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1 Introduction and motivation

Data-driven modelling approaches, including those inspired by statistical physics of
complex and disordered systems, are rapidly gaining importance in modern compu-
tational biology. In this thesis we propose approaches to the modelling of experi-
mental evolution protocols like directed evolution.The latter proceed by alternating
cycles of mutation (e.g. by error-prone polymerase chain reaction) and selection for
any function (e.g. for antibiotic resistance or other enzymatic activity) for some
protein of interest.

Recently it has been shown in two independent articles [1, 2] that sequence en-
sembles generated by this approach can be used to gain important structural and
functional information about the studied proteins. However, the basic understand-
ing of the potential and the limitations of the experimental approaches remains
limited, and the reasons leading to significant differences between the two sets of
experimental results remain unclear.

Here we address this question from a statistical-physics inspired point of view.
We explore data-driven sequences landscapes inferred using a method from inverse
statistical physics called Direct-Coupling Analysis (DCA), which infers Potts mod-
els from multiple-sequence alignments of natural proteins via a maximum-entropy
approach.

We first show that sequence data coming from the two evolution experiments
could be well described by the DCA sequence landscape, and that the experimental
sequences are coherent with sampling of sequence space using Gibbs sampling. The
results is highly non trivial in that DCA sequence landscapes, which are learned
on naturally evolved sequences, are selected for a number of naturally occurring
phenotypes, and yet they are able to describe in vitro evolution, in which a specific
human-designed phenotype is used for selection.

Exploiting these results, we can simulate in silico evolution protocols, which al-
low us to assess systematically important experimentally-tuned characteristics like
the number of mutations per sequence, the strength of selection and the number of
analysed sequences and consequently unveil their role for protein structure predic-
tion. We show that this analysis can explain the different performances of the two
recently published experimental works. It also opens the possibility to provide a pri-
ori estimates of the optimal value of experimental parameters, in order to optimise
the experimental protocols.

We also anticipate that a further refinement of our modelling approaches can
be obtained by a more realistic description of the evolutionary dynamics, e.g. by
modelling mutations at the level of the genetic DNA sequence instead of the pro-
tein’s amino-acid sequence. This would allow to take into account details of the
experiments (e.g. DNA mutational biases) and open the way to an intense exchange
between models and experiments.
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2 Direct Coupling Analysis and applications

In the following we introduce the Direct Coupling Analysis (DCA) [3] approach.
The aim of DCA is to construct a probabilistic model to describe protein sequences
exploiting statistical features extracted from large biological databases. DCA as-
signs a probability score P (A) to every sequence A of amino-acids in a protein
family, from which relevant biological information can be retrieved: examples in-
clude residue-residue contact prediction [4], prediction of fitness effect of mutations
[5] and artificial protein design [6]. However, before entering into the description
of DCA, we will recall a few facts and notations about proteins and their evolu-
tion, which justify the application of inverse statistical physics to protein sequence
ensembles.

2.1 A little bit of biology

Proteins

Proteins are biological molecules necessary for the functioning of almost all cellular
processes. They belong to the most fascinating complex systems in nature, enor-
mous progress has been made over the years to understand them, with incredible
scientific insights and fantastic applications. But still we miss very basic elements,
and important limitations (e.g. in terms of protein dynamics or sequence-function
mapping) persist.

Each protein is primarily a one dimensional polymer composed by amino acids
that folds into a convoluted shape, the folded protein, by bringing amino acids
separated by a long distance along the linear sequence into close physical proximity.

The three-dimensional structure of proteins in most cases is tightly related to
their function, the knowledge of the first is key to understand - and potentially
engineer - the latter. It was speculated long ago that the structure of proteins
depends only upon their amino acid sequence [7], that is the chain of monomers
that constitutes them. As a consequence the full 3D structure of proteins is encoded
in a single sentence: its 20-letter amino acid sequence, a pictorial representation
is shown in Fig.1. Over the last decades, big efforts had been made in the field
of biological physics to decode this relationship, that is to solve the protein-folding
problem.

Innovations and discoveries in this field would allow for novel applications in
medicine and biotechnology. For example, the ability to design new protein folds [8]
would make possible the exploration of large regions of the protein universe not yet
observed in nature, allowing for precise engineering at the molecular scale.

Recently, a new tool, Direct Coupling Analysis [9], has emerged in the field
of protein structure prediction exploiting the fact that proteins conserve their 3D
structure and biological function throughout evolution, while substituting up to
70-80% of their amino acids.
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Figure 1: Intuitive representation of the hierarchical level of structural organisation in
proteins compared to that of language. Figure source: internet, unknown author

Protein families

In the course of organisms evolution, proteins evolve as well. Mutations at DNA
level in the form of nucleotide changes or insertions and deletions translate into
mutations at amino acid level. Even if function and biological activity of a protein
change little during evolution, different organisms can accumulate mutations and
now present a high variety in amino acid sequences.

As a consequence we now observe across all domains of life many different se-
quences that present the same structure and leave the functionality of the protein
fundamentally impaired. It is natural to group proteins which have similar struc-
ture and function, into labelled collections and consider them as variants of the same
protein. The set of such sequences makes a protein family.

Thanks to the recent revolution in sequencing technology, a lot of sequences
have become available and are accumulating at exponential speed. For example, the
PFAM [10] database contains protein sequences subdivided by domains that evolve
and fold almost independently with respect to the rest of the protein. Many of
the more than 18000 PFAM protein families are large and contain more than 1000
sequences, an invaluable source for data-driven modelling approaches like DCA.

2.2 The model

DCA is based on two crucial features: on one side protein sequences can be organized
into families that usually share very similar three dimensional structures and biolog-
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Figure 2: A pictorial representation of the MSA of a family of proteins and its relationship
with the co-evolution of amino acids pairs.

ical activity, on the other side those sequences present a very high inter-variability
in terms of amino acids.

DCA aims at exploiting this variability in the amino acid sequences to implicitly
learn the constraints - often related to the folding into a specific 3D structure - that
statistically characterize those proteins (Fig.2).

Proteins belonging to the same family are characterized by patters of conser-
vation in their amino acid sequences. Some residues are amino acid specific, that
is only one precise amino acid is ever found at that position in natural sequences,
cf. the blue column in Fig.2. This is typically due to local (binding, functional)
or global (folding, stability) constraints. Such patterns have long been exploited to
build models for protein families with a discrete success.

DCA exploits those pattern of conservation, but integrates also information re-
lated to another common feature in sequences belonging to the same family: patterns
of correlated amino acid substitution at specific sites, cf the red positiond in Fig.2.

The basic hypothesis connecting amino acid substitution patterns in sequences
and residue–residue contacts is simple: in case of a pair of residues being in contact
in the folded state, a substitution of an amino acid at one position with destabilizing
effects would be compensated by a substitution of the other position over the evo-
lutionary timescale, in order for the pair to maintain a similar physical interaction.

