

Politecnico di Torino

Master Degree course in Communications and Computer

Networks Engineering

Master Degree Thesis

Engineering Data Centers

Supervisor

Prof. Fulvio Risso Candidate

 Peiman Roufarshbaf

 Academic Year 2020

Contents

Chapter 1 .. 1

Introduction.. 1

Chapter 2 .. 4

Global design and architecture... 4

2.1 Current network conception problems .. 4

2.2 SDN (Software Defined Networking) ... 6

2.2.1 Application layer ... 6

2.2.2 Control layer ... 6

2.2.3 Infrastructure layer .. 8

2.3.1 Tools and components ..10

2.3.2 VMware Platform Service Controller...11

2.4 Global Architecture ...11

2.4.1 Distribute Resource Scheduler ..13

2.5 High Availability (HA) ..17

2.6 Fault tolerance ...20

2.6.1 Fault tolerance Requirements ...20

Conclusion ..23

Chapter 3 ..24

Network Virtualization with NSX-V ..24

3.1.1 Standard Switch (vSwitch)...24

3.1.2 Port Group ..25

3.1.3 Distributed Switch ..26

3.1.4 VXLAN ..27

3.1.5 Transport Zone ...27

3.2 Virtual network architecture ..28

3.3 Distributed Logical Router (DLR) ...30

3.3.1 Overview ..30

3.3.2 DLR Components ..31

3.4 Deploying DLR to architecture ..33

3.5 Deploying Dynamic routing algorithm on DLR ...35

3.5.1 NSX Edge Gateway...35

3.5.2 Edge Service Gateway ..35

3.5.3 Deploying BGP protocol...36

3.6 Distributed Firewall and micro-segmentation ..39

3.6.1 Service composer ..39

Conclusion ..42

Chapter 4 ..43

NFV and NSX-T ...43

4.1 NSX-T components ..43

4.2 The virtual Network architecture in multi-hypervisor ..45

4.3 NAT and DHCP with NSX-T..49

4.4 Dynamic host configuration protocol (DHCP protocol in NSX-T)51

4.5 Load balancing in NSX-T ...53

Conclusion ..55

Chapter 5 ..56

vRealize Network Insight ..56

5.1 Traffic distribution ..56

5.2 VMware Network Insight information collection mechanism ..57

5.3 Application discovery ..62

Conclusion ..64

Bibliography ..65

Acknowledgments

Firstly, I would like to express my thanks to my supportive supervisor, Mr. Fulvio Risso, who has
supported me throughout this thesis. Then, I must express my very profound gratitude to my family
for supporting me in all the steps of my life with their continuous encouragement. These
accomplishments could not be possible without them. Thank you.

1

Chapter 1
Introduction

In recent years the demand for internet services has experienced a severe increase; to satisfy
this demand, we need physical facilities known as data centers. With the introduction and
development of Software-Defined Networks (SDN) and Network Function Virtualization
(NFV), the world of networks experienced undergone changes. Meanwhile, SDN, by
separating the control plane and data plane, not only made it possible to have more
comfortable and centralize management over the infrastructure but also provided scalability
and flexibility, which are very important in designing data centers. VMware is the main
leader in virtualization technology, and by producing vSphere, vCenter, and NSX-T/NSX-V
plays a critical role in leading our networks to SDN. NSX-V is a software-defined
networking solution specific to vSphere hypervisor that allows network administrators to
dynamically initialize, manage, control, and deploy different network policies. NSX-T
provides all these functions and features plus supporting multi-hypervisors. Network
Function Virtualization (NFV) is related to deployment and managed network services,
which are entirely implementing in software. For example, load balancer, Network Address
Translation (NAT), Firewalls.

In this work, by using VMware products, we are going to Engineering and designing a Data
Center. In the first chapter, after reviewing the current network problems and describing how
virtualization solved these problems, we will use vSphere 6.7 and vCenter to reach a central
management point. After that, we will use this centralized management to deploy services
such as; DRS (Distributed Resource Scheduler), High Availability (HA), Fault Tolerance
(FT), and vMotion to have a robust and flexible network.

The second chapter is dedicated entirely to Network Virtualization. To have a centralized
network and security management platform and creating different policies to spread among
underlay network components, we deploy NSX to vCenter. NSX gives us the flexibility to
create a uniform distributed switch among all hosts and provide East-West connectivity.
After that, by creating different VMkernel port groups, we will separate network and
management traffic. At the end of the chapter, we will apply DLR to our network design for
providing connectivity between different subnets. Also, we will configure edge routers with
dynamic routing protocol (Border Gateway Protocol) to provide north-south connectivity to
outside networks. In the end, by using distributed firewalls, we provide different policies for
different segments.

In chapter three, we will add a KVM host, and then by using the VMware network
virtualization tool for multi-hypervisors (NSX-T), we will apply different Network Function
Virtualization (NFV) for various purposes. For example, load balancer to distribute client
requests across multiple servers, Firewalls to control and monitor incoming -outcoming
traffics, and Network Address Translations (NAT) to translate private IP addresses to public
IP addresses and vice versa.

2

Chapter four is dedicated to vRealize network insight. It is a monitoring product of VMware
that brings intelligent operations for SDN and enables global view across both virtual and physical
networks and gives administrators the ability to find pinpoint of the problems. In this chapter, we are
going to see how we can use this product to monitor our infrastructure and solve network problems.

3

Engineering Data Centers

4

Chapter 2
Global design and architecture

Overview

In this chapter after reviewing problems of traditional networks and describing
how software-defined networking solved these problems we are going through
the virtualization and by using VMware vSphere we will be able to virtualize our
hosts and virtual machines, after that, we will deploy vCenter to provide
centralized management to the overlay network. In this chapter, our global design
contains two Datacenters with several hosts, and virtual machines, each of these
data centers contains their shared storage which is shared internally between their
hosts, and each host can access this shared storage. Then we are going to use our
virtualized infrastructure to do operations that we were unable to do in traditional
networking, for example; Distribute resource scheduler (DRS), High Availability
(HA), Fault Tolerance (FT), and vMotion

2.1 Current network conception problems

Before proceeding to know about SDN, it needs to understand the problems of
traditional networks and why this technology discovered. In traditional network
architecture, there is no separation between control-plane and data-plane; also,
the burden of decision-making based on our entire network falls on each
networking device independently. Each device has a role, and each of them
should independently decide where they need to send traffic. Therefore, none of
these devices used to know the whole map of topology, just a little part and its
end to end path.

Another problem with decentralized topology was a high degree of complexity,
especially in administration, troubleshooting, and scalability.
Traditional networks usually have a static architecture with high level of
complexity that made it hard for administrators to configure each device of
different vendors for different roles, and the risk of misconfiguration or causing
unwanted behavior in our system always exists. Not only is configuration
difficult and time-consuming, but also troubleshooting needed to be done one by

Engineering Data Centers

5

One on each device. After all, when we reached our goal throughput, we needed
to configure all devices again to have slight changes in configurations.
 Resource allocation was another challenge in traditional networking, especially
when the company was growing fast. On the one hand, if we assigned over
allocated resources, we had wasting resources; on the other hand, under-
allocating obliges us to rebuy hardware. SDN is the solution for all these
problems, and it solved traditional network problems by separating the control-
plane and data-plane. In paradigm 1.1 depicted the difference between SDN and
traditional networking.

paradigm 1.1 _ Difference between SDN and traditional network architecture

Engineering Data Centers

6

2.2 SDN (Software Defined Networking)

Software-Defined Networking (SDN) solves traditional networks' problems and
brings us dynamic, programmatic efficient network configuration for network
performance and monitoring, thanks to the centralization of control logic. This
separation has several advantages:

Different applications can integrate into each other. For example, load
balancing and routing applications can be used simultaneously with different
priorities in the edge routers.

