
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

Techniques for Malware Analysis based
on Symbolic Execution

Supervisors

Prof. Cataldo BASILE

Prof. Antonio LIOY

Dr. Guglielmo MORGARI

Candidate

Pietro Francesco TIRENNA

July, 2020

Summary

The landscape of malicious software, more commonly known as malware, grows
every year in number, popularity and financial damage. Just like we see happening
in the software industry, organizations in the cybercrime world are well coordi-
nated: they hire developers, distributors, maintainers, they advertise their product,
offering deployment services to paying customers and channels to signal bugs to fix.
Manually examining every potentially malicious executable would be unfeasible to
the least, therefore turning towards automated, fast analysis systems is becoming
more and more a requirement to be efficient in the industry and offer meaningful
results. To interfere with such automated techniques, malware developers will
often hide meaningful routines activated only if certain conditions in the execution
environment are met. These, in the literature called trigger conditions, become a
great obstacle in automated analysis systems: specific dates, directory names or
network commands that would expose the malicious nature of a sample will not
most likely be triggered in a generic execution context without prior knowledge
of their expected values, therefore leading to false negatives and, in general, to a
decrease of the analysis coverage. Consequently, designing systems to expose hidden
trigger conditions has drawn some interest in the reverse engineering and malware
analysis literature. This thesis introduces Symba, a prototype based on symbolic
execution that attempts to reveal trigger conditions in executables. Symbolic
execution, precisely, is a software analysis technique which has been introduced in
the literature a few decades of years ago but only recently – thanks to an increasing
attention from the scientific community – is being practically adopted. Its rationale
is to transform a binary executable into a set of symbols and equations binding
them, which can be at any time mathematically solved to query the executable for
interesting properties. In this work, we specifically resort to symbolic execution to
handle the problem posed by trigger conditions. By extracting these conditions
from both proof-of-concept and real world samples, consequently observing new
paths of execution revealed in automated systems, we demonstrated how applying
new analysis techniques, such as symbolic execution, on malware analysis can push
a step forward towards more intelligent systems.

ii

Acknowledgements

I wish to express my deepest gratitude to the people who helped me during the
development of this thesis. To Guglielmo Morgari, who relentlessly sit with me
countless times, listening, supporting, kindly introducing new precious ideas in my
flow of thought with the clarity and passion that has the shape of genius. Thanks to
Emanuele De Lucia, who, in the most friendly and competent way, introduced me
to the concepts of malware analysis and cybercrime research. I am truly indebted
with Fabrizio Vacca, who gave me the opportunity of working with the wonderful
laboratory guys at Telsy, where I had the privilege of growing from both a human
and professional perspective. My most sincere appreciation and admiration goes to
professor Antonio Lioy, who encouraged me towards finding a research direction
that could truly motivate me, something that would give a contribution, for how
small, to our community. A special regard goes to Cataldo Basile, who supported
me in so many ways that I could not count them. Thanks for giving me your
continuous guidance, assistance and advice, in a way that I truly feel grateful for.
Thanks to my teammates at PolitHack, where I found the motivation to start
tinkering with the amazing angr framework. I wish to acknowledge the constant
love and support of my family. To my dad and my mother, Carmelo and Gabriella,
and my two sisters, Rossana and Caterina: I would not have been able to reach
this point without you, and your tireless help and kind words. To my friends, for
being there, helping me with a beer and a chat when the road got tougher. To
Chiara, all my love and gratitude. You make every day my best day, even when I
spend it analysing disassembled and messy malware.

“Technology is the campfire around which we tell our stories.”
Laurie Anderson

iii

Table of Contents

List of Figures vii

1 Introduction 1
1.1 Contribution . 3
1.2 Outline . 4

2 Requirements 6
2.1 Problem Statement . 6
2.2 Proposed Solution . 7
2.3 Expected Outcomes . 8

3 Background 9
3.1 Windows System . 9

3.1.1 Windows API . 9
3.1.2 Windows API example . 10

3.2 Windows Malware . 11
3.2.1 Classification . 11

3.3 Dynamic and static analysis . 13
3.3.1 Static Analysis . 13
3.3.2 Dynamic Analysis . 14
3.3.3 Advantages and Disadvantages 17

3.4 Symbolic Execution . 21
3.4.1 Components . 21
3.4.2 Weaknesses . 22

4 The angr framework 24
4.1 Symbolic Procedures . 24
4.2 Symbolic Exploration . 25

4.2.1 Starting points . 26
4.2.2 Generating a CFG . 28
4.2.3 Simulation Manager . 31

v

4.3 Symbolic States . 39

5 Architecture design 42
5.1 Configurator . 44
5.2 Model Injector . 45
5.3 States Extractor . 46
5.4 TriggerSeer . 47
5.5 Symbolic Explorator . 49
5.6 Solver . 50

6 Implementation details 52
6.1 GenericModel . 52
6.2 SymbaConfig . 52
6.3 CFGFast . 54
6.4 Exploration Techniques . 55
6.5 Simulation Manager . 57

7 Evaluation 59
7.1 Proof of Concept . 59
7.2 Paranoid fish . 61
7.3 Wrathrage . 63
7.4 Limitations . 65

7.4.1 OS interaction . 66
7.4.2 Chained triggers . 67
7.4.3 Testing samples . 67

8 Related Work 69
8.1 Symbolic Execution . 69
8.2 Malware Trigger Analysis . 70

9 Conclusions 71
9.1 Future work . 71

A Code 73

Bibliography 78

vi

List of Figures

3.1 Interface of the reverse engineering tool open sourced by the NSA,
Ghidra. 14

3.2 Flow Graph generated by radare2 framework. 15
3.3 Customizable monitoring with Sysinternals procmon. 16
3.4 List of signatures extracted by cuckoo for a Poweliks sample. Color

indicates degree of suspiciousness. 17
3.5 Diagram of how the CFG is transformed after the process of flat-

tening (http://tigress.cs.arizona.edu/transformPage/docs/
flatten/index.html). 20

3.6 Symbolic Execution example flow, from [27] 23

5.1 Symba flow diagram. 43
5.2 Configurator flow diagram. 44
5.3 Model Injector flow diagram. 45
5.4 States Extractor flow diagram. 47
5.5 TriggerSeer flow diagram. 48
5.6 Symbolic Explorator flow diagram. 49
5.7 Solver flow diagram. 50

7.1 Flow of the PoC RATserver. 60
7.2 An excerpt from Symba log during proof-of-concept analysis. 60
7.3 Results of Symba for proof-of-concept malware analysis. 61
7.4 Output of the RAT with random command as input. 61
7.5 Output of the RAT with command 1. 62
7.6 Output of the RAT with command 2. 62
7.7 Output of the RAT with command 3. 63
7.8 Snippet of pafish execution in a generic environment. 63
7.9 Function interception in pafish analysis. 64
7.10 TriggerSeer logs excerpt in pafish analysis. 64
7.11 Screenshots from results file of pafish analysis. 65

vii

http://tigress.cs.arizona.edu/transformPage/docs/flatten/index.html
http://tigress.cs.arizona.edu/transformPage/docs/flatten/index.html

7.12 Snippet of pafish execution with trigger conditions inserted in target
environment. 65

7.13 Snippet from Symba logs in wrathrage analysis, showing symbol
length override. 66

7.14 Solved values for GetSystemTime in wrathrage analysis. 66

viii

Chapter 1

Introduction

Keywords: cyber security, malware, analysis, automatic malware analysis, threat
intelligence, symbolic execution

Nowadays, the field of malware analysis is receiving increasing attention from
both the academic and corporate world. terms like cybersecurity and threat intelli-
gence are trending in journals and technical blogs, and many reverse engineering
gurus are less interested in cracking games than what they are in analysing ma-
licious software. Networks of malware developers are growing, recruited by state
groups, red teaming operation squads, and, infamously, threat actors. Antivirus
evasion, anti-detection, anti-debugging and in general anti-reversing techniques
are exchanged in forums and taught in university courses. It is clear how, in this
active environment, the number of families tracked by analysts is growing, where
not necessarily in complexity, most certainly in numbers.

In this heterogeneous context, analyses of malicious samples can have different
scopes, different questions to answer, and each question has to be handled by specific
approaches. For instance, the analysis of an Android application to determine
whether that piece of code is malicious or benign can help determining whether that
specific app should be removed by Google Play Store. This binary classification -
malicious or not malicious - often has to be quick. Imagine a scenario where the
Blue Team of some corporate organization has detected a suspicious executable
uploaded in one of the workstations connected to the network. Every minute lost
in analysing the malware leads to a minute more computed on the time of reaction,
time spent before appropriate measure of confinements can be taken.

Other kind of analysts do not have the goal of determining whether a sample
is malicious or not, but rather understanding in depth what the purpose of the
sample is, and which techniques it is employing to obtain it. Analysts assigned to
this task have to determine what kind of action the malware will perform in the
machine, such as stealing data or executing code sent by a remote server. They will

1

Introduction

have to understand how the code is obtaining persistence in the target machine,
and which techniques are employed to defeat known analysis approaches. In short
time, they have to write a detailed report of the sample, a dissection of its features.
This kind of report is extremely valuable.

• Other malware analysts in the network will learn how to handle that family
or similar ones.

• AV companies will use those analyses to compute signatures to update their
databases and quickly recognize whether a sample belonging to that family
has infected the machine they’re installed on.

• New techniques equipped on modern samples can be documented in frameworks
like the MITRE (https://attack.mitre.org/).

It goes without saying that these kind of detailed analysis and reports of
malware samples are not performed in a few minutes. Depending on the degree of
sophistication of samples, these tasks can require from different hours to even days
of work. In certain cases this is completely acceptable. For instance, a malware
analyst tasked with analysing complex APT samples developed by threat actors
like Fancy Bear [1] will not probably "see" multiple samples per day. However, for
companies operating in the corporate and business world, gathering and processing
data from samples being delivered daily in email attachments, honeypots, Point Of
Sales stations, the requirements are much different. It is enough to research how
many samples an engine like Virus Total processes per day to shape an idea of the
flow of this market.

How can companies without thousands of analysts cope with this volume of
samples? In the past years we have withstood an increasing attention in automation
techniques applied to malware analysis. These can be categorized as static or
dynamic, each one with their perks and disadvantages. Static analyses have a good
coverage and do not need any kind of target environment to execute the malware
in. Obfuscation and anti-reversing techniques make this kind of analysis harder,
even when scripts and not simple human eyes are used as tools of the trade. On
the other hand, dynamic techniques are inherently more capable to observe the
behaviour of code, as is the case with malware sandboxes technologies. A sandbox
is a controlled environment where malicious code can "explode" and every action
it performs on the machine is logged. File system operation, network traffic, API
calls, registry keys queried and written, everything is monitored to compute a
detailed behavioural report where interesting properties of malware samples can be
extracted and processed without human interaction.

However, modern malware will often use various approaches to detect when they
are being executed in a controlled environment and not a simple victim machine

2

https://attack.mitre.org/

Introduction

as it could be the laptop of a marketing director of a target company, and once
detected so they will just terminate without expressing any of their malicious
features, thus rendering misleading and not useful the analysis performed.

We present Symba, a system to enhance malware analysis capabilities and
statically extract meaningful properties from analysed samples through Symbolic
Execution. Symbolic execution can overcome some key challenges in malware
analysis, such as being able to automatically recover properties of interest from
samples that mutate on little attributes. For instance, let us take the scenario of
a Remote Access Trojan that accepts from a C2 server a suite of commands to
execute in the target machine. In order to hinder network detection, commands
are obfuscated or encrypted so that the IDS will never see anything like "GET"
or "WEBCAM_SCREENSHOT" in the incoming packets. The obfuscation could
be simple as XORing every received byte with a fixed reference byte, or a bit
more complex as in the case of small permutations on received traffic. Through
symbolic execution techniques, an analyst can develop a script able to extract the
clear-text commands from the samples, applicable to samples belonging to different
campaigns where, as it often happens, the key byte could be each time different.

Another key concept is that of path constraints, also called Trigger Conditions
[2] in the relevant literature. The idea is that, in general, the malicious part of a
malware is reached through a forest of checks that the execution environment has
to pass first. These guard conditions are employed in order to defeat, as previously
mentioned, sandboxed mechanisms, but also to ensure that the malware is running
in the expected environment, where some registry keys, usernames, or region
attributes are needed. It is interesting, for example, the case of malware checking
the machine locale before "exploding", to avoid targeting countries belonging to
the Russian territory. Dynamic techniques with no proper guidance, therefore, will
not help in all these cases at observing any kind of malicious behavior. The way
Symba handles this problem is to taint interesting sources of data and consequently
taint any region of memory "contaminated" by this data. Branching instructions
on tainted data can uncover what the code is expecting to retrieve from those API
to unlock the different branches hidden inside its code.

1.1 Contribution
This thesis brings the following contributions to the field of Windows Malware
Analysis.

1. We introduce Symba, a system to automatically extract trigger conditions
from malware targeting the Windows OS.

2. We describe some novel techniques to generate and inject the potential inputs

3

Introduction

that are then chained in order to extract properties from malicious sample, to
construct the correct environment where malware has to be executed.

3. We evaluate and demonstrate the capability of Symba to extract such properties
from real malware samples and benchmarking code typically used to measure
the degree of detectability of an environment.

1.2 Outline
The rest of this thesis is organized as follows.

• Chapter 2 states the requirements of this work. Namely, the specific problem
that we identified, the ideas designed to solve it, the tools used to implement
a system matching the design, and the approach used to verify the validity of
such implementation.

• Chapter 3 gives the reader a comprehensive background of the theoretical and
technical concepts handled in this thesis. Ranging from the environment where
we have worked, the Windows OS, to known malware analysis techniques
using both static and dynamic approaches. Finally, an academic overview of
symbolic execution will be presented.

• Chapter 4 explores the capabilities of the angr framework, the symbolic exe-
cution engine employed for this thesis. Each section will highlight different
features of this library, including examples of their use aimed to facilitate
reading.

• Chapter 5 describes the design of Symba, first in its entirety, that is, how
components interact with each other. Subsequentially, every component is
"disassembled", and its role in the workflow is thoroughly characterized.

• Chapter 6 contains some details about the specific implementation of Symba.
It incorporates some notable snippets of code extracted from the tool, alongside
a few comments on their inner mechanisms.

• Chapter 7 presents the case studies where Symba has been evaluated. It
starts with a proof of concept RAT server developed by following documented
malware development techniques. Then, Symba is launched against a highly
starred project in GitHub that simulates known and less known techniques
that a malware would use to detect virtualization, Paranoid Fish. Afterwards,
Symba is tested on a real malware for which the source code has been leaked
on GitHub, named Wrathrage. The chapter is concluded with a depiction of
the system limitations in its design and implementation.

4

Introduction

• Chapter 8 describes some other works, consulted from the available literature,
that handle the problem of solving trigger conditions, working with Windows
malware and using symbolic execution.

• Chapter 9 concludes the thesis with a glance towards the future researches
that could be conducted in order to extend this piece of work.

5

Chapter 2

Requirements

2.1 Problem Statement
The problem tackled in this thesis is also known, in the relevant literature, as
trigger analysis. In order to define what a trigger is, we observe that malicious
software often hide behaviour under precise conditions with different purposes in
mind. A few examples of trigger conditions in malware follow.

• Checking the system date in malware that only activate their routines in
specific days and months.

• Checking some registry key to detect the presence of a virtualized environment,
such as VMWare or VirtualBox.

• Activating a keylogging mechanism only in the presence of a certain window
title that matches, for instance, the name of a banking account.

• Listening on the network for packets containing precise commands, returning
a fake response otherwise.

There are two main issues with trigger conditions. First of all, the routines
hidden behind triggers are often essentially what characterize the executable as
malicious. In scenarios where analysts execute the sample to monitor its behaviour
and determine the degree of suspiciousness, without the knowledge of those triggers,
they would not notice anything malicious in the report of execution, with the risk
of falsely classifying a malware as benign.

Moreover, in situations where the examined sample has already been determined
to be a malware, revealing triggers is not a simple task. With dynamic analysis
techniques, there is a high change that the generic environment where the malware
is monitored will not satisfy any of the conditions. Turning to even more dynamic

6

Requirements

techniques like fuzzing the malware input to observe new behaviour could be useless.
Let us take the example of a server with a particular command suite that listens for
packets on the network. The chance that, by fuzzing network input to the binary,
one of the commands in the suite is found, has the same statistical features of a
complete bruteforcing attack on a password, which as known is generally limited in
effectiveness.

Therefore, extracting triggers often turns out to be a manual, time-consuming
static approach. The analyst needs to find the correct spots where a condition is
checked for, disassembling and figuring out the meaning of all the checks, even
when obfuscated between different instructions, and solve them manually. Even in
simple scenarios, where the analyst is able to extract the triggers in no more than
a couple of hours, such approach becomes impractical when applied to hundreds of
samples per day.

With these premises, we believe that the process of finding and solving triggers
in potentially malicious executables needs to be pushed towards automation.

2.2 Proposed Solution
The solution proposed in this thesis takes the name of Symba, and it stands for
Symbolic Behaviour Analyzer. The word symbolic introduces the main approach
used in this work, symbolic execution. Symbolic execution is a technique, described
in detail in the background chapter at 3, which transforms executables into a set of
symbols and mathematical constraints over them. Therefore, every different state
of execution can be described as a precise equation binding all the symbols part of
the symbolic analysis, such as registers, memory addresses, opened files, et cetera.

We identify, linked to the concept of trigger, the one of trigger source. A trigger
source is a function from the Windows API which will produce the value used in
the condition checking. For instance, in case of a condition based on the date of
execution, we define as trigger source functions in the GetSystemTime family. Once
defined trigger sources, we symbolically track their output values, transforming
them into controlled symbols in the context of our symbolic execution. Once the
condition in the trigger check poses constraints on the symbol, Symba detects it
and manages to solve it for all the different branches. This way, concrete values
which satisfy all the different branches dependent on the condition are extracted.

The framework chosen to implement symbolic execution in Symba is angr
[3]. Angr is a binary analysis framework, with symbolic and dynamic execu-
tion capabilities, developed in conjunction between the UCSB and the Arizona
State University, integrated in a system designed for auto-exploitation of bi-
nary executables for the Cyber Grand Challenge organized by DARPA (https:
//www.darpa.mil/program/cyber-grand-challenge). It comes as a Python 3

7

https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge

Requirements

library. It exposes a clear, readable and customizable interface, it is well main-
tained and it has been allegedly proved to perform better than competitors in pure
symbolic tasks [4].

2.3 Expected Outcomes
The expected outcomes of the prototype of Symba developed for this thesis follow
below.

1. The analyst, or an automatic system in which Symba is integrated, executes a
sample in a target environment, observing a certain behaviour exhibited by
the binary.

2. The analyst, or an automatic system in which Symba is integrated, feeds the
developed tool with the binary executable and a list of API function names
configured as trigger sources.

3. Symba symbolically executes the binary, tracking output values of trigger
sources, monitoring every constraint dependent on them.

