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Abstract

This report is a summary of part of my internship work at TIMA laboratory, Grenoble, France.
Energy management is becoming more and more important in today’s IT field, especially when deal-
ing with battery-powered devices. Internet of Things devices in particular, require an extreme power
consumption optimization and surface area reduction, while retaining the performances acceptable.
One way to achieve this target is the sacrifice of computing precision thus leveraging the approxi-
mate computing paradigm. This work is therefore based on a new Multiply and Accumulation unit,
designed by TIMA laboratory members, that aims to reach the above mentioned target by exploiting
redundant arithmetic and on-line operators. It makes possible to adapt the precision depending on
the application. Since this unit is using a different numbering system than pure binary, it was needed
an input/output conversion wrapper which allows to communicate with the external binary world
and to be compared with existing binary solutions. Then a testing phase in a real environment to
explore all the pros and cons of the unit had to be carried on, to know where to focus the possible
improvements.
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Chapter 1

TIMA laboratory

TIMA1(Technics of Informatics and microelectronics for integrated systems Architecture) is a French
public research laboratory situated in Grenoble under the aegis of CNRS (Centre National de la
Recherche Scientifique), Grenoble-INP (Institut Polytechnique de Grenoble), and UGA (Université
Grenoble Alpes).
The laboratory is composed of five research teams which work on microelectronics:

❼ AMfoRS: Architectures and Methods for Resilient Systems

❼ CDSI : Circuits, Devices and System Integration.

❼ RIS : Robust Integrated Systems.

❼ RMS : Reliable Mixed-signal Systems.

❼ SLS : System Level Synthesis

1TIMA laboratory website: http://tima.univ-grenoble-alpes.fr
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Chapter 2

Problem Definition

2.1 Project Introduction

Hardware Approximate Computing is one of the main research path of the AMfoRS team in TIMA
laboratory. My internship lies exactly in this field, aiming to exploit the possibilities given by a
new HW unit developed by TIMA laboratory members and integrate it inside RISC-V Rocket
Chip SoC, allowing future research to expand and explore further the subject. The internship
was supervised by Dr. Mounir Benabdenbi, Associate Professor in Grenoble INP and Edgar
Ernesto Sanchez Sanchez, Associate Professor in Politecnico di Torino.

2.2 Project Problematic

Approximate computing is an active research field, with constant improvements and new ideas emerg-
ing. However the hardware based Approximate Computing is still a relatively new field. The hard-
ware unit my project is focused on lacked of proper testing, especially in terms of realistic application.
So the idea was to exploit the great level of customization that Rocket Chip allows, integrating the
unit inside the SoC as a peripheral, and finally using software application to finalize the testing
process. It is worth noting that the whole unit was written in VHDL but Rocket Chip accepts
peripherals only written in Verilog; so a complete translation was needed.

2.3 Project Objectives

❼ Getting familiar with the RISC-V and Rocket Chip environment

❼ Understanding the Approximate Computing state of art, with its different techniques, advan-
tages, drawbacks and future challenges;

❼ Understanding the ORMAC (On-Line Redundant Multiply and Accumulate) unit and its
VHDL version;

❼ Improving the VHDL source code, developing an input/output conversion wrapper, testing it
against a classical MAC unit and translating it to Verilog;

❼ Integrating the ORMAC unit, now written in Verilog, in Rocket Chip, testing it using a software
compiled for our target environment.

2



Chapter 3

RISC-V and Rocket Chip overview

This chapter will introduce some information useful to understand the target platform and the reason
behind the choice of using it. The first section will briefly present the RISC-V ISA [1], pointing out
its design principles and what makes it different from the other existing ISA, describing also the
instruction format and the extension mechanism. The second section will analyze the Rocket Chip
SoC Generator[5]

3.1 RISC-V

RISC-V is an open-source hardware instruction set architecture (ISA) based on reduced instruction
set computer(RISC) principles. As written inside the official Berkeley technical report [1], RISC-V is
structured as a small ISA with a variety of optional extension. The base ISA is very simple, making
it a good choice for research and education, but also complete enough to be used in inexpensive low
power embedded devices. The various optional extensions can form a more powerful ISA for general
purpose and high performance computing.
A standard base integer ISA is defined, on 32 (”RV32I”) and 64 (”RV64I”) bit. The base integer
instruction set has been designed in order to include a small number of instructions and reduce the
cost in terms of hardware and complexity for a minimal implementation. To this base ISA it is
possible to add several standard extension, ranging from the multiplication and division units to
the vector-based operations unit. It is also possible to define its own non-standard extension, to fit
almost any kind of requirement.
All standard extensions are supported by GCC(”GNU C Compiler”) and a RISC-V Linux kernel
version is officially supported by the Linux foundation. The RISC-V capability to run Linux has
definitely incremented the interest in it in the industrial field. [6]

3.1.1 Register set

RISC-V has 32 integer registers, and, if the floating-point extension (”F”) is included, 32 floating-
point registers. Except for memory access instructions, only registers are addressed by instruction
(load-store architecture). The first integer register (”x0” or ”Zero”) is a always zero register and the
remainder are general purpose registers. A read from the zero register always provides 0, a write has
no effect. Complete register set is showed in 3.1.

3



CHAPTER 3. RISC-V AND ROCKET CHIP OVERVIEW 4

Register
name

Symbolic

name
Description

32 integer registers
x0 Zero Always Zero
x1 ra Return address
x2 sp Stack pointer
x3 gp Global pointer
x4 tp Thread pointer
x5 t0 Temporary
x6-7 t1-t2 Temporary

x8 s0/fp
Saved register
Frame pointer

x9 s1 Saved register
x10-11 a0-1 Function argument/ return value
x12-17 a2-7 Function argument
x18-27 s2-11 Saved register
x28-31 t3-6 Temporary

32 floating-point extension registers
f0-7 ft0-7 Floating-point temporaries
f8-9 fs0-1 Floating-point saved registers
f10-11 fa0-1 Floating-point arguments/ return values
f12-17 fa2-7 Floating-point arguments
f18-27 fs2-11 Floating-point saved registers
f28-31 ft8-11 Floating point temporaries

Table 3.1: Register sets
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3.1.2 Instructions format

RISC-V base integer ISA is a simple instruction set, comprising just 47 instruction, but it is complete
enough to form a compiler target and satisfy the basic requirements of modern operating systems
and runtimes.
Four basic instruction format exist: R-type, I-type, S-type, U-type. In order to simplify the decoding
hardware both the sources (rs1 and rs2 ) and the destination (rd) register fields are kept in the same
position for all the formats. For the same reason the immediates are always placed starting from the
leftmost significant bit and the sign position is always the bit 31 of the instruction.

Figure 3.1: RISC-V Instructions format

3.1.3 ISA extensions

One of the design goals of RISC-V is to keep the integer base ISA as simple as possible providing
however full support for several standard extensions. Following the list of standard and frozen(the
instructions will not change in the future) extensions:

❼ M : Standard Extension for Integer Multiplication and Division

❼ A : Standard Extension for Atomic Instructions

❼ F : Standard Extension for Single-Precision Floating-Point

❼ D : Standard Extension for Double-Precision Floating-Point

❼ Q : Standard Extension for Quad-Precision Floating-Point

❼ C : Standard Extension for Compressed Instructions

Often to indicate the ”IMAFD” set the letter ”G” is used, so the resulting ISAs are called RV32G
for the 32-bit version and RV64G for the 64-bit one.
As mentioned before is natively possible to extend the ISA adding custom extension not included in
the original ISA. The simplest method to add new instruction is to leverage two of the four custom-
reserved opcodes, custom-0 and custom-1, which are guaranteed to not be used in future language
official extensions, while custom-2 and custom-3 will be probably used for the 128 bit ISA extension.

3.2 Rocket Chip

Rocket Chip is an open-source System-on-Chip design generator based on the RISC-V ISA designed
by the Berkeley Architecture Research (BAR) group of the university of California Berkeley (UCB). It
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Figure 3.2: RISC-V opcode map showing the custom fields [1]

emits synthesizable RTL leveraging the Chisel hardware construction language (a dialect of the Scala
programming language) to interconnect cores, caches and peripherals for creating a full integrated
SoC, generating then Verilog code compatible with FPGA and ASIC design tools. Rocket Chip
generates general purpose processor cores, providing both a five-stage pipeline in-order core generator
(Rocket Core) and an out-of-order core generator(BOOM). Moreover, Rocket Chip supports the
integration of custom accelerators leveraging the instruction set extension provided by RISC-V and
custom peripherals, written in Verilog and embedded using the Blackbox feature of Chisel.
By using Verilator 1, from Chisel it is also possible to generate a cycle-accurate RTL simulator
implemented in C++, that converts the Verilog code produced by the Chisel (Scala) compiler to
C++. This emulator is functionally equivalent to Verilog simulator but definitely faster and it can
be used to simulate an entire Rocket Chip instance.

3.2.1 Rocket Chip Generator

The Rocket Chip generator consists of a collection of parameterized chip-building libraries which can
be used to generate different SoC variants. The plug-and-play environment allows to swap-in and
out design components simply by changing configuration files, without touching the hardware source
code. 3.3 shows an instance of Rocket Chip. Two tiles are attached to a 4-bank L2 cache that is
itself connected to the external I/O and memory system with an AXI interconnect.
Tile 1 is composed by an out-of-order BOOM core with an FPU, L1 data cache and L1 instruction
cache and a RoCC accelerator.
Tile 2 features an in-order Rocket Core with FPU, L1 instruction and data cache with different
parameters with respect to Tile 1 and a different RoCC accelerator.
Following a summary of the components and their capabilities:

❼ Core: The actual CPU core generator. The generated CPU can be an in-order Rocket Core
or an out-of-order BOOM superscalar core. Both of which can include an optional FPU,
configurable functional unit pipelines, and customizable branch predictors.

❼ Caches: Cache and TLB (Translation Lookaside Buffer) generators with configurable sizes,
associativities, and replacements policies.

❼ RoCC: The Rocket Custom Coprocessor interface, allows to build an accelerator with its own
instructions directly integrated inside the main CPU pipeline.