Applications can have a global view, and control-plane software modules can
make more efficient policy decisions based on this information.

It gives us an affordable and non-complex testbed to be used for deploying
SDN applications. The possibility of sharing or moving the abstractions of
the network programming language and the platform of the control-plane will
make it easier to program the related applications.

From the functional point of view, SDN can divide into three sub-layers,
which illustrate in Figure 1.2.

2.2.1 Application layer

The application layer interacts with the control plane, and it is responsible for
building an abstract view of the network by collecting controllers'
information via Application programming interfaces (API) for decision-
making purposes. These applications could be management or business.

2.2.2 Control layer

The control layer is responsible for configuring the infrastructure layer, and it
does that by receiving service requests from the upper layer, which is the
application-layer. The controller maps the service requests dynamically to the
infrastructure layer in an optimal possible manner.

Engineering Data Centers

7

The controller is called the brain in our architecture, and this intelligence.
centralization has its drawback. For example, security, scalability, and
dependability are topics that we should concern in this architecture. To
protect this brain from failure, we usually have a cluster of controllers.
VMware's suggestion is to deploy only a three-node controllers cluster.

Northbound/southbound interfaces

Northbound interfaces are restful APIs used to communicate to a higher
layer, which is the application layer, and southbound APIs are interfaces that
communicate with switches, routers, and other components in the
infrastructure layer.

 Figure 1.2 _Simplified view of SDN architecture

Engineering Data Centers

8

2.2.3 Infrastructure layer

It composed of different equipment that forms an underlying network and
responsible for forwarding network traffics. One of the most critical differences
between infrastructure equipment such as routers, switches, Edge routers, and
controller nodes are traffic passing.
Traffic is not passing through controller layer and in case of failure one of the
controllers it will not affect our network connectivity, but if one of the
components inside the infrastructure layer such as a switch, or router loses its
connectivity it will affect our network, and traffic cannot pass through it.

 2.3 VMware virtualization products

 Background and motivation

Virtualization is a technology that is increasing its demand because of its
number of benefits, in the beginning, only one system used for each
application for isolation purpose, and each system has a dedicated hardware
resource, but this was not only an expensive solution for isolation but also
was waste of system resources. These problems became a reason for the
development of virtualization.
Virtualization gives us the ability to run multiple operating systems or
applications on the same physical hosts and provide each of these hosts an
abstract view of hardware resources. Virtualization gives us the ability to
flexibly and dynamically allocate resources to each virtual machine, and this
flexibility is beneficial for data centers that running internet applications, and
their customers may see highly and unpredictable load. Before virtualization,
we had to dedicate fix amount of resources such as RAM, CPU, and storage,
and over-allocating caused a waste of resources and, under allocation, forced
us to repurchase these resources. With virtualization, administrators can
increase or decrease hardware resources very easily and fast. Therefore,
virtualization optimized the resource usage and optimized space usage by
compacting several servers into one physical server, and this reduction of
servers leads to many benefits, especially when we scale up. In summary, the
benefits of virtualization are:

Engineering Data Centers

9

• Server Consolidation
• Improve resource Utilization
• Scalability and reliability
• Business continuity

Virtualization added one extra layer on top of the hardware layer in
traditional network architecture, which is called "hypervisor." Hypervisor
makes us able to install and run multiple gusts with different operating
systems running in parallel on a single server with limited hardware resources
and associate to each of these virtual servers a specific hardware resource
such as; RAM, CPU, Storage, Etc. (Yaqub, March 23, 2012)

Hypervisor gives the illusion that each VM owns its resource, and it is not
shared. This compact approach leads our topology to cost and space
reduction in one hand and, on the other hand, optimize utilization, which is
shown in [Figure 1.3].

Figure 1.3_ Comparing costs and utilization before or after virtualization

There are two types of hypervisors. The first type, which is known as a bare
metal or hypervisor type one, installing directly on the host's physical
hardware. The second one, known as hypervisor type two, is an application
installing on an existing operating system.
Examples are vSphere ESXi, Microsoft Hyper-V, and Linux KVM for type
one, and VMware Workstation, parallel for type two.

Engineering Data Centers

10

2.3.1 Tools and components

 vSphere and vCenter

VMware provides different tools and GUI for various purposes. VMware vSphere is
an umbrella term platform, including VMware bare-metal hypervisor ESXi, vSphere
Web/Flash Client, and vCenter.

vSphere and vCenter are components of VMware vSphere suite; meanwhile, ESXi is
a type-one hypervisor which plays a fundamental role in virtualization by providing
an environment for installing and running multiple applications with different
operating systems in parallel. To install and manage each of these hypervisors, we
need to connect via vSphere Web/Flash client.

vCenter is another part of the vSphere suite, which gives us the ability to manage and
configure all these hosts and virtual machines by providing a centralized console for
operation, resource provisioning, and management.

 There are two ways to manage all of the virtualized hosts; one way is to use vSphere
web/flash-based and individually configure each host, which is time-consuming and
not practical in data centers or install a vCenter and join all hosts to the vCenter and
configure them centrally as it depicted in Figure 1.4. As we need to manage many
servers and applications, we choose the second option.

Figure 1.4

Engineering Data Centers

11

There are two methods to deploy vCenter. The first method is to install a vCenter
appliance, which is a preconfigured Linux based virtual machine or installing vCenter
on a windows server. We almost always use the first option.

 2.3.2 VMware Platform Service Controller

PSC is a new service introduced after the vSphere 6 version, and it is responsible for
handling security services such as; licensing, certificate management, server
reservation, and single sign-on. PSC is a distributed service with a maximum number
of eight instances for high availability, which achieved through load balancing
technology and providing replicates information such as permissions and roles to
other PSC instances. It can be installed internally or externally within the installation
of vCenter.

Single sign-on is an appliance and authentication broker in PSC with a security token
exchange infrastructure. When a user authenticates via vCenter single sign-on and
receives a SAML token, then by using this token and receiving a privilege, the user
will not need any additional authentication to login on different applications.

Single sign-on is the only component that can be installed beside PSC. These
following components integrate with PSC:

 VMware Syslog health service
 VMware Directory service
 VMware Authentication framework
 VMware Service control agent
 VMware Common logging service
 VMware HTTP reverse proxy
 VMware identity management service
 VMware certificate service

2.4 Global Architecture

In our global design, we have two Data centers, and each of them has a dedicated
ISCSI shared storage. Inside of each data center, there is a distributed virtual switch
that provides connections between hosts [Figure 1.5].

In each Data Center, we have several clusters. The reason behind of clusters
separation is when we dedicate several hosts to a cluster; the resource becomes a pool

Engineering Data Centers

12

of resources. It gives us the flexibility to use features like DRS, HA, FT, and
vMotion.