Multiple Sequence Alignments

Sequences belonging to the same family can be gathered in a Multiple Sequence
Alignment (MSA), a matrix ofM×N letters whoseM rows represent the sequences
of amino acids (a1, ..., aN) of distinct proteins of N sites. Each of the letters amn ,
n = 1, .., N m = 1, ...,M , belongs to an alphabet of 21 symbols: the 20 letters that
typically represent amino acids and an extra symbol, a gap ”− ”, used to deal with
insertions and deletions in individual proteins. For practical reasons concerning the
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algorithmic implementation of DCA those amino acids are usually mapped into the
numbers from 1 to 21. We will use the same notation throughout this work. The
length of a typical PFAM domain family typically ranges from 50 to 500 sites and
the number of sequences in the same family can reach up to M = 106.

The MSA of a protein family is characterized by the presence of specific statis-
tical patterns in the amino acid letters it contains, namely within and between the
columns of the matrix. The simplest statistical features are given by single site and
double site empirical amino acid frequencies. The MSA of a specific protein family is
characterized by some very conserved sites, that is specific positions in the proteins
(or equivalently in the columns of the matrix), that mostly contain the same amino
acid (same symbol in the matrix).

Those very conserved sites are useful to build MSAs in the first place, that is to
find and align protein sequences that belong to the same family. Moreover those very
conserved sites suggest that the amino acid that they present more often (as amino
acid H in Fig.2) is crucial to perform protein function, indeed during evolution it
has almost never changed despite great variability in other sites.

Another interesting feature, as already mentioned, is given by patterns of 2-site
correlations, that is couples of sites i, j = 1, ..., N that present couples of amino
acids (ai, aj) that are likely to be present together in the same protein. A pictorial
example is shown in Fig.2 with amino acids (R,D) and (E,K).

Single and two site statistics seems to carry too little information to fully model
a whole protein family. Nevertheless in a seminal work Ranganathan and coworkers
[11, 12] showed that the pattern of pairwise residue co-variation was sufficient to
generate new functional protein sequences. Even more interesting was the fact that
only taking into account single-column statistics (of the MSA matrix) resulted in
non-functional amino acid sequences.

Global inference and Potts models

To quantify and understand two-site correlations, measures like mutual information
and co-variance have been used with some success to elucidate protein-protein in-
teractions in bacterial two-component signaling pathways [13, 14]. Nonetheless such
local correlation methods lack the ability to disentangle direct from indirect corre-
lations. An example is given by the case where residue i is coupled directly to j,
and j to k. Then i and k will also show some correlation, without being directly
coupled. The effect could be amplified if multiple paths of couplings connecting i
and k are present.

A global statistical modelling approach (DCA) was then proposed by Weigt et
al. [3, 4] to model MSA of protein families. The hope is that such a global modelling
approach would be able to disentangle direct from indirect interactions. The basic
assumption of modeling MSAs using methods from (inverse) statistical physics [15]
is that protein sequences from the same family represent i.i.d. samples drawn from
a Boltzmann distribution:
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P (a1, ..., aN) =
e−H(a1,...,aN )

Z
(1)

where the the inverse temperature β commonly used in statistical mechanics is
conventionally set to 1. The Hamiltonian reads:

H(a1, ..., aN) = −
N∑
i

hi(ai)−
N∑
i≤j

Jij(ai, aj) (2)

and the partition function Z

Z =
21∑

a1=1

...
21∑

aN=1

e−H(a1,...,aN ) (3)

The Hamiltonian H - in statistical mechanics terms - represents the energy of the
system. Here it does represent a statistical prevalence, but we use the term "energy"
by analogy.

The form of the Hamiltonian (2) is borrowed from statistical mechanics: it is
typically used to describe the energy of a system of interacting spins, called Potts
model. Potts models are an extension of Ising models, where the number of possible
states that a spin can take (referred as q) is more than 2 and in this case corresponds
to number of distinct symbols in the MSA, i.e. q = 21.

In the following we will refer to hi as "fields" and to Jij as "couplings", borrowing
again the terms from statistical mechanics. Each protein residue is interpreted as a
spin of a magnetic systems with categorical values: the q = 21 amino acids. In this
specific Potts model fields and couplings depend upon the amino acid present at the
site, hence for each site i the field is a vector of length q and Jij a q × q matrix.
Within this interpretation a big field hi(ai = a) means that amino acid a is very
likely to be in position i, hence the site is a conserved one. In the same spirit a big
positive couplings Jij(ai = a, aj = b) represents an attractive interaction between
the two spins, thereby favouring the contextual presence of amino acids a at site i
and amino acid b at site j.

The question that now arises naturally is: is it justified to use Potts-like describe
protein families? First of all, we can observe that when the couplings are all equal
to zero, the model reduces to a profile, or site-independent model. Those models
already belong to the most successful tools in bioinformatics; they are at the basis of
most techniques for multiple-sequence alignment and homology detection [16]. When
non-zero couplings are present, the hope is that those couplings reflect interactions
that are biologically interpretable, such as structural proximity of the corresponding
residues.

Another argument in favour of this functional form for the probability distribu-
tion is given by the Maximum Entropy Principle (MEP), first introduced by Jaynes
[17]. MEP is a powerful tool to come up with statistical models in absence of
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information about the system to be modelled. It can be shown with simple ana-
lytical computations that the least constrained probability distribution that is able
to reproduce single and two-site statistics of the MSA is exactly the Boltzmann
distribution of eq. 1.

Inverse statistical physics and learning

Given this choice for the model, fields and couplings still need to be determined for
each protein family. How? This is a task for inverse statistical physics.

The central goal of statistical physics is to derive the mean observable quantities
of a system from the physical interactions of its constituents. In the case of the Ising
model, one starts by defining the interaction between its microscopic constituents,
the spins, and then derives mean observables, like the magnetisation. In an inverse
problem, instead, the starting point are the observations of the configurations of a
system whose parameters are unknown and the goal is to figure out those parameters.
In the context of our specific problem the unknowns are the fields and couplings
and the observations are given by the amino acid sequences present in the protein
families.

In particular the quantities that we observe and that we want the model to fit are
the frequency of occurrences fi(a) of amino acid a in column i, and the co-occurency
fij(b, c) of amino acids b and c in columns i and j computed from the MSA of the
protein family

fi(a) =
1

Meff

M∑
m=1

wmδa,ami (4)

fi,j(b, c) =
1

Meff

M∑
m=1

wmδb,ami δc,amj (5)

where Meff and wm are used to account for sampling biases. Those biases occur be-
cause sequence databases often contain many sequences very similar to each other,
given that they come from evolutionary close species. To define a reweighing proce-
dure that allows us to treat all samples of a MSA approximately as independent, we
employ a simple metric, the Hamming distance dH(a, b) between a pair of sequences
a, b. Given that all the sequences in the dataset have the same length, this distance
is a properly defined metric:

dH(a, b) =
N∑
i=1

(1− δai,bi) = N −
N∑
i=1

δai,bi (6)

The weight wm of a sequence is defined as the inverse of number of sequences (itself
included) that share more than γ = 0.8 · N identity with a. The effective number
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of sequences in a MSA Meff is then defined as

Meff =
M∑

m=1

wm (7)

Given a guess for the parameters hi, Jij, to verify if our model fits correctly this
statistics, we would need to compute marginals of the model, which has the same
computational complexity as the calculation of the partition function. The partition
function involves a sum with qN terms, thereby making the task computationally
unfeasible. Approximation methods have been developed to deal with this problem,
from message passing [3] and mean-field [4] approaches - originally developed to solve
direct problems in statistical mechanics (i.e. from fields and couplings to marginals)
- to approximate Bayesian inference methods like pseudo-likelihood maximisation
[18].

