
POLITECNICO DI TORINO

Corso di Laurea Magistrale in Ingegneria Informatica

Tesi di Laurea Magistrale

Blockchain and smart contracts in
the Fashion industry

A Decentralized Application built on Ethereum and Hyperledger

Fabric

Relatori

prof. Fabrizio Lamberti

ing. Valentina Gatteschi

Candidato

Stefano Franzoni

Tutor aziendale

dott. Alfredo Favenza

Sessione di Luglio 2020

Acknowledgements

A mia madre. Alla curiosità, all'amore e alla tenacia che mi ha trasmesso in questi
anni.

i

Contents

List of Figures v

List of Tables vii

1 Introduction 1

2 State of the art 4

2.1 What is Blockchain . 4

2.1.1 Consensus mechanism . 4

2.1.2 51% attack . 5

2.1.3 Bitcoin . 6

2.1.4 Smart Contract . 7

2.2 Current state of networks solution 7

2.2.1 Behind the Blockchains . 8

2.2.2 CrossChain and interoperability 10

2.3 Blockchain application in Fashion Environment 13

2.3.1 Provenance case Martine Jarlgaard 14

2.3.2 Counterfeiting - VeChain BabyGhoast 14

2.4 ASIS model . 15

2.5 Sustainability Token . 15

2.5.1 Solution . 16

ii

3 Solution 17

3.1 Overview . 17

3.1.1 Use Cases . 17

3.1.2 Work overview . 20

3.2 CrossChain interaction . 22

3.2.1 Why a cross-chain solution is needed 22

3.2.2 Technologies Used . 22

3.3 Use Cases . 27

3.3.1 UseCase 1 - User Side . 27

3.3.2 UseCase 2 - Producer Side 33

3.4 Smart Contract . 35

3.4.1 User Contract . 37

3.4.2 Producer Contract . 43

3.4.3 ERC20 Contract . 47

3.5 Network Architecture . 50

3.5.1 Main Components . 50

3.5.2 Own Architecture . 51

3.5.3 Fabric Network . 52

3.5.4 Ethereum Network - Ropsten 58

3.6 Fabric and EVM chaincode interaction 58

3.6.1 Chaincode invocation . 58

3.6.2 Fab3 Proxy . 60

3.7 Dapp . 62

3.7.1 Technologies used . 62

3.7.2 Core part of the web-app . 63

3.7.3 Views . 65

3.8 Cost Analysis . 72

3.8.1 Hyperledger Fabric . 72

3.8.2 Ethereum . 72

3.8.3 Overall costs . 73

iii

4 Results 74

4.1 Target archived . 74

4.2 Use Case Test . 75

4.2.1 Use Case 1 - Unit Test 1 . 75

4.2.2 Use Case 1 - Unit Test 2 . 76

4.2.3 Use Case 2 - Unit Test 1 . 76

5 Conclusion 82

iv

List of Figures

2.1 How PoW works . 5

2.2 51% attack . 6

2.3 Public vs Private networks . 9

2.4 CrossChain Interactions . 12

3.1 UseCase Overview . 18

3.2 Interactions among implemented parts 21

3.3 Architectural Flow . 23

3.4 Where keys are stored . 26

3.5 UseCase 1 . 31

3.6 Evaluation Process . 32

3.7 Purchase Process . 32

3.8 UseCase 2 . 35

3.9 Fabric Network . 52

3.10 Fabric Network Components . 53

3.11 Run of the Docker Containers . 56

3.12 Orgs initializations and channels join 56

3.13 Chaincode Installation . 57

3.14 End To End . 59

3.15 Smart Contract Invocation Process. Source 60

3.16 Fab3 Proxy Flow . 61

3.17 Fab3 Invocation Process . 62

3.18 DApp directory tree . 63

3.19 Deploy User Contract . 64

v

https://hyperledger-fabric.readthedocs.io/en/release-1.4/peers/peers.html

3.20 App Running . 64

3.21 Home . 65

3.22 Registration Phase . 66

3.23 User Info . 67

3.24 Send Box . 67

3.25 Purchase Clothes . 68

3.26 Admin Info . 69

3.27 Evaluate Box . 69

3.28 Transactions . 70

3.29 Admin for Producers Info . 70

3.30 Admin Spend Regeneration Credits 71

3.31 Producers Info . 71

4.1 User Send Box . 75

4.2 Init Transaction from Reclothes to User 76

4.3 Init Transaction from Reclothes to User 76

4.4 Fabric transaction history . 77

4.5 Ethereum transaction over etherscan 77

4.6 Transaction from User to Reclothes 78

4.7 Admin Send old clothes . 79

4.8 Box to be evaluated . 79

4.9 Producer Evaluate old materials . 80

4.10 Admin Info update . 80

4.11 Purchase Recycled Clothes . 80

4.12 Producer Infos Update . 81

vi

List of Tables

2.1 Comparing among blockchains features 11

3.1 Comparing among Ethereum transactions price 73

vii

Chapter 1

Introduction

Over the last few years, the Blockchain technology has been living an era of growth,
many di�erent applications for it being found in several di�erent �elds. The �rst
application of blockchain was in �nance with the Bitcoin, right after many envi-
ronments such as logistics, law and administration found huge applications in it.

This kind of technology is based on a peer to peer network that allows to transfer
assets among users involved in the network, without the need for a third party.
The overall network and the transactions, performed by the joint nodes, are han-
dled by a consensus algorithm that performs the validation of the transactions and
updates the ledger by adding the transactions block to the chain. The ledger is a
�le containing a set of records, each record is a transaction processed by the net-
work. Moreover, all the nodes involved in the network share the same ledger that
contains the state of the overall network. The most signi�cant use of the blockchain
technology is in the �nance environment, which founds a great instrument in cryp-
tocurrencies, exploiting the decentralized architecture, the security advantages and
the transparency. In fact, everyone has read access over the network and he can
visualize the data of the transactions processed.

In the last few years, many companies have been getting interested in the blockchain
applications. Since, in many cases, the data that they share are sensitive informa-
tion and companies don't want to keep them public, the companies need for a
di�erent solution. Therefore, recently, this interest has resulted in the �rst permis-
sioned blockchain solutions, maintained by a consortium system of nodes.

In fact, the blockchain world nowadays are split between permissioned and permis-
sionless blockchains:

1

Introduction

� Permissionless Blockchain: The permissionless blockchain is a fully de-
centralized network where anyone in the world can read or send transactions,
as well as participate in the consensus process.

� Permissioned Blockchain: the permissioned solution is a blockchain where
the consensus process is controlled by a pre-selected set of nodes, which could
be de�ned as a "partially decentralized" network. Moreover, a membership
mechanism could be implemented, in order to to handle the read and write
access over the network.

Based on the above considerations, the two main objectives of this thesis work are:

� Blockchain and supply chain management: The goal is to create a
blockchain solution for the management of the supply chain process of a
Fashion Company. In particular, the thesis addresses the issue of transpar-
ent fashion upcycling, which is generally characterized by processes involving
many di�erent actors. The goal of the blockchain-based solution devised is
to track the items over the �ow more clearly and transparently as possible.

� Cross-chain solution: The goal is to implement a cross-chain interaction
between Hyperledger Fabric and Ethereum network. Fabric manages all the
aspects related to the supply chain (orders, production, part of sale process).
Ethereum instead is only used to the end-user sell process of the items. The
goal is to reach the interoperability between public and private blockchains.

The target reached at the end of the developed thesis work would conceivably be:

� Simple management process: It is to reach a simpli�ed model of the
overall management process of the transactions and users involved into the
system.

� Supply Chain increased transparency: A simpli�ed handling process of
the supply chain. The goal is to make as clear as possible the tracking process
of the clothes over the actors involved, from the producing of the items to the
selling process.

� Technology improvements and modular solutions: A cross-chain tech-
nology means to generalize a solution that could be applied to other use cases.
The integration among more blockchains networks, is a big challenge nowa-
days, in the following chapter it is described in details the current situation
and the solution chosen.

2

Introduction

The rest of the document is structured as follows:

� Chapter 2 - State of the art: focuses on previous studies in this �eld.
It gives an overview of the current solutions to the issue faced in the thesis
work.

� Chapter 3 - Solution: explains how the problem at hand was solved using
the method and theory. It shows all the technologies used to implement
the chosen solution and how they interact with each other describing the
implementation details.

� Chapter 4 - Results: describes the outcome of the tests done.

� Chapter 5 - Conclusion: handles the conclusion and future works, I sum-
marize the overall conclusions.

3

Chapter 2

State of the art

This chapter gives an overview of the current solutions and technologies used dur-
ing the thesis work. It gives an overview about blockchain technology and its
application in fashion environment.

2.1 What is Blockchain

In the previous chapter, I brie�y described the Blockchain behaviors. Blockchain
is a growing list of records, called blocks, that are linked. Each block contains a
cryptographic hash of the previous block, a timestamp, and transaction data.[1]

By design, a blockchain is immutable and resistant to data modi�cation. It runs
over a peer to peer network and each node of the network maintains a copy of the
distributed ledger. Therefore, exploiting the peer to peer network architecture and
the cryptographic science, it is obtained a distributed data storage, immutable,
secure, and continuously synchronized among network nodes. The other core part
of the Blockchain is the consensus mechanism, it is the algorithm that handles
the consensus process in charge of validate transactions and add it to the chain of
blocks, performing the ledger update.

2.1.1 Consensus mechanism

The main consensus algorithms are:

� Byzantine fault tolerance - BFT: The concept of Byzantine Fault Toler-
ance in Blockchain is the feature of reaching an agreement or consensus about
particular blocks based on the proof of work, even when some nodes are fail-
ing to respond or giving out malicious values to misguide the network. The

4

State of the art

main objective of BFT is to safeguard the system even when there are some
faulty nodes. This will also help to reduce the in�uence of faulty nodes.[2]

� Proof of work - PoW: it deters denial-of-service attacks. A proof of work
is a piece of data which is di�cult to produce but easy for others to verify
and which satis�es certain requirements. Producing a proof of work can be a
random process with low probability so that a lot of trial and error is required
on average before a valid proof of work is generated. In other words, it is like
a problem to solve spending a lot of computing power to validate transactions
and create new blocks.[3]

� Proof of stake - PoS: it uses a pseudo-random election process to select a
node to be the validator of the next block, based on a combination of factors
that could include the staking age, randomization, and the node's wealth.
The size of the stake determines the chances for a node to be selected as the
next validator to forge the next block - the bigger the stake, the bigger the
chances. Where in Proof of Work-based systems more and more cryptocur-
rency is created as rewards for miners, the Proof-of-Stake system usually uses
transaction fees as a reward.[4]

Usually, over the network, there are speci�c nodes, called miners with huge com-
putational power, which handles the transactions in exchange for transaction fees

and they have a reward for each block created.

Figure 2.1 shows an example of how the PoW algorithm works.

Figure 2.1. How PoW works

2.1.2 51% attack

It can be performed when a group of miners controlling more than 50% of the
network's mining hash rate or computing power. The attackers would be able to

5

State of the art

prevent new transactions from gaining con�rmations, allowing them to halt pay-
ments between some or all users. Figure 2.2 shows the attack situation, considering
that in the blockchain is kept just the longer branch, meanwhile, the shorter one is
discarded.[5]

Figure 2.2. 51% attack

Nevertheless, the 51% attack does not pay, because it needs a huge computational
power to be performed, and once the network is compromised, no one continues to
use it and the token's price goes to zero. Therefore, it brings everybody to play by
the rules.

2.1.3 Bitcoin

The Blockchain concept was born in 2008 when Satoshi Nakamoto (it is an alias
behind which there are a person or a group of people) published the whitepaper
"Bitcoin: A Peer-to-Peer Electronic Cash System" ; a manifesto where Satoshi ex-
plained the implementation details of a digital currency that can be transferred
over a peer-to-peer network without the need for a central bank that controls it.
The �rst Blockchain implementation is based on the Bitcoin protocol. Nakamoto
inside the whitepaper exposes a peer-to-peer network, where each node shares a
distributed ledger containing all the transactions done. Each node of the network
contains a public key, that is the public address, and a private key used to sign
transactions. The asset exchanged over the network is the BTC, a cryptocurrency
transferred among the nodes. In 2009 he releases the open-source software and
Bitcoin become reality.

6

State of the art

2.1.4 Smart Contract

The smart contract concept was introduced by computer scientist Nick Szabo. It is
a computer program or a transaction protocol which is intended to automatically
execute, control or document legally relevant events and actions according to the
terms of a contract or an agreement.[6]. Since the integration of the smart contract
inside Blockchain, it is possible to exploit the network to transfer each kind of asset
described by the contract.