 The global architecture of the first Data Center (VCSA-0a1)

[Figure 1.5_ Global architecture of Data Center a and b]

Regione A01

 ISCSI Regione a01

 Virtual distribute switch

 ESXi1 ESXi 2

Host a VMs Host b VMs
 App-01a – 192.168.110.104 core-01a – 192.168.120.51

 Template-01a kms-01a – 192.168.110.81

The global architecture of the second Data Center (VCSA-01b)

Region B01

 ISCSI Region B01

 Virtual Distributed Switch

 ESX1 ESX2

Host a VMs Hot b VMs

 ESX-03b-192.168.110.3 app-01b 192.168.120.51

 Esx-03b – 192.168.210.53 core-01b 192.168.110.81

 Windows -01b 192.168.100.114

Engineering Data Centers

13

So far, we deployed our vCenters and installed each of these hosts and VMs. Figure 1.6

 Figure 1.6

2.4.1 Distribute Resource Scheduler

After installing vCenters and deploying hosts a and b with their VMs, we are going to
use DRS to automatically balance the memory and CPU loads between different hosts
inside a cluster. We do this action by migrating VMs while they are running from an
overloaded ESXi host to another host in the same cluster that has enough
computational resources such as (RAM, CPU, Storage space).

To use this feature, we should make sure we have requirements:

 VCenter server needs to be installed.
 CPUs of ESXIs hosts must be compatible (it is better to be the same vendor)
 Hosts should be part of the vMotion network in the cluster that we want to

have DRS (creating and configuring of different port groups is covered in
chapter two, for now, we consider hosts are participating in vMotion port
group).

 All hosts of the cluster should use shared storage, which is accessible by all
of them.

 Shared storage needs enough space to allocate all virtual disks and all the
migrated VMs (Moenster).

At this step, our network has requirements we need to enable DRS, as we discussed
earlier, DRS is a cluster base, and by going through the configuration tab of each
cluster, we can activate and set the scheduler. With DRS, we have several scheduling
options: fully automated, partial automate, or manually; we can also set the
aggressive levels. We used a full automation scheduler with full aggression.

Engineering Data Centers

14

Fully automated level:
DRS works without human interaction and not only generates load balancing
recommendations and initial placement, but also executes them automatically.

Partially automated level:
DRS will handle initial placement of virtual machines, but any further migration
recommendations will be surfaced up to the administrator to decide whether to move
the virtual machine.

Manual automated level:
Both initial and load balancing are in manual mode, and the administrator should
decide about them.

Full aggressive:

Full aggressive means whenever the load on the one host in the cluster increased DRS
makes action and does vMotion immediately, but we do not use it in data centers
because it generates lots of traffic and makes our systems unstable, also most of the
time there is a temporary load, and we do not want to make our systems unstable.

DRS makes an action when there is overload, to verify and monitor this process when
the loads on the system balanced between hosts, we used a piece of code on the
command line of two virtual machines in host ESX01-a of data center_01a to
overload them and imbalance the cluster. To verify the action of DRS, we need to
monitor performance before and after the overload.

In diagram 1.7, after setting up our configuration to fully automated with a high level
of aggression, we monitored the real-time load of RAM and CPU of ESX-01a on
05/08/2020 between 3:30 AM - 3:55 AM to check our resource performance and
usage before overload. As can be seen our memory and CPU usage are in stable mode
Figure 1.7

Engineering Data Centers

15

(Figure 1.7 - balance loads on ESX-01a)

Then we use code below in the command line of the application server and template
server of host 01a to imbalance the host:

Engineering Data Centers

16

After running this code, memory and CPU usage reaches the maximum level
(between 80-90%) in blue intervals. Then, as we set our scheduler to aggressive
mode, it forces the overloaded VMs to move to ESX-02a immediately at time 4:05
AM, after this migration we can see on black arrow that memory usage and CPU
usage passed peak from high loaded hosts and here is a point that migration took
action and these virtual machines transferred to host b.

Engineering Data Centers

17

 Figure 1.8

In the Syslog summary, we can verify that these two virtual machines migrated

successfully at time 4:06:21 AM, and these migrations took seven and six (ms).

Figure 1.9

 Figure 1.9

2.5 High Availability (HA)

VMware vSphere High Availability is another essential and useful utility in Data
Centers, which is included in vSphere suite and delivers the ability required by
applications running on virtual machines independent of their operating system and
provides a uniform, cost-effective protection against applications and hardware
failure. HA helps us to:

• Eliminate the need for dedicated software and hardware standby in a
virtualization environment

• Decrease downtime
• Increase reliability and provide disaster recovery continuity

HA is another cluster-based utility beside DRS, which discussed in the previous
section. When we create a vSphere HA cluster, one host elected as a master host, and

Engineering Data Centers

18

the rest of the hosts referred to as slaves. The master host communicates with vCenter
and slave hosts to monitor the status of hosts and virtual machines in the cluster to
protect all of them in case of any issues such as applications crash or host failures.

The master host can detect hosts and VMs failures through heartbeat mechanism by
sending a signal every second to make sure they are running as expected. If the
master host does not get this heartbeat, it determines if the host is heart beating to one
of the cluster's datastore as a double-check, if the connection exists between the data
store and slave, then the master node consider it as network isolation and failure of
connection between master and slave. However, if the master node does not receive
any heartbeat from slave and data-stores, it will consider as a slave failure.

Corrective action depends on the type of failure detected. If a VMs crashed, the host
continues to run, and HA forces the VM's to restart in the originated host, but if an
entire host fails the HA utility starts with highest priority continuing with lower
priority until all to finished and restart all affected virtual machines on the other hosts
in the cluster with all their configurations.

Figure 1.10 -HA

The reason after migration the virtual machines still can use the same IP address is
each host connected to a dedicated port group in the distributed virtual switch, and by
moving to another host, still, they are in the same port group of the same virtual
switch.

Before configuring HA, we need some pre-checks:

Engineering Data Centers

19

• vSphere essential license
• Shared storage
• CPU compatibility
• Enabled DRS

We have shared storage as depicted in Figure 1.5 and enabled DRS in the previous
section, and all hosts have Intel CPU, so all HA requirements are satisfied.

We configured our High Availability to restart the application server in case of failure
on the other host, to verify this configuration, we turned off the host to mimic host
failure, and then we can see both application server and template-01a disconnected
and cannot receive any signal.

Figure 1.11

Then HA makes action and restarts disconnected servers on the other host. As we can
see in figure 1.12, although the host-01a is in maintenance mode, the application
server (app-01a) is running on the other host.

Figure 1.12

Engineering Data Centers

20

2.6 Fault tolerance

Fault tolerance is another failover protection utility that we can deploy, the most
significant advantage of FT in comparison to HA is 100% uptime, and end-users do
not lose connectivity by providing primary and secondary VM. These two are sync,
and secondary VM takes over in the event of a host failure.

Mostly we use FT for critical business-virtual machines like banking servers,
although it has the best protection among failure protections, it has some
disadvantages, which leads us to use HA in data centers.