❼ Tile: A tile-generator template for cache-coherent tiles. The number and type of cores and
accelerators are configurable.

❼ TileLink: A generator for cache coherency networks and cache controllers. The number of
tiles, the coherence policy, the presence of shared backing storage can be configured.

1Verilator website: https://www.veripool.org/wiki/verilator
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Figure 3.3: Rocket Chip

❼ Peripherals: Generators for converters and controllers as well as peripherals needed to imple-
ment the SoC on a FPGA or an ASIC. Our ORMAC unit will be integrated as a peripheral.

3.2.2 Rocket Core

Figure 3.4: Rocket core pipeline

Rocket is a 5-stage in-order scalar core generator that implements the RV32G and RV64G
ISAs 2. It has an MMU supporting page-based virtual memory, non-blocking data cache and branch
prediction unit. Branch prediction is configurable and it is provided by a branch target buffer (BTB),

2Rocket Core Github repository: https://github.com/chipsalliance/rocket-chip

https://github.com/chipsalliance/rocket-chip
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Rocket Core Parameters
Architecture 32 or 64 bits
ISA Customizable with Standard/non-Standard extensions
Pipeline 5 stages: Fetch, Decode, Execute, Memory, Commit
FPU Add/Remove or Modify
Multiplication and Division Unit Add/Remove or Modify
Co-Processor (RoCC) Add/Remove or Modify
L1 instruction cache Parametrizable size and architecture
L1 data cache Parametrizable size and architecture

Traps / Interrupts
Synchronous and asynchronous interrupts, parametrizable
interrupt vector size

Virtual Memory Parametrizable TLB Block
Modes User, Supervisor and Machine modes are implemented

Table 3.2: Main characteristics of Rocket-Core in a default Rocket Chip configuration.

branch history table (BHT), and a return address stack (RAS). The floating point unit makes use of
the Berkeley’s Chisel FPU implementation 3.
The Rocket Custom Coprocessor Interface (RoCC) makes the communication between the Rocket
CPU and the attached coprocessors easier. Through the RoCC unit various coprocessors have been
implementend including crypto units (e.g., SHA3) and vector processing units. The RoCC interface
accepts coprocessor commands generated by committed instructions executed by the Rocket core.
The RoCC interface also allows the attached coprocessor to share the Rocket core’s data cache and
page table walker, and provides a facility for the coprocessor to interrupt the core, allowing the
coprocessor to participate in a page-based virtual memory system.

3Hardfloat repository: https://github.com/ucb-bar/berkeley-hardfloat

https://github.com/ucb-bar/berkeley-hardfloat


Chapter 4

Approximate Computing

This chapter gives a brief and non-exhaustive overview of the various Approximate Computing tech-
niques on different hierarchical levels based on Moons[7], Mittal[8], Xu[9] survey works and Noured-
dine Ait Said[10] report.
Each technique is evaluated and one or more existing research paper are reported, commented and
analyzed while trying to enhance their main features and contributions to the research field.

4.1 Introduction

Even if the significant advances in semiconductor technologies, processor architectures, and low-
power design techniques have led to huge improvements in terms of computational power and energy
consumption, the global demand for power and storage is still increasing.
New rising techniques such as Data Mining, IoT, Machine Learning commonly known as RMS
(Recognition, Mining, Synthesis) as well as Social Networking, require growing quantity of raw data
and power to extract information.
This increase in computational and storage demands can come at high economic and environmental
impact costs. Table 4.1 shows a summary of computation and data storage related global power
consumption values[11].

The solutions proposed in the past to overcome these issue such as technology scaling and architecture
improvements are not sufficient anymore. Fortunately many of the RMS applications, that currently
account for a significant portion of computational resources around the world, are based on Neural
Networks which allow a certain degree of error-tolerance. For instance in image or speech recognition,
analog signals are converted into strings and digital images. Since this translation is often based on
clustering and estimations, small differences or deviation w.r.t. a more precise computation usually
do not affect the final result. Another example could be found in multimedia applications such as
image compression or video encoding, where a slightly lower quality in terms of resolution could
hardly be seen by a human eye but can save a lot of energy.
So the main idea behind the approximate computing paradigm is to exploit the inner error tolerance
of such applications by admitting a certain degree of ”acceptable errors” in the computation, in order
to grant significant gains in terms of power consumption. Also, reduction of circuits surface area
could be achieved, especially if the target are embedded or IoT devices. Approximate computing
tries to leverage the gap between the accuracy required by the users or applications and the one
provided by the computing system, for achieving an optimized result under different constraints.
It is worth noting that even though the applications listed above are error tolerant, the computation

9
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EU consumption
Consumption (TWh) Reporting Year

18.3 2000
41.3 2005
56 2007

72.5 2010
104 2020

US consumption
Consumption (TWh) Reporting Year

91 2013
140 2020
Global consumption

Consumption (TWh) Reporting Year
216 2007
269 2012

Table 4.1: Energy Consumption estimation and projection in TWh from a European, American and
Global Perspective

Approximate technique

Software
Loop perforation, Thread/Task fusion, Memoization,
Approximate programming language/compilers

Hardware
Architecture Approximate storage, ISA extentions, Accelerators

Circuit Inexact arithmetic circuits, Voltage overscaling, Precision Scaling

Table 4.2: Approximate computing techinques divded by kernel type. Some techniques will be further
covered.

and the output quality of an approximate computing technique should be dynamic and tunable in
order to be able to lower accuracy only if it is needed and allowed, for avoiding unreasonable quality
loss or catastrophic errors.

4.2 Approximate Computing Techniques

4.2.1 Approximate Kernels

In the approximate computing field the term kernel denotes the main support that handles the ap-
proximate application as well as those techniques used to realize approximation. It can be either a
pure software component (e.g. a program or part of it, a thread, a process) or a pure hardware compo-
nent (e.g. an approximate adder/multiplier circuit). It can be even a combination of both hardware
and software efficiently communicating through specific protocols. Table 4.2 shows a summary of
some approximate computing techniques.

4.2.2 Error Resilience Identification and Quality Management

Even for error-tolerant applications there exist error-sensitive parts where applying approximation
techniques can lead to fatal errors such as segmentation faults due to wrong memory accesses or
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completely wrong results. It is then fundamental to formally identify parts of a program or a
system where an approximation is feasible and worthy. These parts where approximation can be
profitably applied are identified as Resilient. Therefore this property is called Error Resilience
and can be generally defined as the characteristic of an application either hardware or software to
produce ”acceptable” output (output that can be considered correct under certain constraints and
bounds) despite its input data have a certain degree of noise and/or its constituent computation
being performed with errors[12].

Resilience identification and Characterization

Even though an automated and unified method to identify application resilience does not exist yet
several approaches have been studied. Generally resilience identification is application-dependent
and it is performed offline i.e. during the design phase, when the program is not running. Various
computational approximation are monitored, to verify their impact on a specific application. How-
ever it exists the possibility to identify the resilience online i.e. at run time through dynamic quality
management.
Chippa et al.[13] propose an application resilience characterization framework called ARC (Ap-
plication Resilience Characterization) that can be used to quantitatively evaluate the resilience of
applications through two major steps: identification of potentially resilient computations and char-
acterization of these computations by using approximation models. The ARC framework inputs are
the application program to be tested, a representative data set and a quality evaluation function.
The quality evaluation function is application specific and has to be provided by the user. It pro-
cesses the output of the application program by eventually providing a numerical value as quality
evaluation. The general approach taken in both steps of the ARC framework is to inject random
errors or controlled approximations into specific computations during the application execution, and
check the resulting application behavior.

❼ Resilience Identification: As stated above, even the RMS applications, usually considered
the most resilient, contain both resilient and sensitive computations. Of course the approxi-
mate computing techniques should be applied to resilient computations only while avoiding the
sensitive ones. Thus potentially resilient kernels are identified. Then the program is run over
the input data set and the ARC framework adds random errors to the program variables of
the probably resilient parts. If the application program crashes, hangs or provides an output
not meeting the quality criterion the kernel under analysis is marked as sensitive, otherwise it
is marked as potentially resilient.

❼ Resilience Characterization: Once the potentially resilient kernels are identified, the second
step of the ARC framework is to characterize their resilience to analyze whether an approx-
imate computing technique is profitably applicable or not. The resilience is then quantified
using generic approximation attributes such as error probability, magnitude and predictability
of the introduced errors, and the output quality impact of one or more approximate techniques.
Finally the quality evaluation function provided by the user is applied to generate a profile that
characterizes the application output depending on the approximation model used (e.g. approx-
imation of arithmetic operations, of data representation or algorithmic level approximations).

Quality management

Through this method the intermediate computation quality is regularly evaluated at run time and it
is decided whether certain kernels can be approximated or not.
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Figure 4.1: An overview of the SAGE framework

Samadi et al.[14] propose SAGE framework, an automated technique targeting GPUs which com-
bines a static compiler that automatically generates a set of CUDA kernels with varying levels of
approximation with a run time system which selects among the available kernels to achieve better
performances while complying with a target output quality (TOQ) set by the user. SAGE has two
phases: offline compilation and run time kernel quality management. During offline com-
pilation, SAGE performs approximation optimization on each kernel by creating multiple versions
with varying degrees of accuracy. At run time a greedy algorithm is used to tune the parameters
of the approximate kernels in order to identify the best configuration with the highest performances
and a result quality satisfying the TOQ. Calibrations and kernel updates are performed by SAGE
and the kernel configuration is updated accordingly.
SAGE utilizes three optimization techniques in order to create approximate CUDA kernels.

❼ Atomic Operation Optimization: Atomic operations are commonly used in multi-threading
applications such as the ones usually run on GPUs in order to make writes to a common
variable sequential. This optimization selectively skips atomic operations that generate frequent
collisions thus reducing performances since threads are serialized.

❼ Data Packing: The number of bits needed to represent a variable or an array of variables is
reduces, lowering precision while improving latency of memory operations.

❼ Thread Fusion: This optimization eliminates some GPU threads by combining similar threads
into a single one and replicating their output.

4.2.3 Approximate Circuits

In this section several circuit level approaches will be analyzed.