2.2 Current state of networks solution

Starting from the Introduction's consideration, below it is listed the details of the
three main solutions for blockchain networks[7]:

� Public blockchains: they are peer to peer networks in which anyone in the
world has read access to the network, anyone can send transactions over the
network, and anyone in the world can participate in the consensus process.
In a public blockchain every node is potentially untrusted, so the consensus
mechanism is developed in order to prevent every malicious node that could
compromise data and transactions performed over the network. The entire
architecture and consensus are distributed in order to minimize the liabil-
ity of data manipulation. The consensus process de�nes the blocks that get
added to the chain determining the current state of the network. The secu-
rity issue is solved by a mix of cryptographic algorithms and cryptoeconomics
solution. The idea is to combine economic incentives proportional to the re-
sources that the node can bring to bear. The resources targeted depend on
the consensus algorithm used. For example proof of work(PoW) involves com-
putational resources into the consensus mechanism. On the other hand, proof
of stake(PoS) involves the token amount of the node involved in consensus.
These blockchains are generally considered to be "fully decentralized".[7]

� Consortium blockchains: The basic idea of the consortium blockchain is
that the network is composed by a set of trusted or semi-trusted nodes, that
compose the governance of the network. The consensus mechanism is not
as complex as that of public blockchains, because the starting hypothesis is
di�erent and usually it needs to have a good performance and low latency of
the transactions. I provide an example to understand how governance's nodes
are involved in the consensus process: One might imagine a consortium of 15
�nancial institutions, each of them operates a node and 10 of them must
sign every block in order for the block to be valid. The right to read the
blockchain may be public, or restricted to the participants, and there are

7

State of the art

also hybrid routes such as the root hashes of the blocks being public together
with an API that allows members of the public to make a limited number
of queries and get back cryptographic proofs of some parts of the blockchain
state. These blockchains may be considered "partially decentralized".[7]

� Fully private blockchains: a fully private blockchain is a consortium
blockchain where write permissions are kept centralized to just one orga-
nization. Read permissions may be public or restricted to an arbitrary
extent. Likely applications include database management, auditing, etc
internal to a single company. Therefore, public readability may not be
necessary at all in many cases, although, in other cases public auditabil-
ity is desired.[7]

2.2.1 Behind the Blockchains

With the blockchain technology, cryptographic science found the most applica-
tions. The concept behind the public blockchain is that all the transaction data
are completely public; nevertheless, the identity of the user involved is kept se-
cret. This idea has found a huge application in the cryptocurrencies environment.
The Fintech1 is the environment in which the public blockchains has found the
most applications. The main rule of the overall system is "keep it transparent ,
safe and anonymous", it means that all the transactions processed by the public
blockchain networks are transparent and every node has read access. The Safe
concept is granted by the combination of cryptographic science and economic incen-
tives. Anonymous has granted thanks to the cryptographic science applications,
for example, the bitcoin wallet is based on a key pair computed on elliptic curve
algorithms. If no one shares the identity associated with the wallet public key, or
keep the private key public, the user identity continues to be anonymous.

As explained above the blockchain world is divided between public and private
blockchain. Figure 2.3 shows an overview of the main di�erence of the two kind of
networks.

1It is the technology and innovation that aims to compete with traditional �nancial methods
in the delivery of �nancial services.

8

State of the art

Figure 2.3. Public vs Private networks

To understand the behavior about public and private blockchains, we are going to
list the features for both, in order to adapt the choice based on own needs:

1. The main advantages of the Public blockchain could fall into two major
categories:

(a) Public blockchains provide a way to protect the users of an application
from the developers; the code is public and everyone can see how it works.
This solution limits the authority of the developers over the application.
Moreover, the user identity is always mapped into a wallet address.

(b) Public blockchains are open, and therefore are likely to be used by many
entities and gain some network e�ects. Besides, the public blockchain
fully eliminates intermediaries. Here is an example of a transfer of own-
ership case. A wants to sell an item to B. Right now there is a standard
risk problem of the involved counterparty: if A sends �rst, B may not
send money, and if B sends �rst the money A might not send the item.
All the problems related to these kinds of cases could be resolved using
smart contracts, running over the public blockchain, moreover, the costs
is close to zero. With the smart contract implementations, A can send
the item, to be sold, to a program that immediately sends it to the �rst
person that in the meanwhile sends money to the program.

2. Compared to the public blockchain, the advantages of a Private blockchain
are:

(a) The consortium or companies running a private blockchain can easily, if

9

State of the art

desired, change the rules of a blockchain, revert transactions, modify bal-
ances, etc. In some cases, eg. national land registries, this functionality
is necessary.

(b) The validators are known, so any risk of a 51% attack2, arising from
some miner collusion in China, does not apply.

(c) Transactions are cheaper, since they only need to be veri�ed by a few
nodes that can be trusted to have very high processing power, and do not
need to be veri�ed by ten thousand laptops. This is a hugely important
concern right now, as public blockchains tend to have transaction fees
exceeding $0.01 per tx.

(d) Nodes can be trusted to be very well-connected, and faults can quickly be
�xed by manual intervention, allowing the use of consensus algorithms
which o�er �nality after much shorter block times.

(e) If read permissions are restricted, private blockchains can provide a
greater level of, well, privacy.

From many analysis it gets out that the 75% of already implemented projects are
designed speci�cally for private aim [8], which means that a need is growing to
improve the Consortium Blockchains that allow a memberships mechanism build
for company use cases, which maintains the transactions private to guarantee the
privacy of the business process and data.
On the other hand, in some processes it is useful to implements public blockchain
solutions, so there is a growing need to improve the interoperability about a con-
sortium and public blockchains into a cross-chain solution.

Table 2.1 shows a comparing among three of the main blockchain networks. The
comparison is based on the kind of the network, the currency that runs over
each network, the consensus algorithm used and the possibility to develop and
run smart contract over that.

2.2.2 CrossChain and interoperability

Michael Burgess, chief operating o�cer of Ren states that "All interoperability
solutions will likely have trade-o�s; so it's a matter of designing sys-
tems that �nd a balance between security, governance, adaptability, and
economic incentives that suit their target market."

2It is a potential attack on a blockchain network, where a single entity or organization is
able to control the majority of the hash rate, potentially causing a network disruption.https:
//academy.binance.com/security/what-is-a-51-percent-attack

10

https://academy.binance.com/security/what-is-a-51-percent-attack
https://academy.binance.com/security/what-is-a-51-percent-attack

State of the art

Name Network Currency Consensus Smart Contract

Bitcoin Public Bitcoin PoW Possible but less extendible

Ethereum Public Ether PoS Solidity, Vyper

Hyperledger Permissioned None PBFT Go, Java, Javascript, Solidity

Table 2.1. Comparing among blockchains features

"Private chains operating without distributed consensus are more prone
to data manipulation and the integrity of the data/assets being trans-
ferred from a private, permissioned and centralized chain to a more de-
centralized chain could be questioned. Overall, there is no one solution
that �ts all in terms of being public/private, centralized/decentralized
� it is a broad spectrum with speci�c trade-o�s."[9] , quoting the words of
Agarwal, CEO of Persistence.

What is getting from the point of view of the industry experts; it is a trade-o�
solution to obtain cross-chain interoperability, between public and private.

Limitations

Considering the pros and cons of each network listed, interoperability could, in some
cases, be the solution of many cases problem, for example, the public blockchain
could allow an asset transaction among users without limit and granted security
and authentication. On the other hand, consortium solution could allow companies
to set up roles over their own network and to keep information data private. Nev-
ertheless, the integration between the two blockchain solutions has several Achilles
heels to be evaluated and managed:

� Synchronization: both networks must be synchronized and the world state
must be the same in each moment. This means that each transaction that
involves both blockchains, must reach strong synch among the ledgers, before
being validated.

� Time: in order for it to be usable, the transactions and synchronization must
be performed in a reasonable time.

� Identity: each blockchain implementation handles the identity mechanism
in a speci�c way. This means that the user wallet is implemented using spe-
ci�c cryptographic algorithms and solutions. For example, Ethereum handles
it as a Key pair, private and public, that allow authentication of the wallet

11

State of the art

owner. On the other hand, Hyperledger Fabric implements the authentica-
tion mechanism for the user of the network using x.509 certi�cates. So the
other problem is the mapping of these di�erent mechanisms that blockchains
implement to allow authentications.

Current solution

The new challenge of cross-chain was born a few years ago and it has brought many
companies and research centers to design solutions to �x the problem and allow
interoperability. Figure 2.4 shows the theoretical solution to the interoperability
problem between Bitcoin and Ethereum, at each layer of blockchain architecture[10].

Figure 2.4. CrossChain Interactions

The main ideas to perform interoperability is:

� New Blockchain: Over the last few years several networks and frameworks
have appeared that propose to allow the interconnection between public and
private blockchains. Many of those solutions are based on new blockchain
networks that are structured in order to allow, architectural level, the inter-
operability, for example, Ark[11] is a blockchain-based platform that allows
anyone to customize their own blockchain. But the biggest challenges still re-
mains to allow interconnection between the well-known blockchain networks.

� Architectural Framework: There are thousands of frameworks proposed
over the last few years, but the cross-chain isn't still a consolidated reality.
Nevertheless, most of the solutions share the same idea, a Sidechain[12] be-
tween the two blockchains. Introducing a new layer between the two mainnet
that allows mapping, using ad-hoc API, the requests from one network to the

12

State of the art

other one. In a nutshell all the requests from the one to the other blockchain
and vice-versa passing by the sidechain.[13] [14]

� Atomic Swaps[15]: it allows users to trade one cryptocurrencies for another
directly in a peer-to-peer transaction Hashed TimeLock Contracts (HTLCs)[16].
Atomic swaps are not a true form of cross-chain communication (as the two
chains do not communicate), but a mechanism that allows two parties to co-
ordinate transactions across chains. Atomic swaps can be e�ective if used
correctly and are they are the mechanism that enables the Lightning Net-
work[17].

� Relay: it allows a contract to verify block headers and events on another
chain. Several approaches to relays exist, ranging from verifying the entire
history of a chain to verifying speci�c headers on-demand. Each method has
trade-o�s between the cost of operation and the security of the relay. Relays
are often quite expensive to operate, as we saw �rst-hand with BTCRelay[18].

� Merged Consensus: it allows for two-way interoperability between chains
through the use of a relay chain. Merged consensus can be quite powerful,
but generally must be built into the chain from the ground up. Projects like
Cosmos[19] and ETH2.0[20] use merged consensus.

� Federations: it allows a selected group of trusted parties to con�rm the
events of one chain on another. While federations are powerful, their obvious
limitation lies in the requirement to trust a third party.

� Chaincode EVM: In the last year, IBM technical ambassador developed an
EVM chaincode[21] able to run bytecode of Solidity smart contract over
the Hyperledger Fabric network. It is not a real cross-chain solution but it is
a step forward interoperability among blockchains. It still has many limits,
for example, there is not a real identity mapping mechanism from eth address
to fabric identity and vice-versa.

In the thesis work, I focused my attention on Hyperledger and Ethereum, two of the
main blockchain solutions used in the world, the former for permissioned cases, the
latter one for public processes. For that reason I choose to exploit the Chaincode
EVM to implement the thesis work solution.

2.3 Blockchain application in Fashion Environment

In the last few years, many Fashion companies have been getting interested in the
blockchain for tracking and counterfeiting issues.

13

State of the art

2.3.1 Provenance case Martine Jarlgaard

Thanks to the blockchain feature it is possible to store in an immutable way the
record associated with each transaction performed over the supply chain. One
of the �rst fashion houses that started to use the blockchain technology for its
own company is Martine Jarlgaard that in 2017, the fashion company made a
partnership with Provenance[22] producing clothes with digital tag: The tag could
be a QRCode or an RFID reader using NFC technology. That tag provides the
entire history of the related clothes, providing each step of the producing process.

The actors of the supply chain process are:

� British Alpaca Fashion Farm: It cares about alpacas livestock and shear-
ing.

� Two Rivers Mill: It cares about wool spinning.

� Knitster LDN: It cares about the knitting process.

� Martine Jarlgaard: It cares about the design of the clothes and the �nal
work.

Each actor of the supply chain is a blockchain node that takes part in the supply
chain pipe through the transactions of the exchanged assets, such as wool, cloth,
and so on. Each transaction is registered over the blockchain and visible at each
node.

Customer side the user has a clear vision of the entire production process, from the
material used to the item produced. It allows the company to gain credibility and
transparency of the products sale.

2.3.2 Counterfeiting - VeChain BabyGhoast

BabyGhoast by combining blockchain technology with NFC chips, it creates a dig-
ital identity for each cloth produced. It improved the tracking process over the
supply chain. Moreover, it allows protecting the brand and the users against coun-
terfeit items. In order to implement the solution it is used VeChain technology, that
includes inside BabyGhoast clothes an RFID/NFC chip or QRCode, that allows
identi�cation of the item thanks to a unique ID VeChain. Moreover, by scanning
the chip or QRCode using the VeChain Pro application, it is possible to access the
data related to the item and the production process.

14

State of the art

2.4 ASIS model

Armadio Verde is an Italian community that was born to share children's clothes.
Once it grew up, it allows adult clothes sharing too. The working model is based
on the sharing principle. Every user, after is signing up to the platform, can book a
pick up of their old clothes. The clothes must be in a good state, clean and put in
a box. Once the box arrives at Armadio Verde, the clothes are going to be checked
and evaluated. For each approved clothes, a dedicated form is created with all the
related information. After the upcycling process, the clothes are shared over the
platform store. The user that sent the clothes earns an amount of "star"(the money
used over the platform). The star could be used to purchase other clothes adding
a few euros for each item. The clothes that could not be shared on the platform
for the reselling process, are sent to a certi�ed Onlus.

2.5 Sustainability Token

PlasticToken

Plastic Token is an ERC20 chaincode that runs over the Hyperledger Fabric net-
work[23]. It provides functionalities to read and write, with access and rights
control, into the distributed ledger. The ERC20 chaincode is the software securely
handling the PlasticTokens. These tokens are up to the ERC20 standard, mean-
ing a �xed amount of tokens will be minted when the chaincode is deployed. This
amount is called �TotalSupply� and will be assigned to a special user, called �central
bank� in the current implementation. Once the original PlasticToken[24] supply is
minted, users can interact with it via a �transfer� functionality. It allows the central
bank to send tokens to any previously enrolled user, then each user can use this
same function to transfer tokens between each other

It runs over the Plastic Twist project.

ECOCoin

The ECO coin[25] is a new cryptocurrency that is earned through sustainable ac-
tion. The ECO coin aims to reward anyone, anywhere in the world carrying out
sustainable actions. Eating meat-free meals, switching to a green energy provider
or riding a bike to work can earn you ECOs which users could spend in ECO new
sustainable marketplace to buy ecological experiences, services and goods.

It is based on consortium blockchain architecture and each marketplace that want
to involve their business in ECO environment must be accepted as a governance
member of the network.

