
POLITECNICO DI TORINO
Master’s Degree in Ingegneria Informatica (Computer Engineering)

Master’s Degree Thesis

Image generation using deep adversarial
generative models on graphs

Supervisors

Prof. Enrico Magli

Candidate

Michele D’Amico

July 2020

Summary

Generative Adversarial Networks (GANs) [1] are a very promising category of
generative models used to approximate unknown data distributions for sampling
purposes. Nevertheless, their training instability problems have hindered the
possibility of experimenting with a wide variety of different GANs architectures.
The introduction of Wasserstein GAN [2] and Wasserstein GAN-GP [3] overcomes
such limitation providing the possibility to successfully train a broader class of
architectures without instability or convergence issues. Among the possible model
architectures for image generation task, convolutional neural networks (CNN) excels
as for many other subfields in deep learning. Notwithstanding the nice properties
of convolutional layers, which are the building blocks of CNNs, the convolution
is a local operator and for this reason lacks in effectively capturing long-term
dependencies, which are fundamental for reproducing plausible samples for image
classes that present a well-determined structure.

To this end, this project proposes the integration of the graph convolutional
layer [4] in the generator of a convolutional WGAN-GP in an attempt to remedy
this limitation. The graph-convolutional layer will extract a graph representation
of image data dynamically, generating a k-nearest neighbor graph. In this repre-
sentation, each vertex has its vector of features taken from the activation maps
and is connected to the k less distant nodes. The distance is determined through
the Euclidean metric in the feature space rather than in the spatial domain as
for regularly structured data. Consequently, the convolution is performed as a
node aggregation function among the central node and its neighborhood of size
k. Thus, this operator would result in an adaptive receptive field on the areas of
the hidden layers activation maps that share some features similarities with the
central node of convolution. The graph convolution will not substitute regular
convolution, but instead it will extend in a complementary way its receptive field
to capture also non-local dependencies. From the experiments carried out, however
it emerges that this method does not provide the expected improvements. In fact,
from an evaluation of the generated samples based on the inception score and
on the naked-eye observation, samples generated by the networks with the graph

ii

convolution layer are very similar to baseline samples obtained through a fully
convolutional model.

iii

Acknowledgements

Firstly, I would like to thank Professor Enrico Magli for his patience and availability,
and for having proposed this thesis project in such an interesting research area. I
also thank the Assistant Professors Giulia Fracastoro and Diego Valsesia for the
tips and technical advice they gave me.

Secondly, I am grateful to my family and to my friends for always having
supported me.

iv

Table of Contents

List of Tables viii

List of Figures ix

Symbols xii

Acronyms xiv

1 Introduction 1
1.1 Generative models . 1

1.1.1 Graphical Models . 4
1.2 Neural Networks . 6
1.3 Deep Generative Models . 10

1.3.1 Stochastic models . 11
1.3.2 Differentiable generator models 14

2 Generative Adversarial Network 19
2.1 GAN convergence theory . 20
2.2 Training the adversarial net . 22
2.3 GAN Issues . 23
2.4 Convolutional Generative Adversarial Networks 26

2.4.1 Convolution operation . 27
2.4.2 Pooling . 29

vi

2.4.3 Padding and stride . 29
2.4.4 Transposed convolution operation 30
2.4.5 Nearest-Neighbor Interpolation 30
2.4.6 Deep Convolutional Generative Adversarial Network 31

2.5 Wasserstein GAN . 32
2.5.1 Gradient Penalty Regularization 34

3 Graph Convolution 37
3.1 Spectral-based Methods . 38
3.2 Spatial-based Methods . 40

3.2.1 Edge-Conditioned Convolution with Dynamic Filters 41
3.2.2 Graph convolutional layer 43
3.2.3 Edge Convolution . 46

4 Modeling Non-Local Dependencies for Image Generation 49
4.1 Self-Attention and Graph Convolutional Layer 50
4.2 Proposed Architectures . 51
4.3 Experiments . 53

5 Conclusion 63

Bibliography 65

vii

List of Tables

4.1 Inception scores obtained on CIFAR-10 after 1 × 105 generator
iterations . 54

viii

List of Figures

1.1 Generative vs. discriminative graphic models. 2

1.2 Maximum likelihood estimation of 2D Gaussian. 3

1.3 Illustration of the different learned distribution based on the min-
imized distance during training. Data drawn from a mixture of
Gaussians is fitted by an isotropic Gaussians by either minimizing
KL divergence or JS divergence. 4

1.4 Simple graph example of a belief network where p(x1, x2, x3, x4) =
p(x4|x1, x2, x3)p(x3|x2, x1)p(x2|x1)p(x1) = p(x4|x3)p(x3|x1)p(x2|x1)
p(x1) for the conditional independence assumptions modeled by the
network. 5

1.5 Mathematical neuron model . 7

1.6 Comparison between three of the most used activation functions . . 8

1.7 FVBN . 13

1.8 The Restricted Boltzmann machine is an undirected graphical model
composed of two layers: one with observable units and the other
with hidden units. The connections are defined only between units
of adjacent layers. 14

1.9 A naive illustration of Variational Autoencoder that not include
reparametrization trick . 16

1.10 The image illustrates a variational autoencoder after the reparametriza-
tion trick. 18

2.1 GAN architecture. 20

2.2 An example of 2D convolution of a 7× 7 activation map with a 3× 3
kernel with stride 1. 27

ix

2.3 An example of nearest-neighbor interpolation upsampling from a
2× 2 matrix to a 4× 4 one. 31

3.1 A graph signal. 38
3.2 The edge specific weight matrix Θ21 is generated by F l for computing

the neighbor v2 contribution Θl
21X

l−1(2) to the convolution over N1
centered on v1. 42

3.3 The k most similar neighbors are selected for pixel at position 51
from the features vectors in H l . 44

4.1 Critic architecture . 52
4.2 Baseline generator architecture . 52
4.3 EdgeConv implementation of graph convolutional generator archi-

tecture . 53
4.4 ECC implementation of graph convolutional generator architecture 53
4.5 Inception score progress over the generator training iteration 55
4.6 Samples generated from baseline model at iteration 100000 56
4.7 Samples generated from EdgeConv model with k = 8 at iteration

100000 . 57
4.8 Samples generated from EdgeConv model with k = 16 at iteration

100000 . 58
4.9 Samples generated from EdgeConv model with k = 32 at iteration

100000 . 59
4.10 Samples generated from ECC model with k = 8 at iteration 100000 60
4.11 Samples generated from ECC model with k = 16 at iteration 100000 61
4.12 Samples generated from ECC model with k = 32 at iteration 100000 62

x

Symbols

x A scalar variable

x A vector

A A matrix

I Identity matrix

x A scalar random variable

x A vector random variable

A A matrix random variable

B A set

R The set of real number

{x1, x2, ..., xn} The set element definition

G A graph

V A graph vertex set

E A graph edge set

|A| Determinant of matrix A

∇xy Gradient of y w.r.t. x

Jxf(x) Jacobian matrix of f(x) w.r.t. x

X A metric space

xii

p(x) A probability distribution over a generic random

variable x, either discrete or continuous

p(x = x) The probability of random variable x being in

state x

p(x|y) The probability of x conditioned on y

p(x) A probability density of x

x ∼ p(x) A random variable x has distribution p(x)

Ex∼p(x)[f(x)] Expectation of function f(x) under p(x) distribu-

tion

DKL(pëq) Kullback-Leibler divergence between p and q

JSD(pëq) Jensen–Shannon divergence between p and q

f(x; θ) Parametrized function of x

Fθ(x) Parametrized function of x

σ(x) Sigmoid function

ëxë Norm of x, l2 unless otherwise stated

xiii

Acronyms

KL Kullback-Leibler

GAN Generative Adversarial Network

WGAN Wasserstein Generative Adversarial Network

WGAN-GP Wasserstein Generative Adversarial Network with Gradient Penalty

CIFAR Canadian Institute For Advanced Research

DAG Direct Acyclic Graph

ReLU Rectified Linear Units

SBN Sigmoid Belief Network

FVBN Fully Visible Belief Network

CDF Cumulative Distribution Function

VAE Variational Autoencoder

MLP Multilayer Perceptron

CNN Convolutional Neural Network

DCGAN Deep Convolutional Generative Adversarial Network

EMD Earth Mover’s Distance

ECC Edge-Conditioned Convolution

SVD Singular Value Decomposition

xiv

Chapter 1

Introduction

This chapter briefly introduces the class of generative models and some basic
concepts such as graphical models and neural networks for a broad understanding
of how they work. In addition, different types of generative models type are
described, distinguished by their architecture and their training algorithm, in order
to realize which category the Generative Adversarial Networks belongs to.

1.1 Generative models

Machine learning models can be grouped into two macro-categories: discriminative
model and generative model. Broadly speaking, in a classification task, the dis-
criminative model learns from data the conditional probability distribution p(y|x)
directly. Thus, given an observation x, the model can determine to which class y
it belongs by calculating the probability distribution p(y|x = x). In contrast, a
generative model learns the joint distribution p(x, y), and it makes uses of Bayes
rule to calculate the posterior probability, namely p(y|x) = p(x|y)p(y)/p(x).

Discriminative models usually perform better in classification tasks, since fitting
generative models is generally more complicated. For this reason, generative
models, in many cases, require some approximations that, if too strict, may lead
the model to provide estimations with non-negligible errors. A notorious example
is the naive Bayes classifier, which comes with the assumption of conditional
independence among predictors x given the class variable y. However, generative
models are not so-called by chance. In fact, these models by learning p(x, y) or
p(x) distribution from data are able to generate new samples, and not just classify
new data observations.

1

1 – Introduction

Figure 1.1: Generative vs. discriminative graphic models.

In general, given a true probability distribution pdata(x), the purpose of a
generative model is to describe a distribution p(x;θ), which can provide a reasonable
estimate of pdata(x), given the right parameters θ. E.g., for a two dimensional
Gaussian family of distributions p(x;θ), θ = [µ, Σ] . In a real scenario pdata(x) is
unknown except for some samples {x(1), ...,x(m)} drawn from it that constitute the
dataset X. These observations outline the empirical distribution p̂data(x), which
puts probability mass 1/m on each of the m data points. Now, maximum likelihood
estimation is the method adopted for θ parameters estimation :

θ∗ = arg max
θ

mÙ
i=1

p(x(i);θ). (1.1)

Then, for the properties of strictly monotonic functions, a value of θ that maximizes
the log-likelihood will also maximize the likelihood function:

θ∗ = arg max
θ

mØ
i=1

log p(x(i);θ). (1.2)

Rescaling the cost function by a constant factor will not alter it and consequently,
the log-likelihood can be written as an expectation. This form emphasize that
its maximization corresponds to the minimization of the Kullback-Leibler (KL)
divergence between p̂data(x) and p(x;θ):

θ∗ = arg max
θ

Ex∼p̂data log p(x;θ). (1.3)

The KL divergence provides a measure of how different are two distribution of the

2

1 – Introduction

same random variable x as:

DKL(p̂dataëp) = Ex∼p̂data

C
log p̂data(x)

p(x)

D
(1.4)

= Ex∼p̂data [log p̂data(x)− log p(x)]. (1.5)

In minimizing the divergence w.r.t. the θ parameter, the constant term Ex∼p̂data [log p̂data(x)]
can be ignored and the cost function assume the same form of equation (1.3).

Figure 1.2: Maximum likelihood estimation of 2D Gaussian.

The previous example describes an oversimplified case because, usually, real data
distribution pdata(x) has a more complex density. Plus, the maximum likelihood
estimator requires that the true empirical distribution p̂data(x) lies in the model
family represented by p(· ;θ), to ensure consistency property. In a real scenario,
this condition usually is not met, and when dealing with model misspecification,
optimizing the maximum likelihood, hence minimizing DKL(p̂dataëpθ) encourages
the model to overgeneralize p(x;θ) over p̂data(x) as can be seen in Figure 1.3a.
I.e. p(x;θ) tend to cover all the areas where p̂data(x) > 0, introducing density in
areas where real data distribution has none. This occurs because of DKL(p̂dataëpθ)
definition, which assumes infinite values for p(x;θ) = 0 and p̂data(x) > 0, then
forces pθ(x) > 0 in regions that present some probability density p̂data(x).

The KL divergence is not a metric since it not satisfies symmetry property. In
particular, the DKL(pθëp̂data) minimization encourages an entirely different behavior
by pushing p(x;θ) to have a low probability density in the same region where

3

1 – Introduction

p̂data(x) is low. Again, the underlying reason is that the reverse KL assumes infinite
values for p̂data(x) = 0 and p(x;θ) > 0, then forces p(x;θ) = 0. In model misspec-
ification cases, DKL(pθëp̂data) is minimized by distributions with low probability
mass in areas where pdata = 0, leading to solutions that ignore some modes in
data. Despite this drawback, the found distribution tends to undergeneralize data,
and sampling from it would result in more convincing observations compared to
forward KL solutions. Unfortunately, it is impossible to compute reverse KL since
it requires evaluating the true probability of a generated sample. However, under
some conditions minimizing the GAN objective corresponds to minimizing the JS
divergence, which likewise results to be robust to overgeneralization.

(a) KL divergence (b) JS divergence

Figure 1.3: Illustration of the different learned distribution based on the minimized
distance during training. Data drawn from a mixture of Gaussians is fitted by an
isotropic Gaussians by either minimizing KL divergence or JS divergence.

1.1.1 Graphical Models

Describing a distribution of images for a generative model means providing an
estimate of an unknown multivariate continuous distribution pdata with its support
in RH×W ×C from which the sample observations in the dataset are drawn. For
example, CIFAR10 is a widely used dataset for prototyping purposes, consisting of
60000 color images equally distributed among 10 label classes: airplane, automobile,
bird, cat, deer, dog, frog, horse, ship, and truck. Each of its 32× 32 images with
3 color channels can be modeled with 3072 highly correlated observable random
variables. Directed graphical models allow describing the dependencies among
random variables in a structured way via conditional dependence relationships.
They have a massive impact on reducing the computational complexity of inference
and the spatial complexity of storing model parameters. A belief network models

4

1 – Introduction

the joint probability of x = (x1, ..., xd) as:

p(x1, ..., xd) =
dÙ

i=1
p(xi|pa(xi)), (1.6)

where pa(xi) symbolize the parents of xi random variable. The Direct Acyclic
Graph (DAG) expresses the belief network structure, in which the conditional
dependencies among random variables are depicted with arrows directed from the
parent node toward the child node. Making direct conditional dependencies explicit
through a belief network allows a simplification of the product rule factorization
of the joint probability, in which each random variable is conditioned only on its
parents. This simplification follows from the assumption made with the graph
structure as in Figure 1.4. In fact, a general model for a joint distribution without
any assumption corresponds to a fully connected graph, where each node i is
connected to the previous numbered 1, ..., i− 1 since the missing links provide most
of the information in a belief network and in any case the graphical model implies
an ordering among the nodes.

