
Politecnico di Torino

Master thesis

Front-end for capacitive sensors

Master degree in Embedded System

Student: Supervisor and co-supervisor:
Giorgia Subbicini (259042) Prof. Luciano Lavagno,

Prof. Mihai Teodor Lazarescu

July 2020

To my family, to my angels, to my brother Matteo and above all to my mum Donatella,
she gives me the strength to go on even when the clouds came floating into my life.

Abstract

This research focuses on a long-range capacitive sensors front-end able to reject environ-
mental noise.

Capacitive sensors can be used for indoor person localization, therefore they can
be adopted in many location-based applications that improve life quality and safety.
Room occupancy information can help reducing energy consumption by controlling the
ambient temperature, lighting and water. Assisted living systems can play an increasingly
important role, since the average human lifespan is of about eighty years. The sensors can
be employed also in medical field, indeed, monitoring human activity for extended periods
can detect behavioral changes, which can help recognizing the early onset of diseases like
Parkinson disease. Moreover, another field of interest is police and security, since they
can detect unauthorized intrusions.

Technologies for localization are classified as active systems and passive systems. The
former require interaction to localize people and can raise privacy concerns, the latter
are less intrusive and they do not need specific interaction. Systems based on video or
cameras belong to the first cathegory. They often require high computational, networking
and energy resources, a direct line of sight, and adequate lightning, which increase the
installation complexity and system cost. They also raise significant privacy concerns.

Other active solutions are based on Ultra-Wide Band (UWB) radios or on the mea-
surement of received signal strength variations on narrow channels. These systems require
an active tag or the installation of many mains-powered sensors, affecting the system re-
liability and usability.

Ultrasonic systems have also been used, however, they need long-term exposure to
ultrasonic noise that can cause harmful health effects.

Other systems attach tags to the objects that are routinely used by the person to
monitor their movements, nevertheless, if the person does not interact with the monitored
objects the system will fail.

A possible tagless solution can be a systems based on passive infrared sensors (PIR). It
requires a large number of sensors for effective localization, which increase the installation
cost and reduce the user acceptance and may induce stress, because they visually remind
them that they are being monitored. Moreover, PIR sensors can give false readings if
they are exposed to common infrared (IR) sources.

Load-mode single-plate capacitive sensors belong to passive systems and they provide
several advantages, such as simplified installation, reduced overall cost, and no significant
privacy concerns.

Capacitive sensors, operating in load mode, use just one-plate transducer and the
human body as a constant-potential plate. However, load mode capacitive sensors are
generally used up to distances comparable to their plate dimensions, which are too short
for indoor localization.

Long-range capacitive sensors need to sense very small variations of the capacitance
of the sensor plate. Their sensitivity and accuracy are often limited by the level of noise
induced by environmental sources. To mitigate these effects, the sensor plate can be

guarded by auxiliary fields to reduce the unwanted couplings of the sensor plate with
the surrounding objects, and by post-processing sensor data to improve the reliability of
long-range measurements.

An existing technique to reduce environmental noise is based on measuring changes in
the capacitance of sensor by gauging the free running frequency of an astable multivibra-
tor, which repeatedly charges and discharges the capacitor of the sensor. The technique
uses also low-pass filters to reduce high frequency noise and high-pass filters for reducing
low-frequency drift. However, the environmental noise can change the oscillation period,
hence introduce errors in the measured capacitance value.

Here, I study a technique based on differential single plate measurements. This tech-
nique can reject low frequency noise which is a common mode signal for the differential
acquisition and processing of sensor data. It is based on having a constant current, that
charges-discharges the plate, driven by a square wave. Thus the plate voltage is a trian-
gular wave with slopes proportional to the capacitance of sensor. An Analog to Digital
Converter, synchronized with the driving square wave, is used to sample the plate volt-
age. To improve the accuracy of the measurements and the rejection of drift noise I use
the oversampling and decimation technique that allows to increase the resolution by four
bits (from 12 bit to 16 bit) of the analog to digital converter and reduce the quantization
error.

After setting up the system for differential measurements, I implement an analog low-
pass antialias filter, with cut-off frequency between 15 kHz and 20 kHz, which is about ten
times higher than the measurement frequency to minimize the degradation of front-end
waveforms.

The filter uses the operational amplifier available in the microcontroller and exter-
nal capacitors and resistors. Due to the non-linearities of the active components, the
measurements after the filtering show some distortions, thus I evaluate the errors.

Another element in the front end is a digital filter to reduce the noise outside the
frequency bands of interest. A digital filter is a system that performs mathematical
operations on a sampled, discrete-time signal to reduce or enhance certain aspects of that
signal. They may be more expensive than an equivalent analog filter but they can reach
very high orders. Many digital filters are based on the Fast Fourier Transform. The mask
of the filter consists in a cut off frequency of 1 Hz or 3 Hz since the frequency band of
interest is between 0 Hz-3 Hz, and -80 dB magnitude reduction in stopband.

I implement the system by using the Ultra low power Nucleo-L412KB microcontroller
produced by STMicroelectronic. Of its peripherals, I use the Analog to Digital Converter
(ADC), the Direct Memory Access (DMA), a Timer (TIM2), a Universal Synchronous-
Asynchronous Receiver/Transmitter communication channel (USART) and the Opera-
tional Amplifier (OPAMP). To comply with the requirements of the differential single
plate measurement technique, microcontroller runs at 80 MHz, and the timer (TIM2)
is triggered by the falling edge of the external square wave which drives the triangular
wave to be sampled. For 2 MHz ADC sampling the timer counts up to 40 and once it
achieves max count it triggers a sample of the Analog to Digital Converter. The analog
to digital converter works with the Direct Memory Access element to reduce the CPU

2

workload. Once it samples 1250 values over a period of the triangular wave, it wakes up
the CPU to calculate the capacitance from the slopes of the triangular waveform, then
the measurement is sent through the USART channel to the host computer.

I calculate the capacitance values from the ADC samples using averaging technique
and I compare them with the capacitance values calculated using oversampling and dec-
imation. Averaging is a simple and effective way to smooth the input waveform and
reduce sensor noise, whereas, oversampling and decimation combines multiple samples to
compute a result with greater accuracy than a single real sample can provide. It also helps
to improve the signal-to-noise ratio of the input signal, which depends on the number
of bits. Thus, the standard deviation computed over the capacitance values calculated
with oversampling is smaller than standard deviation of the calculations using averag-
ing. Standard deviation is further reduced using the low-pass antialiasing filter before
the ADC, as it further reduces high frequency noise of the signal. However, as explained
before, the filter introduces a delay in the time domain that can decrease the accuracy of
the measurements. To fix the problem, I delay the analog to digital converter sampling
start by 10 us for 15 kHz filter and 7.5 us for 20 kHz.

To analize the noise and filtering I compute the Fast Fourier transform (FFT) of a 5
minute trace with different digital filters: Finite Impulse Response, Chebyshev, Elliptic
and without filter. They are designed with the mask reported above and with the mini-
mum order to match the stopband characteristic. From the results I find that the Elliptic
filter has the steepest roll-off rate, and it requires a lower order, FIR has the worst roll-off
rate and it is computationally expensive while Chebyshev has a good performance even
if it requires a bigger order than Elliptic filter.

To conclude, I can state that differential single plate measurements technique with
oversampling and decimation and antialias analog filter can reduce the high-frequency
noise and reject drifts and jitters, whereas the Elliptic digital filter is the most efficient
to reduce the noise outside the band of interest.

3

Contents

List of Figures 6

1 Introduction 9

2 Front-ends for capacitive sensors 13

2.1 Existing techniques . 13

2.2 Differential measurements technique . 15

3 Instruments and implementation 21

3.1 Instruments . 22

3.1.1 The microcontroller . 22

3.1.2 Tools for configuration and programming of the microcontroller . 27

3.1.3 Tool for technical computing . 28

3.2 Implementation . 29

3.2.1 Analog To Digital block implementation 29

3.2.2 Analog Filter block implementation 33

3.2.3 Digital Filter block implementation 35

4 Experimental results 41

4.1 Testing Analog to Digital Converter operation and performance 41

4.1.1 Synchronization and timing . 41

4.1.2 Data acquisition . 44

4.2 Analog filter tests . 46

4.2.1 Noise reduction . 47

4.2.2 Operational amplifier characterization 51

4.3 Experiments related to digital filters . 57

4.3.1 Noise reduction outside the frequency band of interest 57

5 Conclusion 83

References 85

A MATLAB code 87

A.1 Functions generated after the design of Cheby filters 87

A.2 Functions generated after the design of Elliptic filters 88

4

A.3 Functions generated after the design of FIR filters 90
A.4 Code used to apply filters and evaluate FFTs 92

5

List of Figures

2.1 Block scheme of a possible implementation for low-noise single-plate ca-
pacitive sensors . 15

2.2 Square wave and relative plate voltage behavior 16

2.3 Example of acquisition of capacitive transducer readings 17

3.1 Whole system of single plate differential measurements technique imple-
mentation . 21

3.2 Block scheme of the processing chain of single plate differential measure-
ments technique . 22

3.3 Microcontroller board schematic . 23

3.4 Table of connectors of microcontroller board 24

3.5 Pins of the microcontroller board . 25

3.6 Timer TIM2 configuration view . 30

3.7 Analog to Digital Converter channel configuration view 30

3.8 Analog to Digital Converter configuration view 31

3.9 Direct Memory Access configuration view 31

3.10 Universal Synchronous-Asynchronous Receiver/Transmitter configuration
view . 32

3.11 Block schematic of the ADC system operation 32

3.12 First order lo-pass filter with fc of 15 kHz 33

3.13 First order lo-pass filter with fc of 20 kHz 34

3.14 Analog lowpass filter scheme . 35

3.15 Operational Amplifier configuration view 35

3.16 Digital filter with cutoff of 1 Hz . 37

3.17 FIR equiripple filter with cutoff frequency of 1 Hz and order 8095 37

3.18 Chebyshev filter with cutoff frequency of 1 Hz and order 11 38

3.19 Elliptic filter with cutoff frequency of 1 Hz and order 7 38

3.20 Digital filter with cutoff 3 Hz . 39

3.21 FIR equiripple filter with cutoff frequency of 3 Hz and order 8095 39

3.22 Chebyshev filter with cutoff frequency of 3 Hz and order 19 40

3.23 Elliptic filter with cutoff frequency of 3 Hz and order 10 40

4.1 Sampled triangular wave . 43

4.2 Capacitance values . 46

6

4.3 Triangular waves after analog filters . 48

4.4 Absolute difference between original triangular wave and filtered waves . . 49

4.5 Triangular waves shifted after analog filters 50

4.6 Schematic of voltage divider plus operational amplifier with amplification 2 52

4.7 Original triangular and triangular after voltage divider and amplification . 53

4.8 Absolute error between the original triangular wave and the triangular
wave after the voltage divider and the OPAMP 54

4.9 Original triangular wave and triangular wave after amplification of 1 . . . 55

4.10 Absolute difference between original triangular wave and triangular wave
after amplification of 1 . 55

4.11 Triangular wave after amplification of 1 and triangular wave after voltage
divider and amplification of 2 . 56

4.12 Absolute error between triangular wave after amplification of 1 and trian-
gular wave after voltage divider and amplification of 2 56

4.13 FFTs with and without 1 Hz digital filters, no antialias filter, averaging . 58

4.14 FFTs with and without 1 Hz digital filters, no antialias filter, overdec . . 59

4.15 Detail of FFTs with and without 1 Hz digital filters, no antialias filter,
averaging . 60

4.16 Detail of FFTs with and without 1 Hz digital filters, no antialias filter,
overdec . 61

4.17 FFTs with and without 1 Hz digital filters, 20 kHz antialias filter, avg . . 62

4.18 FFTs with and without 1 Hz digital filters, 20 kHz antialias filter, overdec 63

4.19 Detail of FFTs with and without 1 Hz digital filters, 20 kHz antialias filter,
avg . 64

4.20 Detail of FFTs with and without 1 Hz digital filters, 20 kHz antialias filter,
overdec . 65

4.21 FFTs with and without 1 Hz digital filters, 15 kHz antialias filter, avg . . 66

4.22 FFTs with and without 1 Hz digital filters, 15 kHz antialias filter, overdec 67

4.23 Detail of FFTs with and without 1 Hz digital filters, 15 kHz antialias filter,
avg . 68

4.24 Detail of FFTs with and without 1 Hz digital filters, 15 kHz antialias filter,
overdec . 69

4.25 FFTs with and without 3 Hz digital filters, no antialias filter, avg 70

4.26 FFTs with and without 3 Hz digital filters, no antialias filter, overdec . . 71

4.27 Detail of FFTs with and without 3 Hz digital filters, no antialias filter, avg 72

4.28 Detail of FFTs with and without 3 Hz digital filters, no antialias filter,
overdec . 73

4.29 FFTs with and without 3 Hz digital filters, 20 kHz antialias filter, avg . . 74

4.30 FFTs with and without 3 Hz digital filters, 20 kHz antialias filter, overdec 75

4.31 Detail of FFTs with and without 3 Hz digital filters, 20 kHz antialias filter,
avg . 76

4.32 Detail of FFTs with and without 3 Hz digital filters, 20 kHz antialias filter,
overdec . 77

4.33 FFTs with and without 3 Hz digital filters, 15 kHz antialias filter, avg . . 78

7

4.34 FFTs with and without 3 Hz digital filters, 15 kHz antialias filter, overdec 79
4.35 Detail of FFTs with and without 3 Hz digital filters, 15 kHz antialias filter,

avg . 80
4.36 Detail of FFTs with and without 3 Hz digital filters, 15 kHz antialias filter,

overdec . 81

8

Chapter 1

Introduction

Indoor person localization is useful for several location-based services that can improve
life quality and safety, such as tracking the movements of elderly people, or people with
special needs in order to avoid dangerous accidents or to collect medical information, or
even controlling light and heat consumption automatically based on person presence and
physical location.