15

State of the art

2.5.1 Solution

As explained before, the Fashion environment has several advantages to exploit
transparency and traceability of the blockchain solution. Nevertheless, right now
the current solutions are based on consortium blockchains, such as Jarlgaard solu-
tion, that allow handling the internal process in a better way, but it is less useful if
applied to the end-user. For that reason, in the thesis work, I developed the inter-
operability between the two networks. The internal processes are still managed by
the consortium blockchain, exploiting all the membership's advantages and main-
taining transparency. On the other hand parts of the end-user side, are handled
by using a public blockchain, in order to detach as much as possible by own case,
the token involved, considering the token used as a reference asset and not just
for own use. Moreover, there is no concept for the interoperability implementation
between Hyperledger Fabric and Ethereum blockchains, as speci�ed there are many
architectural di�erences between the two networks. Therefore, in the thesis work, I
proposed an API based solution, at Application layer, that performs the cross-chain
between the two networks.

16

Chapter 3

Solution

3.1 Overview

The goal of the thesis is to develop a software application, blockchain-based, for a
Fashion company. The fashion company wants a blockchain solution to handle the
internal processes with a tracking mechanism of the clothes over the supply chain.
There are many actors involved in the system, therefore, the software has to imple-
ment a membership mechanism to handle access over the network. Moreover, for
the sustainability issue, the company wants to introduce an asset token exchanged
with the clothes, which represents the CO2 emission saved. Therefore the token
must be run over a public blockchain in order to be detached by own use.

Below there is the thesis work overview. It is listed the technologies used for the
solution, the work produced and the main processes of the thesis.

3.1.1 Use Cases

Figure 3.1 shows the overview and the main �ow of the overall application.

17

Solution

Figure 3.1. UseCase Overview

Actors

The main actors involved in the system are three:

� User: It is the end-user. It uses the web-app to send old clothes and purchase
items from Reclothes store. The User is the actor that starts the entire process
�ow, sending the clothes. This action is mandatory for the whole process.

� Reclothes Admin: It is the system admin, it performs the actions in order
to handle the system. The Reclothes Admin handles both parts, User Side
and Producer Side. About User Side, it performs a set of actions in order to
handle in the best way the clothes arrived and the tokens provided. On the
other hand, Producer Side, the Admin cares about to handling the recycling

and upcycling process, providing the old materials to the Producer and spend,
when the platform needs, the token received to order recycled clothes.

� Producer: It is part of the upcycling process. It receives the materials to
perform the recycling process. In the test case, I consider just one Producer,
that receives the entire old materials to be recycled. However, the system is
developed in order to allow a set of Producers registered. It allows the Re-
clothes Admin, during the Send Old Clothes process, to choose the Producer
toward which ship the material.

Application Flow

Each actor accesses to the system with di�erent permission and privileges. Once
logged in, the user can access to several features and he can performs a set of actions

18

Solution

over the system. For a better understanding, we are going to split the overview
�ow shown in Figure 3.1 into 2 sub-�ow starting from Reclothes actor, considered
as the System Admin, the User side on the left side and the Producer side on
the right side.

Each side has a set of main actions that are going to modify the world state of the
blockchains. Based on that principle, the smart contract invocations are going to
produce transactions that modify the ledgers in an immutable way, adding a new
block to the chains. The main processes are the following:

1. User Side

(a) User sends Box with old clothes and receive Fabric points and ERC20
Token.

(b) User purchases items inside dapp store using Fabric points and ERC20
Token.

2. Producer Side

(a) Reclothes send clothes box with old materials and receive Regeneration
Credits.

(b) Reclothes spend the Regeneration Credits to purchase upcycled clothes
by Producer.

these processes are described in detail in the 3.3 Section, which analyzes deeper the
transactions process.

Token exchanged

There are two Token categories exchanged over the networks.

Hyperledger Fabric side is exchanges two kinds of tokens, both are point-based,
integrated with the smart contracts that handle User and Producer side both. The
User points are handled Reclothes side, which means that the Reclothes Admin
decides the amount to be sent to the User. In order to handle the amount of the
transaction and establish a standard behavior, it needs a reference table that sets
a �xed amount for each clothes received. The producer side points, Regeneration
Credits, are handled by the Producer side, is the Producer that receives the old ma-
terials, and then choose the amount to be sent. As the User points, it needs a table
to �x rules for the corresponding amounts for the received materials evaluation.

19

Solution

On the other side, there is the ERC20 token that runs over the Ethereum network.
ERC20 is a standard protocol that allows everyone to implement its token follow-
ing �xed rules. That standard includes a set of �xed operations: totalSupply,

balanceOf, transfer, transferFrom, approve and allowance.

To clarify the tokens exchanged over the thesis work and their behavior, here is a
list below:

1. Over Fabric Network

(a) User Token: It is a token, points-based, used to handle part of the
payment system related to clothes shipping from User to Reclothes and
vice-versa.

(b) Regeneration Credits: It is a token, points-based, used to handle the
credit system related to clothes shipping from Reclothes to Producers
and vice-versa.

2. Over Ethereum Network

(a) CO2 Token: It is and ERC20 Token run over public network in charge
to handle part of the payments related to clothes shipping from User to
Reclothes and vice-versa.

3.1.2 Work overview

Figure 3.2 shows the overall system and the thesis work produced to create the
application is composed of the following parts:

� Networks: They are the networks over which the blockchains run. The
project involves two kinds of networks:

� Hyperledger Fabric Network: the main network. I choose Hyper-
ledger Fabric because it has a highly modular architecture and it imple-
ments a well-de�ned membership mechanism. Fabric is a solid network
and provides at the developers a lot of instruments that simplify the
implementation process.

� Ethereum Network: the side network used for token exchanged for
own use. The Ethereum is a strong reality and widely used to develop
solutions applied to the public blockchain. It provides huge tools and
instruments that allow the developers to develop contracts easily. In this
thesis work is used the Ropsten testnet.

20

Solution

� Shell Scripts: to set up everything in the best way, it is produced a set of
shell scripts that run network or shut it down, install chaincode, and run part
of the system mandatory for the application use.

� Smart Contracts: The smart contracts perform project use case actions.
Three smart contracts have been developed. Each contract performs one
speci�c �ow and includes just a set of the overall actors involved in the system.

� Dapp: It is the web application, it allows the actors to interact with the sys-
tem. It is a decentralized application that communicates with the blockchain
networks. Once the user is logged in, with related rights, he can perform
smart contracts invocation using the web-app.

Figure 3.2. Interactions among implemented parts

21

Solution

3.2 CrossChain interaction

3.2.1 Why a cross-chain solution is needed

One of the goals of the thesis work is to implement a good integration between
the two blockchain networks involved in the system. The need for a cross-chain
solution applied to own cases is to keep the CO2 Token exchanged public, so that,
for the future use, it can be reused in other environments and applications. In that
way, the token is not strictly correlated to own personal use, but it could become
a standard token to be exchanged over Ethereum, and corresponding to an asset
related to CO2 emissions. The behavior of that token is better analyzed in 3.4.3
section.

The main requirement to obtain a good integration is to perform cross-chain process
without compromise the security issue both sides, Fabric and Ethereum. Therefore
we need to care about the technologies behaviors and what's the technical basis
upon which blockchains works.

Before introducing the chosen solution, it is important to have a look at the tech-
nologies used for thesis development.

3.2.2 Technologies Used

Below there are all the main technologies used, involved in the application, and in
the cross-chain process. Figure 3.3 shows how these technologies and tools are
used and interact with each other.

22

Solution

Figure 3.3. Architectural Flow

Below it is listed all the technologies involved in the cross-chain solution.

� Hyperledger Fabric: Hyperledger Fabric is a modular blockchain frame-
work that acts as a foundation for developing blockchain-based products,
solutions, and applications using plug-and-play components that are aimed
for use within private enterprises.

� Ethereum: Ethereum is an open-source, blockchain-based, decentralized
software platform. It enables to build and run smart contracts and distributed
applications (DApps).

23

Solution

� Metamask: It is used as Ethereum wallet to perform and sign the transac-
tions started by dapp. Exploiting Metamask API, a high level of security is
granted to perform transactions over the Ethereum network. It is integrated
into the thesis work Application side; for the right usage of the entire ap-
plication is mandatory that the User is logged in Metamask over the wallet
speci�ed during the registration phase.

� Web3: It is the software library used to interact with smart contracts. The
Web3.js API ful�lls the developers' needs for the integration between web-
site/client and Ethereum blockchain. It is a collection of libraries that allows
developers to perform actions like sending Ether from one account to another,
read and write data from smart contracts, create smart contracts, and much
more.

� Fab3 Proxy: It maps the Web3 API with the Fabric SDK in order to interact
with Fabric network. It performs a mapping between the Fabric Identity
(X.509) with an Ethereum address, generated on the �y, used to perform dapp
calls. In other words, it works like a bridge between Ethereum technologies
and tools, used for dapp development, and Fabric chaincode, that run over
the Fabric peers and use the GO SDK to allow the chaincode invocation.

� Fabric Chaincode EVM: It is the Ethereum Virtual Machine chaincode
that allows running Solidity smart contracts over the Fabric network. It is a
core part of the entire thesis work. Thanks to EVM chaincode it is possible
to run solidity bytecode over Fabric peers.

� Remix: It is an online editor that allows developing well-structured Solidity
smart contracts. Thanks to the plugins, that could be installed over the
editor, it is possible to compile the written smart contracts code. Once the
compiling process succeeds, it produces the corresponding smart contract's
bytecode and the smart contract's ABI. Both bytecode and ABI are used to
de�ne smart contract behaviors. These parameters are passed as an argument
during the deployment process.

� Expressjs: It is a web framework used to develop web-app and smart con-
tract API. It's a light, easy, and fast framework that integrates several meth-
ods useful for HTTP and middleware API development.

� Infura: It allows running an Ethereum node, to set an endpoint used to
interact with the contract. It allows in an easy way to set up a public endpoint
for the deployed contract address. It provides personal API and key for the
endpoint access. Moreover, it provides a well de�ned and detailed dashboard
to analyze all the smart contract invocations, providing deeper analyses for
the called method too.

24

Solution

� Docker: The Fabric network components run inside Docker containers. It
is mandatory for Fabric network blockchains, each peer(node) of the network
run inside a speci�c and dedicated container. It allows being monitored and
analyzed independently.

Thanks to the introduction of the EVM chaincode developed by the IBM techni-
cal ambassadors, it is possible to run Solidity bytecode over the Fabric network.
It allows the possibility to joint Ethereum technologies over Hyperledger Fabric
Network. That innovation doesn't improve only the integration network side but
developing side too. With the fabric-chaincode-evm a new communication way
from dapp/client side is open to the network side. For example, that integration
allows to use Web3.js library to invoke smart contracts running over Fabric. More-
over, most of the improvements done in the Ethereum environment can be used
to interact with the Hyperledger Fabric world. It means languages, API, libraries,
and tools that are �nding a huge application in the Ethereum world, so far.

The cross-chain solution chosen involves the Application Layer. The core idea of the
solution is to map, at the Application level, the Ethereum wallet with Hyperledger
Fabric identity. Once there is a one-to-one association, is used the eth wallet for
transactions over Ethereum network and the related Fabric identity over Fabric
network. Exploiting Web3.js API we invoke Ethereum or Fabric smart contracts,
by using this solution all the invocation processes are forward, to the corresponding
network, starting from Dapp API.

The authentication mechanism doesn't change and the security continues to be
ensured, Fabric side, using certi�cate x.509. Once the user is authenticated and
recognized by the x.509 certi�cate, Fabric network logged the user into the platform
and give him the access to the data information and all the related privileges based
on the actor role.

On the other hand, Ethereum side, the user Ethereum public address is speci�ed
during the registration phase and saved over Fabric chaincode to the corresponding
User data structure. When the user is involved inside transaction processes, all the
transactions refer to the public Ethereum address reported during the registration
phase.

Therefore when there is an incoming transaction the tokens will be sent to the public
address reported in User Data info. When an outgoing transaction occurs, the
security is granted thanks to the Metamask integration in the transaction process.
The transaction's sign, that allows performing operation, is performed by Metamask

25

Solution

side, in that way only the real owner of the Ethereum account could sign and
approve the transaction. The private key is stored over Metamask wallet and
just the real owner, that is logged in to the account, can perform the sign of the
transaction.

Furthermore, the dapp client uses Fab3 Proxy to map the identity from Ethereum
address to Fabric identity x.509 certi�cate and forward request to Fabric network.
That process is independent by the Ethereum address speci�ed during the registra-
tion phase and does not interact with that. Fab3 allows to use fabric-chaincode-evm
and run solidity code over Fabric network, It performs a mapping process among
the received requests dapp side. Fab3 receives the Web3 request and map it using
the GO SDK to forward, in the right way, all the request to the Fabric peers.

Moreover, the Dapp client talks with Ethereum public blockchain network, using
the network endpoint API supplied by Infura. For some kind of actions performed
over the platform, part of the request is forward over Ethereum network.

Figure 3.4 shows where the private keys are stored. The Hyperledger wallet
could be stored in many ways, into a FileSystem, in memory, using a HSM or a
Database[26]. For the thesis work, I consider the device �lesystem storage, contain-
ing the Hyperledger wallet with the certi�cate and both private and public keys.
Always on the device used, it is stored the private key of the Ethereum wallet,
in fact, Metamask store on the device the private key of the associated Ethereum
account[27].

Figure 3.4. Where keys are stored

26

Solution

3.3 Use Cases

As explained in the previous Sections, for a better outline, the use cases are splint
inside the User Side and the Producer Side. The main actor of the system is
still Reclothes Admin, that is linked to both side and interacts with all the other
actors in order to supply the management supports that allow the entire system
works.

3.3.1 UseCase 1 - User Side

As shown in Figure 3.5 both actors User and Reclothes Admin, once logged in,
have access to a set of features. The use case diagram shows all the actions that
both users can perform over the networks and the �ows that each action follows.
The features are split over the two networks, the Fabric one and the Ethereum one.
All the �ows start from one of the two actors involved and in the end it merges to
one of the two blockchain networks. Each actor has a dedicated Ethereum wallet
used for Ethereum token transactions.