Figure 1.4: Simple graph example of a belief network where p(x1, x2, x3, x4) =
p(x4|x1, x2, x3)p(x3|x2, x1)p(x2|x1)p(x1) = p(x4|x3)p(x3|x1)p(x2|x1)p(x1) for the
conditional independence assumptions modeled by the network.

For these reasons a Bayesian network capable of capturing all the dependencies
among the pixels in an image, through direct connections, would end up in a fully
connected model with a huge number of parents per pixel and consequently, an
unmanageable number of parameters, which makes its application inefficient or
intractable. The introduction of the latent variables z is a viable solution to model
such dependencies because they would be capable of capturing the interactions
among visible variables x indirectly, provided that they have, in turn, a direct
dependency with the visible variables involved. This approach leads to the definition
of a joint distribution over the latent and observable variables p(z, x) [5] [6], which
marginalization will describe the distribution of the observable variables:

p(x) = Ehp(x|z). (1.7)

5

1 – Introduction

Intuitively, discrete or continuous latent r.v z can describe explanatory factors of a
distribution of observable r.v. x, and technically, they allow to express complex
distribution p(x) in terms of more tractable joint distribution p(x, z). For instance,
the Gaussian mixture distributions with K components can be easily formulated in
terms of latent and visible variables since the joint distribution can be defined in
term of a marginal probability and a conditional probability, p(x, z) = p(z)p(x|z).
In this formulation the discrete latent variables z ∼ p(z) as 1-of-K vector (zk = 1
only for the element k in the vector), will encode which of the K Gaussian is
responsible for that sample, whereas each conditional distribution,

p(x|z) =
KÙ

k=1
N (x|µk, Σk)zk , (1.8)

describes the corresponding Gaussian component. From the definition of z follows
a categorical distribution for the marginal probability, namely:

p(z) =
KÙ

k=1
φzk

k , (1.9)

in which φk is the mixing coefficient that specify the probability of seeing an element
from component k.

In this example, the dependency between z and x is simple and expressed
through a Gaussian distribution. However, in reality, this is often not the case,
and the conditional distributions that express dependencies within the random
variables in a given graphical model are very complex function, hence the need to
express them through deep neural networks.

1.2 Neural Networks

The universal approximation theorem states that a multilayer perceptron, with
a single hidden layer composed of a finite number of neurons, is a universal
approximator of continuous functions on Rn. In other words, given a continuous
function, a neural network can provide an approximation, as good as needed, at the
expense of increasing the hidden layer width to be exponentially large. However,
this theorem did not mention how large the network should be to reach the desired
degree of accuracy. In any case, when learning from a limited set of data, the
representation capacity is not the only requirement since the training algorithm used
for parameter fitting may still miss the right parameters or overfit data providing a
different approximation function that does not reflect the one that underlies data.

6

1 – Introduction

x2 w2 Σ f

Activation
function

y

Output

x1 w1

...
xn wn

Weights

Bias
b

Inputs

Figure 1.5: Mathematical neuron model

The basic building block of a neural network is the neuron. In nature, a
neuron is a particular type of cell capable of communicating with other neurons
through electric impulses that generate chemical messenger, neurotransmitters.
Consequently, each neuron cell can receive the input signals from the others on
dendrites and can produce a spike on its axon if a certain electric potential threshold
is reached. Inspired by biology, the mathematical neuron model presents some
analogies with it. Specifically, in its formulation, given the connection weights
w1, ...wi and a bias term b, it will receive multiple incoming signals x1, ..., xi and
produce the output as:

y = f

AØ
i

xiwi + b

B
, (1.10)

where f is the activation function that emulates the potential threshold behavior.
Historically, the sigmoid function σ(x) = 1/(1 + e−x) was then main used activation
function, whereas nowadays, ReLU (Rectified Linear Units) and its variant Leaky
ReLU became the most frequent ones in modern architectures. Empirical evidence
shows that ReLU f = max(0, x) accelerates the network convergence during training
because of its shape without any gradient saturating zone. The major drawback of
ReLU is its susceptibility to high learning rates, which for large weight updates,
drive more than necessary neurons in its x < 0 zone, where they irreversibly dies.
For this reason, Leaky ReLU tries to mitigate this problem by introducing a small
slope in the negative region.

Feedforward neural networks are arranged in multiple layers, each of these
comprehends several neurons which work in parallel and provide the activations for
such layer. The connections are defined between neurons that belong to adjacent
layers only. Thus, each neuron at layer l receives signals from layer l − 1 neurons,

7

1 – Introduction

−4 −2 2 4

0.5

1

x

f(x)

(a) Sigmoid

−4 −2 2

2

x

f(x)

(b) ReLU

−2 2

2

x

f(x)

(c) Leaky ReLU

Figure 1.6: Comparison between three of the most used activation functions

which in turn is weighted and propagated to all neurons at layer l + 1, after passing
through the activation function. Consequently, neural networks learn from a family
of functions that involves the composition of as many functions as the layers defined
in the architecture: y = f l(...f 2(f 1(x))). The last layer is generally called the
output layer, whereas the first one is the input layer, and the layers in between
are called hidden layers because they usually are not directly inspected. In fact,
generally in evaluating the network performances, only the last layer output is
assessed.

Designing a neural network requires the definition of the architecture of the
constituent layers and the choice of a cost function. Suppose that f ∗ is the
function that the model wants to approximate with a specific neural network
architecture, capable of describing a family of function parameterized by θ. Since
one is interested only in the best-approximating function a cost function is defined
in order to evaluate what is the error between the true function f ∗ and f(x;θ) for
some parameters θ. In a real scenario, where f ∗ is unknown, a dataset consisting
of the observed noisy samples from f ∗ is nevertheless provided. Consequently, the
cost function will measure the error of the model in fitting those observed samples.
Regardless of the problem that the network needs to tackle, the training procedure
aims to find the most suitable parameters to better approximate the target function
f ∗, which is typically a conditional distribution p(y|x;θ). This is achieved through
maximum likelihood estimation, or equivalently from the minimization of the
negative log-likelihood cost function:

J(θ) = −Ex,y∼p̂data log p(y|x) (1.11)

A further specification of p(y|x) completely defines J . For example, in the binary
classification task, plugging in a Bernoulli distribution as p(y|x) would lead to the
binary cross-entropy loss function, and conversely, mean squared error loss function
derives from constraining p(y|x) distribution to be Gaussian with fixed variance.

8

1 – Introduction

The extensive use of cost function in machine learning is motivated by their convex
shape that is easy to optimize. Unfortunately, this assumption does not hold for
neural networks because they present multiple local minima in the cost function
hyper-surface. In practice, it turns out that neural networks still achieve very good
results in many cases, even though they converge to a local minimum.

To get a complete picture, it worth mentioning some aspects about the training
algorithm, namely stochastic gradient descent, used for learning through weight
parameters update, whose effect may minimize the cost function. The training
process involves different steps, and the following is a brief overview of them. The
first step requires only the sampling of a batch of data B = {x(1), x(2), ..., x(m)} from
the entire dataset X. In the second step, called the forward propagation, for each
input x in the batch, the information propagates all through the network enabling
the computation of the cost function as the expectation of the error over the
observation in the mini-batch. Then, in the third step, the partial derivatives are
computed for each connection weight. The partial derivatives of the cost function
w.r.t. to each weight wi,j reveal how much the cost function changes for a slight
change in wi,j. The calculation of the derivatives is done applying the chain rule,
a technique to compute the composition of functions derivatives. Let x be a real
number and f and g two differentiable functions such that z = f(g(x)), then the
chain rule states:

dz

dx
= dz

dy
· dy

dx
(1.12)

where y = g(x). This concept is easily extended to vectors in computing gradients.
Given a generic neuron j at layer l and an incoming weighted connection from
neuron i, at previous layer l − 1, backpropagation allows to calculate partial
derivatives for each weight ∂J/∂w

(l)
i,j efficiently. The gradients of the cost function

w.r.t. w
(l)
ij are computed starting from the last layer in the network and passing

the intermediate gradients to downstream layers, as in the forward propagation,
but in reverse order. In a feedforward neural network, at each layer l the input
signal for a neuron comes from the activations of the neurons at the previous
layer a

(l−1)
i , and the weighted sum of the input signals is accordingly in the form

zl
j = q

i wl
i,ja

l−1
i + bl

j . Thus, given a neuron i at a generic hidden layer l, the partial
derivative of the loss w.r.t. zl

j can be defined as:

δl
j = ∂J

∂zj

=
Ø

k

∂J

∂zl+1
k

∂zl+1
k

∂zl
j

= f Í(zl
j)
Ø

k

wl+1
j,k δl+1

k (1.13)

The application of chain rule makes explicit the upstream gradient term δl+1
k , which

is backpropagated from the next layer to avoid recomputing it. For a given weight
w

(l)
i,j , on the connection between neuron j at layer l and neuron i at layer l− 1, the

9

1 – Introduction

partial derivative of the cost function w.r.t. is defined as:

∂J

∂wl
i,j

= al−1
i δl

j. (1.14)

Likewise, the partial derivative for bias term bl
j can be obtained as:

∂J

∂bl
j

= δl
j. (1.15)

In the fourth and last step of training, each weight and bias is updated moving to-
ward the nearest minimum according to the estimate provided by the corresponding
partial derivative:

wl
i,j = wl

i,j − Ô
∂J

∂wl
i,j

(1.16)

bl
i,j = bl

i,j − Ô
∂J

∂bl
j

, (1.17)

where Ô is the learning rate, a scalar hyperparameter on which depends the magni-
tude of the update. This whole four step training procedure is performed iteratively
until a stopping criteria is met.

1.3 Deep Generative Models

Deep generative models use deep computational graphs to define the conditional
distributions or in general the interactions among the random variables in the model.
It is crucial to distinguish the computational graph, responsible for describing the
sequence operation that the neural network will perform, from the graphical model
describing interactions among random variables. It is, then, not surprising that
deep generative models without a graphical model and latent variables may exist.

Latent and visible random variables in deep generative graphical models are
organized in layers, and a dense number of connections links adjacent layers
encouraging a sparse representation of lower layer variables. As a result, also visible
units xi are connected with multiple hidden units hj, which therefore provide a
distributed representation of xi. Besides, variables interactions are learned from
data, so in general latent variable learns to represent concepts poorly interpretable
by a human.

According to [7] the deep generative models could be distinguished based on

10

1 – Introduction

whether they rely either on a directed or an undirected graphical model, whether
they define deterministic or stochastic layers, and whether they describe an explicit
or an implicit distribution over the observable random variables x.

1.3.1 Stochastic models

Stochastic generative models consist of none, one or more connected layers of
hidden random variables in addition to the layer of observable ones. The linking
edges between units can be directed or undirected, and the type of this connection
will determines the model categorization.

Directed stochastic model

Consider a given set S = {s1, s2, ..., sN} of binary or real-valued stochastic variables,
Bayesian networks can intuitively describe the existing causal dependencies among
variables. A deep stochastic model generates new samples via ancestral sampling
based on the underlying graphical model, namely considering only the direct
dependency between the random variable and its ancestors. Conditional probability
for si is defined as:

p(si|s1, s2, si−1) = p(si|pa(si)). (1.18)

Sigmoid belief networks [8] belong to this category, and as its name may suggest,
in this model stochastic latent variables are designed to be binary: si ∈ {0, 1}. It
follows that the probability for the activation of hidden binary units is:

p(si = 1|pa(si)) = σ(
Ø

j

Wjisj + bi), (1.19)

where W and b are learning parameters of the network, and variables in graph
are ordered such that Wji /= 0 for j ≥ i. SBN learning is based on maximum
likelihood estimation. Hence, it aims to find the weight values for the network that
maximize the likelihood of the observable units for training data. The learning rule
for parameter update that derives from it is ∆Wji = η sj (si − p(si = 1|pa(si))),
and requires the calculation of posterior distribution to obtain the parent states
sj given the observed state si. The posterior distribution is not factorial because
of the explaining-away phenomenon that occurs in the presence of two or more
hidden variables with a causal link to a third common random variable, named
collider. When conditioning on it, as in calculating the posterior distribution, it
would create a sort of association with the connected upstream variables. The
model’s stochastic variables can be partitioned in two groups, namely x and z in
order to distinguish the ones which are directly observed from data. Consequently,

11

1 – Introduction

the inferred posterior probability defined as p(z|x) = p(x, z)/p(x) is intractable
to compute because marginalizing over the visible variables would require to sum
over all possible configurations of hidden units in the upper layers, exponential
in the number of units, since posterior is not factorial as mentioned. Nonetheless,
approximate methods, as the wake-sleep algorithm [9], were proposed to train SBN
by computing gradient approximation that somehow makes the model still capable
of learning.

Fully visible belief networks (FVBNs) [10], also called auto-regressive networks,
on the other hand, represent an extreme case in which no conditional independence
assumptions is made. These models are characterized by the extensive use of
observable stochastic variables only with no latent units. They model the joint
probability density in a tractable form using the chain rule of probability, thus
expressing it as the product of conditional probability distributions. A neural
network would approximate each of these conditional probabilities:

p(x) =
nÙ

i=1
p(xi|x1, ..., xi−1). (1.20)

From a different perspective, these models can be viewed as a generalization
of classification methods, used for estimating a conditional probability. However,
here, instead of predicting class label y at each step, xi is inferred. Scalability is
the biggest limit of FVBN since generating a new sample requires a sequential
computation of P (xi|x1, ..., xi) for each step i = 1, ..., n, and therefore has a linear
cost O(n). This computation cannot be parallelized and can even require some
minutes for a single sample.