• The VM must not have any snapshots
• Hosts must have licensed for vSphere FT
• FT-protection VM will use twice as much resource. For example, if the

primary V uses 4GB of RAM, also the secondary VM will use 4GB

2.6.1 Fault tolerance Requirements
vSphere fault tolerance (FT) is made possible by four underlying technologies. These
technologies are:

 Storage
 Network
 Transparent
 Runtime

 Storage

FT ensures the primary and secondary storage of virtual machines are always sync.
Whenever the FT protection begins, the initial synchronization of virtual machine
disks (VMDKs) happens by using storage Motion to ensure both storages have the
exact disk state. When the storage vMotion completes the FT, a virtual machine
considered as FT-protected.

After synchronization, vSphere FT mirror VMDK modifications to keep the
secondary identical.

Engineering Data Centers

21

Transparent failover
To have a transparent failover, FT ensures that the state of the new primary is agreed
with the previous one. That can be achieved by holding and only releasing externally
visible output from the virtual machine once an acknowledgment made from the new
primary affirming that the state of the two virtual machines is consistent.

Runtime State
vSphere FT captures the active memory and exact execution state of the virtual
machine to ensure that runtime of the two replicas are always identical. To decrease
the transformation time of FT in case of failure, we need to dedicate a high-speed
network to allow virtual machines instantaneously to switch from running on the
primary ESXi to the secondary ESXi host.

Network
To ensure that even after the FT, virtual machine identity, and all connections
preserved, networks used by the virtual machines virtualized by the underlying ESXi
host. Very similar to vMotion, FT manages the virtual mac-address as a part of the
process. Since FT preserved the storage, exact execution state, and network identity
with all active network connections, the result is zero downtime.

We configured the FT with one virtual machine in the second host as a secondary for
an application server in the host (a), which is primary. Figure 1.13

Figure 1.13 – The primary and secondary FT components

Now we need to test fault tolerance to be sure that is configured and running well; for
this reason, there is an option " Fault Tolerance Test.". After running the FT test, we
expect to see the secondary machine takes over, and the application server with all the
network configuration and IP addresses runs on the other host. Figure 1.14

Engineering Data Centers

22

 Figure 1.14 – FT Test

 Figure 1.15 – FT loaded with the same IP on the host 02-b

As can be seen in Figure 1.15 the application server has the same IP on the secondary
host without downtime

Engineering Data Centers

23

Chapter 2

Conclusion

“In the second chapter, we reviewed the problems of traditional networks and
introduced Software-Defined network components.

We used vSphere to virtualize our servers and applications, and the result of this
approach was High scalability. For example, to add another server and applications,
we do not need to buy another server and spend lots of money on its hardware. We
can use a pool of hardware resources that hypervisor provides, and in case of need,
we can easily change the dedicated resource very fast. vCenter is central
management, and by adding all hosts to the vCenter, we were able to configure all of
them via a single management API, but in the traditional network, we needed to
configure each server separately, and it was time-consuming.

We used different features that SDN provides in chapter two, features such as High
Availability, which was a more common fault tolerance technique compared to FT, as
we saw to have fault tolerance, we needed to have an identical pair on the other host.
In other words, we needed to dedicate the ram, CPU, and other resources to an ideal
server. Besides that, the configuration for FT was complicated, and all these reasons
lead us to use High Availability for all applications and servers and only use FT for
critical and essential servers.

Another important and useful feature that SDN gave to us was vMotion. With this
feature, we were able to move a virtual server that was powered on to another cluster
with all configuration; it is impossible to have a similar feature in traditional physical

networks.”

Engineering Data Centers

24

Chapter 3
Network Virtualization with NSX-V

Overview

In this chapter, after reviewing the difference between the standard switch and
distributed switches and introducing virtual network components, we will install
NSX-v in vCenter to have a centralized network management platform. We will use
this management platform to create a universal distributed switch among all hosts to
provide East-West connectivity. By using different port groups, we will separate
network and management traffic. In the end, we will deploy a distributed logical
router (DLR) to our hosts. Then we install and configure Edge routers to have
different Network Function Virtualization for various purposes such as; NAT for
providing connectivity between the outside and inside, Distributed logical routing
(DLR), Distributed firewalling, and load balancing. In this chapter, we configure
edges to have a dynamic interior gateway algorithm (BGP) and use distributed
firewalls for deploying different policies.

3.1 Network Virtualization components

3.1.1 Standard Switch (vSwitch)

The standard switch or sometimes called Vswitch is created by default when we
install the ESXi hosts. It behaves like a regular physical switch inside each ESXi host
and responsible for forwarding traffics generated by virtual machines inside the host
to other virtual machines inside the same rack based on MAC address.

 A standard switch is responsible for providing VMkernel access to networks for
services like vMotion, ISCSI, FT and provides connectivity between:

Engineering Data Centers

25

different virtual machines within the same ESXi host. different virtual machines on
different hosts physical and virtual machines on the network

Figure 3.1 depicted the architecture of Standard switch

Figure 3.1- Architecture of Vswitch

Standard switch gives us the ability to provide layer two connectivity between VMs
in the host internally. In other words, the virtual servers in the same subnet in the host
can communicate directly, and traffic does not need to leave the ESXi host.

vSwitch also supports other advanced features like outbound traffic shaping, NIC
teaming, Cisco Discovery Protocol (CDP), and different security policies.

3.1.2 Port Group

Port Groups is an aggregation of multiple ports under a common configuration to
provide a stable point for VMs inside a specific labeled to communicate. We use port
groups to separate VMkernel and server traffics.

Engineering Data Centers

26

3.1.3 Distributed Switch

Distributed switches provide connectivity between multiple hosts inside a cluster or
different clusters. Creating a distributed switch and deploying different port groups
gives us the flexibility to migrate virtual machines of a host to another host while they
are in the same port groups.

Figure 3.2 depicted the architecture of a distributed switch.

Figure 3.2 – Virtual Distributed Switch (Vds) architecture

As we discussed in chapter two, the best way of designing a Data Center is to
separate computation and management clusters. The reason behind that is to ease

Engineering Data Centers

27

administrators troubleshooting and separating management and virtual machines
traffic

VMNIC:

These ports are physical network interfaces adapter on the hosts, but NICs are virtual
network interfaces.

3.1.4 VXLAN

VXLAN refers to Virtual Extension Lan. Before the invention of VXLAN, traditional
Data Centers used VLAN to enforce layer two isolation. However, after passing the
time and growing data centers, we needed to extend layer two networks across the
racks inside a data center or even across data centers on different geographical
locations. That was the reason for the VXLAN invention.

VXLAN is a solution for the extension of layer two networks over an existing layer
three networks by encapsulating the whole frame with VTEP (Virtual Tunnel
Endpoint) of outgoing host and decapsulating VTEP frame in the destination host.
Figure 3.3

Figure 3.3 VXLAN frame format

3.1.5 Transport Zone

The transport zone is scope for VXLAN traffic. We can define several transport
zones and virtual distributed switches and assign each of these Vds to a transport
zone.

The recommendation for using the transport zone is to create a Global transport zone
with a universal distributed switch that connects all the hosts and clusters in the data
center and then creating other transport zones for different reachability scopes. When
we create a transport zone; It gives us three different options for the control plane
mode.

