
POLITECNICO DI TORINO

Master Degree Course in Electronic Engineering

Master Degree Thesis

Design and Development of a
Multi-Parameter Wearable

Medical Device
ECG and PPG Watch

Advisors
prof. Eros Pasero
Eng. Jacopo Ferretti
Eng. Vincenzo Randazzo

Candidates
Domenico Motta

Academic Year 2019-2020

This work is subject to the Creative Commons Licence

Summary

Nowadays it has become very important to monitor some vital parameters
through the use of wearable devices and to save these data on external devices
such as mobile phones or tablets.

The purpose of this thesis is to study and create a wearable instrument
similar to a bracelet able to monitor the electrocardiogram (ECG) through a
one lead measurement and the blood saturation (SpO2) through an integrated
optical module given by MaximIntegratedTM. All data sampled by the device,
can be exchanged via Bluetooth® on a mobile App to have the possibility
to process them and present results to the user in an easy way in order to
facilitate their reading.

The device consists in two PCBs one for the ECG monitor and the other
one for the SpO2 measure; they are connected together via flat cable so as
to insert them in a single case. This system is based on a Texas Instrument
32-bit microcontroller, programmed in a RTOS way. The advantage of Real
Time Operating System is the multitasking operation, different tasks in the
same project can be easily synchronised.

The project starts from an old version of the device and consist in design
a new analog front-end for the ECG, choose and insert the blood satura-
tion sensor, draw the new schematic, route all the component in the PCBs,
mounting the board, program the microcontroller, update the AndroidTM

App and finally test for correct operation.
To sum up, this system is used to provide hearth rate, anomalies such as

atrial fibrillation and blood saturation. There are several future perspective
which consist in introduce a memory inside the board, some other health
sensors and adapt the project to more specific purposes such as calculate
blood pressure in a non-invasive way through an innovative algorithm that
is being developed.

iii

Acknowledgements

Ringrazio il Prof. Eros Pasero per la disponibilità dimostrata nei miei con-
fronti e per la possibilità che mi ha dato di lavorare a questo progetto. In
questi mesi ho messo in pratica le mie conoscenze apprese in questi anni di
studio e ho acquisito nuove competenze imparando ad usare nuovi tool per
la progettazione di PCB e per la programmazione di microcontrollori.

Un ringraziamento speciale va anche a Jacopo che mi ha seguito durante
questa tesi, rendendosi sempre disponibile nel momento del bisogno, il suo
aiuto è stato molto prezioso per il raggiungimento del risultato finale. Un
grazie speciale va anche a Vincenzo per il supporto fornitomi per quanto
riguarda lo sviluppo dell’App.

Vorrei ringraziare i miei genitori che mi sono stati al fianco in questo per-
corso scolastico consigliandomi nelle scelte e sorreggendomi nelle difficoltà.
Un grazie speciale va a mia sorella Chiara e a Riccardo sempre presenti nei
momenti di necessità. Un ultimo grazie va a tutto il resto della mia famiglia,
nonni e zii.

iv

Contents

List of Tables viii

List of Figures ix

I Introduction 1

1 Introduction to the problem 3
1.1 Einthoven triangle and leads description 5

1.1.1 Einthoven triangle . 6
1.1.2 ECG Graphical Waves Representation 7

1.2 Pulse Oximetry and Heart Rate 8
1.2.1 SpO2 Measurement . 9

1.3 State of Art . 10

II Implementation 13

2 Analysis of the Task 15
2.1 Executive Summary . 15

3 MATLAB 19
3.1 Hardware Filters . 20

3.1.1 High Pass Filter . 21
3.1.2 Twin-T Notch Filter 26
3.1.3 Low Pass Filter . 35

3.2 Software Filters . 51
3.2.1 Solution for base line drift and bias problem 52
3.2.2 Solution for high-frequency disturbances problem . . . 53

v

4 Hardware 57
4.1 Components Choice . 58

4.1.1 Microcontroller TI CC2640R2F RSM 60
4.1.2 Antenna AN043 . 64
4.1.3 Voltage Regulators . 65
4.1.4 Battery Charger MAX1555 69
4.1.5 Battery Gauge MAX17048 71
4.1.6 ESD Protection . 74
4.1.7 Instrumentation Amplifier TI INA333 76
4.1.8 Operational Amplifier TI OPA4330 78
4.1.9 PPG Sensor MAXM86161 80
4.1.10 Connectors, Button and LED 82

4.2 Schematic Explanation . 87
4.2.1 Test Boards Circuit . 87
4.2.2 Final ECG and PPG Circuit 90

4.3 Layout Explanation . 101
4.4 Bill of Material . 107
4.5 Mounting Process . 108

4.5.1 Soldering Paste Spreading 109
4.5.2 Component Placing . 110
4.5.3 Reflow Oven Soldering 112

5 Firmware 115
5.1 Sensor Controller Studio . 116

5.1.1 Sensor Controller Tasks 117
5.2 Code Composer Studio . 123

5.2.1 ProjectZero Main Procedures 124
5.2.2 Sensor Controller Interface Functions 125
5.2.3 Bluetooth Services . 127
5.2.4 PPG Interrupt and I2C Management 129

III Testing and Conclusion 139

6 Testing 141
6.1 Old ECG Tests . 142
6.2 New ECG and PPG Tests . 143

vi

7 Future Perspectives and Conclusions 145
7.1 Future Perspectives . 145
7.2 Conclusion . 146

Bibliography 147

vii

List of Tables

3.1 Ideal values used during this simulation. 23
3.2 Ideal values used during this simulation. 24
3.3 Ideal values used during this simulation. 32
3.4 Real values used during this simulation. 33
3.5 Real values used during this simulation. 40
3.6 Real values used during this simulation. 42
3.7 Real values used during this simulation. 46
3.8 Real values used during this simulation. 49

viii

List of Figures

1.1 ECG waveform. 3
1.2 Electrical Events of the Cardiac Cycle. 4
1.3 Einthoven Triangle. 6
1.4 Graphical Waves Representation. 7
1.5 DC and AC Component of a PPG Signal. [21] 8
1.6 Apple Watch Series 5. 10
1.7 Old ECG Device Versions. 11
2.1 Acquisition from OLD ECG Device. 16
2.2 Block Diagram of the NEW ECG Front-End. 16
3.1 MATLAB Logo. 19
3.2 High Pass Filter Schematic. 21
3.3 High Pass Filter Ideal Response. 23
3.4 High Pass Filter Real Response. 25
3.5 Notch Filter Response. 26
3.6 Notch Filter Block Diagram. 26
3.7 Notch Filter Version A Schematic 27
3.8 Twin-T Filter Transfer Function. 28
3.9 Notch Filter Version A Schematic. 29
3.10 Notch Filter Version B Schematic. 30
3.11 Notch Filter Ideal vers.B Response. 32
3.12 Notch Filter Real vers.B Response. 34
3.13 Bessel Filter Table. 36
3.14 Low Pass Filter Version A Schematic. 37
3.15 Non-Inverting Amplifier Schematic. 37
3.16 Low-Pass Filter Ideal vers.A Response. 41
3.17 Low-Pass Filter Real vers.A Response. 42
3.18 Low Pass Filter Version B Schematic. 44
3.19 Low-Pass Filter Ideal vers.B Response. 47
3.20 Low-Pass Filter Real vers.b Response. 49
3.21 Acquired ECG signal from device. 51

ix

3.22 Acquired ECG signal from device. 52
3.23 Filtered ECG signal. 53
3.24 Spectral Power Density. 53
4.1 Final Circuit. 57
4.2 Circuit Block Diagram. 58
4.3 Microcontroller CC2640R2F Layout. [6] 60
4.4 CC2640R2F RSM Pinout. [6] 60
4.5 CC2640R2F RSM Block Diagram. [6] 62
4.6 CC2640R2F RSM Front-end Antenna possibility. [6] 63
4.7 Antenna AN043. 64
4.8 Antenna AN043 dimensions. 64
4.9 MAX1759. [7] . 65
4.10 Pin Configuration and Typical Application Circuit. [7] 66
4.11 REF2033. [8] . 67
4.12 Pin Configuration. [8] . 68
4.13 MAX1555. [9] . 69
4.14 Pin Configuration and Typical Application Circuit. [9] 70
4.15 MAX17048. [10] . 71
4.16 Typical Application Circuit. [10] 72
4.17 Pin Configuration. [10] . 72
4.18 DVIULC6-2x6. [11] . 74
4.19 Pin Configuration. [11] . 75
4.20 INA333. [12] . 76
4.21 Pin Configuration. [12] . 77
4.22 OPA4330 Component. [13] . 78
4.23 Pin Configuration. [13] . 79
4.24 MAXM86161 Component. [14] 80
4.25 Pin Configuration. [14] . 81
4.26 Internal Block Diagram. [14] 81
4.27 Flat Connector. [15] . 82
4.28 Flat Cable. [15] . 82
4.29 JST Connector Component. [15] 83
4.30 JST Connector Footprint. [15] 83
4.31 JTAG Connetor. [18] . 84
4.32 LED Red Component. [16] . 85
4.33 LED Red Footprint. [16] . 85
4.34 Light Touch Switches Component. [17] 86
4.35 Light Touch Switches Dimension. [17] 86
4.36 Test Boards Circuit Version A Schematic. 88

x

4.37 Test Boards Circuit Version B Schematic. 89
4.38 Analog Front End Schematic. 90
4.39 Analog Power Domain Schematic. 91
4.40 Power Management Schematic. 92
4.41 Decoupling Capacitors. 93
4.42 Battery Charger. 94
4.43 Voltage Regulator. 94
4.44 Battery Gauge. 95
4.45 Microcontroller Schematic (Part1). 96
4.46 Microcontroller DIOs and Flat Connector Schematic. 98
4.47 PPG Schematic. 100
4.48 OrCAD Design. 101
4.49 Small bridge. 102
4.50 Three point connection. 103
4.51 Main and ECG Board Gerber Files. 104
4.52 Other Main and ECG Board Gerber Files. 105
4.53 PPG Board Gerber Files. 106
4.54 BOM. 107
4.55 PCBs Received from the Manufacturer. 108
4.56 Final Result. 108
4.57 Stencil Preparation. 109
4.58 Soldering Paste. 109
4.59 PCB positioned in the PickPlace Machine and the needle over

it. 110
4.60 PickPlace Machine. 111
4.61 Reflow Oven. 112
4.62 Temperature Profile. 113
5.1 Code Composer Studio Logo. 115
5.2 Screenshot of SCS Tool main page project. 116
5.3 Pin Mapping. 117
5.4 Constants and Data Structures. 118
5.5 Constants and Data Structures. 120
5.6 Screenshot of CCS Tool. 123
5.7 BLE Service TI Tool. 127
6.1 OLD ECG Signal from Oscilloscope. 142
6.2 OLD ECG Signal from App. 142
6.3 I2C Communication from Oscilloscope. 143
6.4 I2C Battery Communication from App. 143
6.5 ECG Signal from App. 144

xi

6.6 PPG Signals fro MATLAB. 144

xii

Part I

Introduction

1

Chapter 1

Introduction to the
problem

The ECG sensor is a tool widely used in the medical field for the measurement
of contractions of the muscle tissues of the heart during heartbeat, through
the application of electrodes on the skin. The meaning of ECG is electro-
cardiogram and the result of this acquisition is a signal/waveform, Figure 1,
sum of every single wave generated by every single movement of the heart
Figure 1.

Figure 1.1. ECG waveform.

3

1 – Introduction to the problem

Figure 1.2. Electrical Events of the Cardiac Cycle.

Different waves can be represented, it depends on where the heart activity
is measured. Each version called lead can be seen as the representation of
the same phenomenon from different angles. Professional ECG sensors have
a maximum of 12 leads by applying on the patient 4 electrodes on the limbs
and 6 electrodes on the chest. The target of this project is to be able to
acquire a heart signal deriving from the first lead, that is, the one received
from 2 electrodes positioned, one in the right hand and the other in the left
hand. The result of this monitoring is a wave that holds within it, a quantity
of information useful for a first diagnosis of the functioning of the heart.

4

1.1 – Einthoven triangle and leads description

1.1 Einthoven triangle and leads description
Willem Einthoven was the inventor of the electrocardiogram. Its idea, behind
this discovery, can be summarized in some points:

• the thorax is a homogeneous spherical conductor with the heart in the
center;

• cardiac electrical forces are generated in the center of the conductor and
the resulting of these forces can be represented by a unique vector;

• the limb-joint points are the vertices of an inscribed equilateral triangle
in the longitudinal section of the spherical thorax, Einthoven Triangle,
because equidistant and lying on the same plane;

• at any moment, the potential differences recorded by pairs of electrodes
placed at the top of the triangle, represent the projections of the resulting
heart vector, on the lines joining the electrodes, leads;

• the amplitude of the P, QRS and T waves, measured on the track
recorded in each derivation corresponds to the projection of the vector it
represents respectively: atrial, ventricular and repolarization activation
ventricular.

5

1 – Introduction to the problem

1.1.1 Einthoven triangle
Considering the Einthoven Triangle these derivation has been obtained:

Figure 1.3. Einthoven Triangle.

LeadI = VI = La−Ra (1.1)
LeadII = VII = LL−Ra (1.2)
LeadIII = VIII = LL− La (1.3)
aV R = Ra− (La+ LL)/2 (1.4)
aV L = La− (Ra+ LL)/2 (1.5)
aV F = LL− (Ra+ La)/2 (1.6)

This project aims to develop a Lead I extraction by detecting the tensions
on the wrist and finger of the opposite hand.

6

1.1 – Einthoven triangle and leads description

1.1.2 ECG Graphical Waves Representation
In this subsection the meaning of each individual stretch of wave is briefly
described.

Page ! 11

La forma d’onda dell’ECG (2)

! ONDE
–  Onda P: Depolarizzazione atri
–  Complesso QRS: Depolarizzazione ventricoli:

setto, apice, base
–  Onda T: Ripolarizzazione ventricoli
 Non è visibile, nell’ECG un’onda di

ripolarizzazione degli atri, perché la
contemporanea depolarizzazione
ventricolare, maschera le variazioni di
potenziale relative a quest’evento.

! SEGMENTI-TRATTI
–  Segmento P-R: (fine onda P - inizio

complesso QRS). Gli atri sono totalmente
depolarizzati

–  Segmento S-T: (fine onda S - inizio onda T). I
ventricoli sono totalmente depolarizzati

!  INTERVALLI
–  Intervallo P-R: Tempo conduzione

atrioventricolare
–  Intervallo Q-T: Tempo depolarizzazione

ripolarizzazione ventricolare

Figure 1.4. Graphical Waves Representation.

7

1 – Introduction to the problem

1.2 Pulse Oximetry and Heart Rate
Pulse oximetry is a noninvasive method of measuring an individual’s blood
oxygen saturation levels. Oxygen saturation levels, referring to the rela-
tionship between oxygenated hemoglobin and total hemoglobin in the blood,
can help detect hypoxemia, deterioration of organ function and even cardiac
arrest. The Pulse Oximetry measurement can be done in two way [19]:

• Transmissive Pulse Oximetry: LEDs transmit light of specific wave-
lengths through the tissue, which is absorbed by photodetectors on the
other end;

• Reflective Pulse Oximetry: LEDs transmit light of specific wave-
lengths through the tissue, which is absorbed by photodetectors on the
same side; the reflected signal is monitored for changes in light absorp-
tion (PPG photoplethysmography).

The MAM86161 sensor performe a Reflective Pulse Oximetry. Typical signal
collected by this component is shown below.

Figure 1.5. DC and AC Component of a PPG Signal. [21]

8

1.2 – Pulse Oximetry and Heart Rate

1.2.1 SpO2 Measurement
In order to measure the SpO2 two different wavelegth LEDs must be employ:
RED LED and IR LED. Since the DC and AC components of the two LEDs
have different amplitudes, the ratio R can be calculated [19]:

R =

ACRed

DCRed

ACIR

DCIR

(1.7)

After calculating the value of R, can be easily calculate the value of SpO2 with
a linear approximation derived from a best-fit straight-line approximation of
SpO2 vs. R data [20] between the R-range of 0.4 to 3.4:

SpO2 = 104 – 17·R (1.8)

9

1 – Introduction to the problem

1.3 State of Art
Nowadays it has become very important to monitor some vital parameters
through the use of wearable devices and to save these data on external devices
such as mobile phones or tablets. There are many devices that can perform
the same measurement of the device show in this Thesis. The most known
one can be the device produced by Apple so the Apple Watch 1.3.

Figure 1.6. Apple Watch Series 5.

This, however, in addition to having the same medical functions as the
device presented in this thesis, has many more features that resemble a mobile
phone; in addition it has a very high cost. The purpose of this thesis is to
create an object accessible to everyone, therefore with low costs.

