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Summary

The increasing amount of data available nowadays has made the use of automatic
learning algorithms, also known as machine learning, spread. Machine learning is
widely used for applications like speech recognition, natural language processing or
robotics. The most popular technique used for these purposes is neural networks.
These models require a great amount of computation capacity and until now, GPUs
have mainly covered these computations. Recently, field programmable gate arrays
(FPGAs) are becoming more common within these applications. The main differ-
ence between GPUs and FPGAs is that the latter offer the user the possibility of
designing specific hardware instead of using a fixed architecture. Also, FPGAs offer
a great parallel computation capacity as well as low power consumption compared
with GPUs.

For this project, it has been decided to analyze the model compression for a
neural network in order to understand how model compression can influence the
accuracy and as a consequence the improvement in needed hardware and memory
constrain. This is because computing edge neural network has fixed constrain that
is fundamental to respect. After the extensive model compression operated in
MATLAB, there is a design and implementation details part of an optimized neural
network on FPGA. We will study the benefits the FPGA provides, paying special
attention to the resources utilization, throughput and accuracy of the algorithm.
Experimental results will be carried out on a Xilinx FPGA, in particular, we will
use the Zynq-7000 SoC ZC706 Evaluation Kit from Xilinx. This board contains an
XC7Z045 FPGA.
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Chapter 1

Introduction

This chapter gives a formal definition of the machine learning approach and which
is the relationship between this last one and the neural network. After that we will
treat about the neural network concept inspiration based on human brain. In the
last part there is a comparison of neural network approach and the advantages
respect to normal machine learning solutions analyzing the areas in which is better
using the one respect to the other.

1



Introduction

1.1 Machine learning concept and algorithms
The Artificial Intelligence is still one of the most exciting challenges for the future
which was described by John McCarthy as:

• “The science and engineering of creating intelligent machines that have the
ability to achieve goals like humans do”.

The improvement at the quantity of data available and improvement at hard-
ware level give the possibility grow up one subset of Artificial Intelligence called
machine learning.

There are different machine learning definitions but two of the most important
and well noted are the following ones:

• Field of study that gives computers the ability to learn without being explicitly
programmed [Arthur Samuel, 1959].

• A computer program is said to learn from experience E with respect to some
task T and some performance measure P, if its performance on T, as measured
by P, improves with experience E [Tom Mitchell, 1998].

It is possible to note that the first definition is a general concept of the machine
learning approach, while the second one is more specific and it is applied to modern
machine learning problems.
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1.1 – Machine learning concept and algorithms

There is one very important consideration to do about the word “experience”
in the definition of Tom Mitchell (nowadays called training), because it explains
well how for the machine learning approach one machine thanks to “training” has
the possibility to “learn” from the data and build a model that can be used with
different data.

This way it is very different from the classical approach in which the model is
built for a specific application, it is not defined by the processed data.

Figure 1.1 shows this approach in which in a classical approach there are the
inputs that are data inputs and a pre-built model and the outcome of the model
are the data outputs.

In case of machine learning there are the data inputs also called samples, the
output, called label and we want that the machine creates a model that it will
predict also the correct output-data when it will use data inputs different from the
used as samples.

Figure 1.1: Classical model vs Machine learning model.
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Introduction

1.1.1 Machine learning categories
The machine learning algorithms can be divided into three big categories:

• Supervised learning: it is based on the fact that a set of known correct
outputs are given so it is possible build a predictive model starting from
the output and input. It is used in problems concerning classification and
regression. The evaluation phase in this case is quantitative and the training
process is mandatory.

• Unsupervised learning: it is used to group or interpret data based only
on input data, the correct output data are not given. Its particular scope is
identify the pattern/structure of the data. The evaluation phase in this case
is just qualitative.

• Reinforcement learning: machines learn what to do based on a certain
environment.

There are several types of machine learning algorithms for the three different
categories previous explained, each of them is used for different specific situations.
For all types of algorithms, some features will be defined and those features will be
the inputs of the algorithm, to allow the computer to produce the output depending
on the value of the different features.

Figure 1.2 summarizes the different possible machine learning algorithms.

Figure 1.2: Different types of machine learning algorithms.
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1.1 – Machine learning concept and algorithms

1.1.2 Neural networks concept and inspiration
There are two types of machine learning techniques which are inspired by the
human-brain, one is called spiking computing, the second one is called neural
networks as shown in figure 1.4.

An adult human brain is formed by between 85 and 86 billion neurons. A neuron
is formed by a cell body, dendrites and an axon and it is an electrically excitable cell
that receives, processes and transmits information through electrical and chemical
signals. The information is received via the dendrites, the processing of these in-
puts is done in the cell body and the output of the processing goes through the axon.

The communication signals between neurons occur through specialized connec-
tions called synapses. Synapses are found between the axon of a neuron and the
dendrites of the next neuron. The human brain is estimated to have about 1014

synapses. One important characteristic about synapses is that they increase or
decrease activity in the target neuron, this means that the electrical value con-
tained in the neuron is scaled in the synapse. This scaling factor can be called weight.

The way that the brain is believed to learn is by changes in those weights of
the synapses and different weights result in different output values, as the inputs
of the dendrites will change because of the weights. It is important to notice that
the idea of how the brain learns is just through changes in the weights and not by
changes in the organization of the brain.

When talking about neural networks, the organization of the brain can be mimic
by the program, this means that in brain-inspired algorithms the program should
not change to allow the network to learn; instead, some parameters, called weights,
will be modified and it will result in the learning of the program [1].

The important consideration is the possibility to use "one learning algorithm"
[2], in which the same system learns what it has to "learn" from the data.

5



Introduction

Figure 1.3 shows in a schematic way which is the working flow for a brain system.

Figure 1.3: Example of working for brain system.

It is possible to distinguish three different types of blocks:

• Receptors: they convert the external stimulus to an electric impulse for the
neural network.

• Neural network: it receives information from the receptors and it makes
the decisions.

• Actuators: they convert the electric impulse generated by the neural networks
into actions to the external environment.

In table 1.1 it is possible to see that the strong point of the human brain is that
it presents a very low energy efficiency with respect to average electronic devices
and it means the human brain spends less energy for doing the same number of
operations per second.

Table 1.1: Comparison between the human brain and average electronic device
according to efficiency and latency.

Efficiency[ J

s · ops
] Latency[ms]

Human brain 10−16 1
Average electronic device 10−6 10−6
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1.1 – Machine learning concept and algorithms

Spiking computing takes inspiration from the fact that the communication on the
dendrites and axons are spike-like pulses and that the information being conveyed
is not just based on a spike’s amplitude. Instead, it also depends on the time when
the pulse arrives and that the computation that happens in the neuron is a function
of not just a single value but the width of the pulse and the timing relationship
between different pulses [3].

Neural networks take their inspiration from the notion that a neuron’s computa-
tion involves a weighted sum of the input values. These weighted sums correspond
to the value scaling performed by the synapses and the combination of those values
in the neuron.

Figure 1.4 puts in evidence which are the relationships between the different AI
fields previous discussed.

Figure 1.4: Summary of different fields of AI [1].

Our work is based on the neural network structure.
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Introduction

1.1.3 Neural network vs. Machine learning
It is important to explain in which cases it is better to use the neural network
algorithm with respect to the normal machine learning algorithms. To do so it is
fundamental to understand which are the advantages and possible limitations in
using them.

In table 1.2 there is a summary of which are the advantages and drawbacks of
neural networks design.

Table 1.2: Comparison between machine learning and neural network design.

Design Advantages Drawbacks

Neural network • better accuracy • training time
• feature numbers • execution time
• extracting features • not math model

Machine learning • training time • worse accuracy
• execution time • feature numbers
• math model • extracting features

In Table 1.2 it is possible to see that neural network design works well when
the number of features is high, contrary to machine learning design where a lots of
features cannot be used. Neural network have also a better accuracy and an easier
possibility to extract the features from the sample [2].

Figure 1.5: Performance deep learning comparison.
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Chapter 2

Neural networks overview

This chapter is an overview on neural networks starting from the mathematical
description of a single neuron in the first part, and focusing on the most commonly
used activation functions in the second part. After that, there is an analysis of
the two most important neural network architectures: fully connected (FC) and
convolutional neural network (CNN). The analysis of these types of architecture
is done in order to understand which are the parameters that has more impact
at hardware level like the number of weights and the needed interconnections by
each one. At the end of the comparison the FC neural network shows different
types of problems linked with the huge number of weights respect to CNN, as a
consequence of this the number of performed operations is higher (the number
of operations depends on number of weights in a FC ). For this reason the next
chapters are based on optimizing this problem by applying different techniques
based on model compression.
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Neural networks overview

2.1 Neuron description
The neuron is the fundamental part of neural networks and it is composed of three
base elements:

1. Group of connections (weights) each of them has a particular value that can
be positive or negative.

2. Adder function that has like inputs the weighted connections coming from
different neurons and it produces a linear combination of the inputs.

3. Activation function used to limit the output amplitude in a particular range.
The most common range are [0,1] and [-1,1].

So it is possible to formalize the function that each neuron does in the formula 2.1:

outputj = factivation

A
NØ
i=0

(inputi · weightij) + bias

B
(2.1)

where:

• outputj is the output of the j neuron.

• inputi is the input signal that comes from the i-th neuron for instance, these
values can be pixels of an image, sampled amplitudes of an audio wave or the
numerical representation of the state of some system or game.

• weightij is the weight that determines the connection between i neuron linked
to j neuron. They are the learnable parameter, it means that they are the
values that are changeable during training.

• N is the total number of neurons linked to j neuron.

• bias’s aim is fine tuning of the neuron operation.

• factivation is a non linear activation function that determines if the neuron
output is higher than a specific threshold then it is called activated, in other
case it is not activated.

10



2.1 – Neuron description

Figure 2.1 shows in a schematic way the neuron behavior and its analogy with
the brain neuron.

Figure 2.1: Neuron schematic description [4].

2.1.1 Activation functions
As we have seen, the neurons of a neural network perform a non-linear function to
the weighted sum of inputs, which is called activation function.

The reason of non-linearity is because if it uses a linear-function the output
of the function will not be confined between any range as a consequence data
management is more difficult.

The most common functions with their respective equations and derivatives are
shown in table 2.1.

Table 2.1: Examples of activation functions.

Function Equation Derivative

Sigmoid f(x) = 1
1 + e−x f Í(x) = f(x) · (1 − f(x))

Tanh f(x) = (ex − e−x)
(ex + e−x) f Í(x) = 1 − f(x)2

ReLU f(x) =
0 for x ≤ 0

x for x > 0
f Í(x) =

0 for x ≤ 0
1 for x > 0
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Neural networks overview

Other important key metrics for activation functions are their derivatives (also
defined as a slope) and the trend of the functions (monotonic or not function).

The motivations behind them are due to the fact that during training a neural
network algorithm, the derivative of the activation function is needed to update
the new weights in order to know in which direction and quantity the change must
be done.

In figure 2.2 the graphs of activation functions are shown and in figure 2.3 the
derivative graphs of activation functions are shown.

Figure 2.2: Common activation functions. Sigmoid, Tanh and ReLU.

Figure 2.3: Derivatives of Activation functions.
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2.1 – Neuron description

In the following list there is a summary of the most important properties of
each activation function shown in table 2.1 [5]:

1. Sigmoid function:

• It limits the activation output in the range to [0,1].

• It is especially used for models where we have to predict the probability
as an output. Since probability of anything exists only between the range
of 0 to 1.

• It is a differentiable and monotonic function but its derivative function is
not monotonic.

• It has difficult hardware implementation.

• It can cause a neural network to get stuck at the training time due to the
vanishing gradient phenomenon.

2. Tanh function:

• It limits the activation output in the range to [-1,1].

• Its negative inputs will be mapped to strongly negative values and the
zero inputs will be mapped near zero in the Tanh graph.

• It is a differentiable and monotonic function but its derivative function is
not monotonic.

• It has difficult hardware implementation.

3. ReLU function:

• It limits the activation output in the range to [0,infinity).

• Its function output is zero when the input is lower than zero and its
output is equal to the input when the input is higher or equal to zero.

• It is a differentiable and monotonic function and its derivative function is
monotonic.

• It is computationally less expensive with respect to the others and it has
easy hardware implementation.

• It has the problem that all inputs lower than zero are mapped to 0 since
the first layers ot the network, it means that the ability of the model to
properly fit or train from the data decreases.

13



Neural networks overview

2.2 Artificial neural networks
The neurons inside a neural network can be connected in various ways, each neuron
with the others. Normally the neurons are divided into different layers, being the
minimum number of layers 2, one for the inputs and one for the output results.
When the neural network is composed by more than two layers (the input and the
output layer), the other layers are called hidden layers.

In figure 2.4 there is an example of schematic representation of a neural network
with one hidden layer composed by four neurons, an input layer composed by three
inputs, called features, and an output layer composed by two neurons.

The connection of various neurons is thanks to specific connections, each of
them has an associated weight. In order to unify the terminology, the standard
general name given to the weights is Wij where i represents the number of the
neuron in the previous layer that it is linked to the j neuron in the current layer.

For instance in figure 2.4 the weight W11 connects the first neuron in layer 1
and the first neuron in layer 2.

Figure 2.4: Example of artificial neural network [4].
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2.2 – Artificial neural networks

In neural networks, each layer has an extra input besides the features or the
data from the previous layer. This extra input is called the bias. As any other
input, there is a weight associated with the bias.

As stated before, each neuron performs a non-linear function that causes the
neuron to generate an output only if the weighted sum crosses some threshold.
When incorporating the bias input and weight, that threshold can be changed,
being shifted left or right depending on the value of the weight associated with the
bias input.

The bias also provides a way to better fit the data as it is a constant that
can be changed and this constant will modify the prediction to achieve a better
performance. It allows, therefore, a fine tuning of the neuron operation [1].

A deep neural network (DNN ) is a neural network with a number of the hidden
layers greater than three. Today, the typical number of network layers used in deep
learning ranges from five to more than a thousand [2].
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Neural networks overview

2.2.1 Deep learning history and application areas
DNNs are capable of learning from high level features with more complexity and
abstraction than shallower neural networks. A DNN learns about simple low level
features in the first hidden layers, like particular lines patterns, while in the final
hidden layers they group these features to form higher level features, for example a
particular shape [1].

A deep neural network was used in 1980 for the first time for a hand-written
digit recognition checker by a bank [6]. The real interest by a company to apply
DNN comes from early 2000 for different reasons:

1. Existence of big data available for training the network.

2. Hardware improvement that allows to do the training and inferring phases in
a reasonable time.

3. Appearance of frameworks developed by deep learning users in order to manage
in an easy way the deep learning design. Nowadays the frameworks used for
designing using deep learning are a wide range, the most common are Caffe
from Barkeley University, Tensorflow from Google, Pytorch from Facebook [7].
There are also different frameworks in charge of implementing neural networks
in a particular hardware like FINN [8].

Deep learning applications are the state of art in several fields because now large
datasets from the growth of automation/web are available and usable by engineers
and data scientist [1]. The main areas in which deep learning is in common use are
the following:

• Computer vision, which is the new important scientific field, its aim regards
the possibility of machines to capture useful information by videos and images
(because they are composed from pixels). Computer vision has also differ-
ent sub sections like object localization and detection, image segmentation,
handwriting recognition, and action recognition.

• Speech and language recognition has many related tasks such as machine
translation, natural language processing, and audio generation [9]. A vivid
example is the LipNet system, which was developed using neural network
technology by scientists at Oxford University. LipNet has become the world’s
first system that can recognize lip-speech, and not just individual words, but
whole sentences [10].
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2.2 – Artificial neural networks

• Robotics has always been an important application of machine learning and
neural networks concretely. Especially when trying to get robots to mimic
human’s abilities, neural networks are an obvious choice, as they are brain-
inspired algorithms, and are improving considerably the performance in these
applications. When talking about quadricopters or drones, neural networks
have also been used.

• Medical space has been very useful for medical applications for example
to recognize patterns in data to study genetic diseases or used with medical
images to detect some types of cancer.

• Banking and insurance companies want to compute the claims cost just
according to the images thanks to the deep learning system pre-trained with
a lot of cases of incidence. The same system can also help the bank in ATM
control abnormal activity [8].

The market of DNN is increasing and the prospective in the future follows an
exponential growth, like the one showw in figure 2.5 in all three sectors engaged:
Software, Services and Hardware.

Figure 2.5: Trend in the deep learning market [8].
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Neural networks overview

2.2.2 The mathematical reasons of DNN
It is clear, as was described in the subsection 2.2.1, that a DNN permits to capture
more high level features than shallower neural networks but it is not the only
motivation to pass from neural networks to DNN.

In [11] the author demonstrates according to mathematical proofs that for some
functions very shallow networks require exponentially more circuit elements to
compute than do deep circuits.

The author in particular proved that computing the parity of a set of bits
requires exponentially many gates, if done with a shallow circuit. On the other
hand, if you use deeper circuits it is easy to compute the parity using a small circuit:
you just compute the parity of pairs of bits, then use those results to compute
the parity of pairs of pairs of bits, and so on, quickly building up to the overall parity.

Deep circuits are more powerful than simpler circuit. So the mathematical reason
for DNNs is that some computational function that has polynomial complexity
with k levels but they have exponential complexity with k − 1 levels.

At the neural network level this consideration can be translated into the fact
that it is better to have a lot of layers with fewer neurons with respect to having
fewer layers with a bigger number of neurons.

The problem at the hardware level is that DNNs have an important hardware
requirement in terms of computational complexity and memory requirements so it
is important to find the right trade-off.

2.3 Different neural networks arrangement
An important first division among neural network’s arrangements can be done with
the following categories:

1. Feed forward: this type of DNN has no memory because the output is a
function just of the inputs, when the inputs change the outputs also change
in order to follow the inputs, besides the inputs of a neuron always come from
a previous layer.

2. Recurrent: this type of DNN has memory and in some cases the output
depends on their stored values and not only on the input values from a previous
layer.
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2.3 – Different neural networks arrangement

2.3.1 2-D architecture
In previous subsection 2.2 it is explained the possibility to arrange neural network
structures in different ways.

Nowadays there are several examples of different architectures:

• Fully connected (FC): it means that every neuron in a specific layer is
linked with all neurons in the previous layer. The behavior of a singular
neuron is as described in equation 2.1.

• Sparsely connected (SC): it consists in an arrangement close to FC but
the connections between a particular layer and the previous layer are less than
for the FC mode, because some of them are cut; usually it is important to
profile how data are processed (sensitivity analysis) by the neural network in
charge to cut the useless connections [12].

• Recurrent (RNN): as mentioned before, it has memory and in some neurons
of this architecture their inputs come from the same neuron, so they report
the last memorized value [13].

The FC and SC belong to the feed forward category. These are used for image
processing because they are static in time, so they just need the present value of
pixels.

The RNN s are used to process videos in which the neural networks learn how
to change the value of the pixels on the fly (the pixel values are not static). They
are able to discriminate the timeline of the feature.

Figure 2.6: Feed foward vs Recurrent architectures [4].
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Neural networks overview

2.3.2 3-D architecture
Another important type of DNNs are the convolutional neural networks (CNN ).
They belong to the group of feed foward networks.

The CNN respect to FC have a 3-D structure as shown in figure 2.7.

Figure 2.7: Example CNN 3-D structure [9].

The main difference is that CNN architectures make the explicit assumption
that the inputs are images, which allows us to encode certain properties into the
architecture. These then make the forward function more efficient to implement
and vastly reduce the amount of parameters in the network. This is because in the
FC architecture the weights are independent from each others and they are not
shared.

One important implication is that the FC architecture does not scale well with
the size of images, so it is possible to have a lot of weights and it implies difficult
memory management and also some overfitting problems [9].
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2.3 – Different neural networks arrangement

In table 2.2 there is a comparison between these two types of neural networks in
terms of number for weights for a single layer using as example an image extracted
from the dataset CIFAR-10. Every image in this dataset is composed by a 3-D
matrix where every matrix is a part of an RGB color.

The number of the weights for the two different layer configurations can be
computed in the following way:

• FC : the weights in the FC layer can be computed counting the pixels of the
image and multiplying them by the number of neurons of the layer.

• CNN : the weights in the CNN depend on the chosen filter size. In this case
not all pixels are connected to a single neuron but an operation of convolution
between the filter and the image is done. In the example shown in table 2.2
the filter size is 5 × 5 × 3.

Table 2.2: Comparison between the number of weights in a FC layer and a CNN
layer for filter5×5×3.

Image dimensions # of FC weights # of CNN weights
32 × 32 × 3 3072 × neurons 76

200 × 200 × 3 120000 × neurons 76

Another important parameter that it is necessary to take into account is the
number of connections between the layers. Figure 2.8 shows an example of the same
neural network with two different configurations (they have a different number of
connections between the layers).