Localization can be implemented in an active way or through passive systems which
do not require interaction to localize people and are less intrusive. Either way, they
should not raise privacy concerns.

Some active methods can be based on video or pictures, which often require high
computational, networking and energy resources, a direct line of sight, and adequate
lightning, which increase the installation complexity and system cost. They also raise
significant privacy concerns.

Other solutions of the same category are based on Ultra-Wide Band (UWB) radios
or on the measurement of received signal strength variations on narrow channels. These
systems require a person to wear an active tag or the installation of many mains-powered
sensors, which can have a negative impact over reliability and usability.

Ultrasonic systems have also been used, however, they need long-term exposure to
ultrasonic noise that can cause harmful health effects on persons or pets.

Other systems attach tags to the objects that are regurarly used by the person to
monitor their movements. Nevertheless, if the person does not interact with those objects
the system will fail.

An effective tagless solution can be a system based on passive infrared sensors (PIR).
However, it requires a large number of sensors for effective localization, which increase
the installation cost, can be intrusive and reduce the user acceptance, because they vi-
sually remind them that they are being monitored. Moreover, PIR sensors can give false
readings if they are exposed to common infrared (IR) sources, such as sunlight, good heat
conductors, IR radiation reflectors, incandescence light bulbs [3].

A passive system can be implemented using ”capacitive sensors”, that allow the detec-
tion and tracking of conductive and non-conductive objects. It can be used stand-alone
or in combination with, e.g., the largely complementary PIR sensors.

As reported in [1], capacitive sensors use capacitive transducers in load operation

9

1 – Introduction

mode that use one-plate transducer and the human body as a constant-potential plate.
However, the sensing range of load mode capacitive sensors is typically comparable to
their plate dimensions, which is generally too short for indoor localization applications.

Long-range capacitive sensors need to sense very small variations of the capacitance
of the sensing plate (below 0.1%). Their sensitivity is often limited by the level of noise
induced by environmental sources. Hence, techniques that reduce measurement noise
effectively increase the sensing range and stability of capacitive sensors.

Electrical capacitance is often determined by measuring the time in which the plate
voltage varies between pre-defined thresholds while the amount of electrical charge on
plate is varied using controlled electrical currents. Notably, plate voltage is susceptible
to environmental noise from various electrical and electrostatic noise sources, noise which
often translates in drift and jitter of capacitance measurements that limit the sensor
range and sensing stability. Indeed, distribution or redistribution of electric charges
or fields in the sensor environment due to external causes (which do not change the
capacitance of the sensor plate) often influence its measurement through the voltages or
currents which are used for capacitance calculation. Some existing techniques for the
measurement of the electrical capacitance typically employ guard fields (for relatively
short-range measurements) or differential measurements using multiple sensor plates.

Guard electric fields are generated by special guard electrodes (plates) of the sensors
around the electric field of the measurement plate, such way to not interfere with the latter
while protecting it from environmental interferences. Besides the added constructive and
measurement complexity, this technique is effective only for relatively short measurement
distances, comparable or less than the diameter (or an equivalent length) of the sensor,
because the integrity of the auxiliary field degrades rapidly with the distance.

Low noise differential capacitance measurement using multiple plates relies on the fact
that effects of environmental noise are nearly identical on matched plates packed closely
together in the sensor layout. However, the differential nature of the reading requires to
drive the plates in counterphase, which causes their electric fields to interfere and reduce
the sensitivity (thus the measurement range) of the sensor.

In order to extend the sensing range, capacitance measurements are enhanced by
baseband digital filters to attenuate the noise captured by sensor, and localization algo-
rithms to infer the position of the person using the data from several load-mode capacitive
sensors within one or several rooms.

This research focuses on the implementation of a new front-end for capacitive sensors
with long range capabilities. Differential single plate measurements technique is used to
improve the sensitivity. It is based on forcing a current through the sensor plate that is
constant and with sign that changes periodically according to the levels of a square wave.
This changes the voltage plate linearly in time with a slope proportional to the capacitance
of the sensor plate. The capacitance value can be retrieved from the measurements of
slopes which are sampled by an analog to digital converter (ADC). Accuracy and noise
level are improved using oversampling and decimation. The front-end is also composed of
an analog low-pass filter placed before the ADC, which, together with the oversampling
and decimation can reduce high-frequency noise. Then, after the calculation and the
collection of the capacitance values a digital filter reduces the noise outside the bands of

10

1 – Introduction

interest. These improvements can lead to a system that is able to localize people with a
good precision even if they are far from the device, without requiring the persons to wear
tags and respecting their privacy.

11

Chapter 2

Front-ends for capacitive sensors

As explained in the introduction section, plate voltages are subjected to environmental
noise that is then translated into drift and jitter of capacitance measurements. The
front end should assess the stability by reducing the sensitivity of measurements of plate
capacitance to environmental electric and electrostatic noise.

2.1 Existing techniques

In [1] the authors present a localization system composed of four capacitive sensors work-
ing in load mode. Changes in the capacitance of sensors are measured by gauging the free
running frequency of an astable multivibrator, which repeatedly charges and discharges
the capacitor of the sensors.

The operation of the system consists of:

• indirect measurement of the capacitance of the transducer by measuring the fre-
quency of a relaxation oscillator whose electrical and timing characteristics depend
on transducer capacitance;

• use of baseband digital filters to attenuate the noise captured by the sensor;

• use of localization algorithms to infer the position of the person using the data from
several load-mode capacitive sensors within one or several rooms.

They use sensors with different copper clad plate size, as the external capacitor, and
555 integrated circuit in astable multivibrator configuration, whose oscillation frequency
is:

1

0.7(R1 + 2R2)C
(2.1)

They use R1= 200 kOhm and R2= 560 kOhm in order to provide a good trade-off
between the sensor size and its sensitivity.

The frequency is measured by counting the full periods of the oscillator in an interval
of one second, using an Arduino Uno board. Then the measurements are sent to a
central node through ZigBee module for post processing. The data from the sensors can
be affected by two types of noise:

13

2 – Front-ends for capacitive sensors

• high-frequency noise from appliances and light switches.

• a low-frequency drift, where the DC component varies very slowly by a significant
amount (larger than the useful signal component), due to slow leak of static charges,
temperature and humidity changes, and so on.

Authors use low-pass filters to reduce the first noise type, whereas they use high-pass
filters for the second noise type .

The filtering block consists of a moving median filter with a window of 5 input data
points as a digital low-pass filter to attenuate the high frequency noise and to remove a
slowly varying DC bias from the signal. For high-pass filtering they subtract the mean
of the first 10 samples (where the person was far from all sensors) from the following 150
samples in each data set (for a total of 160 samples). After the filtering phase, the sensor
data pass through the localization block, which determines the position of the person
within the room. The experiments done are based on tracking the position of a single
person in a 3 m x 3 m room. They achieve very good results with 16 cm x 16 cm plates
and Naive Bayes (NB) algorithm.

In [3] a similar system is proposed with some differences in filtering. The system is
composed of 4 sensors with 8 cm x 8 cm plate each, attached to a 555 integrated circuit in
astable multivibrator configuration. The frequency is measured by an Arduino Board and
measurement is sent to a base station through an XBee 802.15.4 modem. To compensate
for changes of frequency, the authors calculate the standard deviation of all the samples
in a given set, then they calculate the average only for the samples within the bounds of
the standard deviation, and finally they subtract the average value from all the samples
of each set. Then this set passes through the Weka ML algorithms to infer the person
location. The processing uses a median filter as in the system above, with a window of
128 seconds. This system is different from the first one for two main reasons:

• data are not denoised with low-pass filters;

• better implementation of the machine learning algorithms are used (from Weka
collection).

They conclude that the Random Forest algorithm performs best overall, while Ad-
aBoostMI requires much less time for inference at the cost of a small accuracy loss.

However, better sensor nodes with high resistance to environmental noise must be
used, in order to improve the quality of the results. A new technique based on differen-
tial single plate measurements can be exploited to reduce environmental noise induced
in capacitive sensor measurement (both low frequency drift and high-pitch jitter). Noise
reduction effectively increases sensor sensitivity and sensing range, which are very im-
portant for applications that need long-range measurement of distance to slow-moving or
stationary bodies. The main advantages and the most important features of ”differential
single place measurement” technique are:

• It preserves the sensitivity of the sensor while reducing most important sources of
noise.

14

2.2 – Differential measurements technique

• Can be used on existing capacitive sensors without any physical modification of
sensor plate(s)

• Can be used on single-plate sensors.

• It does not rely on auxiliary electric fields for shielding, which may loose effectiveness
with the distance.

• Drift reduction comparable to dual-plate differential measurement techniques.

• Reduction of measurement jitter because it does not use reference thresholds.

Next section is dedicated to the presentation and theoretical explanation of the technique,
all the informations are retrieved from [6].

2.2 Differential measurements technique

The differential single plate measurements technique consists of a processing method
for capacitive sensor reading that significantly reduces external (environmental) noise
captured by the sensor. It rejects low frequency noise which is a common mode signal for
the differential acquisition and processing of sensor data. High-frequency noise is reduced
by two types of low-pass filters: analog (antialiasing) followed by digital averaging. Noise
outside the bands of interest for specific applications can be subsequently further filtered
using analog or digital filters.

Figure 2.1 shows the block schematic of the processing method. An analog front-
end periodically charges-discharges the sensor plate using constant currents, driven by a
square wave measurement signal generated by a square wave generator.

Figure 2.1. Block schematic of a possible implementation of the processing chain to
reject environmental low frequency noise (drift) and reduce high frequency noise in
single-plate capacitive sensors readings.

The current Ic through sensor plate is proportional to the voltage level of the square
wave Vm. In this way the current is constant and its sign changes periodically according
to the levels of Vm. Hence, the plate voltage Vc changes in time with a slope that is
proportional to the capacitance of sensor C, and the value and sign of Ic. The waveforms
of the main signals are shown in Figure 2.2.

15

2 – Front-ends for capacitive sensors

Figure 2.2. Square wave and relative plate voltage behavior

The capacitance of the plate can be calculated from the slopes of the triangular
wave. As shown in Figure 2.3, an analog to digital converter ADC is used to sample
Vc synchronized to the transitions of the square wave signal, Vm. The ADC sampling
frequency and the measurement frequency, are selected such way to:

• ADC samples the transducer voltage, Vc, an even integer number of times, 2NR,
during each period, Tm, of Vm, Tm = 1

fm .

• The number of ADC samples acquired on each ramp of Vc, NR, can be split in two
segments S to satisfy the following conditions:

– The total length of the two segments should cover a large part of the ramp,
but not all of it (e.g., 85% of the ramp): 2NS < NR.

– The parts toward the extremes of the ramp that are not covered by the seg-
ments are called “guard intervals” (against possible nonlinearities at the ends
of ramps) and each is covered by NG ADC samples.

– The number of ADC samples on each segment, NS, is an integer power of four:
NS = 4n.

16

2.2 – Differential measurements technique

Figure 2.3. Example of acquisition of capacitive transducer readings

The capacitance of the sensor plate is determined from the value of the slopes of the
two ramps of each period,Tm, of the square wave signal, Vm, as follows. During a half
period of the square wave signal, the charge ∆Q injected (or extracted) from the sensor
plate by the constant current Ic is:

∆Q = Ic
Tm

2
(2.2)

Plate capacitance (C) is defined as the change of plate charge ∆Q divided by the
change of plate voltage ∆V c:

C =
∆Q

∆V c
(2.3)

By substituting 2.1 into 2.2, the change of plate voltage ∆V c becomes:

∆V c =
Ic

C

Tm

2
(2.4)

Variations of nearby electric potential or changes in the intensity of electric field
incident on the plate, may influence the migration of plate charges and so may cause a
quasi-constant drift current Ie. The sign of externallyinduced Ie does not change, hence,
the slants of two adjacent ramps of Vc are:

17

2 – Front-ends for capacitive sensors

SL =
1

C
(+Ic+ Ie) (2.5)

SR =
1

C
(−Ic+ Ie) (2.6)

The average slant SA is calculated as the average of the modules of the right and left
slants:

SA =
|SL|+ |SR|

2
(2.7)

Thanks to this calculus, the common mode quasi-constant drift current Ie is canceled
while the full sensitivity is preserved:

SA =
1

C

(Ic+ Ie)− (−Ic+ Ie)

2
(2.8)

SA =
Ic

C
(2.9)

From this last formula, it’s evident that the average of the modulus of slants of adjacent
ramps:

• is proportional to the inverse of plate capacitance;

• does not depend on quasi-constant variations of plate charge due to sensor environ-
ment.