Although being very fast (they can run on a personal computer in matter of
minutes), they lack generative power, that is, beyond the quantities that they are
required to approximate, they fail to capture higher order statistics.

A more precise, though slower method, to infer the parameters of the Potts
model is Boltzmann machine learning [19]. Starting from an initialisation of the pa-
rameters, 1-point and 2-point marginals P (ai = a), P (ai = b, aj = c) are estimated
via Monte Carlo Markov Chain sampling. The results are then compared with the
empirical marginals fi(a), fij(b, c) and the parameters are updated according to the
following rules:

hi(a)
new = hi(a)

old + ε(fi(a)− P (ai = a)) (8)
Jnew
ij = Jold

ij + ε(fij(b, c)− P (ai = b, aj = c))

This procedure is iterated, until empirical and model distribution are coherent.
In this case of very large MCMC samples and many iterations, this method is guar-
anteed to converge to the exact solution.

2.3 Biological applications

Suppose that we have very carefully estimated the parameters h, J of the Potts
Hamiltonian. What information about the proteins in the protein family can we
extract from them?

Residue contact prediction

The most successful task of DCA so far has been residue-residue contact prediction
[20]. This task is considered hard, as already mentioned, and prior to this technique
no computationally efficient and accurate methods were available. The basic idea
is quite simple: using the couplings Jij as a proxy for physical interaction of the
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residues in the 3D folded structure. A strong couplings between i, j would indi-
cate a strong evolutionary constraint, itself caused by the physical proximity of the
residues.

One of the first scores for physical proximity of residues i, j that can be extracted
from the q × q matrix Jij(a, b) is the Frobenius norm [21]:

Fij =

√√√√ q∑
b,c=1

J2
ij(b, c) (9)

The sites predicted to be in contact will be those with the highest Fij values. An
empirically even better score can be achieved implementing an average-product cor-
rection (APC) [22]:

FAPC
ij = Fij −

∑
l Fil

∑
k Fkj∑

k,l Fkl

(10)

The residues to be predicted to be in contact are the ones corresponding to the
top FAPC

ij . This method does not predict all contacts, neither does always predicts
correctly contacts, nonetheless is has been shown to be enough to assemble very
precise 3D structural models [23].

Prediction of biological effect of mutations

Another important biological task that DCA is able to address with good results
is the prediction of mutational effects in proteins. Protein mutational landscapes
are mappings from nucleotide (or amino acid) sequences to phenotypes, quantifying
therefore how mutations affect the biological functionality of proteins. Their com-
prehensive and accurate characterization is of central importance in medical biology:
it can lead to the identification of genetic determinants of complex diseases [24] and
it can guide our understanding of the functional contribution of genetic variations.

The score that can be obtained from DCA is given by the difference in energy
between two sequences. It is used as a proxy for the effect of the mutation. In the
case of a single mutation at site i:

∆E(a→ b) = H(a1, ..., ai = b, ..., aN)−H(a1, ..., ai = a, ..., aN) (11)

is the score.
If this value is positive, it means that the mutation is potentially harmful. On the

contrary a negative ∆E indicates a beneficial mutation. This is related to the form
of the Boltzmann distribution of eq. (1) for which a lower energy means a more
probable sequence. Interestingly the fitness computed this way is well correlated
with different phenotypes, ranging from structural stability to antibiotic resistance.
Remarkably DCA is able to get information about all those phenotypes and could
even - in principle - have predictive power in assessing the effect of mutations that
do hinder the ability of proteins to perform their physiological function per se .
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Indeed, mutations might also be deleterious if they cause negative effects on one of
the countless other cellular processes [25] and DCA could learn that relying solely
on evolutionary data.

The scores obtained in this way can be compared versus fitness experiments that
can score hundreds of single and double site mutants of a protein to empirically
measure the biological effect of the mutations. As shown by Figliuzzi et al.[5] the
score obtained in this way are much better predictors of the biological fitness of the
mutations than obtained from independent (or equivalently Jij = 0) models.

In general protein fitness landscapes are highly non trivial, this fact is well cap-
tured by the concept of epistasis: the context dependence of mutations in a protein.
In presence of epistasis the effect of mutations is non additive, two single point muta-
tions could be beneficial when considered alone, but could even become deleterious
when present at the same time in a protein. This is one of the reasons why the
DCA model performs well in this context, because positive and negative interaction
between sites (encoded in positive or negative J ’s) can partially account for those
complex interactions.

Artificial generation of homologous protein sequences

Another very interesting application of DCA is the ability to generate functional
sequences. The task is far from being trivial, since sequence space for all possible
proteins is enormous: for a 200-site protein the number is close to 20200 = 10260.
In this space only a very small fraction of sequences is functional, that is folds into
a specific shape, and an even smaller number of them is part of a specific protein
family, as currently the PFAM database contains more than 18 000 families.

Understanding if a specific amino acid sequence is a functional protein belonging
to a specific family is therefore a very hard task. Nevertheless is was shown in [6]
that by simply drawing sequences from the Boltzmann distribution is was possible
to generate functional sequences, including a set of sequences with less than 65%
identity to any of the other proteins in the natural MSA.

This result is highly non trivial and does not depend only on the fact that the
Potts model fits one and two-site statistics. What is crucial here is the ability of to
reproduce (without fitting) higher order statistical features from the natural MSA.
In particular is was shown that the Potts model inferred by Boltzmann learning can
capture 3-point correlations, the distribution of mutations in the protein family and
the PCA representation of natural sequences [26].

2.4 Example: Beta-lactamases

Recently, two protein evolution experiments generated a great number of sequences
belonging to the Beta-lactamase family of proteins (starting from the TEM-1 and
PSE-1 sequences) with the aim to learn important structural and functional infor-
mation from experimentally generated data instead of natural sequences MSA. We
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are interested in understanding and modeling those experiments through the Potts
model described above. To do so, we first check that we can infer a model for
this protein family to extract relevant biological information, then we show that we
can accurately sample sequence space to highlight the generative properties of the
model.

Biological relevance

The Beta-lactamase family is a collection of bacterial enzymes that provide antibi-
otic resistance to the class of beta-lactam antibiotics, like penicillin, ampicillin or
amoxycillin. Drugs belonging to this class constitute 60% of the worldwide antibi-
otic usage, and are among the most common and effective agents in the treatment
of infectious diseases [27]. Resistance to beta-lactam antibiotics is gained by cut-
ting their common molecular structure, the four atom ring known as I2-lactam, to
deactivate their antibacterial properties.