Undirected models

The greater difficulty of training undirected models has hindered their spread and
progress. Below is a rough view of some of the issues arising in training these
models.

Undirected graphical models offer an alternative way of describing dependencies
among stochastic variables. As opposed to directed models, an undirected link is
responsible for grouping variables with affinities, rather than specifying a directional
dependency. Thus, the interactions among stochastic variables are measured by a
factor φ(C) > 0 for each clique C, which is a subset of random variables that form a
complete graph. The undirected graph G illustrates for a given model its underlying
structure and allows easy identification of cliques that collectively define through
their factors the unnormalized probability distribution p̃(x) = r

C∈G φ(C). Then, a
partition function Z(θ) =

s
p̃(x)dx is introduced to normalize the unnormalized

12

1 – Introduction

x1 x2 x3 x4 x5

(a)

x1 x2 x3

h1 h2 h3

P (x1)

P (x2|x1)

P (x3|x1, x2)

P (x4|x1, x2, x3)

. . .

. . .

. . .

xn

hn

P (xn|x1, ... , xn−1)

(b)

Figure 1.7: A fully visible belief network models the joint probability through
the chain rule. As a result, given a particular order, each variable xi depends from
the previous i− 1 ones. (a) The graphical model for an FVBN (b) Computational
Graph for a neural auto-regressive model with a hidden layer used to predict xi

from variables x1, ... , xi−1. This illustration was inspired from [11]

probability distribution, which typically is in the form p̃(x) = exp(−E(x; θ)) to
ensure positive potential factors:

p(x; θ) = p̃(x; θ)
Z(θ) . (1.21)

Similar to directed models, variables are partitioned in hidden and observable, and
for deeper models, they are further organized in different layers. A notorious basic
model, the restricted Boltzmann machine, consists of a single hidden layer where
interactions are limited only to units located on adjacent layers. This aspect leads
to some nice properties:

p(z|x) =
Ù

i

p(zi|x), (1.22)

p(x|z) =
Ù

i

p(xi|z). (1.23)

Since the conditional and the posterior distributions are factorial no explaining

13

1 – Introduction

away phenomenon can occur during learning, but still, some limitation arises
from Z(θ) considering that it is intractable to compute it. From the gradient
∇θ − log(Z(θ)) results an expectation term under the model distribution, which
computation involves the integration over all possible configuration of hidden and
visible variables. The whole gradient equation become:

∇θ
1
N

log p(X) = Ex∼p̂data∇θ log p̃(x;θ)− Ex∼p(x;θ)∇θ log p(x;θ). (1.24)

Gibbs sampling represents a naive method to obtain this gradient approximation,
since it is not possible to compute the exact gradient. This learning approach is

Figure 1.8: The Restricted Boltzmann machine is an undirected graphical model
composed of two layers: one with observable units and the other with hidden units.
The connections are defined only between units of adjacent layers.

conceptually divided into two phases: the positive phase where p̃ is maximized for
observation drawn from data according to the first term on the right-hand side,
and the negative phase during which p̃(x) is minimized for samples drawn from
the model distribution. Although they were proposed more efficient algorithms,
they are still based on Markov chain Monte Carlo, and over the years, the research
focus have shifted away to models fully trainable with backpropagation, which will
be introduced in the next section.

1.3.2 Differentiable generator models

Formally, differentiable generator models are shallow directed stochastic models,
but nevertheless, this class stands out for the use of differentiable deterministic
layers to transform a sample from latent variables z to a sample x over p(x). These
models demand a generator network able to map samples drawn from p(z) to x

14

1 – Introduction

through a differentiable function x = g(z;θg) implemented by a neural network [11].
The network architecture will thus outline the family of distributions from which the
most suitable is picked via parameter optimization. In a restricted number of cases,
this mapping is achieved analytically with the inverse transform method. Let F (x)
R→ [0,1] indicate the cumulative distribution function, which is continuous and
monotone, thus invertible. Let F −1(z), z ∈ [0,1] be the inverse function, it can be
used to obtain a random sample x by drawing a random value z ∼ U(0,1), and then
x = F −1(z), hence x will be distributed as F , i.e. P (x ≤ x) = F (x). For example,
inverting the exponential CDF, F (x) = 1−e−λx leads to F −1(z) = −(1/λ) ln(1−z),
which allows drawing a new sample x = −(1/λ) ln(1 − z) with z ∼ U(0,1) or
equivalently 1 − z ∼ U(0,1). For a generic distribution p(x), this method of
sampling requires the calculation and the inversion of the indefinite integral of its
density function, which would be feasible only for a limited set of distributions.

Differentiable generator models, for an arbitrary distribution p(x), will define a
more general non-linear function g(z), that is not the inverse CDF, but similarly
to F −1(z) transforms the p(z) distribution into p(x) with a change of variable:

px(x) = pz(g−1(x))
---∇g−1

--- (1.25)

The use of these models has been encouraged by the success of backpropagation,
with feedforward neural networks, in classification tasks. Differently from the
classification tasks, the observations X drawn from pdata(x) are generally the only
data provided to a generative model, thus learning implies determining a mapping
from latent space to the sample space, rather than to class labels. Variational
Autoencoders [12] and Generative adversarial Networks [13] belong to this category
of models, although they are very different in their way of learning, they both
generate new samples through a differentiable generator network. The implicit
or explicit definition of the density function p(X;θ) is the main characteristic
feature of these models: whereas the VAE model directly maximizes the variational
lower bound L, the GAN model interact with p(X;θ) only by sampling from it.
In particular, the GAN loss function is a minimax game between discriminator
and generator networks that indirectly pushes the generator to approximate the
distribution of underlying data. Before going into GANs details, some further
notions about VAE would be precious for the overview.

Variational Autoencoder

Variational Autoencoder (VAE) [12] receives its name from the variational inference,
a process of approximate inference used for training the model. A VAE model
includes a decoder network and an encoder network. The decoder is responsible for

15

1 – Introduction

generating new samples X̂, which resemble training data X. Specifically for each
new synthetic data point x̂, the model draws a sample z from a defined probability
density p(z) that will run through the decoder network producing x̂. Thus, the
decoder network g(z;θ), defined as a parametrized family of deterministic function,
models the conditional probability p(x|z;θ), which can be assumed to be a multi-
variate Gaussian distribution p(x|z;θ) = N (x;µ(z;θ),σ(z;θ)2I), by determining
the parameters µ(z;θ), and σ(z;θ). Regarding the prior distribution, it is defined
as a simple multivariate Gaussian p(z) = N (z, 0, I) under the assumption that
any distribution in the same dimension can be generated through a complicated
function. In this case, the decoder neural network is responsible for the mapping.

Figure 1.9: A naive illustration of Variational Autoencoder that not include
reparametrization trick

Now, fitting the model distribution to data means maximizing the marginal
likelihood:

p(X;θ) =
Ú

p(X|Z;θ)p(Z)dZ. (1.26)

The above integral is intractable, especially in high dimensional latent space.
Specifically, the complexity of the marginal log-likelihood evaluation is due to the
presence of the integral, which prevents from applying the logarithm on the joint
distribution and expressing it as a summation:

ln p(X;θ) = ln
3Ú

p(X|Z;θ)p(Z)dZ
4

. (1.27)

By consider for simplicity a single data observation x(i) from X = {x1, ...,xn}, it
can be shown that, for any distribution q(z), the marginal log-likelihood can be
expressed in an alternative form:

16

1 – Introduction

log p(x(i);θ) = L(q,θ) + DKL(q(z)ëp(z|x(i))) (1.28)

=
Ú

q(z) log
A

p(x(i), z;θ)
q(z)

B
dz + DKL(q(z)ëp(z|x(i)). (1.29)

Since x(i) is given, and q can be any distribution, it appears that the marginal
log-likelihood is equal to the sum of L and DKL, which respectively are a non-
negative quantity, and the variational lower bound. This suggests that during the
L maximization, ln p(x(i);θ) could be indirectly pushed upwards, and at the same
as DKL(q(z)ëp(z|x(i))) decreases the lower bound gets tighter approaching to the
exact marginal log-likelihood. It thus makes sense to define q distribution to be
conditioned as q(z|x(i)) in order to produce a closer posterior approximation. At
this point, it is possible to rearrange the lower-bound as:

L(q,θ,φ) =
Ú

q(z) log
A

p(x(i), z;θ)
q(z)

B
dz (1.30)

=
Ú

q(z) log p(x(i)|z)dz +
Ú

q(z) log p(z)
q(z|x(i))dz = (1.31)

= Ez∼q(z|x(i))[log p(x(i)|z))]−DKL(q(z|x(i))ëp(z)). (1.32)

As for p(x(i)|z), a neural network parameterizes the distribution q(z|x(i)) =
N (z;µ(x(i);φ),σ(x(i);φ)2I)), which is also assumed to be Gaussian for sim-
plicity. Then, the encoder network is in charge of producing µ and σ vectors
for the mean and variance. In the last right-hand side equation, the first term
Ez∼q(z|x(i))[log p(x(i)|z))], called reconstruction error, may appear familiar since it
is frequently present in autoencoders loss functions. For Gaussian distributions,
it corresponds to the mean squared error between the original observation x(i)

and the one reconstructed from z. The second term, DKL(q(z|x(i))ëp(z)), acts
as a regularizer by pulling the chosen distribution q(z|x(i)) to p(z), preventing
the model from brutally overfitting data by assigning all the probability mass to
training observations only.

Since it is not possible to propagate gradient through a stochastic operation such
as sampling, a slight change is done to the network by moving sampling operation
z ∼ q(z|x(i)) to the network input, which is not traversed by the gradient. This
technique is called the reparameterization trick [12] (Figure 1.10). The distribution
q(z|x(i)) is thus expressed as two steps generative process, during which, first, a
noise variable is sampled from a naive distribution p(Ô) = N (Ô, 0, I) and then it is

17

1 – Introduction

run through a deterministic transformation g, such that z = g(Ô,x(i);θ) will be
distributed as q(z|x(i)). For Gaussian distributed variables this is obtained defining
z = µ+ Ô σ2I, for Ô ∼ p(Ô), rather than z ∼ N (µ,σ2I).

Figure 1.10: The image illustrates a variational autoencoder after the
reparametrization trick.

In practice, when training a VAE, during the forward pass the encoder is fed
with a mini-batch of observations x(i) sampled from data X, and for each of
these, the network provides the posterior approximation q(z|x(i)), by computing
µ and σ from which z is sampled using the reparameterization trick. Then, the
reconstruction error is estimated computing the expectation of log p(x(i)|z) over the
samples drawn from q(z|x(i)), whereas the KL divergence term can be computed
analytically in a closed form in the cases where both p(z) and q(z|x) are assumed
Gaussian. The gradient required to update the parameters is evaluated on the
expectation of L over the observations x(i) in the mini-batch. In this setup, the
encoder and decoder network can be trained until the convergence of parameters
θ,φ by iteratively calculating the cost function and updating them using the
gradients on mini-batches ∇θ,φL(θ,φ). At test time, only the decoder network
is retained, and new samples are generated by running through the decoder the
samples z ∼ N (z; 0, I).

Variational methods, although they are biased because of the error between L
and p(X), they actually produce satisfactory parameter estimates. Unfortunately, a
critical downside affects VAE, which on image generative models is visible as a blurry
effect in the produced samples. According to Goodfellow [11], this is probably due to
the log-likelihood maximization, which as DKL(p̂dataëpθ) minimization, encourages
overgeneralization.

18

Chapter 2

Generative Adversarial
Network

This chapter will cover starting from the original idea of GANs, the several issues
that arise in training these models, and the related improvements that followed
over the years.

Generative adversarial networks [13][1] depict a scenario similar to a two-player
minimax game in which the generator model G and the discriminator model
D compete against each other. The generator G aims to reproduce the data
distribution, whereas D estimates the probability that a sample originates from
training data or G. In particular samples are generated through G(z;θg), that
symbolize a parametrized differentiable function mapping a latent prior pz(z)
over the metric space Z to pg(x) over X , typically implemented by a multilayer
perceptron. The discriminator D, also implemented by a multilayer perceptron
D(x;θd), is responsible for estimating the probability D(x) that given a sample x
it either belongs to real data pdata or it was generated from pg(x). Then, the game
solution can be found by simultaneously optimizing for some D and G the value
function:

min
G

max
D

V (D, G) = Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1−D(G(z)))] (2.1)

In this framework the two player, respectively G and D face each other in
minimizing or maximizing the same value function V (G, D), based on the roles
played, by acting only on their own parameters. Hence, the game consists of two
turn where on the first one, the discriminator tries to push D(x) as close as possible
to 1 and D(G(z)) to be near 0 to maximize its cost function. It should be noted

19

2 – Generative Adversarial Network

that the discriminator cost function is not different from any other cross-entropy
function for binary classifiers, although it has the peculiarity of having the batch
split in two halves, namely the real data batch and the generated sample batch.
By contrast, the generator G tries to minimize the same cost function by acting on
the second term to minimize the expectation for values of D(G(z)) approaching 1,
which happens for generated samples misclassified as real observations. As a result,
in evaluating the cost function each one of the players is intrinsically influenced by
the effect of the counterpart. A solution that optimizes the value function would is
thus denoted by a Nash equilibrium tuple (θd,θg), namely a point in solution space
that is simultaneously a local minimum for both J (D)(θd) and J (G)(θg) . In ideal
conditions a GAN may converge to a solution so that the generated samples will
be indistinguishable by the discriminator network, which will assign 0.5 probability
to both real and generated samples. Unfortunately, in general, the attainment of
an equilibrium solution is not guaranteed for a minimax game.

Figure 2.1: GAN architecture.