Inexact Arithmetic Circuits

Probably the inexact arithmetic circuits have been one of the most active field of research in ap-
proximate computing. Arithmetic basic building blocks such as adders and multipliers are simplified
making them inexact i.e. having a non-zero possibility to produce inexact output, but also smaller,
faster and less consuming. A naive approach is to modify the basic full adder block design in order
to reduce or avoid the carry chain. Various different designs have been proposed and sometimes
implemented in silicon prototypes.
Wang et al[2] propose a GDA (gracefully-degrading-accuracy-configurable adder). Their GDA adder



CHAPTER 4. APPROXIMATE COMPUTING 13

consists of some basic adder units, where each unit is a k -bit adder which can be implemented using
any adder design scheme as shown in fig 4.2. An N-bit GDA adder is considered. Given two N-bit
addends A and B, they are partitioned into segments (e.g. A = (A3, A2, A1, A0) and B = (B3, B2,
B1, B0)) with k bits in each and an adder unit is used to compute the segmented partial sum and
carry (e.g. Sn + Cn = An + Bn + Cn-1). Adder units are connected using multiplexers, which select
the carry-in either from the lesser significant adder unit or from a carry-in prediction component
each unit is equipped with. If all the multiplexers select the carry-in from the prediction unit the
delay to execute the addition is minimum (almost equal to delay of the single Adder Unit) but the
approximation error can be the maximum one. Instead, if the selected carry-in is the one directly
produced by the lesser significant adder unit for each unit, the delay is maximum but the precision
is also maximum. Thus it can be said that using the multiplexers control signals it is possible to
tune the precision of the final computed result. It is worth noting that in order to get a full precise
result up to the N-bit all the units producing a lesser significant result segment that the N-unit have
to provide a precise result i.e. the paired multiplexer has to select the previous unit carry-in. Also,
it should be noted that the error rate is dependent on the carry-in prediction unit, that will not
analyzed in this essay.Figure 4.2 shows the GDA schematic.
There exist some other circuit approximation techniques focused on synthesis tools that generate
approximate circuitry given an accuracy constraint instead of designing the basic arithmetic blocks
by hand.
Venkataramani et al.[12] propose SALSA, a Systematic methodology for Automatic Logic Synthesis
of Approximate circuits. Given a RTL specification of a circuit and a quality constraint that basically
defines the amount of error or uncertainty that may be introduced in the hardware implementation,
SALSA synthesizes and approximate version of the circuit adhering to the quality bound that have
been specified. Moreover the approximate synthesis problem is mapped into an equivalent traditional
logic synthesis procedure, thus allowing the existing synthesis tools to be utilized for approximate
logic synthesis. In order to implement this new methodology SALSA leverages a feature called Ap-
proximation Don’t Cares, that allows the circuit simplification using traditional don’t cares based
optimization technique.
Unfortunately since the energy-accuracy trade off is performed at design time, usually these meth-
ods cannot guarantee the best efficiency and are outperformed by some others techniques. Still,
especially the SALSA method which automatically synthesizes approximate circuits for a given error
constraints can achieve very good results.

Voltage over-scaling (VOS) techniques

The main idea behind this technique is to let circuits operate at a higher frequency than the one
allowed by the supply voltage. The timing margins to ensure a correct result(e.g. setup time) are no
more respected, so timing errors in the computation might appear. However, since digital circuits
power consumption scales quadratically with supply voltage (P ∝ CV 2

ddfclk) through this technique
it is possible to obtain important energy gains. Also, frequency and voltage can be easily modulated
dynamically through techniques such as DVFS (Dynamic Voltage and Frequency Scaling) allowing
a fine energy-accuracy trade-off. However, any over-scaling modification has to be finely tuned, to
avoid catastrophic and unacceptable errors.
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Figure 4.2: The proposed gracefully-degrading accuracy-configurable adder[2]

Precision Scaling Techniques

Precision scaling are probably the most powerful, general and easily available way to implement
approximate computing paradigm. Even our proposed ORMAC falls in this category and will
be further analyzed in the following chapter. Through precision scaling the bit width is reduced
or extended at run-time accordingly to the required output accuracy. In the literature there exist
several implementations.
Yeh et al[15] propose dynamic precision scaling for improving efficiency of physics-based animation.
Real-time physics shows a certain degree of resilience in floating point (FP) operations. So in this
paper they describe an architecture with a hierarchical FPU leveraging dynamic precision reduction
to allow an efficient FPU sharing among multiple cores. The area required by these cores is then
reduced, thus allowing more cores to be integrated. Their technique finds out the minimum precision
required by an application by performing design time profiling. At run-time, the energy difference
between consecutive application steps is measured and checked against a threshold to detect whether
the simulation is becoming unstable. If the simulation becomes unstable the full precision is restored
and then progressively reduced again until the minimum stable value is found. Reducing the precision
in a floating point based application can lead to three main additional optimization opportunities:

❼ A FP operation may become trivial, such as multiplication by one or a power of two, operations
which would not require the usage of the FPU at all.

❼ Similar values can be combined into a single value which improves the coverage of cache tech-
niques and can allow using a look table for performing FP multiply and addition operations.

❼ Precision scaling can allow using smaller FPU resulting in the improvements already described
above.

Based on these opportunities, a hierarchical FPU architecture is proposed. A simple core-local
(meaning that it can be used just by the core it belongs) is used at L1 level and full precision FPUs
are share at the L2 level in order to save surface area for allowing more cores to be integrated.
Hence, an operation where precision reduction is possible is executed on the core-local L1 FPU. A
more complicated operation where full precision is required is instead executed on the L2 shared
FPU.
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4.2.4 Approximate Architectures

The best results both in terms of power consumption and performances are obtained if hardware and
software are strictly optimized. The approximate computing paradigm is no exception and adapting
either the processor or the SOC on which the approximate application will run can provide better
results.

Processor Instruction Set Architectures (ISA)

The ISA is the main interface between the processor hardware and the software that will run on it. It
can be optimized for either fine-grained or coarse-grained approximate computing. For fine-grained
technique a set of special instructions allows the compiler to decide whether something (in terms of
single instruction, group of instructions or an entire part of a program) can be approximated or not,
mapping it to approximate or exact hardware. Specifically the arithmetic, logic and FP assembly and
machine instructions should be doubled, in order to have one precise and one approximate instruc-
tion version. Unfortunately this technique can not guarantee considerable improvements in terms
of power consumption, since in most processor architectures the most of the energy is consumed in
control, data transfers and clock distribution and none of these latter blocks can be approximated.
In coarse-grained approximate computing specific code segments are directly mapped to dedicated
approximate accelerators or full different cores outside of the processor pipeline.
Esmaeilzadeh et al[3] propose Truffle, a new processor architecture supporting new ISA extensions,
which aim to exploit what they call Disciplined Approximate Programming. Such programming
paradigm lets programmers declare which parts of a program can be approximated and consequently
lower the energy request. Then, a proper compiler proves statically that all the approximate compu-
tation is properly isolated from precise computation and generates the target machine code, letting
the actual hardware to decide how to approximate such signaled parts of code. In this way the
hardware is lightened from the complexity of correctness checks. The two main contributes achieved
from the authors of this paper are the Truffle ISA and its processor architecture description.
With Disciplined Approximate Programming, a program is divided into two components: one run-
ning precisely i.e. like a conventional computer, and a second one running approximately offering no
guarantees in terms of correctness but instead an expectation of best effort computation. Of course
in the latter subset fall the resilient parts of the code such as FP computations in error-tolerant
applications.
Their ISA design follows two basic principles: approximation abstraction and unsafety. With the
former a guaranteed results are replaced by informal expectations without specifying which tech-
nique will be used to approximate, with the latter the hardware executing the ISA blindly trust the
compiler to enforce the separation between data that must be precise and data that can be approx-
imated. This ISA extension consists of new instruction variants that leave certain aspects of their
behavior undefined. Balance must be guaranteed though, to avoid catastrophic results. Indeed, con-
trol flow, exception handling and memory access have to be maintained predictable. The proposed
approximate-aware ISA exhibits the following properties:

❼ fine-grained granularity to interleave approximate computation with precise ones. For example,
a loop variable increment has to be precise while an arithmetic, logic or floating point operation
may be approximate.

❼ approximate storage support. The compiler should be able to instruct the ISA to store data
approximately or precisely in registers and caches.
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Figure 4.3: The proposed ISA extension[3]

❼ Address computations are always precise in order to avoid the writing of arbitrary memory
locations.

The extended ISA presents approximate versions of all integers arithmetic, floating-point arithmetic
and bitwise operation instructions provided by the original ISA. The extended ISA instruction present
the same form as their precise version but give no guarantees about their output values, instead pro-
viding some sort of ”expected value”. For instance the ADD.a (add approximate) instruction takes
two argument and produces one output that has no guarantee to be the sum of the two operands.
The instruction is expected to perform an addition but neither the compiler nor the programmer
should rely on the output.
Register modes are not set explicitly by the compiler. Each register can be, at any time, in either
approximate mode or precise mode depending on the precision of the last instruction that has written
to it. Basically a precision operation makes the destination register precise, while an approximate
operation makes it approximate and then unreliable.
Finally quick glance to the proposed Truffle processor architecture represented in figure 4.4. Such an

architecture must carefully distinguish between resilient and non-resilient structures i.e. structures
where completely reliable operations are always required. Instruction fetch and decode have to be
precise and their target and source register have to be identified without errors as well. However
data content of those registers may be approximate as well as the operation that will work on them.
Similarly, memory addresses have to be computed in a error-free way but the data gotten from the
memory can present approximation.
Thus the micro-architecture is divided into two distinct planes: data movement/processing plane and
instruction control plane. Register file, data caches, load/store queue, functional units and bypass
network belong to the former group which can be approximate. Fetch, decode and control flow hard-
ware belong to the latter group which should be kept precise.
We know that at each frequency level fmax is associated a minimum supply voltage Vmin and lowering
the voltage below that minimum can cause timing error, while allowing a significant power consump-
tion reduction though. This processor architecture exploit voltage reduction as a technique to reduce
energy consumption as well as applying the approximate computing paradigm. The main idea is to
run critical non-resilient structures always at a safe voltage i.e. a voltage which guarantees a correct
functioning if the maximum frequency constraints are respected, while non-critical structures are
allowed to work at a lower voltage. Hence two different voltage lines exist: one for precise operations
and one for approximate operations.
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Figure 4.4: The proposed dual-voltage datapath[3]

SOC Architectures

Circuit and architectures techniques such te ones proposed above, often require changes on the SOC
level, especially when aggressive voltage-scaling techniques are used (e.g. in Esmaeilzadeh [3] as
discussed earlier). The whole SOC, including volatile memories and peripherals has to be organized
in specific voltage domains, which can influence the full SOC layout, setting new constraints on
frequency generators and voltage regulators.