Figure 2.8: Example of different types of connections between FC and CNN [14].
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Neural networks overview

In the equivalent FC structure all neurons in the previous layer are linked with
all neurons in the following level. In a possible CNN structure each of the four
neurons on the right is linked with just 3 neurons in the previous level. Shared
weights are the same color.

Table 2.3 shows a summary of the different configurations in terms of number
of weights and number of connections between two different layers.

Table 2.3: FC vs CNN comparison of the architecture showed in figure 2.8.

# of FC weights # of CNN weights # of FC conn. # of CNN conn.
24 3 24 12

In order to avoid the huge quantity of weights and connections the CNN uses
two different principles with respect to FC :

1. Weights sharing: according to the receptive field approach [4] that permits
in image processing not to scan all pixels in an image, as required for the
FC architecture, but just a small part of the images is scanned at each time
and the size of the scanned part is determined by the receptive field size,
also called filter size. The operation done between the filter and input image
is a convolution where the filter scans a small portion of the image at each
step. The effect of allowing weights sharing is a strong reduction of number of
weights.

2. Local connectivity: neurons are linked just locally at the neurons of the
previous layer. Neurons elaborate the features in a local way. The effect of
local connectivity is a strong reduction of the number of connections.

Local connections and weights sharing permit that neurons process in the same
way different parts of images, and it is useful because the different parts of the
images scanned by the filter contain the same type of information (edges, corner,
some part of object).
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2.3 – Different neural networks arrangement

Figure 2.9 shows a schematic example of the two principles previous discussed.

Figure 2.9: Weights sharing and local connectivity of CNN [14].

Complete CNN

As shown in figure 2.10 a complete CNN architecture is mainly composed of three
elements: the convolutional layers, pooling layers and FC layers.

Figure 2.10: Example of convolutional neural network [15].
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Neural networks overview

• Convolutional layers are the layers that are used in order to extract
the features in an image. The filters used in the first convolutional layers
learn about low level feature like line shape patterns. The filters used in the
final convolutional layers learn about high level features like geometric shapes
thanks to the input of low level features.

• Pooling layers are used to down-sample the data produced by a convo-
lutional layer in order to extract just a useful part. The average and max
functions are the most common for this scope.

• FC layers are necessary in order to do the classification of the features
learned in the previous CNNs layers.

It is important underline that in a complete CNN structure there are also FC
layers. These ones are problematic for the reason already discussed before about
the number of the weights and connections.

Besides CNN are used mainly for images but in a general application they
cannot be used. From this point of view the FC are more flexible but present more
important memory constraints for the weights.

In table 2.4 it is possible to see how for some different popular DNNs the number
of weights for the dense layers (FC ) is always greater than the number of weights
for the convolutional layers.

Besides, it is possible to see that in a dense layer the number of weights and the
number of MACs is the same, while in a convolutional layer it is not true and it
also depends on the input size features.

Table 2.4: Summary of popular DNNs key metrics [1].

Metrics LeNet AlexNet VGG
Input size 28x28 227x227 224X224

Weights (conv) 2.6k 2.3M 14.7M
MACs (conv) 283k 666M 15.3G

Weights (dense) 58k 58.6M 124M
MACs (dense) 58k 58.6M 124M

For this reason in the next chapters we focus on studying possible optimization
techniques for FC neural networks in terms of model design and model compression.
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Chapter 3

Analysis and design of
neural networks

This chapter is a focus on standard issues of generic neural network design. In the
first part the most important hardware metrics for neural networks are explained
and discussed together with possible improvements. A particular attention is given
to how neural network parameters like the accuracy are linked with hardware pa-
rameters. Based on these key metrics there is a comparison in terms of performance
between FPGA, CPU and GPU ; particular focus is given on typical standard
architectures used in these different devices. After that the advantages of FPGA
design are discussed. Finally, some possible techniques are introduced in order to
optimize the model design and the hardware implementation. We focus on the
design and problems regarding the inference part of neural network architecture.

25



Analysis and design of neural networks

3.1 Metrics for DNN Hardware
Most computations in a neural network are composed by three different operations
that are processed in the following way:

• Read data from memory.

• MAC operation.

• Write data to memory.

Figure 3.1: Scheduling of operations in a generic neural network [4].

The MAC operations are very expensive at hardware level in terms of area,
energy and delay and they represent 90% of the computation.

Also data movement in and from memory represents the other bottleneck that
it necessary to overcome to get high efficiency.

For instance in AlexNet, there are 724 million MACs, and nearly 3000 million
DRAM accesses will be required [1].
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3.1 – Metrics for DNN Hardware

It is important to see the parameters shown in figure 3.2 in order to characterize
and analyze the design of a generic neural network. These parameters will be used
in the computation of metrics to assess a neural network implementation.

Figure 3.2: Hardware design parameters of neural networks [16].

In the next section there is a description of the main key metrics in a hardware
architecture in order to understand which are the main problems that limit the
neural network design and which are possible solutions.
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Analysis and design of neural networks

3.1.1 Throughput
Throughput, measured in [s−1], is defined as number of inferences processed per
second. We can calculate it with formula 3.1 [16]:

Throughput = f · P · η

W
(3.1)

It is important to know that in order to have high throughput it is required:

• High frequency: possible solutions can be, for example, to reduce the
critical path of the singular MAC using reduced precision with low bit width
or data quantization. Frequency can be bounded also by memory bandwidth.
For example in a DRAM the read time is 10 times longer than in an SRAM,
as shown in table 3.1.

• High η: parallel execution is fundamental in order to efficiently use all available
processing elements (PEs) and in this sense FPGA design has advantage with
respect to CPU and GPU. The η factor can be limited also by memory
management since some processing elements could be free but the memory
bandwidth cannot permit to use them. To get better η factor different
architecture strategies can be used, like for example near data processing.

• Low W: it is important minimize the number of operations for each inference,
what translates into a reduced number of MACs for each inference process.
Possible solution is to use a technique called pruning of the network, it means
that some weights are set to ’0’ (choosing a threshold based on sensitivity
analysis [12]).

3.1.2 Energy efficiency
Energy efficiency, measured in [GOP/J ], is a way to quantify the energy needed
for each inference [16]. It is a very important parameter for edge computing
applications where the quantity of available energy is constrained.

efficiency = W

Etotal

(3.2)

where Etotal is defined in the following way:

Etotal = Eaccess−memory · Naccess−memory + W · Eops + Estatic (3.3)
The energy efficiency is a parameter that takes into account the necessary

operations for each inference divided by the total energy spent by the system in
charge of computing that inference. The total energy is the sum of the energy
spent in order to have data movement from memory and data processing.
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3.1 – Metrics for DNN Hardware

In order to have good efficiency it is necessary to reduce the energy spent for
each inference in this way:

• Low Eaccess−memory: the data movement is very expensive in terms of energy,
it is especially important to note that data read from off-chip memory, like
a DRAM, require three orders of magnitude more energy with respect to
data read from on-chip memory, like SRAM, but the density of DRAM is big-
ger (1 transistor per bit vs 6 transistor per bit in SRAM), as shown in table 3.1.

Table 3.1: Comparison between SRAM and DRAM [17].

Parameters SRAM DRAM
Density F 2 140 6-12

Energy/bit (pJ) 0.0005 0.05
Read time (ns) 0.3-1 10
Write time (ns) 0.3-1 10

• Low Naccess−memory: it is mainly related to architectural and operation schedul-
ing problem. Possible solutions are strategies like near data processing that
can minimize the distance between the PE and memory or maximize data
reusing, in this way data from memory is read one time but it will be processed
different times. For example in figure 3.3 there is an example of how different
types of dataflows determine a different efficiency.

Figure 3.3: Comparison of energy efficiency between different dataflows in the
FC (on the left) and CONV (on the right) layers of AlexNet [18].
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3.1.3 Accuracy
Accuracy is a parameter that permits to evaluate how many predictions (output of
the neural network during the evaluation phase) are equal to the correct data label.

The accuracy is linked with the number and the precision (# of bits) of parame-
ters of the neural network, as shown in figure 3.4, and consequently it is strongly
connected with the needed memory size. Besides, the number of weights is strongly
connected with the number of operations done for each inference (especially for
FC architectures, as was explained in subsection 2.3.2).

Figure 3.4: Accuracy vs Operations [19].

This is a very important aspect to take into account since when a neural network
is designed on an FPGA there is a constraint on the memory on-chip in terms of
area, and neural networks design needs a lot of data.

For example the largest memory available on an FPGA can be < 50MB, but the
number of parameters needed for some networks can be also from 100-1000MB. This
gap can be covered by external memory, but this can limit the system performance
[16].
For this reason is necessary that FPGAs read data from off-chip memory like
DRAM, but it demands more power consumption and also requires more latency,
so it can be a bottleneck of the design.
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3.2 Comparison between FPGA,GPU and CPU
FPGA neural network design has to face different challenges in order to become
the first choice regarding a neural networks accelerator [20]:

• Programmability: the most common frameworks are developed just for
CPU and GPU. So the time to market is higher for FPGAs because their
workflow is less optimized and requires highly skilled programmers.

• Area and performance Overhead: the working frequency of FPGA is
lower with respect to CPU and GPU. Other two FPGA problems in terms
of performance can be the flexibility, due to the fact that in some cases it is
possible to have not used overhead area and also the connections that are not
optimized and can be the first reason of power consumption.

In table 3.2 there is a comparison summary of the most important hardware
parameters between these three different devices.

Table 3.2: Performance comparison among CPU, GPU and FPGA.

CPU GPU FPGA
Market time Low Medium High

Flexibility Medium Medium High
Parallelism Low Medium High

Power High High Medium

Example Arm-cortex-a9 Nvidia-Titan-x Virtex-ultra
Efficiency[GOP/J] 1 10-100 >100

Speed[Oper./s] 0.01 10 0.02
Frequency[GHz] 1.9 1,5 0.3
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3.2.1 Architectural comparison
In this part there is a comparison on what types of typical architectures are used
in the different devices.

Figure 3.5 shows on the left the temporal architecture used by CPU and GPU,
and on the right the spatial architecture used by FPGAs.

Figure 3.5: Temporal architecture vs. Spatial architecture [1].

1. Temporal architecture: temporal architecture uses a centralized control
for a large number of ALUs. These ALUs can only fetch data from the mem-
ory hierarchy and cannot communicate directly with each other [1]. There
are platform libraries that dynamically choose the appropriate algorithm to
optimize the MACs operation for a given shape and size of neural networks.

2. Spatial architecture: spatial architecture consists of dataflow processing
thanks to the fact that inside each ALU some logic and memory are integrated,
thus in this way it is possible to avoid a lot of memory accesses from the main
memory (avoiding power consumption) introducing some local memory like
a register file RF or buffers. The block including ALU, memory and logic is
called Processing Elemente, PE.
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3.3 FPGA based accelerator
Nowadays neural network design on FPGA is an acive research area since FPGA
design permits to obtain more flexibility and better performance compared to CPU
and GPU.

For this reason the FPGA is the most considered when we speak about edge
computing, where the energy budget is fixed and the energy efficiency becomes
even more important than the speed.

One of the most important peculiarities of FPGAs is the possibility to explore
the parallelism of the algorithm in a way that permits to increase the concurrency
and as a consequence also the throughput.

It is important to consider that neural network structures can be implemented
with specific architectures which could be tiled at different levels [21]:

• Layer parallelism: several layers can work in a parallel way.

• Neurons parallelism: a group of neurons can work in a parallel way.

• Neuron parallelism: a single neuron can process more than one input at
each time.

Besides when the concurrency increases for a target throughput it is possible
to decrease the frequency and as a consequence the power supply needed to bias
the circuit. In this way FPGA based design can conquer high energy efficiency,
maintaining the same throughput.

3.3.1 Hardware design bound
Computation and communication are two principal constraints in system through-
put optimization. An implementation can be either computation-bounded or
memory-bounded [22].

In order to check which is the limit of the architecture figure 3.6 can be useful
in which the vertical axes labeled as hardware performance is the throughput
of the system evaluated in MAC/cycle and the horizontal axes represented by
computation to communication ratio (CTC ) is evaluated in MAC/data and it
represents how many MACs it is possible to do with a unit size memory access.
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Figure 3.6: Roofline performance model [16].

In figure 3.6 every point of the graph is a possible hardware design of an
architecture and it is possible to distinguish two different areas:

1. Sloped area means that design is memory bounded. It consists on the fact that
the architecture is able to do more MAC/cycle that it actually does since
there are more processing elements that can be used, but memory constraints
limit the possibility to use all available PEs. The slope of this line depends on
which is memory management of the architecture.

2. Flatten area is bounded by the number of PEs that are available in the
architecture. In the graph the intersection between the two lines means that
according to memory bandwidth (BW ) the architecture is able to process all
available PEs. The constant line computation roof represents that MAC/cycle
can be also lower than the ideal one because in some cases not all PEs can be
used concurrently (it depends on data dependencies).

The necessary BW for a fixed throughput can be defined with formula 3.4:

BW = throughput

CTC
(3.4)

where CTC is the computation to communication ratio.
The max performance in terms of throughput that it is possible to achieve is

given with formula 3.5:

Max − performance = min
I

Computation − Roof
CTC · BW

(3.5)
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3.4 Hardware design for efficient architectures
In figure 3.7 there is a summary of which are the possible techniques that can be
used in order to optimize the hardware design.

Figure 3.7: Overview of hardware optimization techniques [16].

The figure is divided into two views, the first part (horizontal view) identifies
the different hierarchical levels of neural networks starting from neuron to a com-
plete network, the second part (vertical view) identifies three different hardware
characteristics (datapath, memory and scheduling of operations).

The various techniques are independent of each others, what means that it is
possible to apply at the same neural network different optimization techniques.

It is important to note that different optimizations can have different types of
impact on the hardware design. For example data quantization has impact on dat-
apath and on memory, while loop unrolling has impact on all three characteristics.

In the next subsections there are some examples of system design and data
compression optimizations for neural network. These are the two main aspects
that will be taken into account in order to design an optimized neural network.

35



Analysis and design of neural networks

3.4.1 System level optimization
Memory hierarchy organization

The data movement from and to memory dominates the energy consumption so it
is necessary to minimize it as much as possible.

The spatial architecture introduced in 3.2.1 allows to explore near data process-
ing and maximize data reusing.

This aspect is possible since the DNN workflow is known so thanks to profiling
algorithms there is the possibility to predict which data are more possible to reuse
and in which way it is possible to minimize the access to main memory.

This optimization is very useful because access to main memory like DRAM
is much expensive than RF access. The bets solution is to create a hierarchical
organization of the memory and when a piece of data is read from main memory,
it has to be used as many times as possible.

In figure 3.8 there is an example of this hierarchical organization of memory on
FPGAs and also a histogram with normalized energy cost per access of different
memories.

Figure 3.8: Example of hierarchical memory architecture on FPGA [18].
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Regularize access memory and data reusing

Data reuse requires a small associated memory to the ALU unit. It is advantageous
in terms of efficiency, pJ/b, but inefficient in terms of area, µm2/b [1].

In figure 3.9 there are two different examples where different workflows are
presented in order to increase data reuse and minimize data movement.

Figure 3.9: Data reuse exploration [18]. Weight stationary (a). Output stationary
(b).

a) Weight Stationary: this approach stores in a RF near the ALUs the
weights after they are read from a global buffer. It permits to use more the
weights that are in the RF and the partial sum is accumulated along the ALUs
chain and at the end the computation results are written in the global buffer.

b) Output Stationary: this approach stores the partial sums in an RF near
the ALUs after that they are read from the global buffer. This design allows,
for example, to stream the activation along the ALUs chain and broadcast
the weights.

The best data reuse approach depends on the neural network design and on the
different workflows. For example the number of FC layers, CNN layers, the number
of weights for each layer, the number of overall layer and also other parameters.
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3.4.2 Data compression
Data compression is a technique that impacts in the datapath in terms of area,
speed and power consumption and also in memory size. One of the most important
goals of data compression is to have the possibility to store all the weights into the
FPGA and not to use external memory that for reasons previously discussed has a
bad impact on the system performance. It is an open research field and object in
different works [1], [12], [16], [23], [24] and [8].

It is important to evaluate how much accuracy will be lost when data compres-
sion is used. It is fundamental to find a trade-off between accuracy and resource
reduction obtained by model compression.

It is useful to know in which part of the architecture it is possible to use data
compression, for example on weights or on activations or both of them in a way
that allows that the loss of accuracy matches our accuracy target.

There are different methods that can be exploited in order to make data com-
pression [1]:

• Uniform quantization: [1], [8] and [17].

• Not uniform quantization: [12], [23] and [25].

Uniform quantization

Uniform quantization (uniform compression) permits to pass from floating-point
operations to fixed point arithmetic that is more hardware friendly. Uniform
quantization consists in choosing a number of allowed levels, N , that can be
represented with log2 N bits. In this case we talk about uniform quantization
because the levels the we choose are equally spaced among them.

Not uniform quantization

Not uniform quantization (not uniform compression) provides quantization levels
that are not uniformly spaced out because the distribution of weights and activations
usually is not uniform, thus a possible approach is applying weights sharing in
which a group of weights (or activations) can share a same unique value. The
number of possible levels (unique values) N can be coded like before with log2 N
but in this case they do not represent the weights values but the index that point
to LUT in order to read the real weights that must be used.
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Chapter 4

Modeling of neural networks

The scope of this chapter is to develop a numerical model of FC neural network
and characterize it in terms of accuracy loss when model compression is applied.
Model compression has as a consequence a reduction of the model precision with
the different techniques previously introduced: linear compression and not linear
compression.
In the first part there is a description of how to model the training and inference
phases in a neural network.
After that, there is an explanation about the model which is implemented on
MATLAB. Finally the results coming from different reduced precision models are
shown and are compared among each others. The found weights will be used to
put them in the FPGA memory during the implementation part of the proposed
inference hardware accelerator.
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4.1 Neural network numerical model
Neural network functioning is divided into two main phases, the inference phase
and the training phase.

The training phase is the time when neural networks has to search the neural
networks weights that minimize the cost function.

The inference phase is when the weights have been trained and they are used to
generate the output of the neural network. This phase is also called feed-forward
phase because the propagation of computation comes from the first layer to a last
layer where there is a predicted output.

The cost function (J) and regularization factor can be defined in the following
way [2] for a neural network where the parameters and variables that appear are
explained in table 4.1:

J(θ) = 1
m

·
mØ
i=1

KØ
k=1

(y(i)
k · log(hθ(xi))k + (1 − y

(i)
k ) · log(1 − (hθ(xi))k) (4.1)

Regularization − Factor = λ

2 · m
·
L−1Ø
l=1

slØ
i=1

sl+1Ø
j=1

(θ(l)
ji )2 (4.2)

J(θ)regularized = J(θ) + Regularization − Factor (4.3)

It is important to note that the cost function is the sum of the error the neural
network makes on its prediction and it depends just on θ value. If the cost function
is high the accuracy will be low.

The regularization factor has to be added to the cost function in order to avoid
overfitting of the training data during the training phase because it gives a little
degree of freedom that permits to generalize the cost function for data different
from the training data.
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The cost function is a way to measure the quality of the network accuracy. The
goal of training is to reduce it as much as possible changing the learnable parameters.

The problem of the neural network cost function is that it is not a convex
function so there is the possibility that there are have several local minimum and
it is more difficult to find the global minimum. There are different optimized
functions that aim to find the minimum of cost function like stochastic gradient
descend (SGD) or other optimized functions.

Table 4.1: Parameters explanation of the cost function and regularization factor.

Symbols Description
K Number of classes
m Number of data sample
L Number of total layers
sl Number of neurons in the layer l

x(i) Features-ith of the data sample
y

(i)
k Label-kth of the sample ith

θ
(l)
ij Learnable weights from ith neuron in layer l − 1 to jth neurons in l layer

hθ(x(i)) Activation function evaluated with θ weights and x(i) data sample
λ Lambda factor

In figure 4.1 is possible to appreciate in a schematic way which are the different
phases that are involved during neural network processing.

Figure 4.1: Schematic neural network working.
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4.1.1 Training phase
The training phase has the objective of computing the parameters (weights) that
minimize the cost function and so improve the accuracy of the system.

Its computational complexity is higher than the one required by the inference
because it involves three different phases and one of them is the inference phase.

They are described in the following list and their formal steps are reported in
algorithm 1 [23].

1. Feed forward: this phase consists in the propagation of the activation
functions for each layer of each neuron according to equation 2.1 until the
output layer.

2. Backward propagation: it consists in computing the gradient of each
weight according to the derivative chain rule, starting from the output layer
and going to the first layer.

3. Weights update: it consists in using the gradients previously computed for
uploading the new weights along the negative direction of the cost function
gradient with respect to the old weights.