Drift noise rejection depends on the match of the Ie noise component of Ic on the two
Vc ramps considered. Hence, ramp slant measurement accuracy is important for a good
match and cancellation of the Ie component. In order to reduce the influence of ADC
discretization errors and high-pitch Vc noise on the measurements, Vc slant is retrieved
as difference in voltage divided by difference in time of two points on each ramp (with
the notations in Figure 2.3):

SL =
VA2 − VA1

tA2 − tA1
(2.10)

SR =
VA4 − VA3

tA4 − tA3
(2.11)

To determine SL and SR with high accuracy, the ADC should assess each VAn, with
n = 1,2,3,4, with great detail, that can be improved using oversampling and decimation.
As mentioned before, each segment Sn of Vc in Figure 2.3, with n = 1,2,3,4, is sampled
NS times, with NS selected to be an integer power of four, NS = 4n. Vc is oversampled
NS times by the ADC. These additional samples of Vc are subsequently processed to
reduce both ADC quantization error (increasing its resolution by n bits) and to average
Vc noise as follows:

18

2.2 – Differential measurements technique

• We add all NS samples of Vc into an accumulator A.

• We divide A by 2n to average Vc random noise.

• The value left in A represents the calculated value of VAn of the corresponding Sn
segment, with n = 1,2,3,4.

Another important rule to increase the accuracy of ramp slants calculations is to
extend as much as possible the time difference between two segments. Two factors need
to be considered:

• A segment should include as many ADC samples as possible to increase the effec-
tiveness of reduction of quantization noise and external Vc noise through averaging.

• Segments of a ramp should be sufficiently separated from ramp ends to avoid non-
linearities. In Figure 2.3 this separation is shown as NG ADC samples.

Non-linearities can be due to active components in the sensor front-end circuits or due
to low-pass anti-alias filters.

The goal of my thesis is implementing this new system. In particular I put the
attention on ADC configuration, software for elaborating ADC samples in averaging mode
and oversampling and decimation mode, analog filters and digital filters with spectrum
analysis.

In the following chapters firstly I will present the implementation together with de-
scription of components and instruments used, secondly I will display all the experimental
results collected with further explanations over the reasons and in the end some conclu-
sions and possible future developments will be highlighted.

19

Chapter 3

Instruments and implementation

Figure 3.1 displays the slope modulation measurement circuit. Cplate charge is changed
by a current, I, generated by a source controlled with a square wave, v. The ei represents
constant charge migration current due to environmental noise. The charge and discharge
time is fixed, since it depends on the square drive signal, regardless of Vc noise. Figure
3.2 is an enlargement of the right part (after buffer point) of the whole system, which
represents the processing chain to reject environmental low frequency noise (drift) and
reduce high frequency noise in single-plate capacitive sensors readings.

The first block is an analog antialias filter. It is implemented as active low-pass filter
by using an operational amplifier (OPAMP) available in the microcontroller and external
resistors and capacitors. It is used to reduce the high-frequency noise and the ADC
aliasing. The input of the block is a triangular wave generated by a signal generator
and the output is already a triangular wave. The second block is an Analog to Digital
Converter (ADC). Its samples are used to determine the slopes of the triangular wave with
high accuracy by exploiting oversampling and averaging and to calculate the capacitance
as explained in Chapter 2. The ADC used belongs to the STM Nucleo-L412KB uC,
and its characteristics and settings will be explained in the following sections. The ADC
is synchronized with the driver square wave and it samples the triangular wave. The
third and last block is a digital filter. Digital filters are implemented through a tool for
technical computing (MATLAB) and they are used to filter noise outside the bands of
interest. This last processing is done in frequency domain by evaluating the Fast Fourier
Transform (FFT) over a long trace of measured values. In the following sections I will
present the components and the tools used, as well as how they are configured.

Microcontroller

ADC in

Digital out

ETR

anti-alias

digital filter

Vc

CplateCplate
v

vI
I

I

Vc

Cplate
ei

+

+

v
Square wave

Figure 3.1. Whole system of single plate differential measurements technique implementation

21

3 – Instruments and implementation

Analog
low-pass

filter
- 15 kHz
- 20 kHz

ADC 12 bit
Fs=2 MHz

- Averaging
- Over&dec

Digital
low-pass

filter
- 1 Hz
- 3 Hz

Triangular wave
1.6 kHz

Triangular wave
1.6 kHz

Square wave
1.6 kHz

Cplate

FFT FFT

Cplate

Figure 3.2. Block scheme of the processing chain of single plate differential
measurements technique

3.1 Instruments

3.1.1 The microcontroller

The microcontroller used to implement the system is the Ultra-low-power Nucleo-L412KB
supplied by STmicroelectronics. As reported by the datasheet [7], the device is based on
the high-performance Arm® Cortex®-M4 32-bit RISC core operating at a frequency of
up to 80 MHz. The Cortex-M4 core features a Floating point unit (FPU) single precision
which supports all Arm® single-precision data-processing instructions and data types.
It also implements a full set of digital signal processor (DSP) instructions and a memory
protection unit (MPU) which enhances application security. The STM32L412KB embeds
high-speed memories (Flash memory up to 128 KB, 40 KB of SRAM), a Quad serial
peripheral interface (SPI) flash memories interface (available on all packages) and an
extensive range of enhanced I/Os and peripherals connected to two advanced peripheral
bus (APB) buses, two advance high-performance bus (AHB) buses and a 32-bit multi-
AHB bus matrix. The STM32L412KB embeds also several protection mechanisms for
embedded Flash memory and SRAM: readout protection, write protection, proprietary
code readout protection and Firewall. The device offers two fast 12-bit analog to digital
converters (ADC) (5 Msps), two comparators, one operational amplifier, a low-power real
time clock (RTC), one general-purpose 32-bit timer, one 16-bit pulse width modulator
(PWM) timer dedicated to motor control, four general-purpose 16-bit timers, and two
16-bit low-power timers. In addition, up to 12 capacitive sensing channels are available.
It also features standard and advanced communication interfaces.

The STM32L412KB operates in the -40 °C to +85 °C (+105 °C junction) and -40 °C to
+125 °C (+130 °C junction) temperature ranges from a 1.71 to 3.6 V VDD power supply
when using internal low-dropout (LDO) regulator and a 1.00 V to 1.32V VDD12 power
supply when using external switched-mode power supply (SMPS). A comprehensive set
of power-saving modes allows the design of low-power applications. Some independent
power supplies are supported: analog independent supply input for ADC, OPAMP and
comparator. A VBAT input allows to backup the RTC and backup registers. Dedicated
VDD12 power supplies can be used to bypass the internal LDO regulator when connected
to an external SMPS. Figure 3.3 displays the schematic of the board while Figure 3.4
shows a table of connectors and Figure 3.5 is about pin assignment.

22

3.1 – Instruments

Figure 3.3. Microcontroller board schematic

23

3 – Instruments and implementation

Figure 3.4. Table of connectors of microcontroller board

24

3.1 – Instruments

Figure 3.5. Pins of the microcontroller board

I present in more details the performance and main settings of the systems that I
used: ADC, DMA, OPAMP, TIM2, and USART.

Analog To Digital Converter

The device embeds 2 successive approximation analog-to-digital converter with the fol-
lowing features:

• 12-bit native resolution, with built-in calibration

• 5.33 Msps maximum conversion rate with full resolution

• Up to 16 external channels, some of them shared between ADC1 and ADC2.

• 3 internal channels: internal reference voltage, temperature sensor, VBAT/3.

• One external reference pin is available on some package, allowing the input voltage
range to be independent from the power supply

• Single-ended and differential mode inputs

• Low-power design

• Highly versatile digital interface

25

3 – Instruments and implementation

Direct Memory Access

The device embeds 2 direct memory access DMAs. DMA is used in order to provide high-
speed data transfer between peripherals and memory as well as memory to memory. Data
can be quickly moved by DMA without any CPU actions. This keeps CPU resources free
for other operations. The two DMA controllers have 14 channels in total, each dedicated
to managing memory access requests from one or more peripherals. Each has an arbiter
for handling the priority between DMA requests. The DMA supports:

• 14 independently configurable channels (requests)

• Each channel is connected to dedicated hardware DMA requests, software trigger
is also supported on each channel. This configuration is done by software.

• Priorities between requests from channels of one DMA are software programmable
(4 levels consisting of very high, high, medium, low) or hardware in case of equality
(request 1 has priority over request 2, etc.)

• Independent source and destination transfer size (byte, half word, word), emulating
packing and unpacking. Source/destination addresses must be aligned on the data
size.

• Support for circular buffer management

• 3 event flags (DMA Half Transfer, DMA Transfer complete and DMA Transfer
Error)

• Logically ORed together in a single interrupt request for each channel

• Memory-to-memory transfer

• Peripheral-to-memory and memory-to-peripheral, and peripheral-to-peripheral trans-
fers

• Access to Flash, SRAM, APB and AHB peripherals as source and destination

• Programmable number of data to be transferred: up to 65536.

Operational Amplifier

The STM32L412KB embeds one operational amplifier OPAMP with external or internal
follower routing and PGA capability. The operational amplifier features are:

• Low input bias current

• Low offset voltage

• Low-power mode

• Rail-to-rail input

26

3.1 – Instruments

Timer

There are up to three synchronizable general-purpose timers embedded. Each general-
purpose timer can be used to generate pulse-width modulation PWM outputs, or act as
a simple time base. TIM2 It is a full-featured general-purpose timers:

• TIM2 has a 32-bit auto-reload up/downcounter and 32-bit prescaler.

• This timers feature 4 independent channels for input capture/output compare,
PWM or one-pulse mode output. They can work with the other general-purpose
timers via the Timer Link feature for synchronization or event chaining.

• The counters can be frozen in debug mode.

• All have independent DMA request generation and support quadrature encoder.

Universal Synchronous-Asynchronous Receiver/Transmitter

The STM32L412 devices have three embedded universal synchronous receiver transmit-
ters (USART1, USART2 and USART3).

These interfaces provide asynchronous communication, IrDA SIR ENDEC support,
multiprocessor communication mode, single-wire half-duplex communication mode and
have LIN Master/Slave capability. They are able to communicate with a speed up to
10 Mbit/s. USART1, USART2 and USART3 also provide Smart Card mode (ISO 7816
compliant) and SPI-like communication capability. All USART have a clock domain
independent from the CPU clock, allowing the USARTx (x=1,2,3) to wake up the MCU
from Stop mode using baudrates up to 204 Kbaud. The wake up events from Stop mode
are programmable and can be:

• Start bit detection

• Any received data frame

• A specific programmed data frame

• All USART interfaces can be served by the DMA controller

3.1.2 Tools for configuration and programming of the microcontroller

In order to configure properly the STM32L412KB device I used STM32CubeMX tool to
generate code to initialize the system, peripherals and middleware. The C code based
on the configuration selected was then used within MDKARM development environ-
ment. STM32Cube is an STMicroelectronics original initiative to significantly improve
designer’s productivity by reducing development effort, time and cost.

STM32Cube includes [9]:

• A set of user-friendly software development tools to cover project development from
the conception to the realization, among which:

27

3 – Instruments and implementation

– STM32CubeMX, a graphical software configuration tool that allows the auto-
matic generation of C initialization code using graphical wizards

– STM32CubeIDE, an all-in-one development tool with peripheral configura-
tion, code generation, code compilation, and debug features

– STM32CubeProgrammer (STM32CubeProg), a programming tool available in
graphical and command-line versions

– STM32CubeMonitor-Power (STM32CubeMonPwr), a monitoring tool to mea-
sure and help in the optimization of the power consumption of the MCU

• STM32Cube MCU MPU Packages, comprehensive embedded-software platforms
specific to each microcontroller and microprocessor series (such as STM32CubeL4
for the STM32L4 Series and STM32L4+ Series), which include:

– STM32Cube hardware abstraction layer (HAL), ensuring maximized portabil-
ity across the STM32 portfolio

– STM32Cube low-layer APIs, ensuring the best performance and footprints
with a high degree of user control over the HW

– A consistent set of middleware components such as FAT file system, RTOS,
USB Host and Device, Touch library, and Graphics

– All embedded software utilities with full sets of peripheral and applicative
examples

The MDK-ARM (Microcontroller Development Kit) is the complete software devel-
opment environment for ARM7TM, ARM9TM, CortexTM-M, and Cortex-R4 processor-
based devices. MDK is specifically designed for microcontroller applications and combines
the ARM C/C++ Compiler with the Keil RTX real-time operating system and middle-
ware libraries. All tools are integrated into µVision which includes project management,
editor and debugger in a single easy-to-use environment. The fully integrated ARM
C/C++ Compiler offers significant code-size and performance benefits to the embedded
developer, however, MDK can also be used with the GNU GCC Compiler.