4. Once the symbolic execution process terminates, all the constraints are solved
and concrete values to satisfy all branches of the trigger conditions linked to
the sources are written to a logfile.

5. The analyst, or an automatic system in which Symba is integrated, takes these
logged concrete values, injects them into the context of the target environment,
and it executes the binary.

6. In this new execution, the analyst or the automatic system, observes new
behaviours unlocked by trigger conditions.

8

Chapter 3

Background

3.1 Windows System
Windows, developed my Microsoft, is a notorious modern operating system which
is heavily used both in the corporate and the customer world. This offers a
perfect opportunity for malware developers, since their effort - in terms of money
and time - spent in development and distribution can yield a greater return on
investment with respect to other niche operating systems. The rest of this section
will introduce the Windows API, the interface used by developers to interact with
the operating system, to give afterwards an introduction of dynamic and statical
analysis approach, and ends with a presentation of symbolic execution, the main
approach employed in this work.

3.1.1 Windows API
The Windows API, formerly called Win32 API or Winapi, is a core set of application
programming interfaces available in Windows operating systems. The most direct
way to use the API is through C and C++ programming languages. In order to
use it, users must download and install the Windows Software Development Kit
(SDK) which contains all the relevant header files, libraries, documentation and
tools needed by the API to develop software. The macro categories which segment
the API follow.

• Base services.

• Security.

• Graphics.

• User Interface.

9

Background

• Multimedia.

• Windows shell.

• Networking.

The Base services exposes fundamental interface on the OS like file system,
processes, threads or registry handling. Security API provides programming
elements for authentication, authorization and other security related prototypes.
The Graphics subsystem provides functionality to show graphical content on
monitors, printers and generic output devices. The User Interface can be used to
create windows and controls. Multimedia offers the capability to work with video,
sound and input devices. Windows shell interface allows applications to execute
commands in the context of an OS shell. Finally, Network services provides access
to the network capabilities of the host.
The official reference for the API is the MSDN (Microsoft Developer Network),
while the bone and meat implementation of the API specifications is located in
Windows DLLs.

3.1.2 Windows API example
In order to show in greater detail how the API are used by programmers and what
ends up in a compiled executable, let us describe an example scenario. As developers,
our goal is to write a program to query, format and print to a message box the
current time of the system. The first step is to query the MSDN documentation
to find out specifications of API which we could use. A quick search of "System
time" on the search box offered by the MSDN offers results of the relevant API
specification, which are reported in the listing below:

1 void GetSystemTime (
2 LPSYSTEMTIME lpSystemTime
3) ;

As specified in the documentation, the parameter lpSystemTime is a pointer to a
SYSTEMTIME struct, which has the following specification:

1 typede f s t r u c t _SYSTEMTIME {
2 WORD wYear ;
3 WORD wMonth ;
4 WORD wDayOfWeek ;
5 WORD wDay ;
6 WORD wHour ;

10

Background

7 WORD wMinute ;
8 WORD wSecond ;
9 WORD wMi l l i s econds ;

10 } SYSTEMTIME, ∗PSYSTEMTIME, ∗LPSYSTEMTIME;

The listing is clear and states which words will contain the different fields returned
by the operating system. Following the same reasoning, we lookup functions to
display message boxes in the Windows OS, and we encounter MessageBox. The
documentation of this function follows:

1 Disp lays a modal d i a l o g box that conta in s a system icon , a s e t o f
buttons , and a b r i e f app l i c a t i on−s p e c i f i c message , such as s t a tu s
or e r r o r in fo rmat ion . The message box re tu rn s an i n t e g e r va lue
that i n d i c a t e s which button the user c l i c k e d .

and the signature:

1 i n t MessageBox (
2 HWND hWnd,
3 LPCTSTR lpText ,
4 LPCTSTR lpCaption ,
5 UINT uType
6) ;

Every field is well described in the rest of the MSDN page.
As depicted above, interacting with the Windows API is merely a matter

of including the right header, consulting the documentation and respecting the
interface exposed.

3.2 Windows Malware
Having introduced the basics of how programs interact with the Windows OS, the
following section will discuss further on how malwares are classified, based on their
behaviour and goals in the system.

3.2.1 Classification
Malware is a generic umbrella term used to describe many kinds of malicious,
hostile software. It can be used by cybercrime industry in order to gain money,
in APT [5] campaigns, both in simulated attacks (Red Teaming Operations) and
state actors [6] to damage or control target systems. It can be used by hacktivist
groups or as a vector of revenge towards enemies. In this wide context, researchers

11

Background

developed some criteria to classify [7] [8] [9] the multiple types of malware in several
ways. These criteria include:

• The delivery method and attack methodology. Victims can get infected simply
by visiting an evil or compromised website - drive-by distribution - or via
attachment in phishing emails that trick victim into executing them. Man-in-
the-Middle attacks where the content is injected into traffic packets, or using
exploits targeting browsers, in what is called Exploit kit [10].

• The goal or objective. Different types of malware have different scopes. Some
may have purely financial goals, while others are deployed in order to control
remotely the target machine, or exfiltrate sensitive data.

• The platform that the malware targets. Operating system, architecture, even
specific builds.

• Approach to stealth. How does the malware attempt to hide itself from user
or AV detection?

• Behavior and peculiar characteristics. Specific features such as how the
malware replicates and spreads, or other distinguishing attributes [11].

Generally, some of the peculiar types of malware tracked by researchers can be
listed as follows.

• Dropper/Downloaders. This kind of malware serves the purpose of being the
first stage of infection in the target system. Upon execution, they will typically
extract and run a second stage malware which contains the meaningful code
to compromise the machine. Depending on the type of dropper, the latter will
be retrieved using the internet or it will be hidden inside the file itself.

• Information stealers/Keyloggers. Most often, the goal of these programs is to
exfiltrate - through email, HTTP, FTP or custom TCP tunnels - sensitive data
from the target system. This may include keyboard presses, stored passwords,
files, browser cookies, and in general everything that will have a market for
the threat actors.

• Bankers. This usually sophisticated type of malware will hook specific APIs
or DLLs used by Web Browsers in order to inject custom content or exfiltrate
information when the unknowing user visits banking web apps. The goal is
financial, to extract card information or hijack accounts.

• Ransomware. Ransomware encrypt files on the system, requesting money to
the user to get them back.

12

Background

• Remote Access Trojans. Once infected by a RAT, the machine will establish
a tunnel on the Internet towards a Command & Control server, expecting
commands to execute on the host, such as exfiltrating data or pivoting further
in the network of the victim.

• Rootkits. Generally more advanced malware, rootkits establish their persistence
at a lower level, which can assume the form of a kernel driver, or even as code
hidden in the MBR of the hard disk. Able to hide from plenty of detection
techniques, they may survive disk formatting and OS reinstall.

• Worms. Typically infamous pieces of code like the Morris Worm and, more
recently, WannaCry [12], these malwares require almost zero interaction from
the user, since they use wide-spread and powerful vulnerabilities. For this
reason, they are able to replicate and spread in a small amount of time and
potentially deal great amount of damages to impacted systems..

3.3 Dynamic and static analysis
Before introducing the theory which Symba is built upon, symbolic execution, the
following section will describe how analysis of malware is handled in the literature
[13], trying to highlight the perks and the disadvantages of both.

3.3.1 Static Analysis
This term embraces all the different kind of analyses that can be performed
without actually running the PE file. One relevant example of static analysis
is the disassembling and decompilation of malware samples. Industry-standard
tools like IDA Pro, OllyDBG and, most recently, Ghidra [14] are packed up with
features, analysis routines, addresses cross-referencing, even scripting interfaces
that can be used to easily automate custom routines. Often, malware uses binary
packers such as UPX, to avoid being analyzed [15] [16]. Therefore, in order to be
disassembled, specific unpacker will have to be used. The typical interface of a
modern disassembler is demonstrated in fig. 3.1:

Also, strings can be really good indicators of maliciousness, and in some cases
they can yield interesting information and properties of samples, like C2 IP ad-
dresses, or files searched in the system.

As previously mentioned, Windows API calls can be used as detection patterns
during static analysis; for instance, CreateRemoteThread, LoadLibrary, WriteProcessMemory
are suspicious function often used by malicious samples for DLL injection into
other processes, and they are rarely used for legitimate code.

13

Background

Figure 3.1: Interface of the reverse engineering tool open sourced by the NSA,
Ghidra.

A control Flow Graph (CFG) [17] is a directed graph where basic blocks of code
are represented by graph nodes, and flow paths - like branches - by edges. For
instance, in Symba design and implementation, CFG will be used to extract basic
blocks preceding and following a certain API function call deemed as particularily
interesting. Modern analysis frameworks implement methods and tools to graph-
ically output these kind of graphs, which provides an easier understanding and
mapping of the general features of the code, as seen in fig 3.2.

Notably, other static analysis techniques have been employed in the literature,
such as the usage of N-grams combined with API calls or opcodes, and file attributes
like size or content entropy [18].

3.3.2 Dynamic Analysis
Dynamic analysis [19] is an approach which aims at analyzing code by executing
it in a controlled environment where its actions can be observed. The level of
depth of this observation can vary [20], from code instrumentation that monitors
and operates on executed instructions, to the system as a whole, e.g. by logging
registry, file system, network operations.

As with disassemblers for static analysis, one of the most notorious application
of dynamic analysis in the software analysis field is debuggers. Available for most
modern platforms, architectures and operating systems, debuggers provide the

14

Background

Figure 3.2: Flow Graph generated by radare2 framework.

analyst with the possibility to step through the code, instrution after instruction,
to observe in a detailed and controlled way the flow of execution of binaries under
scrutiny. While debugging can be used by developers to track down and solve
bugs - as the very etymology of the words shows - it constitutes a useful tool in
the hands of reverse engineers trying to extract knowledge and properties out of
analyzed potentially malicious samples. Incidentally, one of the already mentioned
industry standard tools for malware analysis, IDA Pro, also features a capable
debugger. Other notable mentions here are WinDBG, ImmunityDBG and x64dbg
for Windows, while the de-facto tool in the Linux environment remains GDB. Even
though debuggers take the role of manual, precise tools in the field of dynamic
analyses, other automatic approaches are used in the wild with good results. For
instance, we already mentioned API calls sequencing as a valuable tool to detect and
classify in a first quick analysis malicious samples. However, static observation of
API calls suffer from the drawback of not being able to monitor which parameters
are being passed to API calls. Moreover, some malware developers have been
obfuscating their samples by importing API function which have no real use in

15

Background

the binary, other than confusing analysts trying to extract information from the
imports table. For this reason, analysts will often use monitoring tools which will
hook API calls performed by binaries alongside their parameters, and output them
in a filterable tables. The tool of the trade, in this scenario, is ProcMon of the
Sysinternal suite (fig 3.3).

Figure 3.3: Customizable monitoring with Sysinternals procmon.

In dynamic analysis the goal is to observe as many meaningful operation per-
formed by the binary as we can, and one of the most important actions, most often
present in malicious samples, is communication with the outside. Therefore, we
include to our description of dynamic analysis techniques that of network sniffing,
which can be naturally automated based on what the scope and target of the
analysis is. A great tool to capture packets going out and in of the network is
Wireshark, which, thanks to the library underneath it, allows powerful filtering,
inspection and extraction of sniffed traffic. However, since by the time of analysis
is conducted the real C2 servers linked to the sample could be offline, or perhaps
because traffic outside is not allowed in the analysis environment for security rea-
sons, some analysis environments adopt network services simulators like INetSim,
where network interaction is emulated so to observe the functionality of the sample
in its totality. All these functionalities, alongside observing changes made to the
registry, file system, and in general Operating System, can be automated by using
a dedicated malware analysis sandbox. Briefly, a sandbox works as follow: for each
analysis, a dedicated Virtual Machine is spawned and the sample is executed inside

16

Background

it. All the operations mentioned up to here, and more, are monitored and recorded,
and at the end of the execution, after a given timeout or upon malware termination,
they are used to build a detailed report of the execution. Modern sandboxes
also automatically extracts "suspicious" signatures - basically, using Yara rules
precompiled in the sandbox - out of the monitored facts and use them to compute
a score of maliciousness of the analysed samples. These services can be exposed
onlines in applications like app.any (https://app.any.run/), joe sandbox (https:
//www.joesecurity.org/) or VirusTotal (https://www.virustotal.com/gui/),
or can be hosted offline by the analyst in projects like the Honeynet Cuckoo Sand-
box. An example of suspicious analysis signatures as extracted by Cuckoo is shown
in figure 3.4

Figure 3.4: List of signatures extracted by cuckoo for a Poweliks sample. Color
indicates degree of suspiciousness.

3.3.3 Advantages and Disadvantages
After having defined the boundaries and ideas of the two approaches, let us map,
for both, what could be the typical advantages and disadvantages in applying

17

https://app.any.run/
https://www.joesecurity.org/
https://www.joesecurity.org/
https://www.virustotal.com/gui/

Background

them during the process of analysis. This section will not take into account the
time spent by the analyst using one approach instead of the other, given that this
measure heavily depends on the tools employed, which can greatly vary in their
capability of automating the analysis process.

Dynamic

With dynamic analysis, suspicious samples are detonated in a controlled environ-
ment, thus all its operations are effectively monitored and graded. This allows
for a precise report on the malware, rather than a report based on heuristics and
static signatures. Any kind of static obfuscation performed on the binary code,
fake API imports, and generally counter-measures utilized by malware developers
to confuse analysis will have little power in this environment. Moreover, some
samples, in order to properly execute their routines, could need some kind of input
or information that static analysis simply cannot extract alone. Let us take, as
instance, a RAT sample that executes code received on the network as command.
Without having executed the malware, thus contacting the C2 server, the analyst
cannot fully determine the nature and format of the expected commands, let alone
their specific protocol, encryption, and so on and so forth.

This great capability of monitoring the sample in a totally controlled and "real"
environment poses a great amount of issues to these kind of solution. The first
problem is that malware analysis environments are generally very recognizable. In
fact, to evade detection, attackers will code into their malware multiple routines
trying to identify whether the sample is being executed in a "legit" victim environ-
ment or a monitored sandbox. They can search for various indicators such as the
presence of user activity - mouse movement or key presses - unusually sized disk
drives, suspicious names of user and processes running – for instance, VirtualBox
will typically spawn some processes containing "VBox" in guest machines – registry
keys with flagged names or values, presence of other hosts in the network, together
with a countless other possible validation that are well documented in the modern
literature [21].

Furthermore, detonating potentially malicious samples is most definitely a
dangerous activity to perform, especially from machines belonging to corporate
organizations connected to the company network, where the unknown activities
exhibited by the malware could potentially compromise it. Therefore, dynamic
analysis systems have to be secured as much as possible, using one-time, throwaway
virtual, isolated environments only valid for one round of execution, without
allowing any kind of interaction with the host OS. Considering again the scenario
of a RAT trying to establish a network communication, this could mean that the
system won’t allow the guests to initiate connections to the outside, since this could
pose a threat for the entire network. For this reason, network services emulator

18

Background

which fake plausible responses are sometimes used, while it goes without saying that
such security compromise could negatively impact the soundness of the analysis.

Finally, the kind of described environment can be complex to design and build.
On one side, different samples require different targets. OS, architecture, even
a specific version of a particular piece of software or a particular DLL could be
needed by the sample in order to execute as expected, posing a great challenge for
systems and tools trying to analyze malware targeting different platforms such as
Linux, Windows, Android. On the other hand, it is clear how the entire process
of bringing up the virtual machine, transferring the binary file, executing it and
monitoring - via instrumentation and hooking - its capabilities, then shutting down
or resetting the machine and computing a full report can take several minutes. In
environments where thousands of samples are fed into the system on a daily basis,
performance is definitely a problem to address.

Static

Unlike dynamic analysis, as has already been mentioned, static analysis simply look
at the contents of files as they exists on disk, without executing them whatsoever. It
uses patterns, attributes, signatures and artifacts to extract meaningful information
from the binary.

Static analysis is definitely more resilient to the same issues that were defined
before with regard to dynamic analysis. It is much more efficient, since the process
of handling the virtual environment doesn’t exist here, and more cost-effective, not
requiring an infrastructure of distributed machines and the capability to handle
instrumentation, hooking, evade detection and mantaining the system secure at the
same time. Static tools can be quickly written specifically for the analyzed binary,
independently of the architecture, OS, library or networking capabilities needed.
However, this kind of analysis can be easily hindered to the point of rendering it
useless by largely available and known techniques:

• Code obfuscation. The idea behind code obfuscation [22] [23] is to transform
instructions of the original code in some way that maintains the same semantic
behavior of the former, but in a way that is much more difficult to analyze.
Notable examples are opaque predicates, sequence of code ending in a branch
that always produce the same result, in a way that would be difficult to detect
from static analysis, and control flow flattening (fig 3.5), a technique that
attepts to make it as difficult as possible to build a useful CFG out of the
binary, by bringing all the flow logic down to a list of "leaf" basic blocks and
a single (or multiple) dispatcher blocks that use and update a state variable
to jump to the relevant blocks. Both techniques have been reportedly used
in modern malware and are available in open source tools such as the LLVM
obfuscator [24].

19

Background

Figure 3.5: Diagram of how the CFG is transformed after the process
of flattening (http://tigress.cs.arizona.edu/transformPage/docs/flatten/
index.html).

• Packing. A packed [15] (also referred to as crypted in the lingo) malware
does not show, when first analyzed, its relevant code anywhere. In fact, the
only code available is the stub, a small portion of instructions that contain
a decompression or decryption routine which, at run-time, will be used to
extract the real malware - which is stored in some place, like the resources of
PE file - and load it in memory. This way, any kind of static analysis prior to
the unpacking will be practically useless.

• False positives / False negatives ratio. Since based on heuristics and signatures,
static analysis can flag only to a certain extent of soundness a malware as
malicious. Without executing it, it is hard - without manual intervention from
the analyst - to determine whether those signature are really malicious or just
potentially suspicious. In fact, it is entirely possible to craft harmless samples
built just in order to trigger static analysis tools for incorrect or malicious
attribution to other groups or campaigns or simply to bring confusion inside
the analysis environment.

Both analysis approaches have significant drawbacks when dealing with trigger
conditions. Statically analysing a trigger essentially mean to disassemble and
examine the binary instructions around the condition, trying to reverse engineer
the meaning of the conditions, and the values that could solve both arms of branches
dependent on it. On the other side, generic dynamic systems, as already depicted,
fall short on feeding precise inputs that the malware expects before exhibiting its

20

http://tigress.cs.arizona.edu/transformPage/docs/flatten/index.html
http://tigress.cs.arizona.edu/transformPage/docs/flatten/index.html

Background

malicious demeanor. For this reason, we introduce another technique that is a
bridge between static and dynamic analysis, which allows to automatically reason
on the code to extract interesting properties. The idea of combining static and
dynamic techniques to improve efficiency in malware analysis is not particularily
novel [25].