2.1 GAN convergence theory

It is possible to study the algorithm convergence from a theoretical perspective
[13]. This is achievable only through the abstraction from capacity constraint,
training time, and finite dataset limitation and just considering a model with
infinite capacity and hence the whole space of probability density functions. From

20

2 – Generative Adversarial Network

the value function:

V (G, D) =
Ú
x

pdata(x) log D(x) dx+
Ú
z

p(z) log(1−D(G(z))) dz

=
Ú
x

pdata(x) log D(x) + pg(x) log(1−D(x))x, (2.2)

where the second equation is derived from Ez∼pz [log(1−D(G(z))] = Ex∼pG(x)[log(1−
D(x))] it can be obtained the optimal discriminator D∗ for a given generator G as:

D∗(x) = pdata(x)
pdata(x) + pg(x) . (2.3)

Plugging in the optimal discriminator D∗ into value function, it becomes:

C(G) = max
D

V (G, D)

= Ex∼pdata [log D∗(x)] + Ez∼pz [log (1−D∗(G(z)))]
= Ex∼pdata [log D∗(x)] + Ex∼pg [log (1−D∗(x))]

= Ex∼pdata

C
log pdata (x)

Pdata (x) + pg(x)

D
+ Ex∼pg

C
log pg(x)

pdata (x) + pg(x)

D
(2.4)

Now, C(G) is called the virtual training criterion and it must be proven that its
minimum is attained if and only if pg = pdata. For the optimal G with pg = pdata,
D∗ will be unable to discriminate and assign 1

2 probability by chance to pg and
pdata samples:

C∗ =
Ú
x

pdata(x) log 1
2dx+

Ú
x

pg(x) log
1
1− 1

2
2

dx (2.5)

= − log 2
Ú
x

pdata(x) dx− log 2
Ú
x

pg(x) dx = − log 4. (2.6)

Subtracting both left and right-hand side of equation 2.6 from C(G) results:

C(G) =
Ú
x

pdata(x) log
A

pdata(x)
pG(x) + pdata(x) + log 2

B
dx+ (2.7)

Ú
x

pg(x) log
A

pG(x)
pG(x) + pdata(x) + log 2

B
dx− log(4),

21

2 – Generative Adversarial Network

which can be rewritten in the form:

C(G) = − log 4 + DKL

A
pdata

.....pdata + pg

2

B
+ DKL

A
pg

.....pdata + pg

2

B
= − log 4 + 2 · JSD(pdataëpg), (2.8)

where JSD(pdataëpg) represent the Jensen-Shannon divergence between the data
and the model distributions. Since such divergence is defined to be positive and
zero only for equal distributions the global minimum of C∗ = − log 4 is achieved
only for pdata = pg.

2.2 Training the adversarial net

The assumptions made for the convergence theory are not met, in practice, when G
and D are implemented through MLPs. Consequently, the previous section results
do not apply because they rely on convexity property, which is no more guarantee.
In a real scenario, with both the players modeled by a neural network, the entire
system is simultaneously trained with stochastic gradient descent and backprop-
agation algorithm. Besides, since training the discriminator until convergence is
computationally intractable and can lead to overfitting, one can alternatively train
the discriminator for k steps and the generator for one step. This should provide a
good enough estimate of the optimal D to allow the training of G.

The training algorithm reported in Algorithm 1 describes in detail the training
process, in which, at each iteration two mini-batches are provided to D, one drawn
from the datasetX and the other generated through G from prior pz. At this point,
k optimization steps are done for D and one for G, by computing for each step
their gradients and updating their weights. In training D and G using stochastic
gradient descent, each player will strive to optimize its own cost function that
depends on the parameters of both networks. This means that at each discriminator
training step, D is going towards reducing J (D) by acting on θd, without caring if
it may also increase J (G) undoing the opponent’s progress and vice versa. In the
extreme cases, if this happens at every iteration step, the equilibrium would never
be reached, and the value function would end up in an endless orbit. In practice,
even when oscillating, GANs are nevertheless capable of producing quality samples
without finding an equilibrium solution.

In situations where D easily recognizes generated samples with high confidence,
the value function (2.1) results not very suitable for training since the term
(1−D(G(z)) starts to saturate, and as a result the generator gradient vanishes.
Goodfellow et al. proposed a heuristically motivated solution that mitigates this

22

2 – Generative Adversarial Network

problem with the introduction of a new generator cost function formulation in which
the generator is trained to maximize J (G) = − log(D(G(z)) . This corresponds
to maximize the log probability that the discriminator is mistaken rather than
minimizing the probability of being correct. The new cost function then makes the
GAN lose further theoretical guarantees of convergence, but on the other hand, the
generator gradient will not vanish in cases where the discriminator easily rejects its
samples. Besides, the solution can no longer be described as an equilibrium point
since the previous value function is no more representative after this adjustment.

Algorithm 1 Minibatch stochastic gradient descent training of generative adversar-
ial nets. The number of steps to apply to the discriminator, k, is a hyperparameter.

1: for number of training iterations do
2: for k steps do
3: Sample minibatch of m noise samples {z(1), ...,z(m)} from noise prior

pg(z).
4: Sample minibatch of m examples {x(1), ...,x(m)} from data generating

distribution pdata(x).
5: Update the discriminator by ascending its stochastic gradient:

∇θd

1
m

mØ
i=1

è
log D

1
x(i)

2
+ log

1
1−D

1
G
1
z(i)

222é
. (2.9)

6: end for
7: Sample minibatch of m noise samples{z(1), ...,z(m)} from noise prior pg(z).
8: Update the generator by descending its stochastic gradient:

∇θg

1
m

mØ
i=1

log
1
1−D

1
G
1
z(i)

222
. (2.10)

9: end for
10: ó The gradient-based updates can use any standard gradient-based learning

rule.

2.3 GAN Issues

Together with vanishing gradient, training a GAN model is further complicated
from the occurrence of mode collapse and from its uninformative loss, which makes
it possible neither to monitor the training process nor to evaluate the generated
samples quality basing on it.

23

2 – Generative Adversarial Network

Vanishing Gradient

Arjoski and Bottou in [14] provided some theoretical explanation for the vanishing
gradient problem that affects the GAN training algorithm, and they carry out
a theoretical analysis of the heuristic introduced in the previous section, which
somehow seems to solve the problem. The vanishing gradient represents the greatest
contradiction in GAN training. Precisely, the closer is D to D∗, the more valuable
will be gradient for the generator since it will better approximate the gradient of
Jensen Shannon divergence, but simultaneously the more its norm tends to decrease.
This obliges GAN practitioners to seek for a trade-off for k hyperparameter that
certainly makes unfriendly the training procedure. According to Arjoski, the causes
of this behavior must be searched behind the measure used and the distributions
characteristics.

Based on strong and theoretical evidence, the authors assumed that in general
pdata lies in a low-dimensional manifold. In addition, given the prior z ∼ p(z),
defined on a metric space Z < X , the distribution pg, generated through Gθ :
Z → X is not continuous and is contained in a countable union of low-dimensional
manifolds whose dimensions are at most as big as the ones of Z. When pg and pdata

have their support contained on two disjoint compact subsets a perfect discriminator
D∗ : X → [0, 1] exists, and it is characterized by perfect accuracy and ∇xD∗(x) = 0
for all x in both pg and pdata supports. On the countrary for two manifolds that
match perfectly on a big portion of the space, there is no discriminator that can
perfectly separate them. However from a broader perspective, they prove that for
two submanifolds of Rd that do not have the full dimension, the probability that
they do not perfectly align after small perturbations is 1. With this in mind, a
perfect discriminator still exists for pg and pdata distributions with their support
contained in two manifold that neither perfectly align nor have full dimensions. As
a result, in general D∗ is not able to provide any information with its gradient,
and besides, there is no way to measure similarities between non perfectly aligned
manifolds since both KL divergences will be infinite and JSD will be constant.
Thus, let D be a non optimal discriminator such that ëD −D∗ë < Ô and given
Ez∼p(z)[ëJθGθ(z)ë2

2] ≤M2, then the gradient norm is bounded as:...∇θEz∼p(z) [log (1−D (Gθ(z)))]
...

2
< M

Ô

1− Ô
, (2.11)

where as D approaches to D∗, Ô get closer to 0 and consequently the gradient
vanishes.

Regarding the use of the heuristic based cost function J (G) = −1
2Ez log D(G(z)),

they show that it does not effectively solve the vanishing gradient problem since
from the theoretical analysis it has emerged that the gradient provided, although

24

2 – Generative Adversarial Network

it does not vanish, causes unstable updates. For the optimal discriminator D∗, the
generator gradient become:

Ez∼p(z) [−∇θ log D∗ (Gθ(z))] = ∇θ [DKL (pgëpdata)− 2JSD (pgëpdata)] (2.12)

This equation shows a first term, that is the reversed KL divergence, which encourage
the generator to produce real looking samples by assigning high-cost penalty to
samples that not resemble real data, consequently promoting mode dropping effect.
As for the second term, the the negative JSD has the effect of pushing the two
distribution to diverge. In cases where D is not the optimal discriminator, under
some strong assumption it results that Ez∼p(z) [−∇θ log D (Gθ(z))] is a zero centered
Cauchy distribution with infinite expectation and variance. Since the distribution
is zero-centered, the expected update for bounded updates will be zero and will
not provide any information to the gradient. The authors also got a practical
confirmation of this cost function behavior by training the discriminator with a fixed
generator. They observed an increase in generator gradient norm as D approaches
to D∗ and a gradual increase of variance, identifiable as noise in gradients, which
give rise to instability in the whole training process.

One of the solutions proposed to the vanishing gradient issue requires to break the
assumption of not perfect alignment between the support manifolds by introducing
continuous noise to the inputs of the discriminator. For instance let Ô, ÔÍ ∼ N (0, σ2I)
be the random noise and G̃θ(z) = Gθ(z) + ÔÍ the resulting generated samples, the
gradient provided by the optimal discriminator D∗ will no longer be 0, indeed:

Ez∼p(z),ÔÍ

è
∇θ log

1
1−D∗

1
G̃θ(z)

22é
= 2∇θJSD (pr+Ôëpg+Ô) . (2.13)

The alternative proposed solution would be the use of a different measure from JSD
able to capture the similarity between two disjoint manifolds, such as Wasserstein
distance that will be cover in the section 2.5.

Mode Collapse

Mode collapse represents an unwanted scenario in which many values from p(z)
are mapped on a restricted subset of samples pg with the consequence of producing
somewhat similar outputs from the generator, which result indistinguishable from
real data to the discriminator. Since the discriminator processes each sample and
computes its gradient independently from the others samples, the gradient can
push the generator to map many different points in Z space to a single-mode in
X , which D consider real with high confidence. If the collapse happens, there
is no way that the discriminator could fix this harmful mapping using gradient
descent for the same reason that it could not prevent it. As a result, further

25

2 – Generative Adversarial Network

training the discriminator to recognize the fake samples will drive the generator
to find a new map to a different subset of samples in X capable of fooling the
discriminator rather than providing additional entropy for the generator outputs.
Mode collapse may happen when training is not correctly balanced between D
and G, for example when the generator is trained over multiple batches without
updating the discriminator.

Uninformative loss

The discriminator loss trend is not so informative by itself for deciding whether
to continue or stop training since it does not have a well-defined behavior. When
generated samples get better, it may happen that rather than decreasing, the JS
estimate increases or stays constant.

Without a proper metric it will not be easy to compare different architectures
and models. Salisman et al. proposed the Inception Score [15], an automatic
evaluation method for image samples capable of emulating human evaluation
criteria. Inception score metric is defined as:

exp(ExDKL(p(y|x)ëp(y))) (2.14)

Its name comes from the Inception model [16], which is the classifier used to
compute the conditional label distributions. This formulation as the divergence
between conditional and marginal label distribution comes from the need to find
a measure correlated with human criteria. In particular, generated images are
required to provide conditional label distributions p(y|x) with low entropy, which
correspond to sharper images whose class of belonging is predictable with high
confidence by the Inception model. In addition, the marginal class distribution,s

p(y|x) = G(z))dz, is desired to have high entropy, i.e. the metric should penalize
generators with some bias towards producing samples from a subset of the classes.
If the two mentioned characteristics are satisfied, then DKL will result in a high
Inception score.

2.4 Convolutional Generative Adversarial Net-
works

Before delving into the description of a new loss function that aims to solve
vanishing gradient related issues with a theoretical foundation, deep convolutional
GAN (DCGAN) architectures and their building blocks need to be introduced since
this class of models is very effective for image generation tasks.

26

2 – Generative Adversarial Network

Convolutional Neural Networks are widely known for their extensive use in
discriminative models on image classification tasks. Technically, convolutional
generative adversarial networks class include all the GANs that make use of the
convolution operation, which name originates from the homonymous mathematical
operation. Next, the convolution and related operations will be described in order to
introduce one of the first successful experiments of convolutional GAN in literature.

2.4.1 Convolution operation

Convolution in deep learning field typically mean a slightly different operation
from the mathematical one. Given a two dimensional input I, e.g. an image, and a
kernel K, the result of the convolution is:

C(i, j) = (I ∗K)(i, j) =
Ø
m

Ø
n

I(i + m, j + n)K(m, n) (2.15)

where both the operands are described by a matrix. In practice, the kernel is
spatially slid over the image for different values of i and j, and at each step is
computed the summation among the products of the elements in the sliding window
centered in I(i, j) and K. People generally refer to kernel also with the name
filter, whereas the output produced is generally called feature map or activation
map. This operation in convolutional neural networks is implemented through the
convolutional layer, which is characterize by the following interesting properties.

Figure 2.2: An example of 2D convolution of a 7× 7 activation map with a 3× 3
kernel with stride 1.

Local Connectivity Neurons in a convolutional layer are arranged as a matrix
rather than a vector, and each neuron is connected only to a local area of the input

27

2 – Generative Adversarial Network

for that layer. For this property, each hidden neuron in the hidden layer receives
signal only from a subset of the incoming inputs from the previous layer, unlike
fully connected neural networks, in which every neuron is connected to all neurons
in the previous layer. This characteristic is achieved by using a kernel size smaller
than the input for such layer and proves to be fundamental in image processing,
where meaningful features can be discovered by looking only at a pixel and its local
neighborhood. This spatial extent of connectivity is called receptive field, and it is
considered as a hyperparameter that strictly depends on kernel size. It must be
mentioned that in the presence of the depth dimension in images, although spatially
located, the connection extends through all the channels. Besides, since each
connection is represented by a weight, the reduction in the number of connections
between adjacent layers neurons leads to a huge decrease in model parameters size.