3.1.3 Tool for technical computing

Another important tool used to evaluate results especially for analog and digital filters
part is MATLAB.

MATLAB (matrix laboratory) is a multi-paradigm numerical computing environment
and proprietary programming language developed by MathWorks. MATLAB allows ma-
trix manipulations, plotting of functions and data, implementation of algorithms, creation
of user interfaces, and interfacing with programs written in other languages. Although
MATLAB is intended primarily for numerical computing, an optional toolbox uses the
MuPAD symbolic engine allowing access to symbolic computing abilities. An additional
package, Simulink, adds graphical multi-domain simulation and model-based design for
dynamic and embedded systems [10].

28

3.2 – Implementation

3.2 Implementation

3.2.1 Analog To Digital block implementation

To assess the front-end rejection of low-frequency common-mode environmental noise, in
according to differential measurement technique described in Chapter 2, I set the following
parameters:

• ADC sampling frequency: 2 MHz;

• Charge-discharge frequency, Fm: 1600 Hz;

• Number of ADC samples per segment: 256 = 44 (n = 4 additional accuracy bits
after processing);

• Variable guard time between segments and ramp ends, NG, up to 55 ADC samples
(Figure 2.3).

The Analog to Digital converter has to be synchronized with a square wave whose
frequency is 1600 Hz due to the fact that it drives the triangular wave. First, for the
programming part, I use STM32Cube tool, once I select the proper board (STM Nucleo-
L412KB) the tool shows the virtual board with all the pins available. In order to comply
with the specifications listed before the microcontroller is programmed as follow: The
timer TIM2 is driven by internal clock source at 80 MHz. It is triggered by external
source ETR1 mapped to PIN5 (where square wave is applied). TIM2 has to trigger each
sample of the ADC, since we need a 2 MHz sampling frequency and the internal clock is
set to 80 MHz the counter period is set to 40 (Figure 3.6).

ADC1 channel 6, that corresponds to PIN PA1 is configured in single-ended input
mode, so the analog voltage to be converted for the channel is the difference between
the external voltage VINP[i] (positive input) and VREF . ADC has 12 bit resolution,
conversion is triggered by rising edge of update event of TIM2. ADC works together with
DMA in order to save power and not involve CPU (Figure 3.7 and Figure 3.8).

DMA is configured in circular mode to handle circular buffers and continuous data
flows. The data size selected is Word since we have 12 bits to transfer and the memory
pointer is automatically incremented after each transfer as can be seen from Figure 3.9.

USART2 is configured in asynchronous mode, with a Baud Rate of 115200 Bits/s,
a word length of 8 bits including Parity, no Parity bit and 1 stop bit. Communication
channel is used to send data from sensor to central host in order to perform further elab-
oration and to verify results (Figure 3.10).

29

3 – Instruments and implementation

Figure 3.6. Timer TIM2 configuration view

Figure 3.7. Analog to Digital Converter channel configuration view

30

3.2 – Implementation

Figure 3.8. Analog to Digital Converter configuration view

Figure 3.9. Direct Memory Access configuration view

31

3 – Instruments and implementation

Figure 3.10. Universal Synchronous-Asynchronous Receiver/Transmitter configuration view

Figure 3.11 shows a schematic view of the configurations and interconnections of the
elements described above.

ETR
TIM2
80 MHz
count up
to 40

ADC and
DMA

Sample and
transfer

repeat
1250start

stop

send through
USART

Figure 3.11. Block schematic of the ADC system operation

After the hardware configuration of the components, STM32Cube generates C code.
At this point I use MDK-ARM in order to develop the application and debug the board.
I generate different programs for different experiments that are discussed in Chapter 4.

32

3.2 – Implementation

3.2.2 Analog Filter block implementation

The continuous signal to be sampled must not include significant frequency components
greater than the Nyquist frequency. For this purpose, it is recommended to low-pass filter
the continuous signal before sampling, especially in the presence of high-frequency noise.
The analog low-pass filter used for this purpose is known as the antialiasing filter.

Because a low-pass filter can slow down the system by attenuating high-frequency
dynamics, the cut-off frequency of the low-pass filter must be higher than the bandwidth
of the signal so as not to degrade the transient response. The cut-off frequency of the
low-pass filter can be chosen as 10 times the bandwidth of the signal to minimize its effect,
and then the sampling frequency can be chosen 10 times, or more, higher than the filter
cut-off frequency so there is a sufficient attenuation above the Nyquist frequency [11].
For the reasons above, I am interested in implementing active first order analog low-pass
filters with cut-off frequency of 15 kHz and 20 kHz that is about 10 times higher than the
measurement frequency (1.6 kHz). Analog filter can reduce high frequency noise and the
ADC aliasing. The characteristic plots of the filters are shown in Figure 3.12 and Figure
3.13.

Figure 3.12. Characteristic plot of first order low-pass analog filter with cut
off frequency 15 kHz

33

3 – Instruments and implementation

Figure 3.13. Characteristic plot of first order low-pass analog filter with cut
off frequency 20 kHz

The cutoff frequency fc depends on resistance R and capacitance C of the network:

fc =
1

2πRC
(3.1)

thus I obtain 20 kHz by using one 3.3 nF capacitor and a series of one 2 kOhm resistor,
four 100 Ohm resistors and one 10 Ohm resistor thus obtaining a total resistance of
R=2.41 kOhm, whereas I obtain 15 kHz by using one 3.3 nF capacitor and a series of one
1 kOhm resistor, one 2 kOhm resistor and one 220 Ohm resistor for a total of R=3.22
kOhm.

I use the operational amplifier (OPAMP) available in the microprocessor in follower
mode, since I want a non inverter filter, with no amplification. Thus, the inverting input
is directly connected to output of the amplifier by creating a closed-loop, while at the non
inverting input I apply the RC network. Figure 3.14 shows an implementation scheme
of the analog lowpass filter with board pins involved whereas Figure 3.15 displays the
configuration settings of the OPAMP.

34

3.2 – Implementation

Figure 3.14. Implementation scheme of Analog lowpass filter with pins refer-
encing to microcontroller

Figure 3.15. Operational Amplifier configuration view

3.2.3 Digital Filter block implementation

A digital filter is used to reduce the noise outside the frequency bands of interest, that is
between 0 Hz an 3 Hz.

A digital filter is a system that performs mathematical operations on a sampled,
discrete-time signal to reduce or enhance certain aspects of that signal. Digital filters
may be more expensive than an equivalent analog filter due to their increased complexity,
but they make practical many designs that are impractical or impossible as analog filters.
Digital filters can often be made very high order, and are often finite impulse response
filters which allows for linear phase response. However, digital filters do introduce a
higher fundamental latency to the system.

Many digital filters are based on the fast fourier transform (FFT), a mathematical
algorithm that quickly extracts the frequency spectrum of a signal, allowing the spectrum

35

3 – Instruments and implementation

to be manipulated (such as to create very high order band-pass filters) before converting
the modified spectrum back into a time-series signal with an inverse FFT operation [12].

In my research I decide to evaluate three different types of digital filters: FIR, Cheby-
shev2 and Elliptic. Some characteristics are described below:

• FIR: FIR stands for Finite Impulse Response. The term finite impulse response
arises because the filter output is computed as a weighted, finite term sum, of past,
present, and perhaps future values of the filter input. A FIR filter is based on a
feed-forward difference equation. Feed-forward means that there is no feedback of
past or future outputs to form the present output, just input related terms:

y[n] =
M2X

k=−M1

bkx[n− k] M1 and M2 are finite (3.2)

Chebyshev2 and Elliptic belongs to infinite impulse response (IIR) digital filters. IIR is
a type of filter which re-uses one or more of its outputs as an input. This feedback typ-
ically results in an unending impulse response (commonly referred to as infinite impulse
response (IIR)), characterized by either exponentially growing, decaying, or sinusoidal
signal output components.

• Chebyshev2: Chebyshev filters minimize the error between the idealized and the
actual filter characteristic over the range of the filter but with ripples in the stop-
band. They are not as sharp as the elliptic one, but they show fewer ripples over
the bandwidth.

• Elliptic: An elliptic filter (also known as a Cauer filter) is a signal processing filter
with equalized ripple (equiripple) behavior in both the passband and the stopband.
The amount of ripple in each band is independently adjustable, and no other filter
of equal order can have a faster transition in gain between the passband and the
stopband, for the given values of ripple (whether the ripple is equalized or not).

I design filters by using the ”Filter designer” app available in MATLAB. First I present
ideal characteristic mask of digital filter with cut off frequency of 1 Hz (Figure 3.16), and
then digital filters implementations with minimum order to match the magnitude reduc-
tion requirement that is set to -80 dB (Figure 3.17, Figure 3.18, Figure 3.19). Second I
present digital filters with cut off frequency of 3 Hz and minimum order to match the
stopband magnitude reduction -80 dB (Figure 3.21, Figure 3.22, Figure 3.23), character-
istic mask is shown in Figure 3.20).

36

3.2 – Implementation

1 1.5 800

- 80

Figure 3.16. Characteristic mask of digital filter with cut off frequency 1 Hz and
(Astop) -80 dB reduction in stopband

Figure 3.17. FIR equiripple filter with cutoff frequency of 1 Hz and order 8095

37

3 – Instruments and implementation

Figure 3.18. Chebyshev filter with cutoff frequency of 1 Hz and order 11

Figure 3.19. Elliptic filter with cutoff frequency of 1 Hz and order 7

38

3.2 – Implementation

1 1.5 800

- 80

Figure 3.20. Characteristic mask of digital filter with cut off frequency 3 Hz and
(Astop) -80 dB reduction in stopband

Figure 3.21. FIR equiripple filter with cutoff frequency of 3 Hz and order 8095

39

3 – Instruments and implementation

Figure 3.22. Chebyshev filter with cutoff frequency of 3 Hz and order 19

Figure 3.23. Elliptic filter with cutoff frequency of 3 Hz and order 10

40

Chapter 4

Experimental results

This chapter focuses on experiments and their results. With reference to block schematic
(Figure 3.2), first I describe experiments related to the Analog to Digital Converter (ADC)
block. Second, I describe how I test the behavior of the analog filters. This presentation
is followed by discussion on results collected in the output of filters. Third, I discuss
about the last block: digital filter. Results obtained from different implemented digital
filters (FIR, Chebyshev and Elliptic) are comparatively discussed.

In absence of the hardware implementation of the analog front-end interfacing with
the sensor plate, I have emulated its operation using a triangular wave from a signal
generator to test the operation and the performance of the analog to digital interface of
the microcontroller and several signal conditioning and post-processing techniques.

4.1 Testing Analog to Digital Converter operation and per-
formance

4.1.1 Synchronization and timing

In the Implementation Section, I describe how the ADC is configured in order to be
compliant with the front-end specifications.

The first test is based on applying a triangular wave to the input of analog to digital
converter and a square wave, perfectly synchronized, to the pin that is used to trigger
the timer (with reference to Figure 3.11). Test goals are:

• Checking that ADC sampling starts when the driver square wave goes to low level
and so when triangular wave starts decreasing.

• Checking that on each slope there are exactly 625 ADC samples.

I generate a square wave between 0 V and 3 V with a frequency of 1.6 kHz using
a signal generator and I apply it to PIN PA5 (trigger source for TIM2) of the board,
then I generate a triangular wave between 0 V and 3 V with frequency 1.6 kHz with
the same signal generator and perfectly synchronized with the square wave (During high
state of the square the triangular rises up, while during the low state of square wave the
triangular falls down), and I apply it to PIN PA1 (input of ADC).

41

4 – Experimental results

In the main.c file after the configuration of the system and peripherals, I start the
timer TIM2 by invoking proper HAL function and then I start the ADC with DMA. In
this first step I want to check the synchronization and the number of samples for each
slope of the triangular wave, thus I create a buffer called adcVal of 2500 values (2 periods
of triangular wave) and then once the DMA finishes its work I send all the values through
USART to my computer.