10

1.3 – State of Art

Before this project there are others old version of the device developed by
other students. An example is the Vital EKG device, the improvement that
have tried to bring concerns the size of the object, we have tried to make it
smaller, for doing this it has been starting from the "Smart wearable wrist
ECG with BLE interface" project. The last project before mentioned, is used
to give an idea of the small dimension, but it must be improved from the
side of disturbances caused by 50Hz. Also the App has been reused and
modified.

(a) ECG Watch device (b) Smart wearable wrist ECG with
BLE interface project

Figure 1.7. Old ECG Device Versions.

11

12

Part II

Implementation

13

Chapter 2

Analysis of the Task

2.1 Executive Summary
The aim of this project is the creation of a wearable device that can measure
ECG and PPG signal. For doing this it has been started from a previous
version of the device able to do the ECG acquisition; unfortunately this
acquisition as many problems as reported in Figure 2.1. As can be seen from
the graph below, the signal power spectrum taken into consideration has
major disturbances caused by the power supplies that surround the device,
that are disturbances multiple of 50Hz.

15

2 – Analysis of the Task

Figure 2.1. Acquisition from OLD ECG Device.

So the first goal of the project was to solve the 50Hz problem by intro-
ducing a notch filter. This however involved the redesign of the entire front
end. In MATLAB chapter, this phase is described more carefully.

Figure 2.2. Block Diagram of the NEW ECG Front-End.

In Figure 6.1 is represented the simple Block Diagram of the NEW ECG

16

2.1 – Executive Summary

Front-End designed. Some requirements must be respected to design the
Analog Front-End:

• amplification of a factor approximately 1000 (60db) only in the useful
band:

– for frequency monitoring including 0.05 - 50Hz (project case);
– for frequency diagnostics up to 1kHz;

• high input impedance to prevent the unknown impedance of the elec-
trode from creating a signal partition, attenuating it;

• it must reject a strong network noise (50Hz) of amplitude comparable
to the signal;

• safety specifications: according to the law, the current flowing on the
patient must be less than 10µA (higher currents increase the incidence
of fibrillation).

For doing this it has been used the INA333 Instrumentation Amplifier with
this characteristics:

• low cost, low amplification of the differential signals and low power con-
sumption power;

• Amplification selectable through external RG:

GInstr.Ampl. = 1 +
A100kΩ

RG

B
= 5 (2.1)

• signal common mode rejection ratio, including mains frequency and its
harmonics (CMRR higher than 100dB).

17

18

Chapter 3

MATLAB

MATLAB is a useful tool for testing the behaviour of a schematic before
mounting the circuit in reality. In this project it has been useful during
the design of both hardware and software filters. Starting from a reference
circuit, a transfer function can be calculated and through this program can
be displayed Bode Diagrams and the Step and Impulse responses, so as to
verify the stability of the circuit.

Figure 3.1. MATLAB Logo.

19

3 – MATLAB

3.1 Hardware Filters
In this section is shown the design of the hardware filters of the ECG analog
front-end. Before start the hardware design it has been perform a MATLAB
simulation of the filter transfer functions in order to choose the correct sizing
of the real electronic components. This test starts from the study of the
spectral power density of a typical ECG signal described in the previous
chapter.
it has also been wanted to design two different Version A and Version B
filters in order to have comparisons between different Front-Ends. In fact,
results relating to these two types of filtering has been reported.

20

3.1 – Hardware Filters

3.1.1 High Pass Filter
The High Pass Filter has been used to remove all the disturbances in a very
low frequencies around the continuous, due to little muscle movement during
the respiration phase. This filtering has been implemented through use of
first order filter (integrator) put in feed-back on the differential amplifier as
shown in the Figure 3.2. Starting from the cutting frequency formula of an

Figure 3.2. High Pass Filter Schematic.

High Pass Filter, resistance and capacitance values have been calculated as
shown below:

fHP = 1
2 · π · rHP · CHP

(3.1)

The cutting frequency wanted is:

fHPideal
= 0,5Hz (3.2)

and the resistance that has been chosen according to E24 series is:

RHPideal
= RHPreal

= 68kΩ (3.3)

21

3 – MATLAB

So, the calculated capacitance is:

CHPideal
= 1

2 · π · fHPideal
·RHPideal

= 1
2 · π · 0,5Hz · 68kΩ = 4.68µF (3.4)

and the chosen value according to E24 series is:

CHPreal
= 4.7µF (3.5)

So, the real cutting frequency becomes:

fHPreal
= 1

2 · π ·RHPreal
· CHPreal

= 1
2 · π · 68kΩ · 4.7µF = 0.498Hz (3.6)

The transfer function of the filter in Figure 3.2 has been calculated as shown
below:

REF = VOUT ·
A
−

1
s · CHP ·RHP

B
+ VREF (3.7)

VOUT = [VIN+ − VIN−] +REF =

= [VIN+ − VIN−] + VREF − VOUT ·
A 1
s · CHP ·RHP

B (3.8)

VOUT ·
A

1 +
1

s · CHP ·RHP

B
= [VIN+ − VIN−] + VREF (3.9)

VOUT =
[VIN+ − VIN−] + VREFA

1 +
1

s · CHP ·RHP

B =

=
s · CHP ·RHP · {[VIN+ − VIN−] + VREF}

(s · CHP ·RHP + 1)

(3.10)

HHP F (s) = VOUT

[VIN+ − VIN−] + VREF
=

s · CHP ·RHP

(s · CHP ·RHP + 1) (3.11)

22

3.1 – Hardware Filters

At this point, after reporting the formulas in a MATLAB script it has
been performed some tests in order to evaluate the filter’s quality. It has
been presented two result: the ideal one in which the used values derives
from the initial values founded from formulas 3.73, 3.3 and 3.4; the second
one in which the value of resistance and capacitance are the real component
value, according to E24 series, 3.3, 3.5 so that it has been calculated and
evaluated the real cutting frequency 3.6.

• Ideal High Pass Filter Result and MATLAB Code
In this subsection the ideal MATLAB results obtained and the code used
have been presented.
MATLAB Results

fHPideal
[Hz] RHPideal

[kΩ] CHPideal
[µF]

0,5 68 4.68

Table 3.1. Ideal values used during this simulation.

MATLAB Simulation

Figure 3.3. High Pass Filter Ideal Response.

23

3 – MATLAB

MATLAB Code

1 %% High(Low)_Pass_Active_Filter [Analog Filter GUIDE]
2 f_HP = 0.5; %Hz
3 R_HP = 68e3; %Ohm
4
5 C_HP = 1/(2*pi*f_HP*R_HP)
6
7 G_HP = (s*C_HP*R_HP)/(s*C_HP*R_HP+1);
8 options = bodeoptions;
9 options.FreqUnits = ’Hz’;

10 options.Xlim = [0.01, 1000];
11
12 figure(’position’, [2,742,2560,614],’NumberTitle’, ’off’, ’Name’, ’HIGH-PASS FILTER

Ideal’)
13
14 subplot(1,3,1)
15 bode(G_HP, options);
16 title(’Bode Diagram’, ’fontweight’, ’bold’, ’fontsize’, 11);
17 grid on;
18
19 subplot(1,3,2)
20 step(G_HP);
21 grid on;
22
23 subplot(1,3,3)
24 impulse(G_HP);
25 grid on;
26
27 sgtitle(’HIGH-PASS FILTER IDEAL’, ’fontweight’, ’bold’, ’fontsize’, 18);

• Real High Pass Filter Result and MATLAB Code
In this subsection the real MATLAB results obtained and the code used
have been presented. This result are the ones that come closest to reality,
also because real values of resistors and capacitors have tolerances that
make the real results differ from those calculated in these tests.
MATLAB Results

fHPideal
[Hz] RHPideal

[kΩ] CHPideal
[µF]

0.498 68 4.7

Table 3.2. Ideal values used during this simulation.

24

3.1 – Hardware Filters

MATLAB Simulation

Figure 3.4. High Pass Filter Real Response.

MATLAB Code

1 %% High(Low)_Pass_Active_Filter [Analog Filter GUIDE]
2 R_HP_real = 68e3; %Ohm
3 C_HP_real = 4.7e-6; %F C_HP = 4.6810e-06
4 f_HP_real = 1/(2*pi*R_HP_real*C_HP_real)
5
6 G_HP_real = (s*C_HP_real*R_HP_real)/(s*C_HP_real*R_HP_real+1);
7 options = bodeoptions;
8 options.FreqUnits = ’Hz’;
9 options.Xlim = [0.01, 1000];

10
11 figure(’position’, [2,742,2560,614],’NumberTitle’, ’off’, ’Name’, ’HIGH-PASS FILTER

Real Component’)
12
13 subplot(1,3,1)
14 bode(G_HP_real, options);
15 title(’Bode Diagram’, ’fontweight’, ’bold’, ’fontsize’, 11);
16 grid on;
17
18 subplot(1,3,2)
19 step(G_HP_real);
20 grid on;
21
22 subplot(1,3,3)
23 impulse(G_HP_real);
24 grid on;
25
26 sgtitle(’HIGH-PASS FILTER REAL’, ’fontweight’, ’bold’, ’fontsize’, 18);

25

3 – MATLAB

3.1.2 Twin-T Notch Filter
The Notch Filter also called Band Stop Filter is able to reject a set of fre-
quency close to the cutting frequency and in this project has been used to
remove all the disturbances due to equipment around the device and so the
frequency under investigation is the power frequency 50Hz. In the Band
Stop Filter passes all frequency from 0Hz to lower cut-off frequency and
from the higher cut-off frequency up as shown in the Figure 3.5. This filter

Figure 3.5. Notch Filter Response.

is obtained connecting Low Pass Filter in parallel to an High Pass Filter in
order to not have overlapping in the produced frequency response Figure 3.6.
[1]

Figure 3.6. Notch Filter Block Diagram.

26

3.1 – Hardware Filters

The Twin-T Filter can be implemented in two ways:

• with NO feedback (Version A): in this case the Q factor (notch
depth) is fixed to 0.25;

• with feedback (Version B): in this case the ratio set by:

RN1/RN2

determine the Q factor value; the maximum depth is reached when the
resistor, the capacitor and the Op-Amp in feedback are replaced by a
short circuit. [2]

This two type of filter has been studied and designed in order to decide which
was the best for this type of application.

Notch Filter Version A

Twin-T Filter with NO feedback shown in Figure 3.9 has been composed by
a passive Twin-T followed by an Op-Amp in voltage follower configuration.

Figure 3.7. Notch Filter Version A Schematic

27

3 – MATLAB

Parameters of this filter have been calculated using a system of equations
reported below: [3]

fNOT CH =
1

2 · π ·

öõõõõô 1
CNOT CH

+
1

CNOT CH

2CNOT CH · 2RNOT CH · 2RNOT CH

fNOT CH =
1

2 · π ·
öõõô 1
CNOT CH · CNOT CH ·RNOT CH · (4RNOT CH)

(3.12)

The cutting frequency wanted is:

fNOT CHideal
= 50Hz (3.13)

and the capacitances that has been chosen according to E24 series are:

CNOT CH = 47nF (3.14)
2CNOT CH = 100nF (3.15)

So, the calculated resistances are:

RNOT CH = 36kΩ (3.16)
2RNOT CH = 68kΩ (3.17)

So, the real cutting frequency becomes:

fNOT CHreal
= 48.40Hz (3.18)

The transfer function of this Twin-T Notch Filter is shown below: [4]

Figure 3.8. Twin-T Filter Transfer Function.

28

3.1 – Hardware Filters

Where,

R1 = 2RNOT CH (3.19)
R2 = 2RNOT CH (3.20)
R3 = RNOT CH (3.21)
C1 = 2CNOT CH (3.22)
C2 = CNOT CH (3.23)
C3 = CNOT CH (3.24)

At this point, after reporting the formulas in a MATLAB script it has been
performed some tests in order to evaluate the filter’s quality. Differently from
the High Pass Filter, before presented, in this case has been presented only
the result (Figure 3.9) in which are used the real component value, according
to E24 series, 3.16 and 3.14. As can be seen from the figure above, the

Figure 3.9. Notch Filter Version A Schematic.

behavior of the phase of the filter has a somewhat strange trend. This was
one of some reasons why this circuit was abandoned by the project.

29

3 – MATLAB

Notch Filter Version B

Twin-T Filter with feedback shown in Figure 3.10 has been composed by
a passive Twin-T followed by an Op-Amp in voltage follower configuration;
the output is than connected with positive feedback to the reference node
between RNOT CH and 2CNOT CH .

Figure 3.10. Notch Filter Version B Schematic.

For this version of the Twin-T Filter has been applied another formulas in
order to find real component value and filter transfer function. Starting from
the cutting frequency, resistance and capacitance values have been calculated
as shown below:

fNOT CH = 1
2 · π · 2RNOT CH · CNOT CH

(3.25)

The cutting frequency wanted is:

fNOT CHideal
= 50Hz (3.26)

and the capacitance that has been chosen according to E24 series is:

CNOT CHideal
= CNOT CHreal

= 150nF (3.27)
2CNOT CHideal

= 2CNOT CHreal
= 300nF (3.28)

30

3.1 – Hardware Filters

So, the calculated resistance is:

2RNOT CHideal
= 1

2 · π · fNOT CHideal
· CNOT CHideal

=

= 1
2 · π · 50Hz · 150nF = 21.22kΩ

(3.29)

and the chosen values according to E24 series is:
2RNOT CHreal

= 21.3kΩ (3.30)
RNOT CHreal

= 10.7kΩ (3.31)

So, the real cutting frequency becomes:

fNOT CHreal
= 1

2 · π · 2RNOT CH · CNOT CH

= 1
2 · π · 21.3kΩ · 150nF = 49.81Hz

(3.32)

In this type of circuit is possible to evaluate the value of RN1 and RN2
(feedback ratio), K (feedback factor) and Q (quality factor) that, in turn,
determine the notch depth all starting from wanted BW value (Bandwidth).
So, the values chosen for this project are:

BWNOT CH = 20Hz (3.33)
RN2ideal

= RN2real
= 10kΩ (3.34)

Than:

QNOT CHideal
= fNOT CHideal

BWNOT CH
= 10 (3.35)

KNOT CHideal
= 1−

A 1
4 ·QNOT CHideal

B
= 0.98 (3.36)

RN1ideal
= (1−KNOT CHideal

) ·
A

RN2

KNOT CHideal

B
= 1.11kΩ (3.37)

So, the real values become:
RN1real

= 1.1kΩ (3.38)

QNOT CHreal
= fNOT CHreal

BWNOT CH
= 9.96 (3.39)

KNOT CHideal
= 1−

3 1
4 ·QNOT CHreal

4
= 0.97 (3.40)

31

3 – MATLAB

The transfer function of the filter in Figure 3.10 is shown below: [2]

HN(s) =
s2 +

A
1

2RNOT CH ·CNOT CH

B2

s2 + 4s · 2RNOT CH

CNOT CH
·
A

1− RN2
RN1+RN2

B
+
A

1
2RNOT CH ·CNOT CH

B2 (3.41)

At this point, after reporting the formulas in a MATLAB script it has been
performed some tests in order to evaluate the filter’s quality. It has been
presented two result: the ideal one in which the used values derives from
the initial values founded from formulas 3.26, 3.29 and 3.27; the second one
in which the value of resistance and capacitance are the real component
value, according to E24 series, 3.30, 3.27 so that it has been calculated and
evaluated the real cutting frequency 3.32.

• Ideal Twin-T Filter Vers.B Result and MATLAB Code
In this subsection the ideal MATLAB results obtained and the code used
have been presented.
MATLAB Results

fNideal
[Hz] RNideal

[kΩ] 2RNideal
[kΩ] CNideal

[nF] CNideal
[nF]

50 10.61 21.22 150 300

Table 3.3. Ideal values used during this simulation.

MATLAB Simulation

Figure 3.11. Notch Filter Ideal vers.B Response.

32

3.1 – Hardware Filters

MATLAB Code

1 %% Twin_T_Notch_Active_Filter [Analog Filter GUIDE]
2 f_notch = 50; %Hz
3 C_notch = 150e-9; %F
4 R9 = 10e3; %Ohm
5 BW_notch = 20; %Hz
6
7 R_notch = 1/(2*pi*f_notch*C_notch)
8 Q_notch = f_notch/BW_notch
9 K_notch = 1-(1/(4*Q_notch))

10 R8 = (1 - K_notch)*(R9/K_notch)
11
12 s = tf(’s’);
13 G_notch = ((s^2)+(1/(R_notch*C_notch))^2)/((s^2)+((4*s/(R_notch*C_notch))*(1-(R9/(R8+R9

))))+(1/(R_notch*C_notch))^2);
14
15 options = bodeoptions;
16 options.FreqUnits = ’Hz’;
17 options.Xlim = [20,80];
18
19 figure(’position’, [2,742,2560,614],’NumberTitle’, ’off’, ’Name’, ’NOTCH FILTER Ideal’)
20
21 subplot(1,3,1)
22 bode(G_notch, options);
23 title(’Bode Diagram’, ’fontweight’, ’bold’, ’fontsize’, 11);
24 grid on;
25
26 subplot(1,3,2)
27 step(G_notch);
28 grid on;
29
30 subplot(1,3,3)
31 impulse(G_notch);
32 grid on;
33
34 sgtitle(’NOTCH FILTER IDEAL ver.B’, ’fontweight’, ’bold’, ’fontsize’, 18);

• Real Twin-T Filter Vers.B Result and MATLAB Code
In this subsection the real MATLAB results obtained and the code used
have been presented. This result are the ones that come closest to reality,
also because real values of resistors and capacitors have tolerances that
make the real results differ from those calculated in these tests.