We are particularly interested in TEM-1, a particular Beta-lactamase found in
E.Coli. The relative gene is located on a plasmid, thus is not present in every
invidual of the specie, but is becoming more and more frequent over the years due
to massive use of beta-lactam antibiotics.

Emergence of antibiotic resistant bacteria has been a natural outcome of the
evolutionary process and strong selective pressure. The Center for Disease Control
and Prevention states that antibiotic resistance is one of the biggest public health
challenges of our time. Each year in the U.S., at least 2.8 million people get an
antibiotic-resistant infection, and more than 35,000 people die [28].

Gaining structural and evolutionary knowledge about this protein family is there-
fore of primary relevance to address this increasing medical risk.

Features of the family and learning

To learn a Potts model on this protein family we built a MSA of natural sequences.
To align the sequences we choose the PFAM Hidden Markov Model profile of the
Beta-lactamase2 family (PF13354). We scan the NCBI RefSeq protein sequences
database [29] for sequences belonging to the family. We filtered those sequences
to keep only those not too gapped (at least 80% of coverage) and not too similar
with each other (80% or less of sequence identity). We obtained a total number
of 7515 sequences, which we consider as a high quality MSA of natural sequences.
Once constructed the MSA we learned the Potts model of eq.(2) with a standard
implementation described in [26].

A first view on natural sequence diversity

To analyze the natural sequences we start by looking at the distribution of the
number of mutations among distinct sequences. To do so we employ the Hamming
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Figure 3: Three dimensional structure of the Streptomyces albus Beta-lactamase. Image
by Jawahar Swaminathan and MSD staff at EBI
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Figure 4: Histogram of the Hamming distances from TEM-1 of the sequences in our
Beta-lactamase MSA.

distance. We chose TEM-1 as a reference and computed the Hamming distance of
all sequences in the MSA with respect to it.

As we can see in Fig.5 two peaks are present in the distribution, the first one
at ∼ 45% identity with TEM-1 (Hamming distance ∼ 110), the second at ∼ 15%
identity (Hamming distance ∼ 170). The absence of sequences close to TEM-1 in
the dataset depends upon an intentional decision made in constructing the MSA to
avoid model overfitting and biases towards almost identical (i.e. non independent)
sequences.

We also computed the pairwise distance between all sequences belonging to the
MSA. To reduce the computational time and the memory requirements to perform
the computation (∝

(
M
2

)
) we sampled a subset of the MSA of M ′ ∼ M

100
sequences

and computed the distances between those sequences. Figure 5 confirms the great
diversity in terms of amino acids of the sequences belonging to the dataset. Coher-
ently with our construction of the MSA, no sequence is closer than 20%, i.e. ∼ 40
amino acids in common, with any other sequence.

Principal Component Analysis

As we have seen from the previous histograms, we know that the family contains a
very diverse set of sequences. A more graphical way to see the clustering of those
proteins in sequence space is obtained by mean of Principal Component Analysis

14



Figure 5: Histogram of all pairwise Hamming distances among the sequences of a subset
(∼ 1%) of our MSA.

(PCA). In Fig.6 we show all sequences mapped onto the first two components of the
MSA.

We can recognise 3 main clusters. TEM-1, the sequence of our interest, is indi-
cated in red and found in a smaller cluster. The sequences of this cluster correspond
to the first peak in the distance distribution relative to TEM-1. The absence of the
first peak in Fig.5 indicates that the main cluster in Fig.6 is very variable itself.

Prediction of biological effects of mutations

We then analyzed the sequences by mean of the Potts Hamiltonian described in eq. 2.
We recall that the model assigns a probability to every possible amino acid sequence
based on the likelihood of the sequence to belong to the family the model was trained
on. An interesting application is given by the possibility of quantitatively scoring
amino acid mutations. Thanks to next-generation sequencing the first experiments
capable of experimentally assessing the effect of all single mutants of a protein are
becoming more affordable. The kind of data produced is a formidable test set for
any attempt to computationally assess the effect of mutations.

We consider the work of Ostermeier et al. [30]. They devised an experiment able
to measure the difference in fitness given by single codon DNA mutants of the E.Coli
TEM-1 Beta-lactamase gene and therefore of the TEM-1 protein. They generated
a library of all single point amino acid mutations, expressed them in E.Coli, plated
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Figure 6: First two components in PCA space of all sequences belonging to the MSA of
the Beta-lactamase family (natural sequences).

them in 13 dishes with different Ampicillin concentrations ap with, p = 1, .., 13 , and
measured the fitness by counting the number of mutants after growth. They defined
an unnormalized fitness fi for every mutant i as

fi =

∑13
p=1 ci,p log ap∑13

p=1 ci,p
(12)

with ci,p the count of mutants i after growth. They then normalized the value such
that the fitness of the TEM-1 protein would be 1. As already mentioned the Potts
Hamiltonian can be used to computationally predict the effect of mutations by mean
of the difference in energy ∆H = Hwt − Hmuts. The prediction can be compared
with the dataset just described.

We report in Fig.7 the scatterplot of the fitness score of all mutants generated
by the experiment, compared with the difference in energies to TEM-1 of a com-
putationally generated library of the same sequences. We note a good Pearson
correlation between the two datasets (∼ 0.70) and an even better Spearmann rank
correlation (∼ 0.74) , that is a measure that assesses how well the relationship be-
tween two variables can be described using a monotonic function, not just a linear
one. This allows to take into account non linear effects in the relationship between
our difference in energy and the fitness.

The majority of mutations with very low fitness (∼ 0) are scored as deleterius by
our model, that is they have an higher energy than the wild-type (TEM-1). We note
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Figure 7: Scatterplot of the difference in fitness versus the difference in Potts energy of
all single mutants of the TEM-1 protein sequence.

also a strip of points with 0 energy, but a relative wide range of fitness values centred
around 1. This artifact can be explained considering that the experiment measured
the fitness of all mutants, including the wildtype, for every site, thus resulting in
multiple copies of TEM-1, that - due to experimental errors and possibly different
codon transcription rates - had different fitnesses. The length of this strip can
therefore be used as a proxy for experimental noise.

Energy of the sequences

The energy of the sequences can not only be used to asses the effect of single point
mutations: the log probability of a sequence, up to an additive constant, can also
be used as a global fitness score. Encouraging studies point in this direction: i.e. it
was shown in [31] that the Potts energy could be used as a good predictor of folding
in vitro for artificially generated sequences. We therefore decided to look at the
distribution of energies of the sequences belonging to the MSA of natural sequences.
We plotted the difference in energy of the sequences with respect to the reference
(TEM-1):

∆H(a) = H(a)−H(aref ) (13)

versus the Hamming distance of the sequences with respect to TEM-1. This analysis
is motivated by the fact that one would expect that introducing random mutations
to a given sequence would produce a protein unable to fold, or to be biologically
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Figure 8: Difference in energy with respect to TEM-1 of the sequences belonging to our
MSA of natural sequences, scored with the Potts Hamiltonian of eq.(2)

less functional. This would not be the case if the mutations preserved the 3D
structure of the protein, its active sites, or in general if it does not effect the fitness
of the host organism. This is the case for proteins belonging to the same family: a
great sequence divergence still preserves function. A good sequence scoring function
should therefore be able to predict a relatively limited fitness diversity between
sequences belonging to the same family, regardless of their sequence divergence.