4.2.5 Approximate Software

We can group techniques belonging to the approximate software paradigm into two main groups:
application level and programming languages/compilers.

Programming Languages and Compilers

Some language have been proposed to properly fit a program which exploits the approximate com-
puting paradigm. EnerJ[4] and Rely[16] are programming languages that provide approximation
abstraction through their syntax.

❼ EnerJ is an extension to Java that adds approximate data types. By using these types, the
system automatically maps variables tagged as approximate to approximate storage, uses ap-
proximate operations and, if provided by the programmer, applies energy efficient algorithms.
Isolation of precise variables and operations from the approximate components is guaranteed
statically, eliminating the need of dynamic checks, further improving energy savings.
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1 @Approx i n t a = 10 ;
2 i n t p ; // p r e c i s e by d e f a u l t
3 p = endorse ( a ) ; // e x p l i c i t c a s t i n g from approximate to p r e c i s e

Figure 4.5: Summary of EnerJ’s language extensions[4]

❼ Rely delegates the task of defining data flows to the compiler. It is defined as an imperative
language that enables developers to specify and verify quantitative reliability specifications
for programs that allocate data in unreliable memory regions and use unreliable arithmetic or
logical operations[16].

Along with completely new programming language like Rely or extensions to existing ones like EnerJ
there exist libraries exposing abstractions that can model approximate data types and operations
such as Uncertain<T>[17]. The main target of Uncertain<T> is the representation of those
data that are uncertain by nature such as sensor data, probabilistic models, machine learning, big
data, human biometric data and basically all data coming from a measure since there is always a
difference (uncertainty) between the ”true” value and its estimate. This uncertainty is represented
by a probability distribution while the computations and conditional expression are supported by a
Bayesian network. Uncertain<T> is available for C++, C# and Python.

Application Level

A lot of approximate computing techniques are focused on the application level while the underlying
hardware is unaware of the approximation. These techniques can be run on any type of pre-existing
hardware yielding good performance improvements while on the other side their gains in term of
power consumption are negligible.
Following some examples:

❼ Loop perforation: A rather easy technique based on the idea of skipping some iterations of
a loop to reduce computation overhead. Hence, accuracy is traded for performance by trans-
forming loops to execute just a subset of their iterations[18]. Sidiroglou et al [18] propose a
first phase filtering out critical loops to identify tunable loops and a second phase for finding
Pareto-optimal perforation policies.
They also identify several global computation patterns that works well with the loop perfo-
ration technique such as the Monte Carlo simulation, which is frequently used in finance and
engineering to model outcomes of highly unpredictable processes.

❼ Task skipping: A technique where memory references, tasks or input samples are skipped
to achieve better efficiency while reducing the output precision. Samadi et al.[19] present
Paraprox, a SW only approximate computing technique which identifies common patters in
data-parallel program and uses a specific approximation strategy for each pattern, in some
cases implementing the task skipping paradigm.
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❼ Memoization: This is basically a caching technique. It is based on the idea of storing pre-
viously computed results for future reuse in similar contexts such as functions having similar
inputs. Values are stored in an accurate way but when they are reused as results for other
functions they can be considered as an approximate result of what should have been the actual
output of the function. Thus, instead of calling a computationally hard function a memorized
value is fetched reducing the energy and execution time required. In Rahimi et al[20], authors
applied this technique in SIMD (Single Instruction Multiple Data) architectures leveraging the
high temporal and spacial data locality that characterizes this kind of architecture.

4.3 Final comments

This concludes the survey on approximate computing. As we can see, lots of different techniques
have been proposed in recent years. While software based techniques are easier to implement and
evaluate, hardware approaches are rather difficult to be properly implemented and tested, since the
costs of building an entire new system on silicon is still quite high. In most of the cases when dealing
with hardware approaches, researchers report their results based on software simulations or FPGA
implementations. While this method can apply well in the prototyping phase, it is not enough to have
a complete perspective and allow approximate computing to become a new actual design standard.
Though, the research in this field is still at the beginning and, especially when dealing with RMS
applications, approximate computing can have a promising future. However, to be extended to the
general purpose market, it is fundamental to improve the flexibility provided by the approximate
systems. If the target are mobile and IoT systems self-adaptability techniques should be introduced,
in order to let the system modify the computing precision depending on external factors, such as
battery state of charge or input data quality. With this in mind a closer relationship between
hardware and software should be targeted in order to optimize the programs for their platform and
reach better performances and lower power consumption.



Chapter 5

Redundant arithmetic and ORMAC Unit

5.1 Introduction to the ORMAC Unit

The Online Redundant Multiply and Accumulate (ORMAC) unit is a new type of MAC
unit theorized by TIMA’s lab members Ali Skaf et al. in the paper “On-Line Adjustable Precision
Computing” [21]. It uses SBD (Binary Signed Digit) as the basic computing unit, allowing to
obtain the result starting from the Most Significant SBD (MSD), one digit at each clock cycle,
since there is no carry propagation. It also allows to choose the precision at will, stopping the
computation with a variable number of digits after the MSD.
This unit aims to settle a new way of thinking about hardware approximate computing, where speed
performance is not an issue and low power consumption is the main constraint. It makes it possible
to choose the precision depending on the context or the application provided.

5.1.1 On-line arithmetic

First a brief overview on what is called On-line arithmetic. On-line arithmetic principles were in-
troduced by Ercegovac and Trivedi in 1977 [22][23]. The On-line property implies that to generate
the j th digit of the result, it is necessary and sufficient to have the operands available up to the
(j + δ)th digit, where the difference δ is a small positive constant. In order to produce the first digit
of the result it is necessary to provide δ initial digits of the operands. Then, one digit of the result
is produced upon receiving one digit of each of the operands. Thus δ is defined as the on-line delay.
Algorithms based on this principle can be used to speed up arithmetic units thanks to their potential
to perform a sequence of operations in an overlapped fashion. Another application of great interest
to the approximate computing field, is in performing variable precision arithmetic. The on-line tech-
nique implies a left-to-right digit-by-digit (hence starting from the most significant digit) algorithm.
The use of redundant number representation is required for on-line algorithms. If a non-redundant
numeric system is used, even for basic operation such as addition and subtraction, the on-line delay
is δ = m where m is the number of digits due to carry propagation [22].
In our case the chosen redundant representation is Signed Binary Digit (SBD), further described in
the next section. It is worth noting that the On-line arithmetic coupled with a redundant represen-
tation such as SBD can have a remarkable impact on power consumption for three main reason:

❼ The redundant numeric system allows to get rid of the carry chain, since there is no carry
propagation. This simplify significantly the unit design.

❼ The On-line method implies a reduced number of components (as we will se in the next section).

20



CHAPTER 5. REDUNDANT ARITHMETIC AND ORMAC UNIT 21

Thus the implementation scales better with the bit size w.r.t. a classic implementation.

❼ Since the result is obtained starting from the MSD we can stop the computation earlier with a
reduced precision.

It appears clearer why this paradigm can have a remarkable impact on the approximate computing
field, especially in therms of flexibility and power consumption reduction.

5.2 Signed Binary Digit (SBD) Arithmetic Principles

SBD arithmetic theory has been theorized by Avizienis in 1961[24]. This arithmetic is defined as
redundant. Thus every SBD is represented on two bits a+ and a- such that a = a+a- = a+ - a-.
Three values are possible for an SBD {1̄, 0, 1} = {01, 00 or 11,10} and two different codings exist
for 0 : {00, 11}
Example on 4 SBDs:

− 5 = 1̄011 = 01̄1̄1 = 01̄01̄ (5.1)

− 5 = −8 + 2 + 1 = −4− 2 + 1 = −4− 1 (5.2)

5.2.1 Addition-Subtraction

Basic Blocks

Two basic blocks exist to perform an addition or a subtraction. These blocks are called PPM for
Plus-Plus-Minus and MMP for Minus-Minus-Plus (w.r.t the single Full Adder Block that exists in
the classic binary arithmetics). These two blocks allow to add or subtract an SBD a = a+a- with a
single bit b.

Figure 5.1: The PPM and MMP blocks

PPM : e = Maj(b, a+, ā-) (5.3)

MMP : e = Maj(b, a-, ā+) (5.4)

f = b⊕ a+ ⊕ a- (5.5)
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Parallel Addition-Subtraction

Combining more PPMs and MMPs makes possible to build multiple SBD addition. To add two SBDs
a = a+a- and b = b+b- we note that a + b = ((a + b+) - b-) which is done by a PPM followed
by an MMP. Adding two SBD numbers A + B = ((A + B+) - B-) is hence done by a hybrid adder
followed by a hybrid subtractor, i.e. a row of PPMs followed by a row of MMPs.
It is worth noting that there is no global carry (or borrow) propagation thanks to redundancy. The
execution of parallel addition/subtraction is done in a constant time, independently of the operand
size.

Figure 5.2: Two-input SBD adder/subtractor

Serial Addition-Subtraction (On-line)

The SBD arithmetics also allows to build operators working in a serial way instead of parallel. This
means computing the result digit by digit, one for each clock cycle, using just two basic blocks, hence
greatly reducing circuit area.
D blocks represent D-type flip-flops and are used to keep the different weight of operands correct,
contributing to what is called on-line delay. We can choose to compute the addition starting with
the LSD (Least Significant Digit) or perform an on-line operation by starting with the MSD (Most
Significant Digit).