Engineering Data Centers

28

Multicast

In this option, multicast sends traffic from a single source to several destinations. It
requires PIM (Protocol Independent Multicasting) to be enabled as well as IGMP in
the environment.

Unicast
There is no need for specific physical network configuration like multicast, and the
traffic is going through a single source to a single destination.

Hybrid
It is a combination of unicast and multicast and IGMP needed on the first-hop switch,
but we do not need PIM.

3.2 Virtual network architecture
We continue with the architecture we had in chapter one. In this step, we are going to
create a global transport zone and a distributed switch, which includes all the hosts in
the data center.

Figure 3.4 – Global architecture

VXLAN Transport zone

ESX-01a

ESX-02a

 ESX-03a

 ESX-04a ESX-05a

Engineering Data Centers

29

Computational cluster: Management cluster:

ESX-0a1 : 192.168.110.51 ESX-04a : 192.168.110.54

ESX-02a : 192.168.110.52 ESX-05a : 192.168.110.55

ESX-03a : 192.168.110.53

As we discussed so far, to have a centralized network management platform, we need
to install NSX in the vCenter. To deploy NSX into our architecture, we need to install
the NSX manager first and exact three-nodes controller.

As depicted in figure 3.5, we installed the NSX manager inside the vCenter with an
IP address of 192.168.110.42.

Figure 3.5

After installing the NSX manager, we install each controller separately—Figure 3.6

Figure 3.6- fist controller installation

We installed NSX on vCenter and reached a central management point for network
virtualization. To have connectivity between different hosts, we need to create a
global transport zone to indicate the distributed switch scope. Then we should attach
virtual machines that we need to have connectivity via this logical switch.

We created three virtual switches for web applications, Database applications, and
transit switch. After that, we will attach virtual machines to relevant virtual switches.
Figures 3.7, 3.8.

Engineering Data Centers

30

Figure 3.7 Universal Transport Zone

 Figure 3.8 three logical switches that are attached to the Transport zone

We created three different logical switches for three different server categories in the
scope of the transport zone, and then we attached three virtual machines to
application and database logical switches.

3.3 Distributed Logical Router (DLR)
3.3.1 Overview

Routers responsible for routing traffic between different subnets. The problems of
physical routers in traditional networking were not only the complexity of design
when we scale-up, but also routers needed to process lots of east-west and north-
south traffic.

DLR simplified this problem by distributing logical routers to hosts, and traffic does
not need to leave the host for routing between different subnets; also, the routing is
performing in the hypervisor kernel. Logical routing not only keeps the same
functionality of physical routers but also optimizes handling east-west traffic.

Figure 3.9 illustrates the difference between routing in traditional physical networks
and DLR.

Engineering Data Centers

31

Figure 3.9 Difference between traditional network East-West routing and after using NSX

As we can see in figure 3.9, the packet in the web tier does not need to leave the
ESXI host to receive the correct route and back again to the destination and waste
bandwidth.

3.3.2 DLR Components

Data plane
The Data plane is a kernel module that is responsible for forwarding traffic. It is
consists of an NSX virtual switch with additional components for several services.
Userspace agents, configuration files, and install scripts packaged in vSphere
Installation Bundles (VIB) to run inside the kernel for providing different services
such as DLR, firewalls, and enabling VXLAN bridging capabilities.

Engineering Data Centers

32

Control plane
NSX Control plane consists of NSX logical router VM, Controller cluster, and user
world agent.

Among all these components, the controller cluster is the most critical component,
and it is responsible for:

 Eliminating ARP request broadcast traffic
 Distributing routing information to each host
 Performing load balancing between three NSX controller node
 Maintaining ARP tables
 Maintaining VXLAN and mac-address tables

Management plane
The management plane is a central point of managing the whole NSX infrastructure,
and its main features and responsibilities are:

 Installing VMware NSX controllers
 Configuring ESXi hosts via message bus agent
 Generating a self-signed certificate to have secure communication
 Installing UWA (User World Agent), Distributed logical routers and kernel

modules for distributed firewall

NSX management has 1:1 relation with vCenter, and we can not service several data
centers with one NSX management

A distributed logical router is an appliance that contains the control plane and
distributed data plane in the kernel module of each hypervisor. DLR control plane
needs to communicate with the NSX controller to push all routing updates from the
management plane to the kernel modules. The interaction between DLR and control
cluster to push updates to the NSX logical router is shown in Figure 3.9

Engineering Data Centers

33

Figure 3.9 – Interaction

between DLR VM and control cluster

3.4 Deploying DLR to architecture

In this section, we are going to separate virtual servers and applications by their
category into three logical switches in the scope of transport zone, and then we will
use DLR to have a distributed logical route between these three virtual switches.

We created logical switches for web servers, applications, databases, and DC transit.
Then we deployed each virtual machine to associate logical switch. Figure 3.10

Figure 3.10 logical switches

As we can see inside the logical switch, virtual machines can ping each other, but
they do not have any feasible route to other subnets. Figure 3.11, 3.12

Engineering Data Centers

34

Figure 3.11 – Application servers can not ping web application

Figure 3.12 Inside the switch they can ping

To have a route between different subnets, we need to deploy a Distributed Logical
Router (DLR) and assign an IP address in the same range of each virtual switch. Figure
3.13

Figure 3.13 – DLR interfaces which connected to each logical switch

After that, all these logical switches connected to a logical router and different
subnets have a connection interface to the logical router so they will be able to send
and receive ICMP packets.

So far what we deployed is illustrated in figure 3.13

Engineering Data Centers

35

Figure 3.13

3.5 Deploying Dynamic routing algorithm on
DLR

3.5.1 NSX Edge Gateway

NSX edge is an appliance that is responsible for providing connectivity and handling
traffic that is going outside and coming inside. It acts as a router and able to peer with
physical network equipment, and gives the network virtualization access the internet,
WAN, or any other physical network resources.

3.5.2 Edge Service Gateway

ESG gives us access to many services such as; FIREWALL, DHCP, VPN, and Load
balancing. We can install a cluster of Edges to have redundancy and not having a
single point of failover.

In this section, we will deploy Edge service gateway, and by configuring border
gateway routing protocol on the edge router, we will provide connectivity between
inside network and outside network.

Engineering Data Centers

36

Figure 3.14

3.5.3 Deploying BGP protocol

In this section, we will deploy the BGP routing protocol to the edge router to provide
north-south connectivity.

First, we set the uplink interface of DLR to 172.16.0.10; for simplicity, we also set
the router ID of this router with this IP.

As we can see in Figure 3.14, the default gateway is 172.16.0.1. Figure 3.15

Engineering Data Centers

37

Figure 3.15

We saved these changes and published them to or DLR.

In the second step, we should enable the border gateway protocol. As we can see in
our design, we have one interface of BGP in DC-transit with an autonomous system
id of 65001 and the following addresses.

Figure 3.16

Route redistribution disabled by default; to activate it and to allow the BGP to learn
connected routes and permit packets to pass, we need to configure it in the DLR route
redistribution tab. Figure 3.17

Engineering Data Centers

38

Figure 3.17

The final step for this section is to configure the NSX EDGE to have one interface to
BGP autonomous 65001 and one interfaces as an uplink to autonomous 65002

Figure 3.18

As we can, NSX Edge has two neighbors in two different subnets. Now we
configured everything we need to have north-south IP routes and connectivity.