This process is iterative and continues until the difference between the output
activation and desired output meet the target.

The training process can be slow because it is an iterative process and so in a
lot of cases the training is done off line because there are usually timing constraints
on this phase that, for example for FPGAs, it is not possible to respect.

In some works the training is done on FPGA thanks to the application of the
model compression also during training phase and not only on the inference. Some
examples for these works are reported where partial binary or fully binary neural
networks are applied [24], [23] and [26].
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In algorithm 1 [23] all the steps to compute the new weights are reported.

In order to achieve the best possible accuracy these steps have to repeated
several times dictated by the choice of number of iterations.

It is important to note that for each iteration the algorithm has to calculate all
the activations for each neuron and all the gradients for each activation and for
each weight.

Algorithm 1 Training algorithm. All operations are matrix-wise. L is the number
of layers, σ is the activation function, LR is the learning rate and J is the cost
function.
Require:

Initial random parameters W , input data features a0 , the corresponding correct
target y and LR.

1: procedure Training(W, a0, y, LR)
2: ó 1.Feed foward propagation
3: for k = 1 to L − 1 do
4: ak = σ(ak−1·Wk) ó Activation functions are computed
5: end for
6: ó 2.Back foward propagation
7: gaL = ∂J

∂aL
ó Initialize output layer’s activations gradient

8: for k = L − 1 to 2 do
9: gak−1 = (σÍ(ak) ◦ gak

) · wk ó Activation gradients are computed
10: gWk

=gak−1 · ak ó Weights gradients are computed
11: end for
12: ó 3.Weights update
13: for k = 1 to L − 1 do
14: Wk(updated) =Wk + LR · gWk

ó New weights are computed and upload
15: end for
16: end procedure
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4.1.2 Inference phase
The inference phase allows to compute the output of the neural network and after
that it compares the output with the correct labels in order to characterize the
accuracy of the system. The inference phase is less expensive with respect to
training in terms of computational complexity because it requires less operations.
Inference involves only in the feed forward phase.

During inference the pre-trained weights are used.

In the edge computing area it is very important that the inference phase is really
quick in order to respond in a reasonable time. It is also desirable to be energy
friendly and that the dedicated hardware occupies the smaller possible area.

In order to do it we trained the neural network on MATLAB and in the second
phase we uploaded the weights on the FPGA. For optimizing the inference phase
we adopted the strategies of data compression of the numerical model.

Data compression for the inference phase has an impact on PEs complexity and
on weights memory constrain [1], [12] and [16].

In algorithm 2 [23] all the steps to compute all the operations involved during
inference are reported.

Algorithm 2 Inference algorithm. All operations are matrix-wise. L is the number
of layers. σ is the activation function.
Require:

A deep model with parameters W and bias, input data features a0.
1: procedure Inference(Model, a0)
2: ó 1.Feed foward propagation
3: for k = 1 to L − 1 do
4: ak =σ(ak−1 · Wk) ó Activation functions are computed
5: end for
6: return aL ó Activation function in the final layer
7: end procedure
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4.2 Neural networks modeling implementation
We choose to implement a FC neural network for hand digit recognition (MNIST
data set [27]). Our network is composed by three different layers, the number of
hidden units inside the hidden layer is a parameter that it is possible to choose.

Usually model compression is done with more than one hidden layer leaving
the input layer and output layers with max precision. In this way the neural
network is able to recover the loss of accuracy. In this case the worst case of data
compression is considered, it means the obtained accuracy after model compression
is the smallest possible, and adding other layers and re-training a possible accuracy
improvement is possible to see.

The implemented model is composed of the following functions:

1. Load data set [28]: permits to upload the original data set and involves
some pre-processing activities like choosing the number of features to extract
from the original samples.

2. Rand weights: initializes the weights to random-values between [0,1] in
order to break the symmetry and speed up the training. The initialized weights
size depends on the input features, output possible labels and on the number
of neurons for the hidden layer.

3. Data set splitter: the data set is split into three data subsets used
respectively for training (60%), validation (20%) and testing (20%).

4. Trainer & validate: computation of the cost function of the training set
with initialized weights and the weights’ gradients according to the chain
rule of back propagation. Thanks to the advanced optimizer using gradient
weights, new weights that minimize the cost function are found and they are
uploaded as new weights. This process is iterative and we can set the number
of iterations until the cost function is as small as possible. The training process
is repeated for different lambda values and the results are compared against
the validation set in order to choose the best regularization factor λ. In this
phase all the computation is done with max precision (64-b floating point) in
order to improve the speed of convergence values.
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5. Translate weights: the full precision weights are split into different
precision weights in order to analyze uniform quantization and not uniform
quantization.

6. Testing: a feed forward phase is done with the found weights and the
resulting accuracy is computed.

7. Fine tuning: the accuracy can be improved by re-training the neural network
with quantized weights. In order to achieve improvements in accuracy it is
important that during the feed forward and back ward propagation phases
the weights are quantized but during the weights updating phase the weights
should work with full precision, because the advanced function used in this
case works well in this way.

Figure 4.2 summarizes which are the different function blocks and how they
work in a schematic way.

Figure 4.2: Schematic neural network modeling implementation.
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Advanced optimizer: Sgdupdate vs Fmincg

The optimizer function during the Weights update phase computes which are the
new weights that it is necessary to update in order to minimize the cost function.

There are various optimizer functions in order to work want different parameters,
for example the number of iterations [N] (number of times it necessary to upload
the new weights according to the computed weights’ gradients) and the learning
rate [α] that is a parameter that determines the speed of neural network learning.

It is important carefully set these parameters in order to avoid data overfit-
ting/underfitting (it depends on the number of iterations), a too slow training or
not training convergence (it depends on the value of the learning rate).

Two different types of optimizers will be used:

1. Fmincg: it is a built function provided by [2] and it will be used during
normal training. It does not work well with quantized weights because during
fine tuning of the cost function for quantized values it is not always decreasing,
and this function when the value of current cost function is greater than the
previous, stop the computation before to compute all scheduled iterations.

2. Sgdupdate: it will be used for the fine tuning. It is based on stochastic
gradient descent and it is provided by [28].

It is possible to note in table 4.2 that Fmincg optimizer is quicker than the
other one because it needs less iterations to have the maximum of accuracy with
training data set.

Table 4.2: Evaluation of accuracy with two different types of optimizer functions
fixing the other parameters.

Parameters : m=5000, x=400, α = 0.1, HUs = 25

Iterations AccuracyFmincg AccuracySgdupdate
N = 100 99.84 53.3
N = 1000 100 81
N = 1500 100 90
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4.2.1 Data set
Data sets used for classification is MNIST [27]. This original data set consists of
28 × 28 grayscale pixels of each image of handwritten digits. There are ten classes
(for ten digits) and 60k training images and 12k test images.

Pre-processing activity

It is possible reduce the sizes of the original data set decreasing the number of
training images and the number of input features for each image thanks to previous
introduced function called load data set (provided by [28]).

This because the number of used features (x) can determine under fitting or
over fitting problems and also it impacts on the accuracy system.

But also the size of data set (m) used for training has relevant for the accuracy
of the system.

This is not the only reason because a bigger number of features means computa-
tion more expensive and massive storage constrain.

Figure 4.3 shows the distribution of the input pixels in the two different cases
with number of features = 784 and the number of features = 400 for each image.

Figure 4.3: Normalized input features distribution. On the left: x = 784 & m =
60k. On the right: x = 400 & m = 5k.

The inputs are normalize in the range [0,1] in order to speed up the computation
dividing each feature to the max possible range feature 255.
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In table 4.3 it is possible to note that distribution in the two different cases
study is very different.

Table 4.3: Properties of input features distributions.

Data set 60k x 784 5k x 400
Features 47040000 2000000

Zero-values(%) 80.8 0
Non-zero-values(%) 19.12 100

Bin-Width 0.13 0.025
Num-Bins 8 8

Ranges Occurences(%) Occurences(%)
1 83 51.2
2 1.1 24.7
3 1.2 11.2
4 1.3 0.05
5 1.2 0.03
6 1.2 0.01
7 1.1 0.0099
8 8.4 0.0034

In the case with x = 784 there are a lot of features that are zero. Contrary on
the case x = 400 there aren’t zero values.

The distribution in the first case is focus on the value [0,0.1] for the majority
(80%) of them and in the value near to one (8%). In the second case the distribution
is more uniform but with values that are smaller of one order of magnitude respect
the first case.

The massive number of zero in the first case suggests that many information
are redundant and can be reason of overfitting.

If we focus on non-zero-values they are more in the second case, so the actual
needed memory storage can be higher. MAC operations with zero values could be
skipped in the first case but in hardware implementation some hardware overhead
has to be added in order to detect it so it is important evaluate trade off of this
choice.
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Thanks to fixed point designer instruments provided by MATLAB it is possible
to understand which is the best way that represents the inputs data with a reduced
number of bits in fixed point notation.

Table 4.4: Fixed point notation with x = 784 for each sample.

# of bits # of fract. bits In range(%) Below prec. (%) Out range (%)
16 15 100 0 0
8 7 99.95 0.048 0
4 3 97.96 2.04 0
2 1 94.11 5.89 0

Table 4.5: Fixed point notation with x = 400 for each sample.

# of bits # of fract. bits In range(%) Below prec. (%) Out range (%)
16 16 100 0.00037 0
8 8 90.3 9.7 0
4 4 17.3 82.7 0
2 2 0 100 0

In table 4.4 and 4.5 it is possible to see the more degradation in the second case
where the total cover range is concentrated in a smaller values so in this case using
fixed point approach doesn’t help so much especially with low number of bits. In
the first case the degradation is less (5.89% with 2 bits).

This impacts the storage requirement because higher number of features can be
represented with a lower number of bits and cover range loss is lower. We study
the results in terms of system accuracy using both the numbers of features.

To achieve the model compression we focus more on weights because they are
more problematic regarding storage constrains and computation constrains. Besides
when the training is done on the cloud the distribution of the weights can be studied
and optimized instead the input features are usually random values.
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4.2.2 Neural network max precision results
The two different data sets (the original one and a subset of this previous intro-
duced) are training in different conditions for achieve the best in terms of accuracy
for both configurations.

The parameters that it is important to take into account are the following ones:

• # of iterations: if the number of iterations increases too much there is an
improvement of the accuracy of the training set but there is a loss of accuracy
in test set because there is over-fitting of the training set losing the general
solution. During training the results are validated measuring also the cost
function of validation set and when it begins to increase the training will stop
at that number of iteration. This technique is called early stop validation [2].

• λ: different values of λ are evaluated and after that the value that report the
best result on validation set is chosen.

• # of HUs: they are the number of neurons in the hidden layer. An increasing
of HUs determines an increasing of training time because the number of
parameters is higher and also the number of iterations needed to achieve the
best possible accuracy increases.

The best number of HUs depends on the data set size and features size like
showed in table 4.6 where with few HUs neural network is able to have the possible
max accuracy (95.7%) for the subset of dataset training with HUs = 25 and Iter.
= 100. Contrary it is necessary more iterations and also more HUs for original
bigger data set in charge of the best accuracy result (98.35%).

Table 4.6: Evaluation of accuracy with max precision operations with the original
data set and a subset of this.

m x Iter. # of HUs λ Accuracytraining # tests Accuracytest
60k 784 1000 200 0.1 99.7 12k 98.35
5k 400 1000 200 0.1 99.7 1k 97.7

60k 784 100 25 0.01 94.4 12k 91.35
5k 400 100 25 0.01 99.4 1k 95.7

The results in the first line that reports the bigger network and the greater
accuracy will be the reference for the model compression in terms of loss accuracy
and model size reduction evaluation.
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Training optimization: batch size approach

Possible approach to speed up the training (less iter.) is divided the training set in
batches and evaluate the back propagation just for some different values at each
iteration. The number of values is defined by batch size. With this approach it is
possible to lose in term of accuracy because not the overall training set is used for
upload the new weights but just small part each time.
In table 4.7 it is possible to see that increasing the HUs the accuracy loss is less
with other fixed parameters reported in the table head.

Table 4.7: Accuracy evaluation with batch approach with different number of
HUs of the original MNIST data set.

Batch-Size = 200, Epochs = 500
Accuracy-
(HU=50)

Accuracy-
(HU=200)

Accuracy-
(HU=400)

Accuracy-
(HU=600)

93.1 % 94 % 94.6 % 95.2 %

4.3 Data compression
To perform model compression the training of the neural network is done with max
precision, after that there is a phase of post-training model compression in which
the weights are replaced by quantized weights analyzing the weights distribution.
As possible to see in figure 4.4 the cost function descends with different speed based
on which type of quantization is used.

Figure 4.4: Example of cost function descending during fine tuning training with
different applied precision on the weights.
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4.3.1 Weights not uniform quantization analysis
In this section we want analyze and reduce the possible values of weights as low as
possible for this reason we perform a not uniform quantization with these different
cases:

• Two bits quantization

• Ternary bits quantization

• One bit quantization

In figure 4.5 there are the weights distributions for the neural network with
topology 784 x 200 x 10 (the which one that reports the max achieved accuracy).

In figure it is possible discriminate the different distribution for the weights in
the first layer (Theta1, blue one) and in the second layer (Theta2, red one) and
also discriminate the normalized distribution with the original distribution.

Figure 4.5: Trained weights distribution.
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Two bits precision model

In this case it is necessary to have just four unique weights chosen by analysis of
weights neural network distribution computed with max precision.

This technique is also called weights sharing [12].

In figure 4.5 it is possible to see the distribution of the trained weights (normal-
ized or not) obtained of our neural network training.

It is possible to observe in the figure that the distribution of Theta1 and Theta2
is symmetrical respect to zero value and between them they are very different, the
first is located near to zero value and it is shape is like a Gaussian, the second in
more uniformly distributed in the same interval of the first.
It is possible to see that the values greater than 0.8 are not detected by histogram
because they present a normalized distribution small (<0.025).

In order to simplify the model, the same not uniform quantization is applied for
both the weights in the first and second layer.

For adopt the not uniform quantization with two bits it is necessary to choose
four values for the weights that minimize the loss accuracy respect to the case with
max-precision.

It is important to know that larger weights (in absolute value) play a more
important role than smaller weights, but the density of them is inversely propor-
tional for the weights that are more relevant respect to the weights less relevant
[12] (because they permit to turn off or turn on the activation function).

The choice of the usable values with two bits is constrained by the following
considerations:

• Two bits permit to discriminate four possible value for weights. So the
constrain is to choose a threshold and in this way it will be possible to divide
the weights between big value or small value. This division is done for negative
values and positive values in the same way due to the symmetrical weights
distribution respect to zero value.

• The parameters that are important to take into account are the normalized
distribution of the weights (low density => high importance), the choice
of threshold between the big values (more relevant) and small values (less
relevant) and the choice of values inside each chosen range.
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In table 4.8 there is a summary of the accuracy for different choices of not
uniform two bits quantization applied to the weights.

The column Threshold is in absolute value and divides the values into two
different ranges (four considering also the negative ones) discriminating the big
value form the small value. The column Values is in absolute value and it identifies
the numeric values that are associated to each range given by the Threshold. The
Values inside each range is the average value of the range in order to minimize the
introduced error. The value represented in the table are the same in absolute value
for positive and negative range.

Table 4.8: Accuracy evaluation of two bits precision model.

Cases Threshold Values Accuracy(%)
1 0.2 0.1 ; 0.3 54.62
2 0.6 0.3 ; 0.7 78.18
3 0.4 0.2 ; 2 82.34
4 0.5 0.25 ; 2 92.23
5 0.6 0.3 ; 2 92.16

Normalized weights
6 0.3 0.15 ; 1 94.75

Fine tuning of case 6
Cases Iterations Learning rate Accuracy(%)

7 1500 0.1 94.81

In cases 1, 2 different thresholds are chosen in order to discriminate the big
values from small values but in these first two cases the chosen values doesn’t take
into account the consideration done before about the importance of the big value
and the inverse relationship between the density value and importance, in fact the
values with a normalized occurrence less than 0.025 are not considered.

The result confirms the consideration so choosing values more likely (with nor-
malized occurrences greater) inside the range dividing by four the total range in a
not uniform way determines less accuracy (78.18%).

The cases 3, 4, 5 show different thresholds with different values but in these
cases the values that are chosen, they take into account all complete range of the
weights also the values with very low normalized occurrence.
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It is observable that the best value in term of accuracy is case 4 in which there
are unique values that are powers of two, it is also hardware friendly approach
because it is able to replace multiply operations with just arithmetic shifts.

The case 6 provides the normalization of weights in fact these ones are divided
by the max possible value present in the range and so the weights are compressed
in the range [-1;1]. The case 6 registers an improvement of the accuracy respect
to the case 5, it is clear that also the threshold and values used in this case are
normalized.

Normalization increases the numbers of the values near to zero. This aspect
permits also to have less dispersion of high value because now they are bounded
and it provides the choice of unique big value easier.

Figure 4.6 shows how mapping of the weights sharing is performed in the case 6.

Figure 4.6: Weights sharing schematic view.

The case 7 shows a small improvement of accuracy (Ä 0.06%) after a fine tuning
phase with hyper-parameters showed in table 4.8.
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Ternary precision

The scope of this not uniform quantization is split the original distribution of the
weights into three values in which the central value is zero (-Value, 0, Value).

One consideration that it is possible to do is that the distribution of the weights
is centered near to zero value where there are a lot of occurrences but some of them
are redundant.

The idea of ternary precision is to use the pruning approach. It consists in
choosing a threshold that permits to discriminate due to the magnitude the value
that are relevant from the value that are not relevant. The values that are smaller
than threshold are set to zero value and they can be cut in neural network connec-
tions [12].

The advantage of this techniques is that the number of MAC operations is
reduced but it is necessary to introduce some overhead in order to detect zero
weights and some MACs can be skipped.

This type of technique has also advantage in memory constrains because some
strategies can be adopted in order to store the zero values in a smart way [1] [12].

Table 4.9 shows the results of ternary precision in terms of accuracy with differ-
ent thresholds.

Table 4.9: Accuracy evaluation of ternary precision with different pruning level.

Cases Threshold Value Zero set values(%) Accuracy(%)
1 0.001 2 0.88 62.70
2 0.01 2 8.58 59.90
3 0.02 2 16.69 56.28
4 0.03 2 20.77 50.42

Normalized weights
5 0.001 1 1.40 61.56
6 0.01 1 13.56 57.21
7 0.02 1 21.0 49.57
8 0.03 1 24.40 37.53
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One bit precision

In this case just one bit for the weights it will be used. The weights are well trained
with max precision, after that they are quantized with two different values.

The distribution of the weights is symmetrical respect to zero value so that
best approach is divided the overall distribution into two ranges respect to zero
value. For each positive or negative range a value (positive or negative) is associated.

In table 4.10 various symmetric values couples are used for evaluate the accuracy.

Table 4.10: Accuracy evaluation with one bit precision weights with different
values.

Cases Value Accuracy(%) Accuracynorm.(%)
1 0.2 53.53 52.65
2 0.4 61.37 59.81
3 0.6 62.61 61.08
4 0.8 62.83 61.40
5 1 62.89 62.39
6 2 62.86 62.34

Fine tuning of case 5
Cases Iterations Learning rate Accuracy(%)

6 2500 0.01 67.84
7 2500 0.1 78.22

In this case the choice of small values is worse than bigger values (case 1, 2 ).
The choice of extreme values (-1,1) of the distribution gives the better performance
in terms of accuracy, but very small change respect cases 3, 4, 5, 6.

One of the most common approach with one bit precision regarding the usage
of the values [-1,1] as unique values [23] [25] [24]. This approach is very hardware
friendly because multiplier operations during inference in this case are just a possible
CA2 of the number when weight equal to -1 or not operation when equal weights to 1.

The cases 6, 7 show the results with the best accuracy after a fine tuning phase
with the hyper-parameters showed in table.
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In order to improve the accuracy a possible adoptable solution can be add extra
HUs with random values to the original HUs and retrain the neural network, in
this way we recover some accuracy loss like showed in figure 4.7.

Figure 4.7: Evaluation of accuracy with one bit precision weight with different
number of HUs.

We try also to train the network with quantized weights [-1,1] during the feed
foward phase and during back ward phase reducing the precision but maintain full
precision during update phase because SGD has to work with max precision. This
type of approach can be useful when the training has to be in the FPGA because
also the back ward propagation multiplier operations become because less hardware
expensive [23] [25].

In table 4.11 the results of this type of tests suggest how the accuracy is linked
with the number of HUs and also on type of training. This because the same
information that it is possible to encode in a less number of HUs with max precision
needes more HUs when the encoding contains just binary information. The results
shows that it is better that training is done with max precision and after that a
post training compression will be performed.

Table 4.11: Normal training vs binary precision training.