1 /* MCU Configuration --*/

3 /* Reset of all peripherals , Initializes the Flash interface and the Systick. */

HAL_Init ();

5

/* Configure the system clock */

7 SystemClock_Config ();

9 /* Initialize all configured peripherals */

MX_GPIO_Init ();

11 MX_DMA_Init ();

MX_ADC1_Init ();

13 MX_TIM2_Init ();

MX_USART2_UART_Init ();

15

/* USER CODE BEGIN 2 */

17 HAL_TIM_Base_Start (&htim2);

HAL_ADC_Start_DMA (&hadc1 ,adcVal ,2500);

1 /* USER CODE BEGIN 4 */

void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc)

3 { int a;

HAL_TIM_Base_Stop (&htim2);

5 HAL_UART_Transmit (&huart2 ,(uint8_t *)"start\r\n",strlen (" start\r\n"),

HAL_MAX_DELAY);

for(a=0;a <2500;a++){

7 sprintf(ch ,"%d\r\n",adcVal[a]);

HAL_UART_Transmit (&huart2 ,(uint8_t *) &ch,strlen(ch),HAL_MAX_DELAY);

9 }

}

11 /* USER CODE END 4 */

Then I plot values with MATLAB (Figure 4.1). X axis shows time in seconds while Y
axis represents voltage expressed over 12 bit, this means between value 0 an 212−1 = 4095.
To evaluate number of points in a slant I identify X value associated to the lowest point
of falling slant and X value of the highest point of rising slant, I performe a subtraction
and then I divide result by sampling period (Ts = 0.5 us).

As I expect the plot starts from the falling slope of the triangular and the lowest point
corresponds to X = 0.0003125 as can be seen from the Figure 4.1. This means that I
have exactly 625 points in the falling slant (0.00031250.0000005 = 625). I do the same checks over
the other slopes.

42

4.1 – Testing Analog to Digital Converter operation and performance

Ti
m

e
 (

s)

ADC Output x 3.3/4096 (V)

Figure 4.1. Two periods of triangular wave sampled with a sampling period of 0.5 us

43

4 – Experimental results

The Figure also shows some non-aligned points which represent high frequency noise,
however, ramp-ends seem to be well shaped. During the acquisition of the samples I
switch off the square wave to verify the dependency with the sampling, ADC is stopped
accordingly. Then, as soon as the square wave restarts, ETR is triggered on the falling
edge and ADC begins to sample the triangular wave again.

4.1.2 Data acquisition

The second test focuses on calculating the capacitance value through differential measur-
ing technique plus averaging or oversampling & decimation.

As described in [13], averaging consists in summing all the values of a segment in an
accumulator and then averaging it. Averaging is not intended to improve the resolution
of the result. Rather, it is a simple and effective way to smooth the input waveform and
reduce sensor noise.

The method for increasing the effective resolution of the ADC is oversampling and
decimation. This technique involves oversampling of the input signal so that a number
of samples can be used to compute a virtual result with greater accuracy than a single
real sample can provide. Oversampling requires sampling the signal 4n times in addition
to the minimum required frequency, where n is the number of additional bits we want
to achieve. Once the oversampling is done, samples are summed and then the result is
divided by the number of total bits. Such a process is commonly referred to as decimation.
In addition to yielding a more accurate approximation of the signal value during a given
sampling interval, decimation also helps to improve the signal-to-noise ratio (SNR) of the
input signal, since it depends on the number of bits of resolution:

SNR(dB) = (6.02 ∗ ENOB) (4.1)

The test requires the generation of a triangular wave at the input of analog to digital
converter and a square wave, perfectly synchronized to the triangular, at the pin used to
trigger the timer. Test goals are:

• sampling the input signal.

• calculating the capacitance through averaging technique.

• calculating the capacitance through oversampling & decimation technique.

• computing the standard deviations for the two traces and comparing.

In my setting, the differential measuring technique requires two slants of triangular
wave sampled 1250 times. Due to these requirements, the buffer used by the DMA is set
to 1250 and as soon as it finishes the transfer by using void HAL ADC ConvCpltCallback
(ADC HandleTypeDef *hadc) function (that is invoked automatically at the end of DMA
transfer), I stop the timer TIM2, and the ADC, I compute capacitance, I send it through
USART to my computer, and then I reactivate the timer (TIM2) that is triggered by the
falling edge of the square wave (see Figure 3.11).

In my system I have 256 samples each segment (see Figure 2.3), this corresponds to
have oversampling n=4, which increases the ADC conversion resolution from 12 bit to 16
bit.

44

4.1 – Testing Analog to Digital Converter operation and performance

1 void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc)

{

3 HAL_TIM_Base_Stop (&htim2);

V1=0;

5 for(i=56;i<312;i++){

V1+= adcVal[i];

7 }

9 V2=0;

for(l=313;l<569;l++){

11 V2+= adcVal[l];

}

13

SLA=(V1-V2)/256;

15 SLO=(V1-V2)/16;

17 V3=0;

for(j=681;j<937;j++){

19 V3+= adcVal[j];

}

21

V4=0;

23 for(m=938;m <1194;m++){

V4+= adcVal[m];

25 }

27 SRA=(V4-V3)/256;

SRO=(V4-V3)/16;

29 Cplateavg=KA /(33*(SLA+SRA));

Cplatedec=KO /(33*(SLO+SRO));

31 sprintf(ch ,"%ld %ld\r\n",Cplateavg ,Cplatedec);

HAL_UART_Transmit (&huart2 ,(uint8_t *) &ch,strlen(ch),HAL_MAX_DELAY);

33

HAL_TIM_Base_Start (&htim2);

35 }

Once the system is ready, I need to evaluate differences on the two methods and check
if oversampling & decimation has a better sensibility to variations.

I apply a square wave between 0 V and 3 V with a frequency of 1.6 kHz to PIN PA5
(trigger source for TIM2) of the board, then I apply a triangular wave between 0 V and
3 V with frequency 1.6 kHz to PIN PA1 (input of ADC)(see Figure 3.11). I let system
acquire for different slots of time (600 seconds, 10 seconds and 1 second) and calculate
the capacitance using averaging and oversampling & decimation. Figure 4.2 shows the
capacitance calculation in time for the two methods. Then I retrieve standard deviation
for the two traces by using ”std” MATLAB function (Table 4.1).

45

4 – Experimental results

Time (s)

C
a
p

a
ci

ta
n
ce

 (
p

F)

Figure 4.2. Plot of Cplate values calculated through averaging (red) and through
oversampling & decimation (blue)

Table4.1 Standard deviation comparison between avg and over&dec
STD (fF)

Type 600 s 10 s 1 s

averaging 4.3621 4.3333 4.7967
over&dec 3.8692 3.6669 4.1307

From the plot I can observe that averaging (red line) sometimes is stuck at the same
level for two, three points, while oversampling & decimation (blue line) never shows the
same value toward following points. This means that the latter is able to capture smaller
variations with respect to averaging, this statement is confirmed also by the standard
deviations reported in the table. Standard deviation is a measure of the amount of
dispersion of a set of values. Oversampling and decimation increases the resolution of
ADC up to 16 bit, providing an LSB = 50 uV, so sensitive to very small voltage variations.
Since capacitance calculation depends on voltage (see Equation 2.3), it inherits the same
accuracy improvement.

4.2 Analog filter tests

As I report in the Chapter 3, I implement the analog filters by exploiting the operational
amplifier (OPAMP), properly configured, available in the microcontroller. It is necessary
to start also the OPAMP after the configuration of the system and the peripherals in the
main.c file, as shown in the following code excerpt.

46

4.2 – Analog filter tests

1 /* MCU Configuration --*/

3 /* Reset of all peripherals , Initializes the Flash interface and the Systick. */

HAL_Init ();

5

/* Configure the system clock */

7 SystemClock_Config ();

9 /* Initialize all configured peripherals */

MX_GPIO_Init ();

11 MX_DMA_Init ();

MX_ADC1_Init ();

13 MX_OPAMP1_Init ();

MX_TIM2_Init ();

15 MX_USART2_UART_Init ();

17 /* USER CODE BEGIN 2 */

HAL_OPAMP_Start (& hopamp1);

19 HAL_ADC_Start_DMA (&hadc1 ,adcVal ,1250);

HAL_TIM_Base_Start (&htim2);

21 /* USER CODE END 2 */

4.2.1 Noise reduction

I analyze the effects of the anti-alias low pass filter for two cutoff frequencies of 20 kHz and
15 kHz, whose implementation is reported in Chapter 3. The test is based on applying a
triangular wave at the input of the filter, connecting the output of filter to the input of
analog to digital converter, and calculation of the capacitance. The experiment aims at:

• evaluating triangular wave after filters and checking how much is shifted.

• computing capacitance values by using the averaging and the oversampling & dec-
imation techniques.

• computing the standard deviation for the 4 different combinations and comparing:

– analog filter 20 kHz and averaging.

– analog filter 20 kHz and oversampling & decimation.

– analog filter 15 kHz and averaging.

– analog filter 15 kHz and oversampling & decimation.

Theoretically, after the analog filters capacitance values should be more stable.
To test the behavior, I apply a square wave between 0 V and 3 V with a frequency of

1.6 kHz to pin PA5 (ETR1), a triangular wave between 0 V and 3 V with frequency of
1.6 kHz, perfectly synchronized with the square wave, to the input of RC network of the
filter, and I connect pin PA3 (output of OPAMP) to pin PA1 (input of ADC).

In Figure 4.3, I compare the triangular wave without filter and triangular waves after
filter 15 kHz and filter 20 kHz. The X axis represents time in seconds whereas Y axis
represents the ADC output x 3.3/4096 V per LSB.

I also compute the absolute difference to emphasize the error, and I plot it in Figure
4.4. The X axis represents the time in seconds, whereas the Y axis represents the absolute
error.

47

4 – Experimental results

Ti
m

e
 (

s)

ADC Output x 3.3/4096 (V)

Figure 4.3. Triangular waves after analog filters. Red: original triangular; Green: trian-
gular after 20 kHz filter; Blue: triangular after 15 kHz filter

48

4.2 – Analog filter tests

Ti
m

e
 (

s)

Absolute error x 3.3/4096 (V)

Figure 4.4. Absolute difference between original triangular wave and filtered
waves. Blue: difference between original and 15 kHz filtered; Red: difference
between original and 20 kHz filtered

49

4 – Experimental results

As expected, the filtered waves are delayed and, due to the non-linearities of active
components and OPAMP, they have ramp-end distortions and the slopes of the ramps
are slightly changed, but the waves are less noisy. In order to realign waves, I delay the
ADC sampling by 20 samples (10 us) for 15 kHz filter and by 15 samples (7.5 us) for 20
kHz filter. The result is shown in Figure 4.5.

A
D

C
 O

u
tp

u
t

x
 3

.3
/4

0
9

6
 (

V
)

Time (s)

Figure 4.5. Triangular waves shifted after analog filters to realign phase. Red: original
triangular; Green: triangular after 15 kHz filter and shifted by 20 samples (10 us); Blue:
triangular after 20 kHz filter and shifted by 15 samples (7.5 us)

I collect traces of capacitance values after the 15 kHz and 20 kHz filters, for 600 s,
10 s and 1 s, then I evaluate the standard deviations and I compare them with the same
results collected without filters. The following tables report comparison:

Table4.2.Standard deviation comparison for averaging method:
STD (fF)

type 600 s 10 s 1 s

nofilter 4.3621 4.3333 4.7967
20 kHz 3.8005 3.6864 3.6699
15 kHz 3.6203 3.5311 3.3894

50

4.2 – Analog filter tests

Table4.3.Standard deviation comparison for oversampling and decimation method:
STD (fF)

type 600 s 10 s 1 s

nofilter 3.8692 3.6669 4.1307
20 kHz 3.0496 2.8043 2.6633
15 kHz 2.8551 2.8618 2.6876

It is evident that the standard deviation associated to filters is always smaller than the
one associated to no filter, and the same observation can be retrieved from comparison
between average and oversampling & decimation method. To obtain the same standard
deviation results of oversampling with averaging I have to use more complex anti-aliasing
filter (for example a second order low-pass filter). I can conclude that the benefits of an
oversampling ADC include:

• Helping to design a simple analog anti-aliasing filter before ADC.

• Reducing the ADC noise floor with possible noise shaping so that a low-resolution
ADC can be used.

Anti-aliasing filter with cut off frequency of 15 kHz is more powerful because it gives
a higher magnitude reduction at 2 MHz (the sampling frequency), and so it can further
reduce noise than anti-aliasing filter with cut off frequency of 20 kHz.

4.2.2 Operational amplifier characterization

At this point I carry out a deeper analysis on non-linearities of operational amplifier
(OPAMP). The test aims at:

• understanding if non-linearities come from OPAMP

• understanding if errors are symmetric

The fist step of the test is based on applying a triangular wave directly to the input
of analog to digital converter and sampling it, while applying a square wave to pin used
to trigger timer; the second step is based on applying a triangular wave to the input
of a voltage divider of 1

2 followed by an amplification of 2 and sampling the output of
OPAMP; the third and last step is based on applying a triangular wave to the input of
the amplifier with amplification of 1.

As shown in Figure 4.6 I realize a voltage divider of 1
2 by using R1=1 kOhm and

R2=1 kOhm since

Vout =
R2

R1 +R2
Vin (4.2)

51

4 – Experimental results

followed by an amplification of 2 that I implement by using R3=1 kOhm and R4=1
kOhm since

Av = 1 +
R2

R1
(4.3)

.