3.4 Symbolic Execution
Symbolic execution is a program analysis techniques introduced fifty years ago in
the literature, and which is now withstanding increasing interest in the literature
[26]. Its power comes from the ability of studying properties of so-called aspects
of interest [27]. Aspects of interest are properties of the binary such as that no
pointer is equal to NULL at the time of deferencing, or that no overflow in buffer
operations occur.

In a real, concrete execution, the program takes inputs from the environment and
explores only one control flow path. With symbolic executions, concrete inputs are
replaced by symbols. Symbols can simultaneously represent multiple values. Every
time an operation is performed on a symbol, a constraint is linked to the symbol.
Execution is thus performed by a symbolic execution engine which maintains, for
each path, the constraints bound to each symbol. This allows symbolic execution to
explore multiple paths of a program at the same time, and mathematically reason
over each state.

3.4.1 Components
In every moment, a symbolic execution engine manages symbolic states. Each state
is characterized by:

• a memory store. This maps relationships between symbols and other symbols,
or symbols and concrete values. During symbolic execution, assignments and
operations on the symbols update the symbolic memory store.

• a boolean formula. This component collects, for every if statement that handles
a symbol, the conditions that have to be bound on symbols to meet each
branch. Therefore, for every different path in the execution tree, a different
boolean formula is held.

• a model checker. An SMT solver which can solve, at any time, boolean
formulas to generate concrete values, or to ensure the unsatisfiability of the
formula.

21

Background

1 void foobar (i n t a , i n t b) {
2 i n t x = 1 , y = 0 ;
3 i f (a != 0) {
4 y = 3 + x ;
5 i f (b == 0)
6 x = 2∗(a + b) ;
7 }
8 a s s e r t (x−y != 0) ;
9 }

A detailed overview of the symbolic execution features are described in chapter 4,
when discussing of the capabilities of angr. The figure 3.6 taken from [27] describes
the symbolic exploration of a simple function, where the interest of the analysis
is in finding for which parameters the assert fails. The letters used in the figures
represent the following:

• stmt is the next statement to be evaluated in the execution path.

• θ is the symbolic memory store, and αi denotes the symbolic variables.

• π is the path formula.

The branches in the diagram show how a symbolic execution engine updates its
path formula and store depending on the values that the symbols simultaneously
take. At some point, a state where the assert fails is found, and the symbols are
resolved to the value of (a = 2, b = 0).

3.4.2 Weaknesses
Discussing about weak points of symbolic execution is an important part of the
analysis of the tools conducted before implementing Symba. Theoretically, symbolic
execution is capable of guaranteeing complete soundness on the analysed binary.
However, most of the times, a trade-off between quality and feasibility has to
be made. Mainly, we can sum up the issues to solve when employing symbolic
execution as follows:

• memory interaction. While symbolic execution easily handles the modeling of
simple variables like integers, or characters as symbols, other more complex
data structures bring with them a different spectrum of challenges. How
does the engine manages memory addresses that depend on user input or on
dynamic allocation, such as strings [28]? If the address becomes a symbol, it
is clear how the memory store can grow in complexity.

22

Background

Figure 3.6: Symbolic Execution example flow, from [27]

• environment. A binary, and this stands in particular for malware, is not merely
a set of instructions independent from everything around. Its flow of execution
strictly depends from variables coming from other layers in the software stack:
the creation of a file, a registry key, network packets incoming on the wire. A
symbolic execution engine has to consider all these factors, to make sure they
are consistent within the analysis flow.

• path explosion. Every time a branch is encountered, the symbolic execution
engine creates a state satisfying, whenever possible, both arms. Clearly, this
grows exponentially, therefore it is unlikely that an exhaustive search of all
the states is feasible. For this reason, the engine has to take into account
optimizations, pruning, and other techniques to keep the exploration feasible.

• constraint solving. SMT solvers have the capability of solving hard combina-
tions of constraints over multiple variables. However, finely-grained non-linear
arithmetic designed to be mathematically hard to solve can cause serious
problems to efficiency.

The framework used in the backend of Symba, angr, provides solutions to manage
all the mentioned problems, but it does not, in general, automatically implements
any of them. Instead, this power is given to the user of the framework. In the
following chapter, we describe some notable features of angr and how they are
implemented and used.

23

Chapter 4

The angr framework

The framework used in this thesis, angr, is packed with interesting features that
range from pure symbolic execution to static and dynamic analyses. This chapter
will explore some examples of how the interface can be used by the programmer
and how to harness most of the functionalities exposed by the library.

4.1 Symbolic Procedures
In angr, Symbolic Procedures are meant to completely replace functions, and they
are most prevalently employed to model OS library functions. In fact, by rewriting
API calls using the Python interface exposed by the framework, the symbolic
execution flow can be freed from all the complexity that would rise from executing
library functions symbolically. For the sake of this chapter, let us examine a simple,
hello-world example that demonstrates some usage of the framework. The sample
code used for it is available in the appendix at A.

The compiled binary, upon execution, returns with the following output:

1 $. / t e s t
2 This shouldn ’ t be pr in ted i f hooked !

To provide a "hello world" of angr usage, consider the python script at A. It
simply instruments angr to symbolically execute the binary until the end, thereafter
printing the content of stdout – interface modeled and emulated by the framework
– to verify that the function func is indeed symbolically called. The output of the
script:

1 $ python te s t s improc . py
2 ∗∗∗∗∗∗STDOUT CONTENT∗∗∗∗∗∗

24

The angr framework

3 b" This shouldn ’ t be pr in ted i f hooked ! \ n "

The output string matches what we would expect from a ’normal’ execution of
the binary. Let us now introduce a Symbolic Procedure into the test environment,
to observe the change of behavior. The listing at A shows a new version of the
previous script, where a SimProcedure is declared and hooked to the binary. The
listed script demonstrates the interface used to implement Symbolic Procedures:

1. The class modeling the function must extend angr.SimProcedure, which is the
abstract interface exposed by angr.

2. The run method must be implemented. It will take as argument whatever
arguments the original function expects, following the calling convention of
the binary. Inside the method body, the programmer can choose what to do,
either concretely or symbolically, with the function args, including returning
values to the callee.

3. Finally, the Symbolic Procedure has to be hooked via call to hook_symbol,
replacing the symbol of the function meant to be replaced.

Let us now inspect the output of the script above:

1 $ python te s t s improc . py
2 The func t i on func was rep laced by t h i s func t i on !
3 int_arg : <SAO <BV64 0xa>> / s t r i n g : <SAO <BV64 0x400742>> /

other_st r ing <SAO <BV64 0x40073d>>
4 ∗∗∗∗∗∗STDOUT CONTENT∗∗∗∗∗∗
5 b ’ ’

As we expected, the content of stdout is empty, which clearly shows that the
original func function has not been executed. On the other hand, we can observe
the result of the code inside our run method, where the given arguments are printed.
Later in this chapter, we will further expand this example to understand what is
the meaning of those seemingly opaque <SAO <BV64>> objects, but the reader is
invited to note that the first argument, the integer int_arg, is actually equal to 10
(0xa in hexadecimal notation), which is indeed the value passed to that function
by the main.

4.2 Symbolic Exploration
This section will dig inside the meat and bones of the symbolic execution flow,
starting from the workings of state exploration in angr. To tackle this task, we
will reintroduce a modified version of the example listed in the previous section, to

25

The angr framework

examine specifically which interfaces of the symbolic framework can be employed
and how. The code can be found at A.

The inner bodies of func1, func2, func3 are just composed of a single statement
printing the value of the first argument, therefore we won’t include that in the
listing. This test code introduces the true concept of symbols: in fact, the choice
variable cannot have a predetermined value at the time of execution, since it is
returned in line 10 as result of an atoi function. This defines the real concept of an
unconstrained symbol.

4.2.1 Starting points
The symbolic analysis has to start at some initial state of our choice. The angr
framework exposes different methods through its factory interface to create this
initial state, depending on our needs. In particular, the state can be:

1. blank_state. It represents a mostly uninitialized state, which can be filled
arbitrarily.

2. entry_state. It puts start of symbolic execution at the entry point block of
the binary executable.

3. call_state. Begins at the first basic block of a function, ordering its passed
arguments depending on the calling convention.

4. full_init_state. Mostly similar to the entry state, but first it symbolically
executes all the constructors and initialization functions that usually are
handled by the dynamic loader. Especially useful in C++ binaries with
libraries which need to be initialized.

We can see how the mentioned interfaces work with our test binary. An
interactive python console will show some information on the computed states.

The first thing will be to create the project:

1 In [1] : import angr
2 In [2] : p ro j = angr . Pro j e c t (" . / t e s t ")

Starting with the blank state, we will see how registers and initial address are
populated:

1 In [2 7] : blank = pro j . f a c t o r y . blank_state ()
2 In [2 8] : hex (blank . addr)
3 Out [2 8] : ’ 0 x4006c0 ’

26

The angr framework

4 In [2 9] : f o r reg in [" rax " , " rbx " , " r s i " , " r d i " , " rcx " , " rbp " , " rsp "
] :

5 . . . : p r i n t (g e t a t t r (blank . regs , reg) . symbol ic)
6 . . . :
7 True
8 True
9 True

10 True
11 True
12 True
13 False
14 In [3 3] : blank . r eg s . r sp
15 Out [3 3] : <BV64 0 x 7 f f f f f f f f f e f f f 8 >

From this listing, we can highlight three main points:

• The address, when not specified as argument, is the one of the entry point.

• Most of the registers are symbolic, which means that they are unitialized by
the symbolic engine.

• Only the stack pointer has a concrete value.

How would this compare to a state initialized as an entry state? We can analyze
this by generating one in the same way we did for the blank state:

1 In [3 0] : entry = pro j . f a c t o r y . entry_state ()
2 In [3 1] : hex (entry . addr)
3 Out [3 1] : ’ 0 x4006c0 ’
4 In [3 2] : f o r reg in [" rax " , " rbx " , " r s i " , " r d i " , " rcx " , " rbp " , " rsp "

] :
5 . . . : p r i n t (g e t a t t r (entry . regs , reg) . symbol ic)
6 . . . :
7 False
8 False
9 True

10 True
11 True
12 False
13 False

The scenario is somewhat different: in fact, more registers appear not symbolic.
The presence of a concrete RBP suggests that, in this case, some function prologue
has been executed which prepared the stack frame for execution. It is worth
mentioning that, even though we call it entry state, the address of the starting
basic block can be modified to start somewhere else.

27

The angr framework

4.2.2 Generating a CFG
As previously mentioned, a Control Flow Graph (CFG) conceptually depicts basic
blocks as nodes and jumps, calls, rets - or other instructions modifying the IP - as
edges.

Angr currently supports two ways of computing a CFG. One, called CFGFast,
works statically, so no emulation/execution of the binary is required. For this reason,
is faster, with the disadvantage of being possibly less accurate. Another - now
deprecated - method is to use CFGEmulated, even though the library maintainers do
not suggest to use, due to difficulties and missing places in the execution interface,
and its very limited performance in terms of speed. For this reason, Symba employs
the former to compute CFG of analyzed binaries. Let us explore this functionality
in the binary used for tests:

1 In [7] : p = angr . Pro j e c t (" . / t e s t " , load_options={ ’ auto_load_libs ’ :
Fa l se })

2 In [8] : c f g = p . ana ly s e s . CFGFast ()
3 In [1 0] : c f g . graph
4 Out [1 0] : <networkx . c l a s s e s . digraph . DiGraph at 0x7f686389c0b8>
5 In [1 2] : l en (c f g . graph . nodes)
6 Out [1 2] : 80
7 In [1 3] : l en (c f g . graph . edges)
8 Out [1 3] : 98

The project has been created with a specific option unset, auto_load_libs. This
is necessary, otherwise angr would try to compute the CFG of any shared library
loaded by our binary, thus increasing enormously the complexity of the graph
and its time of computation. For instance, one could imagine the grievousness of
the task of analysing the glibc implementation. The graph is built using NetworkX
[29], a python library used to implement complex networks with a great focus on
portability and universality – nodes and edges can be anything.

In the listing below, we start exploring the capabilities of the CFG graph
generated by angr, to define the functionalities that will be used by Symba to
compute the starting points of the analysis. We will explore how to retrieve basic
blocks’ addresses, alongside their successors/predecessors nodes, specifying the
jumpkind in the case of branches.

1 In [2 3] : entry_node = c fg . model . get_node (p . entry)
2 In [2 4] : entry_node
3 Out [2 4] : <CFGNode _start [42] >
4 In [2 5] : entry_node . b lock
5 Out [2 5] : <Block f o r 0x4006c0 , 42 bytes>
6 In [2 6] : hex (entry_node . addr)

28

The angr framework

7 Out [2 6] : ’ 0 x4006c0 ’

The interface is clear and readable. We first get the entry_node by querying for
a node matching the address of the entry point. As the output of the block attribute
states, the node matches symbol _start at address 0x4006c0 - the address of the
entry point - and its size is 42 bytes. Each block exposes, among the other things,
a capstone interface to disassemble instructions found at nodes. Capstone (http:
//www.capstone-engine.org/) is a lightweight multi-platform, multi-architecture
disassembly framework., and we can see it in action by playing a bit with the
interface:

1 In [4 3] : p . l oade r . find_symbol ("main ")
2 Out [4 3] : <Symbol "main " in t e s t at 0x400842>
3 In [4 4] : main_node = c fg . model . get_node (0 x400842)
4 In [4 5] : p r i n t (’ \n ’ . j o i n ([r epr (insn . insn) f o r insn in main_node . b lock

. capstone . i n sn s]))
5 <CsInsn 0x400842 [5 5] : push rbp>
6 <CsInsn 0x400843 [4889 e5] : mov rbp , rsp>
7 <CsInsn 0x400846 [4883 ec60] : sub rsp , 0x60>
8 <snip>
9 <CsInsn 0x400889 [e 8 e 2 f d f f f f] : c a l l 0x400670>

10 In [4 6] : p . l oade r . descr ibe_addr (0 x400670)
11 Out [4 6] : ’PLT. p r i n t f+0x0 in t e s t (0 x670) ’

In the listing above, we:

• Ask the project loader for the address of main symbol.

• Using that address, we retrieve the corresponding node from the CFG.

• Capstone interface is used to disassemble instructions at the basic blocks
corresponding to the retrieved node.

We can observe how the basic blocks stops at a call instruction, and the loader
confirms that such instruction is a printf@plt, the function which, in the test code,
corresponds to printf ("Choose number of arguments: ");.

There’s no need to disassemble and manually query for addresses: the CFG
supports methods to find successors and jumpkinds from a given node:

1 In [5 0] : node , jumpkind = c fg . model . get_successors_and_jumpkind (
main_node) [0]

2 In [5 1] : node
3 Out [5 1] : <CFGNode 0x400670 [6] >
4 In [5 2] : jumpkind
5 Out [5 2] : ’ I jk_Cal l ’

29

http://www.capstone-engine.org/
http://www.capstone-engine.org/

The angr framework

As expected, there is only one successor node, the one calling the printf . In fact,
a function call does not "branch" the execution flow in any way. Let us explore how
the three subsequent ifs in the code impact the generated CFG.

The CFG allows for querying of symbols of functions listed in the binary. The
interface is simple and clear. The listing below extracts the addresses of our
functions func1, func2 and func3 :

1 In [1 3 0] : f un c t i on s = c f g . kb . f un c t i on s
2 In [1 3 1] : addre s s e s = [(addr , func . name) f o r addr , func in f unc t i on s .

i tems () i f func . name in [" func1 " , " func2 " , " func3 "]]
3 In [1 3 2] : addre s s e s
4 Out [1 3 2] : [(4196298 , ’ func1 ’) , (4196334 , ’ func2 ’) , (4196374 , ’ func3 ’)

]

The code above simply builds a list of tuples with the form (addr, name) through
a list comprension filtered for those functions named after what we are looking
for. For the sake of brevity, and since all of those functions will have a similar
behavior in the CFG graph, we will only analyze one of those functions, func2.
Before proceeding into querying the graph, let us reason on what we would expect,
knowing the code.

Each function is called in a separate arm of an if-elseif-elseif-else structure.
Therefore, reasonably, basic blocks responsible for calling functions will not have
multiple predecessors. In fact, they are reachable only through one path in the
code. Also, for the same reason, we expect only one successor, which is, the block
executing the return statement. Is this reasoning confirmed by the graph?

1 In [1 5 4] : func2_addr = addre s s e s [1] [0]
2 In [1 5 5] : func2_node = c fg . get_node (func2_addr)
3 In [1 5 6] : if_body_node = c fg . ge t_predeces so r s (func2_node) [0]
4 In [1 5 7] : preds = c f g . ge t_predeces so r s (if_body_node)
5 In [1 5 8] : succ s = c fg . ge t_succe s so r s (if_body_node)
6 In [1 5 9] : l en (preds) == 1
7 Out [1 5 9] : True
8 In [1 6 0] : l en (succ s) == 1
9 Out [1 6 0] : True

As shown clearly in the listing, regarding both the successors and predecessors
nodes of the block calling function 2, we only have one direction. As expected, by
printing the instructions of the block contained in the successor node, we obtain:

1 In [1 6 1] : p r i n t (’ \n ’ . j o i n ([r epr (insn . insn) f o r insn in if_body_node .
b lock . capstone . i n sn s]))

30

The angr framework

2 <CsInsn 0x4008cd [488 b45c0] : mov rax , qword ptr [rbp − 0x40]>
3 <CsInsn 0x4008d1 [4889 c6] : mov r s i , rax>
4 <CsInsn 0x4008d4 [bf02000000] : mov edi , 2>
5 <CsInsn 0x4008d9 [e 8 1 0 f f f f f f] : c a l l 0x4007ee>

Following this idea, we can predict that, by querying the CFG for the predecessor
node of the if arm body, we will get a node responsible for the cmp instruction
that leads to the former. That node will have more than one successor: in fact,
depending on the value being compared, the execution flow could or could not pass
through that if arm. The listing below confirms this prediction.

1 In [1 6 1] : cmp_node = c fg . ge t_predeces so r s (if_body_node) [0]
2 In [1 6 2] : p r i n t (’ \n ’ . j o i n ([r epr (insn . insn) f o r insn in cmp_node . b lock

. capstone . i n sn s]))
3 <CsInsn 0x4008c7 [837 dbc02] : cmp dword ptr [rbp − 0x44] , 2>
4 <CsInsn 0x4008cb [7 5 1 3] : jne 0x4008e0>
5 In [1 6 3] : c f g . g e t_succe s so r s (cmp_node)
6 Out [1 6 3] : [<CFGNode main+0x8b [17] > , <CFGNode main+0x9e [6] >]

To conclude this section on the features of CFG, we discuss of an important
interface that constitutes one of the main components of Symba: the callgraph.
While the Control Flow Graph describes the relationships between basic blocks
in the binary, a Callgraph will describe the relationships between functions. In
this context, since all three functions are called by the main, should we query the
callgraph, we would verify this fact. The CFG exposed by angr contains a suitable
callgraph attribute:

1 In [1 7 0] : f o r func in [func1 , func2 , func3] :
2 . . . : pred_addr = l i s t (c f g . f un c t i on s . c a l l g r aph . p r ed e c e s s o r s (

func)) [0]
3 . . . : p r i n t (pred_addr == p . l oade r . find_symbol ("main ") .

rebased_addr)
4 . . . :
5 . . . :
6 True
7 True
8 True

4.2.3 Simulation Manager
In the previous chapter, the basics of states and their relationships inside various
kinds of control graphs have been discussed. In order to present how Symba
implements its analysis flow, one missing bit has to be introduced: the functioning

31

The angr framework

of the simulation manager, alongside its exploration techniques. To implement
Symba, a custom exploration technique based on constraint creation has been
developed and applied to the manager.

