIZE_in1 =1, BITSIZE_master =1;

//IN

input clock , RD, reset;

input [( PORTSIZE_in1*BITSIZE_in1)+(-1):0] dataIn;

input busSelector;

input done_port;

//OUT

output reg [BITSIZE_master -1:0] dataOut;

output EMPTY;

reg [7:0] Count = 0;

reg [BITSIZE_master -1:0] FIFO [0: PORTSIZE_in1 *2];

reg [7:0] readCounter = 0, writeCounter = 0;

integer i1;

assign EMPTY = (Count ==0)? 1’b1:1’b0;

always @ (dataIn)

begin

if(busSelector == 1) begin

for(i1 = 0; i1 < PORTSIZE_in1; i1 = i1 + 1)

begin

if(dataIn [(i1*BITSIZE_in1) +: BITSIZE_master] != 0) begin

if(Count < PORTSIZE_in1 *2) begin

FIFO[writeCounter] = dataIn [(i1*BITSIZE_in1) +:

BITSIZE_master ];

writeCounter = writeCounter +1;

if (writeCounter == PORTSIZE_in1 *2) begin
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writeCounter =0;

end

end

end

end

end

end

always @ (posedge clock)

begin

if (busSelector ==1) begin

if (RD ==1’b1 && Count !=0) begin

dataOut = FIFO[readCounter ];

readCounter = readCounter +1;

end

if (readCounter == PORTSIZE_in1 *2) begin

readCounter =0;

end

if (readCounter > writeCounter) begin

Count=readCounter -writeCounter;

end

else if (writeCounter > readCounter)

Count=writeCounter -readCounter;

else;

end

end

always @ (posedge clock)

begin

if (reset == 0) begin

readCounter = 0;

writeCounter = 0;

Count = 0;

end

end

endmodule

// /////////////////////////////////////////////////

module controller_bus_manager(MSSigIn , MSSigOut , clock , reset ,

bufferdata , EMPTY , RD , busSelector);

parameter BITSIZE_in1 =1, PORTSIZE_in1 =2, BITSIZE_out1 =1,

BITSIZE_Sout_Rdata_ram =1, BITSIZE_Sout_DataRdy =1, BITSIZE_master

=1, BITSIZE_slave =1;

// IN

input [( PORTSIZE_in1*BITSIZE_in1)+(-1):0] MSSigIn;

input clock , reset;

input EMPTY;
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input busSelector;

input [BITSIZE_master -1:0] bufferdata;

// OUT

output [BITSIZE_out1 -1:0] MSSigOut;

output RD;

parameter [2:0] S_0 = 3’b001 ,

S_1 = 3’b010 ,

S_2 = 3’b100;

reg [2:0] _present_state = S_0 , _next_state;

reg [BITSIZE_master -1:0] result_M = 0;

reg [BITSIZE_slave -1:0] result_S = 0;

reg RD;

reg [BITSIZE_out1 -1:0] MSSigOut;

always @(posedge clock)

if (reset == 1’b0)

begin

_present_state <= S_0;

end else begin

_present_state <= _next_state;

end

always @(negedge clock)

begin

if(busSelector == 1) begin

_next_state = S_0;

case (_present_state)

S_0 :

begin

if(EMPTY == 0) begin

RD = 1;

_next_state = S_1;

end else begin

_next_state = S_0;

end

end

S_1 :

begin

if(bufferdata != 0) begin

RD = 0;

_next_state = S_2;

MSSigOut = bufferdata;

result_M = bufferdata;

end else begin

_next_state = S_1;

MSSigOut = 0;

end

end
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S_2 :

begin

result_S = findSlave(MSSigIn);

if(result_S != 0) begin

MSSigOut = {result_S , result_M };

_next_state = S_0;

end else begin

_next_state = S_2;

end

end

default :

begin

MSSigOut = 0;

end

endcase

end

end

function [BITSIZE_slave -1:0] findSlave;

input [BITSIZE_in1*PORTSIZE_in1 -1:0] m;

reg [BITSIZE_slave -1:0] res;

integer i1;

begin

res={ BITSIZE_slave {1’b0}};

for(i1 = 0; i1 < PORTSIZE_in1; i1 = i1 + 1)

begin

if(m[((i1 + 1)*BITSIZE_out1 - BITSIZE_Sout_DataRdy -

BITSIZE_Sout_Rdata_ram) +:( BITSIZE_Sout_DataRdy +

BITSIZE_Sout_Rdata_ram)] != 0) begin

res = m[((i1+1)*BITSIZE_out1 - BITSIZE_slave) +:(

BITSIZE_slave)];

end

end

findSlave = res;

end

endfunction

endmodule

// ///////////////////////////////////////////////////

module bus_manager(MSSigIn , MSSigOut , clock , reset , busSelector);

parameter BITSIZE_in1 =1, PORTSIZE_in1 =2, BITSIZE_out1 =1,

BITSIZE_Sout_Rdata_ram =1, BITSIZE_Sout_DataRdy =1, BITSIZE_master

=1, BITSIZE_slave =1;

// IN

input [( PORTSIZE_in1*BITSIZE_in1)+(-1):0] MSSigIn;
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input clock , reset;

input busSelector;