To verify our configuration, we will use one of the PC on range 192.168.110.1/24 to
reach a web server, which has an IP address of 172.16.10.11.

Engineering Data Centers

39

Figure 3.19

3.6 Distributed Firewall and micro-segmentation

Overview
NSX Distributed Firewall (DFW) is a kernel-embedded firewall in the hypervisor of
hosts that control and provides visibility for virtualized workloads gives us the ability
to create policy based on IP, IPsec, VXLAN, VLAN, virtual machines, clusters,
datacenter.

As the firewall is distributed to each VM when we create a policy and deploy it to the
network topology, these rules will force at the VNIC level of each virtual machine.
Then after vMotion or HA, these rules remain without any changes. This nature of
distributed firewalls has significant benefits compared to physical firewalls in the
traditional network, which is an automatic extension by adding hosts or virtual
machines.

Microsegmentation is a technique in network security, and by this technique, the
network architects able to logically divide into separate security and deliver services
for each segment.

3.6.1 Service composer

Service composer lets us build a new model for consuming network and security
services and assigning these security services and policies to applications in real-time.

In this section, we will change the default firewall policy for deploying different
policies. As we checked in figure 3.19, we have connectivity to different servers.
Now we want to create a specific firewall rule for web applications.

Engineering Data Centers

40

In the composer section, we create a web-tier group and join two web applications to
this group as illustrated in Figure 3.20

Figure 3.20

In the firewall configuration, we are going to create three different rules

• Exit to web: all traffic from any source in which destination is for web-tier
and using HTTPS service have permitted to pass traffic.

• Web to the app: all traffic is coming from web servers and destined to
application logical switch, which consists of application servers, and using
customized service of MY-APP (protocol TCP with destination pot 8443)
should have the permission to pass.

• All traffics coming from logical application switch, consists of application
servers and destined to Database logical switch and using HTTP service,
should be allowed to pass traffic.

We created these rules on the firewall. Figure 3.21

Figure 3.21 – Firewall rules

The default rule is for any sources that send traffic to any destination to use any
service is set to deny or block. Then, by creating access permission to these groups,
we create a high-security level for our systems.

We expect the firewall drop ICMP packets when we ping three different subnets, and
as we can see in figure 3.22, all packets dropped. The reason is we did not define any
permission rule for ICMP protocol from any sources, and the default rule of firewall,
which configured to reject anything else, is discarding our packets at the kernel level
of each host.

Engineering Data Centers

41

Figure 3.22 – Firewall Is dropping ICMP packets from web servers to any other subnets

Engineering Data Centers

42

Chapter 3

Conclusion

“In this chapter, we focused on network virtualization with NSX-V. NSX-v
gave us the ability to manage our network infrastructure centrally.

As we discussed, it used three nodes controller to push applied configuration
in the management layer to forwarding nodes. In virtual networks, we should
have the same functionality we had in physical networks. NSX-V not only
provided this functionality but also gave us the flexibility, programmability,
and elasticity to have a virtual switch with many more ports we could have in
physical switches. We had at most 48 ports in real physical switches, but we
could have 1061 virtual ports in virtual switches.

The second benefits that we reached were in virtual switches; it did not need to
send out traffic host to the physical network and use bandwidth, and it could
be sent traffic to another application in the same host (rack).

Besides, virtual switches, we had distributed logical routers. DLR was a kernel
module logical router and provided routes between different logical switches
internally. For example in physical networks to send traffic from subnet A to
subnet B we had to use a physical router and traffic had to reach this router to
receive the route, as we know routers are expensive, and network
administrators had to send their request to t company and get their
confirmations to buy a router, and which was time-consuming. In DLR, we
can easily implement a router immediately, and the traffic does not need to
leave the host.

Another essential concept we had in virtual networks was that we were able to
create a universal switch between applications and servers in the same host
and between a different host in different places.”

Engineering Data Centers

43

Chapter 4
NFV and NSX-T

Overview

VMware NSX-T in another software-defined network tool to virtualize the network
infrastructure, and the main difference of this type in comparison to NSX-V is, it can
support multi-hypervisor environments such as KVM or multiple public/private
clouds.

In this chapter, after reviewing components of NSX-T, we are going to add a KVM
hypervisor and use NSX-T to deploy a logical switch between VMware hypervisor
and KVM. After that, we will use features that NSX-T provides, such as NAT to
convert public IP and private IP, Firewall to deploy different policies, and load
balancing to provide redundancy and failover.

4.1 NSX-T components

Management plane

NSX-T manager is the core of the management plane, and it gives administrators a
comprehensive view of everything involved via a single API entry point.

Control plane

The control plane is responsible for pushing and distributing information from the
management plane to forwarding engines. This control plane composed of two parts.
Figure 4.1

Engineering Data Centers

44

• The central control plane (CCP): Use a cluster of virtual machines called
CCP to have a redundant. Any failure in CCP is not affecting the data plane,
and data is not passing through this level

• The local control plane (LCP): it runes in transport nodes and communicate
with CCP

Figure 4.1

Data Plane

Data plane is the place that all stateless forwarding takes place. In this level, we have
transport nodes or N-VDS, which are unique for NSX-T.

Hypervisor Transport nodes

These are hypervisors that prepared to run NSX-T; they can be VMware hypervisor
(ESXi) or Linux base hypervisor (KVM).

N-VDS

N-VDS is a software define switch platform which is entirely hypervisor
independent. N-VDS's responsibility is forwarding traffic among components of
transport nodes or between internal components and underlay physical network.

EDGE nodes

EDGE nodes are server appliance, and their primary jobs are doing services that are
not dispersed among any hypervisors (ESXI or KVM). They are representing pools of
capacity and can be grouped in a cluster.

Engineering Data Centers

45

Hypervisor transport nodes

They are ESXi or KVM hypervisors that participate in NSX-T.

UPLINK profile

Uplink profiles are templates to define how N-VDS can connect to the physical
network, but also, they ensure the profile is applied uniformly across multiple
transport nodes.

In uplink profile we can specify:

• Uplink MTU
• Uplink format of N-VDS
• Teaming policies for the uplinks

We are going to add a Linux hypervisor (KVM) to the network and then use NSX-T
centralized management API to deploy different services such as NAT, Load
balancing, Firewalling to this multi-hypervisor infrastructure.

4.2 The virtual Network architecture in multi-
hypervisor

We added a KVM hypervisor and two NSX-edge clusters to the previous design

Engineering Data Centers

46

Figure 4.2

After clustering our virtual infrastructure, we designed a two-tier gateway
architecture.

Tier one

Tier one is a gateway router which connected to tier zero for northbound traffic
routing in one hand and on the other hand connected to one or more underlay
networks

Tier zero

Tier one is a top tier layer, and on the one hand, it has an interface to tier one, on the
other hand, it has an interface to another network. We can deploy tier zero as an
active-active or active-standby cluster.

Engineering Data Centers

47

Figure 4.3

We added KVM to our design, and as we can see in the configuration of host
transport nodes in Figure 4.4, hosts that are running VMware hypervisors are
managing by vCenter, but the KVM is a standalone host.