Most definitely, the SimulationManager is the most important control interface
exposed by angr. This top level component allows the symbolic engine to explore
the program state, progress through symbolic states, merge states together or
drop others, detect loops or other structure which could overload the symbolic
execution flow, all while maintaining a high degree of control from the point of
view of the programmer. One could decide to keep freezed a certain state while
stepping forward a certain stash. Stashes can be described as buckets of states
which share common properties. There are a set of stashes already predefined in
angr, though programmers can create custom stashes, if needed.

The default stash for the majority of operations is the active stash, where states
are collected at the initialization of a new simulation manager. Other stashes will
become useful once symbolic execution starts branching. This fact will become
more clear once showing how the "stepping" works in angr. In particular, the stash
types available are the following:

• active. As already mentioned, this stash contain states that can and will be
stepped on the next step().

• deadended. This stash collects all states that, for some reason, cannot be
stepped anymore. For instance, states reaching termination through an exit
call.

• unsat. States that are already determined to be unsatisfiable are put in this
stash. For example, a state which would need a certain variable to be both
equal to 3 and 4 at the same time, would belong to this stash. We will, later
in this chapter, show how we can place constraints on states using the solver
backend. Requires option save_unsat.

• unconstrained. States where the RIP is controlled by the user or by another
source of symbolic input. Requires option save_unconstrained.

• pruned. With a certain option - LAZY_SOLVES - enabled, angr will not check
for state satisfiability at every step. Instead, it will delay this until absolutely
required. In this case, if a state is found to be unsatisfiable, all its previous
state, until the point it became unsat, is placed inside this stash.

We can observe this behaviour on the test binary, by initializing a simulation
manager and inspecting its stashes:

32

The angr framework

1 In [5] : entry_state = p . f a c t o r y . entry_state ()
2 In [6] : s imgr = p . f a c t o ry . simulation_manager (entry_state)
3 In [7] : s imgr
4 Out [7] : <SimulationManager with 1 act ive>
5 In [8] : s imgr . a c t i v e
6 Out [8] : [<SimState @ 0x4006c0 >]

A simulation manager just initialized on a state - in this case the entry state -
has a single stash, the active stash, populated with that state. One of the simplest
operation that can be performed on a simulation manager is to run it until all the
possible paths have been explored. How would the stashes look in that case?

1 In [9] : s imgr . run ()
2 Out [9] : <SimulationManager with 4 deadended>
3 In [1 0] : s imgr
4 Out [1 0] : <SimulationManager with 4 deadended>
5 In [1 1] : s imgr . deadended
6 Out [1 1] :
7 [<SimState @ 0x1000108>,
8 <SimState @ 0x1000160>,
9 <SimState @ 0x1000160>,

10 <SimState @ 0x1000160 >]

As expected, the simulation manager after a run call doesn’t have active states
anymore - if it would, there would still be paths which can be explored. Therefore,
all the states are in the deadended stash, which means that they correspond to
state termination.

Is it possible to explain the meaning of the four deadended states? Let us
reconsider the source code of the test executable at A. Three of the states stopped
at the same address, as three are the functions which can be called depending on
the value given to atoi. The remaining state, instead, represents the else arm which
goes through the exit function. This can be interestingly confirmed by accessing
the history plugin of the state, which exposes descriptions of the actions performed
on the state:

1 In [2 8] : l i s t (s . h i s t o r y . d e s c r i p t i o n s)
2 Out [2 8] :
3 <snip>
4 ’<SimProcedure a t o i from 0x1000100 : 1 sat>’ ,
5 ’<IRSB from 0x4008b2 : 2 sat>’ ,
6 ’<IRSB from 0x4008c7 : 2 sat>’ ,
7 ’<IRSB from 0x4008e0 : 2 sat>’ ,
8 ’<IRSB from 0x4008fd : 1 sat>’ ,
9 ’<IRSB from 0x4006a0 : 1 sat>’ ,

33

The angr framework

10 ’<SimProcedure e x i t from 0x1000108 : 1 sat>’]

In fact, the last action performed on the state is verified to be a SimProcedure
implementing the exit function.

Programmers can enforce a higher control of degree over the process of execu-
tion through an important interface of the simulation manager: the exploration
techniques. Exploration techniques direct most of the operations that a simulation
manager performs on its attributes while stepping through states: which stashes
to use, which states go in which stash, when to stop, or which functions should
be called on states during execution if certain conditions are met. Some notable
examples of built-in exploration techniques exposed by angr:

• Depth First Search. Just one state is chosen to be executed and stepped
forward. The others are kept in a deferred stash until the former terminates.

• Explorer. Allows exploration of program states, guided by a set of find and
avoid rules. Will dig deeper into this.

• MemoryWatcher. Under certain conditions, the quantity of system memory
that angr uses can grow uncontrollably. This exploration technique puts a cap
into that, ensuring that memory usage will not get past that threshold. This
concept is already explored in [30]

• LoopSeer. For reasons linked to path explosion, for loops can hinder symbolic
execution up to the extent of impracticality . LoopSeer detects states which
go through too many loops, dumping them into a spinning stash until no
other active state is available. Other techniques, like the one presented in [31],
propose an extension of symbolic execution tailored to handle loops.

• Veritesting. An implementation of the Veritesting technique introduced in
[32] and mentioned in [33] to find merge points automatically and increase
symbolic execution performances.

For the sake of understanding, we can apply the Explorer technique to the
example we are working on. The Explorer instructs angr to continue exploring
until some condition has been met. The condition can be represented, simply, by
an address - run until a block containing this address is executed - or by providing a
function returning a boolean, transforming the condition into a run until function
returns true.

We can observe both behaviors in the test binary. Let us suppose that an analyst
is given it, while not provided with the source code, so reverse engineering has to
be performed on the executable. The analyst identifies the three func functions,
and he identifies as well that an atoi function is used to transform the value given

34

The angr framework

fed to standard input into an integer. The Explorer technique can help the analyst
knowing which value has to return atoi in order to reach a certain function. Let
us start with func1, thereafter using the same method to solve with respect to the
other functions.

1 In [8] : func2 = p . l oade r . find_symbol (" func2 ") . rebased_addr
2 In [9] : hex (func2)
3 Out [9] : ’ 0 x4007ee ’

Once computed the address of the function, this can be used as it is for the
Explorer technique:

1 In [1 0] : entry_state = p . f a c t o r y . entry_state ()
2 In [1 1] : s imgr = p . f a c t o ry . simulation_manager (entry_state)
3 In [1 2] : s imgr . exp lo r e (f i nd=func2)
4 Out [1 2] : <SimulationManager with 3 act ive , 1 found>

As shown in the listing above, the simulation manager, armed with the Explorer
technique, has created a new stash called found. This stash contains states that
matched the condition configured into Explorer, which, in this case, is the reach of
a precise address. Explorer stops here at the first match, but we could continue
running it, gathering all the states matching the rule into that stash.

What we do expect now, therefore, is to have, into the state in found stash, the
path needed to reach func2. First of all, let us verify the address:

1 In [1 4] : found_state = simgr . found [0]
2 In [1 5] : hex (found_state . addr)
3 Out [1 5] : ’ 0 x4007ee ’

The address of the found state is, indeed, the address of func2. Concerning how
the analyst can retrieve the value passed into atoi to answer his starting question,
there are various ways. The easiest one is a small workaround based on the state
posix plugin. In fact, we know that the value ultimately passed to atoi is fed to the
process via stdin. The posix state plugins allows fast solving of opened files:

1 In [1 9] : found_state . pos ix . dumps (0)
2 Out [1 9] : b ’ 02\ xf7 \xc7\x00\x10\xbc3\xec \x00\x19PB\x00\x00\x00\x00\x00\

x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00 ’

The returned bytestring contains the answer in its first bytes: in fact, the value
02 is exactly the one needed to reach our target function. The other bytes are

35

The angr framework

just solved by default and, in this case, they’re not constrained to anything. We
can verify this by wrapping the code into a function and calling it for all target
functions:

1 In [2 2] : de f f ind_ato i_value (f ind_address) :
2 . . . : s imgr = p . f a c t o r y . simulation_manager (entry_state)
3 . . . : s imgr . exp lo r e (f i nd=f ind_address)
4 . . . : found_state = simgr . found [0]
5 . . . : p r i n t (found_state . pos ix . dumps (0) [: 3])
6 . . . :
7 In [2 3] : f ind_ato i_value (p . l oade r . find_symbol (" func1 ") . rebased_addr)
8 b ’ 1\xacq ’
9 In [2 4] : f ind_ato i_value (p . l oade r . find_symbol (" func3 ") . rebased_addr)

10 b ’ 3 |\ xe0 ’

The results show that the number in the solved stdin string matches what we
would expect. It is worth considering that we are interested, in this cases, only
to numbers until the first non-digit letter. This stems from the way atoi works, in
particular, without detecting errors in its input, but just converting as long as read
letters are digits.

What about the else arm exiting without calling functions? To solve for a value
reaching that code, another useful matching rule exposed by Explorer can be used:
the avoid parameter. The latter works the opposite with respect to find - it directs
exploration avoiding addresses or boolean functions passed to the exploration
technique. The solution to our previous question becomes:

1 In [3 2] : to_avoid = [p . l oade r . find_symbol (func) . rebased_addr f o r func
in [" func1 " , " func2 " , " func3 "]]

2 In [3 3] : s imgr . exp lo r e (avoid=to_avoid)
3 Out [3 3] : <SimulationManager with 1 deadended , 3 avoid>
4 In [3 4] : to_avoid = [p . l oade r . find_symbol (func) . rebased_addr f o r func

in [" func1 " , " func2 " , " func3 "]]
5 In [3 5] : s imgr = p . f a c t o ry . simulation_manager (entry_state)
6 In [3 6] : s imgr . exp lo r e (avoid=to_avoid)
7 Out [3 6] : <SimulationManager with 1 deadended , 3 avoid>
8 In [3 7] : ex i t ed_sta te = simgr . deadended [0]
9 In [3 8] : l i s t (ex i t ed_sta te . h i s t o r y . a c t i on s) [−1]

10 Out [3 8] : <SimActionData e x i t () reg / read>
11 In [3 9] : ex i t ed_sta te . pos ix . dumps (0) [: 3]
12 Out [3 9] : b ’ \ xf5 \xd5\ xf5 ’

A few notable highlights from the listing above:

• In this case, since no find parameter was passed, there was no active stash.

36

The angr framework

However, since we were looking for an exited state, the deadended stash
became our target.

• A new, avoid stash appeared. As expected, it contains three states, related to
the three functions avoided.

• The dumped string doesn’t contain, at its first bytes, any digit that can be
converted. It is a valid solution - we will discuss later about constraints and
the Z3 solver - to reach the exit arm.

The approach used to retrieve the correct value has a few drawbacks. First
of all, without having specific knowledge on the entire program flow, finding the
correct bytes from the entire stdin symbolic file content would be almost impossible.
Moreover, it does not employ at all the power of the angr interface in creating
symbols and solving them. Considering this, in the following, we will implement a
more robust way to solve for values of interest, a core functionality that Symbolic
Execution frameworks expose.

A more precise approach to discover the input needed for a target function
starts from the assembly of the executable. The idea is to know, precisely, where
the fgets function will place the value that will be then passed as input to atoi. In
many modern architectures, local variables are referenced through an offset from
the register RBP. In this case, by quickly inspecting the disassembly of the main
function, we can determine that the offset is 0x30. Therefore, the buffer which
atoi will read our input from will be placed at address rbp − 0x30. Moreover, the
address where the atoi function is called is 0x4008ad. The following listing will
show how a symbol of a suitable length is created and injected into memory at
that address, for later evaluation at solve time:

1 In [1 8 3] : s t a t e = p . f a c t o r y . entry_state (addr=0x4008ad)
2 In [1 8 4] : s t a t e . r eg s . rbp = s t a t e . r eg s . r sp + 0x100
3 In [1 8 5] : s t a t e . r eg s . r d i = s t a t e . r eg s . rbp − 0x30
4 In [1 8 6] : s t a t e .memory . s t o r e (s t a t e . r eg s . rbp − 0x30 , fgets_symbol , 4)
5 In [1 8 7] : s imgr = p . f a c t o ry . simulation_manager (s t a t e)
6 In [1 8 8] : s imgr . exp lo r e (f i nd=p . l oade r . find_symbol (" func2 ") .

rebased_addr)
7 Out [1 8 8] : <SimulationManager with 3 act ive , 1 found>
8 In [1 8 9] : s o l_s ta t e = simgr . found [0]
9 In [1 9 0] : s o l_s ta t e . se . eva l (fgets_symbol , cast_to=bytes)

10 Out [1 9 0] : b ’ 2\x80 \xdf ’

Let us consider the listing above, to explain how the solution has been found
employing the power of symbolic execution. The flow of the code can be explained
as follows:

37

The angr framework

1. A state is created, in line 1, exactly at the address of the call atoi instruction.

2. A stack frame has now to be created. In fact, when creating the state as an
entry_state, RSP is initialized with a concrete value, but RBP is not. In order
to create a suitable frame, in this case, it is enough to place RBP at 256 bytes
above RSP (line 2).

3. As previously mentioned, fgets will use as buffer the address at RBP - 0x30.
Therefore, since the same address has to be fed into atoi, we set, in line 3,
RDI - the register where the first argument is placed according to the calling
convention - equal to that address.

4. Now that the prologue has been set, it is time to actually inject the symbol.
In line 4, the previously created fgets_symbol is stored at address RBP - 0x30,
with a len of 4 bytes - more than enough in this case.

5. A simulation manager is created from the setup state, and it is executed with
the Explorer technique until func2 is called.

6. On the found state, the solver is called to evaluate the concrete solution of the
injected symbol. The obtained value is, as expected, 2.

An interesting feature, as indicated formerly, is the capability to use as matching
condition a boolean function, to possibly implement constraint more complex than
simply touching a given address. Let us see how we can use this, together with
the shown solving code, to abstract the discovery of concrete values for the three
functions.

For the task, we will employ, once again, the posix state plugin, which wraps
many file-system related operations. In fact, every function, in its code, prints a
string formatted like: "Function \%d here.\n". This behaviour can be wrapped into a
boolean function to find states of interest:

1 In [2 0 5] : de f so lve_for_func (n) :
2 . . . : de f i s_func (s t a t e) :
3 . . . : r e turn True i f " Function {} here " . format (n) . encode

() in s t a t e . pos ix . dumps (1) e l s e Fa l se
4 . . . : s t a t e = p . f a c t o ry . entry_state (addr=0x4008ad)
5 . . . : s t a t e . r eg s . rbp = s t a t e . r eg s . rsp + 0x100
6 . . . : s t a t e . r eg s . r d i = s t a t e . r eg s . rbp − 0x30
7 . . . : fgets_symbol = s t a t e . s o l v e r .BVS(" fget s_input " , 4∗8)
8 . . . : s t a t e .memory . s t o r e (s t a t e . r eg s . rbp − 0x30 , fgets_symbol ,

4)
9 . . . : s imgr = p . f a c t o r y . simulation_manager (s t a t e)

10 . . . : s imgr . exp lo r e (f i nd=is_func)

38

The angr framework

11 . . . : found = simgr . found [0]
12 . . . : r e turn found . s o l v e r . eva l (fgets_symbol , cast_to=bytes)
13 . . . :

The only change in the listing above stands in the introduced is_func that checks
for the content in the symbolic stdout. If the seeked string is found, the Explorer
stops and yields the found state that is later used to solve the symbol. By launching
the function with the different integers, we obtain the desired result:

1 In [2 1 7] : f o r n in [1 , 2 , 3] :
2 . . . : p r i n t ("A s u i t a b l e va lue to f e ed in to f g e t s to reach

func {} i s : {} " . format (n , so lve_for_func (n)))
3 . . . :
4 A su i t a b l e va lue to f e ed in to f g e t s to reach func1 i s : b ’ 1\x974O ’
5 A su i t a b l e va lue to f e ed in to f g e t s to reach func2 i s : b ’ 2$\xc60 ’
6 A su i t a b l e va lue to f e ed in to f g e t s to reach func3 i s : b ’ 3?\ xcc \xe7 ’

4.3 Symbolic States
In this section we talk about angr symbolic state plugins, some example of how it
is used, and how it is possible to inject and track variable inside symbolic memory.

When performing executions in angr, most of the operations work on specific
objects each one "crystallizing" a precise simulated program state. We will refer to
this object with the name SimState.

SimState exposes an interface to interact with the program’s memory, its
filesystem data, registers – that is, most of the live data that basically constitute
a process. In the interest of detailing further this concept, since fundamental to
the structure of Symba, let us reconsider the SimProcedure example in chapter 4.
When printing to screen values of the arguments that the procedure FuncReplace
receives, the output was:

1 int_arg : <SAO <BV64 0xa>> / s t r i n g : <SAO <BV64 0x400742>> /
other_st r ing <SAO <BV64 0x40073d>>

Arguably, the best way to use angr and explore its capabilities is to use an
interactive python interpreter which supports help and tab completion. For this
task, I will employ IPython. In this specific case, a breakpoint - represented by
the IPython function embed - will be placed right after the print statement in the
SimProcedure code. By calling functions in the IPython environment, we are able
to interactively explore how angr manages SimStates and memory values.