MATLAB Results

fNreal
[Hz] RNreal

[kΩ] 2RNreal
[kΩ] CNreal

[nF] CNreal
[nF]

49.81 10.7 21.3 150 300

Table 3.4. Real values used during this simulation.

33

3 – MATLAB

MATLAB Simulation

Figure 3.12. Notch Filter Real vers.B Response.

MATLAB Code

1 %% Twin_T_Notch_Active_Filter [Analog Filter GUIDE]
2 C_notch_real = 150e-9; %F
3 R9_real = 10e3; %Ohm
4 R_notch_real = 21.3e3; %Ohm R_notch = 2.1221e+04
5 R8_real = 1.1e3; %Ohm R8 = 1.1111e+03 esiste anche 1.11kOhm oltre a 1.1kOhm
6 f_notch_real = 1/(2*pi*R_notch_real*C_notch_real)
7 Q_notch_real = f_notch_real/BW_notch
8 K_notch_real = 1-(1/(4*Q_notch_real))
9

10 s = tf(’s’);
11 G_notch=((s^2)+(1/(R_notch_real*C_notch_real))^2)/((s^2)+((4*s/(R_notch_real*

C_notch_real))*(1-(R9_real/(R8_real+R9_real))))+(1/(R_notch_real*C_notch_real))^2)
12
13 options = bodeoptions;
14 options.FreqUnits = ’Hz’;
15 options.Xlim = [20,80];
16 figure(’position’, [2,742,2560,614],’NumberTitle’, ’off’, ’Name’, ’NOTCH FILTER Real

Component’)
17
18 subplot(1,3,1)
19 bode(G_notch, options);
20 title(’Bode Diagram’, ’fontweight’, ’bold’, ’fontsize’, 11);
21 grid on;
22
23 subplot(1,3,2)
24 step(G_notch);
25 grid on;
26
27 subplot(1,3,3)
28 impulse(G_notch);
29 grid on;
30 sgtitle(’NOTCH FILTER REAL ver.B’, ’fontweight’, ’bold’, ’fontsize’, 18);

34

3.1 – Hardware Filters

3.1.3 Low Pass Filter
The design of this filter depend on the realization of the Twin-T Filter, this
fact because the number of Op-Amp that can be used is limited according to
the number contained in the component chosen OPA4330. It has inside only
four Op-Amp. If it has been used the Twin-T Filter version A, the number
of amplifiers available would have been two otherwise only one. In fact it has
been reported two version of this Low Pass Filter:

• Version A: a circuit with a K gain of 1, this solution needs a final gain
in the last block implemented with a non-inverting amplifier;

• Version B: a circuit that contain inside the management of the K gain.
Moreover, it can be possible to choose different types of transfer functions
(behaviours of the filter) and architectures:

– Transfer function (behaviour of the filter):
∗ Butterworth Filter : filters are optimized for maximally flat mag-
nitude response, gain flatness in bass-band, the attenuation is
-3dB at the cutting frequency and above this frequency the atten-
uation is 20dB/dec. The negative point is the transient response
to pulse input, it can generate overshoot and ringing.

∗ Chebyshev Filter : filters are optimized to have ripple in pass-
band and so that the cut-off frequency is defined as the frequency
in which the response falls below this ripple band. Their response
to a pulse input is worst than Butterworth filters.

∗ Bessel Filter : filters are designed to have a maximally flat time
delay so they have linear phase response and a good transient
response to pulse input, the attenuation is -3dB at the cutting
frequency.

– Architecture: second-order low-pass filters.
∗ Sallen-Key Circuit
∗ Multiple-Feedback Circuit

It has been chosen the Bessel Filter behaviour and the Sallen-Key circuit and
in the following pages has been analysed two versions. [5] Before doing that,
other parameters must be introduced:

• Q (Quality factor): is a measure of how the band-pass filter is selective
or not, towards a given spread of frequencies.

35

3 – MATLAB

• FSF (Frequency Scaling Factor): how the cut-off frequency is scaled.

For a Sallen-Key filter shown in the Figure 3.14 and Figure 3.18 they are
equal to:

Q =
√
mn

m+ 1 +mn · (1−K) (3.42)

FSF · fC =
1

2 · π ·R · C ·
√
mn

(3.43)

where:

RLP 1 = mR,RLP 2 = R (3.44)
CLP 1 = nC,CLP 2 = C (3.45)

K =
RLP 4 +RLP 3

RLP 4
(3.46)

The value of Q and FSF are found in the table below: [5]

Figure 3.13. Bessel Filter Table.

The values for both version A and B are:

Q = 0.5773 (3.47)
FSF = 1.2736 (3.48)

36

3.1 – Hardware Filters

Low Pass Filter Version A

This type of circuit reported in Figure 3.14 have a K gain of 1, this so-
lution needs a final gain in the last front-end block implemented with a
non-inverting amplifier shown in Figure 3.15.

Figure 3.14. Low Pass Filter Version A Schematic.

Figure 3.15. Non-Inverting Amplifier Schematic.

37

3 – MATLAB

The stage reported in the Figure 3.15 is used only to amplify the signal before
filtered. The total amplification wanted is:

GF inal = 650 (3.49)

The amplification due to the instrumentation amplifier is:

GInstr.Ampl. = 1 +
A100kΩ
RGReal

B
= 5.02 (3.50)

where:

RGReal
= 24.9kΩ (3.51)

Choosing RA2 it is possible to calculate the value of RA1:

RA2 = 1kΩ (3.52)

RA1 =
AA

GF inal

GInstr.Ampl.

B
·RA2

B
−RA2 = 128.6kΩ (3.53)

So,

RA1 = 130kΩ (3.54)
GRealF inal = 657.1 (3.55)

This last value is not the real one because of the tolerances of the components
and below are reported the MATLAB code used to perform these calculus:

1 %% Operational Amplifier Last Stage
2 R13_real = 1e3; %Ohm
3 R3_real = 24.9e3; %Ohm
4 G_final = 650; %1
5 G_instr_ampl = 1+(100e3/R3_real)
6 R12 = ((G_final/G_instr_ampl)*R13_real) - R13_real
7 R12_real = 130e3; %Ohm
8 G_final_real = (1+(R12_real/R13_real))*G_instr_ampl

38

3.1 – Hardware Filters

Below are reported all the mathematical passages used to decide the values
of the components that has been used in order to have a cut-off frequency
wanted of:

fLPideal
=

100Hz
FSF

(3.56)

It has been applied a system of equations to find the values of m and n:

FSF · fLPideal
=

1
2 · π ·R · C ·

√
mn

Q =
√
mn

m+ 1

(3.57)

It has been decided:

R = 10kΩ (3.58)
C = 100nF (3.59)

What it has been obtained is:

t = (FSF · fLPideal
· 2 · π ·R · C) (3.60)

n =
Q

(t−Q · t2) = 1.44 (3.61)

m =
1

t2 · n
= 1.76 (3.62)

So,

RLP 1ideal
= 17.56kΩ (3.63)

RLP 2ideal
= 10kΩ (3.64)

CLP 1ideal
= 144nF (3.65)

CLP 2ideal
= 100nF (3.66)

39

3 – MATLAB

The real values become:

RLP 1real
= 18kΩ (3.67)

RLP 2real
= 10kΩ (3.68)

CLP 1real
= 150nF (3.69)

CLP 2real
= 100nF (3.70)

fLPreal
= 97.95Hz (3.71)

The transfer function of the filter in Figure 3.14 is shown below:

HLP (s) =
1

s2 · (mR2 · nC2) + s · ((mR · C) + (R · nC)) + 1 (3.72)

At this point, after reporting the formulas in a MATLAB script it has been-
performed some tests in order to evaluate the filter’s quality as in previous
cases.

• Ideal Low-Pass Filter Vers.A Result and MATLAB Code
In this subsection the ideal MATLAB results obtained and the code used
have been presented.
MATLAB Results

fLPideal
[Hz] RLP 1ideal

[kΩ] RLP 2ideal
[kΩ] CLP 1ideal

[nF] CLP 2ideal
[nF]

100 17.56 10 144 100

Table 3.5. Real values used during this simulation.

40

3.1 – Hardware Filters

MATLAB Simulation

Figure 3.16. Low-Pass Filter Ideal vers.A Response.

MATLAB Code

1 %% Sallen_Key_Low_Pass_Filter (Second_Order_Bessel_Filter) [TI GUIDE]
2 FSF_LP = 1.2736; %1
3 Q_LP = 0.5773; %1
4 f_LP = 100/FSF_LP; %Hz
5 C_LP = 100e-9; %F
6 R_LP = 10e3; %Ohm
7 K_LP = 1; %1
8
9 t = (FSF_LP*f_LP*2*pi*R_LP*C_LP);

10
11 n = Q_LP/(t-(Q_LP*(t^2)))
12 m = 1/((t^2)*n)
13
14 R5 = m*R_LP
15 R6 = R_LP
16 C9 = n*C_LP
17 C10 = C_LP
18 f_LP_idea1 = 1/(FSF_LP*2*pi*C_LP*R_LP*sqrt(m*n))
19
20 s = tf(’s’);
21 G_LP = (1)/((s^2)*(R5*R6*C9*C10)+s*((R5*C10)+(R6*C10))+1);
22 options = bodeoptions;
23 options.FreqUnits = ’Hz’;
24 options.Xlim = [1,10000];
25

41

3 – MATLAB

26 figure(’position’, [2,742,2560,614])
27
28 subplot(1,3,1)
29 bode(G_LP, options);
30 grid on;
31
32 subplot(1,3,2)
33 step(G_LP);
34 grid on;
35
36 subplot(1,3,3)
37 impulse(G_LP);
38 grid on;
39
40 sgtitle(’LOW-PASS FILTER IDEAL ver.A’, ’fontweight’, ’bold’, ’fontsize’, 18);

• Real Low-Pass Filter Vers.A Result and MATLAB Code
In this subsection the real MATLAB results obtained and the code used
have been presented. This result are the ones that come closest to reality,
also because real values of resistors and capacitors have tolerances that
make the real results differ from those calculated in these tests.
MATLAB Results

fLPreal
[Hz] RLP 1real

[kΩ] RLP 2real
[kΩ] CLP 1real

[nF] CLP 2real
[nF]

97.95 18 10 150 100

Table 3.6. Real values used during this simulation.

MATLAB Simulation

Figure 3.17. Low-Pass Filter Real vers.A Response.

42

3.1 – Hardware Filters

MATLAB Code

1 %% Sallen_Key_Low_Pass_Filter (Second_Order_Bessel_Filter) [TI GUIDE]
2 R5_real = 18e3; %Ohm R5 = 1.7569e+04
3 R6_real = 10e3; %Ohm R6 = 10000
4 C9_real = 150e-09; %F C9 = 1.4418e-07
5 C10_real = 1.0000e-07; %F C10 = 1.0000e-07
6 f_LP_real = 1/(2*pi*sqrt(R5_real*R6_real*C9_real*C10_real))
7
8 G_LP_real = (1)/((s^2)*(R5_real*R6_real*C9_real*C10_real)+s*((R5_real*C10_real)+(

R6_real*C10_real))+1);
9 options = bodeoptions;

10 options.FreqUnits = ’Hz’;
11 options.Xlim = [0.1,100000];
12
13 figure(’position’, [2,742,2560,614])
14
15 subplot(1,3,1)
16 bode(G_LP_real, options);
17 grid on;
18
19 subplot(1,3,2)
20 step(G_LP_real);
21 grid on;
22
23 subplot(1,3,3)
24 impulse(G_LP_real);
25 grid on;
26
27 sgtitle(’LOW-PASS FILTER REAL ver.A’, ’fontweight’, ’bold’, ’fontsize’, 18);

43

3 – MATLAB

Low Pass Filter Version B

This type of circuit reported in Figure 3.18 contain inside the management
of the K gain.

Figure 3.18. Low Pass Filter Version B Schematic.

Below are reported all the mathematical passages used to decide the values
of the components that has been used in order to have a cut-off frequency
wanted of:

fLPideal
=

100Hz
FSF

(3.73)

It has been applied a system of equations to find the values of m and n
similar to the one before studied but, with one more equation about gain K:

K =
RLP 4 +RLP 3

RLP 4

FSF · fLPideal
=

1
2 · π ·R · C ·

√
mn

Q =
√
mn

m+ 1 +mn · (1−K)

(3.74)

44

3.1 – Hardware Filters

It has been decided to have:

R = 330kΩ (3.75)
C = 47nF (3.76)
K = 150 (3.77)

RLP 4 = 1kΩ (3.78)

What has been obtained is a second degree equation in which the coefficients
are reported below:

an2 + bn+ c = 0 (3.79)

where,

a = q2 ·Q2 − t2 (3.80)
b = 2 · q ·Q2 (3.81)
c = Q2 (3.82)
t = FSF · fLPideal

· 2 · π ·R · C (3.83)
q = 1−K + t2 (3.84)

So, only one solution has been chosen:

n = 0.0141 (3.85)
m = 0.7467 (3.86)

RLP 1ideal
= 246.4kΩ (3.87)

RLP 2ideal
= 330kΩ (3.88)

CLP 1ideal
= 663pF (3.89)

CLP 2ideal
= 47nF (3.90)

RLP 3ideal
= 149kΩ (3.91)

45

3 – MATLAB

The real values become:

RLP 1real
= 246kΩ (3.92)

RLP 2real
= 330kΩ (3.93)

CLP 1real
= 680pF (3.94)

CLP 2real
= 47nF (3.95)

RLP 3real
= 149kΩ (3.96)

fLPreal
= 98.81Hz (3.97)

The transfer function of the filter in Figure 3.18 is shown below:

HLP (s) =

RLP 4 +RLP 3

RLP 4

s2 · (mR2 · nC2) + s ·
A
mR · C +R · C −mR · nC ·

A
RLP 3

RLP 4

BB
+ 1

(3.98)

At this point, after reporting the formulas in a MATLAB script, it has some
tests in order to evaluate the filter’s quality as in previous cases.

• Ideal Low-Pass Filter Vers.B Result and MATLAB Code
In this subsection the ideal MATLAB results obtained and the code used
have been presented.
MATLAB Results

fLPideal
[Hz] RLP 1ideal

[kΩ] RLP 2ideal
[kΩ] CLP 1ideal

[pF] CLP 2ideal
[nF]

100 246.4 330 663 47
RLP 3ideal

[kΩ] RLP 4[kΩ]
149 1

Table 3.7. Real values used during this simulation.

46

3.1 – Hardware Filters

MATLAB Simulation

Figure 3.19. Low-Pass Filter Ideal vers.B Response.