Below is listed and analyzed all the actions that users could perform over the system:

� Actions in common

� Registration: The registration phase involves the actor that �lls a form
with all the mandatory data. To proceed to a successful registration pro-
cess it is mandatory that the actor owns the appropriate x.509 certi�cate,
released by the Certi�cation Authority related to the Role in which the
user tries to sign up. For example, User has a speci�c Certi�cation
Authority that is di�erent from Reclothes CA.

� Sign In: The sign-in is automatic. Once the Fabric network recognizes
the certi�cate, it proceeds to log the actor in, with the related rights.
Once the user is logged in, the chaincode is invoked and going to read the
Ethereum address(generated by Fab3) used for the registration phase
and provide access to the methods. In other words, Fabric certi�cate
provides access to the network (peers, channels, and ledger), instead,
the Ethereum address(Fab3 side) is used to provide access to the smart
contract.

� User Operations

� Read Operations

27

Solution

* View own transactions: once logged in, the User can view all
the own transactions processed by the network, with a �ag that
shows transaction status. The transactions include token exchanged
over the network and box requests sent to Reclothes. It gave the
possibility to monitor and manage each process in which the User
is involved.

� Write Operations

* Send Box: It is the starting point of the overall application �ow.
In the following Subsection, I'm going deeper in order to explain
how that process works and what transactions depend on that.

* Purchase Items: It is a write operation, belongs to that start a
transaction process. Both networks are involved in that process.
Even that is explained deeper in the following Subsection.

� Reclothes Admin Operations

� Read Operations

* View all transactions: once is logged in, the Reclothes Admin
can view all the transactions processed by the network related to all
the users involved, with a �ag that shows transaction status. The
transactions include a token exchanged over the network. It gave
the possibility to monitor and manage each process in which there
is a token transactions for analysis aim.

* View All Box Requests: The Admin is allowed to analyze the
process of the box shipping. The box data structure includes all the
relevant data. Moreover, it includes a �ag that speci�es the status
of the request, that �ag could be Pending, Evaluated.

� Write Operations

* Evaluate Box: Even this process belongs to write operations be-
cause it starts a transaction process that writes the blockchain world
state.

The main action of the overall system is the send box operation performed by the
User towards Reclothes. It is the starting point of the overall �ow. The Internal
Flow of the Send Box macro process, and what that process belongs to, is the
following one:

1. User send box with old clothes

2. Reclothes Admin receive box, evaluate it

28

Solution

3. The web app performs the payments from Reclothes Account to User Account

4. Once both transactions succeed, both tokens are accredited and User could
spend it

Transactions

In the �rst use case both the blockchain networks are involved in. The main part
of the �ow and the most critical one is the transaction process. Considering always
Reclothes Admin the main actor of the system, there are two kinds of transactions in
which Admin is involved. The outgoing transaction, that starting by Evaluation

process, it is performed by the Reclothes Admin once it receives the clothes box
sent by the User. The other one is the incoming transaction, in that case, the
token is exchanged from the User to Reclothes Admin. The action that starts the
incoming transaction process is the Purchase Item , performed by the Users over
the platform store.

The outgoing and incoming transactions are strictly correlated due to the token
�ow. As explained in the previous Section the main and the �rst one action is the
Send Box , which involves the Evaluation. The Evaluation is the �rst outgoing
transaction process performed over the system. Once the tokens are moved from
the Reclothes Admin, the User is allowed to use applications and purchase items
over it.

1. Figure 3.6 shows the Evaluation process, which works in the following way:

(a) Reclothes Admin visualizes the next pending request to be evaluated.
The Admin visualizes all the related information associated to the box
request: userAddress it's the Ethereum user address of the sender,
t-shirt, pants, jacket, other with the related number of items as-
sociated to the request, and the status of the request, at this point still
In Pending.

(b) Reclothes Admin evaluates it. For a better evaluation process, it is
proposed a solution based on a reference table with a �xed amount for
each item, related to the clothes status. Then there is a �ltering process.
Each item inside the box is �ltered based on platform criteria. Then
the Admin decides the status of the clothes and its �nal destination,
which may be the platform store or recycling materials. Once the overall
clothes are evaluated and are set a total amount value of Fabric points
and ERC20 Token is set, the transaction process can start.

29

Solution

i. The Fabric points are sent over Fabric network invoking the chain-
code function sendPoints(address toAddress). That function
accredited the speci�ed amount of Fabric points, updating the User
balance.

ii. The ERC20 token is sent over the Ethereum network. During the
thesis development, I have used the Ropsten testnet to exchange the
token. There is a previous step before performing the transaction of
the tokens. The Fabric chaincode is invoked to obtain the Ethereum
wallet address related to the sender box User. Once that the Fabric
chaincode returns the Ethereum account, stored in the smart con-
tract during the User Registration Phase, the application performs
the transfer of the ERC20 token from the Reclothes wallet to the
User Ethereum wallet

(c) Once both transactions succeed, both the transaction return to the ap-
plication and is performed an additional check in order to synchronize
both transactions. Tokens are accredited and information about bal-
ances are updated. From that moment the User can spend the received
tokens over the platform store, performing purchasing.

2. Figure 3.7 shows the Purchase Items process, which works in a similar
way, but inverting the previous �ow:

(a) The User chooses the items to purchase over the web-app store. The
items (t-shirt, pants, jacket, or other) are represented with the related
form, which shows all the relevant information. Over the chaincode
the smart contract store a dedicated data structure for clothes data
information. The related price is expressed through tokens, Fabric token
and CO2 token both.

(b) Once the items are chosen, the purchase process starts. The User sends
the Fabric tokens over Fabric network and the CO2 token over the
Ethereum network. First of all, a set of controls is executed in order
to check both balances and evaluate whether the User could perform
the purchase transaction. Once that all the check is passed correctly,
both transactions start. Each one over the dedicated network. Once
the transfer process is performed, the smart contracts return the opera-
tion results to the dapp, that communicate the results of the operations
through a message .

(c) If the transfers succeed, both token balances are updated and the User
can continue to perform actions over the platform.

30

Solution

Figure 3.5. UseCase 1

31

Solution

Figure 3.6. Evaluation Process

Figure 3.7. Purchase Process

32

Solution

3.3.2 UseCase 2 - Producer Side

Use case 2 is related to the right side of the overall �ow schema shown in Figure
3.1. It shapes the interactions between Reclothes Admin and Producers. For a
better understanding of the process involved in that interaction, the use case 2
diagram is shown in Figure 3.8. In that case, all the features are performed over
the Hyperledger Fabric network, so there is not a cross-chain part. The token
exchanged, Regeneration Credit, is based over Fabric smart contract and it is
point-based, without the need to involve the Ethereum blockchain.

Analyzing Figure 3.8, even here, there is the main action that leads to a transaction
process. Looking at the diagram we could split the �ow into two sub-�ow, the �rst
one from Reclothes to Producer. In that sub-�ow we could identify two main actions
Send Box and Purchase Box . As speci�ed in the previous use case, these is
the operation that performs a world state update of the blockchain ledger. On the
other hand, in the second sub-�ow, from Producer to Reclothes, just one action that
produces an outgoing token transfer is involved, the Evaluate Material function.

All the assets exchanged are handled using Regeneration Credits. It is a Fabric
token exchanged and handled by the Fabric chaincode, it runs over Fabric network.
To test the use case I consider just one Producer that performs the overall recycling
process, even if the smart contract is structured in order to allow the handling and
management of more Producer actors involved in the system. In the case of many
Producers involved in the recycling process, an ERC20 integration to handle the
Regeneration Credits exchanged can be an improvement. Moreover, that change
will not have a strict correlation between credits and Reclothes. It allows the
Producers to use the token to handle the internal process with more clients.

1. from Reclothes to Producer

(a) Send Box

i. The Reclothes Admin after has performed the �ltering process over
the clothes box received by the Users. Then all the clothes in a
bad status, that could not be resold inside the platform store, are
sent to the Producer in order to recycle the material and produce
upcycled clothes. The Admin performs the Send Box operation,
like the Send Box performed in the use case 1, it contains the same
data inside the request (t-shirt, pants, jacket, other with the
related number of items). The box is sent to the Producer Company.
In the case of more Producers, the send box request includes the
selected Producer Company chosen.

33

Solution

ii. Once the Producer performed the Evaluation process over the sent
clothes box, The Reclothes Account gain the corresponding amount
of Regeneration Credits based on the old materials evaluation.
Once that the balance is updated, the Reclothes Admin can spend
that credits to purchase items.

(b) Purchase Box

i. Reclothes Admin can purchase boxes by the Producer Company
with inside clothes realized with recycled materials. At the moment
the application allows to purchase three boxes options:

A. Small Box: 5 items for 50 Regeneration Credits.

B. Medium Box: 15 items for 150 Regeneration Credits.

C. Big Box: 40 items for 200 Regeneration Credits.

ii. Once that the Reclothes Admin chooses the box size to purchase,
the transaction process starts and the chaincode is invoked. Before
is performed a previous check, to control if the Reclothes's wallet,
containing the Regeneration Credits, is enough. Then is invoked the
transfer method of the smart contract, the Regeneration Credits are
redeemed to the Producer account and the shipping of the Box start,
with inside the recycled clothes.

2. from Producer to Reclothes

(a) Evaluate Material

i. Once the box sent by the Reclothes Admin arrives, it must be eval-
uated. The Evaluation process consists to evaluate all the materials
related to the clothes received. To obtain a standard evaluation
there is a reference table listing a �xed amount of Regeneration
Credits provided for each clothes based on material and weight.
Once the Producer Admin performed the evaluation of the materi-
als for each clothes, and the total amount of Regeneration Credit is
�xed, the transaction process starts. The chaincode is invoked and
the transaction is performed from Producer account to Reclothes ac-
count over Fabric network. Producer side, there are two parameters
to analyze:

A. Regeneration Credits Supplied: It is the total amount of
credits emitted over the time.

B. Regeneration Credits Circulating: It is the amount of cred-
its that Reclothes Admin owns and could spend for purchasing.

34

Solution

Figure 3.8. UseCase 2

3.4 Smart Contract

For the smart contract developments I exploited the fabric-chaincode-evm1, it
allows us to run Ethereum smart contract bytecode inside an Hyperledger Fabric
peer. Therefore EVM chaincode bring us to the development of the smart contract
in Solidity or Vyper programming languages.

For the development it is used Remix[28], it is an online editor that allows us to
write and compile Solidity smart contracts code, providing all the Solidity version
compiler. Once that the smart contract code is written and the .sol �le is pro-
duced, the compiling process produces two �les mandatory for the deployment and
uses of the smart contract over Fabric network. The two �le produced are:

� ABI: The Application Binary Interface is the standard way to interact with
contracts in the Ethereum ecosystem, both from outside the blockchain and

1To run Solidity Contract over Fabric Network, it's used fabric-chaincode-evm[21], it is an
Ethereum virtual machine chaincode developed by IBM developers. To allows the integrations
there is the need for additional components such as Fab3 Proxy

35

Solution

for contract-to-contract interaction. The ABI is a .json �le that describes
the deployed contract and its functions. It allows us to contextualize the
contract and call its functions. In other words, the ABI is the description of
the contract interface. It contains no code and cannot be run by itself. It
is mandatory for smart contract use because the bytecode is the executable
EVM code, but by itself, it is without context.

� Bytecode: This is the code that is stored on-chain that describes a smart
contract. This code does not include the constructor logic or constructor
parameters of a contract. It is a hexadecimal representation of the �nal
contract. It uses the ABI to �nd the context of the behind contract logic.

In order to handle the overall system, three Solidity smart contracts have been
developed. Two of them run over the Hyperledger Fabric network, exploiting the
membership mechanism to access of the chaincode. In other words, the permission
mechanism behind the logic is performed in both networks and chaincode side. The
network side �lters, at the certi�cate layer, the access to the network. On the other
hand, the registration mechanism implemented over the chaincode �lter the user
logged to the network.

The third smart contract has been developed to run over the Ethereum network.
For my thesis work it is used the Ropsten testnet. The access to the contract, in
that case, is provided by the contract address generated during the deployment
phase.

For a better view, below are reported all the contracts involved in the system:

1. Hyperledger Fabric

(a) User Contract: It handles the User side, registration, and interaction
phase. That contract shapes the use case 1 functionalities. There are the
dedicated data structures that care about storing data of actors involved(
User and Admin). It provides a set of getter and setter methods and it
has a couple of functions that lead to a transaction process.

(b) Producer Contract: It handles the interaction from Reclothes to Pro-
ducers. That contract shapes the use case 2 behaviors. There are the
dedicated data structures that care about storing data of actors involved(
Admin and Producer). It provides a set of getter and setter methods
and it includes a couple of function that leads to a transaction process.

2. Ethereum

36

Solution

(a) ERC20 Contract: It is a standard smart contract with a max Supply
�xed to 1,000,000,000. The contract is structured following the ERC20
standard. It is not strictly correlated to the thesis application and it
is exchangeable among each user that owns an Ethereum wallet. The
Contract is deployed over the Ropsten network and is accessible using
the public contract address. The access to the contract is performed
using an Infura node as Ethereum network endpoint.

3.4.1 User Contract

The User Contract contains all the features described in the Hyperledger Fabric
side of use case 1.

Data Structure

In that contract all the transaction data, related to the points and clothes box
transactions, are stored. Moreover, the information related to the actors involved
in the system, are stored too. Thanks to the registration phase, the contract can
perform an additional check over the actors that are logged in over the Fabric
network. The address speci�ed during the registration phase (msg.sender) is the
Ethereum address generated on the �y by Fab3 Proxy. In the following Sections,
there is a better and deeper explanation of the Fab proxy module and how it works.