Training-
(I=1000)

Accuracy-
(U=200)

Accuracy-
(U=400)

Accuracy-
(U=600)

Accuracy-
(U=1000)

Full precision 62.8 66.3 77.4 82.1
Binary precision 47.3 58.1 64.5 70.1
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Weight memory compression

Not uniform quantization permits to store in the memory not the actual value of
the weights but his codification and so it is possible to have memory constrain less
restricted.

The number of bits for each weight for an efficient compression has less bits than
actual weight value. Contrary there isn’t any advantages in memory compression.
We want evaluate the compression that we have for one bit and two bits weight
sharing.

In order to evaluate it, formula 4.4 will be used [12]:

Compression − rate = nb

n log2(k) + kb
(4.4)

where n is the number of connection between the layers, b is the number of bits
for the original weights and k is the number of bits chosen for the weight encoding.

In order to evaluate the Compression rate in table 4.12 we uses two different
topology (the same used in table 4.6) in which the number of HUs is different.

Table 4.12: Compression rate for neural network topology of 784 × 200 × 10 with
b = 64 bits and for neural network topology of 784 × 25 × 10 with b = 64.

Topology Cases Compr. layer 1 Compr.layer 2 Compr. network
784 × 200 × 10 Two bits 32x 30x 31x
784 × 200 × 10 One bit 64x 60x 63x

784 × 25 × 10 Two bits 31x 21x 31x
784 × 25 × 10 One bit 63x 42x 63x

Table 4.12 shows how the overall compression rate is the same for the two
different topology. The compression rate of the layer 2 is different due to the fact
that the amount of weights is less and in the computed overall compression rate
doesn’t have big influence.

Two topology are take into account due to the fact that not only the single
weight precision impacts on the overall accuracy but also the number of HUs. This
consideration has an impact on required memory constrains.
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4.3.2 Uniform quantization analysis
Using floating point was the safest way to guarantee high accuracy and performance
on the results. Floating point solutions in hardware are expensive computing and
consume a lot of resources. They also have a big memory footprint.

Hence an alternative solution that comes is the use of fixed point, where they
are more FPGA friendly computing. In FPGA designs, fixed-point formats are
very efficient if we know beforehand the resolution and range of our data so that
we can select the appropriate format.

Compare to floating point, fixed point requires less resources in FPGAs (DSPs)
and they are less computational complex. In addition, we can reduce the memory
footprint to a percentage that the network allows.

In table 4.13 it is possible appreciate which is the impact in terms of energy and
area passing from floating point to fixed point and the impact on scaling the fixed
point notation.

Table 4.13: Comparison between different types of values representation in terms
of area and energy [29].

Parameters 32-b floating point 32-b fixed point 8-b fixed point
Adder

Area 116x 1x 0.26x
Energy 30x 1x 0.30x

Multiplier
Area 27.5x 1x 0.080x

Energy 18.5x 1x 0.064x

Another solution to be considered is the dynamic fixed point, the difference
is that instead of using a global scaling factor, more can be used depending on
the application’s needs. This is useful for DNNs, since the dynamic range of the
weights and activations can be quite different [1].

This idea was applied to the network so that each group of different layers can
have different fixed point format using scaling factors.
We have noticed that the dense layer (FC ) has the largest memory footprint
compared to the others. So we tried to find the minimum number of representation
bits having as a limit to the correct classification of the top classes.
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Weights uniform quantization analysis

In this section the accuracy loss when the weights are uniform quantized is evalu-
ated. In this type of tests it is used fixed point notation and the number of bits
varies for the different tests.

In figure 4.8 there is a representation in fixed point notations of the weights
(Theta1, Theta2 ) reducing the number of bits progressively (so also the required
storage) but the other quantities (like the activations) remain unchanged. The
different colors detect for the different number of bits how many values are in range,
below precision, out range).

Figure 4.8: Theta1 and Theta2 fixed point notation representation.

Figure 4.8 is obtained by fixed point designer instruments provided by MATLAB.
Thanks to this instrument it is possible to find the best dynamic fixed point
representation when a data distribution is given.
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In table 4.14 and 4.15 are showed the best fixed point representation obtained
analyzing the weights distribution for Theta1 and Theta2 respectively (in this case
they are not normalized).

It is important to see that the number of fractional bits for the two different
layer weights is different due to the fact that also their distribution is different.

Table 4.14: Fixed point notation for Theta1.

# of bits # of fract. bits In range(%) Below prec. (%) Out range (%)
16 14 94.2 5.8 0
8 6 68.4 31.6 0
4 2 16.5 83.5 0

Table 4.15: Fixed point notation for Theta2.

# of bits # of fract. bits In range(%) Below prec. (%) Out range (%)
16 12 100 0 0
8 4 98.8 1.2 0
4 1 48 52 0

The table 4.16 shows the accuracy loss due to fixed point representation for a
different number of weights bits. In this case a dynamic fixed point is used in order
to improve the accuracy, so the number of fractional bits for the two different layer
weights is different according the table 4.14 and 4.15.

Table 4.16: Evaluation of accuracy degradation with uniform weights quantization.

# of weights bits Memory compression Accuracy(%)
16 4x 97.52
8 8x 97.56
4 16x 95.88
2 32x 30.50

The accuracy results show a small degradation of the accuracy until 4 bits for
the weights (Ä 2,47%). After that there is a bigger degradation (Ä 67.8%), contrary
respect to the case with not uniform quantization in which with two bit and the
right parameters it is possible to obtain an acceptable loss accuracy (Ä 3.6%).
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Activation and weights uniform quantization analysis

In table 4.17 there is the accuracy evaluation when both the weights and activations
are uniform quantized.

Table 4.17: Evaluation of accuracy degradation with uniform weights and activa-
tion quantization.

# weights bits # Act. bits # Act. fract. bits Accuracy(%)
16 16 10 97.60
16 8 2 97.52
16 4 1 97.50
16 2 0 96.02
8 8 2 97.50
8 4 1 97.48
8 2 0 95.88
4 8 2 95.80
4 4 0 95.70
4 2 0 94.30

It is important to note that the quantization of activation is done before to
perform activation function, it means that it is applied to the yellow graph in figure
4.9.

Figure 4.9: Example of the distribution of activation function.
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4.3.3 Model compression analysis
In previous subsections 4.3.2 and 4.3.1 there are the complete explanation of the
two different techniques that are used in order to perform model compression:
uniform compression and not uniform compression.

At this point we want compare the two different used techniques in terms of
accuracy and obtained model compression.

Figure 4.10 summaries the accuracy of some of the different types of used preci-
sion for the neural network. The different colors identify different type of model
compression like described in figure.

In the horizontal axes the first number represents the number of the weights
bits and the second number represents the number of activation bits. The vertical
axes represents the accuracy.

Figure 4.10: Accuracy evaluation of different types of model compression on
neural network topology 784 × 200 × 10.
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The histogram shows how the limit case of uniform compression with 4 bits for
the activation and 2 bits for activation has a small accuracy degradation (Ä 4.55%.)
respect to the max precision case discussed in 4.2.2.

The not uniform compression with 2 bits shows a similar degradation of the
previous one but with the possibility to use just an encoding of two bits for the
weights (Ä 4.20%).

The partial binary neural network shows a bigger degradation with the same
parameters of the others (the same number of HUs), an improvement is obtained
after fine tuning like showed (FT ). Another possible improvement can be increase
the number of HUs and re-train the neural network like we described.

The advantage of the not uniform compression (weights sharing) is that it is
possible not only improve the memory constrain but also using hardware that
require less resources. For instance it is possible using constant multiplier (in a
generic case), shifter multiplier (if the weights are powers of two) and a binary
multiplier if the possible values of weights are -1 or 1. These possible choices are
more hardware friendly respect to the case with normal multiplier with reduced
number of bits given by linear compression. So not linear compression offers both
memory constrain and hardware complexity bigger improvement respect linear
compression but also a bigger accuracy degradation in a general case. It is normal
because the neural network accuracy is strongly connected (more than precision
activation) with the weight precision like discussed in 3.1.3.

A possible optimization of model compression can be mix the two different
techniques, using for example weights sharing (not uniform quantization), with
actual weights values with a reduced precision and quantized activation (uniform
quantization).
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Chapter 5

Design exploration of neural
network

The purpose of this chapter is to design a neural network architecture paying
attention to achieve high level of flexibility of the structure. The design analysis
done in chapter 3 gives the idea of the hardware parameters for the structure for
the different configurations. The idea is that a different neural network architecture
can be generated depending on the constrained hardware resources and target
throughput. The design takes into account the optimization techniques that are
analyzed in the previous chapters in terms of model compression (results obtained
by MATLAB analysis) and hardware techniques like loop unrolling and pipelining.
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5.1 Design for tiling architecture
In order to achieve high hardware flexibility in processing the neural network
is important to use tiling factors that permits to loop unroll the algorithm and
partition the memory.

Loop unrolling is able to increase the concurrency of the architecture and as a
consequence throughput of the neural network. Fixing the throughput, it is possible
to increases the concurrency and so it is possible decrease working frequency and
this choice can be impact on power consumption (Pdin Ä f 2). But increasing the
concurrency reports more hardware resources and so more area (Pstat Ä A), for
this reason it’s important to find a trade-off.

In listing 5.1 is possible to see that in order to process a single layer in a neural
network it needs two nested cycle.

Listing 5.1: C code single layer neural network processing.
1 double input_vector [INPUT_DIMENSION ] ;
2 double weights [INPUT_DIMENSION ] [OUTPUT_DIMENSION] ;
3 double output_vector [OUTPUT_DIMENSION] ;
4

5 f o r ( i n t k = 0 ; k < OUTPUT_DIMENSION; k++)
6 {
7 output_vector = b ia s ; // load the b ia s va lue ;
8 f o r ( i n t i = 0 ; k < INPUT_DIMENSION; i++)
9 {

10 output_vector [ k ] += input_vector [ i ] ∗ weights [ i ] [ k ] ;
11 }
12 }

So the total number of iterations of a neural network with Nl neurons in the
layer l and Nl−1 neurons in the layer l-1 are:

loop − iterations = Nl−1 × Nl (5.1)

It’s possible to apply loop unrolling of the two nested loops:

• Outer loop: in this way different neurons can be processed in parallel way this
is possible because inside a layer there isn’t problem of data dependency and
the value of neurons weights are independent.

• Inner loop: in this way the single neurons can be able to process more inputs
than one at each iteration.
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The tiling factors that is possible to choose for the two different loops can be
different. They are called respectively Tin for inner loop and Tout for outer loop.

It’s possible to compute how many loop iterations are necessary after loop
unrolling:

loop − iterations = Nl−1

Tin
× Nl

Tout
(5.2)

From equation 5.2 is possible to note that the number of loop iterations decreases
like the product of the two tiling factors. It’s fundamental to say that the tiling
factors are directly linked to hardware resources of FPGA.

The two tiling factors increase the performance of architecture in terms of
throughput because they improve the two different main parameters presented in
3.3.1 about possible causes of bound for hardware design:
MAC/data and MAC/cycle.

Listing 5.1 shows how to work a FC layer with Tin = Tout = T = 2.

Listing 5.2: C code single layer neural network processing after loop unrolling
T=2.

1 #DEFINE T_IN 2
2 #DEFINE T_OUT 2
3

4 double input_vector [INPUT_DIMENSION/T_IN ] [ T_IN ] ;
5 double weights [INPUT_DIMENSION ] [OUTPUT_DIMENSION] ;
6 double output_vector [OUTPUT_DIMENSION/T_OUT] [T_OUT] ;
7

8 // t h i s loop i s done in p a r a l l e l with a t i l i n g f a c t o r o f T_OUT
9 f o r ( i n t k = 0 ; k < OUTPUT_DIMENSION/T_OUT; k+T_OUT )

10 { output_vector [ k ] [ 1 ] = b ia s ;
11

12 // t h i s loop i s done in p a r a l l e l with a t i l i n g f a c t o r o f T_IN
13 f o r ( i n t i = 0 ; k < INPUT_DIMENSION/T_IN; i+T_IN)
14 {
15 output_vector_tmp [ k ] = input_vector [ i ] [ 0 ] ∗ weights [ i ] [ k]+

input_vector [ i ] [ 1 ] ∗ weights [ i +1] [ k ]+;
16 output_vector [ k ] [ 1 ] += output_vector_tmp [ k ] ;
17 }
18 }

This means that architecture processes two neurons at each time and for each
neuron two inputs at time are evaluated.
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It’s important to underline that these tiling factors doesn’t not only influence
the number and configuration of PEs but also in which way the data are stored in
memory and memory configuration.

Indeed Tin > 1 has as consequence that more than one input at time has to be
processed so it is necessary to partition the memory with the same tiling factors of
Tin, it means that instead to have a big memory with all input features/activations
the data are divided in Tin smaller RAMs.

The consequence of this choice doesn’t impact on memory storage because
required memory storage remain the same but permits to improve the concurrency
of algorithm.

In equation 5.2 the first term indicates how many iterations are needed in order
to compute the output of Tout neurons, the second term indicates how many times
it is necessary to iterate the inner loop in order to process the complete layer.

For better understanding we can do an example.

In figure 5.1 there are two layers (l-1, l) of neural network where Nl−1 = 4 and
Nl = 8.

For instance setting Tin = Tout = T = 2, there are the following consequences of
neural network processing:

• 2 neurons are processed concurrently at each algorithm step and each of them
accepts 2 activation inputs and 4 weights at each step.

• Nl−1/Tin = 2 => it means that computing the output of 2 neurons requires 2
algorithm steps.

• Nl/Tout = 4 => it means that computing the output of all layer neurons
requires that these 2 steps have to be repeated 4 times for a overall loop
iterations of 8.

In figure 5.1 the example of data working flow is showed in a schematic way
where is possible to see for each algorithm step which are the inputs and the outputs
and which computation is done at each step.
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Figure 5.1: Example of data working flow for a unrolled neural network.
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Figure 5.2 shows the difference phases that involves during layer processing
showed in figure 5.1.

They consists in read the activations, read the weights and write the final output.
The different colors in the image underline that it needs to read T activations and
T 2 weights at each step. After T steps it is possible to write the final output for
the first T neurons and after that it is possible to restart the computation for the
next T neurons.

Figure 5.2: Example of timing working flow for a unrolled neural network.

In the next sections the various components of architecture will be described
according the different tiling factors.

The same notation about Nl and Nl−1 will be maintained where:

• Nl: identify the number of neurons for a generic l layer.

• Nl−1: identify the number of neurons for a generic l-1 layer.
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5.2 Neural network layer architecture
An example of complete neural network architecture is showed in figure 5.3. In the
showed example Tin = 3 and Tout = 3.

It consists of datapath and control unit:

1. Datapath unit is composed by main three different elements:

• RAMs: they are necessary in order to store the input features for the first
layer or the activations for the other layers. The number of memories that
it needs to use is directly linked with the Tin factor. If the architecture
has Tin = 1 means that computational block uses just one input at each
time and so the architecture will have a single memory with all input
features/activations. If the architecture has a Tin > 1 then it has the
same data stored in Tin memories. In this way it is possible that each PE
(MAC-memories) can elaborate Tin inputs at time.

• MAC-memories: MAC-memories are the PEs of the layer. Their aim is
to compute the output of all neurons in the current layer. The number
of different MAC-memory instances is Tout. It means that Tout different
neurons are processed in parallel way. Each MAC-memory has own ROM
that contains the weights. It is fundamental take care about in which
way the weights are storage in different ROMs since they have to match
with the right activation. An important block inside each MAC-memory
is the MAC-parallel. It reads weights from ROM and after that multiply
these last ones with Tin activations and accumulates the result until it
finishes to compute the output neuron. The final result is passed through
the activation function and moved to buffer.

• Buffer : buffer permits to right delay the outputs that are computed in
the current layer before they will be stored in the RAMs of the next
layer. It’s important the using of buffer because when perform a multiple
inference gives the time needed to read the data from RAMs in the next
layer. Contrary, the outputs data of the current layer can overwrite the
RAMs data before the computation is finished.
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2. Control unit is able to give the right control signals based on status signals
from datapath. In order to have better control on datapath the control unit is
the factoring of two FSM. The two FSM are in charge to do the two different
purpose of the architecture: read data from previous layer and when data are
ready process them.

(a) FSM load-data : the main aim of this FSM is upload the data in the
RAMs layer from the buffer of the previous layer or from BRAM if it is
the first layer.

(b) FSM elaborate: the main aim of this FSM is to control the elaboration of
MAC-memories thanks different counters that take into account about
iterations loop presented in the equation 5.2. Besides this FSM controls
also the signals of the buffer in charge to permit that data moving on the
buffer is correct.

In the next sections possible design exploration for hardware neurons implemen-
tation will be studied in deep since it represents the actual PE.

Figure 5.3: Example of layer neural network complete architecture.

74



5.3 – Neurons design for tiling architecture

5.3 Neurons design for tiling architecture
Some of the most important parts in the layer architecture are the different Tout
MAC-memories instances. They simulate a number of Tout PEs that works in
parallel way.

It is important to underline that if Nl > Tout it means that more than one
neuron will be processed by singular the PE.

Each of these ones is divided in three different components:

• MAC-parallel: it is able to compute the multiplication between a parametric
number of Tin inputs and their corresponding weights. It simulates the
behaviour of single neuron since it has just one output and it is able to process
the output for just one neuron at each time.

• ROM-weights: it can contain the weights values or encoded weights. It is clear
that when memory contains encoded weight is necessary to add a coder in
order to decode the weights to their actual values. The possibility to use an
actual memory weights or encoded weights is a choice that depends of neural
network model. Also the type of encoding for the weights (1 bit, 2 bits or
more) is a parameter that it is possible to change. It is important to say that
when weights encoding changes also the coder changes.

• Activation-function: it is in charge to perform the activation function that it is
used in network. The implemented activation function is the ReLU described
in 2.1.1.

The parameters that are defined Tin and Tout are user parameters that it is
possible to change before the synthesis taking into account the target resource
utilization, throughout and the high level parameters of neural network like the
total number of the neurons of the layer or the total number of activation that
have to be read by the layer.

The parameters Tin and Tout are defined at layer level on the hierarchy, so in
the same neural network is possible to have different tiling factors for different layers.

The only one important constrain that it is need to maintain in the choice of
these parameters is that Tout in the layer l has to be equal to Tin of l+1. This is
fundamental for matching the output of one layer to the input of the next layer.
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5.3.1 Neurons designs exploration
Different tiling factors involves in different possible architectures that can simulate
the behaviour of a layer of neurons.

In figure 5.4 there is an example of these.

We investigate the four limit cases, starting from the standard one with no degree
of concurrency case a) to the full concurrency architecture case d). There are also
two intermediate cases b) and c) in which architecture uses just one degree of con-
currency, inputs concurrency for the case b) and output concurrency for the case c).

Figure 5.4: Design explorations for different hardware architecture neurons based.
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We want analyze the different cases study in order to understand which are the
advantages and drawbacks for the different configurations.

• Critical path: the case a) and b) have the same critical path, it is the path
between the multiply block and the adder block. In order to break it, it will
be possible to add a pipeline level between the two blocks. The case b) and d)
have the same critical path and it is the path between the singular multiplier,
the tree adder block and the adder. Also in this case it will be possible to add a
pipeline level between multiplier and tree adder block but the resulting critical
path is greater than the first case. Especially when Tin is high then the tree
adder block deep increases and this can limit the max possible frequency. But
it’s important to underline that it can to decrease the max possible frequency
but it increases the concurrency so the resulting throughout could be the same.

• Resources & loop unrolling compression: the case a) uses the mini-
mum possible resources and it has unroll factor equal to 1. The other cases
visible in table 5.1 show that unroll factors are directly connected to the num-
ber of used resources. The number of registers can be increased if a pipeline
levels are applied to architecture. The multiplier that it is considered in a
general case is normal multiplier, so it is a big and slow component especially
when the number of bits is high. But performed model compression suggests
that it is possible in some cases to use another type of multiplier like shifter
multiplier, constant multiplier or partial binary multiplier that permits to
save resources respect a normal multiplier.

• Memory requirement: the loop unrolling has an impact also on the memory
requirement since it changes the number of inputs needed from RAMs and the
number of needed weights from ROMs in order to perform the MAC operation
in efficient way (using all available PEs). As a consequence become necessary
to partition the memory in order to have more than one input at each cycle.
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Table 5.1 and 5.2 summary the result in terms of critical path, resources utiliza-
tion and memory requirement respectively.

Table 5.1: Design results evaluation for different architecture.

Design Multipliers Adders Registers Critical path Unroll
a) 1 1 1 tadder + tmultiply 1
b) Tin Tin 1 Tin · tadder + tmultiply Tin

c) Tout Tout Tout tadder + tmultiply Tout

d) Tout · Tin Tout · Tin Tout Tin · tadder + tmultiply Tout · Tin

Table 5.2: Memory requirements for different architecture.