MATLAB Code

1 %% Sallen_Key_Low_Pass_Filter (Second_Order_Bessel_Filter) [TI GUIDE]
2 FSF_LP = 1.2736; %1
3 Q_LP = 0.5773; %1
4 f_LP = 100/FSF_LP; %Hz
5 C_LP = 47e-9; %F
6 R_LP = 330e3; %Ohm
7 K_LP = 150; %1
8 R13 = 1e3; %Ohm
9

10 R12 = K_LP*R13 - R13
11
12 t = (FSF_LP*f_LP*2*pi*R_LP*C_LP);
13 q = (1-K_LP+t^2);
14
15 a = q^2*Q_LP^2-t^2;
16 b = 2*q*Q_LP^2;
17 c = Q_LP^2;
18
19 discriminante = b^2 - 4 * a * c;
20
21 if (discriminante >=0)
22 if (discriminante == 0)
23 n1 = -b / (2*a);
24 disp("Soluzione reale equazione: n1= ");
25 disp(n1);

47

3 – MATLAB

26 else
27 n1 = (- b + sqrt(discriminante))/(2*a);
28 n2 = (- b - sqrt(discriminante))/(2*a);
29 disp("-> Soluzione reale equazione: n1=");
30 disp(n1);
31 disp("-> Soluzione reale equazione: n2=");
32 disp(n2);
33 end
34 else
35 disp(" **** ERRORE - Soluzioni complesse !!!");
36 end
37
38 if (n1 > 0)
39 m1 = 1/(((FSF_LP*f_LP*2*pi*R_LP*C_LP)^2)*n1);
40 disp("-> Soluzione equazione: m1=");
41 disp(m1);
42 R10 = m1*R_LP
43 R11 = R_LP
44 C14 = n1*C_LP
45 C15 = C_LP
46 f_LP_idea1_1 = 1/(FSF_LP*2*pi*C_LP*R_LP*sqrt(m1*n1))
47 else
48 disp(" **** ERRORE - Non esiste m1 !!! ****");
49 disp(" ");
50 end
51
52 if (n2 > 0)
53 m2 = 1/(((FSF_LP*f_LP*2*pi*R_LP*C_LP)^2)*n2);
54 disp("-> Soluzione equazione: m2=");
55 disp(m2);
56 R10 = m2*R_LP
57 R11 = R_LP
58 C14 = n2*C_LP
59 C15 = C_LP
60 f_LP_ideal_2 = 1/(FSF_LP*2*pi*C_LP*R_LP*sqrt(m2*n2))
61
62 else
63 disp(" **** ERRORE - Non esiste m2 !!! ****");
64 disp(" ");
65 end
66
67 s = tf(’s’);
68 G_LP = ((R13+R12)/R13)/((s^2)*(R10*R11*C14*C15)+s*((R10*C15)+(R11*C15)+(R10*C14*(-(R12/

R13))))+1);
69 options = bodeoptions;
70 options.FreqUnits = ’Hz’;
71 options.Xlim = [1,10000];
72
73 figure(’position’, [2,742,2560,614],’NumberTitle’, ’off’, ’Name’, ’LOW-PASS FILTER

Ideal’)
74
75 subplot(1,3,1)
76 bode(G_LP, options);
77 title(’Bode Diagram’, ’fontweight’, ’bold’, ’fontsize’, 11);
78 grid on;
79
80 subplot(1,3,2)
81 step(G_LP);

48

3.1 – Hardware Filters

82 grid on;
83
84 subplot(1,3,3)
85 impulse(G_LP);
86 grid on;
87
88 sgtitle(’LOW-PASS FILTER IDEAL ver.B’, ’fontweight’, ’bold’, ’fontsize’, 18);

• Real Low-Pass Filter Vers.B Result and MATLAB Code
In this subsection the real MATLAB results obtained and the code used
have been presented. This result are the ones that come closest to reality,
also because real values of resistors and capacitors have tolerances that
make the real results differ from those calculated in these tests.
MATLAB Results

fLPreal
[Hz] RLP 1real

[kΩ] RLP 2real
[kΩ] CLP 1real

[pF] CLP 2real
[nF]

98.81 246 330 680 47
RLP 3real

[kΩ] RLP 4[kΩ]
149 1

Table 3.8. Real values used during this simulation.

MATLAB Simulation

Figure 3.20. Low-Pass Filter Real vers.b Response.

49

3 – MATLAB

MATLAB Code

1 %% Sallen_Key_Low_Pass_Filter (Second_Order_Bessel_Filter) [TI GUIDE]
2 R13_real = 1e3; %Ohm
3 R12_real = 149e3; %Ohm R12 = 149e3;
4 R10_real = 246e3; %Ohm R10 = 2.4640e+05
5 R11_real = 330e3; %Ohm R11 = 330000
6 C14_real = 680e-12; %F C14 = 6.6280e-10
7 C15_real = 4.7e-08; %F C15 = 4.7000e-08
8 f_LP_real = 1/(2*pi*sqrt(R10_real*R11_real*C14_real*C15_real))
9

10 G_LP_real = ((R13_real+R12_real)/R13_real)/((s^2)*(R10_real*R11_real*C14_real*C15_real)
+s*((R10_real*C15_real)+(R11_real*C15_real)+(R10_real*C14_real*(-(R12_real/
R13_real))))+1);

11 options = bodeoptions;
12 options.FreqUnits = ’Hz’;
13 options.Xlim = [0.1,100000];
14
15 figure(’position’, [2,742,2560,614],’NumberTitle’, ’off’, ’Name’, ’LOW-PASS FILTER Real

Component’)
16
17 subplot(1,3,1)
18
19 bode(G_LP_real, options);
20 title(’Bode Diagram’, ’fontweight’, ’bold’, ’fontsize’, 11);
21 grid on;
22
23 subplot(1,3,2)
24 step(G_LP_real);
25 grid on;
26
27 subplot(1,3,3)
28 impulse(G_LP_real);
29 grid on;
30
31 sgtitle(’LOW-PASS FILTER REAL ver.B’, ’fontweight’, ’bold’, ’fontsize’, 18);

50

3.2 – Software Filters

3.2 Software Filters
In this last section is shown the use of MATLAB for the design of the software
filters that has been inserted in the app in order to clean and visualize the
signals collected by the circuit. Hardware filters have been used to clean
the ECG signal before its amplification otherwise also the noise would be
amplified. Software filters are applied after the signal has been collected so
they have been used only for remove disturbances that are not part of the
wanted signal. Starting from the acquired signal (an example is reported in
the Figure 3.21), it has been noted that there are yet some problems: base
line drift, bias and high-frequency disturbances.

Figure 3.21. Acquired ECG signal from device.

51

3 – MATLAB

3.2.1 Solution for base line drift and bias problem
Resolve bias problem is easy: with a function called "mean", the average
of the signal is calculated and then subtracted from it. While a solution
easy used to remove the base line drift is to subtract to the initial signal its
baseline obtained through an High-Pass filter. The result is shown in Figure
3.22.

Figure 3.22. Acquired ECG signal from device.

MATLAB Code

1 d = fdesign.comb(’notch’, ’N,BW’, 10, bw);
2 Hd = design(d,’SystemObject’,true);
3
4 cofi = tf2sos(Hd.Numerator, Hd.Denominator)
5
6 ecg2 = sosfilt (cofi, ecgin-mean(ecgin));

52

3.2 – Software Filters

3.2.2 Solution for high-frequency disturbances prob-
lem

In this case has been implemented a 50Hz notch filter in addition to second-
order low-pass filter. The result is shown and in Figure 3.23 in Figure 3.24.

Figure 3.23. Filtered ECG signal.

Figure 3.24. Spectral Power Density.

53

3 – MATLAB

This last figure, that shows the Spectral Power density,is possible to see
how the signal that interests us, that is, the one between the frequencies
0.5Hz and 50Hz, remains while all the rest is filtered. There is a problem that
must be resolved that is the the degrowth of the peaks due to an aggressive
filtering.
MATLAB Code

1 clc;
2 clear all;
3 close all;
4
5 filename = ’Front_end.eml’;
6
7 ECG = load_file(filename);
8
9 figure(’position’, [2,742,2560,614])

10 plot(ECG, ’k’)
11 title(’ECG signal from ECGX’);
12 ylabel(’ADC Conversion [mV]’);
13 xlabel(’Samples’);
14 grid on;
15 hold on;
16 b = Motta_Filter_for_App(ECG, 10, 10, 10)’;
17 c = Motta_Filter_for_App_2(b, 10, 10, 10)’;
18
19 figure(’position’, [2,742,2560,614])
20 grid on;
21 hold on;
22 sgtitle(’ECG signals filtered’, ’fontweight’, ’bold’, ’fontsize’, 18);
23 ylabel(’ADC Conversion [mV]’);
24 xlabel(’Samples’);
25 plot(b, ’g’);
26 plot(c, ’bl’);
27 legend(’Filtered Signal ANDROID APP’, ’Filtered Signal ANDROID APP v.2’)
28
29 %% Spettrogramma
30 fs = 500;
31 t=0:1/fs:(length(b)-1)/fs;
32 b = b - (mean(b));
33 [Pxx2,f] = pwelch((b),hamming(1024),64,1024,fs);
34 c = c - (mean(c));
35 [Pxx3,f] = pwelch((c),hamming(1024),64,1024,fs);
36
37 figure(’position’, [0,42,2560,614])
38 hold on;
39 grid on;
40 sgtitle(’ECG signals filtered Spectral Power Density’, ’fontweight’, ’bold’, ’fontsize’, 18)

;
41 ylabel(’Spectral Power Density [dB/Hz]’);
42 xlabel(’Frequency [Hz]’);
43 plot(f,Pxx2, ’g’);
44 plot(f,Pxx3, ’bl’);
45 legend(’Filtered Signal ANDROID APP’, ’Filtered Signal ANDROID APP v.2’)
46 axis([0 70 0 (max(abs(Pxx2)))]);
47 xticks(0:2:70);

54

3.2 – Software Filters

Functions MATLAB Code

• Motta_Filter_for_App
1 function [ecgout] = Motta_Filter_for_App(ecgin, n1, n2, n3)
2
3 if(nargin < 1)
4 return
5 end
6 if(nargin < 3)
7 n1 = 5;
8 end
9 if(nargin < 4)

10 n2 = 10;
11 end
12 if(nargin < 5)
13 n3 = 15;
14 end
15 if(nargin > 5)
16 return
17 end
18
19 cofi = [0.8633 0.0000 -0.8633 1.0000 0.0000 -0.9381;
20 1.0000 0.6180 1.0000 1.0000 0.5986 0.9381;
21 1.0000 -0.6180 1.0000 1.0000 -0.5986 0.9381;
22 1.0000 -1.6180 1.0000 1.0000 -1.5672 0.9381;
23 1.0000 1.6180 1.0000 1.0000 1.5672 0.9381];
24
25 ecg2 = sosfilt(cofi, ecgin - mean(ecgin));
26
27 ecgout = ecg2;
28
29 end

55

3 – MATLAB

• Motta_Filter_for_App_2
1 function [ecgout] = Motta_Filter_for_App_2(ecgin, n1, n2, n3)
2
3 if(nargin < 1)
4 return
5 end
6 if(nargin < 3)
7 n1 = 5;
8 end
9 if(nargin < 4)

10 n2 = 10;
11 end
12 if(nargin < 5)
13 n3 = 15;
14 end
15 if(nargin > 5)
16 return
17 end
18
19 cofi = [0.007820208033497193 0.015640416066994387 0.007820208033497193
20 1.000000000000000000 -1.734725768809274980 0.766006600943263893]; %% Fc = 15

Hz, poles = 2
21
22 ecg2 = sosfilt(cofi, ecgin - mean(ecgin));
23
24 ecgout = ecg2;
25
26 end

For implementing this filters on the app filter (IIR filter built with product
of biquadratic’s transfer functions) coefficients "cofi" have been calculated.

56

Chapter 4

Hardware

In this chapter has been introduce all passages used to build a final working
PCB. Starting from the component choice, passing through the schematic
presentation, PCB design explanation and the final circuit mounting. In the
Figure 4.3 is shown the final circuit obtained.

(a) Top (b) Bottom

Figure 4.1. Final Circuit.

57

4 – Hardware

4.1 Components Choice
In this section has been explained the choice of component used to build
the two PCBs one for the PPG sensor and the other one that contain the
microcontroller, digital and analog power domain and the ECG acquisition.
Below is shown the block diagram of the project.

Figure 4.2. Circuit Block Diagram.

58

4.1 – Components Choice

It is composed by two big blocks representing the two PCBs of which the
circuit is formed.

• ECG PCB Block: is composed of:

– Connectors: Electrodes Connector, USB Connector, Flat Connector
and Battery Connector form the interaction between PCB and the
outside world.

– Power Blocks: Battery Charger, Battery Gauge are used to control
the battery state and its charging mode; Voltage Regulator and Ana-
log Power Domain are two components that generate stable power
voltage and reference voltage used by all the other component that
must have a stable power supply.

– Filters: this block are used for ECG signal conditioning.
– Microcontroller : control all other block and is used to collect data
from ECG through its internal ADC Converter and Battery monitor
and PPG value through I2C communication.

• PPG PCB Block: is composed of two other main blocks:

– Flat Connector : used to connect PPG PCB to ECG PCB through
the flat cable that carrying the power lines and I2C lines.

– PPG Sensor (MAXM86161): sensor used to collect data about SpO2
values.

59

4 – Hardware

4.1.1 Microcontroller TI CC2640R2F RSM

Figure 4.3. Microcontroller CC2640R2F Layout. [6]

Figure 4.4. CC2640R2F RSM Pinout. [6]

60

4.1 – Components Choice

This microcontroller has been chosen because of its little dimension with a
discreet number of DIO pin.

Features:

• ARM®Cortex®-M3;

• Up to 48 MHz Clock Speed;

• Memories:

– 275KB of Nonvolatile Memory Including 128KB of Programmable
Flash;

– Up to 28KB of System SRAM;
– 8KB of SRAM Cache;

• RoHS-Compliant Packages:

– 2.7mmx2.7mm YFV DSBGA34 (14 GPIOs);
– 4mmx4mm RSM VQFN32 (10 GPIOs) chosed;
– 5mmx5mm RHB VQFN32 (15 GPIOs);
– 7mmx7mm RGZ VQFN48 (31 GPIOs);

• SPI, I2C and I2S Compatible;

• 2-Pin cJTAG and JTAG Debugging;

• 2.4-GHz RF Transceiver Compatible with Bluetooth Low Energy (BLE)
4.2;

• 1.8 to 3.8 V Power Supply;

• Sensor Controller 16 bit Coprocessor.

The CC2640R2F device is a wireless microcontroller (MCU) targeting Blue-
tooth®4.2 and Bluetooth®5 low energy applications.
The device is a member of the SimpleLink™ultra-low power CC26xx family
of cost-effective, 2.4GHz RF devices. Very low active RF and MCU current
and low-power mode current consumption provide excellent battery lifetime
and allow for operation on small coin cell batteries and in energy-harvesting
applications.
The SimpleLink Bluetooth low energy CC2640R2F device contains a 32-bit

61

4 – Hardware

ARM®Cortex®-M3 core that runs at 48 MHz as the main processor and a
rich peripheral feature set that includes a unique ultra-low power sensor con-
troller. This sensor controller is ideal for interfacing external sensors and for
collecting analog and digital data autonomously while the rest of the system
is in sleep mode. Thus, the CC2640R2F device is great for a wide range of
applications where long battery lifetime, small form factor, and ease of use
is important. Below is reported the Block diagram of the component: This

Figure 4.5. CC2640R2F RSM Block Diagram. [6]

is the core of the device, so its functions are:

• communicating through I2C with MAX17048 in order to transfer data
about the State of Charge and Voltage of the battery;

• communicating through I2C in order to transfer data about Red Led
and IR Led values collected by MAXM86161;

• acquiring data with the internal ADC from the ECG analog front-end
output;

62

4.1 – Components Choice

• communicating correctly with the internal Sensor Controller Coproces-
sor;

• sending and receiving data with a smartphone or tablet with BLE com-
munication through a patch antenna.

There are three RF front-end configuration option recommended by Texas
Instrument display in the Figure 4.6 and it has been chosen the single-ended
in the middle.

Figure 4.6. CC2640R2F RSM Front-end Antenna possibility. [6]

63

4 – Hardware

4.1.2 Antenna AN043

Figure 4.7. Antenna AN043.

The PCB antenna AN043 is a meandered Inverted F Antenna (IFA), designed
to match an impedance of 50Ω at 2.45GHz. Thus no additional matching
components are necessary.

Figure 4.8. Antenna AN043 dimensions.

The AN043 is one of the recommended PCB antennas by Texas Instru-
ments. Filling a large part of the PCB, this antenna is the best choice among
the possibilities, since it is the smallest one. Moreover, being a PCB antenna,
it avoids additional cost for component purchase.

64

4.1 – Components Choice

4.1.3 Voltage Regulators
MAX1759

The Voltage Regulator is used to generate a regulated output voltage from
a single cell LiPo battery; the device operates over a wide +1.6V to +5.5V
input voltage range and must generate a fixed 3.3V or adjustable (2.5V to
5.5V) output.

Figure 4.9. MAX1759. [7]

Features:

• Regulated Output Voltage (Fixed 3.3V or Adjustable 2.5V to 5.5V);

• 100mA Guaranteed Output Current;

• +1.6V to +5.5V Input Voltage Range;

• 1µA Shutdown Mode;

• Load Disconnected from Input in Shutdown;

• Short-Circuit Protection and Thermal Shutdown;

• Small 10-Pin µMAX Package;

65

4 – Hardware

• Electrical characteristics (TA = 0◦C to +85◦C):

– Input Voltage Range: 1.6V to 5.5V ;
– Output Voltage: 3.17V to 3.43V ;
– Maximum Output Current: 100mA;
– CX : 330nF ;
– CIN : 10µF ;
– COUT : filter capacitor 10µF ;

Pin characteristics:

General Description
The MAX1759 is a buck/boost regulating charge pump
that generates a regulated output voltage from a single
lithium-ion (Li+) cell, or two or three NiMH or alkaline
cells for small hand-held portable equipment. The
MAX1759 operates over a wide +1.6V to +5.5V input
voltage range and generates a fixed 3.3V or adjustable
(2.5V to 5.5V) output (Dual Mode™). Maxim’s unique
charge-pump architecture allows the input voltage to be
higher or lower than the regulated output voltage.
Despite its high 1.5MHz operating frequency, the
MAX1759 maintains low 50µA quiescent supply current.
Designed to be an extremely compact buck/boost con-
verter, this device requires only three small ceramic
capacitors to build a complete DC-DC converter capa-
ble of generating a guaranteed 100mA (min) output
current from a +2.5V input. For added flexibility, the
MAX1759 also includes an open-drain power-OK
(POK) output that signals when the output voltage is in
regulation.
The MAX1759 is available in a space-saving 10-pin
µMAX package that is 1.09mm high and half the size of
an 8-pin SO.