The model of the data structures is divided into 4 structs:

1. User: model all users data.

1
2 // model a user

3 struct User {

4 address userAddress; // User address (

inside fabric environment)

5 address publicAddress; // external eth public

address of User Admin

6 string firstName;

7 string lastName;

8 string email;

9 uint points; // Fabric points

amount

10 bool isRegistered; // Flag for internal

use

11 uint numTransaction; // number of

transactions performed

37

Solution

12 mapping(uint => PointsTransaction)

userTransactions;

13 uint numBox; // number of box

transaction evaluated

14 mapping(uint => ClothesBox) box;

15 }

2. Admin: model Reclothes Admin data.

1 // model a admin

2 struct Admin {

3 address adminAddress; // Admin address (inside

fabric environment)

4 address publicAddress; // external eth public

address of Admin

5 string name;

6 bool isRegistered; // Flag for internal use

7 }

3. PointsTransaction: Model transactions data and incorporate TransactionType,
it is used to identify the �ows direction.

1 // model points transaction

2 enum TransactionType { Earned , Redeemed }

3 struct PointsTransaction {

4 uint points;

5 TransactionType transactionType;

6 address userAddress; // user address involved

7 address adminAddress; // admin address involved

8 }

4. ClothesBox: The box sent with old clothes.

1 // model clothes box to ship

2 struct ClothesBox {

3 address userAddress; // reclothes -producer Admin

4 uint tshirt; // Number of item

5 uint pants; // Number of item

6 uint jacket; // Number of item

7 uint other; // Number of item

8 bool isEvaluated; // Flag to check if box

evaluation is performed

9 uint points; // fabric value amount of the

box

10 }

Getter

The User Contract allows access to a set of methods, to obtain information about
the system status. Once the user is logged in as User or Admin, it could perform

38

Solution

part of that getter invocation. Parts of the method are developed for internal
usage, the other ones are dedicated to providing to the actor's information about
the system, or it is useful to start other invocations dapp side. Access to some
method is handled using the modi�er method that performs a �ltering process of
the function caller.

The Getter methods involve the User data and the Box requests. Below it is
explained just the main getters related to Box requests.

1. Pending Box: it returns the pending Box at index _pendingIndex. For
example, the method getNextPendingRequest calls the getPendingRequest,
passing as argument the pendingIndex variable stored in the contract.

1 //Get PendingBox by index

2 function getPendingRequest(uint _pendingIndex) public

view returns(address , uint , uint , uint , uint , bool ,

uint) {

3 // only admin can call

4 require(admins[msg.sender]. isRegistered , "Admin

address not found");

5
6 // check index

7 require(_pendingIndex <pendingIndex , "Wrong index")

;

8
9 return (pendingBox[_pendingIndex]. userAddress ,

pendingBox[_pendingIndex].tshirt , pendingBox[

_pendingIndex].pants , pendingBox[_pendingIndex

].jacket , pendingBox[_pendingIndex].other ,

pendingBox[_pendingIndex]. isEvaluated ,

pendingBox[_pendingIndex]. points);

10 }

2. Evaluated Box: it returns the evaluated Box at index _evaluatedIndex.
It is useful to get a list of all evaluated box. The evaluatedIndex variable
stores the number of boxes evaluated.

1 //Get EvaluatedBox by index

2 function getEvaluatedRequest(uint _evaluatedIndex)

public view returns(address , uint , uint , uint , uint

, bool , uint) {

3 // only admin can call

4 require(admins[msg.sender]. isRegistered , "Admin

address not found");

5
6 // check index

7 require(_evaluatedIndex <evaluatedIndex , "Wrong

index");

39

Solution

8
9 return (evaluatedBox[_evaluatedIndex]. userAddress ,

evaluatedBox[_evaluatedIndex].tshirt ,

evaluatedBox[_evaluatedIndex].pants ,

evaluatedBox[_evaluatedIndex].jacket ,

evaluatedBox[_evaluatedIndex].other ,

evaluatedBox[_evaluatedIndex]. isEvaluated ,

evaluatedBox[_evaluatedIndex]. points);

10 }

3. Transaction Info: it returns the Transaction info at index _transactionIndex.
It is called just by the User. The users[msg.sender].numTransaction vari-
able stores the number of the transactions done.

1 function getTransactionInfo(uint _transactionIndex)

onlyUser(msg.sender) public view returns(uint , uint

, address , address) {

2 // require index exists

3 require(users[msg.sender]. numTransaction >

_transactionIndex && _transactionIndex >= 0, "

Wrong transaction index");

4
5 return (users[msg.sender]. userTransactions[

_transactionIndex].points , uint(users[msg.

sender]. userTransactions[_transactionIndex].

transactionType), users[msg.sender].

userTransactions[_transactionIndex]. userAddress

, users[msg.sender]. userTransactions[

_transactionIndex]. adminAddress);

6 }

Transactions

The sendBox method is a core part of the overall smart contract, below there is
the function's code, it allows to perform the transaction processes.

1 // handle box

2 function sendBox(uint _tshirt , uint _pants , uint _jackets , uint

_other) onlyUser(msg.sender) public {

3
4 pendingBox[pendingIndex] = ClothesBox ({

5 userAddress: msg.sender ,

6 tshirt: _tshirt ,

7 pants: _pants ,

8 jacket: _jackets ,

9 other: _other ,

10 isEvaluated: false ,

11 points: 0

12 });

40

Solution

13
14 users[msg.sender].box[users[msg.sender]. numBox] =

pendingBox[pendingIndex];

15
16 users[msg.sender]. numBox ++;

17 pendingIndex ++;

18 }

The transactions process is the main process of the overall smart contract. This
method performs a write access to the smart contract and modi�es the world state
of the ledger stored over the Fabric blockchains peers.

There are two functions that perform transactions between actors involved in the
smart contracts, these are :

1. earnPoints: It is an internal function called by EvaluateBox. Once that user
performed the sendBox process, Admin side, starts the evaluation process.
Therefore the Admin evaluates the pending request and sets a total amount
of points related to the box received. Then the EvaluateBox function call the
internal function earnPoints passing as argument the amount to be transfer
and the userAddress of the clothes box sender. Then the function performs
the Fabric points transaction from Reclothes to User.

1 // evaluate box

2 function evaluateBox(uint _points) onlyAdmin(msg.

sender) public {

3 // check correct pending request index

4 require(evaluatedIndex < pendingIndex , "No more

pending request");

5
6 // check if evaluation is done

7 require (! pendingBox[evaluatedIndex]. isEvaluated , "

Request just evaluated");

8
9 //pop pending request

10 ClothesBox storage box = pendingBox[evaluatedIndex

];

11
12 // update box transaction

13 box.isEvaluated = true;

14 box.points = _points;

15
16 //send points to the userAddress

17 earnPoints(_points , box.userAddress);

18
19 //add evaluated box

20 evaluatedBox[evaluatedIndex] = box;

21 evaluatedIndex ++;

41

Solution

22 }

23
24 //get user balance

25 function getBalance () public view returns (uint) {

26 return users[msg.sender]. points;

27 }

28
29 // update users with points earned

30 function earnPoints (uint _points , address

_userAddress) onlyAdmin(msg.sender) internal {

31
32 // verify user address

33 require(users[_userAddress]. isRegistered , "User

address not found");

34
35 // update user account

36 users[_userAddress]. points = users[_userAddress].

points + _points;

37
38 PointsTransaction memory earnTx = PointsTransaction

({

39 points: _points ,

40 transactionType: TransactionType.Earned ,

41 userAddress: _userAddress ,

42 adminAddress: admins[msg.sender]. adminAddress

43 });

44
45 // add transaction

46 transactionsInfo.push(earnTx);

47
48 users[_userAddress]. userTransactions[users[

_userAddress]. numTransaction] = earnTx;

49 users[_userAddress]. numTransaction ++;

50
51 usersTransactions[totTx] = earnTx;

52 totTx ++;

53
54 }

2. usePoints: It is related to the purchase process. When the User performs a
purchase over the platform store, there is the calculation of the overall amount
related to the items purchased, and internally is invoked the usePoints func-
tion. That function after a set of previous checks, then decrease the User
balance of the related amount passed to the function.

1
2 // Update users with points used

3 function usePoints (uint _points) onlyUser(msg.sender)

public {

4

42

Solution

5 // verify enough points for user

6 require(users[msg.sender]. points >= _points , "

Insufficient points");

7
8 // update user account

9 users[msg.sender]. points = users[msg.sender]. points

- _points;

10
11 PointsTransaction memory spendTx = PointsTransaction

({

12 points: _points ,

13 transactionType: TransactionType.Redeemed ,

14 userAddress: users[msg.sender]. userAddress ,

15 adminAddress: 0

16 });

17
18 // add transaction

19 transactionsInfo.push(spendTx);

20
21 users[msg.sender]. userTransactions[users[msg.sender

]. numTransaction] = spendTx;

22 users[msg.sender]. numTransaction ++;

23
24 usersTransactions[totTx] = spendTx;

25 totTx ++;

26 }

3.4.2 Producer Contract

The Producer Contract contains all the features described in the use case 2 diagram
shown in the Figure 3.8.

Data Structure

In that contract, all the transaction data related to the points and clothes box
transactions, are stored. Moreover, the information related to the actors involved
in the system are stored; in this case, the actors involved are the Admin and the
Producer. As the previous contract, the registration phase provides an additional
check over the actors logged in over the Fabric network. The address speci�ed dur-
ing the registration phase (msg.sender) is always the Ethereum address generated
on the �y by Fab3 Proxy.

Brie�y explaining the behavior of the relationship among contracts. The Fab3
proxy has a 1 to 1 association instance/user. There is the possibility that the Admin
logged and registered, over UserContract, associated with one Fab3 instance, set

43

Solution

over the channel that communicates with UserContract, must perform another
registration with a new Fab3 proxy instance, in order to set the communication with
the channel dedicated for ProducerContract. It means that for each Fab3 instance
there is a new Eth address generated and the Admin could have two Ethereum
addresses, one associated with UserContract and the other one associated with
PrducerContract.

The model of the data structures is divided into 3 structs:

1. Producer: model all Producers data.

1 // model a producer

2 struct Producer {

3 address adminAddress; // Producer Admin address

(inside fabric environment)

4 address publicAddress; // external eth public

address of Producer Admin

5 string name; // Producer admin name

6 bool isRegistered; // Flag for internal use

7 uint numBox; // number of box

transactions evaluated

8 uint pointsProvided; // amount of points

provided by own evaluations

9 mapping(uint => ClothesBox) box;

10 }

2. Admin: model Reclothes Admin data.

1 // model a admin

2 struct Admin {

3 address adminAddress; // Admin address (inside

fabric environment)

4 address publicAddress; // external eth public

address of Admin

5 string name; // Admin name

6 bool isRegistered; // Flag for internal use

7 uint numBox; // number of box

transaction evaluated

8 uint creditSpent; // amount of points

provided by own evaluations

9 mapping(uint => ClothesBox) box;

10 }

3. ClothesBox: The box sent with old clothes.

1 struct ClothesBox {

2 address adminAddress; // reclothes -producer Admin

3 uint tshirt; // Number of item

4 uint pants; // Number of item

44

Solution

5 uint jacket; // Number of item

6 uint other; // Number of item

7 bool isEvaluated; // Flag to check if box

evaluation is performed

8 uint points; // fabric value amount of the

box

9
10 // mapping(uint => Clothes) clothes;

11 }

Getter

The Producer Contract allows access to a set of method to get information about the
system status. Once the user is logged in as Admin or Producer, he can performs
part of that getter invocation. Parts of the method are developed for internal
usage, the other ones are dedicated to provide to the actor's information about
the system, or it is useful to start other invocations dapp side. Access to some
method is handled using the modi�er method that performs a �ltering process of
the function caller.

Below I reported only the main smart contract methods.

1
2 /* ** */

3 /*** All Box Requests -> Old , Evaluated , UpCycled ***/

4 /* ** */

5
6 function getPendingRequest(uint _pendingIndex) public view

returns(address , uint , uint , uint , uint , bool , uint) {

7 // check index

8 require(_pendingIndex <pendingIndex && _pendingIndex >=0, "

Wrong index");

9
10 return (pendingBox[_pendingIndex]. adminAddress , pendingBox[

_pendingIndex].tshirt , pendingBox[_pendingIndex].pants ,

pendingBox[_pendingIndex].jacket , pendingBox[

_pendingIndex].other , pendingBox[_pendingIndex].

isEvaluated , pendingBox[_pendingIndex]. points);

11 }

12
13

14
15 /* ** */

16 /* **************** Data of Requests **************** */

17 /* ** */

18

45

Solution

19 function getRegenerationCredit () public view returns(uint) {

20 return debtPoints;

21 }

22
23

Transactions

As explained above, transactions process are the main ones of the smart contracts,
leading to a write operation. .

There are two functions that perform transactions between the actors involved in
that contract:

1. evaluateBox: The evaluation process starts by the invocation of SendBox
function. Once that there are pending box requests, the next one is evaluated
following the price table in order to standardize clothes materials evaluation
by material type and weight. It is set an overall amount of value corre-
sponding to the clothes box request. The transfer process involves, in the
thesis work, just one Producer. The points are handled with a debtPoints

variable that is updated by these two functions. In that case evaluateBox

add the amount value of the box to the debtPoints variable.

1 // Evaluate Old Box

2 function evaluateBox(uint _points) onlyProducer ()

public {

3 // check correct pending request index

4 require(evaluatedIndex < pendingIndex , "No more

pending request");

5
6 // check if evaluation is done

7 require (! pendingBox[evaluatedIndex]. isEvaluated , "

Request just evaluated");

8
9 //pop pending request

10 ClothesBox storage box = pendingBox[evaluatedIndex

];

11
12 // update box transaction

13 box.isEvaluated = true;

14 box.points = _points;

15
16 //add evaluated box

17 evaluatedBox[evaluatedIndex] = box;

18 evaluatedIndex ++;

19

46

Solution

20 debtPoints += _points;

21 totPointsProvided += _points;

22 }

2. buyUpcycledBox: This process leads a purchase order performed by the
Admin to the Producer. Admin chooses a kind of �xed box(small, medium,

large) with a �xed Regeneration Credits price associated. Before performing
the purchase process, there is a check of the debtPoints balance to allow or
not the transaction of the box. If the amount of the Regeneration Credits
is enough to buy upcycled clothes, then the debtPoints is updated and the
value of the purchased box is subtracted to the overall balance.