// OUT

output [BITSIZE_out1 -1:0] MSSigOut;

reg [BITSIZE_out1 -1:0] MSSigOut;

wire read;

wire [BITSIZE_master -1:0] bufferout;

wire [BITSIZE_out1 -1:0] out;

wire empty;

always @(*)

begin

if(busSelector == 1) begin

MSSigOut = out;

end else begin

MSSigOut = merge(MSSigIn);

end

end

//bus merger

function [BITSIZE_out1 -1:0] merge;

input [BITSIZE_in1*PORTSIZE_in1 -1:0] m;

reg [BITSIZE_out1 -1:0] res;

integer i1;

begin

res={ BITSIZE_in1 {1’b0}};

for(i1 = 0; i1 < PORTSIZE_in1; i1 = i1 + 1)

begin

res = res | m[i1*BITSIZE_in1 +: BITSIZE_in1 ];

end

merge = res;

end

endfunction

controller_bus_manager

#(. BITSIZE_master(BITSIZE_master), .BITSIZE_slave(BITSIZE_slave), .

BITSIZE_in1(BITSIZE_in1), .PORTSIZE_in1(PORTSIZE_in1), .

BITSIZE_out1(BITSIZE_out1), .BITSIZE_Sout_Rdata_ram(

BITSIZE_Sout_Rdata_ram), .BITSIZE_Sout_DataRdy(

BITSIZE_Sout_DataRdy))

ControllerBM

(. busSelector(busSelector), .clock(clock), .reset(reset), .EMPTY(

empty), .MSSigIn(MSSigIn), .RD(read), .MSSigOut(out), .

bufferdata(bufferout));

FIFObuffer

#(. BITSIZE_master(BITSIZE_master), .BITSIZE_in1(BITSIZE_in1), .

PORTSIZE_in1(PORTSIZE_in1))
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Fbuff

(. busSelector(busSelector), .EMPTY(empty), .clock(clock), .dataIn(

MSSigIn), .RD(read), .dataOut(bufferout), .reset(reset));

endmodule

Listing B.6: Proxy manager

module proxy_manager(SigIn , SigOut , clock , reset , proxy_done);

parameter BITSIZE_in1 =1, PORTSIZE_in1 =2, BITSIZE_out1 =1;

// IN

input [( PORTSIZE_in1*BITSIZE_in1)+(-1):0] SigIn;

input [31:0] proxy_done;

input clock;

input reset;

// OUT

output [BITSIZE_out1 -1:0] SigOut;

parameter [2:0] S_0 = 3’b001 ,

S_1 = 3’b010 ,

S_2 = 3’b100;

reg [2:0] _present_state = S_0 , _next_state;

reg [BITSIZE_in1 -1:0] result = 0;

reg [BITSIZE_out1 -1:0] SigOut;

reg terminate = 1;

always @ (posedge clock)

if (reset == 1’b0)

begin

_present_state <= S_0;

terminate <=1;

end else begin

_present_state <= _next_state;

end

always @(clock or proxy_done)

begin

_next_state = S_0;

if(proxy_done != 0) begin

terminate = 1;

SigOut = 0;

end else

case (_present_state)

S_0 :
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begin

if(terminate != 0) begin

result = findSig(SigIn);

if(result != 0) begin

SigOut = result;

_next_state = S_0;

terminate = 0;

end else begin

SigOut = 0;

_next_state = S_0;

end

end

end

default :

begin

SigOut = 0;

end

endcase

end

function [BITSIZE_in1 -1:0] findSig;

input [BITSIZE_in1*PORTSIZE_in1 -1:0] m;

reg [BITSIZE_in1 -1:0] res;

reg found;

integer i1;

begin

res={ BITSIZE_in1 {1’b0}};

found = 0;

for(i1 = 0; i1 < PORTSIZE_in1; i1 = i1 + 1)

begin

if(found == 0) begin

if(m[(i1*BITSIZE_in1) +: BITSIZE_in1] != 0) begin

res = m[(i1*BITSIZE_in1) +: BITSIZE_in1 ];

res [0:0] = 1;

found = 1;

end

end

end

findSig = res;

end

endfunction

endmodule
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Listing B.7: compacting proxy FU

module compacting_proxy_FU(this , val , start , out1);

parameter BITSIZE_this =1, BITSIZE_val =1;

// IN

input [BITSIZE_this -1:0] this;

input start;

input [BITSIZE_val -1:0] val;

// OUT

output [( BITSIZE_val + BITSIZE_this + 1)+(-1):0] out1; // +1 ~A¨

per start

assign out1 = {this , val , start };

endmodule

Listing B.8: unzip proxy FU

module unzip_proxy_FU(start , val , this , in1);

parameter BITSIZE_this =1, BITSIZE_val =1;

// IN

input [( BITSIZE_this + BITSIZE_val + 1)+(-1):0] in1; // +1 ~A¨ per

start

// OUT

output [BITSIZE_this -1:0] this;

output start;

output [BITSIZE_val -1:0] val;

assign this = in1[( BITSIZE_this + BITSIZE_val + 1) +(-1) : (

BITSIZE_val + 1)];

assign val = in1[( BITSIZE_val + 1) +(-1) : 1];

assign start = in1 [0:0];

endmodule
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