Applications
Li+ Battery-Powered Applications

Miniature Equipment

Backup Battery Boost Converters

Translators

Features
♦ Regulated Output Voltage (Fixed 3.3V or

Adjustable 2.5V to 5.5V)

♦ 100mA Guaranteed Output Current

♦ +1.6V to +5.5V Input Voltage Range

♦ Low 50µA Quiescent Supply Current

♦ 1µA Shutdown Mode

♦ Load Disconnected from Input in Shutdown

♦ High 1.5MHz Operating Frequency

♦ Uses Small Ceramic Capacitors

♦ Short-Circuit Protection and Thermal Shutdown

♦ Small 10-Pin µMAX Package

M
A

X
1

7
5

9

Buck/Boost Regulating
Charge Pump in µMAX

__ Maxim Integrated Products 1

1

2

3

4

5

10

9

8

7

6

FB

OUT

CXP

CXNIN

IN

SHDN

POK

MAX1759

µMAX

TOP VIEW

PGNDGND

CX

IN
+1.6V TO +5.5V

OUT
3.3V AT 100mA

CIN

ON

OFF

COUT

POWER OK

OUT

POK

IN
CXN CXP

PGNDGNDFB
SHDN

MAX1759

Typical Operating Circuit

19-1600; Rev 1; 6/00

PART
MAX1759EUB -40°C to +85°C

TEMP. RANGE PIN-PACKAGE
10 µMAX

Pin Configuration

Ordering Information

Dual Mode is a trademark of Maxim Integrated Products.

For price, delivery, and to place orders, please contact Maxim Distribution at 1-888-629-4642,
or visit Maxim’s website at www.maxim-ic.com.

Figure 4.10. Pin Configuration and Typical Application Circuit. [7]

Applications:

• LiPo Battery-Powered Applications;

• Miniature Equipment;

• Backup Battery Boost Converters;

• Translators;

66

4.1 – Components Choice

TI REF2033

This voltage regulator is used in many applications in which is required an
additional stable voltage in the middle of the ADC input range to bias for
example an input bipolar signals as in this project. This component is able
to provide two stable voltages VREF and VBIAS

Figure 4.11. REF2033. [8]

Features:

• provides two Stable Voltage, VREF and VREF/2, that is suitable for use
in single-supply voltage systems;

• High Initial Accuracy of ±0.05% (max);

• Small SOT23− 5 Package;

• Electrical characteristic:

– Low Dropout Voltage: 10mV ;
– High Output Current: ±20mA;
– Low Quiescent Current: 360µA;
– Line Regulation: 3ppm/V ;
– Load Regulation: 8ppm/mA.

67

4 – Hardware

Pin characteristics:

Figure 4.12. Pin Configuration. [8]

• VBIAS: Output Voltage (VREF/2 = 1.65V);

• GND: Ground;

• EN: Input Pin used to Enable the Device with (EN ≥ V IN − 0.7V);

• VIN : Input Supply Voltage;

• VREF : Reference Output Voltage (VREF = 3.3V).

Applications:

• Medical Equipment;

• Data Acquisition Systems;

• Single-Supply Systems.

68

4.1 – Components Choice

4.1.4 Battery Charger MAX1555
The Battery Charger is used to charge a single-cell LiPo battery from both
USB and AC adapter sources. It operates with no external FETs or diodes,
and accept operating input voltages up to 7V.

Figure 4.13. MAX1555. [9]

Features:

• Charge from USB or AC Adapter;

• Automatic Switch over when AC Adapter is plugged IN;

• On-Chip Thermal Limiting Simplifies Board Design;

• Charge Status Indicator;

• 5-Pin Thin SOT23 Package;

• Electrical characteristics (TA = 0◦C to +85◦C):

– DC Voltage Range: 3.7V to 7.0V ;
– USB Voltage Range: 3.7V to 6.0V ;
– BAT Regulation Voltage: 4.158V to 4.242V ;
– DC to BAT Voltage Range: 0.1V to 6.0V ;
– CHG, POK Logic-Low Output: 300mV

69

4 – Hardware

Pin characteristics:

• USB: USB Port Charger Supply Input. USB draws up to 100mA to
charge the battery. Decouple USB with a 1µF ceramic capacitor to
GND;

• GND: Ground;

• POK: Power-OK Active-Low Open-Drain Charger Status Indicator;

• CHG: Active-Low Open-Drain Charge Status Indicator. CHG pulls
low when the battery is charging. CHG goes to a high-impedance state,
indicating the battery is fully charged, when the charger is in voltage
mode and charge current falls below 50mA;

• DC: DC Charger Supply Input for an AC Adapter. DC draws 280mA
to charge the battery. Decouple DC with a 1µF ceramic capacitor to
GND

• BAT: Battery Connection. Decouple BAT with a 1µF ceramic capacitor
to GND.

Figure 4.14. Pin Configuration and Typical Application Circuit. [9]

Applications:

• PDAs;

• Wireless Appliances;

• Cell Phones;

• Digital Cameras;

70

4.1 – Components Choice

4.1.5 Battery Gauge MAX17048
Fuel Gauge device is used to track the battery relative state-of-charge (SOC)
continuously over widely varying charge and discharge conditions.

Figure 4.15. MAX17048. [10]

Features:

• Precision ±7.5mV /Cell Voltage Measurement;

• Used for 1 Cell LiPo Battery;

• I2C Interface;

• 8-Bit OTP ID Register;

• Configurable Alert Indicator;

• Programmable Reset for Battery Swap 2.28V to 3.48V Range;

• Reports Charge and Discharge Rate;

• Battery-Insertion Debounce

• Electrical characteristics (TA = −20◦C to +70◦C):

– Supply Voltage: 2.5V to 4.5V ;
– Data I/O Pins: −0.3V to 5.5V ;

71

4 – Hardware

– Maximum Output Current:
∗ Sleep mode: 2µA;
∗ Hibernate mode: 5µA;
∗ Active mode: 40µA;

– Voltage Error: 7mV xCell;
– Voltage-Measurement Resolution: 1.25mV xCell;
– SCL Clock Frequency: 400kHz;

Pin characteristics:

Figure 4.16. Typical Application Circuit. [10]

Figure 4.17. Pin Configuration. [10]

72

4.1 – Components Choice

Applications:

• Smartphones, Tablets;

• Smartwatches, Wearables;

• Bluetooth Headsets;

• Health and Fitness Monitors;

• Digital Still, Video, and Action Cameras;

• Medical Devices;

• Handheld Computers and Terminals;

• Wireless Speakers;

• Home and Building Automation, Sensors;

73

4 – Hardware

4.1.6 ESD Protection
An ESD protection component is used to protects a circuit from Electrostatic
discharge (ESD) that can cause malfunction or breakdown of electronic de-
vice.

Figure 4.18. DVIULC6-2x6. [11]

Features:

• Two Lines ESD Protection (at 15kV air and contact discharge, exceeds
IEC61000− 4− 2);

• Fast Response Time Compared with Varistors;

• RoHS compliant;

• Small Package 1.45mm2 for µQFN ;

• Electrical characteristics

– Ultra Low Capacitance: 0.6pF at f = 825MHz;
– Low Leakage Current: 0.5µA max;

74

4.1 – Components Choice

Pin characteristics:

Figure 4.19. Pin Configuration. [11]

Applications:

• Medical Devices ESD Protection;

75

4 – Hardware

4.1.7 Instrumentation Amplifier TI INA333
TI INA333 is a low power instrumentation amplifier used in this project to
initial amplify the ECG signal before filter it. Is possible to sets gain from 1
to 1000 according to the value of one single resistor RG.

Figure 4.20. INA333. [12]

Features:

• 8-Pin VSSOP;

• Electrical characteristics

– Supply Range: 1.8V to 5.5V ;
– Input Voltage: (V–) +0.1V to (V+) −0.1V ;
– Output Range: (V–) +0.05V to (V+) −0.05V ;
– High CMRR: 100dB (Minimum), G ≥ 10;
– Low Quiescent Current: 50µA;
– Low Offset Voltage: 25µV (Maximum), G ≥ 100;
– Low Drift: 0.1µV/◦C, G ≥ 100.

76

4.1 – Components Choice

Pin characteristics:

• RG: Gain setting pins; place a gain resistor between pins 1 and 8;

• V+: Positive supply voltage;

• V−: Negative supply voltage;

• VIN+: Positive input;

• VIN+: Negative input;

• REF : Reference input. This pin must be driven by low impedance or
connected to Ground.;

• VOUT : Output.

Figure 4.21. Pin Configuration. [12]

Applications:

• ECG Amplifiers;

• Medical Instrumentation;

• Portable Instrumentation;

• RTD Sensor Amplifiers;

• Data Acquisition;

77

4 – Hardware

4.1.8 Operational Amplifier TI OPA4330
The TI OPA4330 is a CMOS operational amplifier that is member of the
Zero-Drift family of amplifiers and it can offer precision performance at a
very low price. This is the reason why it has been chosen. The version
chosen, contains 4 operational amplifiers.

Figure 4.22. OPA4330 Component. [13]

Features:

• Packages: DSBGA, SC70, VQFN (chosen);

• Internal EMI Filtering;

• Rail-to-Rail Input and Output;

• Electrical characteristics

– Supply Range: 1.8V to 5.5V ;
– Low Noise: 1.1µV PP , 0.1Hz to 10Hz;
– Low Quiescent Current: 35µA (Maximum);
– Zero Drift: 0.25µV/◦C (Maximum);
– Low Offset Voltage: 50µV (Maximum).

78

4.1 – Components Choice

Pin characteristics:

Figure 4.23. Pin Configuration. [13]

Applications:

• Medical Instrumentation.

79

4 – Hardware

4.1.9 PPG Sensor MAXM86161
The MAXM86161 is a low-power, integrated, optical data acquisition system.

Figure 4.24. MAXM86161 Component. [14]

Features:

• Built-In Algorithm for Rejection of Fast Ambient Transients;

• Heart Rate and SpO2 Monitoring;

• High Resolution ADC (19 bit);

• Three 8-Bit LED Current DACs;

• Low-Power Operation for Wearable Devices;

• Package: 14-pin OLGA.

80

4.1 – Components Choice

Pin characteristics and Internal Block Diagram:

Figure 4.25. Pin Configuration. [14]

Figure 4.26. Internal Block Diagram. [14]

Applications:

• Medical Instrumentation.

81

4 – Hardware

4.1.10 Connectors, Button and LED
Flat Connector and Cable

Flat connectors are used to connect the two PCBs. They are soldered to
PCBs and they are connected each other with a Flat Cable. The cable carry
both signals and power lines. In this project are used the 8 positions/pins
connectors.

Figure 4.27. Flat Connector. [15]

Figure 4.28. Flat Cable. [15]

82

4.1 – Components Choice

Battery and ECG Connector

This is the JSTConnector header connector SMD two position 1MM SM02B-
SRSS-TB(LF)(SN).

Figure 4.29. JST Connector Component. [15]

Figure 4.30. JST Connector Footprint. [15]

83

4 – Hardware

JTAG Connector

The JTAG Connector is used to connect the microcontroller to the PC in
order to program the processor and also debug it.

Figure 4.31. JTAG Connetor. [18]

84

4.1 – Components Choice

Red LED

The Red LED is used as indicator during acquisition. Flashes during ECG
acquisition and Battery measurement.

Figure 4.32. LED Red Component. [16]

Figure 4.33. LED Red Footprint. [16]

85

4 – Hardware

Push Button

Not used in this project but, inserted for future perspectives.

Figure 4.34. Light Touch Switches Component. [17]

Figure 4.35. Light Touch Switches Dimension. [17]

86

4.2 – Schematic Explanation

4.2 Schematic Explanation
In this section have been presented all schematic circuit of this project and
is divided in two subsections:

• Test Boards Circuit: in which has been shown the circuit used for
tests. This is also divided in:

– Test Boards Circuit Version A;
– Test Boards Circuit Version B.

• Final ECG and PPG Circuit: in which has been shown and explained
the final circuit. Divided in:

– ECG and PPG Circuit: has been shown and explained all the blocks
that form the core of the device and the simple peripheral circuit
connect to the main one.

4.2.1 Test Boards Circuit
As mentioned in the previous chapters, before testing the final circuit, two
test boards has been designed to test the various filter configurations studied.
Two versions Version A and Version B have been designed and produced. As
already reported in the MATLAB chapter, in the computer tests the circuit
version B has been preferred, but in any case it has been wanted to test their
functioning in reality. In these schematics, in addition to the front-end part,
the power domain has also been included. This is because the boards have
been connected to the PCB of the old ECG in order to have a functioning
acquisition block (see more in chapter Tests). Below are the two schematics
of the Front-End tested.

87

4 – Hardware

Test Boards Circuit Version A

Figure 4.36. Test Boards Circuit Version A Schematic.

88

4.2 – Schematic Explanation

Test Boards Circuit Version B

Figure 4.37. Test Boards Circuit Version B Schematic.

89

4 – Hardware

4.2.2 Final ECG and PPG Circuit
Front End Schematic

Figure 4.38. Analog Front End Schematic.

90

4.2 – Schematic Explanation

Simple explanation:
The front-end part has been explained exhaustively in the previous chapters.
Focus on the analog power domain block used for the generation of two stable
voltages useful for the filtering and amplification blocks.

Figure 4.39. Analog Power Domain Schematic.

For doing that is used:

• TIREF2033 component;

• C11 and C13 are decoupling capacitor.

91

4 – Hardware

Power Management Schematic

Figure 4.40. Power Management Schematic.

92

4.2 – Schematic Explanation

Simple explanation:

Figure 4.41. Decoupling Capacitors.

• VDDS decoupling:

– C9→ C13 are decoupling capacitors;
– F1 is a ferrite for EMC compliance.

• VDDR decoupling:

– L1 and C6 are components needed by the microcontroller to make
the DCDC internal switching voltage regulator work better;

– C7 and C8 are decoupling capacitors.

93

4 – Hardware

Figure 4.42. Battery Charger.

TheMAX1555 is the component used as interface between USB connector
and the Lipo Battery.

• C1 and C2 are decoupling capacitors.

Figure 4.43. Voltage Regulator.

The MAX17048 is the component used to generate a supply voltage for the
circuit.

94

4.2 – Schematic Explanation

Figure 4.44. Battery Gauge.

TheMAX17048 is the component used to measure the voltage of the Lipo
battery and it State of Charge.

• R18 and R19 are the pull-up resistor for the I2C communication;

• C38 is a by-pass capacitor.

95

4 – Hardware

Microcontroller Schematic (Part1)

Figure 4.45. Microcontroller Schematic (Part1).

96

4.2 – Schematic Explanation

Simple explanation:
RF_N and RF_P pins are connected to the RF front-end circuit in order to
send data from the internal Bluetooth module to the antenna.
Different capacitors are used to decouple the pins of the microcontroller.
Two external clock sources are used: in detail, the 24MHz crystal, required as
the frequency reference for the radio, does not require decoupling capacitors.

97

4 – Hardware

Microcontroller DIOs and Flat Connector Schematic

Figure 4.46. Microcontroller DIOs and Flat Connector Schematic.

98

4.2 – Schematic Explanation

Simple explanation:
JTAG_TMSC, JTAG_TCKC, DIO_3, DIO_4 and JTAG_RST are used to
connect the microcontroller to the JTAG connector.
geq The pins DIO_0, DIO_1 are used to interact with the LED and with
the push button; DIO_5 and DIO_6 are used for the I2C communication;
DIO_7 is the ADC input used to acquire the ECG signal while DIO_8 is
the pin enable of the REF2033 component.
Flat connector is used to connect the main board to the external board of
the MAXM86161 Sensor.

99

4 – Hardware

PPG Board

Figure 4.47. PPG Schematic.

100

4.3 – Layout Explanation

4.3 Layout Explanation

(a) Main and ECG Board Layout.

(b) PPG Board Layout.

Figure 4.48. OrCAD Design.