Design # of RAMs # of ROMs # Req. inputs # Req. weights
a) 1 1 1 1
b) Tin 1 Tin Tin

c) 1 Tout 1 Tout

d) Tin Tout Tin Tin · Tout

We choose to implement the design d) for PEs for our architecture in which
the singular MAC simulates the behaviour of singular neuron with a parametric
number of inputs like in case b).

Besides different instances of MACs simulate the behaviour of the different
neurons that works in a parallel way.

The singular MAC is called MAC-parallel and it will be study in deep in the
next section.
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5.3.2 MAC parallel design overview
In last subsection possible designs for hardware neurons implementation are intro-
duced.

Now we want focus on the single neuron implementation done with the com-
ponent called MAC-parallel. The presented architecture has the same elements
described in the case b) and further two control signals:

1. MAC-enable: this signal permits to process the inputs data just when they are
available and valid. This is useful because when data are not valid they are
not processing and the switching activity in following blocks doesn’t change
so it is applied a sort of data gating that permits also to save power.

2. Set-accumulator : this signal load the set value on the accumulator register.
The set value is the bias of the neural network and it can be choice like a
input parameter.

In figure 5.5 is possible appreciate an example of MAC-parallel complete archi-
tecture.

Figure 5.5: Example of MAC parallel architecture.
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Pipeline levels

The MAC-parallel component presents two levels of pipeline.

The first level of pipe is also important because permits to interface the compo-
nent with the inputs coming from external components.

The second level of pipeline is present after the tree adder block in order to
break the possible critical path and so speed up the frequency of component.

The three adder block is purely combinatorial block but it is possible to trans-
form it in a pipelined adder adding registers after each steps like showed in 5.6.
The possibility to choose a pipelined or combinatorial version depends on a generic
parameter present in a MAC parallel component.

The reason is that when Tin is high then the critical path between the multiplier
and tree adder can limit the frequency. When pipeline levels increase it needs also
to increase the pipeline levels of the control signals of the same amount like showed
in dashed FF in figure 5.5.

Figure 5.6: On the left: tree adder parameters. On the right: pipelined tree
adder.
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Coder

The dashed coder block can be added when encoded weights are used. Coder scope
is translate the encoded weights to their actual associated values, the values of
weights are a parameter that it is possible to choose. The coder is implemented with
a multiplexer which output is selected through the select signals of the multiplexer
connected to codified weight.

The coder is a component that it is possible change if the type of encoding
(number of bits associated to one weight) is different.

We focus on use coder for two bits not uniform quantization of the weights.
This because it presents different advantages in terms of memory compression and
it can be hardware friendly (different types of optimized multipliers can be adopted).

The usage of the coder is necessary when encoded weights are all possible
generic values but for power of two weights and binary weights it is possible not
use the coder and this hardware overhead can be avoid and as a consequence the
architecture will use less resources.

The complexity (# hardware resources) of the coder increases with the number
of bits used for encode the weights like showed the relationship in table 5.3.

In order to compare how the hardware needed for the coder increases in table
the comparison of area and critical path is done in term of 2 way multiplexer (for
reproduce the same unit component).

In any case the coverage behavioral function implemented during decoding is a
2n − to − 1 multiplexer where n is number of bits used for weight encoding.

Table 5.3: Single coder design evaluation for different number of bits.

# bits encoded weight # values weight # muxes 2-to-1 Critical Path
n 2n 2n − 1 tmux · n
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The number of multiplexer 2-to-1 in table 5.3 is true for Tin = 1 in other cases
it will be Tin times than single coder. This because it needs a coder (multiplexer)
for each different encoded weight.

In figure 5.7 there is an example of coder implementation with showed parame-
ters.

Figure 5.7: Example of coder architecture.
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Data parallelism

During the elaboration of MAC-parallel is important to maintain the good precision
of computation. It depends on type of hardware (multiplier or adder) but also it is
connected with Nl−1. This because Nl−1 impacts on how many adder iterations
have to do in order the complete the output neuron. Data parallelism is important
in charge to not lose precision but not using to much useless bits.

It is important that the different components have different number of bits like
showed in table 5.4. Correct alignment of the data and correct sign extension is
done when necessary in order to match the component size.

Table 5.4: Parallelism evaluation for MAC-parallel component.

Activation Weight Multiplier Tree adder Accumulator
N M N+M (N+M)+log2(Tin) (N+M)+log2(Nl−1)

After accumulation, the precision of the final output activation is typically
reduced to N bits, the reduced output precision does not have a significant impact
on accuracy if the distribution of the weights and activations is centered near zero
such that the accumulation would not move only in one direction [1].

Latency and throughput

MAC-parallel computes the output of one single neuron at each time. Since in a
FC neural network all the activations have to multiplied with their proper weights
the partial result is accumulated until the neuron output can be moved to higher
hierarchic component.

The number of cycles that a MAC-parallel will need to compute all the operations
that have to be done for output neuron can be calculated with following formula:

cycles = Nl−1

Tin
+ 3 + [log2(Tin) − 1] (5.3)

where the last term is added just for pipelined tree adder, in other case is not
considered. The three extra cycles correspond to the neuron’s latency to produce
its first result, are added to the total time and are due to the need to fill the
pipeline of the workflow of the neuron. In order to not lose cycles the bias values
set the accumulator register in the first latency cycle.
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5.3.3 Multiplier blocks
The fixed point multiplier block has an area Ä n2 and delay Ä n2 where n is the
number of input bits.

Different types of multipliers are take into account since the model compression
results operated by MATLAB showed an acceptable loss of accuracy in some cases.

The cases study are the following ones:

• Generic multiplier : it accepts any values of operands.

• Constant multiplier : it accepts any value from one operand but the other is
constant.

• Shift multiplier : it accepts any value from one operand and apply a properly
arithmetic shift. It works just for power of two weights.

• Partial binary multiplier : it accepts any value from one operand and the
second operand can be -1 or 1.

In the MAC operation applied to neural network the value that it can be change
is the input features or the activation, instead the value that it is constrained is
the weight.

The analysis is concentrated about not uniform compression weights with two
bits (except for binary multiplier) so the implementation of the constant multiplier
and shift multiplier consists of four constant multipliers following by a multiplexer
and four shift multipliers following by a multiplexer respectively like showed in 5.8.

Figure 5.8: Different multiplier blocks.

84



5.4 – MAC-memory

5.4 MAC-memory
The MAC-memory component contains the MAC-parallel and a ROM like showed
in figure 5.9.

The neurons that are associated with a single MAC-memory can be vary and
depend on neural network model (Nl) but also on hardware parameter (Tout). This
because the first is the number of neurons for the l layer, the second determines how
many of them are processed in a parallel way. The number of neurons associated
to one MAC-memory determines ROM weight size.

The control signal write-output is added in charge to permit that when single
neuron computation is finished the output can be passed to another register and so
the accumulator register can be resetted and start again a new neurons elaboration.

The write-output control signal is delayed of two cycles because the MAC-parallel
controls signals are also delayed of the same cycles. The dashed FF takes into
account the possibility that the MAC-parallel increases its pipeline levels (due
to pipelined tree adder) and as a consequence also this control signals will be delayed.

Figure 5.9: MAC-memory architecture.
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5.4.1 Weights ROM
It is important to notice that the weights are stored in ROM, this means that we
can only read them but not change them. This has been implemented this way
because we are training the network off-line, the weights that are loaded into the
ROMs must come from a process of training done not at the hardware level.

It is important to say that the ROM is asynchronous. This means that when
the address that we want to read from the ROM changes the data out will be
available shortly after that and the weight will be accessible. The reason of having
implemented the ROM in an asynchronous way is because otherwise we would
have to wait for a clock cycle to obtain the data we want and it will either make
the neuron slower or make the control of the addresses more difficult. This choice
was made knowing that the combinatorial path before the following register is not
long so this will not interfere with the timing constraints.

The control signals that are the inputs of weights ROMs are:

• Address-weight: it has to take in consideration which is the correct neuron
for the current elaboration (due to the fact that more than one neuron can
be associated with a single MAC-memory and its right weight matching with
the activation. This signal comes from the datapath of the layer thanks to
two counters, one of them takes into account iterations for a single neuron
(Nl−1/Tin), the other how many neurons are just processed (Nl/Tout).

• CS-memory-weight: it permits to turn off the memory outputs when they
are not needed, in this way it is possible save power because no new data on
data-out of memory. It comes from the control unit and depends in which
state of elaboration the machine is working.

It is important to underline that the memory size in terms of precision of singular
weight impact on accuracy of the neural network but also in a hardware key metrics
like the power consumption and utilization resources due to the fact that the num-
ber of bits of the weights influences the parallelism of the structure. For this reason
we focus on weight compression with an acceptable loss of accuracy on our model in
order to reduce the storage constrain and as a consequence the complexity hardware.

The precision of the singular weight is not the only aspect that it is important to
consider, it’s fundamental also the deep of the memory (Ä Nl) because it involves in
different execution time (that increases with other fixed parameters) so in different
energy and throughput.
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Weight memory organization

In figure 5.10 it is possible to appreciate which is memory organization when
Tin = 1. The total number of ROMs in the architecture depends on which tiling
factor Tout is chosen.

The total storage constrain for the weights remain the same respect to the case
with no memory partitioning but changes the way in which the weights are divided
into different ROMs.

The control signals that are given to different ROMs are the same ones so in
this way a regularization of data access is obtained.

In the example showed in figure 5.10 it is possible to see that with Tout = 2 in
the first memory we stored the even weights and in the second memory the odd
ones. This because in this case two neurons at each time are computed concurrently.

In general case with Tout > 1, the organization follows the same principle to fill
the memory.

The size of word memory depends in this case with Tin = 1 only on the precision
choose by neural network model for the weights.

Figure 5.10: Memory weight organization with Tin = 1.
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In the general case when Tin > 1, the required weight for not lose efficiency
(using all available PEs) become Tin · Tout.

For manage this situation there are two possible available options:

• Using Tin different memories for each different Tout MAC-memory.

• Using Tout different memories for different Tout MAC-memory but using a
different size for memory word obtained by the product between singular
weight bits number and Tin. Increasing the word size the consequence is that
the memory deep decreases like showed in figure 5.11.

The option that we have chosen is the second one. With this option, the man-
agement of the weights is easier and it is more flexible respect to the first one.
Besides the first one has no particular advantages respect to the second one.

One possible drawback of the second option can be when the Tin factor is high
or the number of weight bits is high because the word memory size increases and
the memory access can be slower.

Table 5.5 summaries the size of memory for different loop unrolling factors.

Table 5.5: Weights ROMs parameters for different tiling factors.

Cases # ROMs ROMs size Word ROMs size
Tin = 1, Tout = 1 1 Nl · Nl−1 bitsweight
Tin > 1, Tout = 1 1 Nl−1/Tin · Nl bitsweight · Tin
Tin = 1, Tout > 1 Tout Nl/Tout · Nl−1 bitsweight
Tin > 1, Tout > 1 Tout Nl/Tout · Nl−1/Tin bitsweight · Tin

In general case the overall deep memory and word memory size are the following
ones:

ROM − size = Nl−1

Tin
× Nl

Tout
(5.4)

Word − memory = Tin × bitsweight (5.5)
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Figure 5.11: Memory weight organization with Tin = 2.

In equation 5.4 the first term indicates how many memory locations are necessary
for the single neuron elaboration and the second term indicates how many neurons
are contained in a single MAC-memory instance.

The loop unrolling permits to efficient partition the memory using more smaller
memories respect to use a bigger one in this way theoretically the memory access
can be quicker and consumes less power (less capacitance in the path to drive).

Besides it is possible to increases the concurrency. It’s important to underline
that overall memory accesses to complete a neural network layer computation when
Tin > 1 decrease according a factor Tin like showed in equation 5.6.

#Memory − accesses = Nl × Nl−1

Tin
(5.6)

It is an important point since in a FC neural network the amount of weights
is important and the memory accesses and data movement are one of the most
important sources of energy consumption.
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5.5 Datapath layer
The layer datapath is composed of the different components that are introduced in
section 5.3. Besides, the layer datapath contains different counters that are used
by controller to manage the different elaborations that it is necessary do to.

It is possible to identify the following needed counters:

• Counter load-data: it is used by the FSM load-inputs in charge to write the
activation input in the RAMs of the layer. When its TC signal is asserted the
FSM elaborate can start to work. The max-value of this counter is Nl−1/Tin.

• Counter neuron-iteration: it is used by the FSM elaborate in charge to takes
into account the current iteration for single neuron output. When its TC
signal is asserted the FSM gives the signal to restart the computation for the
following neuron. The max-value of this counter is Nl−1/Tin.

• Counter layer-iteration: it is used by the FSM elaborate in charge to takes into
account how many neurons output are ready. When its TC signal is asserted
the FSM load-inputs of the next layer is ready to move the data from the
buffer to RAMs of the next layer. The max-value of this counter is Nl/Tout.

Figure 5.12: Datapath layer architecture.

90



5.5 – Datapath layer

5.5.1 Input RAMs and buffer
The input RAMs and buffer are the components that interface the PEs represented
by different MAC-memory instances from the inputs (coming from another layer or
the BRAM if the first layer) to the output that is is represented by another layer
or the overall output.

The signals (except for the inputs data) that arrive in the different memories
and buffers are the same in this way the architecture presents a regularize data
access that permit an easier control.

Input RAMs

The RAMs are synchronous and dual ports (one for the input of the previous layer
and the other for the output).

The number of different RAMs instances is Tin and the size of each RAM is
defined in equation 5.7:

RAM − size = Nl−1

Tin
(5.7)

It is important to underline that the number of inputs RAMs are defined at
layer level and not for complete architecture according to layer constrain.

It is important take into account the possibility that Nl−1 is not divisible with
Tin in this case it is necessary to add Nl−1 mod Tin memory locations that they
will be filled with zero bits and in this way not consequence in terms of precision loss.

The choice of using Tin > 1 permits to explore concurrency of the inputs because
the different inputs (coming from different memories) are given to the same PE at
the same time and in this way the iterations number of the algorithm showed in
5.1 for the inner loop decreases.

Another consequence of using Tout > 1 is that has an impact of number the
PEs elements that are working in parallel. This aspect has the consequence that
permits data reuse of the RAM data that are read one time and processed by Tout
neurons, so the total number of accesses to RAMs memory decreases according a
factor Tout:

#Memory − accesses = Nl−1 · Nl

Tout
(5.8)
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The RAMs input organization is important due to the fact that in a FC archi-
tecture all the inputs have to be multiplied with their proper weights.

In figure 5.13 there is an example of how data are divided from a singular
memory to two different memory. In order to not change the data algorithm
workflow the data are organized respecting the same order of the singular memory.

Figure 5.13: Example of inputs RAMs organization with Tin = 2.

Buffer design

The buffer is necessary to perform multiple data inferences due to the fact that in
a general case the number of neurons of each layer can be different.

As a consequence the loop iterations of each layer can be different and the
architecture has to be able to do the possibility do read the RAMs for the correct
number of needed iterations.

Contrary, if the buffer is not inserted the new data overwrite the RAMs data
before the complete elaboration is done.

The behaviour of the buffer is similar to a FIFO memory because the data
go out from the buffer with the same order in which they are get in. The buffer
size can be chosen like a parameter. It’s important to underline that this param-
eter is constrained by neural network model (Nl−1, Nl+1) and target throughput
performance.
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5.5.2 Neurons layer
This component is composed by different Tout MAC-memory instances (called PEs
in figure 5.12). The all signals that are the inputs of MAC-memory instances are
delayed of one clock cycle due to inserted pipe level between the MAC-memory
instances and input RAMs.

Before the data moves to buffer the activation function is performed is needed.

All MAC-memory instances receive the same control and data signals in this
way the architecture present a symmetrical structure. The only difference is the
content of ROM that determines different neurons. As a consequence each ROM
has to present the same structure described in 5.4.1.

The number of neurons that it associated to each MAC-memory (PE) is:

#neurons

PEs
= Nl

Tout
(5.9)

In order to compute the right ROM address in the neurons layer there are two
input signals coming from the two counters present in the datapath.

It is necessary use two different counters for two reasons:

1. The counter neuron-iteration is also the read address data also for input RAMs
and so it has to scan Nl−1/Tin values in order to complete one complete read
cycle of each RAMs and so it determines the output for Tout neuron. So in
this way it is easier matching the activation with the right weight since they
receive the same address.

2. The counter layer-iteration is important because it takes into account how
many neuron outputs are just computed and it permits to know which is the
current neuron elaboration.

The two output counters signal are mixed dynamically in the following way to
determine which is the effective ROM address:

ROM − address = neuron − iteration + (iteration − layer ∗ Nl

Tout
) (5.10)
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Data gating

Equation 5.9 can return a value that is not an integer. This means that it is not
possible divide the various neurons with different PEs in symmetrical way.

In order to manage this situation there are two possible options:

• It is possible lose some flexibility and set the constrain that the result of 5.9
is mandatory an integer.

• It is possible to insert some hardware overhead like which one showed in 5.14
that permits to gating the right amount of MAC-memory instances when they
are not needed. In this way the switching activity in the gated block doesn’t
change and as a consequence it is possible to save power. It’s possible to do it
thanks a masking operation of MAC-enable signal during the last iteration
where needed.

In order to guarantee the maximum flexibility the option number two is chosen.

The number of MAC-memory instances that are gated during last iteration is
given by formula 5.11:

#Gated − MACs = Tout − (Nl mod Tout) (5.11)

Figure 5.14: Masking MACs hardware.
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5.6 Controller
Controller aim’s is to read the status signals that coming from datapath and send
the correct control signals.

The controller is divided into two FSM for each layer. The two FSMs communi-
cate according a three flag signals for each layer.

1. Input-load: this signal is a sort of start of the layer elaboration because it
permits to upload the data into input RAMs. When the signal is asserted
the datapath begins to load the data into memory. This flag is disabled when
input-ready is asserted.

2. Input-ready: this signal is asserted when all the inputs are stored in input
RAMs and so they are ready to be elaborated. This signal is passed to the
FSM elaborate in order to start the elaboration. This flag is disabled when
output-ready is asserted.

3. Output-ready: this signal is asserted when all the outputs are in the buffer
and so it is possible that the next layer upload the new available data and the
current layer can also upload the new data for elaboration.

Figure 5.15 shows as the controllers for two different layer are connected between
them and how the two FSMs of single layer are connected between them.

Figure 5.15: Example of complete controller connections.
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Figure 5.16 shows the main asserted control signals that from control unit are
sent to datapath and the various state of machine.

Figure 5.16: On the left: chart of FSM-load-dataASM chart of FSM load-data.
On the right: ASM chart of FSM elaborate.
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5.7 Optimization techniques
In this part there is a summary of how the optimization techniques presented in
figure 3.7 are applied to the proposed design:

• Pipelining: the design presents four pipeline levels in order to speed up the
elaboration (increasing the working frequency) and so increasing throughput.

1. Two levels are present inside MAC-parallel because it is composed by
a multiplier followed by an adders and this can limit the max possible
frequency.

2. Two levels are present inside the Neurons-layer block. At the input be-
cause read data from memory can represent a bottleneck for the max
frequency and at the output to take into account the delay introduced by
activation function.

• Loop unrolling: the design permits to choose different loop unrolling
factors with the constrains discussed in previous sections.

1. Tin has an impact on input RAMs organization, on MAC-parallel resources
and on weight memory organization.

2. Tout has an impact on MAC-memory organization, on weight memory
organization and on buffer structure.

• Model compression: the design is flexible in term of model compression
since it permits to choose the precision of weights.

1. Uniform quantization: there is the possibility to choose the number of
bits for the weights.

2. Not uniform quantization: there is the possibility to choose the quantiza-
tion for the weights and using an appropriate coder in order to decode
the weights. Based on different applied model compression it is possible
to choose a different multiplier block to optimize the computation.

• Regularize data access: all the memories in the architecture receive the
same signals from the datapath and from controller, this permits an easier
control of the structure that presents a symmetrical design.
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Chapter 6

Detailed implementation of
the neural network

This chapter results of the implemented design will be discussed. The first part will
be focused on some VHDL details of design implementation. This because developed
code is able to give the possibility to the user to change different parameters that
during the design description in chapter 5 are analyzed and discussed. In the
second part there are the results of implementation on XC7Z045 FPGA in terms of
utilization resources and throughput of the neural networks taken in consideration
and some components of the neural network. The test will be done on the same
neural networks analyzed and discussed in chapter 4. One of the most important
parameter that it is used in the various tests is type of multiplier, this because
as discussed in chapter 3, multipliers based operation are the majority of neural
network elaboration. In the final part there are the final considerations about
personal evaluation, possible future works and conclusion.
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6.1 Implementation strategy
To implement the proposed architecture we have used VHDL as hardware descrip-
tion language and the commercial tool Vivado [30], as we want to design the specific
hardware of a neural network targeting Xilinx FPGAs.