Engineering Data Centers

48

Figure 4.4 – host transport nodes configuration in a multi-hypervisor environment

We create a new logical segment for the added KVM host, we name it "newsegment"
and attached host web-04 to this logical segment.

 Figure 4.5

All these virtual switches are in different subnets, but all of them have an interface
uplink connectivity to tier 0 gateway, and we expect all of these web servers from the
different hypervisors and subnets to be able to send and receive ICMP packets.

Engineering Data Centers

49

Figure 4.6

4.3 NAT and DHCP with NSX-T

In this section, we will complete our architecture by adding the second tier, which is
tier one. Tier one is connected to tier zero and use the second edge cluster. After that,
we will add a web server logical switch to this tier, and our goal is to provide a source
and destination NAT for these servers.

Figure 4.7- Adding the second tier which is tier-one to connect tier 0 by using edge cluster 02

Engineering Data Centers

50

Figure 4.8 – We connected web server logical switch to tier-one

NAT configured to translate source with 172.16.10.0/24 to 80.80.80.0/24 as source
NAT, and any source with the destination IP address of 80.80.80.0/25 to 172.16.10.13
(web-03 IP address). Figure 4.5

Figure 4.5 – Source and destination NAT for web-03

Then we need to redistribute this NAT in the tier-one configuration to let these
translated traffic pass through it.

Figure 4.6 – NAT route advertisement

To verify this configuration, we can ping 80.80.80.1, and we expect to have
successful ping without any packet loss, and with tracert command, we can monitor
the path which packet passed to reach webserver.

Engineering Data Centers

51

Figure 4.6 – verifying the source and destination NAT

This successful ping means the both Source NAT and destination NAT is working
well, and router gateway lets the traffic to pass.

4.4 Dynamic host configuration protocol (DHCP
protocol in NSX-T)

Dynamic host configuration protocol is a protocol that gives the ability to end-users
to receive their configuration automatically without the need of an administrator's
interaction.

The dynamic automation is beneficial for reducing the time and misconfiguration of
user admins, especially when there are many end hosts to configure.

In this section, we will add a DHCP server to our design by dedicating a segment for
the DHCP server and then attach it to the tier-zero gateway. After that, we need to
introduce this server to logical switches. By doing this, our end hosts will receive
their IP address and configuration from the DHCP server automatically.

In the first step, we should create a DHCP server and allocate a static IP to it. Figure
4.7

Engineering Data Centers

52

Figure 4.7

After that, we create a logical segment for the DHCP server and attach it to Tier-zero

Figure 4.8

Then in the IP management of the DHCP segment that we created, we need to
introduce the gateway and range of IP we want to assign for the end hosts (we want to
receive IPs between range (172.16.60.10 – 172.16.60.30). Figure 4.8

Figure 4.8

Now, if we attach any end host to this segment, we expect to take an IP address in
this range automatically. To verify that, we attach web-04 to this segment. Figure 4.9

Figure 4.9 Web 04 received an IP range we allocated in DHCP

Engineering Data Centers

53

4.5 Load balancing in NSX-T

Overview

The load balancer is responsible for distributing the incoming traffic from users
across multiple or group of backend servers.

In this section, in the first step, we will create a load balancer and second tier-one
gateway router, and then we will connect one of the interfaces to load balancer and
the second one to the tier-one router that we created in the previous section.

The goal of this section is to provide load balancing and failover for webservers in
our data center, and in the case of the host failure, the second web server service our
customers immediately. Also, we will create an HTTPS monitoring to see how all the
processes work.

We start this section by creating a secondary tier-one gateway and connecting it to
tier-zero gateway. Figure 4.10

Figure 4.10

Then we need to allow all NAT and load balancing traffic to pass by changing route
redistribution configuration.

Figure 4.11

Engineering Data Centers

54

Then we need to allow route redistribution of virtual IP in the tier zero. After that, we
create a pool for servers, which is known as a server farm, to have load balancing on
them. In this case, we need to use a pool of web servers. We choose the round-robin
algorithm.

The round-robin algorithm gives us the ability to send traffic to the first gateway and
the second traffic to the second gateway.

Figure 4.12- web server pool

At this step, we need to configure a virtual server. The reason behind introducing a
virtual server is that by using a single IP and introducing it to all clients or hosts, we
can aggregate all requests in a single point and then distribute them among servers.
For this reason, we will create a virtual server and set it with an IP address of a load
balancer.

As depicted in figure 4.12, we created a virtual server with the name of VIP, and then
we introduced a single VIP to all clients, round-robin cycle, and sends traffic that is
coming for protocol 443(HTTPS) to webserver pool which we created. Figure 4.12

Figure 4.13 virtual server in NSX-T

We send a request to the web server, and as we can see in figure 4.13, we accessed
via web-02.

Figure 4.14

Now, if we will turn off the web server02 or send many requests quickly, we can see
the load balancer works well and will receive service via web server web-01.

Figure 4.15

Engineering Data Centers

55

Chapter 4

Conclusion

“In chapter four, we discussed NSX-T, which has all functionality of NSX-V and also
supports not only multi-hypervisor environments but also supports public/private
clouds. We deployed three features that NSX-T provides, NAT, load balancer, and
firewalls.

NAT:

Network Address translator invented as a solution for the shortage of IPv4, and it
converts two different IPs. We usually use this mechanism to translate bidirectionally
private IP to public IP. In this chapter, we used NAT at the edge of the design to
convert private IPs inside the data center to public IP for having connectivity to the
internet and external environment.

Load balancing:

To distribute loads of the system, we used load balancing, as we expect to have many
requests from the user side to web servers, the best practice is to distribute the loads
and do not have a single point of failure.

Firewall:

Firewalls are essential networks component, both in traditional physical and virtual
networks. The difference between logically distributed firewalls and traditional is,
DFW is distributed in kernel modules, and the generated traffic does not need to
reach the firewalls to receive an appropriate action (permit, block, restrict), and the
kernel module can decide it. The second benefit of DFW is flexibility and scalability.
We are not limited to just source and destination, services, or port numbers. We are
able to have different rules for different virtual machines in the same host.”

Engineering Data Centers

56

Chapter 5
vRealize Network Insight

Overview

VMware Network Insight is another VMware product that brings intelligent
operations for SDN and enables global view across both virtual and physical
networks and gives administrators the ability to find pinpoint of the problem in a
complex network and optimize security and firewall rules. Moreover, it can help us
improve performance and availability by converging all physical and virtual network
information, and it is available for on-premises sites or clouds. In this chapter, we are
going to monitor the whole infrastructure and track a connection between two
different hosts and see how vRealize can help us to track connections; then, at the end
of the chapter, we will use application discovery to create an application
automatically with all its connections.

5.1 Traffic distribution

Engineering Data Centers

57

Figure 5.1

To analyze all the information and topology of the system, we can filter "plan
security."

As we can see on the top right of figure 5.1, we can find all types of traffic passing
with details.

In the large-size enterprises which run NSX, defining the level of micro-segmentation
that needed between applications on the networks is a big challenge.

VMware Network Insight can solve this problem by analyzing and categorizing all
virtual machines into separate logical groups based on their network characteristics,
and automatically generating a recommendation model for security groups and
specifying firewall rules for each group.