Parameter Sharing This technique is used to limit the out of control growth of
parameter size in a model when enhancing its learning capacity. In convolutional
layers it is implemented by using the same kernel weights multiple times at each step
of the convolution during the computation of the output feature map. Importantly,
sharing weights rather than learning different weight parameters for each location
leads to a massive reduction in the number of needed parameters because of its
strong regularization action. During backpropagation, given that each weight
affects multiple output pixels, all the locations of the activation maps produced
will affect flowing gradients.

Translational Equivariance The convolution operation is equivariant to trans-
lation as a direct consequence of using shared filters. This means that given a
function f that translates the input I the order in which f and convolution are
applied does not matter as they lead to the same result. For example, this property
proved to be very effective when some local function is useful in multiple locations
like an edge or blob detector in images.

The introduction of the convolutional layer was a breakthrough in image pro-
cessing since in this field is fundamental to recognize objects independently of their
position using a translational equivariant operation, and to capture the hierarchi-
cal organization of patterns by considering gradually more abstract features, via
stacking several convolutional layers.

28

2 – Generative Adversarial Network

2.4.2 Pooling

The pooling operation computes summaries over small local areas for each activation
map, introducing some additional properties. There are different pooling functions
in literature such as max pooling, average pooling, or L2 norm of neighboring
pixels. All these variants provide invariance property for small translation due
to the summarization operation and the overlapping areas of the sliding window
among the different steps. A network could benefit from such invariance, especially
if the main focus is searching for some features that maximize the activation
function rather than detecting their precise location. However, the pooling layer
is mainly used for downsampling the feature map trying not to lose meaningful
information extracted by the previous layer of the network. In practice, the most
used downsampling layer is the max-pooling layer with a 2 × 2 filter, which for
each feature map preserves only 25% of the activations. Precisely, during the
max-pooling operation the window is sled all trough the input image for each
channel, and at each step only the maximum value in the filter is retained while
the others are discarded.

2.4.3 Padding and stride

The padding was mainly introduced to counter the border effects, which consist
in a decrease in width and height sizes of activation maps after every convolution
operation. E.g. applying a 3 × 3 convolution on a 32 × 32 image will result in
a 30 × 30 feature map. In this situation, if it is needed to preserve the image
resolution, one should consider applying padding by merely adding around the
image a number of frames of zeros that depend on kernel size. In the example
provided, one frame is sufficient to keep dimensions unchanged.

The strided convolution represents an alternative method of downsampling.
Specifically, the stride indicates how much the kernel window must slide between
each step of convolution, hence for a regular convolution the default stride is 1.
However for value s > 1 the convolution will also result in a shrinking of the input
size. By including the slide, the convolution formulation become:

C(K, I, s)i,j,k =
Ø

l,m,n

è
Il,(j−1)×s+m,(k−1)×s+nKi,l,m,n

é
(2.16)

Springenberg et al. studied in [17] the impact of removing max-pooling layers from
a reference CNN architecture and delegating the downsampling to convolutions
with stride s > 1. Two approaches have been evaluated: the removal of each
pooling layer by replacing them with an increased stride in the convolutional layer

29

2 – Generative Adversarial Network

that precedes it, the and replacement of the pooling layers with newly inserted
convolutional layers with stride greater than one.

Then, the experiments that took place on CIFAR10 have shown that for the
first method a little degradation of overall classification performances occured,
and they supposed it could be due to the reduction of the overlapping regions
of the strided convolutions. Surprisingly in the second method, the additional
convolutional layers are effective and provide some improvements over the baseline
model with pooling. These tests have been done by making sure the increase of
parameters was not the main cause of the lower classification error, but the authors
nevertheless emphasize that it cannot be ruled out that the convolutional layers
used as a replacement have just learned the pooling function.

2.4.4 Transposed convolution operation

Transposed convolution is a transformation that goes in the opposite direction of
convolution and it can, therefore, be used for upsampling, thus projecting a feature
map to a higher-dimensional space. In a feedforward neural network an affine
transformation at some layer l, which maps a dl−1 dimensional input to an hidden
dl dimensional output, is obtained through the dot product with a weight matrix
W ∈ Rdl−1×dl . Likewise, a transformation that goes in the opposite direction, i.e.
from dl dimensional representation to dl−1 dimensional one, has to learn a weight
matrix with transposed shape W Í ∈ Rdl×dl−1 . If a regular convolution is designed
as a normal feedforward connection characterized by weights hardly constrained to
zero in areas outside the sliding window, an upsampling function can be applied
using a similarly structured matrix with transposed dimensions. That is where its
name originates. Interestingly, this operation learns a function whose forward pass
exactly corresponds to the backward pass of a regular convolution, and the same
goes for its backward pass. In this manner, a mapping is obtained between lower
and higher dimensional feature maps.

Given a transposed convolution, one can show that the same result can be
obtained with a standard convolution whose specific settings depend on some
existent relationship between the two operation [18]. For instance, a transposed
convolution with a stride s > 1 is equivalent to a convolution with zeros inserted
between the input units and is called fractionally-strided convolution.

2.4.5 Nearest-Neighbor Interpolation

Nearest-neighbor interpolation is the simplest interpolation method used for up-
sampling. Let An×n be a pixel matrix, it can be scaled to a greater dimension

30

2 – Generative Adversarial Network

by inserting new pixels in between the original ones. This method consists in
determining the value of the newly inserted pixels from their nearest neighboring
pixels, thus assuming the intensity values of them.

Figure 2.3: An example of nearest-neighbor interpolation upsampling from a
2× 2 matrix to a 4× 4 one.

The combination of nearest-neighbour interpolation followed by a padded con-
volution that presere the new upscaled dimensions represent an alternative method
to transposed convolution for upsampling.

2.4.6 Deep Convolutional Generative Adversarial Network

Radford et al. introduced in [19] a GAN convolutional architecture with the
intention to reuse the intermediate layers extracted from the trained discriminator
in an unsupervised learning fashion. This model represents a successful attempt
to introduce the convolution in the GAN framework even though it was not the
first time that convolution was used in this research area. Next, will follow the key
architectural points for a successful implementation of the DCGAN.

Firstly, the generator network used in this work was composed only by one
fully connected layer required to map the random noise vector to a tensor with
height, width, and depth dimension. On top of this layer, multiple transposed
convolutional layers were stacked to upsample the image signal until the pixel
space dimension is reached. ReLU activation functions have proved to work well
in the generator hidden layers, whereas, for the output layer, the Tanh activation
was used. Secondly, the discriminator network, inspired by the more recent image
classification models, where the fully connected layers on top of the convolutional
features are substituted with a global average pooling, is composed only by different
convolutional layers followed by leaky ReLUs with α = 0.2. Moreover, since the
global average pooling resulted in slowing down convergence, the last convolutional
layer was directly flattened and fed through a sigmoid function. The pooling layers
have also been removed, to encourage the network to learn the downsampling

31

2 – Generative Adversarial Network

operation directly from data similarly to the upsampling operation in the generator.
Lastly, the batch normalization was extensively used on both networks except for
the last layer in the generator. It allowed a more stable training by forcing the
activation inputs to have zero mean and unit variance, and in the author’s opinion,
such a measure can help the model prevent mode collapse situations.

Interesting experiments about the generator latent space have also been carried
out in their work. They have shown that by inspecting the interpolation between a
series of 9 random points in Z, it can diagnose the generator learning. In particular,
if the distribution learned by the generator gives rise to smooth semantic transitions
in the images produced, it is the case of a correct learning process. On the contrary,
if the learned distribution exhibits sharp changes, they prove that overfitting has
occurred. Moreover, it results that the latent space allows vector arithmetic for
creating new points with handcrafted semantic features.

2.5 Wasserstein GAN

The introduction of Wasserstein GAN [2] and its novel distance measure was
fundamental in solving the intrinsic training difficulties of GANs in a theoretical
motivated way. The GAN optimization can be formalized as a problem where it
is required for a sequence of probability distributions pg;t, t ∈ N, to converges to
pdata, specifically when ρ(pg;t, pdata)→ 0. Since the optimization acts directly on θt,
the definition of a generator model characterized by continuous mapping θ → pg

will guarantee for θt values that converge to θ∗ the convergence of pg;t distribution
to pg. Likewise, if the used distance ρ is defined to be continuous it can be used as
a loss function θ → ρ(pg, pdata), so that the distribution convergence will strictly
depends on it since for θt → θ∗, a continuous distance measure will tend to 0,
ρ(pg, pdata)→ 0. This means that minimizing ρ w.r.t. θ will lead pg towards pdata.

Now, the Earth-Mover distance (EMD) or Wasserstein-1 is defined as:

W (pdata, pg) = inf
γ∈Π(pdata,pg)

E(x,y)∼γ [ëx− yë] , (2.17)

where Π(pdata, pg) is the set of all joint distributions γ(x,y), whose marginal are
pdata and pg. The intuition behind EMD is that each probability distribution is
thought in terms of mass put on each point or interval, and the aim is to move
mass from probability distribution pg to pdata. The term γ(x,y) in the equation
specify the transport plan to transform the first distribution into the second, and
among all these plans the EMD indicates the infimum γ in term of costs.

It can be proven that for a continuous generator g, e.g. a feedforward neural

32

2 – Generative Adversarial Network

network Gθ, W (pdata, pg) is continuous. Moreover, if g is locally Lipschitz and
Ez∼p[L(θ, z)] < +∞ is true for local constants L(θ, z) , then W (pdata, pg) is
continuous everywhere and differentiable almost everywhere. As before this means
that when W (pdata, pg)→ 0 also pg → pdata. This is typically not valid for JS and
KL divergences since they can be non-continuous for a given continuous g. As
a result, EMD is a weaker metric than them, in the sense that every sequence
that converges under the mentioned divergences also converge under EMD but
not the opposite. From a comparison among all the aforementioned metrics in
measuring the distance between two low dimensional manifold distribution as the
ones discussed in section 2.3, emerges that only the EMD is continuous and capable
of driving pg towards convergence when those distributions have disjoint support
or their intersection is a set of measure zero.

By introducing the EM distance as the generator cost function in GAN frame-
work, training would consist in minimizing it with stochastic gradient descent,
leading pg to converge on pdata. In practice, calculating Wasserstein distance is in-
tractable, but nonetheless it can be approximated through Kantorovich-Rubinstein
duality[20], which states:

W (pdata, pg) = sup
ëfëL≤1

Ex∼pdata(x) [f(x)]− Ex∼pg(x)[f(x)], (2.18)

and as specified in the formulation, the supremum must be searched all over the
1-Lipschitz functions. For GAN related applications the 1-Lipschitz functions
constraint can be relaxed to K-Lipschitz functions since searching for a supremum
over K-Lipschitz functions will lead to K · W (pdata, pg), namely the previous
supremum scaled by a constant K. Thus, given a parametrized family {fw}w∈W of
all K-Lipschitz functions for some K, the objective function to optimize is:

max
w∈W

Ex∼pdata [fw(x)]− Ez∼p(z)[fw(Gθ(z)]. (2.19)

If the solution found corresponds to the supremum for a certain w ∈ W it will be
equal to K ·W (pdata, pg) and the resulting gradient for the generator will be:

∇θ [K ·W (pdata, pg)] = −Ez∼p(z) [∇θDw (Gθ(z))] . (2.20)

The Dw term called critic is an approximation of the K-Lipschitz function f , and it
is the neural network implementation of the parametrized family fw. Then, as with
GANs, to provide reliable gradient for the generator, discriminator optimization
steps alternate with those for the generator.

Lastly, in order to enforce K-Lipschitz continuity for some K that depends on
W the network, weights w are defined in a compact space W. For this reason,

33

2 – Generative Adversarial Network

the authors proposed to naively fulfil this condition by clamping the weight to a
fixed box after each gradient update. Unfortunately, some complications can arise
depending on the clipping hyperparameter c since if it is too large, training the
critic will require more time in order to allow for all the weights to reach their
limit. On the contrary, for small c vanishing gradients issues can arise, especially
for deeper networks or architectures without batch normalization layers.

Algorithm 2 WGAN proposed algorithm for default values α = 0.00005, c = 0.01,
m = 64, ncritic = 5
Require: α the learning rate. c, the clipping parameter. m, the batch size. ncritic,

the number of iterations of the critic per generator iteration
Require: w0, initial critic parameters . θ0, initial generator parameters.

1: while θ has not converged do
2: for t = 0, ..., ncritic do
3: Sample {x(i)}m

i=1 ∼ pdata a batch from the real data.
4: Sample {z(i)}m

i=1 ∼ p(z) a batch of prior samples.
5: gw ← ∇w

è
1
m

qm
i=1 Dw(x(i))− 1

m

qm
i=1 Dw(Gθ(z(i)))

é
6: w ← w + α · RMSProp(w, gw)
7: w ← clip(w,−c, c)
8: end for
9: Sample {z(i)}m

i=1 ∼ p(z) a batch of prior samples.
10: gθ ← −∇θ 1

m

qm
i=1 Dw(Gθ(z(i)))

11: θ ← θ − α · RMSProp(θ, gθ)
12: end while

The introduction of EM distance allowed overcoming some unpleasant problems
of GANs. First of all, the critic differently from discriminator could be potentially
trained to optimality without incurring in vanishing gradient and also avoiding,
in this way, the unpleasant situation deriving from mode collapse. In addition,
empirical evidence suggests a correlation between the loss and the quality of
generated samples. Although the loss will not represent a new metric, it still can
help determine the training behavior for a given architecture because comparing
different models with different critics requires to compute the constant scaling
factor of each one that is intractable.

2.5.1 Gradient Penalty Regularization

Gulrajani et al. in [3] illustrated some issues arising from the weight clipping
regularization method used to guarantee Lipschitz constraint on the WGAN critic.

34

2 – Generative Adversarial Network

They argue that constraining the critic to be defined within the box [−c, c] is a
too strict condition, and consequently the resulting set of functions satisfying such
condition is a subset of K-Lipschitz function. Hence, such limitation causes the
critic to learn simpler functions that ignore higher moments of the data distribution
with the risk of missing the optimal critic f ∗.