5.2.2 Multiplication

To multiply two SBD a = a+a- and b = b+b- we use the formulas

s+ = a+.b+ + a-.b- (5.6)

s- = a+.b- + a-.b+ (5.7)

5.2.3 Online Multipication

To perform an On-line multiplication of two SBD numbers P = A · X the algorithm proposed by
Trivedi & Ercegovac [22] is used.
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Figure 5.3: SBD serial adder

Let

A =
mX
i=1

ai · r−i (5.8)

X =
mX
i=1

xi · r−i (5.9)

be the radix r (in our case it will be r = 2 since we are dealing with binary arithmetic) representations
of the positive multiplicand and multiplier, respectively. Then define

Aj =

jX
i=1

ai · r−i = Aj−1 + aj · r−j (5.10)

Xj =

jX
i=1

xi · r−i = Xj−1 + xj · r−j (5.11)

to be the j digit representations of the operands A and X available at the jth step by definition of
an on-line algorithm. The corresponding partial product then is:

Aj ·Xj = Aj−1 ·Xj−1 + (Aj · xj +Xj−1 · aj) · r−j (5.12)

Let Pj be the scaled partial product:
Pj = Aj ·Xj · rj (5.13)

in this way the recursion of the multiplication algorithm can be expressed as:

Pj = rPj−1 + Aj · xj +Xj−1 · aj (5.14)
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By defining P0 = 0, the scaled product Pm = A ·X · rm can be generated in m steps. If a redundant
numeric system is used, the result can be obtained starting from the most significant digit. The
recursive step can be performed in a time independent from the operand precision by exploiting the
carry free addition property of redundant numeric systems.

5.2.4 ORMAC Unit

By using the blocks and techniques presented previously we can build the On-line Redundant MAC
unit. With slight modifications to the adder block we can also introduce a way to choose the preci-
sion at will i.e. choose how many digits will form the result starting from the MSD. SBDs data (ak

Figure 5.4: On-line redundant MAC

and xk) are inserted one by one, one each clock cycle, starting with the MSD. Partial product are
generated and then added to the previously accumulated value. One of the most interesting feature
of this unit is that both input and output are provided starting from the Most Significant Digit,
the exact opposite with respect to the classical units. This can open up new possibilities, especially
when more ORMAC units are used together. If a unit exploits the result of the previous one for its
computations there is no need to wait until the first computation is over, but results obtained from
the MSD can be directly used by the second one.

These features are made possible by the choice of the redundant numbering system. Using this
kind of notation system, instead of the classical binary one allows to get rid of carry propagation as
seen in the Parallel Addition paragraph.
However one issue can arise from the cost of passing from redundant notation system to classical
binary.

5.2.5 Conversion from Binary to SBD

The conversion from binary to SBD is straightforward. Let A be a 2’s complement binary number
on N bits, S = SpSm a SBD number on N digits where Sp is the SBD positive part (on N bits) and
Sm the SBD negative part(on N bits). The conversion can be done in the following way:
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Sp(N-1) <= ’0’;
Sp(N-2 downto 0) <= A(N-2 downto 0);
Sm(N-1) <= A(N-1);
Sm(N-2 downto 0) <= (others => ’0’);
The impact of this conversion is small since it can be done with

5.2.6 Conversion from SBD to Binary

An MMP adder will be used to subtract every bit. The carry will be propagated through all the
MMP blocks. The carry at the last MMP block will decide the sign bit of the 2’s complement number.
The delay of this circuit is completely dependent on the implementation of the MMP blocks.

Figure 5.5: Block diagram to convert from a 4 digit SBD number to a 5 bit binary number

The delay of this unit is O(n). Better architectures exist based on the sparse tree adder.

5.3 ORMAC Implementation

The original VHDL code for the ORMAC unit has been developed by Mona Ezzadeen, another
TIMA laboratory member. Since the original unit gets input data and provides result in a serial
on-line way, in order to use it in a more complex environment such as Rocket Chip and to test it
against normal MAC units, I made some modifications to the original unit and then I embedded the
modified unit in a wrapper. The wrapper allows to load and retrieve binary data in a parallel way
while the whole computation is done by the inner ORMAC unit using BSDs.
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5.3.1 ORMAC Wrapper

Datapath

Figure 5.6: Wrapper Datapath

❼ Binary to SBD converter: Input converters, one for each input datum

❼ SBD Parallel to Serial: Shift registers needed to feed the ORMAC unit with a single SBD
each clock cycle

❼ ORMAC: Actual ORMAC unit. Inside it there are a datapath and a control unit
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❼ SBD Barrel Shifter: An Incremental barrel shifter. The first SBD after reset will be placed
in the MSD position, the second one in the MSD-1 position etc.

❼ SBD to binary converter: The last component, required to convert back the number. It
is worth noting that the ORMAC unit provides an output on 2N+3 SBDs because of the so
called delay SBD. These SBDs are obtained as most significant SBDs and they are caused
by the internal flip-flops. If the result is correct (so if there is no overflow) when the value
is converted back to binary the three most significant bits are equal to the sign bit; if this
condition is not respected so we have overflow. Then we can use these three bits to compute
the unit overflow.

❼ Overflow computation unit: it is nothing more than three logic gates, one and gate and
two nor gates as shown in the figure 5.7. It makes possible to know when we are trying to
compute a value greater than the maximum possible value that can be represented on 2N bits.

Figure 5.7: Overflow Circuit

Control Unit

A simple Control Unit, it feeds the datapath with signals needed to load, enable and reset registers.
Due to design constraints it is a mealy machine. This choice was made to enforce the synchronization
with the ORMAC internal CU.

Figure 5.8: Wrapper Control Unit
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5.4 Development, Testing and Results

The entire development and debugging has been done using Xilinx Vivado Design Suite1 and its
integrated simulator.
For the area analysis computation we used Synopsys Design Compiler 2 ,while for the power consump-
tion analysis we used Synopys PrimeTime3 The ORMAC unit aims to reduce power consumption
and area sacrificing speed performances. Following the main results we obtained in the comparison
with a classic Multiply and Accumulate unit, coded in a behavioral way.
All the result showed are obtained using the input/output wrapper around the basic ORMAC circuit.

Surface Area per input bit length - Synopsys Design Vision

The ORMAC uses much less surface than a normal MAC if we use more than 32 bit otherwise their
area is comparable. This behavior is probably due to the inner circuital complexity of the ORMAC
w.r.t. the classic mac. Even for small size inputs the ORMAC presents many more components than
the classic version. However if the bit size grows, the complexity of the multiplier and adder inside
the classic mac becomes higher, and as consequence the circuit area grows. The impact of the bit
size on the ORMAC is definitely lower since the on-line adder, which is one of the components, has
a fixed size independently of the input bit length.

1Vivado Website: https://www.xilinx.com/products/design-tools/vivado.html
2Design Compiler Website:https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/

design-compiler-graphical.html
3https://www.synopsys.com/support/training/signoff/primetime1-fcd.html

https://www.xilinx.com/products/design-tools/vivado.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/design-compiler-graphical.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/design-compiler-graphical.html
https://www.synopsys.com/support/training/signoff/primetime1-fcd.html
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Maximum Frequency per input bit length - Synopsys Design Vision

The frequency stabilizes around 102 MHz. The result is definitely better than the classic mac. By
increasing the bit size the carry chain of the classic mac becomes longer, heavily impacting on the
circuit longest path. This reduces the frequency significantly. The ORMAC frequency dependency on
the input bit length is definitely lower, not having carry propagation. Hence the ORMAC maximum
frequency is kept constant after an initial drop.

Power Consumption per input bit length - Synopsys Prime Time

In terms of power consumption the ORMAC is not as good as expected. This is probably due
to the ORMAC datapath design that could be definitely improved. This will be something to be
investigated in a future work.



Chapter 6

32 bit ORMAC Unit Integration inside
Rocket Chip

6.1 Introduction

As widely explained in the chapter related to Rocket Chip, this platform is extremely customizable
and it fits perfectly our needs. However it is not straightforward getting used to it. It lacks in
terms of documentation and since it is a relatively new platform, not so much support exists on the
internet.
To integrate our ORMAC unit inside Rocket Chip two main paths exist. Either embedding it as an
accelerator exploiting the RoCC, strictly coupling the unit with the CPU, or adding it as an external
peripheral, allowing the processor to write and read data through memory mapped registers. Even
if the former is the most indicated one it is more difficult and it is actually needed only in case of
performance constraints. Thus the latter was my choice.

6.2 BlackBox Structure

In general the BlackBox structure is used when there is some IP written in Verilog that is likely to
be included in Chisel design (our case) or when it is not possible to express some module because
of Chisel semantics and so it is useful to code and include the module in Verilog. Chisel is a dialect
of Scala which itself derives from Java. Then it is no surprise that Chisel is an Object Oriented
programming language. Hence to add peripherals to the main SoC it is necessary to extend a basic
class through inheritance. If the new class, that represents the new peripheral, extends the basic
class Module, the circuit behavior needs to be described in Chisel, if instead the new class extends
BlackBox it is possible to create just the interface without implementing the actual internal logic.
Thus the class that extends BlackBox is nothing more than a container, a top level view written in
Chisel whose instantiation can be written in Verilog and then referenced in the Makefile.
The name of the blackboxed module needs to match the Verilog module one so that the Verilog com-
piler can properly resolve the instantiation. The BlackBox Verilog code is reported in Appendix.1.1.
It features a top level module including a datapath, which is the actual ORMAC, and a further
level of control unit, which is needed to synchronize the BlackBox unit with the system it is attached
to.
This new unit will be compiled together with all the other files to produce the C++ emulator,
a fundamental component for Rocket Chip based development since it can also generate circuit’s
waveforms.
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6.3 Integration Procedure

6.3.1 Code Translation

As I previously wrote the whole ORMAC code that I modified, developed and tested the wrapper
for, was coded in VHDL. But Chisel accepts BlackBox peripheral written in Verilog, since Verilator,
the program that generates the emulator, supports only Verilog. Hence after designing, testing and
debugging the wrapped VHDL unit (process that took me a while to be completed), I needed to fully
convert the code from VHDL to Verilog. I did this partially using a software and then I refined the
translation manually. The software I used is vhd2vl (https://github.com/ldoolitt/vhd2vl). Unfor-
tunately not every construct is supported and not everything is always well translated. So a manual
review of the entire code was needed. In particular the generics VHDL construct was not supported
at all by the conversion program.
After completing the conversion the Verilog code was tested and debugged again, to be sure that no
bugs where introduced by the translation procedure and to ensure the same behavior as the VHDL
original code.