1 function buyUpcycledBox(uint _tshirt , uint _pants ,

uint _jackets , uint _other , uint _points) onlyAdmin

() public {

2 require(debtPoints >= _points , "Not enought

credits accumulated in old material boxes");

3
4 ClothesBox memory box = ClothesBox ({

5 adminAddress: msg.sender ,

6 tshirt: _tshirt ,

7 pants: _pants ,

8 jacket: _jackets ,

9 other: _other ,

10 isEvaluated: true ,

11 points: _points

12 });

13
14 admins[msg.sender].box[admins[msg.sender]. numBox]

= box;

15 admins[msg.sender]. numBox ++;

16 admins[msg.sender]. creditSpent += _points;

17
18 //add upcycled box

19 upCycledBox[upCycledIndex] = box;

20 upCycledIndex ++;

21
22 debtPoints -= _points;

23 totBoxNew ++;

24 }

3.4.3 ERC20 Contract

ERC-20 is a technical standard used to issue and implement tokens over the Ethereum
blockchain. The standard describes a common set of rules that should be followed
for a token to function properly within the Ethereum ecosystem. Therefore, ERC-
20 should not be considered as a piece of code or software. Instead, it may be

47

Solution

described as a technical guideline or speci�cation.

The choice to develop an ERC-20 token leads to relaxing the limitation related to
the token usage. That contract is deployed over the Ethereum network and it is
public, accessible to everyone that owns an Ethereum wallet. The decision, as well
as a cross-chain interaction process, leads to open the doors to an external usage
of the token, due to what the asset represents

The asset wants to represent the CO2 emission saved. For example, as asset ex-
change to measure the emission saved recycling a t-shirt even to produce it starting
from scratch.

The main information associated to the created token are:

� Symbol: CO2, it is used to identify a token, this is a three or four letter
abbreviation of the token.

� Name: CarbonToken, it able to identify them.

� Total supply: 1,000,000,000, it is the max supply of the token.

� Decimals: 18, it is used to determine what decimal place the amount of the
token will be calculated. The most common number of decimals to consider
is 18.

The main features of the contract are describer by ERC20 interface

1 contract ERC20Interface {

2 function totalSupply () public constant returns (uint);

3 function balanceOf(address tokenOwner) public constant

returns (uint balance);

4 function allowance(address tokenOwner , address spender)

public constant returns (uint remaining);

5 function transfer(address to , uint tokens) public returns (

bool success);

6 function approve(address spender , uint tokens) public

returns (bool success);

7 function transferFrom(address from , address to , uint tokens

) public returns (bool success);

8
9 event Transfer(address indexed from , address indexed to ,

uint tokens);

10 event Approval(address indexed tokenOwner , address indexed

spender , uint tokens);

11 }

48

Solution

Below I list and explain in details the six mandatory functions that de�nes the
erc20 tokens:

� totalSupply(): the supply could easily be �xed, as it happens with Bitcoin,
this function allows an instance of the contract to calculate and return the
total amount of the token that exists in circulation.

� balanceOf(): This function allows a smart contract to store and return
the balance of the provided address. The function accepts an address as a
parameter, so it should be known that the balance of any address is public.

� approve(): When calling this function, the owner of the contract authorizes,
or approves, the given address to withdraw instances of the token from the
owner's address.

� transfer(): This function lets the owner of the contract send a given amount
of the token to another address just like a conventional cryptocurrencies trans-
action.

� transferFrom(): This function allows a smart contract to automate the
transfer process and send a given amount of the token on behalf of the owner.

� allowance(): This functions allow the caller to check if the given balance's
address has enough token to send the amount to an other address.

49

Solution

3.5 Network Architecture

3.5.1 Main Components

Before going deeper to explain my network architectural choice, it is important
to have an overview of the main components involved in the Hyperledger Fabric
Architecture:

1. Peer: It is the fabric node, there are di�erent kinds of peers and each one
can perform speci�c actions

(a) Anchor Peer: this kind of peer is used for communications between
organizations. It makes peers in di�erent organizations aware each other.

(b) Committing Peer: Every peer in the channel

(c) Endorsing Peer: every peer that has the smart contract installed can
be an endorsing peer.

(d) Peer Node: each peer maintains a copy of the ledger for each channel
it is a member of.

(e) Leader Peer: an organization can have multiple peers in a channel.
Only one peer from the organization needs to receive the transactions.
The leader distributes transactions from orderers

2. Certi�cation Authority: Everyone who wants to interact with the network
needs an identity. The CA provides the means for each actor to have a
veri�able digital identity. Exploiting CAs is implemented the membership
mechanism providing a permissioned blockchain.

3. MSP: Membership Service Providers (MSP) is a Hyperledger Fabric com-
ponent that o�ers an abstraction of membership operations. In particular,
an MSP abstracts away all cryptographic mechanisms and protocols behind
issuing certi�cates, validating certi�cates, and user authentication.

4. Orderer: It is like a network administration point. The ordering nodes
support the application channels for ordering transactions, create blocks and
add it to the chain.

5. Organization: Identify a category of users involved in the network. each
user's certi�cate of the Organizations is released by the same CA. The orga-
nizations are used in permissioned mechanism allowing or not read and write
access to speci�c data over the network.

6. Consortium: A group of organizations that share a need to transact. It
could share a set of permission over the network.

50

Solution

7. Channel: A channel allows a consortium, group of participants, to create a
separate ledger of transactions. The transactions, stored in the world state,
are visible only to the members of the channel.

8. Ledger: It is stored over the peer and consists of the World State of the
blockchains. All the transactions performed over the chain is merkled in the
world state[29]

3.5.2 Own Architecture

The Figure 3.9 shows the main components of the network architecture built for
the thesis work. It includes:

1. 3 Peer: One dedicated peer for each organization involved in the system.

2. 1 Orderer organization with 1 ordered node running

3. 3 Organizations each with 1 peer, Peer0, running

(a) Org1 : User Organization

(b) Org2 : Reclothes Admin Organization

(c) Org3 : Producer Organization

4. 2 Channels

(a) Chanel12 : It is the channel between Org1 and Org2, and allows the
communication between User and Reclothes

(b) Chanel23 : It is the channel between Org2 and Org3, and allows the
communication between Reclothes and Producer

5. 2 Consortiums

6. CC12: related to channel 1, allows actors related to Org1 and Org2 to join
the channel.

7. CC23: related to channel 2, allows actors related to Org2 and Org3 to join
the channel.

This is a test network, light, to test the entire thesis project. Hyperledger Fabric
allows us to implements in an easy way more components adding orderer or Peers.
It makes Hyperledger architecture highly modular. For production the architecture
needs some modi�cation, adding more orderers and peers for each organization, in
order to maximize the fault tolerance.

51

Solution

Figure 3.9. Fabric Network

3.5.3 Fabric Network

Figure 3.10 shows how components interact each other. It is possible to separate
components into 2 categories, inside and outside Fabric Network. First of all we
need to describe the components involved:

� Web3 App: It is the Dapp and the Client connection to the network.

� Channel: It is the channel above which transfers data.

� CA: It is the Certi�cation Authority in charge of release certi�cates.

� Peer: It is "Fabric node", the endpoint of the internal network. It owns by
speci�c CA with �xed rights, linked to the connected channels.

� evm SC: It is the Ethereum Virtual Machine Chaicode, used to run Solidity
Smart Contract. The chaincode is installed over the peer.

� ledger: It is the ledger associated to the channel connected. There is a 1 to
1 association between ledger and channel.

52

Solution

� CC: It is the Consortium, It is associated to the channel, it manages owner-
ships and it includes a set of Organizations allowed.

� Docker: The network components run inside docker container.

Figure 3.10. Fabric Network Components

By Figure 3.10 it is possible to see that in the architecture there are two ledgers,
each of that associated with one channel that involves just part of organizations
per channel. The ledger is associated with one or more smart contract deployed
over the chaincode, in own case we use 1 smart contract deployed each chaincode.

The chaincode is invoked calling the EVM chaincode by the App Client, using
channel communication. The channel is the only communication way between
outside and inside the network. The external actor that invoke the chaincode must
have the privileges to join the speci�ed channel. The chaincode installed over
the peer once is invoked agreed to the request and invoke the chaincode("smart
contract") method.

Once the method returns, the chaincode forwards the reply to the App client. Then
the Dapp forward the answer to the Orderer peer that validates the response, create
a new block, add it to the chain, communicate it to the peer in order to synchronize
the network and updating the Ledger World State.

53

Solution

Con�g File

The network architecture in Hyperledger Fabric is highly modular and scalable.
Hyperledger provides to the developers a set of developed test network[30] for test-
ing purpose and that help developers to better understand the structure and the
steps of the creation. The fabric-samples contains a set of tools that allow releas-
ing all the cryptographic materials required for the usage of the network, such as
certi�cates related to the user belonging to a speci�c organization. In other words,
all the MSP works are handled by fabric-samples tools.

The most useful thing about the Hyperledger network is that the components could
be added or removed in an easy way. To design and set up network components
and rules, it is has been written the config.yaml �le.

The config.yaml is structured in the following way:

� Organizations: here must be listed all the organizations involved in the
network, specifying the MSP and the policies of each Org.

� Consortium: once the organizations are speci�ed, the �le de�nes the con-
sortiums involved in the network. The consortium will be joint to speci�c
channels.

� Channels: in the last Section must be speci�ed the channels of the net-
works, specifying the consortium and the related organizations allowed over
the channel.

Run of the network

To set up the network in the best way, some scripts that performs the integration
of several components in the best way, are created.

The macro process �ow of the network running is:

1. Check Prerequisite: using the fabric-samples[30] there is some prerequi-
site to check, to run all the materials in the correct way. Check the prerequisite
looking at fabric documentations[31].

2. Run Network: Once the config �le is designed and developed, we need to
include evm chaincode in the volumes of docker �les. Then it is possible to
run the network.

3. Join all the components: Once the network is in running, it is important to
join all the components each other, for example join the peers to the dedicated
channels.

54

Solution

4. Chaincode: Once that all components are set up in the right way and the
network is in running, it is possible to install the chaincode over the peers
that we want to use.

The Hyperledger Fabric network runs inside docker containers. To automatize
the running of the network I created scripts that setup Fabric locally using docker
containers, install the EVM chaincode (EVMCC) and instantiate the EVMCC over
the Fabric peers. All that thesis steps use the Hyperledger fabric-sample reposi-
tory to deploy Fabric locally and the fabric-chaincode-evm repo for the EVMCC.

The scripts developed are the following ones:

� net_up.sh:

� Generate crypto materials for organizations: First of all, using the
fabric-sample supplied by IBM, it is possible to run a tool in charge
of creating all the cryptographic material for the actors used to operate
over the network.

� Generate channel artifacts: In the same way, the cryptographic ma-
terials generated for the Organizations must be generated for the channel
involved in the network.

� Run docker containers: Once the crypto materials are created then
it must run the docker containers for the components of the networks.
The Figure 3.11 shows the related output.

� Initialize Orgs and join them to the channels: Once all the con-
tainers are in running then there are the organization's initializations
and each peer owner by an Org is joined to the channel following the
config file speci�cations. Figure 3.12 shows the related output.

� Instantiate and Install evm chaincode: Once all the network is in
running we are going to install the chaincode over the peers. In my case,
we are going to install fabric-chaincode-evm. Figure 3.13 shows the
related output.

� net_down.sh:

� remove all docker containers in running

� remove all docker volumes created

� fab1.sh:

� network-sdk-con�g.yaml: It is the mapping SDK �le from web3js
request to the fabric requests.

55

Solution

Figure 3.11. Run of the Docker Containers

Figure 3.12. Orgs initializations and channels join

Scripts produced

For a better understanding of the setting up and running of the entire network, I
reported below the two main scripts. The two �les net_up.sh and net_down.sh

show in the best way all the steps that allow the network running.

net_up.sh:

1 #!/bin/bash

56

Solution

Figure 3.13. Chaincode Installation

2
3 ##### Generate Crypto Material for Organizations #####

4 ../bin/cryptogen generate --config =./ crypto -config.yaml

5
6 ##### Build Channel Artifact #####

7 ./ channel_artifact.sh

8
9 ##### Run docker containers #####

10 docker -compose up -d

11
12 ##### Docker containers in running #####

13 docker ps

14
15 ##### Init Org1 and join to the Channels #####

16 docker exec cli scripts/org1_init.sh

17
18 ##### Init Org2 and join to the Channels #####

19 docker exec cli scripts/org2_init.sh

20
21 ##### Init Org3 and join to the Channels #####

22 docker exec cli scripts/org3_init.sh

23
24 ##### Install Chanicode evm over the peers #####

25 docker exec cli scripts/install.sh

net_down.sh:

1 #!/bin/bash

2
3 # STOP AND DELETE THE DOCKER CONTAINERS

4 docker -compose down -v

57

Solution

5 docker rm $(docker ps -aq)

6 docker rmi $(docker images dev -* -q)

7
8 # DELETE THE OLD DOCKER VOLUMES

9 docker volume prune

10
11 # DELETE OLD DOCKER NETWORKS (OPTIONAL: seems to restart fine

without)

12 docker -compose -f down --volumes --remove -orphans

13 docker network prune

14
15 # DELETE SCRIPT -CREATED FILES

16 rm -rf channel -artifacts /*. block channel -artifacts /*.tx crypto -

config

17
18 # Remove created folder

19 rm -rf channel -artifacts

20
21 # VERIFY RESULTS

22 docker ps -a

23 docker volume ls

24 ls -l

3.5.4 Ethereum Network - Ropsten

To run the ERC20 token it is used the testnet Ropsten against the mainnet. To set
up and upload the ERC20 Token over the Ethereum network it is used the following
tools:

� My Ether Wallet: To upload ERC20 contract.