In a SimProcedure, the SimState can be accessed through the attribute self . state:

39

The angr framework

1 In [1] : s e l f . s t a t e
2 Out [1] : <SimState @ 0x40063a>

The string representation of the state shows the current address of execution.
Value of CPU registers can be easily accessed:

1 In [1 4] : r eg s = s e l f . s t a t e . r eg s
2 In [1 5] : r eg s . r d i
3 Out [1 5] : <SAO <BV64 0xa>>
4 In [1 6] : r eg s . r s i
5 Out [1 6] : <SAO <BV64 0x400742>>
6 In [1 7] : r eg s . rdx
7 Out [1 7] : <SAO <BV64 0x40073d>>

Under x86_64 architecture and System V ABI, the first three parameters to
functions are passed through the registers RDI, RSI, RDX, in this particular order.
In the listing above, we see how the arguments to functions printed in A match
those contained in registers. Let us examine furthermore how to interact with
concrete values inside those registers. Considering the value of the arguments
passed to the function:

1 func (10 , "ARG1" , "ARG2") ;

A BitVector is essentially the representation of an integer in angr. For this
section, it will be enough to state how to transform a BV - symbolic or not - into a
real value – in other words, to solve a bitvector:

1 In [5 4] : r d i
2 Out [5 4] : <SAO <BV64 0xa>>
3 In [5 5] : s t a t e . s o l v e r . eva l (r d i)
4 Out [5 5] : 10

In the same way, we can extract the address of the second argument:

1 In [5 9] : r s i
2 Out [5 9] : <SAO <BV64 0x400742>>
3 In [6 0] : hex (s t a t e . s o l v e r . eva l (r s i))
4 Out [6 0] : ’ 0x400742 ’

Memory can be accessed through the interface state .memory. So, supposing we
are to extract the first byte contained at the address in rsi, the code would be:

40

The angr framework

1 In [6 3] : addr = s t a t e . s o l v e r . eva l (r s i)
2 In [6 4] : s t a t e .mem[addr] . byte . r e s o l v ed
3 Out [6 4] : <BV8 65>
4 In [6 5] : chr (s t a t e . s o l v e r . eva l (s t a t e .mem[addr] . byte . r e s o l v ed))
5 Out [6 5] : ’A ’

Abstracting the code above to print strings at given addresses, we obtain the
following:

1 In [7 3] : de f p r in t_s t r i ng (s ta te , addr) :
2 . . . : r e s u l t = " "
3 . . . : whi l e True :
4 . . . : c = chr (s t a t e . s o l v e r . eva l (s t a t e .mem[addr] . byte .

r e s o l v ed))
5 . . . : i f c i s not ’ \x00 ’ :
6 . . . : r e s u l t += c
7 . . . : e l s e :
8 . . . : break
9 . . . : addr += 1

10 . . . : r e turn r e s u l t
11 . . . :
12 In [7 4] : rs i_addr = s e l f . s t a t e . s o l v e r . eva l (r s i)
13 In [7 5] : rdx_addr = s e l f . s t a t e . s o l v e r . eva l (rdx)
14 In [7 6] : p r i n t_s t r i ng (s e l f . s ta te , rs i_addr)
15 Out [7 6] : ’ARG1 ’
16 In [7 7] : p r i n t_s t r i ng (s e l f . s ta te , rdx_addr)
17 Out [7 7] : ’ARG2 ’

Indeed, the resulting strings match exactly what is passed to the function in the
test code. In line 14, the value ’ARG1’, passed as the first argument, is correctly
retrieved from the address stored in rsi. Then, the same happens with the second
argument, resulting in ’ARG2’. This example is easy to grasp, since all the variables
involved are already determined and "hard-coded".

41

Chapter 5

Architecture design

The design of symba is greatly focused on the aforementioned concept of trigger
conditions. The generic flow of the analysis is as follows:

1. The analyst chooses Win32 API function calls that are deemed as interesting.
By interesting, here, we mean function calls for which the return value can
unlock or block interesting routines - that is, functions that model ‘trigger
conditions‘. As we will see, this choice is easily handled by a script which
generates the correct configuration.

2. Symba "hooks" these function calls in the binary, basically replacing them
with functions automatically generated by the system that return a symbolic,
tainted value to the caller. We will see how these tainted value are generated
and tracked during the execution.

3. The system then builds a Control Flow Graph of the executable, extracting
basic blocks in which the hooked functions will be called. Using the CFG,
it builds a list of basic blocks preceding the extracted ones. It will be,
substantially, a list of "entry points" basic blocks.

4. Starting from each one of those entry points, Symba symbolically executes the
binary, tracking any kind of constraint posed on tracked values. Tracked values
could be memory addresses returned by the configured ‘trigger‘ functions or
other memory addresses which are directly influenced by those. The mechanism
of this tracking will be explained in detail in a following section.

5. Using a custom exploration strategy with some predetermined stopping criteria,
symbolic states are collected and stored in a specific stash, until the analysis
is stopped - because of termination by the executable, or one of the stopping
criteria being met.

42

Architecture design

6. For each taken path, Symba then collects all constraints on tainted values,
solving them using the underlining SMT solver. The computed solutions are
then stored into a structured file for further processing - e.g examined by
a human analyst or fed into a Cuckoo configuration process for automated
analysis.

Start

API Functions

Configurator

Model Injector

States Extractor

Symbolic Explorator

TriggerSeer

Solver

Solved values

Stop

parsed by

sends signatures to

initiates

applied to

produces

Figure 5.1: Symba flow diagram.

Basically, the main rationale of this system is that malwares will interact with
the execution environment through the Win32 API. Results from these API calls
will be then probably compared and checked using simple or complex routines,
and the results will direct the execution flow towards one branch or the other. By
collecting and solving these chain of constraints each time a branch is detected for
a tainted value, the system is capable to generate values satisfying one or the other
branch arm, thus possibly unlocking new guarded paths in the malware code.

Symba is implemented in a modular fashion, so that most of the features
described can be extended and augmented without necessarily touching other parts
of the code.

In this chapter, the design of each module will be detailed. The flow diagram
of the interaction between components is described in figure 5.1. Specifically,
components are:

• Configurator.

43

Architecture design

• Model Injector.

• States Extractor.

• TriggerSeer.

• Symbolic Explorator.

• Solver.

In the rest of this chapter, each component design will be discussed in detail,
highlighting its process inside the analysis flow.

5.1 Configurator

Win32 API Function names

Google search for MSDN pages

Download page HTML

Extract function signature

JSON configuration

for each name

for valid results

parse

outputs

Figure 5.2: Configurator flow diagram.

The configurator is charged with the task of transforming Windows API function
names into the format used by Symba. Basically, for each name it is necessary to
extract the function signature and build a JSON file with all the relevant fields
in a default value, ready to be tweaked by the user. The documentation used to
lookup function names is the Microsoft Developer Network, considered to be the
official documentation for the Windows API. Since the precise URL depends on

44

Architecture design

the header file, and since the MSDN does not offer any public API, in order to
retrieve documentation from the MSDN a couple of steps are required.

First of all, the name of the function is searched through Google with the site
filtering keyword pointing to the MSDN site. This way, we will only retrieve pages
in the MSDN with the function name contained in the URL. Afterwards, the query
results are filtered to make sure the URL looks like an API signature documentation,
and if so, the page is downloaded. Since we download the whole page HTML,
another parsing step is required to extract exactly the information needed to build
the signatures. At last, a JSON file is built with the results. The choice of JSON as
the configuration format greatly improves the readability of the file. Moreover, it
ensures that the analyst using Symba can easily tweak and customize it, by setting
the length of a certain symbol, the name of some parameters, or to decide which one
of them should be injectable. Also, there’s another reason for having configuration
files stating which functions should be traced as trigger sources. The idea is to
create multiple JSON files, each one focused on a certain set of trigger sources, that
can quickly be switched during analysis. One could have a lightweigth . json file to
follow only a few functions that are generally deemed as interesting, like API calls
that query registry keys. Then, another file which could be named full . json will be
loaded of more functions, in order to reveal as many conditions as possible from
the binaries exhamined. The flow diagram discussed is represented in figure 5.2.

5.2 Model Injector

JSON Configuration file Manual tweaking

Load configured functions

Inject symbols in tainted parameters

for each function

Figure 5.3: Model Injector flow diagram.

The model injector manages the technique that Symba uses to model and
represent trigger sources. Basically, functions have to be replaced with a symbolic
equivalent counterpart. At the beginning of the flow, the JSON configuration file is
loaded and function signatures and options are stored inside some data structure.

45

Architecture design

Once this data is available, Symba generates a class that matches everything in
the signature of the API function: parameters name, type and calling convention.
The real difference between the two functions stands in what happens in the
function body. Whereas the original API function would have computed the value
requested or queried the resource pointed by the executable, the only thing that
a Model will do is to select – depending on the configuration file – some specific
parameters, lookup their memory address, and inject there a suitable symbol. This
will constitute the basics of the tainting process. For each injected symbol, a unique
key built using the configuration file name, the function name and the parameter
name is stored inside a global repository of keys. From that point on, every time
that the executable will try to access in read or write, in a branch condition, the
data that has been injected, this will be reflected in the constraints of the symbol.
This allows other components that need to monitor the list of constraints associated
to a particular symbol, like the TriggerSeer or the Solver, to properly work.

Having a component that handles automatic creation of trigger sources model
from the configuration – also automatically generated – is a valuable addition
to the project. In fact, without this component, the analyst should manually
develop code to represent each modeled function, probably incurring in errors or
redundancy. Moreover, it is entirely possible to customize the generation of the
model depending on the selected function. The JSON configuration file that is
given as input to the Injector, in fact, could be extended to add new options that
further personalize different trigger sources. One notable addition to this would be
a constraints option. This option would allow analysts to use a simple grammar to
define simple constraints on the function parameters. Let us consider, for instance,
the GetUserName function. Some analyst could decide that the malware will only
look for usernames that start with the letter ’B’. So, a constraint on the lpBuffer
parameter that stores the symbol for the generated username could be placed to
constrainv the first letter to be equal to ’B’.

5.3 States Extractor
When dealing with symbolic execution in angr, the developer can choose the
symbolic state where the emulation has to begin. A naive approach would certainly
be to set the initial state at the entrypoint of the binary. This solution, while
theoretically feasible, is definitely impractical. In fact, each one of the already
mentioned weaknesses of symbolic execution would escalate in such a scenario. For
such reasons, it is necessary to design a better way to extract initial states.

The way that Symba handles this starts from the Control Flow Graph of the
binary. The CFG contains a few informations on called functions, the data flow
graph, the callgraph, from which we can extract dependencies and relationships

46

Architecture design

Binary executable

CFGFast generation

Search for trigger source in callgraph

Extract predecessor functions

Predecessor functions addresses

compute for each match

Figure 5.4: States Extractor flow diagram.

between function calls. In particular, from the callgraph, we detect functions in
the executable where one or many of the configured trigger sources are called. For
each match, we take the predecessor function, that is, the function calling the
former function, and we extract the address of this function. This address will be
then transformed into a block and that block will be passed as the initializer of a
symbolic state.

Note that one advantage of this approach is that the symbolic execution flow
will always start from the beginning of a function, in a prologue. This ensures
the consistency of variables on stack, with no need for manual intervention and
initialization of those fields.

5.4 TriggerSeer
The TriggerSeer is an important component in the execution of Symba. The
previous section documented the workflow of the State Extractor, which decides
where the symbolic execution will start. The TriggerSeer handles the opposite
aspect, precisely the termination condition of the execution. The reason for which
Symba needs this hides behind the same reasons already mentioned about the
weaknesses of symbolic execution. The main idea of the TriggerSeer is to continue

47

Architecture design

Injected symbol unique key

Check active state

Conditions met? Update counter and registry

Stop execution

yes

no

step

Figure 5.5: TriggerSeer flow diagram.

executing as long as the program is interacting with the tainted symbols. At some
point, after a reasonable number of states where the symbol is not fetched in neither
read or write, the execution is deemed as complete.

TriggerSeer works with two principal data structures: the counter and the
registry. It is, at its core, an object defined in angr as an Exploration Technique.
These objects receive, for each step, the active states, and they decide what to
do with those states, and whether the execution is complete. In this case, the
operation performed on state is to check, for each active state, the constraints posed
on the injected symbol for the trigger source. At the very first step, the registry
is initialized with these constraints. In the following step, the new constraints
are checked: if anyone new is found, the registry is updated and the counter is
set to zero, since the injected symbol has been fetched. Otherwise, the counter
is incremented. As soon as the counter passes a certain configured threshold, the
execution is completed.

An extension, needed for the correct execution of the exploration technique,
has been applied. In particular, since for the reasons previously mentioned, the
execution starts from the function which actually calls the trigger source function,
for the initial states new constraints on the injected symbol cannot literally be
detected, since the symbol is not there yet. Therefore, TriggerSeer actually starts
setting the counter only after the unique key bound to the injected symbol has

48

Architecture design

been inserted in the global state plugin, that is, after the symbolic model of the
tracked function has been executed.

5.5 Symbolic Explorator

Trigger sources names

Invoke state extractor

Initialize simgr with TriggerSeer

Execute symbolically

Filter states for "triggered" ones

States dependent on trigger conditions

for each name

with found states

Figure 5.6: Symbolic Explorator flow diagram.

The Symbolic Explorator is essentially the glue code that connects the other
components together. It collects the command-line parameters, it builds the
configuration from where it will extract the trigger source names. For each trigger
source name, it invokes the State Extractor to retrieve starting states for the
execution. With those states, it will initialize an execution manager to which it
will apply the TriggerSeer exploration technique with the desired threshold. As
soon as the execution is complete – with the termination conditions previously
described – the explorator retrieves all the states collected during the execution.
At this point, it will filter each state, looking only for the "triggered" ones, which
is, states that are somehow constrained on the trigger sources. Each one of those

49

Architecture design

states is returned by the executor, to be afterwards fed to the Solver.
Maintaining this modularity between the different pieces improves code read-

ability, and more important, it makes easier to improve and extend the tool. For
instance, if anyone developed a new exploration technique for Symba, it would be
enough to replace the line where TriggerSeer is applied with the constructor of the
new exploration technique. The same goes with all of the other components.

5.6 Solver

(Triggered states, symbol unique key)

Collect all constraints on unique key

Solve constraints via angr

Solved trigger conditions

for each state

Figure 5.7: Solver flow diagram.

The last component described is also the final component in the workflow of
Symba: the Solver. Its task is to take all the triggered states which are generated
from the Symbolic Explorator, and solve them, producing concrete values. For this
task, it uses an SMT solver, Microsoft Z3, as a backend. The solver is capable of
handling both linear and not linear constraints, and it can produce raw bytes or
compat numbers as a result. Constraint are identified via the unique key that has
been injected by the Model Injector when the trigger source has been replaced.
The same key will identify the results in the output log. The key is readable and it
contains the name of the configuration file, the name of the trigger source function,
and the parameter injected.

In some cases, where the symbol does not have a precise structure, the solver has
to produce raw bytes that have to be manually inspected by the analyst. However,
for precisely defined structs, custom output function can be implemented to produce
a more readable result. This will be demonstrated in the evaluation chapter, where

50

Architecture design

the GetSystemTime results will be formatted to match a Date object.

51

Chapter 6

Implementation details

6.1 GenericModel
By leveraging the SimProcedure interface, Symba is capable to dynamically, auto-
matically generate new models on the fly - starting from a given configuration -
without the need for the analyst to implement them from scratch, a time-consuming
and repetitive task.

Specifically, Symba contains a GenericModel class that can model the majority
of trigger sources one could be interested in tracking. The implementation can be
found in the appendix at A.

A GenericModel abstracts the creation of symbolic procedures by exposing an
interface (via __init__) where the real difference stands in the function signatures
- named fsig in the code. In run method, the unpacking syntax ∗args is used to
represent a variable list of parameters - since different API functions will have a
different number of parameters - while the field fsig .params provides the method
body with a precise list of parameters, together with its name and type. The rest of
the function will be explored further, where the mechanism of symbolic constraints
injection will be handled.

Summing up, the GenericModel symbolic procedures constitutes an "abstract"
interface for configured trigger sources, lifting the analyst from having to implement
the symbolic replacement for API functions on a one-by-one basis.

6.2 SymbaConfig
As previously mentioned, the starting point of the config generation is a list of
function names. In this case, it would be:

52

Implementation details

1 $ cat a p i_ f i l e . txt
2 GetSystemTime
3 GetDiskFreeSpaceEx

The relevant code used to query Google and the MSDN and parse through
BeautifulSoup can be found in the appendix at A.

The workflow of the script follows this path:

1. A file - provided by the user through a command line argument - is opened
and its lines are parsed.

2. A non-standard python library - googlesearch is used to automate a Google
search. The query employs a Google dork search filter, site , to filter for URLs
pointing to the MSDN documentation. Among these, up to two results are
selected, and only where the URL contains reference to the Win32 API and
the function name, those are selected for parsing.

3. Selected URLs are requested and downloaded using the requests library.

4. The content of the webpages is parsed through BeautifulSoup, a notorious HTML
parsing python library, and the relevant parts of the documentation - those
pertaining the signature - are saved into a dictionary.

5. The resulting dictionary, shaped into the configuration format, are written to
a file whose name is specified through another command line argument.

At the end, the config file shown in the appendix at A is obtained.
To conclude the discussion of how Symba handles configuration of trigger sources,

the rest of this section describes how the generate configuration file is parsed. After
all, the main target of this configuration process is to "fill" the system with models
- generated through the mechanism described in the previous section on Symbolic
procedures. The relevant code follows:

1 c l a s s SymbaConfig (ob j e c t) :
2

3 de f __init__(s e l f , c o n f i g_ f i l e) :
4 s e l f . c o n f i g_ f i l e = c o n f i g_ f i l e
5 s e l f . s i g na tu r e s = []
6 s e l f . models = []
7 s e l f . _parse_json ()
8

9 f o r s i g in s e l f . s i g na tu r e s :
10 s e l f . models . append (GenericModel (s i g , s e l f . c o n f i g_ f i l e))
11

12 de f _parse_json (s e l f) :

53

Implementation details

13 with open (s e l f . c o n f i g_ f i l e , ’ r ’) as f :
14 d = json . load (f)
15 f o r func in d [’ f un c t i on s ’] :
16 params = [param(∗∗p) f o r p in func [’ params ’]]
17 s e l f . s i g na tu r e s . append (s i g (func [’name ’] , params))

The logic is clear: the JSON is parsed in method _parse_json - line 20 - and
the signatures are extracted. Thereafter, a list of models is filled with various
instances of GenericModel, each one representing a different Trigger Source. This
data structure will be then available to the main routine of the analysis code, as
shown in:

1 de f _ in i t_con f i gura t i on (s e l f) :
2 f o r c on f i g in s e l f . _config_paths :
3 f o r model in SymbaConfig (c on f i g) . models :
4 s e l f . t r i g g e r s . append (Tr iggerSource (model))

6.3 CFGFast
First of all, we should examine why the CFG is necessary at all in the process of
extracting trigger conditions from the associated sources. In fact, a naive solution
would consist in symbolically executing the executable starting from main, thus
touching all the trigger sources functions. This solution, despite being formally
correct, has the big drawback of impracticality: as discussed in the introductory
chapter, symbolic execution brings some disadvantages to the table, exposing a few
weak points to binaries, especially in the absence of source code - in fact, while
angr works at the binary level, other notable symbolic execution engines [34] need
the source code to provide more reliability to path explosion or divergence. For all
these reasons, an approach set and forget where the executable starts from main
thru its entire codebase will most likely end up being unsuccessful.

For this reason, Symba employs a different approach to start its symbolic
execution. The idea is based upon finding references to the functions defined
as trigger sources in the CFG and beginning symbolic execution just before that.
Specifically, the algorithm works as follows:

1. A CFGFast is computed over the binary.

2. The functions referenced in the CFG are searched for configured trigger sources.

3. For every matching function, a list of predecessor functions is computed from
the callgraph.

54

Implementation details

4. The list such constituted is returned with the name of call_points, used later
to compute starting addresses.

It should be noted that Symba is not looking for predecessor basic blocks, but
functions. In fact, starting symbolic execution from random points inside routine
code will probably lead to inconsistencies in local variables or stack, as already
demonstrated formerly in this section.