We start considering a simple sequence scoring function for sequences a based
only on the frequency of amino acids fi(ai) in the columns of the MSA constructed
with the natural sequences of the family. This profile energy is therefore defined as:

Hprof (a) = − logPprof (a) = − log

(
N∏
i=1

fi(ai)

)
+ C = −

N∑
i=1

log fi(ai) + C (14)

This profile model does not include pairwise interactions between amino acids and
can not capture epistatic effects between the sites. A plot of the difference in energies
Hprof of the sequences belonging to the MSA of the Beta-lactamase family is shown
in Fig.8.

We see from the plot that all sequences distant more than ∼ 130 amino acids
from TEM-1 score worse than TEM-1.

If we instead employ the Potts Hamiltonian as a scoring function a similar but
richer picture emerges: some sequences belonging to the second peak now are also
scored better than TEM-1.
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Figure 9: Difference in energy with respect to TEM-1 of the sequences belonging to our
MSA of natural sequences, scored with the Potts Hamiltonian of eq.(2)

Crucially, however, both energy energy functions score sequences belonging to
the protein Beta-lactamase protein family much better than randomized sequences
at the same distance.

Contact map prediction

Probably the most successful application of DCA is residue-residue contact predic-
tion. As already explained the couplings of the model Jij can carry information
on the physical proximity of the respective sites. To test the performance of the
method, it is customary to compare the prediction to some known protein structure
and to consider a Positive Predictive Value (PPV), that is the fraction of correctly
predicted contacts (obtained from crystallographic experiments) out the total num-
ber of guesses of the model (that is the top scoring FAPC

ij ).
Before going to the results for this protein family it is important to specify how

do we define a contact. Two residue are in contact if any of the heavy atoms in the
two amino acids are separated by less that 8Å in the folded state of the protein and
the two amino acids are distant more than five residues in the linear polymer chain.

We report in Fig.10 the PPV curve for this protein family. The results are
remarkable, showing a fraction of around 98% of correctly inferred contacts out of
100 predictions. We must also say that the results for this family are among the
best across all protein families.
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Figure 10: Fraction of the correctly predicted contacts for the Beta-lactamase family as
function of the total number of predictions.

We also report a plot of the predicted contact map of the protein for the top N =
202 predicted contacts (Fig.11) and the underlying true crystallographic contacts.
From the figure becomes immediately clear that the predicted contacts can be used
for protein structure prediction thanks to their accuracy.

2.5 Generative properties of the model

We have described some quantitative features of the Beta-lactamase family of pro-
teins and used the Potts model inferred by Boltzmann learning to predict biolog-
ically relevant quantities such mutational effects and residue-residue contacts. We
now take a step further and we ask weather the model is generative, that is if it
can statistically reproduce features of the MSA of natural sequences that were not
fitted during the learning process. This would be a good hint in the direction of the
DCA sequence landscape being generative. We could therefore employ it to study
and simulate protein evolution experiments.

Equilibrium sampling from the model

To sample from the model we make use Monte Carlo Markov Chain (MCMC) sam-
pling. This approach is needed to overcome the difficulty to sample from a model
whose partition function Z is unknown and hard to estimate.
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Figure 11: Contact map of the Beta-lactamase family. The dots represent contacts between
the two sites indicated on the x and y axes. In black and grey (symmetrically) the true
contacts extracted from crystallographic data, in green the correct DCA predictions and
in red the false DCA prediction.
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To this purpose we used Gibbs sampling, a special case of MCMC. This approach
is useful when it is hard to sample from a joint probability distribution, but the
conditional distribution of each variable are known and easy to sample from. This is
exactly our case. The conditional probability P (ai = a|ak 6=i) can be easily computed:

P (ai = a|ak 6=i) =
P (a1, ..., aN)

P (a1, ..., ai−1, ai+1, ..., aN)
∝ exp

(
hi(a) +

N∑
k≤j

(k or j= i)

Jkj(ak, aj)

)
(15)

where the symbol∝ indicates that the proportionality constant Z−1(a1, ..., ai−1, ai+1, ..., aN)
does not depend on ai. The value of the constant is easily found by summing over
all amino acids in position i:

Zi(a1, ..., ai−1, ai+1, ..., aN) =
21∑
b=1

exp
(
hi(b) +

N∑
k

Jki(ak, b)

)
(16)

exploiting the property that Jij(a, b) = Jji(b, a).
The sampling scheme is the following:

• Choose randomly a site i out of the N = 202 sites of the protein

• Compute P (ai = a|Aj 6=i) for every amino acid a, sample from this distribution
and substitute the sampled amino acid with the previous one

• Repeat

If the Markov Chain is ergodic, the procedure is guaranteed to sample from the
Boltzmann distribution: indeed Gibbs sampling satisfies the detailed balance con-
dition.

Amino acid sequences obtained in this way are correlated. To get iid sequences
we need to wait a number of steps greater than the equilibration or mixing time,
that is finite for our probability distribution.

We have a way a to sample from our target distribution P , now we want to see
how good the sampling is. To do so we concentrate on statistical quantities that we
have not fitted during training. The analysis of the following sections are based on
a MSA of 7515 sampled sequences.

Sequence distance distribution

The first quantity that we consider is the distribution of mutations. We consider
again two different ways to test weather we can reproduce the statistical properties
of the natural MSA in terms of mutations. The first one is the distribution of
pairwise Hamming distances between the sequences in the sample. And as we see
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Figure 12: The two histograms show the distribution of pairwise Hamming distances
among the sequences belonging to the natural and the sampled MSAs of the Beta-lactamase
family.

in Fig.12 the sampled sequence resemble quite closely the distribution of pairwise
mutations of the nautural ones.

The second test is to consider the distribution of mutations with respect to TEM-
1. Again a visual inspection from Fig.13 shows that we reproduce the distribution
of mutations of the natural sequences.

Principal Component Analysis

Secondly we control wether sampling from the model can reproduce the clustering
of the sequences observed in PCA space. Again the result is very good, as we can
see from the following figure.
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Figure 13: The two histograms show respectively the distribution of the Hamming dis-
tances from TEM-1 of the sequences belonging to the natural and the sampled MSA of the
Beta-lactamase family.