The regularization method proposed in WGAN-GP is motivated by the theo-
retical property for which it will exist a 1-Lipschitz function that is the optimal
critic f ∗ and has the gradient norm almost 1 everywhere under pdataand pg. Their
experiments on WGAN show that during training, the gradient norm of the critic,
which depend on the threshold value c, may either explode or vanish as it is
propagated deeper in the network. It has also been observed that the WGAN critic
gradient chases the maximum gradient norm k instead of getting close to 1, the
gradient norm that the optimal critic would have. Hence, the solution proposed
is to penalize the critic whenever its gradient norm is different from 1 as a form
of regularization, but still there is no way to penalize gradient everywhere. With
this in mind, a tractable and empirically promising approximation for this method,
called the soft version, consists of applying the penalty only for random samples
x̂ ∼ px̂, where px̂ distribution represents all the points in X located on the straight
lines joining pair of points x and y respectively sampled from pdata and pg. Since
the optimal critic f ∗ has gradient norm 1 on x̂ points, the penalty would encourage
the same behaviour also for the trained critic. By adding the regularization term,
the WGAN loss becomes:

L = Ex̃∼pg [D(x̃)]− Ex∼pdata [D(x)] + λEx̂∼px̂
[(ë∇x̂D(x̂)ë2 − 1)2], (2.21)

where λ is a multiplicative constant typically set to 10.
It should be mentioned that with the introduction of the gradient penalty, the

use of batch normalization in the critic network is discouraged since it would
introduce correlations between images. This, as a result, will invalidate the penalty
effectiveness as it requires to be applied to each sample independently. The use of
layer normalization could be a valid alternative when normalization is necessary.
Next, it is shown the full training algorithm.

35

2 – Generative Adversarial Network

Algorithm 3 WGAN with gradient penalty given the default values of λ = 10,
ncritic = 5 α = 0.0001, β1 = 0, β2 = 0.9
Require: The gradient penalty coefficient λ, the number of critic iterations per

generator item ncritic, the batch size m, Adam hyperparameters α, β1, β2
Require: w0, initial critic parameters . θ0, initial generator parameters.

1: while θ has not converged do
2: for t = 0, ..., ncritic do
3: for i = 1, ..., m do
4: Sample {x(i)}m

i=1 ∼ pdata(x) from the real data.
5: Sample {z(i)}m

i=1 ∼ p(z) a prior sample.
6: Sample Ô ∼ U [0,1] a random number
7: x̃← Gθ(z)
8: x̂← Ôx+ (1− Ô)x̃
9: L(i) =← Dw(x̃)−Dw(x) + λ(ë∇x̂Dw(x̂)ë2 − 1)2

10: end for
11: w ← w + α · Adam(∇w 1

m

qm
i=1 L(i),w, α, β1, β2)

12: end for
13: Sample {z(i)}m

i=1 ∼ p(z) a batch of prior samples.
14: θ ← Adam(∇θ 1

m

qm
i=1−Dw(Gθ(z)),θ, α, β1, β2)

15: end while

36

Chapter 3

Graph Convolution

Graphs with their inherent structure allow a flexible representation of data in the
non-Euclidean domain, and this has motivated their adoption in a variety of fields,
including image processing. From a technical perspective, a graph is defined as
an ordered pair G = (V , E), with a non-empty set of nodes or vertices V and a
set of edges E ⊆ V × V, each of which connects a pair of vertices. A graph could
be either directed or undirected based on the edge definition. In the first case,
an edge indicates the direction of the connection, whereas in the second case, an
edge represents a bidirectional connection between two vertices. In addition, in
weighted graphs the connections are also characterized by weights, which express
the strength of the relationships described by the edges. Then for G = (V , E ,W),
a weighted graph, it can be introduced W ∈ RN×N a weight matrix in which each
connection between vertices vi and vj is described by a wij entry representing the
weight on such edge eij, or its absence if wij = 0.

In the same way that an image signal is represented as a discrete signal defined
on each position of a 2D grid structure, a graph signal can be seen as a set of
samples defined on each node of the graph structure. The most straightforward
signal, consisting of only one sample per node, can be defined through f : V → R,
a function that maps each of the N vertices to a real value, or equivalently by a
vector representation f ∈ RN where the i-th element is the value that the function
assumes at vertex vi. Therefore, assuming that the 2D image grid is a special
graph structure where each node is connected with its spatial adjacent pixels, the
convolution on images can be viewed as a particular case of graph convolution on
a grid-structured graph. However, although it might be possible to process graph
signal with traditional methods by naively treating the graph vertices as an ordered
sequence, it should be considered that in general, a graph lies in non-Euclidean
space. Extending in this way to graph signals the concepts and the transforms used

37

3 – Graph Convolution

on regular structured data, defined on Euclidean spaces, may lead to the definition
of operations that will miss meaningful information embedded in the graph irregular
structure. As a consequence, it is not straightforward to generalize even basic
operators such as translation, which is one of the building blocks in performing
the convolution operation between the graph signal f(i) and the impulse response
of a filter h(i). This led to the definition of new approaches capable of extending
the convolution operation to graph structured data. All these approaches can be
classified in spectral-based methods and spatial-based methods.

Figure 3.1: A graph signal.

3.1 Spectral-based Methods

Spectral-based methods for convolution [21] include all such methods that calculate
the convolution of graph signals in the spectral domain. Given a weighted undirected
graph G with N vertices, the graph Laplacian L ∈ RN×N is a matrix describing
the graph structure as:

L = D −W , (3.1)

where D is the degree matrix, a diagonal matrix in which the non zero element are
dii = q

j wij. From a different perspective, the graph Laplacian describe a linear
operator of difference L in the space of graph signals:

Lf(i) =
Ø

j∈Ni

wij (f(i)− f(j)) , (3.2)

38

3 – Graph Convolution

where the set Ni = {vj ; eji ∈ E} includes all the vertices vj directly connected to
node vi by an edge.

For a generic finite length P digital signal and length Q filter, the linear
convolution is calculated performing a circular convolution with n defined only
in [0, P + Q− 2] interval, and it results in a new sequence with maximum length
R = P + Q− 1:

(f ∗ h)(n) =
P −1Ø
m=0

f(m)h((n−m) mod R). (3.3)

The convolution theorem states that the convolution of two sequences in the time
domain is equal to the pointwise product of the signals in the frequency domain:

(f ∗ h)(n) = iDFT{DFT{f} ·DFT{h}}, (3.4)

where:

DFT{f(n)} =
N−1Ø
n=0

f(n)e−2πnk/N (3.5)

iDFT{F (k)} = 1
N

N−1Ø
k=0

F (k)e2πnk/N , (3.6)

Similarly to digital signals DFT, it is possible to define a transform for graph signals
called graph Fourier transform [22]. The main motivations behind calculating
convolution in the spectral domain rather than in the spatial one is the lack of
a defined translation operator for graph signals because the change of variable
technique, used for regular signals, cannot be easily generalized for graphs.

The graph Laplacian matrix L, which is real and symmetric can be decomposed
via eigendecomposition in L = UΛUT , where U is an orthonormal matrix com-
posed of column eigenvectors ul and Λ is a diagonal matrix with the corresponding
λl eigenvalues for l = 0, ..., N − 1. Assuming that the eigenvalues are sorted in
ascending order λ0 ≤ λ1 ≤ ... ≤ λN−1, and ul with them, graph Fourier transform
is defined as:

GF{f(i)} = f̂(λl) = éf, ulê =
NØ

i=1
f(i)u∗

l (i), (3.7)

and its inverse transform as:

IGF{f(λl)} = f(i) =
N−1Ø
l=0

f̂(λl)ul(i). (3.8)

39

3 – Graph Convolution

The eigenbasis coordinates of signal vector f may have a similar interpretation
to the energy of each frequency for regular structured signals. Indeed, each basis
vector ul, indicates a different graph Fourier mode, which turns out to be smoother
for lower eigenvalues and oscillate faster for the larger ones. As a result, the
eigenvector u0 associated with λ0, since it identifies the non-oscillating component,
it is constant and assumes 1/

√
N value for each element of the basis vector. The

GFT therefore shows a way of decomposing a generic graph signal into a linear
combination of f̂(λl) modes. In the graph spectral domain, the convolution is
calculated as:

(f ∗ h)(n) = IGF{GF{f} · GF{h}}

=
N−1Ø
l=0

f̂(λl)ĥ(λl)ul(i). (3.9)

Different limitations emerge from such a definition of convolution: the eigende-
composition has O(n3) computational complexity, and in particular, filters are
domain-dependent so that learning them in the spectral-domain for a specific graph
is not extensible to a general graph with a different structure. As a consequence,
such methods require to constrain all the graphs in the dataset to have the same
structure. Recent works [23][24] address these problems.

3.2 Spatial-based Methods

The spatial-based methods efficiently calculate convolution as information prop-
agation over the graph nodes. Although these methods are more prone to scale
to large graph applications, they do not have a strong theoretical foundation as
the spectral counterpart. As described in [25], the spatial construction is derived
by assuming that the usual 2D grid image structure is replaced with a generic
graph G = (V , E ,W), where W ∈ RN×N is the symmetric non-negative matrix
of the weighted edges. For a given threshold δ and node vj, the convolution is
then performed as a local operation through the aggregation of the connected
neighborhood of vj:

Nj = {vi ∈ V : Wij > δ}. (3.10)

Given a deep graph neural network with multiple graph convolutional layers indexed
by l, with 1 ≤ l ≤ lmax, and let V0 be the initial graph structure V, then for each
layer l of the network, the input graph represented by V l−1 is partitioned into dl

number of clusters. Every cluster will determine a vertex in V l and corresponds to
neighborhood in V l−1, which groups all the vertex in the same defined partition.
In each layer, the graph signal is processed by calculating the convolution within

40

3 – Graph Convolution

each neighborhood. As a result, the incoming F l−1-dimensional graph signal over
the graph V l−1 is transformed in an F l-dimensional signal over V l. As the signal
propagates during the inference, through all the network, the graph structure will
progressively become coarser, while the graph signal dimensionality will increase,
as happens in CNNs.

At layer l, the signal xl
j is obtained as:

xl
j = P lσ

F l−1Ø
i=1

K l
ijx

l−1
i

 (j, = 1, ..., F l) (3.11)

where F l indicates the number of filters, xl−1
i ∈ Rdl−1×F l−1 represents the input

graph signal and K l
ij ∈ Rdl−1×dl−1 is the filter matrix that is nonzero only for the

element in N l = {N l
i ; i = 1, ..., dl−1}, the set of neighborhoods around each vertex

in V l−1. Lastly σ(·) stands for a non-linear activation function and P l for a pooling
operation over each cluster for V l nodes. This simple method, unfortunately is not
capable of sharing filter weight over the nodes of the graph.

3.2.1 Edge-Conditioned Convolution with
Dynamic Filters

In defining Edge-Conditioned Convolution (ECC) [26], inspired by Dynamic filter
networks [27], Simonovsky et al. proposed a viable method of weights sharing for
the spatial-based graph convolution. Let G = (V , E) be a directed or undirected
graph with N vertices and M edges. For each layer l two essential function are
introduced, namely a vertex labeling function X l : V → RF l that assigns a graph
signal to each vertex and an edge labeling function L : E → RS that likewise assigns
edge features. ECC, as other spatial methods, computes the convolution in an
information propagation fashion, then the filtered signal on every vertex is obtained
from a weighted sum of the neighboring nodes signals. The filter weights involved
into this aggregation are conditioned on the edge label. This is where Dynamic
filter networks [27] are employed, providing edge-specific filter matrices generated
from the edge labels L with a neural network F l : RS → RF l×F l−1 . Inspired by the
regular convolution on the grid structure, the filters are shared along the layer l
using the same network F l to generate them and the aggregation method operates
locally in the neighborhood Ni = {vj ; ej,i ∈ E} ∪ {vi}. The resulting equation for

41

3 – Graph Convolution

the Edge Conditioned Convolution is:

X l(i) = 1
|Ni|

Ø
j∈Ni

F l(L(j, i);W l)X l−1(j) + bl

= 1
|Ni|

Ø
j∈Ni

Θl
jiX

l−1(j) + bl (3.12)

where Θl
ji filters are the dynamically generated from F l network, and W l and bl

are learnable weights .
The method flexibility is emphasized in [26] describing the approach adopted in a

point in cloud classification problem, in which application the graph is constructed
by creating V vertices from each point p ∈ P and assigning on each one its own signal
X0(i) = Xp(p). Direct edges ei,j, which connect every vertex vi to all elements
vj in its defined neighborhood Ni, are labeled by L, a function that computes
spatial distance between the edge nodes in Cartesian and spherical coordinates
L(vj, vi) = (δx, δy, δz, ëδë, arccos δz/ëδë, arctan δy/δx), where δ represent the
difference w.r.t. the subscript coordinate. Nevertheless, nothing prevents from
using in the possible applications of this method other labeling functions based on
different distance metrics.

Figure 3.2: The edge specific weight matrix Θ21 is generated by F l for computing
the neighbor v2 contribution Θl

21X
l−1(2) to the convolution over N1 centered on

v1.

42

3 – Graph Convolution

3.2.2 Graph convolutional layer

In [4], Valsesia et al. introduce the graph convolutional layer in which they use a
graph convolution operation, in a novel way, to capture self-similarities on images
on distant spatial locations with features similar to the center pixel of convolution.
This method has been used for image denoising since it was inspired by previous
classic approaches based on harnessing self-similarities for such a task.

Given an image with N pixels and a F l dimensional signal defined on each of
them, the graph convolution is used to aggregate the feature vectors inH l ∈ RF l×N

with their own neighbors, represented by the closest nodes in terms of similarity
distance in the hidden space of layer l. Specifically, two convolution are computed
in the graph convolutional layer, respectively one inspecting spatial local position
and the other inspecting non-local areas. The resulting signals are aggregated as
follows:

hl+1
i = hl+1,NL

i + hl+1,L
i

2 + bl, (3.13)

where hl+1,L
i ∈ RF l represents the output of a regular 3× 3 convolution, whereas

hl+1,NL
i is the outcome of a non-local convolution. This method results in an

operation with an adaptive receptive field, which will also include the image signal’s
areas where the feature most similar to the center node of convolution are located.