The relevant code is shown below:

1 t ry :
2 i f not s e l f . c f g :
3 s e l f . c f g : CFG = s e l f . p r o j e c t . ana ly s e s .CFG(∗∗

c fg_opt ions)
4 f o r address , f unc t i on in s e l f . c f g . f un c t i on s . i tems () :
5 s e l f . l . debug ((address , f unc t i on . name))
6 t ry :
7 i f f unc t i on . name in symbols or not symbols :
8 s e l f . l . i n f o (f " In t e r c ep t ed c a l l to { func t i on .

name} ")
9 pred = next (

10 i t e r (
11 s e l f . c f g . f un c t i on s . c a l l g r aph .

p r ed e c e s s o r s (
12 address)))
13 ca l l_po in t s [f unc t i on . name] = pred
14 except S t op I t e r a t i on :
15 pass
16 except Exception as e :
17 s e l f . l . l og (l ogg ing .ERROR, f " {e} ")
18 re turn ca l l_po in t s

Another notable mention in the code above is that CFG is persisted over different
executions of Symba, so to avoid having to recompute it each time losing time.
In this scenario, it is equivalent to a Singleton. Moreover, other than used to
find calling points, this function serves another purpose: it actually searches for
trigger sources in the binary. In fact, should call_points be empty, the analysis will
not start, thus lifting the system from losing computational time over executables
where seeked functions are not called anywhere.

6.4 Exploration Techniques
First of all, we have to reason on what the exploration technique must obtain on the
execution flow. For each TriggerSource, the simulation manager begins execution
at its predecessor function, as shown previously. The reason for having a custom

55

Implementation details

exploration technique is that, once starting, we could not possibly continue until
exhaustion of the program state, for reasons highlighted before. Therefore, using a
blank run() is not suggested. Moreover, we do not possess any clear rule to apply
to the Explorer technique.

The crucial feature of the needed exploration technique is therefore to know
when the simulation manager has to return. A suitable stopping condition, or
termination criterion, must ensure that, once symbolic execution has began tracking
a certain trigger source, it collects all relevant constraints placed on its produced
value to unravel new paths. So, TriggerSeer models exactly this behavior. The
general flow is described below:

1. A registry is initialized when the exploration technique is applied first to the
simulation manager. It will mantain already registered constraints on the
trigger source values.

2. Each time the simulation manager steps forward a state, TriggerSeer checks
all the constraints connected to the registered trigger source. If any of them
is not in the registry yet, the state is marked as recently constrained.

3. If, in a step, no state in the active stash has been recently constrained, a
counter is incremented. Otherwise, the counter is assigned zero.

4. When the counter passes a certain threshold value, TriggerSeer stops execution.

The rationale of TriggerSeer is clear: the idea is that, when producing a value
with an API function call, its resulting value will be probably used by its consumer
code right after, in a function close in the callgraph. Therefore, we continue
executing as long as we see new constraints - that is, operations and branches -
applied on our tracked value. Once for a reasonable number of states our value is not
"touched" anymore, execution can stop and we can extract meaningful conditions
from the collected constraints.

The relevant code follows below:

1

2 de f s tep (s e l f , simgr , s ta sh=’ a c t i v e ’ , ∗∗kwargs) :
3 i f not any (
4 s e l f . _recent ly_constra ined (s t a t e)
5 f o r s t a t e in simgr . s t a sh e s [s ta sh]) :
6 s e l f . _count += 1
7 e l s e :
8 s e l f . _count = 0
9

10 <snip>

56

Implementation details

11

12 de f complete (s e l f , s imgr) :
13 re turn s e l f . _count >= s e l f . _threshold

Notable mentions on the code:

• The step function, in this case, is part of the interface needed to implement
a custom exploration technique. It implements what happens when angr
executes step on a simulation manager.

• The complete boolean function signals to angr whether a simulation manager
should stop its execution.

• The _recently_constrained function will be discussed later when describing how
to interact with the solver state plugin.

In this section, most of the core ideas in Symba have been discussed in details,
digging down into implementation code and examples. First, fundamentals on how
to create a Control Flow Graph, explore its nodes and extract states from it have
been depicted. Those states can be used to initialize a simulation manager, the
top-level component responsible for every execution-related task, which behavior
can be modified and tweaked using built-in and custom exploration techniques,
modules which collect states in stash and regulate how states are dropped in each
stash, together with defining and respecting stopping criteria. The core of symbolic
analysis, that is, creating symbols, has been elaborated in both injecting symbol
into memory and later solving them.

6.5 Simulation Manager
The relevant implementation code is listed below:

1 ca l l_addr = r e s [t r i g g e r . name]
2 b = s e l f . p r o j e c t . f a c t o ry . b lock (addr=cal l_addr)
3 s t a r t_s ta t e = s e l f . p r o j e c t . f a c t o r y . entry_state (addr=b . addr)
4 sm = s e l f . p r o j e c t . f a c t o r y . simulation_manager (s t a r t_s ta t e)
5

6 sm . use_technique (Tr igge rSee r (
7 (t r i g g e r . model . con f i g , t r i g g e r . model . name)))
8

9 sm . run ()
10

11 f o r s t a t e in sm . deadended + sm . a c t i v e + sm . unconstra ined :
12 i f t r i g g e r . i s_ t r i g g e r ed (s t a t e) :
13 t r i g g e r . s t a t e s . append (s t a t e)

57

Implementation details

This part of the code is almost straightforward. For each trigger source, the
saved call_addr is retrieved and used to create a new state (line 3). This simulation
manager is executed through a call to run. Actually, there are a few special things
that should be highlighted in the code:

• The activation of TriggerSeer technique via the interface use_technique. A
section later in this chapter will describe in detail how this custom technique
works.

• After simulation manager finishes its execution, the three stashes - active,
deadended and unconstrained - are scanned to look for interesting states. In
particular, we deem as interesting those states passing function is_triggered,
a function that checks whether that state contains constraint on the trigger
source. The implementation and algorithm of that function will be discussed
later.

• Previously in this chapter, we observed that run, when executed on a simulation
manager, continues execution until all possible paths have been exhausted;
this is not the case: the TriggerSeer technique actually prevents this behavior,
stopping the simulation manager when certain conditions are met.

58

Chapter 7

Evaluation

Symba has been evaluated by executing it, using simple and lightweight configu-
rations, against a proof of concept code and two real-world examples containing
trigger conditions of different kinds. For each sample, in this prototype, the re-
sults of the tool have been examined manually to extract meaningful information.
Then, the sample is executed first in a generic virtual machine with no custom
configuration, and afterwards, in a scenario where the extracted trigger conditions
are met. Interactions of real malware with the OS are monitored via different
methods, like watching debugging output or via the already mentioned Sysinternals
ProcessMonitor tool, to observe the shape of new routines in the malware execution
flow.

7.1 Proof of Concept
This proof of concept models the general idea behind RAT type malwares. That is,
the sample starts a socket listening on a given port, waiting for incoming connections.
Upon clients connecting to the server, it will receive a certain number of bytes
which constitute the command which should be executed on the victim machine.
To discourage simple static analysis techniques or network detection, malware
developers will often make use of Data Obfuscation approaches, as documented in
the MITRE framework. In order to model a known obfuscation technique, this
proof of concept RAT employs XOR obfuscation with a byte key hardcoded in the
binary, which changes for every sample produced in value and location, which in
turn makes automating the extraction and fingerprinting of RAT commands suite
more complex.

In this scenario, symbolic execution behaves as expected. We mark as trigger
source the WinSock recv function, so that every byte received on emulated sockets
becomes a symbol and commands based on those bytes can be symbolically solved.

59

Evaluation

The core control procedure of the malware is described in figure 7.1.

Figure 7.1: Flow of the PoC RATserver.

The three commands hide different routines that model what could happen in a
real-world scenario.

1. Command 1. Malware reads the value of the "run" registry key, searching for
installed startup programs.

2. Command 2. Malware enumerates processes currently running.

3. Command 3. Malware lists filenames in the Documents folder, possibly looking
for files to exfiltrate.

The sample has been compiled using the i686−w64−mingw32−g++ tool part of
the MinGW toolchain. The configuration file has been generated starting from the
recv API function, and the buf parameter in the signature has been configured with
inject boolean field set to true.

Figure 7.2: An excerpt from Symba log during proof-of-concept analysis.

The whole Symba run took 4m2s, and produced four different results which you
can observe in figure 7.3. The string covered in the black square represents the
recv input where no command is executed, while the red ones represent the three
different inputs associated to the malware commands.

60

Evaluation

Figure 7.3: Results of Symba for proof-of-concept malware analysis.

Let us proof the genuinity of these results by observing what happens by
executing the sample, first by providing a random input, then by providing the
three commands extracted by Symba. In this case, since the developed proof of
concept includes plenty of debugging strings, there is no need to execute the sample
in a virtual machine and observe with procmon, but rather it is enough to observe
its output, as shown in the four figures from 7.4 to 7.7.

Figure 7.4: Output of the RAT with random command as input.

It is worth noting that, as demonstrated by the byte editor xxd, the command
sent to the server are composed exactly of the sequence of bytes extracted by
Symba.

7.2 Paranoid fish
Paranoid Fish, or pafish, is a demonstration tool that is used in malware analysis
to assess the capability of a sandbox to escape evasion techniques used by malware
developers. It has 1.4k stars and 304 forks, so it is sufficiently known in the field to
ensure the validity of the used techniques. In this case, we will use Symba to focus
on a specific evasion measure, extracting trigger conditions bound to it, so that
it can be established without manually analysing the code which kind of values
the malware is checking to determine whether it is being executed or not in a

61

Evaluation

Figure 7.5: Output of the RAT with command 1.

Figure 7.6: Output of the RAT with command 2.

virtualized environment. A snippet of the execution output of the malware in a
"generic" Windows 10 virtual machine is shown in figure 7.8.

In this scenario, we focus on the line "[∗] Checking username...". It seems that,
in this case, the environment is passing the tool check. We will use Symba to
determine which values of username would trigger the condition where a virtualized
environment is detected. The experiment has been conduced by inserting as input
the GetUserName WinAPI function, and configuring the parameter lpBuffer to be
injected with a symbol.

As shown in the excerpt at 7.9, Symba finds and intercept as expected a call
to function GetUserName. Moreover, the usefulness of the TriggerSeer exploration
technique is proved. In fact, by inspecting the last debug logs of it in figure 7.10,
we clearly see that the registry which keeps track of all the constraints posed on
the trigger condition has been filled with more than 300 constraints. In such cases,
posing any kind of "hardcoded" threshold would mean losing some constraints.

Symba analysis took 1m21s and produced 221 different results for the tainted
value. While these may look daunting to examine, upon inspection they have the
shape depicted in figure 7.11. In fact, most of the solved values in the results file
are variations in case of the strings "malware", "sandbox" and "virus". This suggests
a call to functions like toupper or tolower to normalize usernames before comparing
them to the searched values.

In order to confirm this, we created another username in the virtual machine
used for the experiments, named "sandbox". The debugging output of pafish is
shown in figure 7.12. As expected, Symba correctly extracted a valid username
value which triggered the "traced" check in Paranoid Fish.

62

Evaluation

Figure 7.7: Output of the RAT with command 3.

Figure 7.8: Snippet of pafish execution in a generic environment.

7.3 Wrathrage
Wrathrage is a worm which source code has been leaked on github in the kaiserfar-
rell (https://github.com/kaiserfarrell/malware) malware repository. Once
executed in the target machine, it will try to send itself towards other nodes via
mail or other messaging systems, and it will try to cause some damage on the host
depending on the date of execution. In some dates, just a text message will be
shown to the user, while in other, unfortunate dates, the malware will attempt to
overwrite every file in the filesystem, basically breaking the victim machine up to
an unusable state.

To conduct this experiment, we have compiled the source code of wrathrage
with the MinGW toolchain, so that we had a binary that Symba could analyze.
The latter has been configured using the GetSystemTime function as trigger source
– since we are handling dates – where the lpSystemTime has been configured to be
injected, and its length has been set to 16 bytes, 8 WORDs of 2 bytes each. This
modification is reflected in Symba logs, as shown in figure 7.13. Moreover, in this
case, where the symbol has a precise and predetermined structure – it inherits
SYSTEMTIME properties – the constraint solving routine has been extended to

63

https://github.com/kaiserfarrell/malware

Evaluation

Figure 7.9: Function interception in pafish analysis.

Figure 7.10: TriggerSeer logs excerpt in pafish analysis.

enhance readability and inspection.
Symba completed the analysis in a few seconds, and produced the output of

which an excerpt is demonstrated in figure 7.14. Apparently, three conditions are
easily extracted from this file.

1. A datetime containing the 1st of November, 1/11.

2. A datetime containing any date with a day of month equal to 3.

3. A datetime containing any date with a day of month equal to 9.

In order to confirm where these conditions lead to, it would be normally necessary
to execute the sample, as we did with the previous experiments, and observe the
output. However, in this case, the MinGW compiler apparently produced an invalid
binary that, in the virtual machine used for the experiments, is not executed
correctly. Nevertheless, we can quickly, for the sake of this experiment, confirm
the legitimacy of these results by consulting the source code – which in this case is
available – to inspect the function where the GetSystemTime function is called. The
relevant snippet is listed below.

1 void executePayload () {
2 // payload o f the worm w i l l change depending o f the day .
3 SYSTEMTIME x ;
4 GetSystemTime(&x) ;
5 i f ((x .wDay == 1) && (x .wMonth == 11)) {
6 // t h i s i s a very s p e c i a l date f o r me . i t probable r ep r e s en t s

why i make t h i s worm
7 //why i hate some th ings . . why . . a l o t o f th ing s . time to be

a SOB.
8 f u ckAl l () ; // fuck a l l
9 }

10 e l s e {
11 i f ((x .wDay == 3) | | (x .wDay == 9)) {
12 // i l i k e number 3 , and number 9 .
13 de fau l tPay load () ;

64

Evaluation

Figure 7.11: Screenshots from results file of pafish analysis.

Figure 7.12: Snippet of pafish execution with trigger conditions inserted in target
environment.

14 }

This listing clearly demonstrate that Symba has been able to extract all the
relevant trigger conditions from the malware, without needing to consult the source
code, which as already mentioned is a rare luxury when dealing with malware
analysis. It represented both the condition protecting the if with an OR branch,
and the one protecting the if with an AND branch, basically uncovering all the
triggers connected to the GetSystemTime function.

7.4 Limitations
There are some limitations that could not be addressed in the implementation and
design of Symba. Some of these limitations depend inherently on the techniques
employed, while others are part of the test environment that was prepared for

65

Evaluation

Figure 7.13: Snippet from Symba logs in wrathrage analysis, showing symbol
length override.

Figure 7.14: Solved values for GetSystemTime in wrathrage analysis.

Symba.

7.4.1 OS interaction
As already described in the background chapter, one of the greatest challenges
posed in symbolic execution comes from the interaction with the Operating System
and, more general, the software stack involved. For instances, many interaction
with the Windows API are chained as follows:

1. A resource – such as a file – is opened, and a handle is returned.

2. The handle is used to retrieve or modify some property or content of the
resource.

3. The handle is closed.

Therefore, those functions interacting with the environment – essentially, the
majority of Windows API functions – cannot be simply executed symbolically

66

Evaluation

without dealing with the operating system. For Linux, angr already models the
majority of system calls and interfaces exposed by the glibc. However, the same
does not stand for the Windows OS. The support for the API that the framework
offers is not complete, and often the programmer has to implement the required
calls. In a binary-agnostic system like Symba, it is not possible to predict which
API calls will be invoked. For this reason, executing the sample from the beginning
and waiting to encounter the trigger sources is not feasible, because most likely
the execution will not be consistent, errors will be raised, or the memory usage
will grow with no control due to path explosion. In order to solve this, one should
extend the support that angr provides for Windows, or switch to another symbolic
execution engine with a tighter integration with the operating system.

7.4.2 Chained triggers
In the current state, the State Extractor component of Symba takes as the initial
state of execution the one of the function that actually calls the trigger source API
function. This model helps keeping as light as possible the symbolic execution
process, and manages to correctly extract trigger conditions that are local to the
function being analyzed. However, this means that Symba does not have knowledge
of what happens before the function call that serves as the starting point. This
leads to two possible issues.

• The trigger condition extracted may be hidden inside an outer trigger condition
that Symba is not tracking. For example, we may be looking to extract the
command suite for a RAT server listening on the wire, so we track functions
of the recv family. However, before actually starting the server, the malware
checks for virtualization in the target environment.

• Values used inside API function calls may not be local to the starting function,
and they could have other outer constraints posed on them. For example, a
GetUserName call could produce usernames that are checked for a particular
user, but this value is saved inside a global variable that is checked in some
other part of the code not encountered by the exploration process.

Both the issues above depend from the issues that symbolic execution yields
in executing an entire binary file end-to-end. Other approaches, like a mixed
dynamic-symbolic execution, could help solve this problem.

7.4.3 Testing samples
The binaries that Symba was evaluated against have been selected because they
demonstrate how the system performs against different kinds of input – network

67

Evaluation

packets, system time, and information on the username. In this sense, they serve
well as case studies. However, a better approach to test and improve the system
could be more automated, with a flow designed like follows.

1. A great number of malicious samples is extracted using malware repositories,
such as VirusTotal.

2. All those samples are executed on a Cuckoo, or similar, sandbox, and analysis
signatures are produced.

3. Afterwards, samples are fed to Symba, which extracts for each one new trigger
conditions based on a generic configuration file.

4. The validity of conditions is tested by executing again each sample in a Cuckoo
instance where they are inserted in the context, monitoring whether or not
the triggers unlocked new paths in the analysed samples.

However, most of the samples incoming from these feeds, nowadays, present
some issues to this process that made unfeasible to properly setup this testbed
during the time spent working on this thesis. Most notably, malware does not come
in its ultimate, malicious form so easily. Obfuscation, packing, dynamic loading,
loading dlls from the network are just some examples of the techniques used to
hinder. Those samples resulted to be too noisy for Symba to properly extract
conditions. In order to overcome this, the tool could be best integrated into a
pre-existent sandbox framework that would use Symba to extract conditions from
the final, dumped, unpacked and unencrypted sample that would eventually go
into the hands of the malware analyst. In this direction, the usefulness of a system
like Symba stands in its capability to be able to reason over trigger conditions in
generally less time than what would take to a human, when they would both start
from a somewhat "clean" executable. We mention that some research has been
dedicated to the question of symbolic execution with respect to self-modifying code
[35] and obfuscation aimed exactly towards hindering symbolic execution [36].