� Etherscan.io: To monitor and analyze transactions over the network.

� Metamask: To create user wallets and sign eth transactions.

� Infura: To set up a node in order to use it as endpoint and communicate
with the Ropsten network, it is used as Provider in Web3 library.

3.6 Fabric and EVM chaincode interaction

3.6.1 Chaincode invocation

To analyze how evm chaincode allows running Solidity bytecode inside Hyperledger
Fabric network, �rst of all, we analyze the interaction process and chaincode invo-
cation Process of Hyperledger Fabric blockchain.

58

Solution

End to End Interactions

Going deeper, the Figure 3.14 shows the �ow of the end to end communication.
How all the components are boxed inside the Peer component. The Fab3 maps the
web3 request and forwards it to fabric peer. the request arrives at the evmcc that
invokes Solidity smart contract methods.

Figure 3.14. End To End

Chaincode Invocations

The Figure 3.15 below describes the internal work�ow of the chaincode invocation,
where is involved the Client, the Peer and the Orderer. All the information are
transferred over the set channel and in the thesis work, the client doesn't interact
directly but using Fab3 Proxy as intermediary.

59

Solution

Figure 3.15. Smart Contract Invocation Process. Source

3.6.2 Fab3 Proxy

The Fab3 Proxy is a main component of the entire architecture. It works as a bridge
between the Ethereum world and the Hyperledger Fabric one. Each instance of
Fab3 map 1 Fabric user and generates a semi-random Eth address starting from the
public key of the user's x.509 certi�cate related to the Fabric identity. The Following
environment variable set the mandatory data to run a Fab3 proxy instance:

� CONFIG: It is the path to a compatible Fabric SDK Go con�g �le, used to
communicate and map the requests and forward it to the Fabric network.

� USER: User identity being used for the proxy. Matches the user's names in
the crypto-con�g directory speci�ed in the con�g.

� ORG: Organization of the speci�ed user.

� CHANNEL: Channel to be used for the transactions.

� CCID: ID of the EVM chaincode deployed in your fabric network.

� PORT: Port the proxy will listen on. If not provided default is 5000

Below there is an example of environments variable setting up used to run Fab3
instance.

1 # Environment variables required for setting up Fab3

2 export FAB3_CONFIG=${GOPATH }/src/github.com/hyperledger/fabric -

chaincode -evm/examples/network -sdk -config.yaml

3 export FAB3_USER=User1

60

https://hyperledger-fabric.readthedocs.io/en/release-1.4/peers/peers.html

Solution

4 export FAB3_ORG=Org1

5 export FAB3_CHANNEL=channel12

6 export FAB3_CCID=evmcc

7 export FAB3_PORT =5000

Once the Fab3 is set up and the instance is in running it is allowed to perform
chaincode invocation using the thesis's Dapp. Figure 3.16 shows the �ow of the
invocation process at upper level. It shows the main components that are involved
in that process.

1. Dapp calls method that performs smart contract invocation.

2. Fab3 maps the request and forwards it to Fabric network.

3. Fabric network processes the request and issues a response.

Figure 3.16. Fab3 Proxy Flow

The Figure 3.17 shows the internal components that take part to the invocation
process. Fab3 agreed to the request using Ethereum JSON RPC API, map it
and forward it to the Fabric network using GO SDK. Once the request arrives at
EVMCC, it invokes smart contract bytecode and then follows the standard process
explained in Figure 3.15.

61

Solution

Figure 3.17. Fab3 Invocation Process

3.7 Dapp

3.7.1 Technologies used

The client application is a web app, composed by a front-end part and a mid-level
with API that allows the communication with smart contracts of both Blockchains.
The technologies used are the following one:

� Expressjs: It is a node.js framework that allows developing API for the
application.

� Bootstrap: To build a user-friendly front-end in order to interact in the best
way.

� Web3: Ethereum Javascript API, It is a collection of libraries that allow you
to interact with a local or remote Ethereum node.

� web3 0.20.2: used for dapp developments, Fabric side, It is a stable
version and it is the version used in fabric-chaincode-evm develop-
ment.

� web3 1.0.0: used for Ethereum transactions, It is a version with more
features.

Starting from the Homepage the User is allowed to register itself as User, Re-
clothes Admin or Producer.

62

Solution

Figure 3.18. DApp directory tree

3.7.2 Core part of the web-app

Figure 3.18 the directory tree of the web app folder.

The technical �les and �ow that dapp follows to run up it is the following one.

1. Contract Address Generation:

(a) This step is in charge to run a script that deploys the contract addresses
to be refereed during the app running.

i. deployUserContract.js: running the script using node .js file,
it returns the address of the deployed contract. Figure 3.19 shows
the related output and the Contract Address printed.

ii. deployProducerContract.js: running the script using node .js

file, it returns the address of the deployed contract. The deployed
process and output is similar to Figure 3.19.

2. dapp.js: It is the core �le that handles the contracts invocations, it set up
the contract address reference, and connect to a speci�c Fab3 instance.

3. app.js: It set up the API called by the web-app, it maps the request and
forwards to dapp.js.

4. method.js: here there are all the Ethereum API endpoints. It is called by
the web-app to perform calls over Ethereum network.

63

Solution

Figure 3.19. Deploy User Contract

Once everything is set up, it is possible to run the web-app with the command npm

start and there is an initialization phase. After that, the app is ready to be used
and in running over the speci�ed PORT. The Figure 3.20 shows the output.

Figure 3.20. App Running

64

Solution

3.7.3 Views

Below I list all the views produced in the thesis work. For a better usability and
understand of application behaviors, I care about the UI too.

Homepage

The homepage allows user to view the feature of each User type and to access to
the registration page.

Figure 3.21. Home

65

Solution

Figure 3.22. Registration Phase

User Page

The User page allows to view an overview infos once the user is logged in.

- Address: It is the public eth address setup during registration phase.

- Points Balance: It is the Fabric points balance earned by the user sending the
boxes.

- ERC20 Balance: It is the eth balance of the public token running over eth
network.

Figure 3.24 shows how to compile the form in order to send box with old clothes.
It is a simulation of the real process of sending boxes, in the real case should be
implemented using a QRCode or RFID placed over the boxes.

Figure 3.25 shows how the store should be. The purchasing of the items over the
platform starts the transaction process.

There is another Section about info that the user is allowed to see. Transactions
performed over the Fabric network and Box Requests, there is all the history
about the box sent and received with all the related information's data.

66

Solution

Figure 3.23. User Info

Figure 3.24. Send Box

67

Solution

Figure 3.25. Purchase Clothes

Reclothes Admin Page

In the previous Sections, I explained the logical split about Admin for User and
Admin for Producers. In the following views, I divide the features related to the
user type handled and there is a strong distinction about Users and Producers.

Admin For Users This section shows the views of the Admins that handle User
side. Figure 3.27 shows the �eld to compile in order to perform the evaluation,
meanwhile, Figure 3.28 shows the transactions records. Here a link to a ropsten
transaction.

Admin For Producers This Section shows the views of the Admins that handle
Producer side. The Figure 3.29 shows all the Admin for Producers information's
data.

68

https://ropsten.etherscan.io/tx/0x6688afff4f6adb7e334b87a2f078608ba11b0e0d884f54b52eac1cdde100a12e

Solution

Figure 3.26. Admin Info

Figure 3.27. Evaluate Box

Producer

This Section shows the views of the Producer side. The evaluation process of the
old materials received by Reclothes is the same of the previous one.

69

Solution

Figure 3.28. Transactions

Figure 3.29. Admin for Producers Info

70

Solution

Figure 3.30. Admin Spend Regeneration Credits

Figure 3.31. Producers Info

71

Solution

3.8 Cost Analysis

In the following Section, there are a cost analysis of the networks used for the thesis
work.

3.8.1 Hyperledger Fabric

Hyperledger Fabric is a permissioned network and it doesn't have transaction fees.
On the other hand the companies that run own project over Fabric have to maintain
the costs related to the node of the networks created. There's several services and
companies that sell hosting services related to Hyperledger network nodes.

To estimate the costs, our analysis is based on Amazon Managed Blockchain[32]
test network owned by a single customer. This network has three Starter Edition
members(1 each actors/organization) to simulate a multi-party transaction. Each
member has a single bc.t3.small peer node with 20 GiB of storage and writes 9
MB to the network per hour.

� The hourly cost for this network is:

� Membership cost: (3 Starter Edition members) x ($0.30 per hour) x
(1 hour) = $0.90 per hour

� Peer node cost: (3 members) x (1 bc.t3.small peer node per member)
x (0.034 per hour) x (1 hour) = $0.102 per hour

� Peer node storage cost: (3 members) x (1 peer node per member) x
(20 GiB storage per peer node) x ($0.10 per GB-month) x (1 hour) =
$0.009 per hour

� Data written cost: (3 members) x (9 MB per hour) x (0.10 per GB)
= $0.003 per hour

� Total test network hourly cost: $1.014

� Total test network year cost: $8882.64

3.8.2 Ethereum

The Ethereum Network prices is related to the transactions fees costs that depends
on the data size of the transaction and on the gas price expressed in ether. The price
for each gas de�nes the transaction time, it means that more gas price corresponds
to a less time of transaction computed and vice-versa. There are several features

72

Solution

that going to in�uence the transaction fees over Ethereum network, such as ether
price, or network tra�c.

The following price analysis is related to the current value of the ether that is
$237.36.[33] [34]

Gas Price Con�rmation Time Transfer Price

1 gwei 128 secs - 2 minutes $0.005

34 gwei 85 secs - 1 minutes 25 secs $0.17

66 gwei 13 secs $0.33

Table 3.1. Comparing among Ethereum transactions price

Considering 100.000 active Users. Each User on average sends 2 boxes with old
clothes per year. Therefore, Reclothes Side, the application performs 200.000 eval-
uation processes that belong to 200k of incoming transactions per year. The in-
coming transaction number, multiplied for the minimum transaction cost, belongs
to an overall cost of 200.000x$0,005, which is $1000.

Since there are just 70% of active users, and considering an average of 10 purchasing
per User every year. The Ethereum network has to process 70.000x10 = 700.000
transactions. Therefore as the above hypothesis to get the less cost per transaction;
the overall costs of the outcome transaction is of 700.000x0,005 = $3500.

In the end, the Ethereum network's overall cost is $4500 per year.

3.8.3 Overall costs

Based on the 3.8.1 and 3.8.2, supposing a community of 100k users. The overall
cost of the two networks is of $13,382.62 per year.

73

Chapter 4

Results

4.1 Target archived

The goals to archive include both logical and technical target. The improvements
reached by thesis development are the following ones:

The main target to reach is to improve Value Chain 1 value of the overall system.
The goal could be split inside Technical Goal and Logical Goal.

� Technical Goal

� CrossChain Interaction: Integrates into the same application both
permissioned and permissionless Blockchain networks. The integration
is done application side. Some API endpoints start transactions in both
networks, one over Fabric network and the other one over Ethereum.

� Traceability: This goal is archived implementing smart contracts, Hy-
perledger Fabric side, that tracks all the clothes box and store the entire
transactions passed over the system.

� Logical Goal

� Supply Chain: The target is to simplify the supply chain process, all
the steps inside the chain are handled as transactions, stored over the
ledger and updating world state and smart contract data.

1This process includes the following phases: design and development of the product,raw ma-
terials management, production, shipping, selling and �nal use

74

Results

� Sustainability: The entire process aims to support sustainability. Thanks
to traceability feature, it is possible to follow the lifetime of the clothes
until they �nish to Producer, that performs the material recycling in
order to produce new upcycled clothes.

� Counterfeiting: Assign a UID to each clothes produced it is possi-
ble to �ght the Counterfeiting implementing new features such as the
clothes registrations. In that way it is possible to have a secure register
containing all the clothes.

4.2 Use Case Test

4.2.1 Use Case 1 - Unit Test 1

Send Box and Evaluation

Performing the Test over the Use Case 1 about the send box and evaluation pro-
cesses. The following �gures show the results over the call of the related methods
and how the application works.

Figure 4.1 shows the log when User performs the Send Box action.

Figure 4.1. User Send Box

Once the Box Request was successfully sent, the smart contract is invoked and
the transaction is performed. Admin could visualize the pending box requests to
be evaluated. Then the Reclothes Admin, UI side, insert the value amount of the
tokens and start the evaluation process.
Figures 4.2 and 4.3 shows the Fabric Transaction performed then the initialization
of the Ethereum transaction. In the end, once the eth transaction was performed,
the etherscan link associated with the related TransactionHash, allow the user to
see the transaction history and info.

75

Results

Figure 4.2. Init Transaction from Reclothes to User

Figure 4.3. Init Transaction from Reclothes to User

Figure 4.4 and Figure 4.5 shows the proof of the transactions succeed. The �rst
Figure shows the User page that allows visualizing the history of transactions done
and all related requests. The second one shows the etherscan page with all the
information about Ethereum's transaction, in this case from Reclothes eth Account
to User Account.

4.2.2 Use Case 1 - Unit Test 2

Purchase Item

The Figures 4.6 shows the Purchase process. As the �gure shows there is, �rst
of all, the Fabric transaction and then the Eth transaction. Once all the previ-
ous checks are performed, the transaction from User account to Reclothes account
starts. Once the transaction is performed the method prints the etherscan link to
monitor the transaction and all the related info.

4.2.3 Use Case 2 - Unit Test 1

To test the Use Case 2 I decided to track the behaviors of two processes:

76

https://ropsten.etherscan.io/tx/0x669282c69a0f670bea927fa7ef5ba1853c831a9300435a7d6dd2a5eee9e03411

Results

Figure 4.4. Fabric transaction history

Figure 4.5. Ethereum transaction over etherscan

� Send Old Material and Evaluation: The Admin for Producer sends a
box with inside the old materials to be recycled. Once the box arrived at
Producer, then it is going to be evaluated and starts a Regeneration Credits
transaction from Producer to AdminP.