For each graph convolutional layer a graph is dynamically built by connecting
each pixel i to its k most similar neighbors in the feature space RF l based on
the Euclidean distance of their feature vectors ëdl,j→ië = ëhl

j − hl
ië2. It must be

pointed out that in selecting the neighbors the pixels already considered by local
convolution are excluded from the graph construction. Then, the node aggregation
for non-local convolution here is performed through the ECC method [26] applied
on each node of the k-regular graph Gl = (V , E l), with |V| = N and E l ⊆ V × V.
Notably, the generated filter weights Θl,j→i are conditioned on the edge label
L(i, j) = hl

j − hl
i, which is also based on the distance in RF l .

Starting from (3.12) Valsesia et al. have introduced the graph convolution,
equipped with an edge-attention term γj→i, as follows :

H l+1,NL
i =

Ø
j∈N l

i

γl,j→iF
l
wl(dl,j→i)H l

j

|N l
i |

(3.14)

=
Ø

j∈N l
i

γl,j→i Θl,j→iH l
i

|N l
i |

,

where N l
i is the neighborhood of vi, and Θl,j→i ∈ RF l×F l+1 is the dynamic filters

43

3 – Graph Convolution

Figure 3.3: The k most similar neighbors are selected for pixel at position 51
from the features vectors in H l

matrix generated by F l
wl , a fully connected neural network parameterized by W l

weight matrix. The term γj→i makes learning more stable by shrinking the signals
coming from the furthermost features in hidden space by a factor:

γl,j→i = exp(−ëdj→ië2
2/δ). (3.15)

Thus, γl,j→i only depends on δ hyper-parameter and on edge label as for Θl,j→i, so
it is likewise shared in the network layer.

The use of ECC, in this context, should provide adaptive filters that can further
generalize convolution for spatial distant location, at the cost of adding more
complexity and making learning harder.

Lightweight ECC

In [4] a lightweight version of ECC is introduced with the aim of mitigating its
shortcomings, namely the space complexity and the over-parameterization, with
two techniques: low-rank node aggregation and circulant approximation.

Low-rank node aggregation This method enables a significant decrease in
memory requirement for the ECC computation. A considerable amount of memory
is used even for the simplest dynamic filter network F , consisting of a feedforward

44

3 – Graph Convolution

neural network with a single hidden layer. In fact, F has to generate a Θl,j→i

weight matrix for each neighbour vj in Ni, for each pixel i and image in the batch.
The low-rank approximation adopts the substitution of Θl,j→i with a rank

r < rank(Θl,j→i) approximation matrix Θ̃l,j→i. This method is based on the
singular value decomposition, which for a generic real matrix A ∈ Rm×n is defined
as the factorization into the product of three matrices:

A =UΣV T (3.16)

where both U ∈ Rm×m, V ∈ Rn×n are orthonormal matrices, and Σ ∈ Rm×n is a
diagonal matrix containing all the singular values of A on its diagonal. Importantly,
the decomposition can be performed in such a way that arranges the singular values
in a descending order over the Σ diagonal. Now, the Eckart Young Mirsky theorem:

min
Ã

ëA− Ãë2 = σk+1 (3.17)

s.t. rank(Ã) = r,

states that the optimal rank r < rank(A) approximation to A is achievable with
the truncated SVD method in which only the r largest singular value and relative
singular vector are computed:

Ã =UrΣ̃rV
T

r (3.18)

=
rØ

i=1
σiuiv

T
i .

With this in mind, each generated matrix Θl,j→i can be likewise approximated by
the sum of rank one matrices as:

Θ̃l,j→i =
rØ

s=1
κj→i

s θj→i,L
s θj→i,RT

s (3.19)

with θj→i,L
s ∈ RF l , θj→i,RT

s ∈ RF l+1 and κj→i
s ∈ R and 1 ≤ r ≤ F l. However,

since θj→i,L
s and θj→i,RT

s are not necessarily orthogonal r represents the maximum
possible rank attained by the approximation matrix. The use of Θ̃l,j→i in the
output layer of F will thus mitigate the memory occupation issues by reducing
learned parameters from F hidden ·F l ·F l+1 to F hidden ·r(F l +F l+1 +1), not including
the bias weights. In addition, this method avoids the explicit computation of the
entire matrices Θl,j→i, thus preventing to fully load it in memory, and instead,
it just obtains the edge filters by multiplying the edge labels to one factor at a
time. In conclusion low-rank node aggregation will benefits from the smaller spatial
requirements for filter storage and from lower computational complexity, which

45

3 – Graph Convolution

become O(r(F l + F l+1 + 1). Yet, this method also has a considerable disadvantage
since it requires a more accurate weight initialization to avoid different order of
magnitude between graph convolutional layer input and output, and between
incoming and outcoming gradients during backpropagation because if they are on
a different scale they could lead to exploding or vanishing gradients.

Circulant approximation of dense layer In [4] a further approximation is
used on F still on the second affine layer that generates θj→i,L

s and θj→i,RT

s . The
use of a circulant matrix structure prevents the rise of issues related to over-
parameterization, which can lead to vanishing gradients. The approximate weight
matrix used is composed of multiple stacked partial circulant matrices. In each
partial matrix there are the same learning parameter but with a different circular
shift. Given a weight matrix W ∈ Rn×m which defines a linear map Rn → Rm,
its approximation is composed by p replicas W̃ 1, ..., W̃ p ∈ Rn×m/p where each of
these represents the same matrix whose elements are shifted by m/p as if it were a
flatten row-major vector. As a result the aforementioned methods cuts down W L

dimension from F lF lr to F l · F l

m
r and analogously WR to F l F l+1

m
r .

3.2.3 Edge Convolution

The Edge Convolution (EdgeConv) from [28] is another spatial-based method
for graph convolution that was used in a similar context to [4], namely on a
dynamically built k-nearest neighbors graph Gl = (V , E l). Given Gl EdgeConv
computes edge features eij for every edge eij connected to a node vi through the
function hφ : RF l × RF l → RF l+1 implemented by a MLP with parameters Φ.
Subsequently, the edge features are aggregated with a sum or max operation over
all the neighborhood. Precisely, the method proposed by Wang et al. calculate
edge features as:

eij = hΦ(hl
i ; hl

j − hl
i) (3.20)

in the attempt to capture both the global structure from hi features and the relative
structure with the neighbors’ distances in the feature space. The h function can be
implemented also by 1× 1 convolution with W l

ψ ∈ RF l×F l+1 and W l
φ ∈ RF l×F l+1

weight matrices, where m = 1, ..., F l+1 represent the index of resulting output
channel. Thus, for the sum aggregating function it results:

hl+1
im =

Ø
j∈N l

i

ReLU(W l
m;φ · (hl

j − hl
i) +W l

m;ψ · hl
i). (3.21)

Notably, as the authors argue, this definition may recall the standard convolution
on the 2D grid where the h function would provide the weighted contribution for

46

3 – Graph Convolution

each input location in the sliding window. Moreover, although it shares a similar
aggregation function, this operation differs from ECC[26] since its MLP network
directly computes the contribution of each neighbor to the convolution operation
rather than providing a projection matrix conditioned on each edge pair.

47

Chapter 4

Modeling Non-Local
Dependencies for Image
Generation

Image synthesis is a rather complex task to which Deep Convolutional GANs have
given a significant contribution [19], proving the convolutional layer’s effectiveness
for the generation of reasonably good quality image samples. It is well known
that convolution and strided convolution successfully captures and reproduces
local patterns in the image that fall into their receptive field. This means that
spatially distant dependencies in an image are modeled by using multiple stacked
convolutional layers, which result in a greater indirect receptive field as the network
goes deep. Consequently, the only way the generator could learn the long distance
dependencies is as a composition of convolution operations, which in practice in
most of the cases this does not happen properly since the generator miss the overall
image structure. In fact, as Zhang et al. pointed out in [29], by analyzing the
sample produced from deep convolutional GANs, one could notice that the network
is usually more prone to learn successfully textures and spatially local structures
rather than the structural image patterns. To this end, the use of bigger kernels
to enlarge the convolutional layer receptive field would not be a realistic solution
since it would make the network lose the efficiency benefits deriving from small
kernels, hence resulting in an unfeasible method for very deep networks.

49

4 – Modeling Non-Local Dependencies for Image Generation

4.1 Self-Attention and Graph Convolutional
Layer

Self-Attention The self-attention mechanism on image defined in [30],[31], and
adapted to the GAN framework in [29] has proven its effectiveness in overcoming
the limitations in learning structural patterns. In self-attention GAN (SAGAN)
this method is used in both the generator for modeling dependencies from distant
locations in the generated images, and in the discriminator to control and enforce
the structural constraints more accurately. Let X ∈ RN×F be the activation maps
for a generic layer, the attention mechanism is defined as:

yi = 1
C(X)

Ø
∀j

d (xi,xj) h (xj) . (4.1)

This equation describe a non-local operator in which the output features y are
computed by considering for each position i in the activation maps the similarity
distance between all possible j positions with d(xi,xj). The other terms h and
C represent respectively a function that maps xj to a new representation, and a
normalization factor required to normalize over the N positions. Precisely, the
formulation used in [29] computes the similarity distance with a Gaussian kernel in
an affine space, so that equation (4.1) becomes:

oi = Wv

NØ
j=1

è
softmax(Wfxi)TWgxj)

é
Whxj (4.2)

where Wf ,Wg,Wh,W T
v ∈ RF ×F̄ are learnable weight matrices used for 1 × 1

convolution and F̄ is the depth dimension in the affine space. The output of the
attention block:

yi = γoi + xi, (4.3)

is weighted by a scalar γ initialized as 0 to gradually introduce its contribution
during training by assigning as much emphasis as needed on non-local dependencies
as the iterations proceed.

Graph Convolutional Layer This method, in comparison, pursues a different
approach in which the convolutional layer’s receptive field is directly enlarged to also
include self-similarities as non-local dependencies, in performing the convolution.
The graph convolutional layer [4] during the convolution operation, indeed, considers
for each neuron xi not only neurons inside the surrounding local receptive field,
but also the neurons xj outside that share some similarity with xi. This can be

50

4 – Modeling Non-Local Dependencies for Image Generation

achieved using a graph convolution operation on a dynamically generated k-nearest
neighbor graph G = (V , E), defined by the set of vertices V , one for each position i
in X and the set of edges E that connects each xi with its most similar neighbors
xj . In particular, the graph representation as a generalization of the 2D regular grid
allows the use of an arbitrary metric d different from the spatial distance between
two nodes. Hence the definition of d as the Euclidean distance in feature space,
d(xi,xj) = ëxi − xjë2 [4] [28]. The graph built is then exploited in computing the
non-local output features for each position i as the aggregation of the features xi

and xj, for j ∈ Ni, by a spatial-based graph convolution operation.
As a result, the graph convolutional layer is capable of modeling dependencies

among spatially distant pixels in the image in an efficient way with sparse connec-
tivity and shared weights property as for regular convolution. Consistently with
the method proposed in the graph convolutional layer [4] the outcome of such
operation will be aggregated with the output of a regular convolution as defined
in the equation (3.13) to simultaneously consider the contribution of both local
and non-local receptive field in generating the new activation maps. It should
be emphasized that the neurons that already fall in the local receptive field are
excluded from the non-local receptive field to avoid consider them twice.

4.2 Proposed Architectures

For the sake of this study, the introduction of graph convolutional layers in the
WGAN framework was considered strictly necessary only for the generator network
to model long-distance dependencies in a more direct way. Consequently, in this
work, a single convolutional architecture was tested for the critic network and three
different architectures for the generator. Respectively: a convolutional baseline
model (Figure 4.2), a second model that implements the graph convolutional layer
[4] through EdgeConv [28] (Figure 4.3) and a third one that implements the same
operation through ECC [26] (Figure 4.4). Initially, lightweight ECC [4] was a
candidate method too, but unfortunately its use has caused severe instability
problems during training, thus making it impractical.

As shown in Figure 4.1, the critic is composed of three 5× 5 convolutional layers
with stride 2 to downsample the image inputs as they pass through the network up
to the last layer, whose output is used to compute the estimate of the Wasserstein
distance that separates the sample distribution from the generated one. It must
be noted that batch normalization was just omitted as suggested in [3] because it
prevents the independent calculation of the gradient penalty for each sample.

The generator baseline shown in Figure 4.2 consists of a CNN equipped with

51

4 – Modeling Non-Local Dependencies for Image Generation

Figure 4.1: Critic architecture

3× 3 kernel size convolutions. The starting noise vector z of size 132 is mapped to
a 4× 4× 528 tensor by a fully connected layer (every feature size used is designed
to be multiple of 33 and 11 to be compatible with the Lightweight ECC rank and
circulant approximations parameters). As the signal goes through the generator
network, it is upsampled using the nearest-neighbor interpolation followed by a
convolution that halves the number of features preserving spatial complexity. Then,
a further 3 × 3 convolution is performed, leaving the signal depth unchanged.
The upsampling plus two convolutions block is replicated until the signal reaches
32× 32× 66 size. Finally, the activation maps depth 66 is transformed to 3, the
RGB channels, by a 1× 1 convolution.

Figure 4.2: Baseline generator architecture

The architectures featuring graph convolutional layers are obtained from the
baseline model by replacing the second convolution after the upsampling with a
graph convolutional layers, except for the first block. This choice was motivated by
the high number of features, namely 264, which makes ECC impractical since the
dimensionality of Θl

ij depends cubically on F l. Moreover, a graph convolution on
a small size 8× 8 activation map would not result much different from a regular

52

4 – Modeling Non-Local Dependencies for Image Generation

convolution.

Figure 4.3: EdgeConv implementation of graph convolutional generator architec-
ture

Figure 4.4: ECC implementation of graph convolutional generator architecture

In each graph convolutional layer the k-nearest neighbor graph Gl is constructed
accordingly to [4] and [28] by selecting the nearest nodes to hl

i in RF l , the feature
space learned by the previous layer. Subsequently, the Cartesian coordinates of
row and column are concatenated to the existing features hl to add a spatial
context. Then, the exact method defined by each operator was respected during
the calculation of non-local features, hence in ECC the Θl

ij matrices are derived
from the label function L(i, j) = hl

j − hl
i, whereas in EdgeConv the edge features

eij are computed from (hi ; hj−hi) since this method directly involves the feature
vector of the pixel at position i.