5.2 VMware Network Insight information
collection mechanism

VMware Network Insight collects information from virtual distributed switches via a
mechanism known as IPFIX (IP Flow Information Export).

We should enable IPFIX at the layer of the virtual distributed switch for all hosts we
want to participate, by forwarding IPFIX UDP packets to vRealize appliance. As an
example of vRealize usage is; one of the customers needs to add another host or NSX
to the existing workload and does not have a clear idea of how to add these new
nodes to the topology and not effecting other configurations such as East-West
firewall protection. For solving this problem, we should use the vRealize Network

Engineering Data Centers

58

Insight appliance and monitor the real-time traffic patterns and use its firewalls and
security recommendation for added nodes.

The East-West section in figure 5.1 shows the sum of all traffic flows with the
percentage as East-West traffic, by going through this section we can see all traffic
and flows for 16-17 June 2020.

Figure 5.2

On the top ports of figure 5.1, we open one of the top ports to analyze, we will open
port 336, and as we can see in figure 5.3, it is the traffic that is passing from one of
the webservers to database servers on TCP protocol and using port 3306.

Figure 5.3

If we go more in details for this flow, we can see the source, destination, protocols,
IPs, and firewall rules

Engineering Data Centers

59

Figure 5.4- network topology flow path between web server source and database destination

Figure 5.5 – Distributed firewall rules for source

In vRealize, we can analyze almost everything. For example, we need to know in the
past day, what was the communication of Vlan 503 to whole networks. As we can see
in Figure 5.6, we can track the communication of Vlan 503 to other networks.

Engineering Data Centers

60

Figure 5.6

By clicking on each flow, we can see the list of flows and all firewall
recommendations for this flow Figure 5.7

Figure 5.7

As we can see in figure 5.7, the recommended firewall rule generated to secure and
segment traffic from the rest of the VLANs.One of the great features of the vRealize
network is path tracking. It is beneficial for troubleshooting when analyzing the path
of flows is difficult in NSX.

Suppose we want to track one of the shopping application traffic, which is forwarding
to a database server. By filtering the specific source and destination by Their IP or
DNS-name, we can reach a diagram 5.8.

Engineering Data Centers

61

Figure 5.8

As we can see, not only we have an end to end view, but also, we can view in detail
all the nodes configurations. As an example, by opening the source pc server, we can
see all the configurations such as; IP, security group, NSX manager, gateway. Figure
5.9

Figure 5.9

Engineering Data Centers

62

5.3 Application discovery

In an enterprise-level, when we have several applications or where there are multiple
tiers in an application, creating an application by using public APIs or the user
interface becomes time-consuming. vRealize network insight helps to automatically
add the applications and their tiers and reduce a lot of manual efforts.

In the application discovery tab, we can see a list of all applications and their status,
their protection, or applications with problems. Figure 5.10

Figure 5.10 -application list with all status and protections

In this step, we need to create a new application automatically with all its tiers and
connect it to the internet.

Figure 5.11 – New application creation in vRNI

Engineering Data Centers

63

We named this new application, Peiman Roufarshbaf, and we joined it to shopping
applications and 3tierapp01, DLR-0, and edge0.

As can be seen in figure 5.12, the application is created and connected to the internet
successfully.

 Figure 5.12

Engineering Data Centers

64

Chapter 5

Conclusion

“In this chapter, we used another useful product of VMware, which is vRealize
Network Insight.

We used this product in the final chapter after all configuration and designed to bring
intelligent operations for SDN and having a global view across both physical and
virtual networks by collecting information from the virtual distributed switch and
representing all this information through a graph. As time pass, the networks
becoming more and more complex, and troubleshooting will be harder. vRealize
insight gives us the ability to not only monitor the whole network from a central point
but also track the flows generated from a source to the destination with all firewall
recommendations. For example, if there is a misbehavior in the system or one part of
the network has overloaded. By using vRealize insight, we can monitor all traffic
passing during a specific period of time that we filtered and find the trouble. Another
useful feature is that we can quickly modify or add a node with all its connections to
the network

Engineering Data Centers

65

Bibliography

VMware NSX Data Center for vSphere. (2019, 05 31). Retrieved from

docs.vmware.com: https://docs.vmware.com/en/VMware-NSX-Data-

Center-for-vSphere/6.4/com.vmware.nsx.install.doc/GUID-B715387F-983D-

4458-B9FB-AD49FCE03E04.html

1. (2019, 05 31). Retrieved from docs.vmware.com:

https://docs.vmware.com/en/VMware-

vSphere/6.7/com.vmware.vsphere.networking.doc/GUID-B15C6A13-797E-

4BCB-B9D9-5CBC5A60C3A6.html

Moenster, H. (n.d.). VMware vSphere 6 Fault Tolerance Architecture and

Performance.

Peyo, T. (n.d.). https://geek-university.com/vmware-esxi/vsphere-distributed-

resource-scheduler-drs-requirements/.

Rouse, M. (2015, May). https://searchvmware.techtarget.com/definition/VMware-

Platform-Services-Controller-PSC.

VMware. (2018). DATASHEETVMWARE vREALIZE | 1VMWARE vREALIZE NETWORK

INSIGHT AND VMWARE NETWORK INSIGHT.

Yaqub, N. (March 23, 2012). Comparison of Virtualization Performance: VMware and

KVM. 18-20.

	Chapter 1
	Introduction
	Chapter 2
	Global design and architecture
	2.1 Current network conception problems
	2.2 SDN (Software Defined Networking)
	2.2.1 Application layer
	2.2.2 Control layer
	2.2.3 Infrastructure layer
	2.3.1 Tools and components
	2.3.2 VMware Platform Service Controller
	2.4 Global Architecture
	2.4.1 Distribute Resource Scheduler
	2.5 High Availability (HA)
	2.6 Fault tolerance
	2.6.1 Fault tolerance Requirements
	Conclusion
	Chapter 3
	Network Virtualization with NSX-V
	3.1.1 Standard Switch (vSwitch)
	3.1.2 Port Group
	3.1.3 Distributed Switch
	3.1.4 VXLAN
	3.1.5 Transport Zone
	3.2 Virtual network architecture
	3.3 Distributed Logical Router (DLR)
	3.3.1 Overview
	3.3.2 DLR Components
	3.4 Deploying DLR to architecture
	3.5 Deploying Dynamic routing algorithm on DLR
	3.5.1 NSX Edge Gateway
	3.5.2 Edge Service Gateway
	3.5.3 Deploying BGP protocol
	3.6 Distributed Firewall and micro-segmentation
	3.6.1 Service composer
	Conclusion (1)
	Chapter 4
	NFV and NSX-T
	4.1 NSX-T components
	4.2 The virtual Network architecture in multi-hypervisor
	4.3 NAT and DHCP with NSX-T
	4.4 Dynamic host configuration protocol (DHCP protocol in NSX-T)
	4.5 Load balancing in NSX-T
	Conclusion (2)
	Chapter 5
	vRealize Network Insight
	5.1 Traffic distribution
	5.2 VMware Network Insight information collection mechanism
	5.3 Application discovery
	Conclusion (3)
	Bibliography