6.3.2 Adding the hardware module to Rocket Chip

Custom Peripherals code with the BlacBox unit attached can be found in Appendix.1.2. It is a .scala
file, written in Chisel and provided by Rocket Chip. It has to be modified and expanded every time
a new unit has to be added to the SoC.

❼ Adding the BlackBox: Writing to the file dedicated to the custom peripherals our BlackBox
unit, that represents the top level view of our ORMAC, setting also the input/output bit length.
It is worth noting that even if our unit takes 32 bit input and provides 64 bit (+1 overflow
bit) output, the BlackBox unit is instantiated using 64 bit input/output, to make simpler the
register mapping.

❼ Adding the configuration and data registers: After configuring the base address for all
the custom peripherals we need to map the input/output registers used by our unit inside the
peripherals address map, paying attention to maintain the addresses aligned, otherwise the
code will not compile. Usually custom peripherals addresses start at 0x2000, so to maintain
them aligned, knowing that Rocket Chip addresses bytes, we have to use 8 bytes multiples
starting from the base address (so 0x2008, 0x2010, 0x2018 and so on...).

❼ Modifying the configuration: to include the peripherals in the future generated emulator
we need to modify the configuration file adding to our configuration the information that new
peripherals, memory mapped at the addresses we defined, exist. Then we can move the Verilog
files describing the wrapped ORMAC unit inside the folder dedicated to Verilog peripherals.
Finally we have to modify the Makefile, adding the Verilog files to the list of files to be compiled.

6.3.3 Developing the HAL

To interface the higher level software to be run on the CPU with the new added peripheral we need
to develop a Hardware Abstraction Layer which takes into account the register writing/reading,
exposing a simpler API. I did this using the C programming language and my choice was to create
an .h file called mac.h where I put the registers mapping of the ORMAC unit and the functions
declaration to interact with them, and a mac.c where I put the functions definition. Using these files
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it is possible to write a main.c file that can easily interact with the ORMAC unit, providing inputs
and getting outputs.
Following the two main function exposed in the HAL:

❼ char mac(int32_t a, int32_t b, int64_t*s, uint64_t precision); it allows to set up
the a, b data input registers and the p precision register, the s pointer to the variable that
will contain the result of the operation. It returns 1 if there is overflow, 0 otherwise.

❼ void reset_mac(void); it allows to reset to 0 the mac accumulator register. To be executed
before the mac function every time we want to start a new accumulation.

It is worth noting that before embedding the wrapped ORMAC inside Rocket Chip, a small three-
states synchronization control unit was added. This control unit stops the mac computation every
time a new result is ready. In this way it is possible for the CPU executing the machine code of the
main file that we provided to read the result and write it in a variable. However this external control
unit can be easily integrated inside the wrapper’s one. The synchronization unit is available in the
Blackbox.v code in Appendix.1.1.
The CPU can access results in two ways: polling and interrupts. Both ways are supported by Rocket
Chip. The former was my choice. Before reading the results the CPU ”polls” i.e. continuously reads
the ready bits until it becomes 1. At this point the result can be read from the peripheral register
and written inside a variable. HAL code is available in Appendix.1.3 with both the .h and .c files.

6.3.4 Testing

The Verilog ORMAC unit has been extensively tested through an exhaustive test on 16 bits. So 232

combinations (216 combinations for a input and 216 combinations for b input) were tested without
rising any error. To test it in a coherent manner with the Rocket Chip environment, the Verilog code
was translated in C++ using Verilator. The testbench was written in C++ using C++11 libraries
for multithreading, in order to distribute the workload on four cores. The test took about 60 hours.
I made this choice to speed up the testing phase. Indeed trying to test the entire Rocket Chip SoC
using the C++ emulator was too slow. Full code of the testbench is available in Appendix.1.4.
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Future Work and Conclusion

Regarding the ORMAC unit, surface area and maximum frequency results are quite promising,
meaning that the redundant arithmetic principles are worth to be further explored when applied
to approximate computing based units. However, several improvements can be carried out. The
ORMAC unit datapath design especially, can be improved a lot, reducing its power consumption
and in general making more straightforward the understanding of the code itself.
Other improvements include the usage of interrupts instead of polling in the Rocket Chip integration
part.
This work can set up the path for some interesting future extensions. The main challenge is to
find a proper application that fits multiple ORMACs, in a configuration that can enhance its best
characteristics such as variable precision and results obtained from the most significant digit. An
idea could be to implement an array/matrix operation accelerator, particularly useful when dealing
with machine learning or image processing algorithm, that are also two fields where approximate
computing fits perfectly. This kind of unit can be also integrated as a directly coupled accelerator
in Rocket Chip leveraging the RoCC unit, granting a considerable performance boost with respect
to the peripheral integration that I did. Generally producing a single digit every clock cycle can be
a slowdown for high performance computation, even if an approximate result is acceptable. So the
main challenge is to find an architecture or an algorithmic application where this is not a slowdown
but a feature that can enhance performances. However Reducing the unit power consumption is the
main objective to be achieved. In this way this new unit can fit in application where speed is not a
critical constraint such as IoT.
Finally, regarding the approximate computing field state of art, we have seen that a lot of studies,
targeting different computing levels (hardware, architecture, software), have been carried out. How-
ever not all of them are likely to have a remarkable impact on future research, especially if their
flexibility is limited. Being able to choose the computation precision whether a power consumption
reduction is needed is the key feature that can really boost the adoption of such paradigm in future
devices.
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.1 Source Codes

.1.1 BlackBox

Listing 1: BlackBox.v

1 module blackbox (
2 input c lock ,
3 input r e s e t ,
4 input c l ea r ,
5 input req ,
6 input [ 6 3 : 0 ] a ,
7 input [ 6 3 : 0 ] b ,
8 input newAcc ,
9 input [ 6 3 : 0 ] p r e c i s i o n ,

10 output reg [ 6 3 : 0 ] s ,
11 output reg ready ,
12 output over f l ow
13 ) ;
14

15 wire [ 6 3 : 0 ] s s ;
16 wire rst mac ;
17 wire mac done ;
18 reg start mac ;
19 a s s i g n rst mac = c l e a r | | r e s e t ;
20 TOPMAC #(.NSIZE (32 ) , .PREC( 7 ) )
21 mac (
22 . s t a r t ( s tart mac ) ,
23 . r e s e t ( rst mac ) ,
24 . c l k ( c l o ck ) ,
25 .DATA A( a [ 3 1 : 0 ] ) ,
26 .DATA X(b [ 3 1 : 0 ] ) ,
27 . newAcc ( newAcc ) ,
28 . p r e c i s i o n ( p r e c i s i o n [ 6 : 0 ] ) ,
29 . S ( s s ) ,
30 . done ( mac done ) ,
31 . over f l ow ( over f l ow )
32 ) ;
33 // i n t e r n a l v a r i a b l e s
34 reg [ 1 : 0 ] s t a t e ;
35 reg [ 1 : 0 ] n e x t s t a t e ;
36 // i n t e r n a l cons tant s
37 parameter IDLE = 2 ’ b00 , COMP = 2 ’ b01 , DONE = 2 ’ b10 ;
38 //comb l o g i c
39 always @ ( s tate , req , mac done , s s )
40 begin : FSM COMB
41 n e x t s t a t e = s t a t e ;
42 s tart mac = 0 ;
43 ready = 0 ;
44 case ( s t a t e )
45 IDLE : begin
46 i f ( req == 0) begin
47 n e x t s t a t e = IDLE ;
48 end e l s e begin
49 n e x t s t a t e = COMP;
50 end
51 end
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52 COMP : begin
53 s tart mac = 1 ;
54 s = s s [ 6 3 : 0 ] ;
55 i f ( mac done == 1) begin
56 n e x t s t a t e = DONE;
57 end e l s e begin
58 n e x t s t a t e = COMP;
59 end
60 end
61 DONE : begin
62 ready = 1 ;
63 i f ( req == 1) begin
64 n e x t s t a t e = DONE;
65 end e l s e begin
66 n e x t s t a t e = IDLE ;
67 end
68 end
69 d e f a u l t : n e x t s t a t e = IDLE ;
70 endcase
71 end
72 // seq l o g i c
73 always @ ( posedge c l o ck )
74 begin : FSM SEQ
75 i f ( c l e a r | | r e s e t ) begin
76 s t a t e <= IDLE ;
77 end e l s e begin
78 s t a t e <= n e x t s t a t e ;
79 end
80 end
81

82 endmodule

.1.2 Custom Peripherals

Listing 2: CustomPeripherals.scala

1 package f r e e c h i p s . r o cke t ch ip . d e v i c e s . t i l e l i n k
2

3 import Ch i s e l .
4 import f r e e c h i p s . r o cke t ch ip . subsystem . // BaseSubsystem
5 import f r e e c h i p s . r o cke t ch ip . c o n f i g .{ Parameters , F i e ld }
6 import f r e e c h i p s . r o cke t ch ip . diplomacy .
7 import f r e e c h i p s . r o cke t ch ip . regmapper .{HasRegMap , RegField }
8 import f r e e c h i p s . r o cke t ch ip . t i l e l i n k .
9 import f r e e c h i p s . r o cke t ch ip . u t i l . UIntIsOneOf

10

11 /✯ ✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯ ✯/
12 /✯ BlackBoxModule ✯/
13 /✯ ✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯ ✯/
14

15 /✯ d e s c r i b e s a w❂b i t wide mac wr i t t en in
16 Ver i l og . This module uses an ob j e c t i n s t a n c i a t e d
17 from c l a s s blackbox , which extends the s p e c i a l
18 BlackBox c l a s s ✯/
19