The proposed VHDL code shows a hierarchic structure that permit to define the
component starting from lower level (MAC-parallel) to arrive a complete neural
network that it is composed by different layer instances. The structure of layer is
well described in 5.5. The component at higher level defines the generic parameters
of the component at lower level. A package in the highest level permits to define a
complete neural network starting from a description of the parameters of the single
layer.

The most important parameters that are possible to choose are the tiling fac-
tors that have the effects explained in 5.7 on the architecture. Other important
parameters are the types of used multiplier (depends on data compression applied
on the model) and the precision of the data input. The flexibility of the VHDL
developed code give the possibility to adapt at each FC neural network, what it
can be different is just the content and size of input RAMs and ROMs and the
available PEs.

VHDL code has the flexibility according to the following aspects:

• Hierarchic organization: it permits to explore the "divide et impera"
approach in which the design and the test of each component is more feasible.
Besides, this approach permits also in the future some possible modifications
easily for example changing the type of coder from two bits to three bits
because it will be necessary change just the coder component and not all
architecture.

• Generate construct: gives the possibility to iterate the hardware instances
for parametric value of times for example when different tiling factors are used
or give the possibility to instance or not an hardware in a particular situation,
for example the case explained in 5.5.2.

• Generic construct: permits that every component has the parameters
that are adaptable to every situations. For example the number of bits of the
input data, the type of used PEs or at layer level the number of neurons that
composes the layer.

More details about the developed code of various more important components
described in the chapter 5 and the explained features are showed in appendix A.
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6.1.1 Data files
As was explained before, every piece of data that enters a neuron is different in each
neuron, and we have to access the right weight that corresponds to that neuron
and that specific input. This means that in the same address in different ROMs,
the weight corresponds to different inputs.

The weights that MATLAB provided us were a real number so they have to
be changed from real to two’s complement thanks to already developed [31]. In
this function we have to provide both the number of total bits and the number of
fractional bits due to the fact that we are using a fixed point signed representation
of the data. Once the weights are transformed into two’s complement, they have
to be divided depending on the neuron that those weights belong to. When the
weights are divided, they have to be ordered depending on the neuron that it
corresponds to. First of all we need to know the size of the ROM in which the
weights are going to be stored, which is described in equation 5.10. Knowing this
parameter, we need to fill the exceeding positions with zeros.

The weights and the input features are upload in their respectively memories in
the right order thanks to a MATLAB processing of the data respecting the same
working flow also when loop unrolling is applied. The way in which these types of
data are upload in the VHDL code are described in appendix A in the component
called ROMs.

6.2 Result implementation
The results that are take into account after a post synthesis simulation are the
following ones:
1. Resources utilization: Xiling FPGAs has LUTs, FFs, DSPs, BRAMs

in order to mapping the architecture. Different components of our architecture
are tested with different parameters and at the end a complete neural network
architecture is mapped.

2. Power analysis: some components are tested in the worst case condition
(Esw = 1), in order to know in which way power consumption varies with
different configurations.

3. Throughput: it is described in 3.1.1.

4. Memory footprint: the constrains for memory weights are computed
for different cases and they are associated with accuracy degradation when
different model compression is applied. The accuracy is strongly connected
with the number and the precision of the weights like explained in 3.1.3.
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6.2.1 Memory footprint
In table 6.1 and in table 6.2 it is possible appreciate the memory constrain for the
weights for different weight precision and for two different topology (changing the
# of HUs). The different topology that are taken into account are the same that
are discussed in the chapter 4 with MNIST data set.

The purpose of these tables is to see how different memory compression has an
impact on accuracy degradation. This one is computed with the error-rate.

The error-rate and memory compression are computed in relationship with the
case a) that report the maximum accuracy and the highest memory footprint.

The formula for the error-rate that it will be used is 6.1:

Error − rate = Accuracycase−a − Accuracyother−cases (6.1)
The memory compression is computed dividing the needed memory footprint

for the case a) for the needed footprint memory for the other cases showed in the
tables.

Table 6.1: Weights ROM footprint with 784 × 200 × 10 neural network topology.

Cases # W # Bits Footprint Mem. Compr. Error-Rate(%) Ratio(M/E)
a) 1568000 64 100.1Mb - - -
b) 1568000 32 50.1 Mb 2x 0.12 17
c) 1568000 8 10.2Mb 8.4x 0.83 10

d) 1568000 2 3Mb 50.5x 3.6 14
e) 1568000 1 1.5Mb 67x 20.13 3

Table 6.2: Weights ROM footprint with 784 × 25 × 10 neural network topology.

Cases # W # Bits Footprint Mem. Compr. Error-Rate(%) Ratio(M/E)
f) 196000 64 12.1Mb 8.27x 7 1.18
g) 196000 32 6.2 Mb 16.145x 7.34 2.19
h) 196000 8 1.5Mb 66.73x 8.08 8.25

i) 196000 2 0.4Mb 250x 11.05 23
l) 196000 1 0.19Mb 526.8x 22.45 23.46
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The case a) represents the first original set of weights with 64 bits precision
that report the highest accuracy (Ä 98.35%) but the maximum of requested memory.

The case b) and c) report the footprint for uniform quantization of the weights
that our MATLAB model shows an acceptable loss of accuracy (Ä 0.8% respect to
the best one).

The case d) and e) report the footprint for not uniform quantization of the
weights since the uniform quantization under 8 bits precision shows an accuracy
degradation not acceptable. In this case the weights are chosen for the two different
not uniform quantization according the methodologies explained in 4.3.1.

The other cases in table 6.2 represents the same types of quantization but using
different topology. In this case model compression is applied reducing the number
of overall weights.

Figure 6.1 summaries the results of the two tables reporting the memory com-
pression for all different cases and the respective error rate.

Figure 6.1: Error-rate vs Memory compression.

103



Detailed implementation of the neural network

6.2.2 Resources utilization
To characterize and test the architecture we have designed, we have run a set of
test to know the area and timing constraints our design has. We have started first
by analyzing in depth the implementation of the different types of multiplier block
presented in 5.3.3. After that we have characterized the implementation of MAC-
parallel and Neurons-layer with different parameters, because these architectural
elements are the one’s that play a key role in the proposed architecture.

Multiplier block resources

As discussed in chapter 4 model compression permits not only to reduce the memory
constrains but also the hardware complexity in some cases (with specific weights).

Figure 6.2 shows in a schematic way the number of used resources of each
multiplier and the highest working frequency for each multiplier. The tested
optimized multipliers are the same showed in figure 5.8, it means that they are
implemented to satisfy the not uniform quantization with two bits for the constant
multiplier and shift multiplier and not uniform quantization with one bit for the
partial binary multiplier.

Figure 6.2: Multipliers comparison in terms of needed resources and maximum
frequency.
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In order to perform a correct comparison during synthesis of these components,
the possibility to choose the DSP block from synthesizer is disabled. This because
in this case we want do a comparison with the same elements.

The figure takes into account not only the different types of multipliers but also
the number of input bits. An important aspect that it is important underline is that
normal multiplier is the biggest one and also it is the slowest. Binary multiplier
is the smallest and also the fastest but it’s important to say that using one bit
has an important accuracy degradation. Constant multiplier and shifter multiplier
save important resources utilization respect normal multiplier and they can work
with higher frequency, but with constrained weights there is a loss of accuracy like
showed in 6.2.1.

MAC-parallel resources

The architecture and the parameters of this component is well described in 5.3.2.

Table 6.3 shows the results of utilization resources for the two different type
of multipliers that can be used when not uniform quantization with two bits is
performed. Contrary to tests done in last subsection, in this case the synthesis
permits to synthesizer to choose also DSP if needed.

The results in the table show which are the resources needed in our neuron, if
the number of bits is low, these operations can be implemented with just LUTs and
FFs, but when the number of bits is higher a DSP will become necessary. DSPs are
a scarce resource and it also involves a bigger area than LUTs and FFs. For these
reasons the synthesis tools will try to use them only if they are strictly necessary.

Table 6.3: Results of MAC-parallel implem. with Tin = 1. Area vs input bits.

# BITS LUT FF DSP Max-frequency [MHz]
Normal multiplier

32 70 87 2 191
16 6 38 1 375
8 67 42 0 370

Shift multiplier
32 130 134 0 490
16 67 70 0 547
8 33 38 0 729
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Table 6.4 shows how the utilization resources increase when the inputs con-
currency processing increases with input bits of 8 bits. The table results are for
the worst case (normal multiplier) and for best case (shift multiplier), constant
multiplier based architecture is expected have middle properties.

In this case also with the increases of Tin the number of DSP used remain
zero. It means that their usage depends only on the input bits. The architecture
with normal multiplier has to use also the coder in order to decode the weights,
instead for the shift multiplier coder is not needed, this aspect has an impact on
resources. About max working frequency it is possible to say that increasing Tin
factor there is a degradation of the max frequency and this is more marked with
the normal multiplier respect to shift multiplier, this result can be explained in 5.3.1.

The concurrency permits to increase the throughput but also there is an increase
of resources, we want compare how resources increase with the two different used
multipliers:

• Ratiomult. = LUTsTin=16

LUTsTin=1
Ä 13. • Ratioshift = LUTsTin=16

LUTsTin=1
Ä 10.

The results of the computed ratio show that not only the shifter multiplier
has less resources respect to normal multiplier, but also that the applied input
concurrency has an increment of resources that it is bigger for the normal multiplier
respect to the shifter.

Table 6.4: Results of MAC-parallel implem. with a variable number of Tin and
input bits = 8. Area vs Tin.

Multiplier block LUT FF DSP Max-frequency [MHz]
Tin = 2

Normal multiplier 131 52 0 290
Shift multiplier 62 56 0 420

Tin = 4
Normal multiplier 255 72 0 243
Shift multiplier 108 76 0 345

Tin = 8
Normal multiplier 480 112 0 200
Shift multiplier 221 116 0 251

Tin = 16
Normal multiplier 899 192 0 172
Shift multiplier 422 196 0 201
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Neurons layer resources

The architecture and the parameters of this component are described in 5.5.2. At
this point, we want compare the effect of output concurrency in terms of resources,
this aspect it’s important to understand which is the impact of output concurrency
in terms of resources and do a comparison with input concurrency.

Table 6.5: Results of Neurons layer implem. with a variable number of Tout and
input bits = 8. Area vs Tout, Tin. The evaluated layer is the 784 × 200.

Multiplier block LUT FF DSP Max-frequency [MHz]
Tout = 1, Tin = 1

Normal multiplier 83 103 0 397
Shift multiplier 48 101 0 410

Tout = 16, Tin = 1
Normal multiplier 781 940 0 397
Shift multiplier 282 822 0 422

Tout = 2, Tin = 2
Normal multiplier 264 180 0 287
Shift multiplier 116 94 0 397

Tout = 4, Tin = 4
Normal multiplier 781 328 0 243
Shift multiplier 310 356 0 325

• Ratiomult. = LUTTout=16

LUTTout=1
Ä 9. • Ratioshift = LUTTout=16

LUTTout=1
Ä 6.

In this case when Tout increases the number of LUT in the two different cases
increases in a different way, so increase the output concurrency can be very
efficient with shift multiplier respect to normal multiplier. The number of FF
instead grows up in the same way about. The max frequency remains more or
less constant because Tout has no big impact on this aspect.

• Ratiomult. = LUTTin=4,Tin=4

LUTTout=16,Tin=1
Ä 1. • Ratioshift = LUTTin=4,Tin=4

LUTTout=16,Tin=1
Ä 1.099.

In this test the product of the two tiling factors are the same, it means the
loop iterations are the same (expected similar throughput) in the two different
configurations. The number of the LUTs is similar (ratio Ä 1), but the number
of FF is bigger in the first case with Tout = 16, Tin = 1, this suggest that the
second case with Tout = 4, Tin = 4 is better because same loop iterations and
less resources.
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Neural network resources

Table 6.6 and table 6.7 shows the results of resources utilization for two different
neural network topology, the same used in chapter 4. As showed in 6.2.1, the model
size determines the accuracy and also the needed hardware resources.

In this type of test the possibility to use DSP is not allowed, instead BRAM
will be the synthesizer that choose if is necessary to use or not.

Table 6.6 shows the results of resources utilization for the different topology of
neural network with fixed tiling factors and a normal multiplier. In this first test
no model compression to the weights is applied.

Table 6.6: Results of Neural network implem. with a variable topology, input
bits = 32 and not weights compression applied.

Multiplier block LUT FF BRAM Max-frequency [MHz]
Topology 784 x 200 x 10, Tout = 2, Tin = 2

Normal multiplier 18730 10300 2 173
Topology 784 x 25 x 10, Tout = 2, Tin = 2

Normal multiplier 15432 9540 1 173

Table 6.7 shows the results when applied model compression is done in terms of
number of bits from 32 to 8 and not uniform compression of the weights into two
bits is performed. In this case we applied an optimization on multiplier and see
the results. It is clear that the used resources are less than table 6.6 but also it
is possible to see that frequency increases passing from bigger model to smaller
model. An increase of frequency is also possible to see when passing from normal
multiplier to shift multiplier.

Table 6.7: Results of Neural network implem. with a variable topology, input
bits = 8 and two bits not uniform compression applied to weights.

Multiplier block LUT FF BRAM Max-frequency [MHz]
Topology 784 x 200 x 10, Tout = 2, Tin = 2

Normal multiplier 8730 4300 2 250
Shift multiplier 7840 4230 2 350

Topology 784 x 25 x 10, Tout = 2, Tin = 2
Normal multiplier 8420 4194 1 287
Shift multiplier 7694 3980 1 405
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6.2.3 Power analysis
Multiplier block power analysis

The tested multipliers are the same ones showed in figure 5.8 and discussed in
previous section 6.2.2. Table 6.3 shows different groups characterized by the number
of input bits, we select the lowest frequency (reported by normal multiplier) for
each group in order to have comparable measurement and compute the power.
The power analysis showed in figure 6.3 is computed in the worst case condition
with Esw = 1 and it includes dynamic power and static power. Infact the reported
power analysis is biased about Pstatic Ä 200mW.

Figure 6.3: Multiplier blocks power analysis.

Neurons layer power analysis

The following study cases are take into account in table 6.8:

• a) Tout = 1, Tin = 1.

• b) Tout = 1, Tin = 16. • c) Tout = 16, Tin = 1.

• d) Tout = 2, Tin = 2. • e) Tout = 4, Tin = 4.

These are the same study cases in 6.2.2, so it’s possible compare power con-
sumption and resources utilization in the different configurations. The different
examples of the possible configurations are explained in 5.3.1.
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The case a) is the standard case. The case b) and c) have the same loop itera-
tions computed with formula 5.2 (=16) but different hardware arrangement, the
case b) shows a power consumption less than the case c). Also the case e) has the
same loop iterations but with another arrangement shows less power consumption.

This consideration is important due to the fact the same loop iterations suggests
a similar throughput with a fixed frequency and different hardware configuration
can have different power consumption.

Table 6.8: Power report of Neurons layer with different tiling factors configura-
tions.

Power[mW]. Frequency = 250 MHz. Esw = 1.

8 bits Case a) Case b) Case c) Case d) Case e)
Normal multiplier 263 550 908 309 425
Shift multiplier 248 480 776 287 423

Neural network power

In table 6.9 it is possible to observe the power report of a complete neural network
for a different number of input bits and for a fixed frequency.

The results show that power depends on the topology, in this case on the number
of the HUs. Smaller topology has less power consumption respect the bigger ones
(Ä 3%).

Lowering the number of input bits, it is possible increase the working frequency
from 170 to 250 MHz. Expected dynamic power increases (Ä f 2) but the static
power decreases (Ä area), so the final mixed result is that there is saving of power
consumption passing from 32 bits to 8 bits of Ä 4.65% and of Ä 18% respectively
for normal multiplier and for shift multiplier based architectures.

Table 6.9: Power report of different Neural network topology.

Power[mW], Tin = 2, Tout = 2
32 bits, f = 170 MHz 784 x 200 x 10 784 x 25 x 10
Normal multiplier 710 690
8 bits, f = 250 MHz 784 x 200 x 10 784x25x10
Normal multiplier 677 627
Shift multiplier 583 577
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6.2.4 Throughput
The definition of the throughput for a neural network and possible optimizations of
it are discussed in 3.1.1. In order to compute the throughput, the number of clock
cycles needed to process the all network are computed, knowing the loop iterations
for the different topology and the FSMs working of controller.

After that fixing the working frequency, it is possible to calculate the period.
According to period and overall clock cycles of processing we can compute how
much time is spent for one image processing (one inference) in seconds. The inverse
of this is the throughput.

Table shows that throughput is affected by model compression because de-
termines an increment of working frequency passing from 32 to 8 bits. Besides,
throughput is influenced by model size (less or more loop iterations), finally of
course also the used concurrency determines the final throughput like showed in
3.1.

Table 6.10: Throughput report of different Neural network topology.

Throughput [imgs/sec]
32 bits, f = 170 MHz 784 x 200 x 10 784 x 25 x 10

Tin = 1, Tout = 1 357 2817
Tin = 2, Tout = 2 1422 10706
Tin = 4, Tout = 4 5652 -

8 bits, f = 250 MHz 784 x 200 x 10 784 x 25 x 10
Tin = 1, Tout = 1 523 4167
Tin = 2, Tout = 2 2127 15873
Tin = 4, Tout = 4 8333 -

6.2.5 Comparison between different neural network archi-
tecture

Table 6.11 takes in consideration some neural network with the same scope of ours,
classify the data set MNIST with a FC neural network. The used topology is
bigger, so the resources utilization and the throughput are bigger than ours, but the
flexibility of our architecture permits to manage the resources as we want and as a
consequence the throughput. Bigger number of HUs suggests that accuracy is better
than our model compression proposed model (94% with a memory compression of
50.5x).

111



Detailed implementation of the neural network

Table 6.11: Report of different neural networks architecture.

Cases Topology LUTs FFs BRAM DSPs Throughput [imgs/sec]
[32] 784x1024x10 213593 136677 750 900 70000
[8] 784x1024x10 91131 - 4.5 0 12361000

Proposed 784x200x10 7694 3980 1 0 2127

6.2.6 Conclusion e future works
Doing this project, I have been able to learn about different machine learning
algorithms and I have focused in neural networks. I have learnt the methodology
used in neural networks, which is a topic that is becoming more important every
day. During this period i have to face up different problems, firstly the modeling
of neural network on MATLAB and understand how to quantize the weights in
a efficient way. In order to do it, it was very important and long the phase of
the documentation. After that, i have been able to design the architecture of a
neural network, thinking about the specific hardware that should be implemented.
Afterwards, I was able to implement that architecture in hardware with VHDL
and map it into a specific FPGA. The proposed architecture is configurable at the
highest level, we have put emphasis on designing fully configurable layers that can
be used to create complex neural networks in an easy and efficient way.

Possible future works are the possibility to implement the modeling of more
complex neural network (more number of layers) or the possibility to apply different
methodologies in order to perform a model compression in a efficient way and
have less accuracy degradation. Other possibilities are apply model compression to
another data set and study in deep methodologies to perform in automatic way
the not linear compression. In order to make it, it will be possible using other
environments or frameworks that they can be able to simplify the working flow like
Tensorflow or Caffe. Another improvement at time level can be develop the same
architecture using the methodologies of HLS that permit to describe hardware
with high level language.
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Appendix A

Details about VHDL
implementation

A.1 Code of the main components
The code of the main components is reported, the adopted hierarchic is the same
explained in 5.2.