68

Chapter 8

Related Work

8.1 Symbolic Execution

Symbolic execution has lately drawn quite an interesting amount of interest in the
literature world, due to its ability to find errors hidden deeply in the software and
greatly increase coverage measures in software testing. In particular, mentioning
information security research, an interesting direction of research is the one of
automatic exploit generation and vulnerabilities discovery via symbolic execution.
This problem is similar enough to what has been investigated in this thesis, in
fact, the inputs which would make the program crash can be defined as triggers
responsible for states of inconsistency in the program. The real difference is that,
where the conditions that Symba is looking for are explicitly coded in the malware,
those guarding vulnerabilities and exploits are hidden inside software features.
Concerning this research, AEG [37] is an end-to-end system developed for full
exploit generation based on what the authors call preconditioned symbolic execution.
The idea is that, among the infinite paths that the symbolic execution could take,
the system only focuses on those which are likely exploitable, such as, for instance,
those where a maximum length on a buffer is imposed or a network input is processed.
Driller [38] focuses on vulnerability discovery rather than full exploitation, and it
employs an interesting approach: it merges the ability of symbolic execution to
solve for branches condition with the speed and performances of fuzzing engines
to explore many paths at once. Specifically, the system is composed of the AFL
fuzzer and angr. When the former encounters an interesting branch, it will forward
the execution state to angr, which will act as an oracle to determine conditions to
explore both branch, feeding them back to AFL. HeapHopper [39] uses symbolic
execution and model checking to perform a systematic analysis of different heap
allocators implementations. Regarding dynamic allocation, [30] investigates on
how to reason over worst-case memory consumption in software. Memoise [40]

69

Related Work

implements an approach to re-use results of previous symbolic execution runs to
increase efficiency over time.

8.2 Malware Trigger Analysis
The problem of extracting inputs to increase coverage in malware analysis is not
recent, and other works have been directed at it, with different approaches. In
[41], the authors explore the capabilities of the angr framework to extract trigger
conditions from a sample used as case study. The concept is similar to what
handled in this work, but Symba is directed towards automatic, binary-agnostic
analysis, while the former has been tailored to the sample analyzed. Minesweeper,
a tool developed for [42], employ mixed concrete and symbolic execution [43] to
automatically explore execution paths depending on trigger inputs. Just as in
Symba, for Minesweeper the user chooses which trigger types he deems interesting,
and values produced by these triggers will be tainted and solved. For the task, the
authors developed a system similar to angr, where the binary is transformed to an
Intermediate Representation to provide easier reasoning for the solver. However,
the system is limited to x86 architecture, and its tight design might prevent easy
integration inside other systems. TriggerScope [44] focuses on the Android OS, and
it performs trigger analysis, a static technique that seeks to automatically identify
triggers in applications. Precise detection and extraction of triggers is made possible
through a combination of path predicate reconstruction and minimization and
interprocedural control-dependency analysis. Work performed in [45] explores the
possibility of using concolic execution frameworks like angr to reverse engineer the
malware signatures inside an offline antivirus database. BotMelt [46] symbolically
executes botnet malwares, considering network packets as symbol to solve. The
framework employed is S2E.

Altough Symba does not provide any dynamic execution component, it could
be integrated in any of those systems. This dynamic component would replace
the State Extractor: instead of generating a blank state at the beginning of a
function, a state filled with memory image, registers values, opened file descriptors
and everything connected to the environment could be exported as the initial state.
Once conditions are extracted by the Solver, these could be directly inserted in the
dynamic execution flow of the binary.

70

Chapter 9

Conclusions

In normal scenarios, extracting trigger conditions guarding suspicious behaviour
requires manual analysis, leading to consumption of time and effort. In this work,
we present Symba, a targeted symbolic execution system that tracks and solves
appropriate inputs to unlock new and interesting behaviour in binary executables.
By combining custom techniques to extract starting and ending points, track
interesting symbols, and solve their values, symbolic execution was used in a way
that mitigated its typical weaknesses, rendering possible to implement a tool that
still completely works in the land of static analyses, with no need for a dynamic
environment that would introduce other problems in the design. The system has
been capable of extracting and solving trigger conditions for both proof of concept
code and real samples, with an average execution time of 2 minutes. Moreover,
while the system has been tested on Windows, the high adaptability of angr can be
exploited to have a single tool producing results for malwares of different platforms
and architectures. The modularity of the system makes it easy to extend and
improve its features, and the use of Python, a highly employed programming
language in the malware analysis field, as the language of choice, makes it easier to
integrate Symba in already operating infrastructures and tools.

9.1 Future work
Symba has been developed as a prototype and its functionalities can be extended
furthermore. As described in the architecture design chapter at 5.1, the functions
currently tracked as trigger sources are manually configured by the analyst by
specifying a list of API functions in a file. While this approach is highly customizable,
and it gives analysts the power to tweak their analysis and control time of execution,
it also means that Symba could lose some trigger conditions not explicitly tracked
in the configuration. For this reason, Symba could be extended with a component

71

Conclusions

to automatically extract plausible trigger sources. For instance, this component
could first identify all the API calls in the binary, and starting to symbolically
execute from there. Afterwards, if interesting branches are detected that depend on
some of this API call produced values, those function would be marked as possible
trigger sources.

As mentioned, Symba works at a statical layer, without actually executing the
binary in a real environment. While this brings a few advantages in simplicity and
portability, it is also affected by the discussed limitations in chapter 7. Therefore,
in a future research direction, Symba could be integrated in a dynamic execution
environment [47], which would ensure a more consistent and robust execution flow.
Once a trigger source is met, Symba would be consulted as a symbolic oracle that
would compute concrete solutions, feeding them back to the dynamic execution
environment. Notably, recently, the angr framework integrated a component named
Symbion [48], which exposes an API to implement what said and connect angr to a
real running target like GDB. The dynamic target could perform more than simply
executing once the binary: it could use symbolic execution to enhance an already
existent fuzzing process, such as [49] suggests.

Currently, Symba produces a result log with all the solutions of tracked trigger
conditions. Those conditions have to be inserted manually, wherever the analyst
wishes, to confirm and observe the new behaviour of exhamined samples. In a
future iteration, Symba could be directly integrated with a sandbox system like
Cuckoo Sandbox, and automatically extract new signatures based on discovered
trigger conditions. Overall, the ideas designed for Symba can be integrated and
extended in various different analysis scenarios and systems.

72

Appendix A

Code

This appendix contains some snippets of code that are pointed, mostly, in the
implementation details section.

Listing A.1: Test code, version 1.
1 #inc lude <s td i o . h>
2

3 i n t func (i n t n , char ∗ s t r i ng , char ∗ other_st r ing) {
4 p r i n t f (" This shouldn ’ t be pr in ted i f hooked ! \ n ") ;
5 }
6 i n t main (i n t argc , char ∗ argv []) {
7 func (10 , "ARG1" , "ARG2") ;
8 }

Listing A.2: angr hello world code.
1 import angr
2

3 # In i t p r o j e c t
4 pro j = angr . Pro j e c t (" t e s t ")
5

6 # In i t symbol ic execut ion manager
7 simgr = pro j . f a c t o r y . simulation_manager ()
8

9 # Step un t i l a l l s t a t e s terminate
10 simgr . run ()
11

12 # Pr int s output c o l l e c t e d to stdout
13 f i n a l_ s t a t e = simgr . deadended [0]
14 pr in t (" ∗∗∗∗∗∗STDOUT CONTENT∗∗∗∗∗∗ ")
15 f i n a l_ s t a t e . pos ix . dumps (1)

Listing A.3: Test code, version 2.

73

Code

1 i n t main (i n t argc , char ∗ argv []) {
2 char buf [3 2] ;
3 char ∗ arg1 = "ARG1" ;
4 char ∗ arg2 = "ARG2" ;
5 i n t cho i c e = 0 ;
6

7 // Get number o f arguments
8 p r i n t f (" Choose number o f arguments : ") ;
9 f g e t s (buf , 32 , s td in) ;

10 cho i c e = a t o i (buf) ;
11

12 // Choose func t i on
13 i f (cho i c e == 1) {
14 func1 (1) ;
15 }
16

17 e l s e i f (cho i c e == 2) {
18 func2 (2 , arg1) ;
19 }
20

21 e l s e i f (cho i c e == 3) {
22 func3 (3 , arg1 , arg2) ;
23 }
24 e l s e {
25 e x i t (1) ;
26 }
27 }

Listing A.4: Example code of a SimProcedure
1 import angr
2

3 # In i t p r o j e c t
4 pro j = angr . Pro j e c t (" t e s t ")
5

6

7 # Def ine Symbolic Procedure
8 c l a s s FuncReplace (angr . SimProcedure) :
9 de f run (s e l f , int_arg , s t r i ng , o ther_st r ing) :

10 pr in t ("The func t i on func was rep laced by t h i s f unc t i on ! ")
11 pr in t (f " int_arg : { int_arg } / s t r i n g : { s t r i n g } / other_st r ing

{ other_st r ing } ")
12 re turn 0
13

14 # Hook func , r e p l a c i n g i t with the SimProcedure
15 pro j . hook_symbol (" func " , FuncReplace ())
16

17

18 # In i t symbol ic execut ion manager

74

Code

19 simgr = pro j . f a c t o r y . simulation_manager ()
20

21 # Step un t i l a l l s t a t e s terminate
22 simgr . run ()
23

24 # Pr int s output c o l l e c t e d to stdout
25 f i n a l_ s t a t e = simgr . deadended [0]
26 pr in t (" ∗∗∗∗∗∗STDOUT CONTENT∗∗∗∗∗∗ ")
27 pr in t (f i n a l_ s t a t e . pos ix . dumps (1))

Listing A.5: Implementation of the generic model injected.
1 c l a s s GenericModel (SimProcedure) :
2 " " "
3 I t w i l l work as a charm .
4 A GenericModel r e c e i v e s in input
5 A Symba func t i on s ignature ,
6 and i t models the run () func t i on
7 j u s t by i n j e c t i n g in to memory
8 symbols as s p e c i f i e d in to con f i g ,
9 which needs to be i nh e r i t e d by angr

10 standard , a c co rd ing ly .
11 " " "
12

13 de f __init__(s e l f , f s i g , config_name , de fau l t_ len=32) :
14 s e l f . f s i g = f s i g
15 s e l f . name = f s i g . name
16 s e l f . c on f i g = config_name
17 s e l f . params = [i n sp e c t . Parameter (
18 p . name , i n sp e c t . Parameter .POSITIONAL_OR_KEYWORD) f o r p in

f s i g . params]
19 s e l f . _default_len = de fau l t_ len
20

21 super () . __init__(num_args=len (s e l f . params))
22 pass
23

24 # angr asks , we p l e a s e him .
25 de f run (s e l f , ∗ args) : # py l i n t : d i s a b l e=method−hidden
26 # inspe c t . s i gna tu r e (s e l f . run) . bind (∗ args)
27 params = s e l f . f s i g . params
28 # Symbol I n j e c t i o n proce s s
29 f o r i , param in enumerate (params) :
30 [. . .]

Listing A.6: MSDN retriever script.
1 <snip>
2

3 with open (args . ap i_ f i l e , ’ r ’) as f :

75

Code

4 funcs = [l i n e . s t r i p () f o r l i n e in f]
5

6 msdns = []
7 f o r funcname in funcs :
8 query = " s i t e : docs . m i c ro so f t . com {} " . format (funcname)
9

10 f o r s in search (
11 query ,
12 t l d=’ i t ’ ,
13 lang=’ en ’ ,
14 tbs=’ 0 ’ ,
15 s a f e=’ o f f ’ ,
16 num=2,
17 s t a r t =0,
18 stop=2,
19 domains=None ,
20 pause =2.0 ,
21 tpe=’ ’ ,
22 country=’ ’ ,
23 extra_params=None ,
24 user_agent=None) :
25 i f ’ win32/ api / ’ in s and funcname . lower () in s :
26 msdns . append (s)
27

28 out = {}
29 out [’ f un c t i on s ’] = []
30 # Matter o f time and r e a d ab i l i t y man
31 f un c t i on s = out [’ f un c t i on s ’]
32

33 f o r msdn in msdns :
34 soup = Beaut i fu lSoup (r eque s t s . get (msdn) . text , ’ html . pa r s e r ’)
35 code = soup . f i nd (’ code ’) . get_text () . s p l i t (’ \n ’) [: −2]
36

37 # Sha l l we begin ? Let ’ s parse t h i s code !
38

39 function_name = code [0] . s p l i t () [1] [: − 1]
40 params = []
41

42 f o r i , param in enumerate (code [1 :]) :
43 t = param . s p l i t () [0]
44 # Last argument i s the only one without ’ , ’
45 n = param . s p l i t () [1] i f i == (l en (code [1 :]) − 1) e l s e param .

s p l i t () [1] [: − 1]
46 params . append ({ ’ type ’ : t , ’name ’ : n , ’ i n j e c t ’ : False , ’ l ength

’ : "<DEFAULT>" })
47 f un c t i on s . append ({ ’name ’ : function_name , ’ params ’ : params })
48

49 with open (f " { args . ou t con f i g } . j son " , ’w ’) as f :
50 j s on . dump(out , f , indent=2)

76

Code

Listing A.7: JSON Configuration file for Symba.
1 {
2 " f un c t i on s " : [
3 {
4 "name " : "GetSystemTime " ,
5 " params " : [
6 {
7 " type " : "LPSYSTEMTIME" ,
8 "name " : " lpSystemTime " ,
9 " i n j e c t " : f a l s e ,

10 " l ength " : "<DEFAULT>"
11 }
12]
13 } ,
14 {
15 "name " : "GetUserNameA " ,
16 " params " : [
17 {
18 " type " : "LPSTR" ,
19 "name " : " l pBu f f e r " ,
20 " i n j e c t " : f a l s e ,
21 " l ength " : "<DEFAULT>"
22 } ,
23 {
24 " type " : "LPDWORD" ,
25 "name " : " pcbBuf fer " ,
26 " i n j e c t " : f a l s e ,
27 " l ength " : "<DEFAULT>"
28 }
29]
30 }
31]
32 }

77

Bibliography

[1] Benjamin Jensen, Brandon Valeriano, and Ryan Maness. «Fancy bears and
digital trolls: Cyber strategy with a Russian twist». In: Journal of Strategic
Studies (Jan. 2019), pp. 1–23. doi: 10.1080/01402390.2018.1559152 (cit.
on p. 2).

[2] David Brumley, Cody Hartwig, Zhenkai Liang, James Newsome, Dawn Song,
and Heng Yin. «Automatically Identifying Trigger-based Behavior in Mal-
ware». In: vol. 36. Jan. 1970, pp. 65–88. doi: 10.1007/978-0-387-68768-1_4
(cit. on p. 3).

[3] Yan Shoshitaishvili et al. «SOK: (State of) The Art of War: Offensive Tech-
niques in Binary Analysis». In: May 2016, pp. 138–157. doi: 10.1109/SP.
2016.17 (cit. on p. 7).

[4] Hui Xu, Zirui Zhao, Yangfan Zhou, and Michael Lyu. «On Benchmarking
the Capability of Symbolic Execution Tools with Logic Bombs». In: IEEE
Transactions on Dependable and Secure Computing PP (Dec. 2017). doi:
10.1109/TDSC.2018.2866469 (cit. on p. 8).

[5] Zainab Saud and M. Hasan Islam. «Towards Proactive Detection of Advanced
Persistent Threat (APT) Attacks Using Honeypots». In: Proceedings of the
8th International Conference on Security of Information and Networks. SIN
’15. Sochi, Russia: Association for Computing Machinery, 2015, pp. 154–
157. isbn: 9781450334532. doi: 10.1145/2799979.2800042. url: https:
//doi.org/10.1145/2799979.2800042 (cit. on p. 11).

[6] Samuel Greengard. «The New Face of War». In: Commun. ACM 53.12 (Dec.
2010), pp. 20–22. issn: 0001-0782. doi: 10.1145/1859204.1859212. url:
https://doi.org/10.1145/1859204.1859212 (cit. on p. 11).

[7] Giuseppe Primiero, Frida Solheim, and Jonathan Spring. «On Malfunction,
Mechanisms and Malware Classification». In: Philosophy & Technology (Nov.
2018). doi: 10.1007/s13347-018-0334-2 (cit. on p. 12).

78

https://doi.org/10.1080/01402390.2018.1559152
https://doi.org/10.1007/978-0-387-68768-1_4
https://doi.org/10.1109/SP.2016.17
https://doi.org/10.1109/SP.2016.17
https://doi.org/10.1109/TDSC.2018.2866469
https://doi.org/10.1145/2799979.2800042
https://doi.org/10.1145/2799979.2800042
https://doi.org/10.1145/2799979.2800042
https://doi.org/10.1145/1859204.1859212
https://doi.org/10.1145/1859204.1859212
https://doi.org/10.1007/s13347-018-0334-2

BIBLIOGRAPHY

[8] Alan Lee, Vijay Varadharajan, and Udaya Tupakula. «On Malware Charac-
terization and Attack Classification». In: Proceedings of the First Australasian
Web Conference - Volume 144. AWC ’13. Adelaide, Australia: Australian
Computer Society, Inc., 2013, pp. 43–47. isbn: 9781921770296 (cit. on p. 12).

[9] Yunting Guo and Wenqing Fan. «Feature Collection and Selection in Malware
Classification». In: Proceedings of the 2019 International Conference on
Artificial Intelligence and Advanced Manufacturing. AIAM 2019. Dublin,
Ireland: Association for Computing Machinery, 2019. isbn: 9781450372022.
doi: 10 . 1145 / 3358331 . 3358342. url: https : / / doi . org / 10 . 1145 /
3358331.3358342 (cit. on p. 12).

[10] Ivan Nikolaev, Martin Grill, and Veronica Valeros. «Exploit Kit Website
Detection Using HTTP Proxy Logs». In: Proceedings of the Fifth Inter-
national Conference on Network, Communication and Computing. ICNCC
’16. Kyoto, Japan: Association for Computing Machinery, 2016, pp. 120–
125. isbn: 9781450347938. doi: 10.1145/3033288.3033354. url: https:
//doi.org/10.1145/3033288.3033354 (cit. on p. 12).

[11] Ondřej Pluskal. «Behavioural Malware Detection Using Efficient SVM Imple-
mentation». In: Proceedings of the 2015 Conference on Research in Adaptive
and Convergent Systems. RACS. Prague, Czech Republic: Association for Com-
puting Machinery, 2015, pp. 296–301. isbn: 9781450337380. doi: 10.1145/
2811411.2811516. url: https://doi.org/10.1145/2811411.2811516
(cit. on p. 12).

[12] Guy Martin, Saira Ghafur, James Kinross, Chris Hankin, and Ara Darzi.
«WannaCry—a year on». In: BMJ 361 (June 2018), k2381. doi: 10.1136/
bmj.k2381 (cit. on p. 13).

[13] Rami Sihwail, Khairuddin Omar, and Khairul Akram Zainol Ariffin. «A
survey on malware analysis techniques: static, dynamic, hybrid and memory
analysis». In: 8 (Jan. 2018), p. 1662. doi: 10.18517/ijaseit.8.4-2.6827
(cit. on p. 13).