20
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21 c l a s s BlackBoxModule (w: Int ) extends Module{ // p must be log2 (w) + 1
22 va l i o = new Bundle {
23 va l c l o ck = Clock (INPUT)
24 va l r e s e t = Bool (INPUT)
25 va l c l e a r = Bool (INPUT)
26 va l req = Bool (INPUT)
27 va l a = UInt (INPUT, w)
28 va l b = UInt (INPUT, w)
29 va l newAcc = Bool (INPUT)
30 va l p r e c i s i o n = UInt (INPUT, w)
31 va l s = UInt (OUTPUT, w)
32 va l ready = Bool (OUTPUT)
33 va l over f l ow = Bool (OUTPUT)
34 }
35 va l blackbox = Module (new blackbox ( 6 4 ) ) . connect ( i o . c lock , i o . r e s e t , i o . c l e a r , i o . req ,
36 i o . a , i o . b , i o . newAcc , i o . p r e c i s i o n , i o . s , i o . ready ,
37 i o . over f l ow )
38 }
39

40 c l a s s blackbox (w: Int ) extends BlackBox {
41 va l i o = new Bundle {
42 va l c l o ck = Clock (INPUT)
43 va l r e s e t = Bool (INPUT)
44 va l c l e a r = Bool (INPUT)
45 va l req = Bool (INPUT)
46 va l a = UInt (INPUT, w)
47 va l b = UInt (INPUT, w)
48 va l newAcc = Bool (INPUT)
49 va l p r e c i s i o n = UInt (INPUT)
50 va l s = UInt (OUTPUT, w)
51 va l ready = Bool (OUTPUT)
52 va l over f l ow = Bool (OUTPUT)
53 }
54

55 de f connect ( c : Clock , r : Reset , c l e a r : Bool , req : Bool , a : UInt , b : UInt ,
56 newAcc : Bool , p r e c i s i o n : UInt , s : UInt , ready : Bool ,
57 over f l ow : Bool ) = {
58 i o . c l o ck := c
59 i o . r e s e t := r
60 i o . c l e a r := c l e a r
61 i o . req := req
62 i o . a := a
63 i o . b := b
64 i o . newAcc := newAcc
65 i o . p r e c i s i o n := p r e c i s i o n
66 s := i o . s
67 ready := i o . ready
68 over f l ow := i o . over f l ow
69 }
70 }
71 /✯ ✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯ ✯/
72 /✯ ✯/
73 /✯ ✯/
74 /✯ TopLevel ✯/
75 /✯ CustomPeripherals ✯/
76 /✯ ✯/
77 /✯ ✯/
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78 /✯ ✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯ ✯/
79 case c l a s s CustomPeripheralsParams (
80 address : BigInt ,
81 beatBytes : Int )
82

83 c l a s s CustomPeripheralsBase (w: Int ) extends Module {
84 va l i o = IO(new Bundle {
85 /✯ BlackBoxModule I n t e r f a c e ✯/
86 va l blackboxmod = new Bundle {
87 va l c l o ck = Clock (INPUT)
88 va l c l e a r = Bool (INPUT)
89 va l r e s e t = Bool (INPUT)
90 va l req = Bool (INPUT)
91 va l a = UInt (INPUT, w)
92 va l b = UInt (INPUT, w)
93 va l newAcc = Bool (INPUT)
94 va l p r e c i s i o n = UInt (INPUT)
95 va l s = UInt (OUTPUT, w)
96 va l ready = Bool (OUTPUT)
97 va l over f l ow = Bool (OUTPUT)
98 }
99 /✯ Another Module I n t e r f a c e ✯/
100 })
101 /✯ BlackBoxMod ✯/
102 va l blackboxmod = Module (new BlackBoxModule ( 64 ) )
103 blackboxmod . i o . c l o ck := c lo ck
104 blackboxmod . i o . r e s e t := r e s e t
105 blackboxmod . i o . c l e a r := i o . blackboxmod . c l e a r
106 blackboxmod . i o . req := i o . blackboxmod . req
107 blackboxmod . i o . newAcc := i o . blackboxmod . newAcc
108 blackboxmod . i o . p r e c i s i o n := i o . blackboxmod . p r e c i s i o n
109

110 i o . blackboxmod . s := blackboxmod . i o . s
111 i o . blackboxmod . ready := blackboxmod . i o . ready
112 i o . blackboxmod . over f l ow := blackboxmod . i o . over f l ow
113

114 blackboxmod . i o . a := i o . blackboxmod . a
115 blackboxmod . i o . b := i o . blackboxmod . b
116

117 /✯ Another Module ✯/
118 }
119 /✯ ✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯ ✯/
120 /✯ ✯/
121 /✯ ✯/
122 /✯ TopLevel ✯/
123 /✯ R e g i s t e r s Mapping ✯/
124 /✯ ✯/
125 /✯ ✯/
126 /✯ ✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯ ✯/
127 t r a i t CustomPeripheralsTLModule extends HasRegMap {
128 i m p l i c i t va l p : Parameters
129 va l i o : CustomPeripheralsTLBundle
130 de f params : CustomPeripheralsParams
131

132 /✯ ✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯ ✯/
133 /✯ CustomPeripherals Base ✯/
134 /✯ ✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯ ✯/
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135 va l base = Module (new CustomPeripheralsBase ( 6 4 ) )
136 /✯ ✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯ ✯/
137 /✯ BlackBloxMod S i g n a l s ✯/
138 /✯ ✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯ ✯/
139 va l blackboxmod a = Reg( UInt ( 6 4 .W) )
140 va l blackboxmod b = Reg( UInt ( 6 4 .W) )
141 va l blackboxmod s = Reg( UInt ( 6 4 .W) )
142 va l blackboxmod clear = RegIn i t ( f a l s e .B)
143 va l blackboxmod req = RegIn i t ( f a l s e .B)
144 va l blackboxmod ready = Reg( UInt ( 1 .W) )
145 va l blackboxmod newAcc = RegIn i t ( f a l s e .B)
146 va l b lackboxmod prec i s ion = Reg( UInt ( 6 4 .W) )
147 va l blackboxmod overf low = Reg( UInt ( 1 .W) )
148

149 // Outputs
150 blackboxmod s := base . i o . blackboxmod . s
151 blackboxmod ready := base . i o . blackboxmod . ready
152 blackboxmod overf low := base . i o . blackboxmod . over f l ow
153 // Inputs
154 base . i o . blackboxmod . a := blackboxmod a
155 base . i o . blackboxmod . b := blackboxmod b
156 base . i o . blackboxmod . c l e a r := blackboxmod clear
157 base . i o . blackboxmod . req := blackboxmod req
158 base . i o . blackboxmod . newAcc := blackboxmod newAcc
159 base . i o . blackboxmod . p r e c i s i o n := blackboxmod prec i s ion
160

161 /✯ ✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯ ✯/
162 /✯ Reg i s t e r Map ✯/
163 /✯ ✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯ ✯/
164 regmap (
165 /✯ BlackBoxMod ✯/
166 0x00 ❂> Seq (
167 RegField (64 , blackboxmod a ) ) ,
168 0x08 ❂> Seq (
169 RegField (64 , blackboxmod b ) ) ,
170 0x10❂> Seq (
171 RegField (64 , blackboxmod s ) ) ,
172 0x18 ❂> Seq (
173 RegField (64 , b lackboxmod prec i s ion ) ) ,
174 0x20 ❂> Seq (
175 RegField (1 , blackboxmod clear ) ) ,
176 0x28 ❂> Seq (
177 RegField (1 , blackboxmod req ) ) ,
178 0x30 ❂> Seq (
179 RegField (1 , blackboxmod ready ) ) ,
180 0x38 ❂> Seq (
181 RegField (1 , blackboxmod newAcc ) ) ,
182 0x40 ❂> Seq (
183 RegField (1 , blackboxmod overf low ) )
184 )
185 }
186 /✯ ✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯ ✯/
187 /✯ Encapsulat ion in Ti l eL ink ✯/
188 /✯ ✯ e x p l i c i t use o f I n t e r r u p t i o n ✯/
189 /✯ ✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯ ✯/
190 c l a s s CustomPeripheralsTL ( c : CustomPeripheralsParams ) ( i m p l i c i t p : Parameters )
191 extends TLRegisterRouter (
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192 c . address , ” cus tomper iphera l s ” , Seq ( ”ucbbar , cus tomper iphera l s ” ) ,
193 i n t e r r u p t s = 4 , beatBytes = c . beatBytes ) (
194 new TLRegBundle ( c , ) with CustomPeripheralsTLBundle ) (
195 new TLRegModule ( c , , ) with CustomPeripheralsTLModule )
196

197 t r a i t HasPeripheryCustomPeripherals { t h i s : BaseSubsystem =>
198 i m p l i c i t va l p : Parameters
199

200 p r i v a t e va l address = 0x2000
201 p r i v a t e va l portName = ” customper iphera l s ”
202 // LazyModule
203 // ✯ c r e a t e and conect s d i f e r e n t s nodes to make ” r e q u e s t s ”
204 // ✯ othe r s modules a l s o make ” r e q u e s t s ” with t h e i r nodes
205 // ✯ ” r e q u e s t s ” are r e s o l v e d when LazyModule i s r e a l i z e d with a . module
206 va l cus tomper iphera l s = LazyModule (new CustomPeripheralsTL (
207 CustomPeripheralsParams ( address , pbus . beatBytes ) ) ( p ) )
208 // Ti l eL ink node : pbus
209 pbus . toVariableWidthSlave (Some( portName ) ) { cus tomper iphera l s . node }
210 // Ti l eL ink node : ibus ( i n t e r r u p t bus )
211 // ( remember s e t numbers o f i n t e r r u p t s in CustomPeripheralsTLs )
212 ibus . fromSync := customper iphera l s . intnode
213 }
214 // LazyModuleImp
215 // ✯ i s approximately l i k e Ch i s e l Modules
216 // ✯ i n t e r f a c e to t ranspor t s i g n a l s f o r top❂l e v e l ( dut . pwm pwmout)
217 t r a i t HasPeripheryCustomPeripheralsModuleImp extends LazyModuleImp {
218 va l outer : HasPeripheryCustomPeripherals
219 // Another Module
220 }