R1

R2

R3

R4

Vin

Vout PA0

PA1

PA3

STML412

Figure 4.6. Schematic of voltage divider plus operational amplifier with amplification 2

In this case the OPAMP is programmed as STANDALONE and not as FOLLOWER,
the non inverting input is at pin PA0, the inverting input is PA1 and the output is PA3.
I change also the ADC input channel since the PA1 is mapped as non inverting input of
the OPAMP. The new ADC channel is associated to pin PA4.

I compare the triangular wave directly sampled by ADC with triangular wave after
the voltage divider and OPAMP amplification. I show them in figure 4.7 where the Y axis
represents ADC Output and the X represents time in seconds. I also plot the absolute
error between the two (Figure 4.8); the Y axis represents absolute error whereas the X,
time in seconds.

52

4.2 – Analog filter tests

ADC Output x 3.3/4096 (V)

Ti
m

e
 (

s)

Figure 4.7. Original triangular wave (Blue) and triangular wave after voltage divider and
OPAMP (Red) to evaluate the non-linearity errors

53

4 – Experimental results

Time (s)

A
b
so

lu
te

 e
rr

o
r

x
 3

.3
/4

0
9

6
 (

V
)

Figure 4.8. Absolute error between the original triangular wave and the triangular wave
after the voltage divider and the OPAMP

From the plots l observe that the red triangular waveform does not follow the same
trend of the ideal waveform (blue), the amplification is reduced in the upper corners,
the slope is distorted and there are also vertical and horizontal misalignments. However,
direct acquisition are more subject to high frequency noise than acquisition made through
OPAMP.

Now, I want to check if distortions depend on gain OPAMP and how they affect the
wave with respect to the amplification. I realize an amplification (Av) of 1 by implement-
ing a voltage follower with direct line between inverting input and output of the OPAMP
and I apply the triangular wave to no inverting input. The output of the OPAMP is then
sampled by ADC. I compare it with the triangular wave directly sampled by ADC (Fig-
ure 4.9 and Figure 4.10) and the triangular wave sampled after voltage divider and the
OPAMP (Figure 4.11 and Figure 4.12). All the plots have the X axis representing time
in seconds. Plots showing triangular waves have the Y axis representing ADC Output,
while plots showing differences have the Y axis representing absolute error.

54

4.2 – Analog filter tests

A
D

C
 O

u
tp

u
t

x
 3

.3
/4

0
9
6

 (
V

)

Time (s)

Figure 4.9. Original triangular wave (Red) and triangular wave after OPAMP with
amplification (Av) 1 (Blue)

Time (s)

A
b
so

lu
te

 e
rr

o
r

x
 3

.3
/4

0
9
6
 (

v
)

Figure 4.10. Absolute difference between original triangular wave and triangular wave
after OPAMP with amplification (Av) 1

55

4 – Experimental results

A
D

C
 O

u
tp

u
t

x
 3

.3
/4

0
9
6

 (
V

)

Time (s)

Figure 4.11. Triangular wave after OPAMP with amplification (Av) 1 (Blue) and trian-
gular wave after voltage divider and OPAMP with amplification (Av) 2 (Red)

Time (s)

A
b
so

lu
te

 e
rr

o
r

x
 3

.3
/4

0
9

6
 (

V
)

Figure 4.12. Absolute error between triangular wave after OPAMP with amplification 1
and triangular wave after voltage divider and OPAMP with amplification 2

The analysis confirms that the OPAMP can filter high frequency noise. The difference
between the original triangular wave and the triangular wave after the OPAMP with

56

4.3 – Experiments related to digital filters

Av=1 (Figure 4.10) shows some symmetric non-linearities of the amplifier, which seem
to change with the amplification factor.

4.3 Experiments related to digital filters

Digital filters reduce the noise outside the band of interest. Thus I am interested on
studying the frequency spectrum of capacitance value traces.

Explanations about how I design filters and the shape of their masks are in Chapter
3, here I present tests used to control the behavior of filters.

4.3.1 Noise reduction outside the frequency band of interest

This last test is composed of collecting capacitance values for short slot of time, applying
digital filters and then moving on frequency domain. Test aims at analyzing the frequency
spectrum (FFT) of capacitance timing variations for different filtering levels:

• analog antialias filter 20 kHz, digital filter 1 Hz

• analog antialias filter 20 kHz, digital filter 3 Hz

• analog antialias filter 15 kHz, digital filter 1 Hz

• analog antialias filter 15 kHz, digital filter 3 Hz

I apply a square wave between 0 V and 3 V with a frequency of 1.6 kHz to PIN
PA5 (trigger source for TIM2) of the board, then I apply a triangular wave between 0
V and 3 V with frequency 1.6 kHz to PIN PA1 (input of ADC)(see figure 3.11). As the
frequency resolution depends on the length of acquisition, I collect a trace of about 5 min
of capacitance values. Then I apply digital filters and I compare Fast Fourier Transform
(FFT) before and after filtering step. The MATLAB code used to design and apply filters
is available in the Appendix A. In Appendix A.4 can be observed that I eliminate the
minimum value from all the data before entering the processing chain to eliminate the
DC component of the FFT to visualize better the noise.

First, I use digital filters with cutoff frequency of 1 Hz. In the following I report plots
that display FFT before digital filters, FFT after FIR filter, FFT after Chebyshev filter
and FFT after Elliptic filter (Figure 4.13, Figure 4.14, Figure 4.15 and Figure 4.16). The
X axis represents frequency in Hz, the Y axis represents Magnitude in dB.

57

4 – Experimental results

0 100 200 300 400 500 600 700
-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

nodigfilter

FIR

Cheby

Elliptic

Frequency (Hz)

M
a
g
n
it

u
d
e
 (

d
B

)

Figure 4.13. FFTs of Cplate values, calculated through averaging, with and
without 1 Hz low-pass digital filters

58

4.3 – Experiments related to digital filters

0 100 200 300 400 500 600 700
-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

nodigfilter

FIR

Cheby

Elliptic

Frequency (Hz)

M
a
g
n
it

u
d
e
 (

d
B

)

Figure 4.14. FFTs of Cplate values, calculated through oversampling and decimation,
with and without 1 Hz low-pass digital filters

59

4 – Experimental results

Frequency (Hz)

M
a
g

n
it

u
d

e
 (

d
B

)

Figure 4.15. Detail of FFTs of Cplate values, calculated through averaging, with and
without 1 Hz low-pass digital filters

60

4.3 – Experiments related to digital filters

Frequency (Hz)

M
a
g

n
it

u
d

e
 (

d
B

)

Figure 4.16. Detail of FFTs of Cplate values, calculated through oversampling and
decimation, with and without 1 Hz low-pass digital filters

Outside the band of interest (0 Hz-3 Hz), the noise level is rather low, -40 dB or
less, and it is further attenuated by the digital filters. The Elliptic filter (green line)
starts attenuating earlier than the other filters, and stays below -130 dB after 1.5 Hz like
Chebyshev (black line). The slope of the FIR (red line) is slower with lower attenuation
(below -100 dB) and it has big ripples in the stopband.

There are no significant differences between averaging and oversampling & decimation
methods (Figure 4.13, Figure 4.14), since the discretization noise is less than signal noise.
There is a high peak noise (-40 dB) at 50 Hz in the FFT of the signal without filtering,
which is reduced by -70 dB with the FIR filter, by -90 dB with the Chebyshev filter and
by -95 dB with the Elliptic filter.

Next, I repeat the sequence by including also analog antialias filter of 20 kHz (Figure
4.17, Figure 4.18, Figure 4.19, Figure 4.20).

61

4 – Experimental results

0 100 200 300 400 500 600 700
-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

nodigfilter

FIR

Cheby

Elliptic

Frequency (Hz)

M
a
g
n
it

u
d
e
 (

d
B

)

Figure 4.17. FFTs of Cplate values, calculated through averaging, before digital filters
and after digital filters, including analog antialias filter with cut off frequency of 20 kHz

62

4.3 – Experiments related to digital filters

0 100 200 300 400 500 600 700
-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

nodigfilter

FIR

Cheby

Elliptic

Frequency (Hz)

M
a
g
n
it

u
d
e
 (

d
B

)

Figure 4.18. FFTs of Cplate values, calculated through oversampling and decima-
tion, with and without 1 Hz low-pass digital filters, including analog antialias filter
with cut off frequency of 20 kHz

63

4 – Experimental results

M
a
g

n
it

u
d

e
 (

d
B

)

Frequency (Hz)

Figure 4.19. Detail of FFTs of Cplate values, calculated through averaging, with
and without 1 Hz low-pass digital filters, including analog antialias filter with cut
off frequency of 20 kHz

64

4.3 – Experiments related to digital filters

M
a
g

n
it

u
d

e
 (

d
B

)

Frequency (Hz)

Figure 4.20. Detail of FFTs of Cplate values, calculated through oversampling and
decimation, with and without 1 Hz low-pass digital filters, including analog antialias
filter with cut off frequency of 20 kHz

Also in this set of results, the Elliptic filter presents the steepest roll-off rate, and the
averaging and oversampling & decimation do not have significant differences. Figure 4.17
and Figure 4.18 show the same high peak noise (-40 dB) at 50 Hz in the FFT computed
before filtering, and then attenuated respectively by the filters.

Lastly, I repeat the sequence using a 15 kHz analog antialias filter.

65

4 – Experimental results

0 100 200 300 400 500 600 700
-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

nodigfilter

FIR

Cheby

Elliptic

Frequency (Hz)

M
a
g
n
it

u
d
e
 (

d
B

)

Figure 4.21. FFTs of Cplate values, calculated through averaging, before digital filters
and after digital filters, including analog antialias filter with cut off frequency of 15 kHz

66

4.3 – Experiments related to digital filters

0 100 200 300 400 500 600 700
-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

nodigfilter

FIR

Cheby

Elliptic

Frequency (Hz)

M
a
g
n
it

u
d
e
 (

d
B

)

Figure 4.22. FFTs of Cplate values, calculated through oversampling and decima-
tion, with and without 1 Hz low-pass digital filters, including analog antialias filter
with cut off frequency of 15 kHz

67

4 – Experimental results

Frequency (Hz)

M
a
g

n
it

u
d

e
 (

d
B

)

Figure 4.23. Detail of FFTs of Cplate values, calculated through averaging, with
and without 1 Hz low-pass digital filters, including analog antialias filter with cut
off frequency of 15 kHz

68

4.3 – Experiments related to digital filters

M
a
g

n
it

u
d

e
 (

d
B

)

Frequency (Hz)

Figure 4.24. Detail of FFTs of Cplate values, calculated through oversampling and
decimation, with and without 1 Hz low-pass digital filters, including analog filter
with cut off frequency of 15 kHz

From the previous images it’s clearly visible the different behaviors of the filters.
Elliptic (green line) shows the fastest roll-off rate and it requires lower order (7), FIR
(red line) has the poorest roll-off rate and it is computationally expensive while Chebyshev
(black line) has a good performance even if it has slower roll-off rate than Elliptic and
it requires higher order (11). Another important thing that I can state from detailed
pictures is that lines between 0 Hz and 1.5 Hz are smoother and lower in the cases of
analog filters, this means that noise in useful band is effectively reduced.

I replicate the analysis by using digital filters with cut off frequency of 3 Hz. Figures
4.25, Figure 4.26, Figure 4.27 and Figure 4.28 show results of test without analog antialias
filters.

69

4 – Experimental results

0 100 200 300 400 500 600 700
-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

nodigfilter

FIR

Cheby

Elliptic

Frequency (Hz)

M
a
g
n
it

u
d
e
 (

d
B

)

Figure 4.25. FFTs of Cplate values, calculated through averaging, with and
without 3 Hz low-pass digital filters

70

4.3 – Experiments related to digital filters

0 100 200 300 400 500 600 700
-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

nodigfilter

FIR

Cheby

Elliptic

Frequency (Hz)

M
a
g
n
it

u
d
e
 (

d
B

)

Figure 4.26. FFTs of Cplate values, calculated through oversampling and decimation,
with and without 3 Hz low-pass digital filters

71

4 – Experimental results

Frequency (Hz)

M
a
g

n
it

u
d

e
 (

d
B

)

Figure 4.27. Detail of FFTs of Cplate values, calculated through averaging, with and
without 3 Hz low-pass digital filters

72

4.3 – Experiments related to digital filters

Frequency (Hz)

M
a
g

n
it

u
d

e
 (

d
B

)

Figure 4.28. Detail of FFTs of Cplate values, calculated through oversampling and
decimation, with and without 3 Hz low-pass digital filters

Elliptic starts attenuating before the others. FIR still has big ripples in stopband and
it achieves a reduction of -140 dB at 300 Hz. In addition Elliptic at high frequency stuck
at -140 dB while Chebyshev goes even lower. There is, as in the previous results, a high
peak noise at 50 Hz, which is then reduced by -65 dB with the FIR filter, by -80 dB with
the Chebyshev and Elliptic filter. There are not significant differences between averaging
and oversampling and decimation.