Figure 14: First two components in PCA space of all sequences belonging respectively to
the MSAs of natural and sampled sequences.
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3 In-vitro protein evolution

In this section we introduce the concept of laboratory protein evolution and its ap-
plication to protein contacts prediction. We first discuss concepts of protein fitness
landscapes and artificial protein evolution. We highlight the great developments
and potential that lie beyond protein engineering applications of in-vitro evolution,
worth the 2018 Nobel Prize for Chemistry to Frances H. Arnold "for the directed
evolution of enzymes." Successively we present the results of two recent protein evo-
lution experiments aimed at protein structure reconstruction via artificial sequence
variation. We analyze them through the lens of DCA and we briefly discuss their
differences. To write the introductory biological sections we took inspiration from
the following papers: [32, 33, 34].

3.1 Natural evolution

Biological evolution can be formulated in terms of a dynamical process in a fitness
landscape that acts at population level. It is based on two key principles: variation
and selection. Mutations act as the basic working material to enable diversification.
They occur in DNA molecules, in the form of nucleotide changes, through various
chemical, mechanical and physical mechanisms. The most immediate effect of mu-
tations at DNA level - in case they happen in a region coding for proteins - is the
translation of such mutations at the amino acid level. This mechanism provides the
necessary source of variation for selection to act upon. Evolution occurs when natu-
ral - or artificial - selection processes act on this variation, resulting in the spread or
reduction of certain characteristics within a population in an heritable fashion. The
spread of a specific trait - a phenotype - is related to its fitness, that is the ability
of such phenotype to help its host survive in its environment.

Proteins are one of the simplest and best examples of evolvable biological sys-
tems. Just few mutations are enough to alter their biological function and yet they
are quite mutationally robust; an example is provided by the Deep Mutational Scan-
ning data of TEM-1: some mutations do not change much the host fitness, whereas
others can have dramatic effects.

3.2 Protein fitness landscapes

Protein evolution can be formulated in terms of protein sequence dynamics in a
fitness landscape. In such landscape a fitness function assigns a value to each pro-
tein sequence pushing sequences to move towards areas of higher fitness over time.
Fitness landscapes are intrinsically high-dimensional and complex. Given a protein
of length N , it can be embedded in a N -dimensional amino acid categorical space,
where each point of the space corresponds to one of the 20N possible amino acid
sequences the protein can assume. This space is the domain of the fitness function,
itself a potentially complicated function of the protein phenotypes.
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With this picture in mind protein evolution can be viewed as the dynamical
jumping from one functional protein to another in the amino acid sequence space.
Clearly nature has not sampled randomly this space - during a billions year long
struggle for survival- but has followed the routes set by the landscape.

3.3 Experimental protein evolution

Notwithstanding significant advances in the field of structural biology and the recent
sequencing revolution, a molecular-level understanding of the individual differences
of protein function remains elusive. Equally, maps from amino acid sequences to phe-
notype and function are expensive and difficult to obtain and predicting the amino
acid changes able to generate a specific behavior remains a challenge. However, we
know that evolution was able to generate thousand of proteins with impressive and
very specific functions.

Laboratory protein evolution refers as a general term used to describe various
techniques for generating protein mutants and selecting them according to a specific
phenotype, typically repeating this process over multiple rounds, mimicking natural
evolution.

Performing protein evolution in the lab has proven a powerful tool to investigate
natural evolution [35], to address central questions in the biophysics of proteins [32]
and as a general purpose engineering principle to evolve new biochemical functions
[36].

A specific application is directed evolution: a laboratory tool for optimizing
protein function to produce new, non-natural tasks. To understand it we can employ
again the analogy of evolution as a walk on this high-dimensional fitness landscape.
If proteins can be efficiently selected according to a desired - not naturally occurring
- function, then regions of higher fitness represent target proteins, and iterations
of mutation and artificial phenotypic selection explore the space and include new
sequences while going uphill.

3.4 Contact prediction via in-vitro protein evolution

In recent works [1, 2] the authors wondered whether the tools of DCA could be
applied not only to natural sequences, but also to other types of evolutionary data,
such as ensemble of proteins evolved in vitro. Building upon the ability of DCA
to obtain structural information of proteins, this approach could provide structural
information for proteins difficult to crystallize or simulate, such as disordered or
membrane proteins.

One of the other advantages of an evolution-based approach relying on artificial
data would be the possibility to obtain sequence data for proteins lacking large
databases of homologous sequences and to be able to increase (almost) at will the
amount of data used to train the algorithms.
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The two experiments employed evolution to generate a collection of functional
variants of two proteins belonging to the Beta-lactamase2 family by expressing them
in E.Coli and coupling a targeted mutagenesis of the gene to a selection pressure
for antibiotic resistance.

Fantini’s experiment

We briefly report the experimental procedure employed in the article of Fantini et.
al. [1] and then we analyze more in depth the sequence data produced by their
experiment using the tools of DCA.

The authors employed error-prone PCR (epPCR) [37] to generate a large library
of variants of the TEM-1 protein, followed by transformation into bacterial cells
and in vivo phenotypic selection with ampicillin at 25µg/ml. The plasmid library
carrying the mutants was then collected from bacteria that survived selection and
sequenced.

To be able to produce a great amount of bacterial colonies and to conserve the
complexity of the libraries, the colonies were incorporated in a semisolid medium,
exploiting the advantages of both solid and liquid cultures. After colonial growth
the plasmid library were collected from the media by centrifugation. In total 12
generations of mutation and selection were performed. The 1-st, 5-th and 12-th
generations were sequenced with the Pacific Bioscience (PacBio) Sequel platform
and analyzed. The process is schematically depicted in Fig.15.

The group was able to obtain one of the most diversified libraries of laboratory
evolved proteins (∼ 10% of sequence diversity) with around 100k sequences in the
5-th and 12-th generation. The sequences collected in MSAs were used to learn a
Potts model with a standard implementation of plmDCA [18] and to extract the
top-scoring predicted residue-residue contacts. The predicted contact map partially
matched that of the reference crystal structure with a bias toward short and medium-
range contacts.

Sander’s experiment

We describe also the experimental details and key results of the second protein evolu-
tion experiment from Sander et.al. [2]. The group subjected two bacterial antibiotic
resistance proteins - the Pseudomonas Beta-lactamase PSE-1 and aminoglycoside
acetyltransferase AAC6 — to experimental evolution by repeated rounds of muta-
tion and selection for preservation of function. We will concentrate in the following
only the PSE-1 experiment, since it belongs to the Beta-lactamase family.

To promote sequence divergence, they applied a high mutation rate using ep-
PCR and they selected for functional proteins under permissive selective conditions
(6 mg/mL ampicillin). The antibiotic concentration was slightly above the mini-
mal inhibitory concentration, MIC, for E.Coli lacking a resistance gene. Successive
rounds of mutation and selection were applied by using the selected sequences in one
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Figure 15: Schematic representation of the protein evolution protocol implemented by
Fantini and collaborators. Source: [1].
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Figure 16: Schematic representation of the procedural steps leading to protein structure
prediction from experimental protein evolution. Source: [2].

round as the template for mutations in the next round. The sequences belonging to
rounds 10 and 20 were sequenced and collected in two MSA. By applying DCA to
the artificially generated sequences the authors were able to successfully compute
the 3D structure of the protein.