[14] Roman Rohleder. «Hands-On Ghidra - A Tutorial about the Software Reverse
Engineering Framework». In: Nov. 2019, pp. 77–78. isbn: 978-1-4503-6835-3.
doi: 10.1145/3338503.3357725 (cit. on p. 13).

[15] Dhruwajita Devi and Sukumar Nandi. «Detection of Packed Malware». In:
Proceedings of the First International Conference on Security of Internet of
Things. SecurIT ’12. Kollam, India: Association for Computing Machinery,
2012, pp. 22–26. isbn: 9781450318228. doi: 10.1145/2490428.2490431. url:
https://doi.org/10.1145/2490428.2490431 (cit. on pp. 13, 20).

79

https://doi.org/10.1145/3358331.3358342
https://doi.org/10.1145/3358331.3358342
https://doi.org/10.1145/3358331.3358342
https://doi.org/10.1145/3033288.3033354
https://doi.org/10.1145/3033288.3033354
https://doi.org/10.1145/3033288.3033354
https://doi.org/10.1145/2811411.2811516
https://doi.org/10.1145/2811411.2811516
https://doi.org/10.1145/2811411.2811516
https://doi.org/10.1136/bmj.k2381
https://doi.org/10.1136/bmj.k2381
https://doi.org/10.18517/ijaseit.8.4-2.6827
https://doi.org/10.1145/3338503.3357725
https://doi.org/10.1145/2490428.2490431
https://doi.org/10.1145/2490428.2490431

BIBLIOGRAPHY

[16] Marco Gaudesi, Andrea Marcelli, Ernesto Sanchez, Giovanni Squillero, and Al-
berto Tonda. «Malware Obfuscation through Evolutionary Packers». In: Pro-
ceedings of the Companion Publication of the 2015 Annual Conference on Ge-
netic and Evolutionary Computation. GECCO Companion ’15. Madrid, Spain:
Association for Computing Machinery, 2015, pp. 757–758. isbn: 9781450334884.
doi: 10 . 1145 / 2739482 . 2764940. url: https : / / doi . org / 10 . 1145 /
2739482.2764940 (cit. on p. 13).

[17] Andrey Mikhailov, Aleksey Hmelnov, Evgeny Cherkashin, and Igor Bychkov.
«Control flow graph visualization in compiled software engineering». In: May
2016, pp. 1313–1317. doi: 10.1109/MIPRO.2016.7522343 (cit. on p. 14).

[18] Zhuojun Ren, Guang Chen, and Wenke Lu. «Space Filling Curve Mapping
for Malware Detection and Classification». In: Proceedings of the 2020 3rd
International Conference on Computer Science and Software Engineering.
CSSE 2020. Beijing, China: Association for Computing Machinery, 2020,
pp. 176–180. isbn: 9781450375528. doi: 10.1145/3403746.3403924. url:
https://doi.org/10.1145/3403746.3403924 (cit. on p. 14).

[19] Waqas Aman. «A Framework for Analysis and Comparison of Dynamic
Malware Analysis Tools». In: International Journal of Network Security & Its
Applications 6 (Oct. 2014). doi: 10.5121/ijnsa.2014.6505 (cit. on p. 14).

[20] Ori Or-Meir, Nir Nissim, Yuval Elovici, and Lior Rokach. «Dynamic Malware
Analysis in the Modern Era—A State of the Art Survey». In: ACM Comput.
Surv. 52.5 (Sept. 2019). issn: 0360-0300. doi: 10.1145/3329786. url: https:
//doi.org/10.1145/3329786 (cit. on p. 14).

[21] Amir Afianian, Salman Niksefat, Babak Sadeghiyan, and David Baptiste.
«Malware Dynamic Analysis Evasion Techniques: A Survey». In: ACM Comput.
Surv. 52.6 (Nov. 2019). issn: 0360-0300. doi: 10.1145/3365001. url: https:
//doi.org/10.1145/3365001 (cit. on p. 18).

[22] Melissa Chua and Vivek Balachandran. «Effectiveness of Android Obfusca-
tion on Evading Anti-Malware». In: Proceedings of the Eighth ACM Confer-
ence on Data and Application Security and Privacy. CODASPY ’18. Tempe,
AZ, USA: Association for Computing Machinery, 2018, pp. 143–145. isbn:
9781450356329. doi: 10.1145/3176258.3176942. url: https://doi.org/
10.1145/3176258.3176942 (cit. on p. 19).

[23] Sebastian Schrittwieser, Stefan Katzenbeisser, Johannes Kinder, Georg Merz-
dovnik, and Edgar Weippl. «Protecting Software through Obfuscation: Can
It Keep Pace with Progress in Code Analysis?» In: ACM Comput. Surv.
49.1 (Apr. 2016). issn: 0360-0300. doi: 10.1145/2886012. url: https:
//doi.org/10.1145/2886012 (cit. on p. 19).

80

https://doi.org/10.1145/2739482.2764940
https://doi.org/10.1145/2739482.2764940
https://doi.org/10.1145/2739482.2764940
https://doi.org/10.1109/MIPRO.2016.7522343
https://doi.org/10.1145/3403746.3403924
https://doi.org/10.1145/3403746.3403924
https://doi.org/10.5121/ijnsa.2014.6505
https://doi.org/10.1145/3329786
https://doi.org/10.1145/3329786
https://doi.org/10.1145/3329786
https://doi.org/10.1145/3365001
https://doi.org/10.1145/3365001
https://doi.org/10.1145/3365001
https://doi.org/10.1145/3176258.3176942
https://doi.org/10.1145/3176258.3176942
https://doi.org/10.1145/3176258.3176942
https://doi.org/10.1145/2886012
https://doi.org/10.1145/2886012
https://doi.org/10.1145/2886012

BIBLIOGRAPHY

[24] Pascal Junod, Julien Rinaldini, JohanWehrli, and Julie Michielin. «Obfuscator-
LLVM: Software Protection for the Masses». In: Proceedings of the 1st Inter-
national Workshop on Software Protection. SPRO ’15. Florence, Italy: IEEE
Press, 2015, pp. 3–9 (cit. on p. 19).

[25] Blake Anderson, Curtis Storlie, and Terran Lane. «Improving Malware Clas-
sification: Bridging the Static/Dynamic Gap». In: Proceedings of the 5th
ACM Workshop on Security and Artificial Intelligence. AISec ’12. Raleigh,
North Carolina, USA: Association for Computing Machinery, 2012, pp. 3–
14. isbn: 9781450316644. doi: 10.1145/2381896.2381900. url: https:
//doi.org/10.1145/2381896.2381900 (cit. on p. 21).

[26] Cristian Cadar and Koushik Sen. «Symbolic Execution for Software Testing:
Three Decades Later». In: Commun. ACM 56.2 (Feb. 2013), pp. 82–90. issn:
0001-0782. doi: 10.1145/2408776.2408795. url: https://doi.org/10.
1145/2408776.2408795 (cit. on p. 21).

[27] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu,
and Irene Finocchi. «A Survey of Symbolic Execution Techniques». In: ACM
Comput. Surv. 51.3 (May 2018). issn: 0360-0300. doi: 10.1145/3182657.
url: https://doi.org/10.1145/3182657 (cit. on pp. 21–23).

[28] Gideon Redelinghuys, Willem Visser, and Jaco Geldenhuys. «Symbolic Ex-
ecution of Programs with Strings». In: Proceedings of the South African
Institute for Computer Scientists and Information Technologists Conference.
SAICSIT ’12. Pretoria, South Africa: Association for Computing Machinery,
2012, pp. 139–148. isbn: 9781450313087. doi: 10.1145/2389836.2389853.
url: https://doi.org/10.1145/2389836.2389853 (cit. on p. 22).

[29] Aric Hagberg, Pieter Swart, and Daniel Chult. «Exploring Network Structure,
Dynamics, and Function Using NetworkX». In: Jan. 2008 (cit. on p. 28).

[30] Duc-Hiep Chu, Joxan Jaffar, and Rasool Maghareh. «Symbolic Execution
for Memory Consumption Analysis». In: SIGPLAN Not. 51.5 (June 2016),
pp. 62–71. issn: 0362-1340. doi: 10.1145/2980930.2907955. url: https:
//doi.org/10.1145/2980930.2907955 (cit. on pp. 34, 69).

[31] Prateek Saxena, Pongsin Poosankam, Stephen McCamant, and Dawn Song.
«Loop-Extended Symbolic Execution on Binary Programs». In: Proceedings
of the Eighteenth International Symposium on Software Testing and Analysis.
ISSTA ’09. Chicago, IL, USA: Association for Computing Machinery, 2009,
pp. 225–236. isbn: 9781605583389. doi: 10.1145/1572272.1572299. url:
https://doi.org/10.1145/1572272.1572299 (cit. on p. 34).

81

https://doi.org/10.1145/2381896.2381900
https://doi.org/10.1145/2381896.2381900
https://doi.org/10.1145/2381896.2381900
https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1145/3182657
https://doi.org/10.1145/3182657
https://doi.org/10.1145/2389836.2389853
https://doi.org/10.1145/2389836.2389853
https://doi.org/10.1145/2980930.2907955
https://doi.org/10.1145/2980930.2907955
https://doi.org/10.1145/2980930.2907955
https://doi.org/10.1145/1572272.1572299
https://doi.org/10.1145/1572272.1572299

BIBLIOGRAPHY

[32] Thanassis Avgerinos, Alexandre Rebert, Sang Kil Cha, and David Brumley.
«Enhancing Symbolic Execution with Veritesting». In: Proceedings of the 36th
International Conference on Software Engineering. ICSE 2014. Hyderabad,
India: Association for Computing Machinery, 2014, pp. 1083–1094. isbn:
9781450327565. doi: 10.1145/2568225.2568293. url: https://doi.org/
10.1145/2568225.2568293 (cit. on p. 34).

[33] Vaibhav Sharma, Michael W. Whalen, Stephen McCamant, and Willem
Visser. «Veritesting Challenges in Symbolic Execution of Java». In: SIGSOFT
Softw. Eng. Notes 42.4 (Jan. 2018), pp. 1–5. issn: 0163-5948. doi: 10.1145/
3149485.3149491. url: https://doi.org/10.1145/3149485.3149491
(cit. on p. 34).

[34] Cristian Cadar, Daniel Dunbar, and Dawson Engler. «KLEE: Unassisted
and Automatic Generation of High-Coverage Tests for Complex Systems
Programs». In: Proceedings of the 8th USENIX Conference on Operating
Systems Design and Implementation. OSDI’08. San Diego, California: USENIX
Association, 2008, pp. 209–224 (cit. on p. 54).

[35] Lian Li, Yi Lu, and Jingling Xue. «Dynamic Symbolic Execution for Polymor-
phism». In: Proceedings of the 26th International Conference on Compiler Con-
struction. CC 2017. Austin, TX, USA: Association for Computing Machinery,
2017, pp. 120–130. isbn: 9781450352338. doi: 10.1145/3033019.3033029.
url: https://doi.org/10.1145/3033019.3033029 (cit. on p. 68).

[36] Sebastian Banescu, Christian Collberg, Vijay Ganesh, Zack Newsham, and
Alexander Pretschner. «Code Obfuscation against Symbolic Execution At-
tacks». In: Proceedings of the 32nd Annual Conference on Computer Security
Applications. ACSAC ’16. Los Angeles, California, USA: Association for Com-
puting Machinery, 2016, pp. 189–200. isbn: 9781450347716. doi: 10.1145/
2991079.2991114. url: https://doi.org/10.1145/2991079.2991114
(cit. on p. 68).

[37] Thanassis Avgerinos, Sang Cha, Brent Hao, and David Brumley. «AEG:
Automatic Exploit Generation.» In: vol. 57. Jan. 2011. doi: 10.1145/2560217.
2560219 (cit. on p. 69).

[38] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni
Vigna. «Driller: Augmenting Fuzzing Through Selective Symbolic Execution».
In: Jan. 2016. doi: 10.14722/ndss.2016.23368 (cit. on p. 69).

[39] Moritz Eckert, Antonio Bianchi, Ruoyu Wang, Yan Shoshitaishvili, Christo-
pher Kruegel, and Giovanni Vigna. «Heaphopper: Bringing Bounded Model
Checking to Heap Implementation Security». In: Proceedings of the 27th

82

https://doi.org/10.1145/2568225.2568293
https://doi.org/10.1145/2568225.2568293
https://doi.org/10.1145/2568225.2568293
https://doi.org/10.1145/3149485.3149491
https://doi.org/10.1145/3149485.3149491
https://doi.org/10.1145/3149485.3149491
https://doi.org/10.1145/3033019.3033029
https://doi.org/10.1145/3033019.3033029
https://doi.org/10.1145/2991079.2991114
https://doi.org/10.1145/2991079.2991114
https://doi.org/10.1145/2991079.2991114
https://doi.org/10.1145/2560217.2560219
https://doi.org/10.1145/2560217.2560219
https://doi.org/10.14722/ndss.2016.23368

BIBLIOGRAPHY

USENIX Conference on Security Symposium. SEC’18. Baltimore, MD, USA:
USENIX Association, 2018, pp. 99–116. isbn: 9781931971461 (cit. on p. 69).

[40] Guowei Yang, Sarfraz Khurshid, and Corina S. Păsăreanu. «Memoise: A Tool
for Memoized Symbolic Execution». In: Proceedings of the 2013 International
Conference on Software Engineering. ICSE ’13. San Francisco, CA, USA:
IEEE Press, 2013, pp. 1343–1346. isbn: 9781467330763 (cit. on p. 69).

[41] Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, and Camil Demetrescu.
«Assisting Malware Analysis with Symbolic Execution: A Case Study». In:
June 2017, pp. 171–188. isbn: 978-3-319-60079-6. doi: 10.1007/978-3-319-
60080-2_12 (cit. on p. 70).

[42] David Brumley, Cody Hartwig, Zhenkai Liang, James Newsome, Dawn Song,
and Heng Yin. «Automatically Identifying Trigger-based Behavior in Mal-
ware». In: Botnet Detection: Countering the Largest Security Threat. Ed. by
Wenke Lee, Cliff Wang, and David Dagon. Boston, MA: Springer US, 2008,
pp. 65–88. isbn: 978-0-387-68768-1. doi: 10.1007/978-0-387-68768-1_4.
url: https://doi.org/10.1007/978-0-387-68768-1_4 (cit. on p. 70).

[43] Dorottya Papp, Levente Buttyán, and Zhendong Ma. «Towards Semi-Automated
Detection of Trigger-Based Behavior for Software Security Assurance». In:
Proceedings of the 12th International Conference on Availability, Reliability
and Security. ARES ’17. Reggio Calabria, Italy: Association for Computing
Machinery, 2017. isbn: 9781450352574. doi: 10.1145/3098954.3105821.
url: https://doi.org/10.1145/3098954.3105821 (cit. on p. 70).

[44] Yanick Fratantonio, Antonio Bianchi, William Robertson, Engin Kirda,
Christopher Kruegel, and Giovanni Vigna. «TriggerScope: Towards Detecting
Logic Bombs in Android Applications». In: May 2016, pp. 377–396. doi:
10.1109/SP.2016.30 (cit. on p. 70).

[45] Aubrey Alston. «Concolic Execution as a General Method of Determining
Local Malware Signatures». In: ArXiv abs/1705.05514 (2017) (cit. on p. 70).

[46] Byeongho Kang, Jisu Yang, Jaehyun So, and Czang Yeob Kim. «Detecting
Trigger-Based Behaviors in Botnet Malware». In: Proceedings of the 2015
Conference on Research in Adaptive and Convergent Systems. RACS. Prague,
Czech Republic: Association for Computing Machinery, 2015, pp. 274–279.
isbn: 9781450337380. doi: 10.1145/2811411.2811485. url: https://doi.
org/10.1145/2811411.2811485 (cit. on p. 70).

[47] Konrad Jamrozik, Gordon Fraser, Nikolai Tillmann, and Jonathan De Halleux.
«Augmented Dynamic Symbolic Execution». In: Proceedings of the 27th
IEEE/ACM International Conference on Automated Software Engineering.
ASE 2012. Essen, Germany: Association for Computing Machinery, 2012,

83

https://doi.org/10.1007/978-3-319-60080-2_12
https://doi.org/10.1007/978-3-319-60080-2_12
https://doi.org/10.1007/978-0-387-68768-1_4
https://doi.org/10.1007/978-0-387-68768-1_4
https://doi.org/10.1145/3098954.3105821
https://doi.org/10.1145/3098954.3105821
https://doi.org/10.1109/SP.2016.30
https://doi.org/10.1145/2811411.2811485
https://doi.org/10.1145/2811411.2811485
https://doi.org/10.1145/2811411.2811485

BIBLIOGRAPHY

pp. 254–257. isbn: 9781450312042. doi: 10.1145/2351676.2351716. url:
https://doi.org/10.1145/2351676.2351716 (cit. on p. 72).

[48] Fabio Gritti, Lorenzo Fontana, Eric Gustafson, Fabio Pagani, Andrea Con-
tinella, Christopher Kruegel, and Giovanni Vigna. «SYMBION: Interleaving
Symbolic with Concrete Execution». In: Proceedings of the IEEE Conference
on Communications and Network Security (CNS). June 2020 (cit. on p. 72).

[49] Awanish Pandey, Phani Raj Goutham Kotcharlakota, and Subhajit Roy.
«Deferred Concretization in Symbolic Execution via Fuzzing». In: Proceedings
of the 28th ACM SIGSOFT International Symposium on Software Testing and
Analysis. ISSTA 2019. Beijing, China: Association for Computing Machinery,
2019, pp. 228–238. isbn: 9781450362245. doi: 10.1145/3293882.3330554.
url: https://doi.org/10.1145/3293882.3330554 (cit. on p. 72).

84

https://doi.org/10.1145/2351676.2351716
https://doi.org/10.1145/2351676.2351716
https://doi.org/10.1145/3293882.3330554
https://doi.org/10.1145/3293882.3330554

	List of Figures
	Introduction
	Contribution
	Outline

	Requirements
	Problem Statement
	Proposed Solution
	Expected Outcomes

	Background
	Windows System
	Windows API
	Windows API example

	Windows Malware
	Classification

	Dynamic and static analysis
	Static Analysis
	Dynamic Analysis
	Advantages and Disadvantages

	Symbolic Execution
	Components
	Weaknesses

	The angr framework
	Symbolic Procedures
	Symbolic Exploration
	Starting points
	Generating a CFG
	Simulation Manager

	Symbolic States

	Architecture design
	Configurator
	Model Injector
	States Extractor
	TriggerSeer
	Symbolic Explorator
	Solver

	Implementation details
	GenericModel
	SymbaConfig
	CFGFast
	Exploration Techniques
	Simulation Manager

	Evaluation
	Proof of Concept
	Paranoid fish
	Wrathrage
	Limitations
	OS interaction
	Chained triggers
	Testing samples

	Related Work
	Symbolic Execution
	Malware Trigger Analysis

	Conclusions
	Future work

	Code
	Bibliography