101

4 – Hardware

After designing the schematic, the next phase is the PCB design. In order
to do this, from Capture CIS tool has been exported the netlist and import
it back into OrCAD PCB Designer tool. There are some rules that mus be
respected to make this passage:

• The Antenna layout must be positioned near the edge and under it there
must be no ground or power planes that shield the output signal.

• Antenna and its matching circuit must be positioned as near as possible
to the microcontroller and in a straigth line design to avoid impedance
mismatching.

• Decoupling capacitors and by-pass capacitors must be positioned near
the related pin component.

• Analog and Digital Ground plans must be separated from each other
apart in a very small bridge Figure 4.49.

Figure 4.49. Small bridge.

• Analog and Digital Power Supply plans must be separated from each
other Figure 4.3.

• Button and Connectors must be positioned near the edge.

• Ground loops must be avoided.

• Ground island not connected must be avoided.

• Component must be positioned with a logic sense and not random, so
for example ECG front-end components have been placed in a specific
area of the PCB.

102

4.3 – Layout Explanation

• Component that are connected to Ground must ave a 3-point connection
to guarantee a good current flow Figure 4.50.

Figure 4.50. Three point connection.

• Avoid any DRC Error that can cause electrical problems.

In this case the main PCB has a four layers design, while PPG board has
only two layers. Next phase is the generation of Gerber files used by the
manufacturer to print and build physical PCBs.

103

4 – Hardware

Below are reported some Gerber files output:

(a) ECG Gerber Top.

(b) ECG Gerber DVDC and AVDC.

Figure 4.51. Main and ECG Board Gerber Files.

104

4.3 – Layout Explanation

(a) ECG Gerber DGND and AGND.

(b) ECG Gerber Bottom.

Figure 4.52. Other Main and ECG Board Gerber Files.

105

4 – Hardware

(a) PPG Gerber Top.

(b) PPG Gerber Bottom.

Figure 4.53. PPG Board Gerber Files.

106

4.4 – Bill of Material

4.4 Bill of Material

Figure 4.54. BOM.

107

4 – Hardware

4.5 Mounting Process

(a) Top view. (b) Bottom view.

Figure 4.55. PCBs Received from the Manufacturer.

The mounting process has been performed after the manufacturer produce
PCBs and Stencils starting from Gerber Files and has been divided in these
steps in order to have a final result shown in Figure 4.56:

• Soldering Paste Spreading;

• Component Placing;

• Reflow Oven Soldering.

Figure 4.56. Final Result.

108

4.5 – Mounting Process

4.5.1 Soldering Paste Spreading
This step involves inserting the stencil, a laser cut foil, into the stencil mate
and stretching it as in Figure 4.5.1.

(a) Stencil. (b) Stencil Mate with stretched
Stencil.

Figure 4.57. Stencil Preparation.

After putting stencil and pcb in contact, take soldering paste (Figure 4.58)
and try to spatulate it in holes that match to the padstack of every SMD
component, so as to release a small layer of pasta only where it is needed.

Figure 4.58. Soldering Paste.

109

4 – Hardware

4.5.2 Component Placing

Figure 4.59. PCB positioned in the PickPlace Machine and the needle over it.

This phase involves positioning the SMD components on the PCB. Since
they are very small and, since much precision is needed, a machine called
PickPlace Machine is used Figure 4.60. It is able to collect the components
through a needle, as it approaches the component the vacuum is created and
the component can then be positioned on the PCB; in contact with PCB’s
surface the vacuum turn off. This machine has four degrees of freedom (x, y,
z axis and rotation) so as to allow the correct positioning of the component.

110

4.5 – Mounting Process

Figure 4.60. PickPlace Machine.

These steps must be repeated for all available components. At the end
the complete PCB can be brought to the soldering phase.

111

4 – Hardware

4.5.3 Reflow Oven Soldering
This phase allows to solder the components, positioned on the paste, to the
PCB. This is done by placing the circuit in the Reflow Oven Figure 4.61.

Figure 4.61. Reflow Oven.

This oven has the ability to manage temperature profiles so that it can do
its job without damaging the components.The profile shown in the Figure
4.62 has been chosen and below you can see the progress of the oven.

112

4.5 – Mounting Process

Figure 4.62. Temperature Profile.

113

114

Chapter 5

Firmware

In this chapter the Firmware part of the project is described. As previously
said, a Texas Instrument microcontroller has been used, it has the possibility
of working with a real-time operating system (RTOS). This is an operating
system which gives the possibility to run multiple threads at the same time
so that, the execution speed of the code can be increased. To decide the
thread to be run, by default, it has a scheduling called Preemptive scheduling.
This allows to run a thread until, for example, another thread with a higher
priority requires processor use, or run until it end like an interrupt service
routine. Two Texas Instrument tools have been used during programming:

• Code Composer Studio

• Sensor Controller Studio

This because the microcontroller has inside a co-processor which can be used
to facilitate peripheral management.

Figure 5.1. Code Composer Studio Logo.

115

5 – Firmware

5.1 Sensor Controller Studio
As mentioned before, this tool was used in order to program the co-processor
called Sensor Controller implemented so as facilitate the management of pe-
ripherals such as data exchange between the microcontroller and MAX17048,
for reading the voltage value and the battery state of charge. Another pe-
ripheral managed by the Sensor Controller is the ADC used to convert from
analog to digital data coming from the output of the ECG front-end. The

Figure 5.2. Screenshot of SCS Tool main page project.

project has been organized in two tasks: one for the ECG ADC and one for
ECG battery monitor. Each task can manage a certain number of resources
such as ADC, I2C Communication, Interrupt, Digital Output Pin System
CPU Alert and Math and Logic unit. Each task consists of three/four main
functions depending on whether or not interrupts are used. These functions
are:

• Initialization Code: ran only once at the start;

• Execution Code: repeated on request;

• Event Handler a Code: used as Interrupt service routine;

• Termination Code: used in some case to shut down a device or reset
characteristics and variables.

116

5.1 – Sensor Controller Studio

5.1.1 Sensor Controller Tasks
In this project for ECGadc task are used the following resources:

• General-Purpose I/O: used in order to manage Analog pin for ADC
and Digital Pins for LED Red and REF2033 Enable;

• Peripherals: used for programming ADC Converter and internal Timer;

• System CPU Communication: used for generate alert interrupt from
task code to Code Composer Code;

• Other Utilities: such as Math and Logic Operators.

Regarding ECGbatterymonitor task are used the following resources:

• General-Purpose I/O: used in order to manage Digital Pins for LED
Red;

• Serial Interfaces: used for programming I2C Master interface;

• System CPU Communication: used to generate alert interrupt from
task code to Code Composer Code;

• Task Event Handling: used for handling Timer 1 Event.

Pin mapping and description of each task are shown below.

Figure 5.3. Pin Mapping.

117

5 – Firmware

ECGadc

This task is used to program the ADC. Below are reported all the scripts.

Constants and Data Structures

Figure 5.4. Constants and Data Structures.

Execution Code
1 // Set ON the Green Led
2 gpioSetOutput(AUXIO_O_G_LED);
3
4 // Ref 2033
5 gpioSetOutput(AUXIO_O_REF2033_EN);
6
7 // Select ADC input
8 adcSelectGpioInput(AUXIO_A_ADC_IN);
9

10 // Enable the ADC
11 adcEnableSync(ADC_REF_FIXED, ADC_SAMPLE_TIME_2P7_US, ADC_TRIGGER_AUX_TIMER0);
12
13 // Start ADC trigger timer at 2ms (500Hz) as 24MHz/(24000*2^1)
14 timer0Start(TIMER0_MODE_PERIODICAL, 24000, 1);
15 //timer0Start(TIMER0_MODE_PERIODICAL, 60000, 2);
16
17 U16 n;
18 n = 0;
19 U16 i;
20 i = 0;
21
22 state.enabled = 1;
23
24 // Loop until the application sets the exit flag
25 while (i<input.length){
26 i = i+1;
27 //utilIncrAndWrap(i, ITER; i);
28
29 n = state.head;
30 adcReadFifo(output.Data[n]);
31 utilIncrAndWrap(n, BUFFER_SIZE; state.head);
32
33 if(state.head == 0){
34 fwGenQuickAlertInterrupt();
35 // Turn ON the Green Led
36 gpioSetOutput(AUXIO_O_G_LED);
37 }
38
39 if(state.head == HALF_BUFFER){

118

5.1 – Sensor Controller Studio

40 fwGenQuickAlertInterrupt();
41 // Turn OFF the Green Led
42 gpioClearOutput(AUXIO_O_G_LED);
43 }
44
45 }
46
47 // Stop the ADC trigger and flush the ADC FIFO
48 timer0Stop();
49 adcFlushFifo();
50
51 // Disable the ADC
52 adcDisable();
53
54 state.enabled = 0;
55
56 // Turn OFF the Green Led
57 gpioClearOutput(AUXIO_O_G_LED);

119

5 – Firmware

ECGbatterymonitor

This task is used to communicate with I2C every 30s with MAX17048. Below
are reported all the scripts.

Constants and Data Structures

Figure 5.5. Constants and Data Structures.

Initialization Code
1 //---
2 // Inizialization of the timer in order to wait "WAIT_TIME" [s] interval
3 //---
4 evhSetupTimer1Trigger(0, WAIT_TIME, TWELVE_EXP);
5 state.timer = POR_STATE;
6 state.test = 1;

Event Handler A Code
1 //--
2 //Apply POR (Power-On-Reset); battery debounce can cause an error in the first SOC and VCELL

estimation
3 //---
4 if(state.timer == POR_STATE) {
5 state.test = 2;
6 //----------------------------
7 // POR
8 //----------------------------
9 i2cStart();

10 i2cTx((MAX_17048_ADDRESS<<1) | I2C_OP_WRITE);
11 i2cTx(REG_CMD_ADDRESS);
12 i2cTx(COMM_POR);
13 // Inizialization of the timer in order to wait first VCELL and SOC reading "WAIT_TIME"

[s] interval
14 evhSetupTimer1Trigger(0, WAIT_TIME, TWELVE_EXP);

120

5.1 – Sensor Controller Studio

15 gpioSetOutput(AUXIO_O_R_LED);
16 i2cStop();
17 state.timer = READ_VCELL_STATE;
18 //--
19 // Configure and start the VCELL and SOC measurement
20 //--
21 } else {
22 //----------------------------
23 //VCELL reading
24 //----------------------------
25 if (state.timer == READ_VCELL_STATE) {
26 i2cStart();
27 i2cTx((MAX_17048_ADDRESS<<1) | I2C_OP_WRITE);
28 i2cTx(REG_VCELL_ADDRESS);
29 i2cRepeatedStart();
30 i2cTx((MAX_17048_ADDRESS<<1) | I2C_OP_READ);
31
32 U16 vcellMSB;
33 U16 vcellLSB;
34
35 //Read VCELL value
36 i2cRxAck(vcellMSB);
37 i2cRxAck(vcellLSB);
38 i2cStop();
39
40 U16 vcell_value = ((vcellMSB<<8) | vcellLSB);
41
42 if(vcell_value > 2000) {
43 state.test = 9;
44 // Put values in output vector and notify the application with an alert
45 output.Battery[0] = vcell_value;
46
47 // Inizialization of the timer in order to wait next SOC reading "WAIT_TIME" [s]

interval
48 evhSetupTimer1Trigger(0, WAIT_TIME, TWELVE_EXP);
49 gpioSetOutput(AUXIO_O_R_LED);
50 state.timer = READ_SOC_STATE;
51 } else {
52 state.test = 109;
53 // Inizialization of the timer in order to wait next SOC reading "WAIT_TIME" [s]

interval
54 evhSetupTimer1Trigger(0, WAIT_TIME, TWELVE_EXP);
55 state.timer = READ_VCELL_STATE;
56 }
57 //----------------------------
58 //SOC reading
59 //----------------------------
60 } else {
61 i2cStart();
62 i2cTx((MAX_17048_ADDRESS<<1) | I2C_OP_WRITE);
63 i2cTx(REG_SOC_ADDRESS);
64 i2cRepeatedStart();
65 i2cTx((MAX_17048_ADDRESS<<1) | I2C_OP_READ);
66
67 U16 socMSB;
68 U16 socLSB;
69
70 //Read SOC value

121

5 – Firmware

71 i2cRxAck(socMSB);
72 i2cRxAck(socLSB);
73 i2cStop();
74
75 U16 soc_value = ((socMSB<<8) | socLSB);
76
77 // Put values in output vector and notify the application with an alert
78 output.Battery[1] = soc_value;
79 // Alert Interrupt used to inform the Code Composer that values of VCELL and SOC are

present in output
80 fwGenAlertInterrupt();
81 state.test = 13;
82
83 // Inizialization of the timer in order to wait next VCELL reading "THIRTY_WAIT_TIME

" [s] interval
84 evhSetupTimer1Trigger(0, THIRTY_WAIT_TIME, TWELVE_EXP);
85 gpioClearOutput(AUXIO_O_R_LED);
86 state.timer = READ_VCELL_STATE;
87 state.test = 14;
88 }
89 }

Termination Code
1 //--
2 // If the System CPU application stops the task, cancel the potentially active event trigger
3 //--
4 evhCancelTrigger(0);
5 gpioClearOutput(AUXIO_O_R_LED);

122

5.2 – Code Composer Studio

5.2 Code Composer Studio
In this section has been analyzed the part of the code written on Code Com-
poser Studio. In order to use bluetooth features, the firmware project was
not created from scratch due to high complexity of BLE stack, but has been
started from a project called ProjectZero in which, Sensor Controller man-
agement and some parts related to communication with the MAXM86161
sensor were added.

Figure 5.6. Screenshot of CCS Tool.

123

5 – Firmware

5.2.1 ProjectZero Main Procedures
ProjectZero_init()

This function is called before the task loop and contains all application ini-
tialization of the blutooth, hardware initialization and BLE profile/service
initialization. "Board.h" is used to the GPIO initialization , where the PINs
intended to be used with I2C or simply as LED should be defined.

ProjectZero_taskFxn()

This function is the application task entry point. Inside is contained all the
initialization functions call, it also contains the initialization functions for
Sensor Controller and an infinite loop.

124

5.2 – Code Composer Studio

5.2.2 Sensor Controller Interface Functions
In order to take advantage of the functionality of the Sensor Controller, some
directives must be respected. There are some functions that must be used
for a correct communication between main core and this secondary core.

Initialization of SCIF Driver

The following function must be added in the application main function (Pro-
jectZero_taskFxn()) and are used to initialize the sensor controller.

1 // Initialize the Sensor Controller
2 scifOsalInit();
3 scifOsalRegisterCtrlReadyCallback(scCtrlReadyCallback);
4 scifOsalRegisterTaskAlertCallback(scTaskAlertCallback);
5 scifInit(&scifDriverSetup);

scCtrlReadyCallback and scTaskAlertCallback are two callbacks that are used
to manage data transfer between Sensor Controller processor and the main
core.

Start of Sensor Controller Tasks

After the initialization there must be the Tasks start. It can be positioned
or before the infinite loop so that the task always remains active or into the
infinite loop so that it can be activated when needed.

1 //***
2 // Start the "ECGbatterymonitor" Sensor Controller task
3 // Every 30s the task read and put in output the SOC and VCELL value
4 // At the start the task make a Power-On Reset POR
5 scifStartTasksNbl(1 << SCIF_ECGBATTERYMONITOR_TASK_ID);
6 //***

For the "ECGbatterymonitor" Sensor Controller task since it has interrupt
handling, can be left to run on its own or it can be trigger when has been
wanted, this is done as follows:

1 // This code generates the event trigger for task ECGbatterymonitor
scifSwTriggerEventHandlerCode();

The "ECGadc" Sensor Controller task on the contrary the start of the task
start when it is necesssary by the function:

1 scifSwTriggerExecutionCodeNbl(1 << SCIF_ECGADC_TASK_ID);

125

5 – Firmware

Access to Sensor Controller Data Structure

Access data from Sensor Controller by the main core, can be done with a
function called when Sensor Controller send an Alert. Inside can be read or
write data structure while task is running. An example of usage is reported
below.

1 void processTaskAlert(void){
2 // Clear the ALERT interrupt source
3 scifClearAlertIntSource();
4 Log_info0("Sensor controller Alert");
5
6 // Find which tasks have generated ALERT event
7 uint32_t bvAlertEvents = scifGetAlertEvents();
8
9 // If the "ECGbatterymonitor" task generated interrupt ...