3.5 A visual tour of Fantini’s experiment

Before modeling protein evolution experiments in the DCA energy landscape, we
analyse variability and energies of the experimentally generated sequences. This
will serve as a test for the quantitative character of our modeling approaches, which
are presented in the following chapter.

We analyze here the sequence data coming from the 5th and the 12th generation
of the Fantini’s experiment. We first collected the sequences in two MSAs by aligning
the them to the PFAM Hidden Markov Model of the Beta-lactamase2 protein family.
Then we processed the sequences to obtain two clean MSA.We removed all sequences
with more than 6 gaps as well as sequences with detectable alignment errors. We
obtained two MSA for the 5th and the 12th generation containing respectively 99201
and 34431 unique sequences.

Sequence distance distribution

The experiment was able to generate a great amount of sequences, nonetheless they
had much less sequence diversity than the dataset of natural sequences. We can see
from Fig.17b that the mean sequence identity between any two sequences in the two
datasets is ∼ 15 and ∼ 28 for the two generations.

Looking at Fig.17a we see that the 5th generation was less diverged with re-
spect to the wild-type TEM-1 than the subsequent generation 12, as expected by a
generational experiment. The majority of the sequences from the two generations
diverged less than 15% (30 mutations) from TEM-1.
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(a) Hamming distances from TEM-1 of all se-
quences belonging to the 5 th and 12th gen-
eration of Fantini’s experiment.

(b) Pairwise Hamming distances of a subset
of the sequences belonging to the 5 th and
12th generation of Fantini’s experiment.

Figure 17

Principal component analysis

We plotted the first two components obtained by PCA of the two MSAs to visualize
the clustered organization of the sequences in PCA space. We can see in Fig.18b
that the sequences from the two generations occupy rather uniformly PCA space
around TEM-1. As expected by the low sequence divergence of the experimental
sequences compared to the natural ones, they span a smaller subset of the PCA
space, clustering around TEM-1.

Site entropy

As we already know, the amino acids in the columns of the MSA of natural sequence
are not equally conserved among all sites. As a measure of the site amino acid
variability for the two generations we employed the Shannon entropy. Given a site
i, the site dependent entropy Si is defined as

Si = −
21∑
a=1

fi(a) log(fi(a)) (17)

where fi(a) is the frequency of amino acid a in the column i of the MSA of the
sequences belonging to the relative generation.

We report in Fig.19 the site entropies of the two generations. They present a
great degree of correlation (Pearson correlation ∼ 0.9). As expected the variability
is less emphasized for the sequences belonging to generation 5, given that they are
closer to each other and have diverged less from TEM-1. We recall that if the amino
acids were uniformly distributed in a site i, its entropy would be Si = log(21) ∼ 3.
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(a) First two components in PCA space of
the sequences generated by the 5th and 12th
generation of Fantini’s experiment. The nat-
ural sequences are plotted for comparison.

(b) First two components in PCA space of
the sequences generated by the 5th and 12th
generation of Fantini’s experiment.

Figure 18

Figure 19: Shannon entropies of the distribution of the amino acids for every site of the
MSA of generation 5 and 12 of Fantini’s experiment. The Pearson correlation refers to the
site entropies between the two generations.
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Figure 20: Density plot of the difference in energy versus the Hamming distance of the
sequences belonging to the 5th and 12th experimental generation of Fantini’s experiment.
The color is an indicator of the number of sequences present in the spot.

Energy of the sequences

We turn now to the analysis of the energies of the sequences. We rely to the visu-
alisation of difference in energy with respect to TEM-1, versus Hamming distance.

Fig.20 reports the energies for generation 5 and 12. The plot is very interesting
and informative. Thanks to the experiment we know that the sequences belonging
to the two generations have accumulated mutations, yet they have been selected for
their beta-lactam antibiotic resistance capabilities, retaining their function. Coher-
ently our model scores well the sequences and computes energies quite uniformly
distributed around the energy of TEM-1, even for the most diverged sequences.
Apart for a slight slope of the energy relative to the number of mutations, the
former is almost independent from the Hamming distance to TEM-1. The results
confirms the potential for the Potts energy to be used as a fitness scoring function
for protein sequences, at least for this protein family.

Contact prediction

Finally we report the contact map prediction (Fig.21) for residue-residue contacts
obtained by Fantini and collaborators by training a DCA model on the sequences
of the 12th generation alone. The contacts are too sparse to define clear interaction
zones and they tend to cluster around the diagonal. The strongest predictions from
these mutational data concerns adjacent secondary structure elements.

Despite this partial results for structure prediction, the experiment was able to
simulate the course of evolution by in vitro mutagenesis and selection generating an
extremely valuable dataset of protein sequences.
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Figure 21: Contact map prediction from sequences belonging to the 12th generation of
Fantini’s experiment. Source: [1].
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(a) Hamming distances from PSE-1 of all se-
quences belonging to the 5 th and 12th gen-
eration of Sander’s experiment.

(b) Pairwise Hamming distances of a subset
of the sequences belonging to the 10th and
20th rounds of Sander’s experiment.

Figure 22

Differences with Sander’s experiment

We briefly report on some differences between the two experiments that we pre-
sented. Compared to the experiment of Fantini, the Sander group employed a similar
protein evolution procedure, though starting from a different protein, PSE-1. This
protein sequence has an substantial (∼ 100) sequence divergence from TEM-1. The
MSAs coming from the 10th and 20th rounds of evolution contained respectively 1
and 162163 sequences after aligning and cleaning them in the same way described
above. The sequences had greater sequence divergence from the wild-type compared
to those of Fantini, as well as more inter-protein distance (cfr. Fig.22).

By looking at sequences in PCA space (Fig.23) we see that they span a slightly
bigger area than those of Fantini, though staying in the same cluster.

Also in this case our energy function scores well the sequences. The result again
is non trivial: the sequence landscape of PSE-1 is in principle very different from
that of TEM-1, still we see similar features in the energy versus Hamming distance
distribution. Worth noting here is the bigger slope (∼ 1) of the energies. We
speculate that this feature is related to a less stringent selection acted upon the
sequences, allowing slightly deleterious mutations to accumulate. This could be one
of the reason that allowed the group to predict with reasonable precision the protein
contact map and then assemble a good structural model.
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Figure 23: First two components in PCA space of the sequences generated by the 10th
and 20th round of Sander’s experiment.

Figure 24: Density plot of the difference in energy versus the Hamming distance of the
sequences belonging to the 10th and 20th experimental round of Sander’s experiment. The
color indicates the number of sequences present in the spot.
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4 In-silico modeling of experimental protein evolu-
tion

In the previous sections we have presented the Direct Coupling Analysis method, its
application to residue-residue contact prediction and mutational fitness prediction.
We have demonstrated the generative properties of the model and we have also shown
how sequence data coming from evolution experiments can be well described by the
DCA sequence landscape. We have also understood how coupling protein evolution
experiments with DCA could pave the way towards structure determination by
artificial selection in vitro.