� Purchase Upcycled Material: The Admin for Producer spends the earned
Regeneration Credits to purchase by Producer recycled materials. The pur-
chase options right now are three:

77

Results

Figure 4.6. Transaction from User to Reclothes

� Small Box: 50 Regeneration Credits for 5 upcycled items.

� Medium Box: 150 Regeneration Credits for 15 upcycled items.

� Big Box: 200 Regeneration Credits for 40 upcycled items.

Send Old Material and Evaluation

The Figures 4.7 shows the log of the send old clothes process. In that case is sent
a box with inside:

� t-shirt: 10

� pants: 20

� jacket: 10

� other: 10

Once the box is sent, the evaluation process starts. The Producer evaluates ma-
terials received and issue Regeneration Credits amount that Admins could spend
when need, to purchase recycled items. The Figure ?? shows the page used to
perform evaluation Process by Producer. In that case I set a Regeneration Credits
amount of 1200. The Figure 4.9 shows the output of the evaluation process.
Once the evaluation process is archived and the Regeneration Credits is sent from
Producer to Admin. The Figure 4.9 shows the info update of the Admin for
Producer.

78

Results

Figure 4.7. Admin Send old clothes

Figure 4.8. Box to be evaluated

Purchase Upcycled Material

Once the Admin sent the box with old clothes and the evaluation process is archived,
Admin has a Regeneration Credits amount to spend purchasing upcycled clothes
by Producer and then resell them inside the platform store. In our test case, we
purchase a Middle Box spending an amount of 150 Regeneration Credits.
The Figure 4.11 shows the output of the purchase process and the Tot Regener-
ation Credits update once the purchase box process is performed.

79

Results

Figure 4.9. Producer Evaluate old materials

Figure 4.10. Admin Info update

The Figure 4.12 shows the update of Producer Information, the circulating Re-
generation Credits amount is changed and the Tot Box New number is updated.

Figure 4.11. Purchase Recycled Clothes

80

Results

Figure 4.12. Producer Infos Update

81

Chapter 5

Conclusion

The objective of the thesis was to implement a blockchain-based solution to handle
the supply chain and management processes, as lean and transparent as possible.
Moreover, the thesis work has to include a cross-chain part between public and
private blockchain networks. In particular, a decentralized application has been
developed that allows the users to register over the network with speci�c rights.
The cross-chain is implemented at the Application layer, developing speci�c API
endpoints that allow the interoperability of the networks.

For a clearer understanding and overview of all the work produced, I listed each
part developed below:

� Hyperledger Network: the network architecture is designed based on case
needs. It is implemented and produced with a set of scripts that automatize
all the setting up and running processes.

� Smart Contracts: tree smart contracts, that shape the use case deal, are
produced.

� ERC20 Token: an ERC20 token in running and accessible over the Ropsten
network, is produced.

� Dapp: a web-application that integrates both the blockchain used, is pro-
duced.

In the end, the thesis archived a simple managements process solution, the
process is structured in a simpli�ed way, clear and easy to use and manage. Each
actor is associated with a speci�c organization inside the network, taking part in the
network's governance with the speci�c right access. Thanks to the blockchain ap-
plications to the thesis case, the supply chain process are clearer and transaction-
based. Moreover, the actors involved communicating in a good way, keeping a

82

Conclusion

well de�ned permissioned access to the data. The management, admin side, is im-
proved and it is more transparent. It allows the application to gain credibility by
the end-user due to provide the proof of the worked materials in a sustainability
way.

The cross-chain solution is implemented in the Application layer. To obtain a
more modular solution is better to implement the cross-chain at a lower layer, such
as at the chaincode side. In that way, the solution could be more adaptable and
modular than the developed ones. In any case, to apply that kind of solution it
is mandatory the development of other modules such as a storing and mapping
mechanism between eth wallet and Fabric identity.

We can conclude that the thesis results archives all the �xed targets. However for
future works the Hyperledger network architecture could be improved, adding
more components, such as adding orderer peers, in order to maximize fault toler-
ance. The application could be improved in several parts. The integration and the
synchronization between the two networks could be handle in a better way, devel-
oping additional checks, in order to minimize the fault cases. The API endpoints
that handle the crosschain part could be improved adding checks about the wrong
parameter passed and failure of just one transaction, Ethereum or Hyperledger, in
order to synchronize in the best way both the networks. The cross-chain could be
implemented at a lower layer, in order to automatize mechanism such as the ac-
counts mapping between the two blockchains. It makes the solution more pluggable
and minimizes developing errors.

83

Bibliography

[1] Blockchain De�nition. url: https://en.wikipedia.org/wiki/Blockchain.

[2] Byzantine fault tolerance BFT. url: https://www.tutorialspoint.com/
what-is-byzantine-fault-tolerance#:~:text=The%20concept%20of%

20Byzantine%20Fault,values%20to%20misguide%20the%20network.

[3] Proof of work. url: https://en.bitcoin.it/wiki/Proof_of_work.

[4] Proof of stake. url: https://academy.binance.com/blockchain/proof-
of-stake-explained.

[5] 51% attack. url: https://it.cointelegraph.com/explained/proof-of-
work-explained.

[6] Smart Contract De�nition. url: https://en.wikipedia.org/wiki/Smart_
contract.

[7] Vitalik Buterin. On Public and Private Blockchains. 2015. url: https://
blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/.

[8] Chibuzor Udokwu et al. The State of the Art for Blockchain-EnabledSmart-
Contract Applications in the Organization. 2018. url: https://blog.ethereum.
org/2015/08/07/on-public-and-private-blockchains/.

[9] Shiraz Jagati. Blockchain Interoperability: The Holy Grail for Cross-Chain

Deployment. 2020. url: https://cointelegraph.com/news/blockchain-
interoperability-the-holy-grail-for-cross-chain-deployment.

[10] H. Jin, X. Dai, and J. Xiao. Towards a Novel Architecture for Enabling In-

teroperability amongst Multiple Blockchains. 2018.

[11] Ark.io. url: https://ark.io/.

[12] Sidechain. url: https://en.bitcoin.it/wiki/Sidechain.

[13] Peter Robinson et al. �Atomic Crosschain Transactions for Ethereum Private
Sidechains�. In: ArXiv abs/1904.12079 (2019).

[14] Y. Jiang et al. �A Cross-Chain Solution to Integration of IoT Tangle for Data
Access Management�. In: (2018).

84

https://en.wikipedia.org/wiki/Blockchain
https://www.tutorialspoint.com/what-is-byzantine-fault-tolerance#:~:text=The%20concept%20of%20Byzantine%20Fault,values%20to%20misguide%20the%20network
https://www.tutorialspoint.com/what-is-byzantine-fault-tolerance#:~:text=The%20concept%20of%20Byzantine%20Fault,values%20to%20misguide%20the%20network
https://www.tutorialspoint.com/what-is-byzantine-fault-tolerance#:~:text=The%20concept%20of%20Byzantine%20Fault,values%20to%20misguide%20the%20network
https://en.bitcoin.it/wiki/Proof_of_work
https://academy.binance.com/blockchain/proof-of-stake-explained
https://academy.binance.com/blockchain/proof-of-stake-explained
https://it.cointelegraph.com/explained/proof-of-work-explained
https://it.cointelegraph.com/explained/proof-of-work-explained
https://en.wikipedia.org/wiki/Smart_contract
https://en.wikipedia.org/wiki/Smart_contract
https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/
https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/
https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/
https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/
https://cointelegraph.com/news/blockchain-interoperability-the-holy-grail-for-cross-chain-deployment
https://cointelegraph.com/news/blockchain-interoperability-the-holy-grail-for-cross-chain-deployment
https://ark.io/
https://en.bitcoin.it/wiki/Sidechain

BIBLIOGRAPHY

[15] Atomic swap. url: https://en.bitcoin.it/wiki/Atomic_swap.

[16] Hash Time Locked Contracts. url: https://en.bitcoin.it/w/index.php?
title=Hash_Time_Locked_Contracts&source=post_page.

[17] Lightning Network. url: https://lightning.network/.

[18] BTC Relay. url: http://btcrelay.org/.

[19] Cosmos. url: https://cosmos.network/.

[20] Github repository of ETH2.0. url: https://github.com/ethereum/eth2.
0-specs.

[21] Github repository of EVM chaincode for Hyperledger Fabric. url: https:
//github.com/hyperledger/fabric-chaincode-evm.

[22] Provenance whitepaper Blockchain: the solution for transparency in product

supply chains. 2015. url: https://www.provenance.org/whitepaper.

[23] Mirko Koscina, Mariusz Lombard-Platet, and Pierre Cluchet. PlasticCoin:
an ERC20 Implementation on Hyperledger Fabric for Circular Economy and

Plastic Reuse. 2019. url: https://www.researchgate.net/publication/
336626518_PlasticCoin_an_ERC20_Implementation_on_Hyperledger_

Fabric_for_Circular_Economy_and_Plastic_Reuse.

[24] PlasticTwist European Project. url: https://ptwist.eu/.

[25] Next Nature Network. The ECO coin: a cryptocurrency backed by sustainable

assets. url: https://uploads-ssl.webflow.com/5c1b58255c613376879c2558/
5c4970105b4d237571564f43_ECOcoin_white_paper_v1.0.pdf.

[26] Hyperledger Fabric Wallet storage. url: https://hyperledger- fabric.
readthedocs.io/en/release-1.4/developapps/wallet.html?highlight=

wallet.

[27] Metamask informations. url: https://metamask.io/.

[28] Remix, online editor and compiler. url: http://remix.ethereum.org/.

[29] Merkle Tree. url: https://en.wikipedia.org/wiki/Merkle_tree.

[30] Hyperledger Fabric samples. url: https : / / github . com / hyperledger /
fabric-samples.

[31] Hyperledger Fabric o�cial documentation. url: https : / / hyperledger -
fabric.readthedocs.io/en/master/.

[32] Amazon Managed Blockchain. url: https://aws.amazon.com/it/managed-
blockchain/.

[33] Etherscan Gas Tracker. url: https://etherscan.io/gastracker.

[34] EthGasStation: website to track ether and gas prices. url: https://ethgasstation.
info/.

85

https://en.bitcoin.it/wiki/Atomic_swap
https://en.bitcoin.it/w/index.php?title=Hash_Time_Locked_Contracts&source=post_page
https://en.bitcoin.it/w/index.php?title=Hash_Time_Locked_Contracts&source=post_page
https://lightning.network/
http://btcrelay.org/
https://cosmos.network/
https://github.com/ethereum/eth2.0-specs
https://github.com/ethereum/eth2.0-specs
https://github.com/hyperledger/fabric-chaincode-evm
https://github.com/hyperledger/fabric-chaincode-evm
https://www.provenance.org/whitepaper
https://www.researchgate.net/publication/336626518_PlasticCoin_an_ERC20_Implementation_on_Hyperledger_Fabric_for_Circular_Economy_and_Plastic_Reuse
https://www.researchgate.net/publication/336626518_PlasticCoin_an_ERC20_Implementation_on_Hyperledger_Fabric_for_Circular_Economy_and_Plastic_Reuse
https://www.researchgate.net/publication/336626518_PlasticCoin_an_ERC20_Implementation_on_Hyperledger_Fabric_for_Circular_Economy_and_Plastic_Reuse
https://ptwist.eu/
https://uploads-ssl.webflow.com/5c1b58255c613376879c2558/5c4970105b4d237571564f43_ECOcoin_white_paper_v1.0.pdf
https://uploads-ssl.webflow.com/5c1b58255c613376879c2558/5c4970105b4d237571564f43_ECOcoin_white_paper_v1.0.pdf
https://hyperledger-fabric.readthedocs.io/en/release-1.4/developapps/wallet.html?highlight=wallet
https://hyperledger-fabric.readthedocs.io/en/release-1.4/developapps/wallet.html?highlight=wallet
https://hyperledger-fabric.readthedocs.io/en/release-1.4/developapps/wallet.html?highlight=wallet
https://metamask.io/
http://remix.ethereum.org/
https://en.wikipedia.org/wiki/Merkle_tree
https://github.com/hyperledger/fabric-samples
https://github.com/hyperledger/fabric-samples
https://hyperledger-fabric.readthedocs.io/en/master/
https://hyperledger-fabric.readthedocs.io/en/master/
https://aws.amazon.com/it/managed-blockchain/
https://aws.amazon.com/it/managed-blockchain/
https://etherscan.io/gastracker
https://ethgasstation.info/
https://ethgasstation.info/

	List of Figures
	List of Tables
	Introduction
	State of the art
	What is Blockchain
	Consensus mechanism
	51% attack
	Bitcoin
	Smart Contract

	Current state of networks solution
	Behind the Blockchains
	CrossChain and interoperability

	Blockchain application in Fashion Environment
	Provenance case Martine Jarlgaard
	Counterfeiting - VeChain BabyGhoast

	ASIS model
	Sustainability Token
	Solution

	Solution
	Overview
	Use Cases
	Work overview

	CrossChain interaction
	Why a cross-chain solution is needed
	Technologies Used

	Use Cases
	UseCase 1 - User Side
	UseCase 2 - Producer Side

	Smart Contract
	User Contract
	Producer Contract
	ERC20 Contract

	Network Architecture
	Main Components
	Own Architecture
	Fabric Network
	Ethereum Network - Ropsten

	Fabric and EVM chaincode interaction
	Chaincode invocation
	Fab3 Proxy

	Dapp
	Technologies used
	Core part of the web-app
	Views

	Cost Analysis
	Hyperledger Fabric
	Ethereum
	Overall costs

	Results
	Target archived
	Use Case Test
	Use Case 1 - Unit Test 1
	Use Case 1 - Unit Test 2
	Use Case 2 - Unit Test 1

	Conclusion