10 if (bvAlertEvents & (1 << SCIF_ECGBATTERYMONITOR_TASK_ID))
11 {
12 uint8_t m = 0;
13 // "ECGbatterymonitor" Sensor Controller task processing
14 for(int n = 0 ; n < ECG_BATTERY_BUFFER_SIZE ; n++)
15 {
16 ECGBattery[m++] = scifTaskData.ecgbatterymonitor.output.Battery[n];
17 }
18 ECG_Service_SetParameter(ECG_SERVICE_BATTERY_ID, sizeof(ECGBattery), ECGBattery);
19 }
20
21 // If the "ECGadc" task generated interrupt ...
22 else
23 {
24 uint16_t offset = scifTaskData.ecgadc.state.head;
25 offset = (offset+ECG_BUFFER_SIZE)%(ECG_BUFFER_SIZE*2);
26
27 uint8_t j = 0;
28 // "ECGadc" Sensor Controller task processing
29 for(int i = 0 ; i < ECG_BUFFER_SIZE ; i++)
30 {
31 ECGData[j++] = scifTaskData.ecgadc.output.Data[i+offset]&0xFF;
32 ECGData[j++] = scifTaskData.ecgadc.output.Data[i+offset]>>8;
33 }
34 ECG_Service_SetParameter(ECG_SERVICE_DATA_ID, sizeof(ECGData), ECGData);
35 }
36
37 // Acknowledge the ALERT event
38 scifAckAlertEvents();
39 } // processTaskAlert

126

5.2 – Code Composer Studio

5.2.3 Bluetooth Services
In order to make the application run with Bluetooth, a new ad-hoc profile
has been generated. Texas Instruments created an online tool that is easy
to use and help the creation of the .c and .h files for the BLE profile and its
characteristics Figure 5.7.

Figure 5.7. BLE Service TI Tool.

The ECG Service (UUID: 0xBABE) contain 3 characteristics:

• ECG Data Service: used to transfer ECG data packets from micro-
controller to tablet app;

• ECG Start Service: used for start the ECG acquisition sending a
value from tablet app to microcontroller;

• ECG Battery Service: used to transfer Battery data from microcon-
troller to tablet app.

127

5 – Firmware

Characteristics definition

1 // Characteristic defines
2 #define ECG_SERVICE_DATA_ID 0
3 #define ECG_SERVICE_DATA_UUID 0xECDA
4 #define ECG_SERVICE_DATA_LEN 200
5
6 // Characteristic defines
7 #define ECG_SERVICE_ECGSTART_ID 1
8 #define ECG_SERVICE_ECGSTART_UUID 0xECEC
9 #define ECG_SERVICE_ECGSTART_LEN 1

10
11 // Characteristic defines
12 #define ECG_SERVICE_BATTERY_ID 2
13 #define ECG_SERVICE_BATTERY_UUID 0xECBA
14 #define ECG_SERVICE_BATTERY_LEN 4

128

5.2 – Code Composer Studio

5.2.4 PPG Interrupt and I2C Management
PPG Sensor has not been managed via Sensor Controller, but is managed
directly by the main core. This implies the management of two pins o for
data transmission via I2C and one as interrupt pin. The interrupt pin is used
to communicate the status of the sensor in two phases: one is for activating
the acquisition via proximity sensor, the other one for communicating the
micro when the internal FIFO inside PPG sensor has at least one value.
Below has been reported some parts of the code.

Interrupt Management

Interrupt Pin Initialization
1 #define PIN_INTB IOID_2
2
3 /* Pin driver handles */
4 static PIN_Handle intBPinHandle;
5
6 /* Global memory storage for a PIN_Config table */
7 static PIN_State intBPinState;
8 /*
9 * Application INTB pin configuration table:

10 * - INTB interrupts are configured to trigger on falling edge.
11 */
12 PIN_Config intBPinTable[] = {
13 PIN_INTB | PIN_INPUT_EN | PIN_PULLUP | PIN_IRQ_NEGEDGE,
14 PIN_TERMINATE
15 };
16
17 ...
18
19 /* Open INTB pins */
20 intBPinHandle = PIN_open(&intBPinState, intBPinTable);
21 if(!intBPinHandle) {
22 Log_info0("Error initializing INTB pins");
23 while(1);
24 }

Interrupt Callback Function
1 \\ Function Initialization
2 void intBCallbackFxn(PIN_Handle handle, PIN_Id pinId);
3
4 ...
5
6 /* Setup callback for intB pins */
7 if (PIN_registerIntCb(intBPinHandle, &intBCallbackFxn) != 0) {
8 Log_info0("Error registering intB callback function");
9 while(1);

10 }
11
12 ...
13

129

5 – Firmware

14 /*
15 * ======== intBCallbackFxn ========
16 * Pin interrupt Callback function board INTB configured in the pinTable.
17 */
18 void intBCallbackFxn(PIN_Handle handle, PIN_Id pinId) {
19
20 PPGInterruptRequest = 1;
21 return;
22 }

I2C Communication Management

Pin Configuration
1 // Import I2C Driver definitions
2 #include <ti/drivers/I2C.h>
3 #include <ti/drivers/i2c/I2CCC26XX.h>
4 #include <ti/drivers/Power.h>
5 #include <ti/drivers/power/PowerCC26XX.h>
6
7 #define CC2640R2_LAUNCHXL_I2CCOUNT 1
8 #define CC2640R2_LAUNCHXL_I2C0_SCL0 IOID_5
9 #define CC2640R2_LAUNCHXL_I2C0_SDA0 IOID_6

10 #define CC2640R2_LAUNCHXL_I2C0 0
11
12 I2CCC26XX_Object i2cCC26xxObjects[CC2640R2_LAUNCHXL_I2CCOUNT];
13
14 const I2CCC26XX_HWAttrsV1 i2cCC26xxHWAttrs[CC2640R2_LAUNCHXL_I2CCOUNT] = {
15 {
16 .baseAddr = I2C0_BASE,
17 .powerMngrId = PowerCC26XX_PERIPH_I2C0,
18 .intNum = INT_I2C_IRQ,
19 .intPriority = ~0,
20 .swiPriority = 0,
21 .sdaPin = CC2640R2_LAUNCHXL_I2C0_SDA0,
22 .sclPin = CC2640R2_LAUNCHXL_I2C0_SCL0,
23 }
24 };
25
26 const I2C_Config I2C_config[CC2640R2_LAUNCHXL_I2CCOUNT] = {
27 {
28 .fxnTablePtr = &I2CCC26XX_fxnTable,
29 .object = &i2cCC26xxObjects[CC2640R2_LAUNCHXL_I2C0],
30 .hwAttrs = &i2cCC26xxHWAttrs[CC2640R2_LAUNCHXL_I2C0]
31 },
32 };
33
34 const uint_least8_t I2C_count = CC2640R2_LAUNCHXL_I2CCOUNT;
35 // Open I2C bus for usage
36 I2C_Handle i2cHandle;
37 I2C_Params params;

130

5.2 – Code Composer Studio

Initialization/Register Configuration

1 // Define name for an index of an I2C bus
2 #define PPGSENSOR 0
3 // PPG Sensor MAXM86161 Address
4 #define MAXM86161_ADDRESS 0x62 //0x62
5 // Read Operation
6 #define I2C_OP_READ 1
7 // Write Operation
8 #define I2C_OP_WRITE 0
9 // Interrupt Enable 1 Register Address

10 #define INT_ENABLE_ADDRESS 0x02
11 // Enable Only Proximity Interrupt
12 #define PROX_INT_EN 0x10
13 // Enable Only Proximity Interrupt and FIFO Data Ready in the Interrupt Enable 1 Register
14 #define INT_EN 0x50
15 // Interrupt Status 1 Register Address
16 #define INT_STATUS_ADDRESS 0x00
17 // LED1 Driver Register Address (for assign LED1 current)
18 #define LED1_PA_ADDRESS 0x23
19 // LED Range for LED1 Current => (00001010b)=0x0A => 4,86mA
20 #define LED1_PA 0x20
21 // LED Pilot Pa Register Address (for assign LED current)
22 #define LED1_PILOT_PA_ADDRESS 0x29
23 // LED Range for LED1_PILOT Current => (00001010b)=0x0A => 4,86mA
24 #define LED1_PILOT_PA 0x20
25 // LED2 Driver Register Address (for assign LED2 current)
26 #define LED2_PA_ADDRESS 0x24
27 // LED Range for LED2 Current => (00001010b)=0x0A => 4,86mA
28 #define LED2_PA 0x20
29 // LED3 Driver Register Address (for assign LED3 current)
30 #define LED3_PA_ADDRESS 0x25
31 // LED Range for LED3 Current => (00001010b)=0x0A => 4,86mA
32 #define LED3_PA 0x20
33 // LED Range Register Address (for assign LED current)
34 #define LEDX_RGE_ADDRESS 0x2A
35 // LED Range for LED1(11=>124mA), LED2(11=>124mA) and LED3(11=>124mA) => (00111111b)=0x3F
36 #define LED_RANGE 0x3F
37 // LED Sequence 1-2 Control Register Address
38 #define LED_SEQ_CONTROL_1_ADDRESS 0x20
39 //// SEQ1 => Proximity Pilot on LED1 (1000) and SEQ2 => LED2(IR) (0010)
40 //#define LED_SEQ_CONTROL_1 0x28
41 // SEQ1 => Proximity Pilot on LED2(IR) (0010) and SEQ2 => LED2(IR) (0010)
42 #define LED_SEQ_CONTROL_1 0x32
43 // LED Sequence 3-4 Control Register Address
44 #define LED_SEQ_CONTROL_2_ADDRESS 0x21
45 // SEQ3 =>LED3(RED) (0011) and SEQ4 => NONE (0000)
46 #define LED_SEQ_CONTROL_2 0x00
47 //// SEQ3 =>LED3(RED) (0011) and SEQ4 => Ambient (1001)
48 //#define LED_SEQ_CONTROL_2 0x93
49 // LED Sequence 5-6 Control Register Address
50 #define LED_SEQ_CONTROL_3_ADDRESS 0x22
51 // SEQ5 => NONE (0000) and SEQ6 => NONE(0000)
52 #define LED_SEQ_CONTROL_3 0x00
53 //// SEQ5 => LED1(GREEN) (0001) and SEQ6 => NONE(0000)
54 //#define LED_SEQ_CONTROL_3 0x01
55 // PhotoDiode Register Address
56 #define PHOTODIODE_BIAS_ADDRESS 0x15

131

5 – Firmware

57 // Photodiode Capacitance => (0x01)=(00000001b) => 65pF
58 #define PHOTODIODE_BIAS 0x01
59 // PPG Configuration 1 Register Address
60 #define PPG_CONFIGURATION_1_ADDRESS 0x11
61 // (0x08)=(00001000b) => PPG1_ADC_RGE => (10) => 16uA and PPG_TINT => (00) => 14,8us
62 #define PPG_CONF_1 0x0B
63 // PPG Configuration 2 Register Address
64 #define PPG_CONFIGURATION_2_ADDRESS 0x12
65 // (0x80)=(10000000b) => PPG_SR => (10000) => 512sps and SMP_AVE => (000) => (1 => no ave)
66 #define PPG_CONF_2 0x00
67 // PPG Configuration 3 Register Address
68 #define PPG_CONFIGURATION_3_ADDRESS 0x13
69 // (0xC0)=(11000000b) => LED_SETLNG => (11) => 12us
70 #define PPG_CONF_3 0xC0
71 // Proximity Set Interrupt Threshold Register Address
72 #define PROX_INT_THRESH_ADDRESS 0x14
73 // Proximity Set Interrupt Threshold to (0x40)
74 #define PROX_INT_THRESH 0x40
75 // System Control Register Address
76 #define SYSTEM_CONTROL_ADDRESS 0x0D
77 // Soft Reset Command for MAXM86161
78 #define SYSTEM_CONTROL_RESET 0x01
79 // Mask to Interrupt Register for Proximity Sensor
80 #define MASK_PROX 0x10
81 // Mask to Interrupt Register for One Data on The FIFO
82 #define MASK_FIFO 0x40
83 // Mask to Interrupt Register for One Data on The FIFO and Proximity Sensor
84 #define MASK_FIFO_PROX 0x50
85 // FIFO Configuration 2 Register Address
86 #define FIFO_CONFIGURATION_2_ADDRESS 0x0A
87 // FIFO Flush Command
88 #define FIFO_FLUSH 0x10
89 // FIFO Data Counter Register Address
90 #define FIFO_DATA_COUNTER_ADDRESS 0x07
91 // FIFO Data Register Address
92 #define FIFO_DATA_ADDRESS 0x08
93 // Mask to Data TAG
94 #define MASK_TAG 0xF8
95
96 ...
97
98 static void I2C_Initialization(void);
99

100 ...
101
102 static void I2C_Initialization(void){
103
104 uint8_t writeBuffer1[1];
105 uint8_t writeBuffer2[2];
106 uint8_t writeBuffer3[3];
107 uint8_t writeBuffer4[4];
108 uint8_t writeBuffer7[7];
109 uint8_t readBuffer1[1];
110
111 // One-time init of I2C driver
112 I2C_init();
113 // initialize optional I2C bus parameters
114 I2C_Params_init(¶ms);

132

5.2 – Code Composer Studio

115 params.bitRate = I2C_400kHz;
116
117 // Open I2C bus for usage
118 i2cHandle = I2C_open(PPGSENSOR, ¶ms);
119
120 // Initialize slave address of transaction
121 I2C_Transaction transaction = {0};
122
123 //---
124 // Soft Reset
125 //---
126
127 writeBuffer2[0] = SYSTEM_CONTROL_ADDRESS; // System Control Register Address
128 writeBuffer2[1] = SYSTEM_CONTROL_RESET; // Enable Soft Reset
129 transaction.slaveAddress = MAXM86161_ADDRESS; // Slave ID for Write
130 transaction.writeBuf = writeBuffer2;
131 transaction.writeCount = 2;
132 transaction.readBuf = NULL;
133 transaction.readCount = 0;
134 I2C_transfer(i2cHandle, &transaction);
135
136 //---
137 // Set Register For Proximity Function
138 //---
139
140 writeBuffer2[0] = INT_ENABLE_ADDRESS; // Interrupt Enable 1 Address
141 writeBuffer2[1] = PROX_INT_EN; // Enable ONLY Proximity Interrupt and

FIFO Data Ready
142 transaction.slaveAddress = MAXM86161_ADDRESS; // Slave ID for Write
143 transaction.writeBuf = writeBuffer2;
144 transaction.writeCount = 2;
145 transaction.readBuf = NULL;
146 transaction.readCount = 0;
147 I2C_transfer(i2cHandle, &transaction);
148
149 writeBuffer2[0] = PROX_INT_THRESH_ADDRESS; // Proximity Interrupt Threshold Address
150 writeBuffer2[1] = PROX_INT_THRESH; // Set the Proximity Threshold to 128
151 transaction.slaveAddress = MAXM86161_ADDRESS; // Slave ID for Write
152 transaction.writeBuf = writeBuffer2;
153 transaction.writeCount = 2;
154 transaction.readBuf = NULL;
155 transaction.readCount = 0;
156 I2C_transfer(i2cHandle, &transaction);
157
158 writeBuffer7[0] = LED_SEQ_CONTROL_1_ADDRESS; // LED Sequence Register 1 Address (

starting point)
159 writeBuffer7[1] = LED_SEQ_CONTROL_1; // SEQ1 => Proximity Pilot on LED1

(1000) and SEQ2 => LED2(IR) (1000)
160 writeBuffer7[2] = LED_SEQ_CONTROL_2; // SEQ3 => LED3(RED) (0011) and SEQ4 =>

Ambient (1001)
161 writeBuffer7[3] = LED_SEQ_CONTROL_3; // SEQ5 => LED1(GREEN) (0001) and SEQ6

=> NONE(0000)
162 writeBuffer7[4] = LED1_PA; // LED Range for LED1 Current =>

(00001010b)=0x0A => 4,86mA
163 writeBuffer7[5] = LED2_PA; // LED Range for LED2 Current =>

(00001010b)=0x0A => 4,86mA
164 writeBuffer7[6] = LED3_PA; // LED Range for LED3 Current =>

(00001010b)=0x0A => 4,86mA

133

5 – Firmware

165 transaction.slaveAddress = MAXM86161_ADDRESS; // Slave ID for Multi-Byte Write
166 transaction.writeBuf = writeBuffer7;
167 transaction.writeCount = 7;
168 transaction.readBuf = NULL;
169 transaction.readCount = 0;
170 I2C_transfer(i2cHandle, &transaction);
171
172 writeBuffer3[0] = LED1_PILOT_PA_ADDRESS; // LED1 Driver Register Address (

starting point)
173 writeBuffer3[1] = LED1_PILOT_PA; // LED Range for LED1_PILOT Current =>

(00001010b)=0x0A => 4,86mA
174 writeBuffer3[2] = LED_RANGE; // LED Range for LED1(11=>124mA), LED2

(11=>124mA) and LED3(11=>124mA)
175 transaction.slaveAddress = MAXM86161_ADDRESS; // Slave ID for Multi-Byte Write
176 transaction.writeBuf = writeBuffer3;
177 transaction.writeCount = 3;
178 transaction.readBuf = NULL;
179 transaction.readCount = 0;
180 I2C_transfer(i2cHandle, &transaction);
181
182 //---
183 // Set Register For PPG Configuration
184 //---
185
186 writeBuffer4[0] = PPG_CONFIGURATION_1_ADDRESS; // PPG Configuration 1 Register Address