We now take a step further and we ask weather we can use DCA to simulate in
silico protein evolution. To test our results we will check if experimental sequences
are coherent with our simulations. Being able to simulate protein evolution ex-
periments could allow researchers to tune a priori characteristics like the number
of mutations per sequence, the strength of selection and the number of sequences
needed to successfully determine protein structure from artificial experiments data.

4.1 Landscape sampling

To simulate protein evolution we rely on sequence landscape sampling. We start with
a single sequence - that we will refer to as the "wild-type" - we choose randomly a
site in its amino acid chain (to imitate ep-PCR) and we emit a new amino acid for
the site according to a probability distribution on the 20 amino acids (to imitate
selection). We repeat this process starting with the newly generated sequence to
evolve the protein for a number of steps. In this way we have simulated the evolution
of a single protein. To simulate a full protein evolution experiment we repeat the
protocol presented above until we obtain a full library of evolved sequences that we
save in the form of a MSA.

For the probability of emission of a new amino acid a we use the conditional
probability P (ai = a|aj 6=i), with

P (a) =
e−H(a)

Z
(18)

in this way we implement a Gibbs sampling procedure that locally samples the
protein landscape defined by the Hamiltonian H(a).

Our best candidate for H(a) is the Potts Hamiltonian inferred from the dataset
of natural sequences belonging to the family of the wild-type starting sequence.
However, to prove this point, we consider other two possible choices for the Hamil-
tonian

36



Random sampling

The first Hamiltonian that we consider is a trivial one:

Hrand(a) = 0 (19)

The landscape described by this Hamiltonian is flat and every sequence has the same
probability. As a consequence:

Prand(ai = a|aj 6=i) =
Prand(a)

Prand(aj 6=i)
=

20−202

20−201
=

1

20
(20)

that is every amino acid is randomly emitted independently from the residue posi-
tion.

Profile sampling

The second Hamiltonian that we consider describes a so called profile model:

Hprof (a) = −
N∑
i=1

h
′

i(ai) (21)

The fields h′
i(ai), not to be confused with hi(ai) of the Potts model, can be eas-

ily obtained from Maximum Entropy modelling, by imposing the marginals of the
probability distribution to be equal to fi(ai). One obtains:

h
′

i(ai) = log(fi(ai)) + C with C = log

(
21∑
b=1

eh
′
i(b)

)
(22)

The landscape described by this Hamiltonian is not flat and already encodes some
structure constraints. The emission probability is

Pprof (ai = a|aj 6=i) =
Pprof (a)

Pprof (aj 6=i)
∝ eh

′
i(a) (23)

were again it is meant that the proportionality constant Z
′−1
i does not depend upon

amino acid a. Its value can easily computed by normalisation

Z
′
=

21∑
b=1

eh
′
i(b) leading to Pprof (ai = a|aj 6=i) = fi(ai) (24)

that is every amino acid is emitted with a probability that only depends on the site
and is equal to the re-weighted frequency of that amino acid in the natural sequences
MSA.
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(a) Random sampling. (b) Profile sampling (c) Potts sampling

Figure 25: Comparison of three sampling methods.

Potts sampling

The Hamiltonian here is the Potts Hamiltonian already introduced at the beginning:

H(a1, ..., aN) = −
N∑
i

hi(ai)−
N∑
i≤j

Jij(ai, aj) (25)

As we have seen the probability of emission of an amino acid in this case is context
dependent, that is depends not only on the site, but also on the amino acids present
in the rest of the chain.

To compare the sampling obtained by those three Hamiltonians we plotted the
change in energy versus the Hamming distance to TEM-1 of three datasets of
sequences sampled with Gibbs sampling using the three Hamiltonians illustrated
above. Each dataset was composed of 1000 sequences for every value pf distance to
TEM-1 up to 30. We clearly see a trend in Fig.25, sequences that introduce more
"random" mutations are penalized by our model, that is they are assigned a higher
energy. Sequences generated intead by sampling the Boltzmann distribution with
the Potts Hamiltonian present almost no trend in terms of increased energy versus
number of mutations.

4.2 Modeling Fantini’s experiment

In the last section we have obtained encouraging results. We have shown that
sampling the sequence landscape locally around TEM-1 produces sequences well
scored by our model. Crucial to that is the sampling from the Potts Hamiltonian
learned on the dataset of natural sequences. Random sequences - or sequences whose
mutations only respect the single column statistics of the MSA of natural sequences
- increase instaed their energy as mutations are introduced.

We also know, as we have pointed out multiple times, that our energy scores well
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(a) (b)

Figure 26: Density plot of the difference in energy versus the Hamming distance of the
sequences belonging to the 12th generation of Fantini’s experiment and to the relative
artificially sampled sequences. The color indicates the number of sequences present in the
spot.

the sequences coming from the two protein evolution experiments that we have ana-
lyzed. We now combine the ideas and try to simulate a protein evolution experiment
in silico.

We choose the experiment of Fantini. To simulate the experiment we generated
a MSA of artificially sampled sequences by Gibbs sampling from the Boltzmann
distribution learned on the natural sequences. We fixed the number of sequences in
the MSA to match that of the sequences in the 12th generation of the experiment.
We also imposed that the distribution of mutations with respect to TEM-1 were the
same. We fixed it in a way that for every sequence present in the 12th generation
of Fantini’s experiment, we had a sequences with the same number of mutations
(compared to TEM-1) in our silico dataset.

Energy of the sequences

In analysing the sequences that we have generated, we start by looking at the distri-
bution of changes in energy versus mutations. Confronting the two plots of Fig.25
we clearly see a good agreement. The sampled sequences occupy a slightly wider
interval of energies, but overall the range of energies occupied is the same. The slope
is also very similar, however the result could be due to chance, as we have reported a
quite different slope Sander’s sequences. Overall it seems that - as far as our fitness
score is concerned - the dataset of sequences that we generated is quite similar to
that of a real protein evolution experiments.
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Figure 27: Shannon entropies of the distribution of the amino acids for every site of the
MSAs of generation 12 of Fantini’s experiment and in silico generated sequences.

Site entropy

To further our comparative analysis we look at the distribution of mutations. In
particular we focus on the residue specific entropies observed in our dataset of se-
quences. To gauge our results we compare them to the entropies of generation 12
. We note immediately that our entropies never exceed ∼ 0.5, that is we have an
effective number of ∼ 4.5 different amino acids that typically populate those sites.
This is at odds with the entropies of Fantini’s experiment, ofter much more pro-
nounced. What is remarkable here, execially for a biology experiment, is the high
value (∼ 0.75) of the Spearman correlation between the entropies of the sites of our
simulation and the experiment. We capture correctly the site amio acid variablity
in this local landscape.

Contact prediction

We report also the contact prediction map obtained by running plmDCA on the
dataset of artificial sequences. We see that we are not able to retrieve contacts
between residues, as already reported in the experiment of Fantini. The result is
not so unexpected, sequence divergence and variability are rather limited if compared
to that of natural sequences.
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Figure 28: Contact map prediction for artificially generated sequences.
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