Figures 4.29, Figure 4.30, Figure 4.31, and Figure 4.32 show results of test including
analog antialias filter with cut off frequency of 20 kHz.

73

4 – Experimental results

0 100 200 300 400 500 600 700
-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

nodigfilter

FIR

Cheby

Elliptic

Frequency (Hz)

M
a
g
n
it

u
d
e
 (

d
B

)

Figure 4.29. FFTs of Cplate values, calculated through averaging, with and without 3 Hz
low-pass digital filters, including analog antialias filter with cut off frequency of 20 kHz

74

4.3 – Experiments related to digital filters

0 100 200 300 400 500 600 700
-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

nodigfilter

FIR

Cheby

Elliptic

Frequency (Hz)

M
a
g
n
it

u
d
e
 (

d
B

)

Figure 4.30. FFTs of Cplate values, calculated through oversampling and decima-
tion, with and without 3 Hz low-pass digital filters, including analog antialias filter
with cut off frequency of 20 kHz

75

4 – Experimental results

M
a
g

n
it

u
d

e
 (

d
B

)

Frequency (Hz)

Figure 4.31. Detail of FFTs of Cplate values, calculated through averaging, with
and without 3 Hz low-pass digital filters, including analog antialias filter with cut
off frequency of 20 kHz

76

4.3 – Experiments related to digital filters

M
a
g

n
it

u
d

e
 (

d
B

)

Frequency (Hz)

Figure 4.32. Detail of FFTs of Cplate values, calculated through oversampling and
decimation, with and without 3 Hz low-pass digital filters, including analog antialias
filter with cut off frequency of 20 kHz

Elliptic has a faster roll-off rste than FIR and Chebyshev, however at high frequencies
it has the same behavior argued in the previous set of the results. The line between 0 Hz
and 3 Hz is smoother and lower than the case without analog filter.

Figures 4.33, Figures 4.34, Figures 4.35, and Figures 4.36 show results of test includ-
ing analog filter with cut off frequency of 15 kHz.

77

4 – Experimental results

0 100 200 300 400 500 600 700
-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

nodigfilter

FIR

Cheby

Elliptic

Frequency (Hz)

M
a
g
n
it

u
d
e
 (

d
B

)

Figure 4.33. FFTs of Cplate values, calculated through averaging, with and without 3 Hz
low-pass digital filters, including analog antialias filter with cut off frequency of 15 kHz

78

4.3 – Experiments related to digital filters

0 100 200 300 400 500 600 700
-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

nodigfilter

FIR

Cheby

Elliptic

Frequency (Hz)

M
a
g
n
it

u
d
e
 (

d
B

)

Figure 4.34. FFTs of Cplate values, calculated through oversampling and decima-
tion, with and without 3 Hz low-pass digital filters, including analog antialias filter
with cut off frequency of 15 kHz

79

4 – Experimental results

M
a
g

n
it

u
d

e
 (

d
B

)

Frequency (Hz)

Figure 4.35. Detail of FFTs of Cplate values, calculated through averaging, with
and without 3 Hz low-pass digital filters, including analog antialias filter with cut
off frequency of 15 kHz

80

4.3 – Experiments related to digital filters

M
a
g

n
it

u
d

e
 (

d
B

)

Frequency (Hz)

Figure 4.36. Detail of FFTs of Cplate values, calculated through oversampling and
decimation, with and without 3 Hz low-pass digital filters, including analog antialias
filter with cut off frequency of 15 kHz

From this set of results, I can arise the same conclusions explained before. I highlight
again the fact that the line between 0 Hz and 3 Hz is even smoother and lower than the
case with analog antialias filter with cut off frequency of 20 kHz. Figure 4.33 and Figure
4.34 shows the high peak noise at 50 Hz, which is reduced by -90 dB with FIR and by
-80 dB with Chebyshev and Elliptic.

81

Chapter 5

Conclusion

This research focuses on implementing a new front end for capacitive sensors, based on
single plate differential measurements.
The implementation proposed and analyzed is composed of an analog antialiasing low-
pass filter in order to reduce high frequency noise, an Analog to Digital Converter and
a microprocessor to implement a processing method for measuring capacitance that sig-
nificantly reduces extern environmental noise, and a digital filter to reduce noise outside
the frequency bands of interest.
The new processing method uses differential single plate measurements, and it provides:

• Cancellation of measurement drift of electric capacitance of single-plate sensors due
to environmental sources.

• Reduction of measurement jitter because the measurement of the electrical capaci-
tance of sensor plate does not rely on voltage thresholds.

• Use of oversampling techniques to lower the performance requirements for analog-
to-digital convertor (ADC) and signal filters.

• Differential capacitance measurement can be used on most capacitive sensors with-
out requiring physical changes.

From the tests performed and the results collected I find that ADC with oversampling
and antialiasing filter with cut off frequency of 15 kHz, which is ten times higher than
signal frequency, give the best high frequency noise reduction. Instead, regarding digital
filters I conclude that Elliptic gives the best result with the less effort.

This research improves long-range traceability for indoor safety and security appli-
cations, such as detection of persons or wares, indoor monitoring of person position,
movements and behavior.

The new front-end has to be tested with the real analog interface composed of one
single plate which is charged/discharged by a constant current driven by a square wave
generated through a signal generator. Then the stability of the analog interface has to
be checked.

An alternative implementation can be based on analog circuits to process Vc as fol-
lows:

83

5 – Conclusion

• analog differentiator circuits calculate the slopes of the ramps,SL and SR

• an analog inverter to calculate the modulus of the negative slope;

• an analog average circuit (low-pass filter) to calculate the average of the modulus
of the two slopes, which reduces also high-pitch noise present in VC.

Other implementations can use combinations of analog and digital processing for the
various operations mentioned above.

84

References

[1] Ramezani Akhmareh, Alireza, Mihai Teodor Lazarescu, Osama Bin Tariq, and Lu-
ciano Lavagno. ”A tagless indoor localization system based on capacitive sensing
technology.” Sensors 16, no. 9 (2016): 1448.

[2] Iqbal, Javed, Mihai Teodor Lazarescu, Osama Bin Tariq, and Luciano Lavagno.
”Long range, high sensitivity, low noise capacitive sensor for tagless indoor human
localization.” In Advances in Sensors and Interfaces (IWASI), 2017 7th IEEE Inter-
national Workshop on, pp. 189-194. IEEE, 2017.

[3] Tariq, Osama Bin, Mihai Teodor Lazarescu, Javed Iqbal, and Luciano Lavagno.
”Performance of Machine Learning Classifiers for Indoor Person Localization With
Capacitive Sensors.” IEEE Access 5 (2017): 12913-12926.

[4] Iqbal, Javed, Arslan Arif, Osama Bin Tariq, Mihai Teodor Lazarescu, and Luciano
Lavagno. ”A contactless sensor for human body identification using RF absorption
signatures.” In Sensors Applications Symposium (SAS), 2017 IEEE, pp. 1-6. IEEE,
2017.

[5] Iqbal, Javed, Mihai Teodor Lazarescu, Arslan Arif, and Luciano Lavagno. ”High
sensitivity, low noise front-end for long range capacitive sensors for tagless indoor
human localization.” In Research and Technologies for Society and Industry (RTSI),
2017 IEEE 3rd International Forum on, pp. 1-6. IEEE, 2017.

[6] Mihai T. Lazarescu. ”Drift Rejection Differential Frontend for Single Plate Capaci-
tive Sensors”.

[7] STMicroelectronics. ”Ultra-low-power Arm® Cortex®-M4 32-bit MCU+FPU,
100DMIPS, up to 128KB Flash, 40KB SRAM, analog, ext. SMPS”. STM32L412xx
datasheet. DS12469 Rev 7, September 2019.

[8] STMicroelectronics. ”STM32 Nucleo-32 boards (MB1180) ”. UM1956 Rev 5, 2018.

[9] STMicroelectronics. ”Getting started with STM32CubeL4 MCU Package for
STM32L4 Series and STM32L4+ Series”. UM1860 Rev 13, December 2019.

[10] https://en.wikipedia.org/wiki/MATLAB. ”MATLAB”.Wikipedia.

[11] M. Sami Fadali, Antonio Visioli. ”Antialiasing filters”. In Digital Control Engineering
(Second Edition), 2013.

[12] https://en.wikipedia.org/wiki/Digital_filter.”Digital filter”. Wikipedia.

[13] Actel. ”Improving ADC Results.Through Oversampling and Post-Processing of
Data”. January 2007.

[14] T. Dear, J. Chang, W. Chow, D. Wai, J. Wang. ”First-Order RC and RL Transient
Circuits”. Electrical Engineering 42/100 Summer 2012. Department of Electrical
Engineering and Computer Sciences University of California, Berkeley.

85

https://en.wikipedia.org/wiki/MATLAB
https://en.wikipedia.org/wiki/Digital_filter

Appendix A

MATLAB code

A.1 Functions generated after the design of Cheby filters

1 function y = ChebyFilter1(x)

%DOFILTER Filters input x and returns output y.

3

% MATLAB Code

5 % Generated by MATLAB(R) 9.7 and DSP System Toolbox 9.9.

% Generated on: 10-Jun -2020 10:18:13

7

%#codegen

9

persistent Hd;

11

if isempty(Hd)

13

% The following code was used to design the filter coefficients:

15 %

% Fpass = 1; % Passband Frequency

17 % Fstop = 1.5; % Stopband Frequency

% Apass = 1; % Passband Ripple (dB)

19 % Astop = 80; % Stopband Attenuation (dB)

% Fs = 1600; % Sampling Frequency

21 %

% h = fdesign.lowpass(’fp,fst ,ap ,ast ’, Fpass , Fstop , Apass , Astop , Fs);

23 %

% Hd = design(h, ’cheby2 ’, ...

25 % ’MatchExactly ’, ’stopband ’, ...

% ’SystemObject ’, true);

27

Hd = dsp.BiquadFilter(...

29 ’Structure ’, ’Direct form II’, ...

’SOSMatrix ’, [1 -1.99996458500042 1 1 -1.99913696140169 ...

31 0.99915400963576; 1 -1.99995806575845 1 1 -1.99731473866843 ...

0.997333149805012; 1 -1.99993925054548 1 1 -1.99511737031226 ...

33 0.995138660093771; 1 -1.99988129356832 1 1 -1.9924464759649 ...

0.99247213904942; 1 -1.99956289752332 1 1 -1.98978522939044 ...

35 0.989815670103883; 1 1 0 1 -0.994280600521733 0], ...

’ScaleValues ’, [0.48138456232159; 0.439047801989281; ...

37 0.350452225044885; 0.216189503413461; 0.0696420520701446; ...

0.00285969973913346; 1]);

39 end

41 s = double(x);

87

A – MATLAB code

y = step(Hd,s);

1 function y = ChebyFilter2(x)

%DOFILTER Filters input x and returns output y.

3

% MATLAB Code

5 % Generated by MATLAB(R) 9.7 and DSP System Toolbox 9.9.

% Generated on: 10-Jun -2020 12:02:02

7

%#codegen

9 persistent Hd;

11 if isempty(Hd)

13 % The following code was used to design the filter coefficients:

%

15 % Fpass = 3; % Passband Frequency

% Fstop = 3.5; % Stopband Frequency

17 % Apass = 1; % Passband Ripple (dB)

% Astop = 80; % Stopband Attenuation (dB)

19 % Fs = 1600; % Sampling Frequency

%

21 % h = fdesign.lowpass(’fp,fst ,ap ,ast ’, Fpass , Fstop , Apass , Astop , Fs);

%

23 % Hd = design(h, ’cheby2 ’, ...

% ’MatchExactly ’, ’stopband ’, ...

25 % ’SystemObject ’, true);

27 Hd = dsp.BiquadFilter(...

’Structure ’, ’Direct form II’, ...

29 ’SOSMatrix ’, [1 -1.99980979556816 1 1 -1.99889511289001 ...

0.999041440875156; 1 -1.99979897899548 1 1 -1.9968778500709 ...

31 0.997030346568633; 1 -1.99977474777104 1 1 -1.99454843649983 ...

0.994714312858045; 1 -1.99973046410583 1 1 -1.99163280182952 ...

33 0.991821304623568; 1 -1.99965101890501 1 1 -1.98774466997648 ...

0.987968607342168; 1 -1.99949930002953 1 1 -1.98234162147593 ...

35 0.982619268885779; 1 -1.99916620153476 1 1 -1.97479309497699 ...

0.975149296465124; 1 -1.99820893284197 1 1 -1.96494802558787 ...

37 0.965409061799504; 1 -1.99303883444895 1 1 -1.95487096449132 ...

0.955440452610676; 1 1 0 1 -0.975101717518861 0], ...

39 ’ScaleValues ’, [0.769319535454047; 0.758609768661389; ...

0.736402738293566; 0.699360634773507; 0.641689102647641; ...

41 0.554518526506645; 0.427203338676199; 0.257408668102648; ...