(starting point)
187 writeBuffer4[1] = PPG_CONF_1; // PPG1_ADC_RGE => (10) => 16uA and

PPG_TINT => (00) => 14,8us
188 writeBuffer4[2] = PPG_CONF_2; // PPG_SR => (10000) => 512sps and

SMP_AVE => (000) => (1 => no ave)
189 writeBuffer4[3] = PPG_CONF_3; // LED_SETLNG => (11) => 12us
190 transaction.slaveAddress = MAXM86161_ADDRESS; // Slave ID for Multi-Byte Write
191 transaction.writeBuf = writeBuffer4;
192 transaction.writeCount = 4;
193 transaction.readBuf = NULL;
194 transaction.readCount = 0;
195 I2C_transfer(i2cHandle, &transaction);
196
197 writeBuffer2[0] = PHOTODIODE_BIAS_ADDRESS; // PhotoDiode Register Address
198 writeBuffer2[1] = PHOTODIODE_BIAS; // Photodiode Capacitance => (0x01)

=(00000001b) => 65pF
199 transaction.slaveAddress = MAXM86161_ADDRESS; // Slave ID for Write
200 transaction.writeBuf = writeBuffer2;
201 transaction.writeCount = 2;
202 transaction.readBuf = NULL;
203 transaction.readCount = 0;
204 I2C_transfer(i2cHandle, &transaction);
205
206 writeBuffer1[0] = INT_STATUS_ADDRESS; // Interrupt Status 1 Register Address
207 transaction.slaveAddress = MAXM86161_ADDRESS; // Slave ID for Write
208 transaction.writeBuf = writeBuffer1;
209 transaction.writeCount = 1;
210 transaction.readBuf = readBuffer1;
211 transaction.readCount = 1;
212 I2C_transfer(i2cHandle, &transaction);
213
214 writeBuffer2[0] = FIFO_CONFIGURATION_2_ADDRESS; // Interrupt Status 1 Register Address
215 writeBuffer2[1] = FIFO_FLUSH; // FIFO Flush Command

134

5.2 – Code Composer Studio

216 transaction.slaveAddress = MAXM86161_ADDRESS; // Slave ID for Write
217 transaction.writeBuf = writeBuffer2;
218 transaction.writeCount = 2;
219 transaction.readBuf = NULL;
220 transaction.readCount = 0;
221 I2C_transfer(i2cHandle, &transaction);
222
223 // Close I2C
224 I2C_close(i2cHandle);
225 }

Measurement Management in main Task
1 ...
2
3 I2C_Initialization();
4
5 ...
6
7 // Application main loop
8 for (;;){
9 if(PPGInterruptRequest == 1)

10 {
11 PPGInterruptRequest = 0;
12
13 uint8_t writeBuffer1[1];
14 uint8_t readBuffer1[1];
15 uint8_t writeBuffer2[2];
16 uint8_t readData[3];
17
18 memset(readData, 0, 4);
19
20 // One-time init of I2C driver
21 I2C_init();
22 // initialize optional I2C bus parameters
23 I2C_Params_init(¶ms);
24 params.bitRate = I2C_400kHz;
25 // Open I2C bus for usage
26 i2cHandle = I2C_open(PPGSENSOR, ¶ms);
27 // Initialize slave address of transaction
28 I2C_Transaction transaction = {0};
29
30 writeBuffer1[0] = INT_STATUS_ADDRESS; // Interrupt Status 1 Register Address
31 transaction.slaveAddress = MAXM86161_ADDRESS; // Slave ID for Write
32 transaction.writeBuf = writeBuffer1;
33 transaction.writeCount = 1;
34 transaction.readBuf = readBuffer1;
35 transaction.readCount = 1;
36 I2C_transfer(i2cHandle, &transaction);
37
38 if ((readBuffer1[0] & MASK_PROX) == MASK_PROX)
39 {
40 if(PPGStart == 0)
41 {
42 writeBuffer2[0] = FIFO_CONFIGURATION_2_ADDRESS; // Interrupt Status 1 Register

Address
43 writeBuffer2[1] = FIFO_FLUSH; // FIFO Flush Command
44 transaction.slaveAddress = MAXM86161_ADDRESS; // Slave ID for Write

135

5 – Firmware

45 transaction.writeBuf = writeBuffer2;
46 transaction.writeCount = 2;
47 transaction.readBuf = NULL;
48 transaction.readCount = 0;
49 I2C_transfer(i2cHandle, &transaction);
50
51 writeBuffer2[0] = INT_ENABLE_ADDRESS; // Interrupt Enable 1 Address
52 writeBuffer2[1] = INT_EN; // Enable Proximity Interrupt

and FIFO Data Ready
53 transaction.slaveAddress = MAXM86161_ADDRESS; // Slave ID for Write
54 transaction.writeBuf = writeBuffer2;
55 transaction.writeCount = 2;
56 transaction.readBuf = NULL;
57 transaction.readCount = 0;
58 I2C_transfer(i2cHandle, &transaction);
59 }
60 if(PPGStart == 1)
61 {
62 writeBuffer2[0] = FIFO_CONFIGURATION_2_ADDRESS; // Interrupt Status 1 Register

Address
63 writeBuffer2[1] = FIFO_FLUSH; // FIFO Flush Command
64 transaction.slaveAddress = MAXM86161_ADDRESS; // Slave ID for Write
65 transaction.writeBuf = writeBuffer2;
66 transaction.writeCount = 2;
67 transaction.readBuf = NULL;
68 transaction.readCount = 0;
69 I2C_transfer(i2cHandle, &transaction);
70
71 writeBuffer2[0] = INT_ENABLE_ADDRESS; // Interrupt Enable 1 Address
72 writeBuffer2[1] = PROX_INT_EN; // Enable Proximity Interrupt
73 transaction.slaveAddress = MAXM86161_ADDRESS; // Slave ID for Write
74 transaction.writeBuf = writeBuffer2;
75 transaction.writeCount = 2;
76 transaction.readBuf = NULL;
77 transaction.readCount = 0;
78 I2C_transfer(i2cHandle, &transaction);
79 }
80
81 PPGStart = !PPGStart;
82 memset(PPGData1, 0, NUMB);
83 memset(PPGData2, 0, NUMB);
84 PPGDataNumb1 = 0;
85 PPGDataNumb2 = 0;
86 PPGDataStop = 0;
87 }
88 if (((((readBuffer1[0] & MASK_FIFO) == MASK_FIFO) && (PPGStart == 1)) && (PPGDataStop

== 0)))
89 {
90 writeBuffer1[0] = 0x08;
91 transaction.slaveAddress = MAXM86161_ADDRESS;
92 transaction.writeBuf = writeBuffer1;
93 transaction.writeCount = 1;
94 transaction.readBuf = readBuffer1;
95 transaction.readCount = 1;
96 I2C_transfer(i2cHandle, &transaction);
97
98 for(int w = 0; w < readBuffer1[0]; w++)
99 {

136

5.2 – Code Composer Studio

100 if(PPGDataStop == 0)
101 {
102 writeBuffer1[0] = FIFO_DATA_ADDRESS; // FIFO Data Address
103 transaction.slaveAddress = MAXM86161_ADDRESS; // Slave ID for Write
104 transaction.writeBuf = writeBuffer1;
105 transaction.writeCount = 1;
106 transaction.readBuf = readData;
107 transaction.readCount = 3;
108 I2C_transfer(i2cHandle, &transaction);
109
110 if((readData[0] & MASK_TAG) != 0b11110000)
111 {
112 if((readData[0] & MASK_TAG) != 0b00001000)
113 {
114 PPGData1[PPGDataNumb1] = (((readData[0]<<16 | readData[1]<<8) |

readData[2]));
115 PPGDataNumb1 = PPGDataNumb1 + 1;
116 }
117 if((readData[0] & MASK_TAG) != 0b00010000)
118 {
119 PPGData2[PPGDataNumb2] = (((readData[0]<<16 | readData[1]<<8) |

readData[2]));
120 PPGDataNumb2 = PPGDataNumb2 + 1;
121 }
122 if(PPGDataNumb1 == NUMB)
123 {
124 PPGDataStop = 1;
125 writeBuffer2[0] = INT_ENABLE_ADDRESS; // Interrupt Enable 1

Address
126 writeBuffer2[1] = PROX_INT_EN; // Enable ONLY Proximity

Interrupt
127 transaction.slaveAddress = MAXM86161_ADDRESS; // Slave ID for

Write
128 transaction.writeBuf = writeBuffer2;
129 transaction.writeCount = 2;
130 transaction.readBuf = NULL;
131 transaction.readCount = 0;
132 I2C_transfer(i2cHandle, &transaction);
133 }
134 }
135 }
136 else
137 {
138 break;
139 }
140 }
141 Prova += 1;
142 }
143 // Close I2C
144 I2C_close(i2cHandle);
145 }
146
147 ...
148
149 }

137

138

Part III

Testing and Conclusion

139

Chapter 6

Testing

This chapter is dedicated to testing. Some tests were done at the beginning of
the project to understand how the OLD ECG worked, while other tests were
carried out at the end to understand if the device designed and described in
the previous chapters worked. Below are reported some illustrative images
of the tests carried out. They have been divided into two categories:

• tests carried out with laboratory instruments such as the oscilloscope;

• tests carried out with the use of the tablet, then through the use of a
dedicated app.

141

6 – Testing

6.1 Old ECG Tests
The initial test that has been performed concern the OLD ECG. As it can
be seen in the images below, both through the oscilloscope and through the
app you can notice the disturbances of the electrical network.

Figure 6.1. OLD ECG Signal from Oscilloscope.

Figure 6.2. OLD ECG Signal from App.

142

6.2 – New ECG and PPG Tests

6.2 New ECG and PPG Tests
In this section has been inserted three important test done for the verification
of the proper operation of the new device. It has been perform three test:

• I2C verification;

• ECG verification from App;

• PPG verification from Matlab.

Figure 6.3. I2C Communication from Oscilloscope.

Figure 6.4. I2C Battery Communication from App.

143

6 – Testing

Figure 6.5. ECG Signal from App.

Figure 6.6. PPG Signals fro MATLAB.

144

Chapter 7

Future Perspectives and
Conclusions

7.1 Future Perspectives
• Future Hardware developments: some other sensors can be imple-

mented in order to make it more complex such as temperature sensors,
motion sensors and other health sensors. An other improvement can
be the introduction a chip antenna for BLE communication in order to
reduce more the device dimension. Another improvement can be the ad-
dition of Flash memory for saving data on board before being released
to the app.

• Future Firmware developments: firmware can be cleaned in order to
make the code more readable, also a new characteristic could be added
to send the PPG data from the device to the app.

• Future App developments: for App could be useful to display the
PPG value and, through other algorithms, the calculation of blood pres-
sure with a non-invasive method.

145

7 – Future Perspectives and Conclusions

7.2 Conclusion

The aim of this thesis was to create an object that was able to measure some
vital parameters such as ECG and SpO 2. The results obtained have been
quite satisfactory although something will, certainly, have to be reviewed as
presented in the Future Perspectives section.

In this pandemic period, caused by the arrival of a virus called Covid-19,
such a device can be a tool for an initial analysis of a patient’s condition or
it can be a tool for a daily check of vital signs.

To sum up, the requirements have been quite satisfied, this object can be
a good starting point for the creation of other useful objects for monitoring
the life quality.

146

Bibliography

[1] Zhaksylyk Kudaibergenov and Talgat Bekkaliyev, " Twin-T Notch Active
Filter", Abstract, Nazarbayev University, 2016

[2] HankZ., "Twin T Notch Filter", AnalogDevices, MiniTutorial,
2012. [Online]. Available: https://www.analog.com/media/en/training-
seminars/tutorials/MT-225.pdf, [Accessed Jul. 11, 2020].

[3] http://sim.okawa-denshi.jp/en/TwinTCRkeisan.htm, [Accessed Jul. 11,
2020].

[4] http://sim.okawa-denshi.jp/images/CRTwinTD.gif, [Accessed Jul. 11,
2020]

[5] Jim Karki, "Active Low-Pass Filter Design", Texas Instrument, Applica-
tion Report, SLOA049B - September 2002.

[6] Texas Instruments, "SimpleLinkTM Bluetooth®low energy Wireless MCU
for Automotive", CC2640 Datasheet, SWRS176B, February 2015 [Revised
July 2016].

[7] Maxim Integrated Products, "Buck/Boost Regulating Charge Pump in
µMAX", MAX1759 Datasheet, Rev 1, 2000.

[8] Texas Instruments, "REF20xx Low-Drift, Low-Power, Dual-Output,
VREF and VREF / 2 Voltage References", REF2025, REF2030,
REF2033, REF2041 Datasheet, SBOS600D - May 2014 – Revised July
2018.

[9] Maxim Integrated Products, "SOT23 Dual-Input USB/AC Adapter 1-Cell
Li+ Battery Chargers", MAX1551/MAX1555 Datasheet, Rev 0, 2003.

[10] Maxim Integrated Products, "3 µA 1-Cell/2-Cell Fuel Gauge with Mod-
elGauge", MAX17048/MAX17049 Datasheet, Rev 7, 2016.

[11] STMicroelectronics, "Ultra low capacitance ESD protection", DVIULC6-
2x6 Datasheet, Rev 2, October 2015.

[12] Texas Instrument, "INA333 Micro-Power (50µA), Zerø-Drift, Rail-to-
Rail Out Instrumentation Amplifier" INA333 datasheet (Rev. C), De-
cember 2015.

147

Bibliography

[13] Texas Instrument, "OPAx33050-µVVOS, 0.25-µV/°C, 35-µA CMOS Op-
erational Amplifiers Zero-Drift Series", OPA330, OPA2330, OPA4330
Datasheet, SBOS432G - August 2008 - Revised August 2016.

[14] Maxim Integrated Products, "Single-Supply Integrated Optical Module
for HR and SpO2 Measurement", MAXM86161 Datasheet, Rev 0, 2019.

[15] JST Connector, "1.0mm pitch/Disconnectableb Crimp style connectors",
SM02B-SRSS-TB(LF)(SN) Datasheet.

[16] Lite-On Inc., "SMD LED LTST-C193KRKT-5A", LED Red Datasheet,
03 May 2020.

[17] Panasonic, "3.5 mm×2.9 mm Side-operational SMD Light Touch
Switches", Light Touch Switches/EVQP7/P3/9P7 Datasheet, March
2019.

[18] Samtec, "THROUGH-HOLE MICRO HEADER", JTAG Datasheet, F-
219 (Rev 11 May 20).

[19] Maxim Integrated Products, "Recommended Configurations and Op-
erating Profiles for MAX30101/MAX30102 EV Kits", UG6409, Rev 0,
March 2018.

[20] Rusch, T. L., Sankar, R., Scharf, J. E. (1996). "Signal processing meth-
ods for pulse oximetry. Computers in biology and medicine", 26(2), 143-
159.

[21] J. G. Webster, "Design of Pulse Oximeters", Series in Medical Physics
and Biomedical Engineering, Taylor Francis, New York, USA, 1997

148

	List of Tables
	List of Figures
	I Introduction
	Introduction to the problem
	Einthoven triangle and leads description
	Einthoven triangle
	ECG Graphical Waves Representation

	Pulse Oximetry and Heart Rate
	SpO2 Measurement

	State of Art

	II Implementation
	Analysis of the Task
	Executive Summary

	MATLAB
	Hardware Filters
	High Pass Filter
	Twin-T Notch Filter
	Low Pass Filter

	Software Filters
	Solution for base line drift and bias problem
	Solution for high-frequency disturbances problem

	Hardware
	Components Choice
	Microcontroller TI CC2640R2F RSM
	Antenna AN043
	Voltage Regulators
	Battery Charger MAX1555
	Battery Gauge MAX17048
	ESD Protection
	Instrumentation Amplifier TI INA333
	Operational Amplifier TI OPA4330
	PPG Sensor MAXM86161
	Connectors, Button and LED

	Schematic Explanation
	Test Boards Circuit
	Final ECG and PPG Circuit

	Layout Explanation
	Bill of Material
	Mounting Process
	Soldering Paste Spreading
	Component Placing
	Reflow Oven Soldering

	Firmware
	Sensor Controller Studio
	Sensor Controller Tasks

	Code Composer Studio
	ProjectZero Main Procedures
	Sensor Controller Interface Functions
	Bluetooth Services
	PPG Interrupt and I2C Management

	III Testing and Conclusion
	Testing
	Old ECG Tests
	New ECG and PPG Tests

	Future Perspectives and Conclusions
	Future Perspectives
	Conclusion

	Bibliography