.1.3 ORMAC Hardware Abstraction Layer

Listing 3: mac.h

1 #i f n d e f MAC H
2 #d e f i n e MAC H
3

4

5 // The base address o f the hardware p e r i p h e r a l
6 #d e f i n e MAC BASE ADDR 0x2000
7 #d e f i n e MAC A REGISTER ADDR 0x2000
8 #d e f i n e MAC B REGISTER ADDR 0x2008
9 #d e f i n e MAC S REGISTER ADDR 0x2010

10 #d e f i n e MAC PRECISION ADDR 0x2018
11 #d e f i n e MAC RESET ADDR 0x2020
12 #d e f i n e MAC REQ ADDR 0x2028
13 #d e f i n e MAC READY ADDR 0x2030
14 #d e f i n e MACNEWACCADDR 0x2038
15 #d e f i n e MAC OVERFLOW ADDR 0x2040
16

17 #inc lude ” u t i l . h”
18

19

20 /✯✯ @brie f Set s the r e g i s t e r A (INPUT)
21 ✯

22 ✯ @param a The new value on 32 b i t s .
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23 ✯ @return Void .
24 ✯/
25 void setA ( i n t 3 2 t a ) ;
26

27 /✯✯ @brie f Set s the r e g i s t e r B (INPUT)
28 ✯

29 ✯ @param b The new value on 32 b i t s .
30 ✯ @return Void .
31 ✯/
32 void setB ( i n t 3 2 t b ) ;
33

34 /✯✯ @brie f Gets the r e g i s t e r S (INPUT)
35 ✯

36 ✯ @param Void .
37 ✯ @return S The value o f the r e s u l t r e g i s t e r .
38 ✯/
39 i n t 6 4 t getS ( void ) ;
40

41 /✯✯ @brie f Resets the un i t accumulator
42 ✯

43 ✯

44 ✯/
45 void reset mac ( void ) ;
46

47 void reque s t ( void ) ;
48

49 /✯✯ @brie f Function to use the mac
50 ✯

51 ✯ @param a The A r e g i s t e r va lue
52 ✯ @param b The B r e g i s t e r va lue
53 ✯ @param s The r e s u l t , passed by r e f e r e n c e
54 ✯ @param p r e c i s i o n the d e s i r e d p r e c i s i o n
55 ✯/
56 char mac( i n t a , i n t b , i n t 6 4 t ✯ s , u i n t 6 4 t p r e c i s i o n ) ;
57

58

59 char g e t o v e r f l o w ( void ) ;
60

61 #e n d i f

Listing 4: mac.c

1 #inc lude ”mac . h”
2

3 void setA ( i n t 3 2 t a )
4 {
5 ✯( v o l a t i l e u i n t 6 4 t ✯ ) (MAC A REGISTER ADDR) = ( i n t 6 4 t ) a ;
6 }
7

8 void setB ( i n t 3 2 t b)
9 {

10 ✯( v o l a t i l e u i n t 6 4 t ✯ ) (MAC B REGISTER ADDR) = ( i n t 6 4 t )b ;
11 }
12

13 i n t 6 4 t getS ( void )
14 {
15 whi le (✯ ( v o l a t i l e u i n t 6 4 t ✯ ) (MAC READY ADDR) == 0 ) ; // p o l l i n g
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16 i n t 6 4 t r e s u l t = ✯( v o l a t i l e u i n t 6 4 t ✯ ) (MAC S REGISTER ADDR) ;
17 ✯( v o l a t i l e u i n t 6 4 t ✯ ) (MAC REQ ADDR) = 0 ;
18 re turn r e s u l t ;
19 }
20

21 void reset mac ( void )
22 {
23 setA ( 0 ) ;
24 setB ( 0 ) ;
25 ✯( v o l a t i l e u i n t 6 4 t ✯ ) (MAC REQ ADDR) = 0 ;
26 ✯( v o l a t i l e u i n t 6 4 t ✯ ) (MAC RESET ADDR) = 1 ;
27 ✯( v o l a t i l e u i n t 6 4 t ✯ ) (MAC RESET ADDR) = 0 ;
28 }
29 void reque s t ( void ){
30 ✯( v o l a t i l e u i n t 6 4 t ✯ ) (MAC REQ ADDR) = 1 ;
31 }
32

33 char mac( i n t a , i n t b , i n t 6 4 t ✯ s , u i n t 6 4 t p r e c i s i o n ){
34 setA ( a ) ;
35 setB (b ) ;
36 ✯( v o l a t i l e u i n t 6 4 t ✯ ) (MAC PRECISION ADDR) = p r e c i s i o n + 1 ;
37 ✯( v o l a t i l e u i n t 6 4 t ✯ ) (MACNEWACCADDR) = 0 ;
38 r eque s t ( ) ;
39 ✯ s = getS ( ) ;
40 re turn getOverf low ( ) ;
41 }
42

43 char g e t o v e r f l o w ( void ){
44 re turn ✯( v o l a t i l e u i n t 6 4 t ✯ ) (MAC OVERFLOW ADDR) ;
45 }

.1.4 Testbench

Listing 5: testbench

1 #inc lude <s t d l i b . h>
2 #inc lude ”Vblackbox . h”
3 #inc lude ” v e r i l a t e d . h”
4 #inc lude <iostream>
5 #inc lude <thread>
6 #inc lude <mutex>
7

8 #d e f i n e N 65536
9

10 std : : mutex mtx ;
11

12 void de lay ( unsigned n , Vblackbox ✯ tb ) {
13 f o r ( unsigned i = 0 ; i < n ; i ++){
14 tb❂>c l o ck = 1 ;
15 tb❂>eva l ( ) ;
16 tb❂>c l o ck = 0 ;
17 tb❂>eva l ( ) ;
18 }
19 }
20

21 void func ( Vblackbox✯ tb , s i z e t tn , s i z e t begin , s i z e t end ) {
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22 tb❂>c l o ck = 0 ;
23 tb❂>r e s e t = 1 ;
24 tb❂>c l e a r = 0x00 ;
25 tb❂>req = 0x00 ;
26 tb❂>newAcc = 0x00 ;
27 tb❂>ready = 0x00 ;
28 tb❂>a = 0 ;
29 tb❂>b = 0 ;
30 tb❂>p r e c i s i o n = 65 ;
31 tb❂>eva l ( ) ;
32 delay (10 , tb ) ;
33 long r e s u l t = 0 ;
34 long sum = 0 ;
35 long p r e v r e s u l t = r e s u l t ;
36 bool e r r = f a l s e ;
37 f o r ( s i z e t i = begin ; i < end ; i++) {
38 f o r ( s i z e t j = begin ; j < end ; j++) {
39 tb❂>c l o ck = 1 ;
40 tb❂>r e s e t = 0 ;
41 tb❂>c l e a r = 0 ;
42 tb❂>req = 1 ;
43 tb❂>newAcc = 0 ;
44 tb❂>a = i ;
45 tb❂>b = j ;
46 tb❂>eva l ( ) ;
47 tb❂>c l o ck = 0 ;
48 tb❂>eva l ( ) ;
49 delay (100 , tb ) ;
50 r e s u l t = tb❂>s ;
51 p r e v r e s u l t = r e s u l t ;
52 sum += i ✯ j ;
53 i f ( r e s u l t != sum){
54 mtx . l ock ( ) ;
55 std : : cout << ” thread number = ”<< tn << ”WRONG RESULT! ” << std : : endl ;
56 std : : cout << ” i = ” << i << ” j = ” << j
57 << ” prev ious r e s u l t = ” << p r e v r e s u l t
58 << ” cur rent r e s u l t = ” << r e s u l t
59 << ” c o r r e c t va lue = ”<< sum <<std : : endl ;
60 mtx . unlock ( ) ;
61 e r r = true ;
62 break ;
63 }
64 tb❂>req = 0 ;
65 tb❂>eva l ( ) ;
66 delay (100 , tb ) ;
67 }
68 i f ( e r r )
69 break ;
70 tb❂>c l e a r = 1 ;
71 tb❂>eva l ( ) ;
72 delay (10 , tb ) ;
73 mtx . l ock ( ) ;
74 std : : cout << ” thread n ” << tn << ” i = ” << i << std : : endl ;
75 mtx . unlock ( ) ;
76 tb❂>c l e a r = 0 ;
77 delay (10 , tb ) ;
78 r e s u l t = 0 ;
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79 sum = 0 ;
80 }
81 i f ( e r r ) {
82 mtx . l ock ( ) ;
83 std : : cout <<” thread ”<< tn << ” COMPLETED WITH ERROR! ” << std : : endl ;
84 mtx . unlock ( ) ;
85 e x i t ( 1 ) ;
86 }
87 e l s e {
88 mtx . l ock ( ) ;
89 std : : cout <<” thread ”<< tn << ” Completed without e r r o r s . ” << std : : endl ;
90 mtx . unlock ( ) ;
91 }
92 }
93

94 i n t main ( i n t argc , char ✯✯ argv ) {
95 // I n i t i a l i z e V e r i l a t o r s v a r i a b l e s
96 Ver i l a t ed : : commandArgs ( argc , argv ) ;
97 // Create an in s t ance o f our module under t e s t
98 Vblackbox ✯ tb0 = new Vblackbox ;
99 Vblackbox ✯ tb1 = new Vblackbox ;
100 Vblackbox ✯ tb2 = new Vblackbox ;
101 Vblackbox ✯ tb3 = new Vblackbox ;
102 // Create threads
103 std : : thread t0 ( func , tb0 , 0 , 0 , N/ 4 ) ;
104 std : : thread t1 ( func , tb1 , 1 , (N/4)+1 , N/ 2 ) ;
105 std : : thread t2 ( func , tb2 , 2 , (N/2)+1 , 3✯(N/ 4 ) ) ;
106 std : : thread t3 ( func , tb3 , 3 , 3✯(N/4)+1 , N) ;
107 // synchron ize threads
108 t0 . j o i n ( ) ;
109 t1 . j o i n ( ) ;
110 t2 . j o i n ( ) ;
111 t3 . j o i n ( ) ;
112

113 e x i t (EXIT SUCCESS ) ;
114 }
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