0.0818093055214536; 0.0124491412405693; 1]);

43 end

45 s = double(x);

y = step(Hd,s);

A.2 Functions generated after the design of Elliptic filters

1 function y = EllipticFilter1(x)

%DOFILTER Filters input x and returns output y.

3

% MATLAB Code

5 % Generated by MATLAB(R) 9.7 and DSP System Toolbox 9.9.

% Generated on: 10-Jun -2020 10:20:47

7

%#codegen

9

88

A.2 – Functions generated after the design of Elliptic filters

persistent Hd;

11

if isempty(Hd)

13

% The following code was used to design the filter coefficients:

15 %

% Fpass = 1; % Passband Frequency

17 % Fstop = 1.5; % Stopband Frequency

% Apass = 1; % Passband Ripple (dB)

19 % Astop = 80; % Stopband Attenuation (dB)

% Fs = 1600; % Sampling Frequency

21 %

% h = fdesign.lowpass(’fp,fst ,ap ,ast ’, Fpass , Fstop , Apass , Astop , Fs);

23 %

% Hd = design(h, ’ellip ’, ...

25 % ’MatchExactly ’, ’both ’, ...

% ’SystemObject ’, true);

27

Hd = dsp.BiquadFilter(...

29 ’Structure ’, ’Direct form II’, ...

’SOSMatrix ’, [1 -1.99996616585537 1 1 -1.99972617881914 ...

31 0.999741532372801; 1 -1.99995236844128 1 1 -1.99913046783303 ...

0.999141707899633; 1 -1.99986446400695 1 1 -1.99845255091517 ...

33 0.998457125311466; 1 1 0 1 -0.999053113667417 0], ...

’ScaleValues ’, [0.109470417991286; 0.235979398999456; ...

35 0.0337504170897813; 0.00196256832711693; 1]);

end

37

s = double(x);

39 y = step(Hd,s);

function y = EllipticFilter2(x)

2 %DOFILTER Filters input x and returns output y.

4 % MATLAB Code

% Generated by MATLAB(R) 9.7 and DSP System Toolbox 9.9.

6 % Generated on: 10-Jun -2020 12:03:58

8 %#codegen

persistent Hd;

10

if isempty(Hd)

12

% The following code was used to design the filter coefficients:

14 %

% Fpass = 3; % Passband Frequency

16 % Fstop = 3.5; % Stopband Frequency

% Apass = 1; % Passband Ripple (dB)

18 % Astop = 80; % Stopband Attenuation (dB)

% Fs = 1600; % Sampling Frequency

20 %

% h = fdesign.lowpass(’fp,fst ,ap ,ast ’, Fpass , Fstop , Apass , Astop , Fs);

22 %

% Hd = design(h, ’ellip ’, ...

24 % ’MatchExactly ’, ’both ’, ...

% ’SystemObject ’, true);

26

Hd = dsp.BiquadFilter(...

28 ’Structure ’, ’Direct form II’, ...

’SOSMatrix ’, [1 -1.99981250164446 1 1 -1.99911313680107 ...

30 0.99924067025711; 1 -1.99975795751691 1 1 -1.99816203175828 ...

0.998262866068294; 1 -1.9995365865229 1 1 -1.99666591122318 ...

32 0.996722106639223; 1 -1.99669253368451 1 1 -1.99524631781953 ...

89

A – MATLAB code

0.995259608746892; 1 -1.99982866539889 1 1 -1.99965420784749 ...

34 0.999792821735849] , ...

’ScaleValues ’, [0.720849656531487; 0.679865530313023; ...

36 0.41630403752161; 0.121262806519511; 0.00402430783523777; 1]);

end

38

s = double(x);

40 y = step(Hd,s);

A.3 Functions generated after the design of FIR filters

1 function y = FirFilter1(x)

%FIRFILTER1 Filters input x and returns output y.

3

% MATLAB Code

5 % Generated by MATLAB(R) 9.7 and DSP System Toolbox 9.9.

% Generated on: 10-Jun -2020 10:55:23

7

%#codegen

9 persistent Hd;

11 if isempty(Hd)

13 % The following code was used to design the filter coefficients:

% % Equiripple Lowpass filter designed using the FIRPM function.

15 %

% % All frequency values are in Hz.

17 % Fs = 1600; % Sampling Frequency

%

19 % Fpass = 1; % Passband Frequency

% Fstop = 1.5; % Stopband Frequency

21 % Dpass = 0.057501127785; % Passband Ripple

% Dstop = 0.0001; % Stopband Attenuation

23 % dens = 20; % Density Factor

%

25 % % Calculate the order from the parameters using FIRPMORD.

% [N, Fo, Ao, W] = firpmord ([Fpass , Fstop]/(Fs/2), [1 0], [Dpass , Dstop]);

27 %

% % Calculate the coefficients using the FIRPM function.

29 % b = firpm(N, Fo, Ao, W, {dens});

31 Hd = dsp.FIRFilter(...

’Numerator ’, [7.00619879875417e-05 1.73478607968007e-05 ...

33 1.72789583086127e-05 1.73870310067519e-05 1.73184940224234e-05 ...

1.74268805565349e-05 1.73582580923961e-05 1.74666120962446e-05 ...

35 1.73972140032942e-05 1.75051129076567e-05 1.74340989340607e-05 ...

1.75412442843242e-05 1.74677766112779e-05 1.75744589379368e-05 ...

37 1.74980635615851e-05 1.76063535400176e-05 1.75276381304525e-05 ...

1.76454252335782e-05 1.7567761830651e-05 1.77429088834945e-05 ...

39 1.76390613978608e-05 1.7703996673789e-05 1.76728743826781e-05 ...

1.77592663568883e-05 1.77082140045091e-05 1.78014244130081e-05 ...

41 1.77461464609755e-05 1.78421445581116e-05 1.7784861603725e-05 ...

1.78819947649748e-05 1.78230930761331e-05 1.79202286087439e-05 ...

43 1.78596621757071e-05 1.79561511495473e-05 1.78944731581168e-05 ...

1.79909960574468e-05 1.79309638549401e-05 1.80307316672074e-05 ...

45 1.79792422194769e-05 1.80815376605328e-05 1.79986926614662e-05 ...

1.81125130437816e-05 1.80456524820486e-05 1.81487526956243e-05 ...

47 1.80845245492134e-05 1.81871460215035e-05 1.8123740470022e-05 ...

1.82263980304429e-05 1.81633298567428e-05 1.82658507831638e-05 ...

49 %truncated because of too much coefficients

90

A.3 – Functions generated after the design of FIR filters

]);

51 end

53 y = step(Hd,double(x));

55

% [EOF]

function y = FirFilter2(x)

2 %FIRFILTER2 Filters input x and returns output y.

4 % MATLAB Code

% Generated by MATLAB(R) 9.7 and DSP System Toolbox 9.9.

6 % Generated on: 10-Jun -2020 12:07:53

8 %#codegen

10 persistent Hd;

12 if isempty(Hd)

14 % The following code was used to design the filter coefficients:

% % Equiripple Lowpass filter designed using the FIRPM function.

16 %

% % All frequency values are in Hz.

18 % Fs = 1600; % Sampling Frequency

%

20 % Fpass = 3; % Passband Frequency

% Fstop = 3.5; % Stopband Frequency

22 % Dpass = 0.057501127785; % Passband Ripple

% Dstop = 0.0001; % Stopband Attenuation

24 % dens = 20; % Density Factor

%

26 % % Calculate the order from the parameters using FIRPMORD.

% [N, Fo, Ao, W] = firpmord ([Fpass , Fstop]/(Fs/2), [1 0], [Dpass , Dstop]);

28 %

% % Calculate the coefficients using the FIRPM function.

30 % b = firpm(N, Fo, Ao, W, {dens});

32 Hd = dsp.FIRFilter(...

’Numerator ’, [8.60694574398233e-05 5.71237239930419e-05 ...

34 5.70786953276382e-05 5.7181318242396e-05 5.71350199404078e-05 ...

5.72358699889941e-05 5.71886162587477e-05 5.72878013087933e-05 ...

36 5.72402053970038e-05 5.73381966439206e-05 5.72914072484539e-05 ...

5.7389150475521e-05 5.73450841318962e-05 5.74439818418856e-05 ...

38 5.74054298355619e-05 5.75065418263109e-05 5.74766803402434e-05 ...

5.75765360086393e-05 5.75561283462276e-05 5.7607715535572e-05 ...

40 5.75341473993673e-05 5.7695107041683e-05 5.76160860903625e-05 ...

5.77322598076737e-05 5.76694517366086e-05 5.77782841120743e-05 ...

42 5.77187676973492e-05 5.78242258841574e-05 5.77664060066618e-05 ...

5.78702903686687e-05 5.78139744546279e-05 5.79171867488163e-05 ...

44 5.78618550216397e-05 5.79638692297977e-05 5.79073791213498e-05 ...

5.80057711449521e-05 5.79445313187625e-05 5.80382225695234e-05 ...

46 5.79745555666997e-05 5.80898522937488e-05 5.80213983675039e-05 ...

5.81109168888309e-05 5.80559424542975e-05 5.814452868259e-05 ...

48 5.80870295599269e-05 5.81755966285127e-05 5.81172817554043e-05 ...

5.8205555491353e-05 5.81465966746848e-05 5.82340737371533e-05 ...

50 5.81738157192961e-05 5.82595678991653e-05 5.81971513695786e-05 ...

5.82808705057872e-05 5.82169027047399e-05 5.83006490049763e-05 ...

52 5.8237698067762e-05 5.83231665293195e-05 5.82554742522263e-05 ...

5.83287814625952e-05 5.82695093997513e-05 5.83440747932906e-05 ...

54 5.8277801442681e-05 5.83536458459249e-05 5.82854821243469e-05 ...

5.83601159389341e-05 5.82900769490588e-05 5.83628472041363e-05 ...

91

A – MATLAB code

56 5.82906172195879e-05 5.83612939163457e-05 5.82871110649456e-05 ...

5.8356265129037e-05 5.8280915836545e-05 5.83490027313029e-05 ...

58 %truncated because too much coefficients

]);

60 end

62 y = step(Hd,double(x));

64

% [EOF]

A.4 Code used to apply filters and evaluate FFTs

1 %read values

f=fopen(" no_filter.txt","r");

3 avg_and_dec=textscan(f,"%d");

avg_and_dec=cell2mat(avg_and_dec);

5

%set parameters

7 sampling_frequency = 1600.0;

N = length(avg_and_dec);

9 delta_f = sampling_frequency / N;

xfft=(delta_f .* (0:1:N/2-1));

11 % retrieve min value and subtract it

M=min(avg_and_dec);

13 for i=1:1:N

avg_and_dec(i)=avg_and_dec(i)-M;

15 end

17 %FFT original

fft_avg_and_dec1 = abs(fft(avg_and_dec));

19 A = mean(avg_and_dec , 1);

fft_avg_and_dec2 = (fft_avg_and_dec1 (1:N/2))./A/N;

21

%apply FIR filter and compute FFT

23 output2=FirFilter1(avg_and_dec);

output2_1 = abs(fft(output2));

25 Abutt = mean(output2 , 1);

output2_2 = (output2_1 (1:N/2))./Abutt/N;

27

%apply Cheby filter and compute FFT

29 output3=ChebyFilter1(avg_and_dec);

output3_1 = abs(fft(output3));

31 Acheb = mean(output3 , 1);

output3_2 = (output3_1 (1:N/2))./Acheb/N;

33

%apply Elliptic filter and compute FFT

35 output4=EllipticFilter1(avg_and_dec);

output4_1 = abs(fft(output4));

37 Aell = mean(output4 , 1);

output4_2 = (output4_1 (1:N/2))./Aell/N;

39

%plot section

41 plot(xfft ,20* log10(fft_avg_and_dec2),’b’),title(’FFT no analog filter ’)

hold on

43 plot(xfft ,20* log10(output2_2),’r’)

hold on

45 plot(xfft ,20* log10(output3_2),’black ’)

hold on

47 plot(xfft ,20* log10(output4_2),’g’),legend(’nodigfilter ’,’Fir’,’Cheby’,’Elliptic ’)

92

	List of Figures
	Introduction
	Front-ends for capacitive sensors
	Existing techniques
	Differential measurements technique

	Instruments and implementation
	Instruments
	The microcontroller
	Tools for configuration and programming of the microcontroller
	Tool for technical computing

	Implementation
	Analog To Digital block implementation
	Analog Filter block implementation
	Digital Filter block implementation

	Experimental results
	Testing Analog to Digital Converter operation and performance
	Synchronization and timing
	Data acquisition

	Analog filter tests
	Noise reduction
	Operational amplifier characterization

	Experiments related to digital filters
	Noise reduction outside the frequency band of interest

	Conclusion
	References
	MATLAB code
	Functions generated after the design of Cheby filters
	Functions generated after the design of Elliptic filters
	Functions generated after the design of FIR filters
	Code used to apply filters and evaluate FFTs