A.1.1 MAC-parallel component

Listing A.1: MAC-parallel component
1 l i b r a r y IEEE ;
2 use IEEE .STD_LOGIC_1164 .ALL;
3 use IEEE .NUMERIC_STD.ALL;
4 use work . layer_parameters_pkg . a l l ;
5 use work . bit_evaluation_pkg . a l l ;
6 use IEEE . math_real . a l l ;
7

8

9 e n t i t y mac_paral le l i s
10 g e n e r i c
11 (
12 a_n_tot : i n t e g e r := d_n_tot ; −− t o t a l number o f b i t s o f
13 a_n_frac : i n t e g e r := d_n_tot /2 ; −− number o f f r a c t i o n a l b i t s o f

input A
14 b_n_tot : i n t e g e r := d_n_tot ; −− t o t a l number b i t s o f weight va lue
15 b_n_frac : i n t e g e r := d_n_tot /2 ; −− number o f f r a c t i o n a l b i t s o f

input B
16 mult ip l i e r_type : i n t e g e r := 1 ; −−0 = normal m u l t i p l i e r , −−1 =

s h i f t _ m u l t i p l i e r , 2 = b inary_mul t ip l i e r
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17 t i l i n g _ f a c t o r : i n t e g e r := T_in ; −−p a r a l l e l i s m o f s t r u c t u r e macs
T_in

18 we igh t_cod i f i c a t i on : i n t e g e r := 2 ;
19 pipe l ined_adder : i n t e g e r := 0
20 ) ;
21 port
22 (
23 c l k : in s td_log i c ;
24 r s tn : in s td_log i c ;
25 a : in MAC_array_type_gen ;
26 b : in s igned ( ( t i l i n g _ f a c t o r ∗ we igh t_cod i f i c a t i on )−1 downto 0) ;
27 enable : in s td_log i c ;
28 q : out s igned ( a_n_tot + b_n_tot −1 downto 0) ;
29 rstn_accumulator : in s td_log i c
30 ) ;
31 end mac_paral le l ;
32

33 a r c h i t e c t u r e Behav iora l o f mac_paral le l i s
34

35

36 constant tot_n_tot : i n t e g e r := a_n_tot+b_n_tot ;
37 constant increment_bits_last_stage : i n t e g e r := i n t e g e r ( c e i l ( l og2 (

r e a l ( t i l i n g _ f a c t o r ) ) ) ) ;
38

39 type MAC_array_type i s array (0 to t i l i n g _ f a c t o r −1) o f s igned (
tot_n_tot−1 downto 0) ;

40

41 s i g n a l output_mult ipl ier_d1 : s igned ( tot_n_tot−1 downto 0) ;
42 s i g n a l output_mult ip l i e s : MAC_array_type ;
43 s i g n a l rstn_accumulator_d0 : s td_log i c ;
44 s i g n a l rstn_accumulator_d1 : s td_log i c ;
45 s i g n a l enable_d0 : s td_log i c ;
46 s i g n a l enable_d1 : s td_log i c ;
47 s i g n a l a_d0 : MAC_array_type_gen ;
48 s i g n a l b_d0 : s igned ( ( we i gh t_cod i f i c a t i on ∗ t i l i n g _ f a c t o r )−1 downto 0) ;
49 s i g n a l weights_values : MAC_array_type_gen ;
50 s i g n a l mult ip ly_resu l t_concatenated : s igned ( ( t i l i n g _ f a c t o r ∗

tot_n_tot )−1 downto 0) ;
51 s i g n a l adder_tree_sum : s igned ( ( tot_n_tot +

increment_bits_last_stage ) −1 downto 0) ;
52 s i g n a l adder_tree_sum_d1 : s igned ( ( tot_n_tot +

increment_bits_last_stage ) −1 downto 0) ;
53 s i g n a l acc_out : s i gned ( ( tot_n_tot + increment_bits_last_stage ) −1

downto 0) ;
54 s i g n a l acc_in : s igned ( ( tot_n_tot + increment_bits_last_stage ) −1

downto 0) ;
55 s i g n a l sum_accumulator : s i gned ( ( tot_n_tot +

increment_bits_last_stage )−1 downto 0) ;
56
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57

58 begin
59

60 −−pipe0 FF ( Control s i g n a l )
61

62 enable_d_0 : e n t i t y work . f f port map ( c l k => clk , r s tn => rstn , D =>
enable , Q1=> enable_d0 ) ;

63 rstn_accumulator_d_0 : e n t i t y work . f f port map ( c l k => clk , r s tn =>
rstn , D => rstn_accumulator , Q1=>rstn_accumulator_d0 ) ;

64

65 −−pipe0 Reg i s t e r ( data and word weights )
66

67 data_input_a :
68 f o r i in 0 to t i l i n g _ f a c t o r −1 generate
69 Register_input_data : e n t i t y work . RegisterN
70 g e n e r i c map ( num_bits => a_n_tot )
71 port map ( enable => enable , c l k => c lk , r s tn => rstn , D => a ( i ) , Q1

=> a_d0( i ) ) ;
72 end generate ;
73

74 −− weights_input_b are the concatenat ion o f T∗2 b i t s r e p r e s e n t s T
d i f f e r e n t weights

75

76 weights_input_b : e n t i t y work . RegisterN g e n e r i c map ( num_bits => (
we i gh t_cod i f i c a t i on ∗ t i l i n g _ f a c t o r ) )

77 port map ( enable => enable , c l k => c lk , r s tn => rstn , D => b , Q1 =>
b_d0) ;

78

79 −−Trasform the c o d i f i c a t i o n in r e a l weight va lue
80

81 decod i f i ca to r_gen : i f ( mu l t ip l i e r_type = 0) generate
82 d e c o d i f i c a t o r _ i n s t a n c e : e n t i t y work . we ight_decod i f i c a to r g e n e r i c map

( t i l i n g _ f a c t o r => t i l i n g _ f a c t o r , b_n_tot => b_n_tot , b_n_frac =>
b_n_frac , we i gh t_cod i f i c a t i on => we igh t_cod i f i c a t i on )

83 port map (b => b_d0 , q => weights_values ) ;
84 end generate ;
85

86 −− Align the va lue s
87

88 −−pal ign_values : p roce s s ( weights_values , a_d0)
89 −−begin
90 −−f o r i in 0 to ( t i l i n g _ f a c t o r −1) loop
91 −− i f ( max_n_frac < max_n_tot) then
92 −−−− extend s i gn b i t
93 −−a_d0_ext ( i ) (max_n_tot −1 downto max_n_frac ) <= ( othe r s => a_d0( i ) (

a_n_tot −1) ) ;
94 −− i f ( mu l t ip l i e r_type = 0) then
95 −−weights_values_ext ( i ) (max_n_tot −1 downto max_n_frac ) <= ( othe r s =>

weights_values ( i ) ( b_n_tot −1) ) ;
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96 −−end i f ;
97 −−end i f ;
98 −− i f ( max_n_frac > 0) then
99 −−a_d0_ext ( i ) ( max_n_frac −1 downto 0) <= ( othe r s => ’0 ’ ) ;

100 −− i f ( mu l t ip l i e r_type = 0) then
101 −−weights_values_ext ( i ) ( max_n_frac −1 downto 0) <= ( othe r s => ’0 ’ ) ;
102 −−end i f ;
103 −−end i f ;
104 −−a_d0_ext ( i ) ( a_n_int+max_n_frac −1 downto max_n_frac−a_n_frac ) <=

a_d0( i ) ;
105 −− i f ( mu l t ip l i e r_type = 0) then
106 −−weights_values_ext ( i ) ( b_n_int+max_n_frac −1 downto max_n_frac−

b_n_frac ) <= weights_values ( i ) ;
107 −−end i f ;
108 −−end loop ;
109 −−end proce s s ;
110

111 mul t ip l i e r_gene ra to r :
112 f o r i in 0 to t i l i n g _ f a c t o r −1 generate
113 normal_mult ip l i er_generator :
114 i f ( mu l t ip l i e r_type = 0) generate
115 mu l t i p l i e r_ in s t a nc e : e n t i t y work . m u l t i p l i e r g e n e r i c map ( a_n_tot ,

tot_n_tot )
116 port map ( a=> weights_values ( i ) , b => a_d0( i ) , output=>

output_mult ip l i e s ( i ) ) ;
117 end generate ;
118 sh i f t_mu l t i p l i e r_gene ra t o r :
119 i f ( mu l t ip l i e r_type = 1) generate
120 s h i f t _ m u l t i p l i e r _ i n s t a n c e : e n t i t y work . s h i f t _ m u l t i p l i e r g e n e r i c map

( tot_n_tot , a_n_tot , we i gh t_cod i f i c a t i on )
121 port map ( a => a_d0( i ) , weight_in => b_d0 ( ( i ∗ we igh t_cod i f i c a t i on )+1

downto we i gh t_cod i f i c a t i on ∗ i ) , b => output_mult ip l i e s ( i ) ) ;
122 end generate ;
123 b inary_mult ip l i e r_generator :
124 i f ( mu l t ip l i e r_type = 2) generate
125 b inary_mul t ip l i e r_ ins tance : e n t i t y work . b inary_mul t ip l i e r g e n e r i c

map ( tot_n_tot , a_n_tot , 1)
126 port map ( a => a_d0( i ) , weight_in => b_d0( i ) , b => output_mult ip l i e s (

i ) ) ;
127 end generate ;
128 end generate ;
129

130 proce s s ( output_mult ip l i e s )
131 v a r i a b l e index : i n t e g e r := tot_n_tot ;
132 begin
133 f o r i in 0 to ( t i l i n g _ f a c t o r −1) loop
134 i f ( t i l i n g _ f a c t o r > 1) then
135 mult ip ly_resu l t_concatenated ( ( i ∗ index )+tot_n_tot−1 downto index ∗ i ) <=

output_mult ip l i e s ( i ) ;
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136 end i f ;
137 end loop ;
138 end proce s s ;
139

140 −−Adder t r e e
141

142 adder_tree_generate :
143 i f ( t i l i n g _ f a c t o r > 1) generate
144 adder_trees_inst : e n t i t y work . adder_tree g e n e r i c map (NINPUTS =>

t i l i n g _ f a c t o r ,IWIDTH => tot_n_tot , OWIDTH => tot_n_tot +
increment_bits_last_stage , p i p e l i n e d => pipe l ined_adder )

145 port map ( r s tn => rs tn , c l k => c lk , d =>
mult ip ly_result_concatenated , q => adder_tree_sum ) ;

146 end generate ;
147

148 −− Pipe1 f l i p f l o p s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

149 enable_d_1 : e n t i t y work . f f port map ( c l k => clk , r s tn => rstn , D =>
enable_d0 , Q1=>enable_d1 ) ;

150 rstn_accumulator_d_1 : e n t i t y work . f f port map ( c l k => clk , r s tn =>
rstn , D => rstn_accumulator_d0 , Q1=>rstn_accumulator_d1 ) ;

151

152 −−Pipe1 r e g i s t e r
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

153

154 Output_mult ip l i e r_reg i s te r_generat ion :
155 i f ( t i l i n g _ f a c t o r > 1) generate
156 result_adder_tree_d1 : e n t i t y work . RegisterN g e n e r i c map ( num_bits

=> tot_n_tot + increment_bits_last_stage )
157 port map ( enable => enable_d0 , c l k => c lk , r s tn => rstn , D =>

adder_tree_sum , Q1 => adder_tree_sum_d1 ) ;
158 end generate ;
159

160 Output_mult ip l i e r_s ingular :
161 i f ( t i l i n g _ f a c t o r = 1) generate
162 result_adder_tree_d1 : e n t i t y work . RegisterN g e n e r i c map ( num_bits

=> tot_n_tot + increment_bits_last_stage )
163 port map ( enable => enable_d0 , c l k => c lk , r s tn => rstn , D =>

output_mult ip l i e s (0 ) , Q1 =>adder_tree_sum_d1 ) ;
164 end generate ;
165

166 −− Sum =========================================
167 sum_accumulator <= adder_tree_sum_d1 + acc_out ;
168 acc_in <= sum_accumulator ( ( tot_n_tot + increment_bits_last_stage )−1

downto 0) ;
169 −−acculumator−r e g i s t e r
170

171 accumulator_reg i s t e r : e n t i t y work . accumulator_registerN g e n e r i c map
( num_bits => tot_n_tot + increment_bits_last_stage , b i a s => 1)
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172 port map ( enable => enable_d1 , c l k => c lk , r s tn =>
rstn_accumulator_d1 , D => acc_in , Q1 => acc_out ) ;

173

174 q <= acc_out ( ( a_n_tot + b_n_tot )−1 downto 0) ;
175

176 end Behaviora l ;
177

178 }

A.1.2 MAC-memory component

Listing A.2: MAC-memory component
1 l i b r a r y IEEE ;
2 use IEEE .STD_LOGIC_1164 .ALL;
3 use IEEE .NUMERIC_STD.ALL;
4 use i e e e . math_real . a l l ;
5 use work . bit_evaluation_pkg . a l l ;
6 use work . layer_parameters_pkg . a l l ;
7

8

9 e n t i t y mac_memory i s
10 g e n e r i c
11 (
12 b_n_tot : i n t e g e r := d_n_tot ; −− t o t a l number o f b i t s o f input B,

t h i s i s the t o t a l p a r a l l e l i s m o f memory , depends on T, T = 8 means
4 weights , f o r mac in p a r a l l e l

13 b_n_frac : i n t e g e r := d_n_tot /2 ; −− number o f f r a c t i o n a l b i t s o f
input B

14 t i l i n g _ f a c t o r : i n t e g e r := T_in ;
15 a_n_tot : i n t e g e r := d_n_tot ; −−data t o t a l number o f b i t s

−−a
16 a_n_frac : i n t e g e r := d_n_tot /2 ; −−data number o f f r a c t i o n a r y b i t s
17 we igh t_cod i f i c a t i on : i n t e g e r := 2 ; −−weight c o d i f i c a t i o n
18 mult ip l i e r_type : i n t e g e r := 1 ;
19 Wj : i n t e g e r := 16 ; −− Nl−1\T_in , how many i t e r a t i o n i used in

order to compute the output o f 1 neuron , every i t e r a t i o n has an
ac c e s s in memory with the word to T∗2 b i t s

20 neurons_num : i n t e g e r := 4 ;−−neurons as s i gned to t h i s MAC = Nl
21 pipe l ined_adder : i n t e g e r := 0 ;
22 memory_file_weight : s t r i n g := "C: / Users /Gianmarco/Desktop/ project_1

/weight_1 . txt "
23 ) ;
24 port
25 ( c l k : in s td_log i c ;
26 r s tn : in s td_log i c ;
27 −− I /O
28 input : in MAC_array_type_gen ;
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29 output : out s igned ( a_n_tot+ b_n_tot −1 downto 0) ;
30 weight_in_codify_word : in s igned ( ( we i gh t_cod i f i c a t i on ∗ t i l i n g _ f a c t o r

) −1 downto 0) ;
31 −− Addresses
32 weight_read_addr : in unsigned ( b i tEva lSa f e ( (Wj) ∗neurons_num )−1

downto 0) ;
33 −− Control s i g n a l s
34 MAC_enable : in s td_log i c ;
35 write_output : in s td_log i c ;
36 cs_control_memory_weight : in s td_log i c ;
37 rstn_accumulator : in s td_log i c
38 ) ;
39 end mac_group ;
40

41 a r c h i t e c t u r e Behav iora l o f mac_group i s
42

43

44 constant mac_n_tot : i n t e g e r := a_n_tot+b_n_tot ;
45 constant mac_n_frac : i n t e g e r := a_n_frac+b_n_frac ;
46

47 s i g n a l output_buffer : s i gned ( a_n_tot+b_n_tot −1 downto 0) ;
48 s i g n a l MAC_output : s i gned (mac_n_tot −1 downto 0) ;
49 s i g n a l write_output_d0 : s td_log i c ;
50 s i g n a l write_output_d1 : s td_log i c ;
51

52 s i g n a l weight_address : unsigned ( b i tEva lSa f e ( (Wj) ∗neurons_num )−1
downto 0) ;

53 s i g n a l weight_memory_word : s td_log ic_vector ( ( we i gh t_cod i f i c a t i on ∗
t i l i n g _ f a c t o r )−1 downto 0 ) ;

54 s i g n a l weight_memory_word_read : s td_log ic_vector ( (
we i gh t_cod i f i c a t i on ∗ t i l i n g _ f a c t o r )−1 downto 0 ) ;

55

56 begin
57

58 iMAC: e n t i t y work . mac_paral le l
59 g e n e r i c map(
60 a_n_tot => a_n_tot ,
61 a_n_frac => a_n_frac ,
62 b_n_tot => b_n_tot ,
63 b_n_frac => b_n_frac ,
64 mult ip l i e r_type => mult ip l i e r_type ,
65 t i l i n g _ f a c t o r => t i l i n g _ f a c t o r ,
66 we igh t_cod i f i c a t i on => we ight_cod i f i ca t i on ,
67 pipe l ined_adder => pipe l ined_adder
68 )
69 port map
70 (
71 c l k => clk ,
72 r s tn => rstn ,
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73 a => input ,
74 b => signed ( weight_memory_word_read ) ,
75 enable => MAC_enable ,
76 q => MAC_output ,
77 rstn_accumulator => rstn_accumulator
78 ) ;
79

80 −− Delay r e g i s t e r s
=========================================================

81 iwrite_output_d0 : e n t i t y work . f f
82 port map( c l k=>clk , r s tn => rstn ,D => write_output ,Q1 =>

write_output_d0 ) ;
83 iwrite_output_d1 : e n t i t y work . f f
84 port map( c l k=>clk , r s tn => rstn ,D => write_output_d0 , Q1 =>

write_output_d1 ) ;
85

86 −− Reg i s t e r used to save the MAC r e s u l t
====================================

87 ioutput_reg : e n t i t y work . RegisterN g e n e r i c map( a_n_tot + b_n_tot )
88 port map( enable => write_output_d1 , c l k => clk , r s tn=> rstn , D =>

MAC_output , Q1 => output_buffer ) ;
89

90 output <= output_buffer ;
91

92 −− Weights Memory
=====================================================

93

94 irom_mem : e n t i t y work . rom
95 g e n e r i c map(DATA_WIDTH => t i l i n g _ f a c t o r ∗ we ight_cod i f i ca t i on ,

ADDR_WIDTH => bi tEva lSa f e ( (Wj) ∗neurons_num ) , memory_file_weight=>
memory_file_weight )

96 port map ( c l k => clk , address => weight_address , data_out =>
weight_memory_word_read , cs => cs_control_memory_weight ) ;

97

98 end Behaviora l ;
99 }

A.1.3 Neurons-layer component

Listing A.3: Neurons-layer component
1 l i b r a r y IEEE ;
2 use IEEE .STD_LOGIC_1164 .ALL;
3 use IEEE .NUMERIC_STD.ALL;
4 use i e e e . math_real . a l l ;
5 use work . bit_evaluation_pkg . a l l ;
6 use work . layer_parameters_pkg . a l l ;
7 use work . generic_array_pkg . a l l ;
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8

9 e n t i t y neurons_layer i s
10 g e n e r i c
11 (
12 a_n_tot : i n t e g e r := d_n_tot ; −−data t o t a l number o f b i t s
13 a_n_frac : i n t e g e r := d_n_tot /2 ; −−data number o f f r a c t i o n a r y b i t s
14 t i l i n g _ f a c t o r : i n t e g e r := T_in ;
15 Wj : i n t e g e r := 784 ; −−l a y e r weights per neuron T number Nl−1\T_in
16 Sj : i n t e g e r := 200 ; −−l a y e r neurons number Nl
17 Mj : i n t e g e r := T_out ; −−l a y e r MACs number (T) T_Out
18 we igh t_cod i f i c a t i on : i n t e g e r := 2 ;
19 a_func : t ype s t r := " Relu " ; −−a c t i v a t i o n func t i on
20 mult ip l i e r_type : i n t e g e r := 0
21 memory_file_weight : weight_memory_string := ( "C: / Users /Gianmarco/

Desktop/ project_1 /weight_1 . txt " , "C: / Users /Gianmarco/Desktop/
project_1 /weight_2 . txt " , "C: / Users /Gianmarco/Desktop/ project_1 /
weight_3 . txt " , "C: / Users /Gianmarco/Desktop/ project_1 /weight_4 . txt " )

22 ) ;
23 port
24 (
25 c l k : in s td_log i c ;
26 r s tn : in s td_log i c ;
27 −− I /O
28 input : in MAC_array_type_gen ;
29 output_array : out MAC_array_type_out ;
30 weight_addr : in unsigned ( b i tEva lSa f e (Wj)−1 downto 0) ;
31 i t e rat_addr : in unsigned ( b i tEva lSa f e ( c e i l _ r a t i o ( Sj , Mj) )−1 downto 0)

;
32 MAC_addr : in unsigned ( b i tEva lSa f e (Mj)−1 downto 0) ;
33 −− Control s i g n a l s
34 MAC_enable : in s td_log i c ;
35 write_output : in s td_log i c ;
36 last_mac : in s td_log i c ;
37 cs_control_memory_weight : in s td_log i c ;
38 rstn_accumulator : in s td_log i c
39 ) ;
40