4.3 Experiments

The proposed experiments are focused on the potential advantages or disadvantages
stemming from the use of graph convolutional layers and not to compare the
presented models to alternative methods such as SAGAN [29]. For this purpose, a

53

4 – Modeling Non-Local Dependencies for Image Generation

comparison based on the Inception Score (IS) was made between the baseline and
graph convolutional models, therefore the results must be interpreted with this
in mind. In all the experiments the WGAN-GP was trained in an unsupervised
approach on the CIFAR-10 training dataset, consisting of 50000 samples, with a
5 : 1 iteration ratio between the critic and the generator for 105 generator update
step. All the networks were trained with the RMSprop optimizer and a batch size of
32, or 16 and 8 when required from GPU memory capacity limits. Respectively the
starting learning rates used for each batch size were 1× 10−4, 7× 10−5 and 5× 10−5

decayed linearly to 0 after 105 generator iterations. Several non-local receptive
field sizes were evaluated for each graph convolutional network, parametrized by
the number of selected neighbors k, to analyze the contribution of modeling the
non-local dependencies between the neuron in the center of convolution and a more
extensive area represented by its neighborhood Ni, of size k, in the dynamically
generated graph Gl.

Table 4.1 shows the inception scores obtained at the end of training for the
different architectures and neighborhood sizes, whereas Figure 4.5 shows the IS
progress over the generator training iterations.

Generator Architecture batch size learning rate k Inception Score
Baseline 32 1 ×10−4 0 6.442± 0.511
EdgeConv 32 1 ×10−4 8 6.154± 0.421
EdgeConv 32 1 ×10−4 16 5.889± 0.345
EdgeConv 32 1 ×10−4 32 5.942± 0.492

ECC 32 1 ×10−4 8 6.204± 0.356
ECC 16 7 ×10−5 16 5.802± 0.293
ECC 8 5 ×10−5 32 5.649± 0.217

Table 4.1: Inception scores obtained on CIFAR-10 after 1×105 generator iterations

54

4 – Modeling Non-Local Dependencies for Image Generation

Figure 4.5: Inception score progress over the generator training iteration

The collected results show that there is no clear evidence of whether this method
may help or not the generator to capture spatially distant dependencies. The
generators that include graph convolutional layer do not outperform the baseline,
but instead, their inceptions scores are very close to it. Specifically, the slightly
worse results obtained from ECC networks with k = 16 or k = 32 are probably due
to the smaller batch size and learning rate. Moreover, by visually inspecting the
samples generated by the graph convolutional architectures, it can be seen that in
some limited cases they have a somewhat meaningful structure, and their belonging
class is recognizable. Nevertheless, this happens also for baseline samples since
some structures such as car shapes, horses and deer side views appear easier to
model. Still, the remaining majority of samples have a blob shape without any
defined structure as happens for the baseline architecture.

55

4 – Modeling Non-Local Dependencies for Image Generation

Figure 4.6: Samples generated from baseline model at iteration 100000

56

4 – Modeling Non-Local Dependencies for Image Generation

Figure 4.7: Samples generated from EdgeConv model with k = 8 at iteration
100000

57

4 – Modeling Non-Local Dependencies for Image Generation

Figure 4.8: Samples generated from EdgeConv model with k = 16 at iteration
100000

58

4 – Modeling Non-Local Dependencies for Image Generation

Figure 4.9: Samples generated from EdgeConv model with k = 32 at iteration
100000

59

4 – Modeling Non-Local Dependencies for Image Generation

Figure 4.10: Samples generated from ECC model with k = 8 at iteration 100000

60

4 – Modeling Non-Local Dependencies for Image Generation

Figure 4.11: Samples generated from ECC model with k = 16 at iteration 100000

61

4 – Modeling Non-Local Dependencies for Image Generation

Figure 4.12: Samples generated from ECC model with k = 32 at iteration 100000

62

Chapter 5

Conclusion

In this project, the introduction of the graph convolutional layer in the generator
architecture has not actually solved the lack of a global structure in generated
images, and from the analysis done, it did not provide evidence of any improvement
over the baseline. However, it cannot be claimed that this method might not be
beneficial in the GAN framework in any case. On the contrary, it would be crucial to
deepen the analysis. Since both the two methods of graph convolution tested have
provided results similar to the baseline model in any neighborhood size condition,
perhaps some common problems hinder the generators from learning non-local
patterns. In light of these evidence, some hypotheses can be proposed. These results
are perhaps mainly dependent on the used critic architecture, and possibly, contrary
to the initial assumptions, the graph convolutional layer is strictly required also in
the critic network to train the generator networks successfully. This could allow the
critic to capture long-range dependencies between distant pixels, thus providing a
better estimate of the Wasserstein metric and, consequently, push the generator
towards learning structural patterns. Alternatively, it might be possible that the
networks learn to ignore the graph convolution, hence the non-local receptive
field, by exploiting only the local component in graph convolutional layer, thus
behaving like a traditional CNN and providing a score close to the baseline model.
Otherwise, it might also be possible that the graph convolutional layer requires to
be refined in some detail. Tests could be done using a different similarity metric,
a different aggregation function between the receptive fields, or even a different
graph building method. However, GANs are probably not the most straightforward
framework for testing these redefinitions on the graph convolutional layer isolating
it from other possible sources of problems. For instance, it may be useful to detect
non-local patterns for image classification tasks where a more interpretable loss can
be advantageous in detecting anomalies during the graph convolutional network

63

5 – Conclusion

training. In this manner, the different components of the graph convolutional layer
can be incrementally integrated or changed while monitoring whether improvements
in the considered loss occur.

64

Bibliography

[1] Ian J. Goodfellow. «NIPS 2016 Tutorial: Generative Adversarial Networks».
In: ArXiv abs/1701.00160 (2016) (cit. on pp. ii, 19).

[2] Martín Arjovsky, Soumith Chintala, and Léon Bottou. «Wasserstein GAN».
In: ArXiv abs/1701.07875 (2017) (cit. on pp. ii, 32).

[3] Ishaan Gulrajani, Faruk Ahmed, Martín Arjovsky, Vincent Dumoulin, and
Aaron C. Courville. «Improved Training of Wasserstein GANs». In: NIPS.
2017 (cit. on pp. ii, 34, 51).

[4] Diego Valsesia, Giulia Fracastoro, and Enrico Magli. «Deep Graph-Convolutional
Image Denoising». In: ArXiv abs/1907.08448 (2019) (cit. on pp. ii, 43, 44, 46,
50, 51, 53).

[5] Christopher M. Bishop. Pattern Recognition and Machine Learning (Infor-
mation Science and Statistics). Berlin, Heidelberg: Springer-Verlag, 2006,
pp. 365–366, 430–432. isbn: 0387310738 (cit. on p. 5).

[6] Christopher Bishop. «Latent Variable Models». In: Learning in Graphical
Models. MIT Press, Jan. 1999, pp. 371–403. url: https://www.microsoft.
com/en-us/research/publication/latent-variable-models/ (cit. on
p. 5).

[7] Zhijian Ou. «A Review of Learning with Deep Generative Models from
perspective of graphical modeling». In: ArXiv abs/1808.01630 (2018) (cit. on
p. 10).

[8] Lawrence K Saul, Tommi Jaakkola, and Michael I Jordan. «Mean field theory
for sigmoid belief networks». In: Journal of artificial intelligence research 4
(1996), pp. 61–76 (cit. on p. 11).

[9] Geoffrey E Hinton, Peter Dayan, Brendan J Frey, and Radford M Neal. «The"
wake-sleep" algorithm for unsupervised neural networks». In: Science 268.5214
(1995), pp. 1158–1161 (cit. on p. 12).

65

https://www.microsoft.com/en-us/research/publication/latent-variable-models/
https://www.microsoft.com/en-us/research/publication/latent-variable-models/

BIBLIOGRAPHY

[10] Yoshua Bengio and Samy Bengio. «Modeling high-dimensional discrete data
with multi-layer neural networks». In: Advances in Neural Information Pro-
cessing Systems. 2000, pp. 400–406 (cit. on p. 12).

[11] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:
//www.deeplearningbook.org. MIT Press, 2016, pp. 131–133, 168–169,
177–181, 198–201, 330–358, 563–571, 585–588, 694–695 (cit. on pp. 13, 15,
18).

[12] Diederik P. Kingma and Max Welling. «Auto-Encoding Variational Bayes».
In: CoRR abs/1312.6114 (2013) (cit. on pp. 15, 17).

[13] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. «Generative
Adversarial Nets». In: Advances in Neural Information Processing Systems
27. Ed. by Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and
K. Q. Weinberger. Curran Associates, Inc., 2014, pp. 2672–2680. url: http:
//papers.nips.cc/paper/5423- generative- adversarial- nets.pdf
(cit. on pp. 15, 19, 20).

[14] Martín Arjovsky and Léon Bottou. «Towards Principled Methods for Training
Generative Adversarial Networks». In: ArXiv abs/1701.04862 (2017) (cit. on
p. 24).

[15] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Rad-
ford, Xi Chen, and Xi Chen. «Improved Techniques for Training GANs». In:
Advances in Neural Information Processing Systems 29. Ed. by D. D. Lee,
M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett. Curran Associates,
Inc., 2016, pp. 2234–2242. url: http://papers.nips.cc/paper/6125-
improved-techniques-for-training-gans.pdf (cit. on p. 26).

[16] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna. «Rethinking the Inception Architecture for Computer Vision». In:
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2015), pp. 2818–2826 (cit. on p. 26).

[17] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin A.
Riedmiller. «Striving for Simplicity: The All Convolutional Net». In: CoRR
abs/1412.6806 (2014) (cit. on p. 29).

[18] Vincent Dumoulin and Francesco Visin. «A guide to convolution arithmetic
for deep learning». In: ArXiv abs/1603.07285 (2016) (cit. on p. 30).

[19] Alec Radford, Luke Metz, and Soumith Chintala. «Unsupervised Representa-
tion Learning with Deep Convolutional Generative Adversarial Networks».
In: CoRR abs/1511.06434 (2015) (cit. on pp. 31, 49).

66

http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/6125-improved-techniques-for-training-gans.pdf
http://papers.nips.cc/paper/6125-improved-techniques-for-training-gans.pdf

BIBLIOGRAPHY

[20] C. Villani. Optimal Transport: Old and New. Grundlehren der mathematischen
Wissenschaften. Springer Berlin Heidelberg, 2008. isbn: 9783540710509. url:
https://books.google.it/books?id=hV8o5R7%5C_5tkC (cit. on p. 33).

[21] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst.
«The emerging field of signal processing on graphs: Extending high-dimensional
data analysis to networks and other irregular domains». In: IEEE Signal
Processing Magazine 30.3 (2013), pp. 83–98 (cit. on p. 38).

[22] D. I. Shuman, B. Ricaud, and P. Vandergheynst. «A windowed graph Fourier
transform». In: 2012 IEEE Statistical Signal Processing Workshop (SSP).
2012, pp. 133–136 (cit. on p. 39).

[23] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional
Neural Networks on Graphs with Fast Localized Spectral Filtering. 2016. arXiv:
1606.09375 [cs.LG] (cit. on p. 40).

[24] Thomas N Kipf and Max Welling. «Semi-Supervised Classification with Graph
Convolutional Networks». In: arXiv preprint arXiv:1609.02907 (2016) (cit. on
p. 40).

[25] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral
Networks and Locally Connected Networks on Graphs. 2013. arXiv: 1312.6203
[cs.LG] (cit. on p. 40).

[26] Martin Simonovsky and Nikos Komodakis. «Dynamic Edge-Conditioned Fil-
ters in Convolutional Neural Networks on Graphs». In: 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (2017), pp. 29–38 (cit.
on pp. 41–43, 47, 51).

[27] Xu Jia, Bert De Brabandere, Tinne Tuytelaars, and Luc Van Gool. «Dynamic
Filter Networks». In: NIPS. 2016 (cit. on p. 41).

[28] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein,
and Justin M. Solomon. «Dynamic Graph CNN for Learning on Point Clouds».
In: ACM Trans. Graph. 38 (2019), 146:1–146:12 (cit. on pp. 46, 51, 53).

[29] Han Zhang, Ian J. Goodfellow, Dimitris N. Metaxas, and Augustus Odena.
«Self-Attention Generative Adversarial Networks». In: ArXiv abs/1805.08318
(2019) (cit. on pp. 49, 50, 53).

[30] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. «Attention is All you
Need». In: Advances in Neural Information Processing Systems 30. Ed. by
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett. Curran Associates, Inc., 2017, pp. 5998–6008. url: http:
//papers.nips.cc/paper/7181-attention-is-all-you-need.pdf (cit.
on p. 50).

67

https://books.google.it/books?id=hV8o5R7%5C_5tkC
https://arxiv.org/abs/1606.09375
https://arxiv.org/abs/1312.6203
https://arxiv.org/abs/1312.6203
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

BIBLIOGRAPHY

[31] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-local
Neural Networks. 2017. arXiv: 1711.07971 [cs.CV] (cit. on p. 50).

68

https://arxiv.org/abs/1711.07971

	List of Tables
	List of Figures
	Symbols
	Acronyms
	Introduction
	Generative models
	Graphical Models

	Neural Networks
	Deep Generative Models
	Stochastic models
	Differentiable generator models

	Generative Adversarial Network
	GAN convergence theory
	Training the adversarial net
	GAN Issues
	Convolutional Generative Adversarial Networks
	Convolution operation
	Pooling
	Padding and stride
	Transposed convolution operation
	Nearest-Neighbor Interpolation
	Deep Convolutional Generative Adversarial Network

	Wasserstein GAN
	Gradient Penalty Regularization

	Graph Convolution
	Spectral-based Methods
	Spatial-based Methods
	Edge-Conditioned Convolution with Dynamic Filters
	Graph convolutional layer
	Edge Convolution

	Modeling Non-Local Dependencies for Image Generation
	Self-Attention and Graph Convolutional Layer
	Proposed Architectures
	Experiments

	Conclusion
	Bibliography