41 end neurons_group ;
42

43 a r c h i t e c t u r e Behav iora l o f neurons_layer i s
44

45 constant SMrat : i n t e g e r := c e i l _ r a t i o ( Sj , Mj) ; −−Nl/T_out
46 constant Wtot : i n t e g e r := (Wj) ∗SMrat ; −−Nl−1\T_in ∗ Nl\T_out
47 constant Mac_disable : i n t e g e r := Mj−(Sj mod Mj) ; −−M j − (S j mod M

j )
48 −−SIGNALS
49

50 s i g n a l write_output_d0 : s td_log i c ;
51 s i g n a l rst_n_accumulator_d0 : s td_log i c ;
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52 s i g n a l MAC_enable_d0 : s td_log i c ;
53 s i g n a l MAC_output_array : MAC_array_type_out ;
54 s i g n a l MAC_output_array_d0 : MAC_array_type_out ;
55 s i g n a l input_d0 : MAC_array_type_gen ;
56 s i g n a l weight_in_d0 : s igned ( ( t i l i n g _ f a c t o r ∗ we igh t_cod i f i c a t i on )−1

downto 0) ;
57 s i g n a l iterat_addr_mul : unsigned ( b i tEva lSa f e (Wtot)−1 downto 0) ;
58 s i g n a l weight_addr_d0 : unsigned ( b i tEva lSa f e (Wj)−1 downto 0) ;
59 s i g n a l iterat_addr_mul_d0 : unsigned ( b i tEva lSa f e (Wtot)−1 downto 0) ;
60 s i g n a l weight_tot_addr : unsigned ( b i tEva lSa f e (Wtot)−1 downto 0) ;
61 s i g n a l weight_addr_d0_ext : unsigned ( b i tEva lSa f e (Wtot)−1 downto 0) ;
62 s i g n a l write_weight_vec : s td_log ic_vector (Mj−1 downto 0) ;
63 s i g n a l write_weight_vec_d0 : s igned (Mj−1 downto 0) ;
64 s i g n a l output_s ing le : MAC_array_type_gen ;
65

66 s i g n a l weight_ext : unsigned ( b i tEva lSa f e (Wtot)−1 downto b i tEva lSa f e (
Wj) ) ;

67

68 s i g n a l rstn_accumulator_d0 : s td_log i c ;
69 s i g n a l last_mac_d0 : s td_log i c ;
70 s i g n a l mac_block : s td_log ic_vector (Mj−1 downto 0) ;
71 s i g n a l mac_enable_ext : s td_log ic_vector (Mj−1 downto 0) ;
72 s i g n a l mac_gating : s td_log ic_vector (Mj−1 downto 0) ;
73 s i g n a l mac_enable_general : s td_log ic_vector (Mj−1 downto 0) ;
74

75 begin
76

77 mac_enable_ext <= ( othe r s=> MAC_enable_d0) ;
78

79 mac_gating_signals_generat ion : i f ( Sj mod Mj /= 0) generate
80 mac_block (Mj−1 downto Mac_disable ) <= ( othe r s =>’1 ’) ; −−mac ac t i ved
81 mac_block ( Mac_disable−1 downto 0) <= ( othe r s =>’0 ’) ; −−mac_disatt ived
82 mac_gating <= mac_enable_ext and mac_block ;
83 with last_mac_d0 s e l e c t mac_enable_general <= mac_enable_ext when

’0 ’ ,
84 mac_gating when othe r s ;
85 end generate ;
86

87 mac_enable_generation : i f ( Sj mod Mj = 0) generate
88 mac_enable_general <= mac_enable_ext ;
89 end generate ;
90

91

92 input_reg i s ter_gen :
93 f o r i in 0 to t i l i n g _ f a c t o r −1 generate
94 i input_d0 : e n t i t y work . RegisterN g e n e r i c map( num_bits => a_n_tot )
95 port map( enable => MAC_enable , c l k=>clk , r s tn => rs tn , D => input ( i )

, Q1 => input_d0 ( i ) ) ;
96 end generate ;
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97

98 iweight_in_d0 : e n t i t y work . RegisterN g e n e r i c map( num_bits => (
t i l i n g _ f a c t o r ∗ we igh t_cod i f i c a t i on ) )

99 port map( enable => write_weight , c l k=>clk , r s tn => rstn ,D =>
weight_in ,Q1 => weight_in_d0 ) ;

100

101 iMAC_last_mac_d0 : e n t i t y work . f f
102 port map( c l k=>c lk , r s tn => rs tn , D => last_mac ,Q1=>last_mac_d0 ) ;
103

104 iMAC_rstn_accum_d0 : e n t i t y work . f f
105 port map( c l k=>c lk , r s tn => rs tn , D => rstn_accumulator ,Q1=>

rstn_accumulator_d0 ) ;
106

107 iMAC_enable_d0 : e n t i t y work . f f
108 port map( c l k=>c lk , r s tn => rs tn , D => MAC_enable ,Q1=>MAC_enable_d0) ;
109

110 iMAC_write_output_d0 : e n t i t y work . f f
111 port map( c l k => c lk , r s tn => rs tn ,D => write_output ,Q1=>

write_output_d0 ) ;
112

113 −− COMPUTE the address o f weight_memory
114

115 iterat_addr_mul <= to_unsigned ( (Wj) ∗ to_integer ( i te rat_addr ) ,
b i tEva lSa f e ( (Wj) ∗SMrat ) ) ;

116

117 iweight_addr_d0 : e n t i t y work . RegisterN_unsigned g e n e r i c map(
b i tEva lSa f e (Wj) )

118 port map( enable => ’1 ’ , c l k=>clk , r s tn => rstn , D => weight_addr , Q1
=> weight_addr_d0 ) ;

119

120 i iterat_addr_mul_d0 : e n t i t y work . RegisterN_unsigned g e n e r i c map(
b i tEva lSa f e (Wtot) )

121 port map( enable => ’1 ’ , c l k=>clk , r s tn => rstn , D => iterat_addr_mul ,
Q1 => iterat_addr_mul_d0 ) ;

122

123 weight_ext <= ( othe r s => ’0 ’ ) ;
124 weight_addr_d0_ext <= weight_ext & weight_addr_d0 ;
125

126 weight_tot_addr <= weight_addr_d0_ext + iterat_addr_mul_d0 ;
127

128 gmac_groups :
129 f o r i in 0 to Mj−1 generate
130

131 imac_group : e n t i t y work . mac_group
132 g e n e r i c map(
133 t i l i n g _ f a c t o r => t i l i n g _ f a c t o r ,
134 a_n_tot => a_n_tot ,
135 a_n_frac => a_n_frac ,
136 we igh t_cod i f i c a t i on => we ight_cod i f i ca t i on ,
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137 Wj => Wj, −− Nl−1\ t i l i n g _ f a c t o r , how many i t e r a t i o n S are used in
order to compute the output o f 1 neuron , every i t e r a t i o n has an
ac c e s s in memory with the word to T∗2 b i t s

138 neurons_num => SMrat , −−neurons as s i gned to t h i s MAC = Nl/
139 memory_file_weight => memory_file_weight ( i ) ,
140 mult ip l i e r_type => mult ip l i e r_type
141 )
142 port map(
143 c l k => clk ,
144 r s tn => rstn ,
145 −− I /O
146 input => input_d0 ,
147 output => MAC_output_array ( i ) ,
148 weight_in_codify_word => weight_in_d0 ,
149 −− Addresses
150 weight_read_addr => unsigned ( weight_tot_addr ) ,
151 −− Control s i g n a l s
152 MAC_enable => mac_enable_ext ( i ) ,
153 write_output => write_output_d0 ,
154 cs_control_memory_weight => mac_enable_general ( i ) ,
155 rstn_accumulator => rstn_accumulator_d0
156 ) ;
157 end generate ;
158

159 gmac_group_output :
160 f o r i in 0 to Mj−1 generate
161 imac_group_output_register : e n t i t y work . RegisterN
162 g e n e r i c map( num_bits => 2∗a_n_tot )
163 port map ( enable => ’1 ’ , c l k=>clk , r s tn => rstn , D =>

MAC_output_array( i ) , Q1 => MAC_output_array_d0( i ) ) ;
164 end generate ;
165

166 −− Act ivat ion func t i on
=====================================================

167 act ivat ion_output :
168 f o r i in 0 to Mj−1 generate
169 i a c t i v a t i o n : e n t i t y work . a c t i v a t i o n
170 g e n e r i c map(2∗ a_n_tot , a_n_tot , a_func )
171 port map( x=>MAC_output_array_d0( i ) , y=>output_array ( i ) ) ;
172 end generate ;
173

174

175 end Behaviora l ;
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A.1.4 buffer component

Listing A.4: buffer component
1 l i b r a r y IEEE ;
2 use IEEE .STD_LOGIC_1164 .ALL;
3 use work . layer_parameters_pkg . a l l ;
4 use IEEE .NUMERIC_STD.ALL;
5 use work . bit_evaluation_pkg . a l l ;
6

7 e n t i t y buf fer_adapt ion i s
8 g e n e r i c
9 ( b u f f e r _ s i z e : i n t e g e r := 5 ;

10 a_n_tot : i n t e g e r := d_n_tot∗2
11 ) ;
12 port (
13 c l k : in s td_log i c ;
14 r s tn : in s td_log i c ;
15 data_in : in MAC_array_type_out ;
16 data_out : out MAC_array_type_out ;
17 enable_buf fer_load : in s td_log i c
18 ) ;
19 end buf fer_adapt ion ;
20

21 a r c h i t e c t u r e Behav iora l o f buf fer_adapt ion i s
22

23 type buffer_array_type_gen i s array (0 to b u f f e r _ s i z e ) o f s igned (
a_n_tot −1 downto 0) ;

24 type buffer_array_type_complete i s array (0 to T_out−1) o f
buffer_array_type_gen ;

25 s i g n a l data_out_tmp : buffer_array_type_complete ;
26 s i g n a l data_in_tmp : buffer_array_type_complete ;
27 begin
28

29 buffer_adaption_gen :
30 f o r i in 0 to T_out−1 generate
31 data_in_tmp ( i ) (0 ) <= data_in ( i ) ;
32 buffer_size_gen_T :
33 f o r j in 0 to bu f f e r_s i z e −1 generate
34 h o r i z o n t a l _ r e g i s t e r _ p a r a l l e l _ 0 : e n t i t y work . RegisterN g e n e r i c map (

num_bits => a_n_tot )
35 port map ( enable => enable_buffer_load , c l k => c lk , r s tn => rs tn , D

=> data_in_tmp ( i ) ( j ) , Q1 => data_out_tmp ( i ) ( j +1) ) ;
36 data_in_tmp ( i ) ( j +1) <= data_out_tmp ( i ) ( j +1) ;
37 end generate ;
38 data_out ( i ) <= data_out_tmp ( i ) ( b u f f e r _ s i z e ) ;
39 end generate ;
40

41 end Behaviora l ;
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A.1.5 ROMs

Listing A.5: ROM component
1

2 l i b r a r y IEEE ;
3 use IEEE .STD_LOGIC_1164 .ALL;
4 use IEEE .NUMERIC_STD.ALL;
5 use IEEE . s td_log i c_text i o .ALL;
6 use work . layer_record_pkg . a l l ;
7 use std . t e x t i o . a l l ;
8

9 e n t i t y rom i s
10 g e n e r i c (
11 DATA_WIDTH : i n t e g e r := 8 ;
12 ADDR_WIDTH : i n t e g e r := 8 ;
13 memory_file_weight : s t r i n g := "C: / Users /Gianmarco/Desktop/

project_1 /weight_1 . txt "
14 ) ;
15 port (
16 c l k : in s td_log i c ;
17 address : in unsigned (ADDR_WIDTH−1 downto 0) ;
18 data_out : out std_log ic_vector (DATA_WIDTH−1 downto 0) ;
19 cs : in s td_log i c
20 ) ;
21 end rom ;
22

23 a r c h i t e c t u r e Behav iora l o f rom i s
24

25 constant ROM_DEPTH : i n t e g e r := 2∗∗ADDR_WIDTH;
26

27 type rom_type i s array (0 to ROM_DEPTH−1) o f s td_log ic_vector (
DATA_WIDTH−1 downto 0) ;

28 impure func t i on weight_rom ( memory_file_weight : in s t r i n g ) re turn
rom_type i s

29 f i l e r f : t ex t open read_mode i s memory_file_weight ;
30 v a r i a b l e v_l : l i n e ;
31 v a r i a b l e v_i : s td_log ic_vector (DATA_WIDTH−1 downto 0) ;
32 v a r i a b l e v_rom : rom_type ;
33 begin
34 f o r i in 0 to ROM_DEPTH−1 loop
35 r e a d l i n e ( r f , v_l ) ;
36 read ( v_l , v_i ) ;
37 v_rom( i ) := std_log ic_vector ( v_i ) ;
38 end loop ;
39 re turn v_rom ;
40 end func t i on ;
41

42 constant data_rom : rom_type := weight_rom ( memory_file_weight ) ;
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43

44 begin
45

46 proce s s ( c l k )
47 begin
48

49 i f ( c s = ’1 ’ ) then
50 data_out <= data_rom ( to_integer ( address ) ) ;
51 e l s e
52 data_out <= ( othe r s=> ’0 ’ ) ;
53 end i f ;
54 end proce s s ;
55

56 end Behaviora l ;

A.1.6 layer component

Listing A.6: layer component
1

2 l i b r a r y IEEE ;
3 use IEEE .STD_LOGIC_1164 .ALL;
4 use IEEE .NUMERIC_STD.ALL;
5 use work . bit_evaluation_pkg . a l l ;
6 use work . layer_parameters_pkg . a l l ;
7

8 e n t i t y l a y e r i s
9 g e n e r i c

10 (
11 a_n_tot : i n t e g e r := d_n_tot ; −−data t o t a l number o f b i t s
12 a_n_frac : i n t e g e r := d_n_tot /2 ; −−data number o f f r a c t i o n a r y b i t s
13 L_info : layer_record := ( l a y e r => " f u l c " , neurons_previous_layer =>

784 , neurons => 200 , neurons_next_layer => 36 , a_func => " pos l " ,
index => 1) ;

14 we igh t_cod i f i c a t i on : i n t e g e r := 2
15 ) ;
16 port (
17 c l k : in s td_log i c ;
18 r s tn : in s td_log i c ;
19 −−I /O
20 input : in MAC_array_type_gen ;
21 output : out MAC_array_type_out ;
22 weight_in : in s igned ( ( T_in∗ we igh t_cod i f i c a t i on )−1 downto 0) ;
23 −−ADDRESS
24 write_addr_next_layer : in unsigned ( b i tEva lSa f e ( ( L_info .

neurons_previous_layer ) /T_in)−1 downto 0) ;
25

26 −−Control IN
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27 enable_read_memory : in s td_log i c ;
28 we_write_memory : in s td_log i c ;
29 enab le_i te ra t ion_addres s : in s td_log i c ;
30 enable_mac_address : in s td_log i c ;
31 MAC_enable : in s td_log i c ;
32 write_output : in s td_log i c ;
33 enable_buf fer_load : in s td_log i c ;
34 last_mac : in s td_log i c ;
35 cs_control_memory_weight : in s td_log i c ;
36 rstn_accumulator : in s td_log i c ;
37

38 −−Control out
39 tc_read_memory : out s td_log i c ;
40 t c _ i t e r a t i o n : out s td_log i c ;
41 tc_mac_address : out s td_log i c
42 ) ;
43 end l a y e r ;
44

45 a r c h i t e c t u r e Behav iora l o f l a y e r i s
46

47 constant t i l i n g _ f a c t o r : i n t e g e r := T_in ;
48 constant Mj : i n t e g e r := T_out ; −−T_out , memory_number_layer
49 −−s i z e o f smal l ram
50

51 constant Wj : i n t e g e r := ( L_info . neurons_previous_layer ) /
t i l i n g _ f a c t o r ; −−Nl−1/T_in

52 constant Sj : i n t e g e r := L_info . neurons ; −− Nl
53

54 −−data to wr i t e i n to memory coming from the prev ious l a y e r
55

56 s i g n a l data_to_memory : MAC_array_type_gen ;
57 s i g n a l read_address_memory_input : unsigned ( b i tEva lSa f e (Wj)−1 downto

0) ;
58 s i g n a l i t e r a t i on_addr e s s : unsigned ( b i tEva lSa f e ( c e i l _ r a t i o ( Sj , Mj) )−1

downto 0) ;
59 s i g n a l data_from_memory : MAC_array_type_gen ;
60 s i g n a l output_neurons_group : MAC_array_type_out ;
61 s i g n a l mac_address : unsigned ( b i tEva lSa f e (Mj)−1 downto 0) ;
62

63 begin
64

65 −−counter ( Nl−1/T) used to read the input memories and the weight
address

66

67 counter_input_memory_weight_address : e n t i t y work . counter g e n e r i c map
(num_max => Wj, i n c r => 1)

68 port map ( c l k => c lk , r s tn => rstn , enbl => enable_read_memory , tc
=> tc_read_memory , q => read_address_memory_input ) ;

69
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70 −−counter Nl/T
71

72 counter_i te rat ion_addres s : e n t i t y work . counter g e n e r i c map (num_max
=> c e i l _ r a t i o ( Sj , Mj) , i n c r => 1)

73 port map ( c l k => c lk , r s tn => rstn , enbl => enab le_i te ra t ion_addres s
, t c => tc_ i t e ra t i on , q => i t e r a t i on_addr e s s ) ;

74

75 data_to_memory <= input ;
76

77 input_memories_gen :
78 f o r i in 0 to t i l i n g _ f a c t o r −1 generate
79 input_memory : e n t i t y work . ram_sincr_dp
80 g e n e r i c map (DATA_WIDTH => a_n_tot , ADDR_WIDTH => bi tEva lSa f e (Wj) )
81 port map ( c l k=>clk , address_read => std_log ic_vector (

read_address_memory_input ) , data_read=>data_from_memory ( i ) ,
82 cs=>cs , address_write => std_log ic_vector ( write_addr_next_layer ) ,

data_write => data_to_memory ( i ) ,
83 we_write => we_write_memory ) ;
84 end generate ;
85

86 neurons_instance : e n t i t y work . neurons_layer
87 g e n e r i c map (
88 a_n_tot => a_n_tot ,
89 a_n_frac => a_n_frac ,
90 Wj => Wj,
91 Sj => Sj ,
92 Mj => Mj ,
93 a_func => L_info . a_func
94 )
95 port map
96 ( c l k => clk ,
97 r s tn => rstn ,
98 −− I /O
99 input => data_from_memory ,

100 output_array => output_neurons_group ,
101 −− Addresses
102 weight_addr => read_address_memory_input ,
103 i t e rat_addr => ite ra t i on_addre s s ,
104 −− Control s i g n a l s
105 MAC_enable => MAC_enable ,
106 write_output => write_output ,
107 last_mac => last_mac ,
108 cs_control_memory_weight => cs_control_memory_weight ,
109 rstn_accumulator => rstn_accumulator
110 ) ;
111

112 bu f f e r_ in s tance : e n t i t y work . buf fer_adapt ion
113 g e n e r i c map ( b u f f e r _ s i z e => L_info . neurons /T_out , a_n_tot =>2∗a_n_tot

)
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114 port map ( c l k => clk ,
115 r s tn => rstn ,
116 data_in => output_neurons_group ,
117 data_out => output ,
118 enable_buf fer_load => enable_buf fer_load
119 ) ;
120 end Behaviora l ;
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A.2 – Package

A.2 Package
A.2.1 Layer-parameters-pkg

Listing A.7: layer component
1 l i b r a r y IEEE ;
2 use IEEE .STD_LOGIC_1164 .ALL;
3 use IEEE .NUMERIC_STD.ALL;
4 use work . generic_array_pkg . a l l ;
5

6 package layer_parameters_pkg i s
7

8 type type s t r i s array (1 to 4) o f cha rac t e r ;
9

10 constant T : i n t e g e r := 1 ;
11 constant T_in : i n t e g e r := T;
12 constant T_out : i n t e g e r := T;
13 constant d_n_tot : i n t e g e r := 8 ;
14

15 type layer_record i s record
16 l a y e r : t ype s t r ; −− f u l c , maxV
17 neurons_previous_layer : i n t e g e r ; −−Nl−1−−
18 neurons : i n t e g e r ; −−Nl−−
19 neurons_next_layer : i n t e g e r ; −−Nl+1−−
20 a_func : t ype s t r ; −−RElu
21 index : i n t e g e r ;
22 end record layer_record ;
23

24 type layer_array i s array ( natura l range <>) o f layer_record ;
25 type MAC_array_type_gen i s array (0 to T_in−1) o f s igned ( d_n_tot −1

downto 0) ;
26 type MAC_array_type_out i s array (0 to T_out−1) o f s igned ((2∗ d_n_tot

) −1 downto 0) ;
27 type weight_memory_string i s array (0 to T_in−1) o f s t r i n g (49 downto

1) ;
28 type rea l_array i s array (0 to 3) o f r e a l ;
29

30 constant L_info : layer_record := ( l a y e r => " f u l c " ,
neurons_previous_layer =>784,neurons => 200 , neurons_next_layer
=> 30 , a_func => " Relu " , index => 1) ;

31

32 end package layer_parameters_pkg ;
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